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Abstract

Linear Programming based lower bounds have been considered both for the general as well as

for the symmetric quadratic assignment problem several times in the recent years. They have

turned out to be quite good in practice. Investigations of the polytopes underlying the cor-

responding integer linear programming formulations (the non-symmetric and the symmetric

quadratic assignment polytope) have been started by Rijal (1995), Padberg and Rijal (1996),

and J�unger and Kaibel (1996, 1997). They have lead to basic knowledge on these polytopes

concerning questions like their dimensions, a�ne hulls, and trivial facets. However, no large

class of (facet-de�ning) inequalities that could be used in cutting plane procedures had been

found. We present in this paper the �rst such class of inequalities, the box inequalities, which

have an interesting origin in some well-known hypermetric inequalities for the cut polytope.

Computational experiments with a cutting plane algorithm based on these inequalities show

that they are very useful with respect to the goal of solving quadratic assignment problems

to optimality or to compute tight lower bounds. The most e�ective ones among the new

inequalities turn out to be indeed facet-de�ning for both the non-symmetric as well as for

the symmetric quadratic assignment polytope.

Keywords: Quadratic Assignment Problem, Polyhedral Combinatorics, QAP-Polytope,

Facets, Cutting Plane Procedure

MSC Classi�cation: 90C09, 90C10, 90C27

1 Introduction

The quadratic assignment problem shares (at least) one property with many interesting ques-

tions in mathematics: It can be stated very easily, but its solution is extremely hard. Koopmans

and Beckmann (1957) introduced this problem in order to model the situation where n objects,

having ows f

ik

between each other, have to be assigned to n locations (with distances d

jl

be-

tween each other) by a permutation � such that the sum

P

i;k

a

ik

b

�(i)�(k)

+

P

i

c

i�(i)

is minimized,

where c

ij

is the linear cost for assigning object i to location j. The problem we will deal with

is a generalization due to Lawler (1963), who formulated the quadratic assignment problem as

�
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the task to minimize a polynomial of degree two in the entries of the permutation matrices:

(QAP)

(n)

g;h

min

n

X

i;k=1

i<k

n

X

j;l=1

j 6=l

h

ijkl

x

ij

x

kl

+

n

X

i=1

n

X

j=1

g

ij

x

ij

s.t.

n

X

j=1

x

ij

= 1 (i 2 f1; : : : ; ng)

n

X

i=1

x

ij

= 1 (j 2 f1; : : : ; ng)

x

ij

2 f0; 1g (i; j 2 f1; : : : ; ng)

The symmetric quadratic assignment problem is restricted to those instances where the coef-

�cients in the Lawler formulation satisfy the equations h

ijkl

= h

ilkj

. For example, a Koop-

mans/Beckmann instance with a symmetric ow or a symmetric distance matrix leads to a

symmetric quadratic assignment problem (since in this case, we have h

ijkl

= f

ik

d

jl

+ f

ki

d

lj

).

The most successful algorithms that have emerged from the attempts to �nd practical solu-

tion procedures for this NP-hard combinatorial optimization problem during the past 40 years

are branch-and-bound algorithms that use the lower bound proposed by Gilmore (1962) and

Lawler (1963) (for the history and bibliographic information we refer, e.g., to Pardalos, Rendl,

and Wolkowicz, 1994; Burkard and C�ela, 1996). By appropriate implementations for high per-

formance parallel computers, the \world record" sizes for exactly solved instances are currently

slightly beyond n = 20 (Clausen and Perregaard, 1994; Br�ungger, Clausen, Marzetta, and Per-

regaard, 1996; Clausen, Espersen, Karisch, Perregaard, Sensen, and Tsch�oke, 1996). However,

the branch-and-bound trees of these instances usually have several billion nodes, indicating the

need for better lower bounding procedures than the classical Gilmore/Lawler bound. There have

been proposed lots of such procedures in the literature, but most of them turned out to be not

competetive with the Gilmore/Lawler bound, since they needed too much time compared with

the strengthening of the lower bounds that they achieved.

One of the tightest bounding procedures that have been developed arises from an integer

linear programming formulation of the quadratic assignment problem that was introduced by

Johnson (1992). The linear programming relaxation coming from that formulation yields a

bound that was proved to be always at least as good as the Gilmore/Lawler bound (Johnson,

1992; Adams and Johnson, 1994). In fact, when Resende, Ramakrishnan, and Drezner (1995)

computed these bounds for all instances in the QAPLIB (the commonly used set of test instances

compiled by Burkard, Karisch, and Rendl, 1991, 1996) they turned out to be the best known

bounds in many cases. However, compared with the e�ort that it takes to solve the linear

programs, they are still too weak. A way to improve the strength of these linear programming

based bounds is to investigate the polyhedral structure of the quadratic assignment problem,

as it was done successfully for many other combinatorial optimization problems, like, e.g., the

traveling salesman problem.

The polyhedral knowledge on the quadratic assignment problem is at an early stage. Rijal

(1995) and Padberg and Rijal (1996) found answers to some very �rst questions concerned with

an associated polytope, such as its dimension, a�ne hull, and trivial facets. These results have

partially already appeared in a paper of Barvinok (1992), where the connection between the

theory of representations of �nite groups and combinatorial optimization polyhedra are consid-

ered. However, it seems that the approach of Barvinok is di�cult to apply to deeper polyhedral

studies, and the work of Padberg and Rijal showed that a simple \classical" polyhedral treat-

ment of the problem yields enormous technical di�culties even for, e.g., the dimension proof.

This might be the most important reason that kept the development of the polyhedral approach
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to the quadratic assignment problem from taking a major step until now.

In this paper, we present the �rst large class of facet de�ning inequalities (the box inequalities)

for both the polytope that is naturally associated with the quadratic assignment problem, as

well as for a polytope, which is especially associated with the symmetric quadratic assignment

problem. The consideration of this latter polytope was already suggested by Rijal (1995) and

Padberg and Rijal (1996), since it corresponds to an integer linear programming formulation

(for symmetric instances) with roughly half as many variables as the non-symmetric one has.

The paper is organized as follows. Section 2 briey presents the necessary background on

the polyhedral approach to the quadratic assignment problem. In particular, a technique (the

\star-transformation") that we have developed in order to overcome the technical di�culties

mentioned above is pointed out. We introduce the box inequalities in Section 3 and show their

origin in some well-known hypermetric inequalities for the cut polytope. In Section 4 the box

inequalities are investigated with respect to their meaning for the face lattices of the quadratic

assignment polytopes. In particular, we prove that a large subclass of these inqualities are facet-

de�ning for these polytopes. The computational experiments about which we report in Section 5

show that the box inequalities open up for the �rst time the possibility of attacking quadratic

assignment problems successfully with cutting plane procedures. Our preliminary pure cutting

plane algorithm is able to solve several instances from the QAPLIB to optimality and produces

signi�cantly increased lower bounds for many others. We conclude with a brief discussion of

the promising directions of the further polyhedral investigations of the quadratic assignment

problem in Section 6.

2 Quadratic Assignment Polytopes

This section is intended to give a short introduction into some polyhedral constructions for the

quadratic assignment problem. It provides the basic background that will be needed in the

subsequent sections. For a detailed treatment (including the proofs of the statements in this

section) we refer to J�unger and Kaibel (1996) and J�unger and Kaibel (1997).

De�nitions of the Polytopes QAP

n

and SQAP

n

. In order to pro�t from the convenient

notions of graph theory, we formulate the quadratic assignment problem as a (hyper)graph

problem. For a set M and a cardinality � 2 N we denote by

�

M

�

�

the set of all subsets N �M

with jN j = �. Let G

n

= (V

n

; E

n

) be the graph de�ned on n

2

nodes V

n

= f1; : : : ; ng � f1; : : : ; ng

with edges

E

n

=

�

f(i; j); (k; l)g 2

�

V

n

2

�

�

�

�

�

i 6= k; j 6= l

�

:

We denote the edges of G

n

by [i; j; k; l] = f(i; j); (k; l)g. The sets row

i

= f(i; j) j 1 � j � ng

and col

j

= f(i; j) j 1 � i � ng are called the i-th row and the j-th column of V

n

, respectively.

