Angewandte Mathematik und Informatik Universität zu Köln

Report No. 97.278

Pitfalls of using PQ-Trees in Automatic Graph Drawing

by
Michael Jünger, Sebastian Leipert and Petra Mutzel
1997

Partially supported by DFG-Grant Ju204/7-2, Forschungsschwerpunkt "Effiziente Algorithmen für diskrete Probleme und ihre Anwendungen" and ESPRIT Long Term Research Project Nr. 20244 (ALCOM-IT).

Institut für Informatik
Universität zu Köln
Pohligstraße 1
50969 Köln

1991 Mathematics Subject Classification: 05C85, 68R10, 90C35
Keywords: $P Q$-Trees, Maximal Planar Subgraphs, Planarization,Leveled-Planar Dags

Pitfalls of using PQ-Trees in Automatic Graph Drawing

Michael Jünger ${ }^{a} \quad$ Sebastian Leipert ${ }^{b}$
Petra Mutzel ${ }^{c}$

${ }^{a}$ Institut für Informatik, Universität zu Köln, mjuenger@informatik.uni-koeln.de
${ }^{b}$ Institut für Informatik, Universität zu Köln, leipert@informatik.uni-koeln.de
${ }^{c}$ Max-Planck-Institut für Informatik, Saarbrücken, mutzel@mpi-sb.mpg.de

Abstract

A number of erroneous attempts involving $P Q$-trees in the context of automatic graph drawing algorithms have been presented in the literature in recent years. In order to prevent future research from constructing algorithms with similar errors we point out some of the major mistakes.

In particular, we examine erroneous usage of the $P Q$-tree data structure in algorithms for computing maximal planar subgraphs and an algorithm for testing leveled planarity of leveled directed acyclic graphs with several sources and sinks.

Keywords: $P Q$-Trees, Maximal Planar Subgraphs, Planarization, Leveled Planar Directed Acyclic Graphs
+MSC Classification: 05C85, 68R10, 90C35

1 Introduction

A $P Q$-tree is a powerful data structure that represents the permutations of a finite set in which the members of specified subsets occur consecutively, and in which updates require linear time. This data structure has been introduced by Booth and Lueker (1976) to solve the problem of testing for the consecutive ones property. The most well known applications of $P Q$-trees in automatic graph drawing are planarity testing (see Lempel et al., 1967; Booth and Lueker, 1976) and embedding (see Chiba et al., 1985). Therefore $P Q$-trees have become standard tools in automatic graph drawing systems.
Other attempts to use algorithms based on $P Q$-trees for automatic graph drawing problems have not been successful. One well known example is the computation of maximal planar subgraphs. Given a simple, connected graph $G=(V, E)$ with n vertices and m edges, a planar subgraph G^{\prime} of G is a maximal planar subgraph, if for all edges $e \in G-G^{\prime}$ the addition of e to G^{\prime} destroys planarity. Several efforts have been made in the literature to solve the problem with $P Q$-trees following a certain strategy that was first presented by Ozawa and Takahashi (1981). They describe an $\mathrm{O}(n m)$ algorithm using $P Q$-tree techniques based on the vertex addition algorithm of Lempel et al. (1967). Jayakumar, Thulasiraman, and Swamy (1986) show that in general this algorithm does not determine a maximal planar subgraph. Moreover, the resulting planar subgraph may not even contain all vertices. Jayakumar, Thulasiraman, and Swamy (1989) presented an algorithm called