Weighting the nodes of this graph by the linear terms coe�cients g

ij

of the Lawler formulation

(QAP)

(n)

c;d

and putting the weights h

ijkl

on the edges [i; j; k; l], the quadratic assignment problem

becomes equivalent to �nding a minimally node- and edge-weighted n-clique in G

n

.

In the symmetric case (i.e., the equations h

ijkl

= h

ilkj

hold), we consider a hypergraph

^

G

n

= (V

n

;

^

E

n

) de�ned on the same node set V

n

, but having hyperedges

^

E

n

=

�

f(i; j); (k; l); (i; l); (k; j)g 2

�

V

n

4

�

�

�

�

�

i 6= k; j 6= l

�

:

A hyperedge is denoted by hi; j; k; li = f(i; j); (k; l); (i; l); (k; j)g. We call the edge [i; j; k; l] the

mate of the edge [i; l; k; j]. Hence, the hyperedges of

^

G

n

are the unions of pairs of mates of edges

of G

n

. In particular, the number of edges of G

n

is twice the number of hyperedges of

^

G

n

.
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We call a subset C � V

n

a clique of

^

G

n

if it is a clique of G

n

, and we consider a hyperedge

hi; j; k; li belonging to a clique C � V

n

of

^

G

n

if (i; j); (k; l) 2 C or (i; l); (k; j) 2 C holds.

Weighting the nodes as in the non-symmetric case and the hyperedges hi; j; k; li by h

ijkl

(or,

equivalently, by h

ilkj

), the quadratic assignment problem in the symmetric case is to �nd a

minimally node- and hyperedge-weighted n-clique in

^

G

n

.

We �x a few notations concerned with these (hyper)graphs. For a subset W � V

n

of nodes

the set of all edges of G

n

with both endnodes in W is denoted by E

n

(W ), and

^

E

n

(C) is the set of

all hyperedges of

^

G

n

belonging to C. For two disjoint subsets S; T � V

n

, the set of all edges of

G

n

with one end-node in S and the other one in T is (S : T ). We often, also in other contexts,

omit the brackets for singleton sets and write, e.g., (v : T ) in case of S = fvg. If x 2 R

V

n

is

a vector indexed by the nodes V

n

, and W � V

n

is a subset of nodes, then x(W ) denotes the

sum

P

v2W

x

v

of all components of x that are associated with nodes in the subset W . Similarly,

y(F ) and z(

^

F ) are de�ned for vectors y 2 R

E

n

, z 2 R

^

E

n

, and subsets F � E

n

,

^

F �

^

E

n

. For a

subset W � V

n

the characteristic vector x

W

2 R

V

n

of W in V

n

is de�ned via x

W

v

= 1 for v 2W

and x

W

v

= 0 for v 62W . Analogously, characteristic vectors y

F

2 R

E

n

and z

^

F

2 R

^

E

n

are de�ned

for subsets F � E

n

and

^

F �

^

E

n

of (hyper)edges.

With these de�nitions, we can now easily introduce the two objects that are at the center of

interest in this paper. The (non-symmetric) quadratic assignment polytope is the convex hull of

all characteristic vectors of n-cliques of G

n

QAP

n

= conv

n

(x

C

; y

E

n

(C)

)

�

�

�

C is an n-clique of G

n

o

:

The symmetric quadratic assignment polytope is the convex hull of the characteristic vectors of

the n-cliques in the hypergraph

^

G

n

:

SQAP

n

= conv

n

(x

C

; z

^

E

n

(C)

)

�

�

�

C is an n-clique of

^

G

n

o

There is an important relation between these two polytopes: The symmetric quadratic as-

signment polytope SQAP

n

is the image of the non-symmetric one QAP

n

under a certain linear

map. Let us call an inequality (u; v)

T

(x; y) � ! (with (u; v) 2 R

V

n

� R

E

n

) symmetric if the

equations v

[i;j;k;l]

= v

[i;l;k;j]

hold for all pairs of mates. Obviously, a symmetric valid inequality

(u; v)

T

(x; y) � ! for QAP

n

immediately gives rise to a valid inequality (u; v̂)

T

(x; z) � ! for

SQAP

n

by de�ning v̂

hi;j;k;li

= v

[i;j;k;l]

(or, equivalently, v̂

hi;j;k;li

= v

[i;l;k;j]

). Furthermore, if the

inequality (u; v)

T

(x; y) � ! is facet-de�ning for QAP

n

then so is the inequality (u; v̂)

T

(x; z) � !

for SQAP

n

(see J�unger and Kaibel, 1996). Therefore, we are especially interested in symmetric

(facet-de�ning) inequalities for the polytope QAP

n

, because they can immediately also be used

for the symmetric case.

The Star-Transformation. The vertices of the polytopes QAP

n

and SQAP

n

have a coor-

dinate structure that makes investigations with respect to questions like the dimension of the

polytopes or the dimension of certain faces of them quite di�cult. However, after a suitable

isomorphic transformation of the polytopes the situation becomes much more convenient. For

a detailed treatment see J�unger and Kaibel (1997). Here, we only review the transformation

for the non-symmetric case, since we can reduce all questions arising in this paper that con-

cern the symmetric quadratic assignment polytope to the non-symmetric case by exploiting the

connection between these two polytopes described in the previous paragraph.

The basic observation is that the orthogonal projection of R

V

n

�R

E

n

onto R

V

n�1

�R

E

n�1

that

simply \forgets" all components belonging to any nodes in the n-th row or in the n-th column

or to any edges that share a node with the n-th row or with the n-th column, maps the polytope

QAP

n

isomorphically into the lower-dimensional vectorspace R

V

n�1

� R

E

n�1

. With n

?

= n� 1
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we call the image of SQAP

n

� R

V

n

� R

E

n

under this projection QAP

?

n

?

� R

V

n

?

� R

E

n

?

. The

polytope QAP

?

n

?

is the convex hull of all characteristic vectors of n

?

- and (n

?

� 1)-cliques of

G

n

?

. Furthermore, if an inequality de�ning a face F of SQAP

n

has only zero-coe�cients on

components that belong to nodes in the n-th row or in the n-th column or to edges that share

a node with the n-th row or with the n-th column then the \projected inequality" de�nes the

face F

?

of QAP

?

n

?

that is isomorphic to F via the isomorphism between QAP

n

and QAP

?

n

?

.

This implies that an inequality with zeroes on all coe�cients belonging to variables that are

\projected out" de�nes a facet of QAP

n

if and only if its \projection" de�nes a facet of QAP

?

n

?

.

In J�unger and Kaibel (1997) it is proved that the following equation system describes the

a�ne hull of the polytope QAP

?

n

?

:

x(row

i

[ row

k

)� y(row

i

: row

k

) = 1 (i; k 2 f1; : : : ; n

?

g; i < k)(1)

x(col

j

[ col

l

)� y(col

j

: col

l

) = 1 (j; l 2 f1; : : : ; n

?

g; j < l)(2)

Theorem 1. The set

B = f[1; j; 2; l] 2 E

n

?

j j < lg [ f[i; 1; k; 2] 2 E

n

?

j i < kg

is the index set of a basis of the equation system (1), (2), i.e., the submatrix of the left-hand-side

coe�cient matrix of this equation system which consists of the columns corresponding to B has

full column rank, and this column rank equals the rank of the whole matrix. In particular, since

(1) and (2) form a complete equation system for QAP

?

n

?

, the dimension of QAP

?

n

?

is

dim(QAP

?

n

?

) = dim

�

R

V

n

?

� R

E

n

?

�

� jBj:

Basic Results on the QAP-Polytopes. A very simple (but nevertheless extremely useful)

property of all three polytopes QAP

n

, SQAP

n

, and QAP

?

n

?

is that they are each invariant

under permuting the rows or the columns of the (hyper)graph.

Another issue that will be important within this paper is the connection between the (non-

symmetric) quadratic assignment polytope and the boolean quadric polytope. The latter was

introduced by Padberg (1989) as follows. Let K

N

= (V

N

; E

N

) denote the complete graph on

N nodes. We use notations like E

N

(W ) (for W � V

N

) or x

W

and x(W ) analogously to their

de�nitions in the context of G

n

. The boolean quadric polytope (on the complete graph with N

nodes) is de�ned as

BQP

N

= conv

n

(x

C

; y

E

N

(C)

)

�

�

�

C � V

N

o

:

It turns out that the canonical embedding of the polytopeQAP

n

into the vectorspace R

V

n

2

�

R

E

n

2

not only is contained in BQP

n

2
, but is in fact even a face of this polytope. Moreover,

De Simone (1989) has shown that BQP

N

is isomorphic to the extensively studied cut polytope

CUT

N+1

, which is the convex hull

CUT

N+1

= conv

n

y

(S:V

N+1

nS)

�

�

�

S � V

N+1

o

of all characteristic vectors of cuts in the complete graph K

N+1

on N + 1 nodes. Thus, QAP

n

is also isomorphic to some face of the cut polytope CUT

n

2

+1

.

The following summarizes the basic results on the facial structures of QAP

n

and SQAP

n

.

We denote by �

(i;j)

(k;j)

the set of all hyperedges containing both nodes (i; j) and (k; j). All proofs

can be found in J�unger and Kaibel (1996) and J�unger and Kaibel (1997). The results on QAP

n

have independently been also discovered by Rijal (1995) and Padberg and Rijal (1996).
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� The a�ne hull of QAP

n

is described by

x(row

i

) = 1 (i 2 f1; : : : ; ng)(3)

x(col

j

) = 1 (j 2 f1; : : : ; ng)(4)

�x

(i;j)

+ y((i; j) : row

k

) = 0 (i; j; k 2 f1; : : : ; ng; i 6= k)(5)

�x

(i;j)

+ y((i; j) : col

l

) = 0 (i; j; l 2 f1; : : : ; ng; j 6= l):(6)

� The a�ne hull of SQAP

n

is described by

x(row

i

) = 1 (i 2 f1; : : : ; ng)(7)

x(col

j

) = 1 (j 2 f1; : : : ; ng)(8)

�x

(i;j)

� x

(k;j)

+ z(�

(i;j)

(k;j)

) = 0 (i; j; k 2 f1; : : : ; ng; i 6= k)(9)

�x

(i;j)

� x

(i;l)

+ z(�

(i;j)

(i;l)

) = 0 (i; j; l 2 f1; : : : ; ng; j 6= l):(10)

� The \trivial inequalities" y � 0 de�ne facets of QAP

n

.

� The \trivial inequalities" x � 0 and z � 0 de�ne facets of SQAP

n

.

Consider the relaxation polytopes

EQP

n

=

�

(x; y) 2 R

V

n

� R

E

n

j (x; y) satis�es (3), (4), (5), (6), (x; y) � 0

	

� QAP

n

and

SEQP

n

=

n

(x; z) 2 R

V

n

� R

^

E

n

j (x; z) satis�es (7), (8), (9), (10), (x; z) � 0

o

� SQAP

n

:

The integer points of these relaxation polytopes are precisely the vertices of the polytopesQAP

n

and SQAP

n

, respectively. Moreover, the lower bounds one can compute by solving the linear

programs corresponding to these two relaxation polytopes (called the (non-symmetric) equation

bound and the symmetric equation bound, respectively) have turned out to be of good quality

in practice. Corresponding experiments were done for the non-symmetric equation bound by

Resende, Ramakrishnan, and Drezner (1995). For symmetric instances, the symmetric equation

bound cannot be better than the non-symmetric equation bound, but experiments reported in

J�unger and Kaibel (1996) have shown that the symmetric bound is not much worse than the

non-symmetric one, in practice. The aim of this paper is to present and to investigate a class of

inequalities that signi�cantly tightens these relaxations.

3 The Box-Inequalities

Since the quadratic assignment polytope is a face of a boolean quadric polytope (see Section 2)

the �rst candidates for valid inequalities for the quadratic assignment polytope are the valid

inequalities that are known for the boolean quadric polytope. In this section, we follow that

line by introducing the ST-inequalities for boolean quadric polytopes, a class of inequalities

that slightly generalizes the three classes of inequalities proposed by Padberg (1989). Before

we investigate them with respect to the quadratic assignment polytopes, we also show that the

ST-inequalities correspond to some special hypermetric inequalities for the cut poytope. The box

inequalities for the quadratic assignment polytope are �nally de�ned to be those ST-inequalities

that are symmetric, and hence are of special interest, since they de�ne also faces of the symmetric

quadratic assignment polytope.
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The starting point for deriving the ST-inequalities is the observation that (�1) � 0 holds

for any choice of an integer number  2 Z. Suppose, S;T � V

N

are disjoint subsets of nodes,

and � 2 Z is any integer number. Let (x; y) 2 BQP

N

be any vertex of BQP

N

, i.e., (x; y) is an

characteristic vector of some C � V

N

. Note that we have x(R)

2

= x(R)+2y(R) for any R � V

N

and x(S)x(T ) = y(S : T ) (here we need that S and T are disjoint). The above observation

yields

0 � (x(T )� x(S)� �) (x(T )� x(S)� (� � 1))

= x(T )

2

� 2x(S)x(T ) + x(S)

2

+ (�(� � 1)� �)x(T ) + (� � 1 + �)x(S) + �(� � 1)

= 2y(T )� 2y(S : T ) + 2y(S)� (2� � 2)x(T ) + 2�x(S) + �(� � 1)

= �2

�

�y(T ) + y(S : T )� y(S) + (� � 1)x(T )� �x(S)�

�(� � 1)

2

�

:

Hence, we have shown that the ST-inequality

��x(S) + (� � 1)x(T )� y(S)� y(T ) + y(S : T ) �

�(� � 1)

2

(11)

is valid for BQP

N

. The vertices of the face of BQP

N

de�ned by this inequality are precisely

the characteristic vectors of subsets C � V

N

of nodes satisfying

jC \ T j � jC \ Sj 2 f�; � � 1g:

It turns out that the faces of BQP

N

that are de�ned by ST -inequalities correspond (via

the isomorphism between the boolean quadric polytope BQP

N

and the cut polytope CUT

N+1

mentioned in Section 2) to some well-known faces of CUT

N+1

, namely to some special hyperme-

tric faces. A hypermetric inequality for the cut polytope CUT

N+1

(on the complete graph with

nodes f0; 1; : : : ; Ng) is an inequality

N

X

v=0

N

X

w=v+1

�

v

�

w

z

fv;wg

� 0

for some set of integer numbers �

0

; �

1

; : : : ; �

N

2 Z satisfying

P

N

v=0

�

v

= 1. The hypermetric

inequalities were introduced independently by Deza (1960) and Kelly (1975). The subclass of

these inequalities to which the ST-inequalities correspond are those with

�

0

= 1� p+ q:

�

1

= � � � = �

p

= +1

�

p+1

= � � � = �

p+q

= �1

�

p+q+1

= � � � = �

N

= 0:

for some p; q 2 N.

Hypermetric inequalities of this type are either so-called linear or quasilinear hypermetric in-

equalities. Deza (1973) found a complete characterization of the facet de�ning ones among these

inequalities (see Deza and Laurent, 1997). Clearly, one can obtain from this characterization a

complete characterization of the ST-inequalies de�ning facets of the boolean quadric polytope.

Rather than doing this, we will return to the quadratic assignment polytopes and investigate

the meaning the ST-inequalities have there. The considerations of the boolean quadric polytope

and of the cut polytope were just intended to clarify the origin of the ST-inequalities.
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Since the canonical embedding of QAP

n

into R

V

n

2

� R

E

n

2

is a face of BQP

n

2
(see Sec-

tion 2) for any two disjoint subsets S;T � V

n

of nodes and any integer number � 2 Z the

ST-inequality (11) is also valid for QAP

n

. Of course, we have QAP

?

n

?

� BQP

n

?

2
(in fact,

QAP

?

n

?

is also a face of BQP

n

?

2
), and hence, the ST-inequality (11) is valid for QAP

?

n

?

, too.

With respect to the investigations of the symmetric quadratic assignment polytope SQAP

n

it is of special interest to know which ST-inequalities are symmetric (see Section 2). Let us call

an ST-inequality a 4-box inequality (or simply a box inequality) if there are two disjoint subsets

P

1

; P

2

� f1; : : : ; ng of row indices and two disjoint subsets Q

1

; Q

2

� f1; : : : ; ng of column indices

of V

n

such that

S = (P

1

�Q

1

) [ (P

2

�Q

2

) and T = (P

1

�Q

2

) [ (P

2

�Q

1

)(12)

hold (see Figure 1). A face that is de�ned by a 4-box inequality is a 4-box face. We call any

subset R � V

n

that can be written as P = P �Q for some P;Q � f1; : : : ; ng a box. Its size is

jP j � jQj.

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

Figure 1: The node sets of ST-inequalities in general, of 4-box inequalities and of 4-box inequal-

ities after suitable permutations of rows and columns. The set S is always indicated by the gray

parts, the set T by the black ones.

Theorem 2. An ST-inequality is symmetric if and only if it is a 4-box inequality.

Proof. Clearly, any 4-box inequality is symmetric. To prove the opposite direction, let (S;T ; �)

determine a symmetric ST-inequality. We call a subset F � E

n

of edges symmetric if for all

pairs of mates e; e

0

2 E

n

either both e and e

0

or none of them belong to F .

First, we show that for any subsetW � V

n

the set of edges E

n

(W ) induced byW is symmetric

if and only ifW is a box. To see the non-trivial direction of this claim, let P consist of all numbers

i with row

i

\W 6= ;, and let Q contain all j with col

j

\W 6= ;. Clearly, we have W � P �Q.

Assume that there is a node (i; j) 2 (P �Q) nW . By construction of P and Q there must be

nodes (i; l) 2 W (with l 6= j) and (k; j) 2 W (with k 6= i), yielding that the edge [i; l; k; j] is

contained in E

n

(W ), and hence, since E

n

(W ) was supposed to be symmetric, [i; j; k; l] 2 E

n

(W )

holds, contradicting (i; j) 62W .

From this, since E

n

(S [ T ) is precisely the set of edges having non-zero coe�cients in the

inequality under inspection, we deduce that S [ T must be a box, say S [ T = f1; : : : ; pg �

f1; : : : ; qg. By permutations of rows and columns, we can assume (1; 1); : : : ; (1; q

0

) 2 S, (1; q

0

+

1); : : : ; (1; q) 2 T , (1; 1); : : : ; (p

0

; 1) 2 S, and (p

0

+ 1; 1); : : : ; (p; 1) 2 T . Let i 2 f2; : : : ; p

0

g and

j 2 f2; : : : ; q

0

g. Since we have (1; j); (i; 1) 2 S, the edge [1; j; i; 1] must have coe�cient �1 in the

inequality, hence so does the edge [1; 1; i; j]. By (1; 1) 2 S this implies also (i; j) 2 S. Thus, we

have f1; : : : ; p

0

g � f1; : : : ; q

0

g � S. Analoguesly, one shows fp

0

+ 1; : : : ; pg � fq

0

+ 1; : : : ; qg � S,

f1; : : : ; p

0

g�fq

0

+1; : : : ; qg � T and fp

0

+1; : : : ; pg�f1; : : : ; q

0

g � T . This proves the theorem.
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In particular, the 4-box inequalities are precisely those ST-inequalities that yield also in-

equalities for SQAP

n

. We call a 4-box inequality de�ned by P

1

, P

2

, Q

1

, and Q

2

as above a

2-box inequality if (at least) one of the sets P

1

, P

2

, Q

1

, or Q

2

is empty. If one of P

1

or P

2

and

one of Q

1

or Q

2

is empty then we call the inequality a 1-box inequality. Analogously to the

4-box case, 2-box faces as well as 1-box faces are de�ned.

4 Box-Facets

There are two main reasons to investigate a given valid inequality for a combinatorial optimiza-

tion problem with respect to the question if it de�nes a facet of the corresponding polytope

or not. The �rst one is that restricting ourselves to adding facet de�ning inequalities to the

linear programs in a cutting plane procedure gives a guarantee that one does not create any

redundancies during the process. The other reason is that once one knows that an inequality

is facet de�ning for the underlying polytope one can stop all attempts to strengthen it by, e.g.,

\playing" with its coe�cients.

These two reasons seemed to us to be very important in particular for the quadratic as-

signment problem, where the linear programs are quite hard to solve, and hence, to avoid

irredundancies and using only cutting planes that are as strong as possible is a crucial issue.

Therefore, we started to investigate the faces that are de�ned by box inequalities (which we

call box faces). We did this extensively for the 1-box and the 2-box inequalities, and ended up

with the following characterization, which is in a certain sense complete (where we call a face

non-proper if it is either empty or the whole polytope).

Theorem 3. Let n � 7 hold.

(i) For every 1-box face F of QAP

n

or SQAP

n

one of the following statements is true:

(a) F is non-proper.

(b) F is contained in a trivial facet of QAP

n

or SQAP

n

, respectively.

(c) F is a facet of of QAP

n

or SQAP

n

, respectively.

(ii) For every 2-box face F of QAP

n

or SQAP

n

one of the following statements is true:

(a) F is non-proper.

(b) F is contained in a trivial facet of QAP

n

or SQAP

n

, respectively.

(c) F is contained in a 1-box facet of QAP

n

or SQAP

n

, respectively.

(d) F is contained in a curtain facet (see J�unger and Kaibel, 1996) of SQAP

n

.

(e) F is an \inconvenient" face of QAP

n

(see below).

(f) F is a facet of QAP

n

or SQAP

n

, respectively.

This means that for every 1-box face and for every 2-box face we know if it is a facet of

QAP

n

or SQAP

n

, respectively, and in case it is not a facet, we even know why, since we know

a facet of the respective polytope where the face is contained in. This holds in all cases but for

a few non-symmetric ones, which we called inconvenient in the statement of the theorem. For

these 2-box faces we can prove that they do not de�ne facets of QAP

n

, but we do not know any

facets where they are contained in.

Extending the results of Theorem 3 to the class of 4-box inequalities has failed up to now.

The proof of Theorem 3 as well as more details on the characterization (e.g., the exact conditions

on the triples (S;T ; �) that guarantee to de�ne a facet) can be found in Kaibel (1997). This

proof is extremely technical. Rather than giving it here, we prove a simpler result that describes

9



some su�cient conditions on a 1-box face for being a facet of QAP

n

or SQAP

n

, respectively.

This seems to us to be a satisfactory compromise, since on the one hand, the proof of this simpler

theorem already shows the basic principles of the proof of Theorem 3, and on the other hand,

the 1-box inequalities are of particular interest, since they seem to be of special importance

within a cutting plane pocedure (see Section 5).

Theorem 4. Let n � 7, let P;Q � f1; : : : ; ng generate T = P �Q � V

n

, and let � 2 Z be an

integer number such that

� � � 2,

� jP j; jQj � � + 2,

� jP j; jQj � n� 3, and

� jP j+ jQj � n+ � � 5

hold. Then the 1-box inequality de�ned by the triple (;;T ; �) de�nes a facet of both QAP

n

and

SQAP

n

.

Before we prove Theorem 4 let us discuss briey how restrictive the conditions posed there

on the set T are. A simple observation is that for � < 2 the box inequality de�ned by (;;T ; �)

can neither de�ne a facet of QAP

n

nor of SQAP

n

. The reason is that if � < 2 holds then the

n-cliques C � V

n

of G

n

or

^

G

n

, respectively, that correspond to vertices of the de�ned face satisfy

jC \ T j 2 f0; 1g, and hence, the 1-box face de�ned by (;;T ; �) is strictly contained in a trivial

facet of QAP

n

or SQAP

n

, respectively (provided that T contains at least two (hyper)edges).

Furthermore, for both QAP

n

and SQAP

n

the following equations hold, where we denote

�

T = P � (f1; : : : ; ng nQ) and

~

T = (f1; : : : ; ng n P )�Q (with P and Q as in Theorem 4):

x(T ) + x(

�

T ) = jP j(13)

x(T ) + x(

~

T ) = jQj(14)

From these equations it follows that the triples (;;

�

T ; jP j � (� � 1)) and (;;

~

T ; jQj � (� � 1))

de�ne the same face as (;;T ; �) does. Thus, it su�ces to investigate those 1-box faces that are

de�ned by a triple (;;T ; �) with T = P �Q for some sets P;Q � V

n

with jP j; jQj � bn=2c.

Moreover, if jP j < � + 1 or jQj < � + 1 holds, we can deduce from the equations (13)

and (14) that every vertex of the face de�ned by the corresponding 1-box inequality must

satisfy x(

�

T ) 2 f0; 1g or x(

~

T ) 2 f0; 1g, respectively. Thus, that 1-box face is, again, properly

contained in a trivial facet of QAP

n

or SQAP

n

, respectively (note that due to jP j; jQj � bn=2c

and n � 7 we can assume that both

�

T and

~

T contain at least two (hyper)edges).

Figure 2 shows the values of jP j and jQj that satisfy the conditions of Theorem 4.

Proof of Theorem 4. It follows from the connections between QAP

n

and SQAP

n

(see Section 2)

that it su�ces to prove the theorem in the non-symmetric case. Furthermore, from the isomor-

phism between QAP

n

and QAP

?

n

?

(with n

?

= n� 1, see also Section 2) we only have to prove

the following:

Let n

?

� 6, let P;Q � f1; : : : ; n

?

g generate T = P � Q � V

n

?

, and let � 2 Z

be an integer number such that � � 2, jP j; jQj � � + 2, jP j; jQj � n

?

� 2, and

jP j+ jQj � n

?

+�� 4 hold. Then the 1-box inequality de�ned by the triple (;;T ; �)

de�nes a facet of QAP

?

n

?

.
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4
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Figure 2: The subsets of parameter pairs (jP j; jQj) with jP j; jQj � bn=2c and jP j; jQj � � + 1

that satisfy the conditions of Theorem 4 (for n = 20 and � = 2; 4).

Let F be a face of QAP

?

n

?

which is de�ned by a triple (;;T ; �) as above. We denote p = jP j

and q = jQj. Since QAP

?

n

?

is invariant under permutations of the rows and columns of V

n

?

, we

can assume P = fn

?

� p+ 1; : : : ; n

?

g and Q = fn

?

� q + 1; : : : ; n

?

g. We denote the set of n

?

-

and (n

?

� 1)-cliques of G

n

?

that correspond to the vertices of F by

L =

n

C � V

n

�

�

�

jC \ T j 2 f� � 1; �g; C is an n

?

- or an (n

?

� 1)-clique of G

n

?

o

:

Let

�

L

=

n

(x

C

1

; y

E

n

?
(C

1

)

)� (x

C

2

; y

E

n

?
(C

2

)

) j C

1

; C

2

2 L

o

be the set of all di�erence vectors of the characteristic vectors of these cliques, i.e., the set of all

di�erences of vertices of the face F . Hence, �

L

spans the linear subspace belonging to the a�ne

subspace a�(F). Denoting the rank of the equation system (1), (2) by �, we have to show that

the linear dimension of �

L

equals dim(R

V

n

?

�R

E

n

?

)���1. Let B be the set of edges belonging

to the basis of the equation system (1), (2) that we have introduced in Theorem 1. In particular,

we have jBj = �. Denote by B = fy

e

j e 2 Bg the set of all canonical unit vectors belonging to

B. With e

0

= [n

?

� p+ 1; n

?

� q + 1; n

?

� p+ 2; n

?

� q + 2] (recall that p; q � �+2 � 4 holds),

it su�ces to show lin(�

L

[B[fy

e

0

g) = R

V

n

?

�R

E

n

?

. We will do this by successively combining

all canonical unit vectors fx

v

j v 2 V

n

?

g and fy

e

j e 2 E

n

?

g of the vector space R

V

n

?

� R

E

n

?

by

using just the vectors in �

L

and B [ fy

e

0

g. In order to abbreviate the notations, we say that

an edge or a node is combined once the corresponding unit vector is linearly combined.

We introduce four types of vectors that will be used to combine the nodes and edges. Let

i; k; a 2 f1; : : : ; n

?

g be three pairwise distinct numbers of rows of V

n

?

, and let j; l; b 2 f1; : : : ; n

?

g

be three pairwise distinct numbers of columns of V

n

?

. We will use the following vectors, where

w

1

= (i; b), w

2

= (a; j), w

3

= (k; b), w

4

= (a; l), v

0

= (a; b), v

1

= (i; j), v

2

= (k; j), v

3

= (k; l),

v

4

= (i; l), and C � V

n

?

is an n

?

-clique of G

n

?

containing the node w 2 C. They are illustrated

in Figure 3.

�(C;w) = x

w

+

X

w

0

2Cnw

y

fw;w

0

g

�(v

1

; v

2

; v

3

; v

4

) = y

[i;j;k;l]

� y

[i;l;k;j]

	(v

0

; v

1

; v

2

; v

3

; v

4

) = y

[a;b;i;j]

� y

[a;b;k;j]

+ y

[a;b;k;l]

� y

[a;b;i;l]

�(w

1

; w

2

; w

3

; w

4

) = y

[i;b;a;j]

� y

[a;j;k;b]

+ y

[k;b;a;l]

� y

[a;l;i;b]

:
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w

(a) �(C;w)

j

v

2

v

1

v

4

v

3

k

i

l

(b) �(v

1

; v

2

; v

3

; v

4

)

j

k

v

1

v

4

v

2

v

0

v

3

b l

a

i

(c) 	(v

0

; v

1

; v

2

; v

3

; v

4

)

j

k

w

3

w

2

w

4

w

1

i

lb

a

(d) �(w

1

; w

2

; w

3

; w

4

)

Figure 3: The four types of vectors provided by Lemmas 5, 6, 7, and 8

The following four lemmas give su�cient conditions for these vectors to be members in

lin(�

L

). We make one more notational convention. Let W � V

n

?

be a subset of nodes. We

denote by G

n

?

=W the subgraph of G

n

?

that is induced by all rows and columns that do not

intersect W . In order to simplify the notations, we write y

W

instead of y

E

n

?
(W )

.

Lemma 5. If for an n

?

-clique C

0

of G

n

?

and a node w 2 C

0

we have both C

0

2 L and C

0

nw 2 L,

then �(C

0

; w) 2 lin(�

L

) holds.

Proof. The equation �(C

0

; w) = (x

C

0

; y

C

0

)� (x

C

0

nw

; y

C

0

nw

) shows this.

Lemma 6. Let v

1

; v

2

; v

3

; v

4

2 V

n

?

be any nodes such that �(v

1

; v

2

; v

3

; v

4

) is de�ned. If there

is an (n

?

� 2)-clique C

0

in G

n

?

=fv

1

; v

2

; v

3

; v

4

g such that C

0

[ fv

1

; v

3

g 2 L, C

0

[ fv

2

; v

4

g 2 L,

C

0

[ fv

1

g 2 L, C

0

[ fv

2

g 2 L, C

0

[ fv

3

g 2 L, and C

0

[ fv

4

g 2 L, then �(v

1

; v

2

; v

3

; v

4

) 2 lin(�

L

)

holds.

Proof. This holds because of �(v

1

; v

2

; v

3

; v

4

) = (x

C

0

[fv

1

;v

3

g

; y

C

0

[fv

1

;v

3

g

) � (x

C

0

[fv

1

g

; y

C

0

[fv

1

g

)

� (x

C

0

[fv

3

g

; y

C

0

[fv

3

g

)� (x

C

0

[fv

2

;v

4

g

; y

C

0

[fv

2

;v

4

g

) + (x

C

0

[fv

2

g

; y

C

0

[fv

2

g

) + (x

C

0

[fv

4

g

; y

C

0

[fv

4

g

).

Lemma 7. Let w

1

; w

2

; w

3

; w

4

2 V

n

?

be any nodes such that �(w

1

; w

2

; w

3

; w

4

) is de�ned. If there

is an (n

?

� 3)-clique C

0

in G

n

?

=fw

1

; w

2

; w

3

; w

4

g such that C

0

[ fw

1

; w

2

g 2 L, C

0

[fw

2

; w

3

g 2 L,

C

0

[ fw

3

; w

4

g 2 L, and C

0

[ fw

4

; w

1

g 2 L, then �(w

1

; w

2

; w

3

; w

4

) 2 lin(�

L

) holds.
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Proof. This is obtained from �(w

1

; w

2

; w

3

; w

4

) = (x

C

0

[fw

1

;w

2

g

; y

C

0

[fw

1

;w

2

g

) � (x

C

0

[fw

2

;w

3

g

;

y

C

0

[fw

2

;w

3

g

) + (x

C

0

[fw

3

;w

4

g

; y

C

0

[fw

3

;w

4

g

)� (x

C

0

[fw

4

;w

1

g

; y

C

0

[fw

4

;w

1

g

).

Lemma 8. Let v

0

; v

1

; v

2

; v

3

; v

4

2 V

n

?

be any nodes such that 	(v

0

; v

1

; v

2

; v

3

; v

4

) is de�ned. If

there is an (n

?

� 3)-clique C

0

in G

n

?

=fv

0

; v

1

; v

2

; v

3

; v

4

g such that C

0

[ fv

0

; v

1

; v

3

g 2 L, C

0

[

fv

1

; v

3

g 2 L, C

0

[ fv

0

; v

2

; v

4

g 2 L, and C

0

[ fv

2

; v

4

g 2 L, then 	(v

0

; v

1

; v

2

; v

3

; v

4

) 2 lin(�

L

)

holds.

Proof. The claim follows from �(C

0

[ fv

0

; v

1

; v

3

g; v

0

);�(C

0

[ fv

0

; v

2

; v

4

g; v

0

) 2 �

L

(by Lem-

ma 5), and 	(v

0

; v

1

; v

2

; v

3

; v

4

) = �(C

0

[ fv

0

; v

1

; v

3

g; v

0

)��(C

0

[ fv

0

; v

2

; v

4

g; v

0

).

Due to the combinatorial properties of the vertices of 1-box faces we need the following

characterization.

Proposition 9. Let n

0

� 0, P

0

; Q

0

� f1; : : : ; n

0

g, T

0

= P

0

�Q

0

, and let �

0

� 0 be any nonnegative

integer number. An n

0

-clique C

0

� V

n

0

of G

n

0

with jC

0

\T

0

j = �

0

exists if and only if jP

0

j; jQ

0

j � �

0

and jP

0

j+ jQ

0

j � n

0

+ �

0

hold.

Proof. With p

0

= jP

0

j and q

0

= jQ

0

j we can assume T

0

= fn

0

�p

0

+1; : : : ; n

0

g�fn

0

�q

0

+1; : : : ; n

0

g.

Let n

00

= n

0

� �

0

. A clique with the desired properties exists if and only if p

0

; q

0

� �

0

holds and

there exists an n

00

-clique C

00

� V

n

00

in the graph G

n

00

such that we have C

00

\ T

00

= ; for

T

00

= fn

00

� (p

0

� �

0

); : : : ; n

00

g � fn

00

� (q

0

� �

0

)g. Thus, it su�ces to prove that there is an

n

00

-clique C

00

� V

n

00

in G

n

00

with C

00

\ T

00

= ; if and only if p

0

+ q

0

� n

00

+ 2�

0

holds.

To prove this claim, let p

00

= p

0

��

0

and q

00

= q

0

��

0

, and observe that it is equivalent to the

claim that in the bipartite graphG

bip

on n

00

+n

00

nodes fv

1

; : : : ; v

n

00

g and fw

1

; : : : ; w

n

00

g having all

edges but the ones connecting nodes fv

1

; : : : ; v

p

00

g with fw

1

; : : : ; w

q

00

g, a perfect matching exists if

and only if p

00

+q

00

� n

00

holds. For any subset A � fv

1

; : : : ; v

n

00

g denote by �(A) � fw

1

; : : : ; w

n

00

g

the set of all nodes being adjacent to any node in A. Then, the K�onig/Hall-Theorem (see any

book about graph theory, e.g., Berge (1991)) says that a perfect matching in G

bip

exists if and

only if there is no subset A � fv

1

; : : : ; v

n

00

g of nodes with jAj > j�(A)j, what is equivalent to

p

00

� n

00

� q

00

, i.e., equivalent to p

0

+ q

0

� n

00

+ 2�

0

.

Using Lemmas 5, 6, 7, and 8, we now exhibit those vectors that we will need for combining

the nodes and edges. Let us recall that �, p = jP j, and q = jQj satisfy the conditions � � 2,

p; q � � + 2, p; q � n

?

� 2, and p+ q � n

?

+ � � 4, implying in particular p; q � 4.

Lemma 10. Let w

1

; w

2

; w

3

; w

4

2 V

n

?

nT such that �(w

1

; w

2

; w

3

; w

4

) exists. Then �(w

1

; w

2

; w

3

;

w

4

) 2 lin(�

L

) holds.

Proof. Let G

n

0

be the graph that is isomorphic to the subgraph G

n

?

=fw

1

; w

2

; w

3

; w

4

g of G

n

?

arising from the removal of all rows and columns of V

n

?

that share any node with w

1

; : : : ; w

4

.

The box T in G

n

?

of size p � q induces a box T

0

in G

n

0

of size p

0

� q

0

. By Lemma 6 it su�ces

to show that for �

0

= � the graph G

n

0

contains an n

0

-clique C

0

� V

n

0

with jC

0

\ T

0

j = �

0

. We

have n

0

= n

?

� 2, p� 2 � p

0

� p, and q � 2 � q

0

� q. Thus the inequalities p

0

� p� 2 � � = �

0

,

q

0

� q � 2 � � = �

0

, and p

0

+ q

0

� p+ q � n

?

+ � � 4 = n

0

+ �

0

� 2 � n

0

+ �

0

hold, and hence,

Proposition 9 guarantees the existence of a clique C

0

with the desired property.

The following proofs proceed in the same way as the proof of Lemma 10. Without explicit

de�nitions, we will always use the parameters n

0

, p

0

, and q

0

as the parameters specifying the sizes

of the graph and the box after the removal of the rows and columns sharing any of the nodes

which appear in the statement of the respective lemma. Thus, any of the proofs is completed

by chosing an appropriate value of �

0

that admits to apply the right one among Lemmas 5, 6,

7, or 8, and showing the three inequalities required for the application of Proposition 9.
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Lemma 11. Let w

1

; w

2

; w

3

; w

4

2 T such that �(w

1

; w

2

; w

3

; w

4

) exists. Then �(w

1

; w

2

; w

3

; w

4

)

2 lin(�

L

) holds.

Proof. Again, we have n

0

= n

?

�2, but this time p

0

= p�2 and q

0

= q�2 hold. With �

0

= ��2 we

can apply Proposition 9 and Lemma 6: p

0

= p�2 � � = �

0

+2 � �

0

, q

0

= q�2 � � = �

0

+2 � �

0

,

p

0

+ q

0

= p+ q � 4 � n

?

+ � � 8 = n

0

+ �

0

� 4 � n

0

+ �

0

.

Lemma 12. Let v

1

; v

2

; v

3

; v

4

2 V

n

?

n T such that �(v

1

; v

2

; v

3

; v

4

) exists. Then �(v

1

; v

2

; v

3

; v

4

)

2 lin(�

L

) holds.

Proof. Here, n

0

= n

?

� 3, p � 3 � p

0

� p, and q � 3 � q

0

� q hold. Choosing �

0

= � � 1,

Proposition 9 allows to apply Lemma 7: p

0

� p� 3 � � � 1 = �

0

, q

0

� q � 3 � � � 1 = �

0

, and

p

0

+ q

0

� p+ q � n

?

+ � � 4 = n

0

+ �

0

.

Lemma 13. Let v

1

; v

2

; v

3

; v

4

2 T such that �(v

1

; v

2

; v

3

; v

4

) exists. Then �(v

1

; v

2

; v

3

; v

4

) 2

lin(�

L

) holds.

Proof. This lemma will be proved together with Lemma 14.

Lemma 14. Let v

1

; v

2

; v

3

2 T and v

4

2 V

n

?

n T such that �(v

1

; v

2

; v

3

; v

4

) exists. Then

�(v

1

; v

2

; v

3

; v

4

) 2 lin(�

L

) holds.

Proof. We prove both Lemma 13 and 14. In any case we have n

0

= n

?

� 3, p� 3 � p

0

� p� 2,

and q � 3 � q

0

� q � 2. If we choose �

0

= � � 2, we obtain both lemmas using Proposition 9

and Lemma 7: p

0

� p � 3 � � � 1 = �

0

, q

0

� q � 3 � � � 1 = �

0

, and p

0

+ q

0

� p + q � 4 �

n

?

+ � � 8 = n

0

+ �

0

� 3 � n

0

+ �

0

.

Lemma 15. Let w

0

; w

1

; w

2

; w

3

2 V

n

?

n T and w

4

2 T such that 	(w

0

; w

1

; w

2

; w

3

; w

4

) exists.

Then 	(w

0

; w

1

; w

2

; w

3

; w

4

) 2 lin(�

L

) holds.

Proof. We have n

0

= n

?

� 3, p� 2 � p

0

� p� 1, and q� 2 � q

0

� q� 1. If we choose �

0

= � � 1

then Proposition 9 together with Lemma 8 yields the claim: p

0

� p � 2 � � = �

0

+ 1 � �

0

,

q

0

� q � 2 � � = �

0

+ 1 � �

0

, and p

0

+ q

0

� p+ q � 2 � n

?

+ � � 6 = n

0

+ �

0

� 2 � n

0

+ �

0

.

Lemma 16. Let w 2 V

n

?

. Then there exists an n

?

-clique C � V

n

?

such that �(C;w) 2 lin(�

L

)

holds.

Proof. We have in any case n

0

= n

?

� 1, p � 1 � p

0

� p, and q � 1 � q

0

� q. Chosing

�

0

= � � 1, Proposition 9 and Lemma 5 can be applied: p

0

� p � 1 � � + 1 = �

0

+ 2 � �

0

,

q

0

� q � 1 � � + 1 = �

0

+ 2 � �

0

, and p

0

+ q

0

� p+ q � n

?

+ � � 4 = n

0

+ �

0

� 2 � n

0

+ �

0

.

Now we are prepared to combine all nodes and edges of G

n

?

. As explained at the beginning

of this proof, we start with just the edges in the set B (that constitutes a basis of the equation

system (1), (2)) and the edge e

0

(see Figure 4).

We partition the node set V

n

?

into �ve parts as indicated in Figure 5. The �rst observation

is that by using the fact that the edges in B can be already considered combined and exploiting

Lemma 10, we can combine all edges in E

n

?

(W

1

[W

2

) as well as the ones in E

n

?

(W

1

[W

3

).

Our next goal is to combine all edges in (W

2

: W

3

). By suitable permutations of the rows

and columns, it su�ces to show how to combine an edge [2; j; k; 2] for any j; k 2 f3; : : : ; n

?

g.

Choosing w

1

= (1; 2), w

2

= (2; 1), w

3

= (k; 2), and w

4

= (2; j), we can combine this edge by

applying Lemma 12, since the edges in E

n

?

(W

1

[W

2

) and in E

n

?

(W

1

[W

3

) are already done. But

once we have combined the edges in (W

2

:W

3

), it is easy to combine also all edges in (W

1

: W

4

)

by applying Lemma 10. We come to the edges in (W

2

: W

4

). We can assume that the edge

that we want to combine is [2; j; k; l] with j; k; l 2 f3; : : : ; n

?

g and (k; l) 62 T . Then, we apply
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e

0

T

1 2 n

?

1

2

n

?

Figure 4: The edges that are \combined" initially (where the set B is drawn just partially).

W

2

W

1

W

3

T

W

4

1 2

1

2

Figure 5: Partition of the nodes V

n

?

.

Lemma 12 with w

1

= (1; l), w

2

= (2; 1), w

3

= (k; l), and w

4

= (2; j), and obtain the desired

combination. Analogously, we can combine the edges in (W

3

:W

4

). In order to see, how one can

now combine the edges in E

n

?

(W

4

), let i; j; k; l 2 f3; : : : ; n

?

g with (i; j); (k; l) 62 T . This time,

we choose w

1

= (1; j), w

2

= (k; 1), w

3

= (i; j), and w

4

= (k; l), and exploit, again, Lemma 12,

using the fact that we have already combined all edges in (W

1

[W

2

[W

3

: W

4

).

Now we have combined all edges in E

n

?

n T . The next step is to combine the edges in

(V

n

?

n T : T ), what can be done by applying Lemma 15. Thus, it remains to combine the edges

in E

n

?

(T ) (and all nodes). For notational convenience, let us partition the box T into four parts

T

1

= fn

?

�p+1; n

?

�p+2g�fn

?

�q+1; n

?

�q+2g, T

2

= fn

?

�p+1; n

?

�p+2g�fn

?

�q+3; : : : ; n

?

g,

T

3

= fn

?

�p+3; : : : ; n

?

g�fn

?

�q+1; n

?

�q+2g, and T

4

= fn

?

�p+3; : : : ; n

?

g�fn

?

�q+3; : : : ; n

?

g.

Recall that we have the edge e

0

= [n

?

� p+ 1; n

?

� q + 1; n

?

� p+ 2; n

?

� q + 2] in our set of

\initially combined edges". By application of Lemma 14 we can use this to combine all edges

in (f(n

?

� p+ 1; n

?

� q + 1); (n

?

� p+ 2; n

?

� q+ 2)g : T

2

[ T

3

). After this, applying Lemma 14

also enables us to combine all edges in E

n

?

(T

1

[ T

2

) and the ones in E

n

?

(T

1

[ T

3

). But then,

we can proceed analogously to the combination of the edges in E

n

?

(V

n

?

n T ) from the edges in

E

n

?

(W

1

[W

2

) and E

n

?

(W

1

[W

3

); we just have to apply Lemma 11 instead of Lemma 10 and

Lemma 13 instead of Lemma 12.

Now we have combined all edges, and thus, exploiting Lemma 16, we can immediately

complete the proof of Theorem 4 by combining also all nodes.

5 Computational Results

We implemented a simple cutting plane procedure using a straightforward separation heuristic

for the box inequalities. This heuristic algorithm for a �xed � simply consists of guessing initial
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sets S and T and applying a 2-opt procedure in order to �nd a violated inequality. Nevertheless,

it usually detects many (i.e., hundreds) of violated inequalities if it is run several hundred times.

This leads to another point where our implementation is quite preliminary. The criterion by

which we select among the many detected violated inequalities a suitably small subset that

should be added to the current linear program, is yet very primitive. We simply take those

inequalities that are violated the most (regardless of any scaling or similar normalization).

Anyway this is not yet intended to be a sound computational study on the box inequalities.

Such a study will need to involve extensive experiments with all kinds of parameters like the

maximal number of violated inequalities that are added to the linear programs at one iteration,

the number of runs of the separation procedure, the values of � for which one searches violated

inequalities, the criteria for selecting among the detected violated inequalities, di�erent versions

of the separation heuristic itself, and so on.

Initial computational experiments showed that restricting the search in our separation heuris-

tic to 2-box inequalities mostly yielded better results than searching among all 4-box inequalities,

and, restricting the search to the 1-box inequalities improved the results even more. Thus, we

decided to do the preliminary computational experiments with restricting to 1-box inequalities.

Furthermore, we just considered � 2 f2; 3g. Finding good strategies for mixing 1-box, 2-box,

and 4-box inequalities and for the choice of the values � to be considered is one of the tasks for

a thorough experimental study.

In our tests, the (maximal) number of added inequalities per cutting plane iteration was

chosen to be 0:4 or 0:2 times the number of equations in the system yielding the symmetric

equation bound, where we took the factor 0:4 for the smaller instances (n � 16) and the factor

0:2 for the larger ones (n � 17). The linear programs become harder to solve as soon as that

many inequalities are added. For example, for instances with n = 20 yielding 7640 equations we

added up to 1518 inequalities per iteration that are also denser than the equations. Although

we removed after each iteration the inequalities that were not satis�ed with equality by the

optimum solution to the last linear program, this led to very di�cult linear programs. We could

not succeed in solving the linear programs by the CPLEX simplex method. Hence, we solved at

every iteration the linear program from the scratch using the CPLEX barrier optimizer.

The number of iterations that we run the cutting plane code varies from about 15 for the

small instances (n = 12) to just two or three iterations for the large instances (n = 20). Our

runs were usually stopped (unless the bounding procedure had yielded the optimum solution

value) by the queuing system of the machine due to reaching some time limit, which was, due

to problems with the queuing system, not always the same.

We have used as test set the instances of the QAPLIB of sizes n � 20. They are all symmetric.

The experiments were carried out on a Silicon Graphics Power Challenge machine. All linear

programs were solved by the CPLEX 4.0 parallel barrier solver using four processors.

Tables 1, 2, and 3 show the results. SEQB stands for the symmetric equation bound, while

the columns titled 1-box contain the statistics for using 1-box inequalities as cutting planes. The

absolute value of the respective bound is denoted by bound, qual is the ratio of that bound and

the optimal solution value (which is available from the literature for all instances of the QAPLIB

of sizes up to n = 20), iter gives the number of linear programs solved, and time is the time

our cutting plane procedure has run (in seconds). The �nal column, titled gap reduced reports

the part of the gap between the symmetric equation bound and the optimal solution value that

could be closed by cutting planes. Figure 6 illustrates this.

The results show that the 1-box inequalities have the potential to improve the symmetric

equation bound a lot towards the optimum solution value. For the smaller instances, where the

time limits allowed several iterations, the 1-box inequalities often even yield the optimum solu-

tion value. The most impressive gain of the bound quality is reached for the esc16 instances.

While they are the instances with by far the worst (symmetric) equation bounds, even a few iter-
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name SEQB 1-box gap

bound qual bound qual iter time reduced

chr12a 9552.0 1.000 9552.0 1.000 1 16.3 1.000

chr12b 9742.0 1.000 9742.0 1.000 1 16.1 1.000

chr12c 11156.0 1.000 11156.0 1.000 1 21.9 1.000

had12 1618.2 0.980 1652.0 1.000 3 435.2 1.000

nug12 520.6 0.901 576.3 0.997 13 23981.3 0.971

rou12 222212.0 0.943 235277.1 0.999 18 26541.8 0.981

scr12 29557.2 0.941 31410.0 1.000 5 1326.5 1.000

tai12a 220018.7 0.980 224416.0 1.000 3 371.9 1.000

tai12b 30581824.5 0.775 39464925.0 1.000 4 761.6 1.000

had14 2659.9 0.976 2724.0 1.000 4 2781.5 1.000

chr15a 9370.3 0.947 9896.0 1.000 7 25036.9 1.000

chr15b 7894.1 0.988 7990.0 1.000 3 2838.1 1.000

chr15c 9504.0 1.000 9504.0 1.000 1 105.5 1.000

nug15 1030.6 0.896 1129.4 0.982 6 19906.0 0.827

rou15 322944.5 0.912 340469.3 0.961 7 25315.5 0.561

scr15 48816.5 0.955 51140.0 1.000 4 5083.3 1.000

tai15a 351289.6 0.905 366465.9 0.944 7 25449.3 0.411

tai15b 51528935.0 0.995 51765268.0 1.000 7 17909.5 1.000

Table 1: Bounds for the instances with 12 � n � 15 obtained using 1-box inequalities.

ations with 1-box cutting planes su�ced to obtain the optimum solution value (for all instances

except esc16a). The running times of our preliminary implementation for these instances are

mostly within the same order of magnitude of those needed by Clausen and Perregaard (1994),

when they solved these instances for the �rst time using a parallel system with 16 Intel i860

processors.

The decrease of the quality of the cutting plane bound for the large instances is to some

extent due to the fact that our time limits allowed only two or three cutting plane iterations for

these instances. The running times of the cutting plane algorithm are rather large. However,

by performing both the separation as well as the choice of the added inequalities more carefully,

it should be possible to obtain the same or even better bounds by adding less inequalities, and

hence, within much smaller computation times.

These results show that the 1-box inequalities have a quite strong potential as cutting planes.

There are, as indicated, many points at which our preliminary cutting plane algorithm has to

be modi�ed in order to yield a more e�cient way to exploit these inequalities. In any case,

recalling, e.g., the fact that the esc16 instances remained unsolved until 1994 (and hence can be

considered as hard instances for conventional branch-and-bound algorithms), the computational

results show that spending e�ort into this direction might yield new chances to solve quadratic

assignment problems to optimality.

6 Conclusion

The most important conclusion one can draw from the results in this paper is, in our opinion, that

cutting plane algorithms, based on polyhedral investigations, indeed can signi�cantly contribute

to the capability of solving quadratic assignment problems to optimality. From the theoretical

point of view, the present investigation of the box inequalities shows that the techniques provided

by the star-transformation give the possibility of doing deeper investigations of the quadratic

assignment polytopes in a similar way as it was very successful for other NP-hard combinatorial

optimization problems, like, e.g., the traveling salesman problem.
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name SEQB 1-box gap

bound qual bound qual iter time reduced

esc16a 48.0 0.706 66.0 0.971 14 32797.2 0.900

esc16b 278.0 0.952 292.0 1.000 2 762.7 1.000

esc16c 118.0 0.738 160.0 1.000 4 4929.7 1.000

esc16d 4.0 0.250 16.0 1.000 6 3832.3 1.000

esc16e 14.0 0.500 28.0 1.000 5 4674.1 1.000

esc16g 14.0 0.538 26.0 1.000 2 847.8 1.000

esc16h 704.0 0.707 996.0 1.000 4 4886.0 1.000

esc16i 0.0 0.000 14.0 1.000 4 2987.5 1.000

esc16j 2.0 0.250 8.0 1.000 2 824.2 1.000

had16 3548.1 0.954 3716.8 0.999 8 23381.4 0.982

nug16a 1413.5 0.878 1567.0 0.973 8 19296.5 0.781

nug16b 1080.0 0.871 1208.2 0.974 5 16512.0 0.801

nug17 1490.8 0.861 1643.5 0.949 4 16007.2 0.633

tai17a 440094.4 0.895 454625.1 0.924 5 25606.4 0.281

Table 2: Bounds for the instances with 16 � n � 17 obtained using 1-box inequalities.

Elaborating the practical use of the box inequalities thoroughly (this was adressed in more

detail in Section 5) and employing the cutting plane procedures into a branch-and-cut framework

will probably improve the promising results that we reported on in Section 5 signi�cantly.

Besides this and the search for other classes of (facet-de�ning) inequalities, a large potential

of the polyhedral approach lies in the exploitation of the sparsity of objective functions. We are

currently working on extensions of the methods and results presented in this paper to certain

projections of the quadratic assignment polytopes that are especially associated with instances

that have many \dummy-objects" (like, e.g., the esc instances in the QAPLIB) or many pairs of

objects that do not have any ow between each other (in the Koopmans/Beckmann formulation).

Since many instances (at least in the QAPLIB) are very sparse in such a sense, the sizes of the

linear programs will be signi�cantly decreased by using the respective projections. Some �rst

results on the projected polytopes can be found in Kaibel (1997). This way there might be a

great chance to push the limits for the exact solution of (sparse) quadratic assignment problems

far beyond the current ones.
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