PLANARIZE that computes a spanning planar subgraph G_{p} of G in $\mathrm{O}\left(n^{2}\right)$ time. Furthermore, they present an algorithm called MAX-PLANARIZE that augments G_{p} to a subgraph G^{\prime} of G by adding additional edges in $O\left(n^{2}\right)$ time. They claim that G^{\prime} is a maximal planar subgraph of G if G_{p} (the result of phase 1 of the two phase algorithm) turns out to be biconnected. Kant (1992) shows that this algorithm is incorrect, and suggests a modification of the second phase of the algorithm that augments G_{p} to a maximal planar subgraph of G, even if G_{p} is not biconnected, maintaining $O\left(n^{2}\right)$ time requirement. In Jünger et al. (1996) we show that this modification is not correct either. Here we point out a substantial flaw in both the original and the modified two phase algorithm that was not detected previously. This is the subject of section 2 .
$P Q$-trees have also been proposed by Heath and Pemmaraju (1996a,b) to test leveled planarity of leveled directed acyclic graphs with several sources and sinks. In section 3 we show why this application leads to an incorrect algorithm as well. Since this "algorithm" is the only attempt to prove the polynomial time complexity in the literature, the complexity status of leveled planarity testing is still open. Only in the special case in which there is only one source (or only one sink) the algorithm is correct and implies linear time solvability, but this has already been shown previously by Di Battista and Nardelli (1988).

2 Case study: maximal planar subgraphs

2.1 $P Q$-trees for planarity testing

Let $G=(V, E)$ be a simple graph with n vertices and m edges. A graph is planar, if it can be embedded in the plane without any edge crossings. A graph is obviously planar, if and only if its biconnected components are planar. We therefore assume that G is biconnected. The planarity testing algorithm of Lempel, Even, and Cederbaum (1967) first labels the vertices of G as $1,2 \ldots, n$ using an st-numbering (see Even and Tarjan, 1976). A numbering of the vertices of G by $1,2 \ldots, n$ is an st-numbering, if the vertices " 1 " and " n " are adjacent and each other vertex j is adjacent to two vertices i and k such that $i<j<k$. The vertex 1 is denoted by s and the vertex n is denoted by t. The st-numbering induces an orientation of the graph, in which every edge is directed from the incident vertex with the higher st-number towards the incident vertex with the lower $s t$-number. From now on we refer to the vertices of G by their $s t$-numbers and call an edge (u, v), with $v<u$, incoming edge of v and outgoing edge of u.
For $1 \leq k \leq n$, let G_{k} denote the subgraph of G induced by the vertex set $V_{k}:=$ $\{1,2, \ldots, k\}$. The graph G_{k}^{\prime} arises from G_{k} as follows: For each edge $e=(u, v)$, where $v \in V_{k}$ and $u \in V \backslash V_{k}$, we introduce a virtual vertex u_{e} with label u and a virtual edge $\left(u_{e}, v\right)$. Let B_{k} be a planar embedding of G_{k}^{\prime} such that all virtual vertices are placed on the outer face. Then, B_{k} is called a bush form. It has been shown by Lempel et al. (1967) that G is planar, if and only if for every $B_{k}, k=1,2, \ldots, n-1$, there exists a bush form B_{k}^{\prime} isomorphic to B_{k}, such that all virtual vertices in B_{k}^{\prime} labeled $k+1$ appear consecutively.
The $P Q$-tree T_{k} corresponding to the bush form B_{k} is a rooted ordered tree that consists of three types of nodes:

1. Leaves in T_{k} represent virtual edges in B_{k}.
2. P-nodes in T_{k} represent cutvertices in B_{k}.
3. Q-nodes represent maximal biconnected components in B_{k}.

The frontier of a $P Q$-tree is the sequence of all leaves of T_{k} read from left to right. The frontier of a node X, denoted by frontier (X), is the sequence of its descendant leaves read from left to right.
Let E_{k+1} denote the set of leaves in T_{k} that correspond to the virtual vertices labeled $k+1$. A node X is called full, if all leaves in its frontier are in E_{k+1}. A node X is empty, if its frontier does not contain any leaf of E_{k+1}. Otherwise, X is called partial. A node is called pertinent, if it is full or partial. The pertinent subtree is the smallest connected subtree that contains all leaves of E_{k+1} in its frontier. The root of the pertinent subtree is called pertinent root. Two $P Q$-trees are equivalent, if one can be obtained from the other by one or more of the following operations:

1. Permuting the children of a P-node.
2. Reversing the order of the children of a Q-node.

These operations are called equivalence transformations and describe equivalence classes on the set of all $P Q$-trees. An equivalence class of $P Q$-trees corresponds to a class of permutations called the permissible permutations.
It has been shown by Booth and Lueker (1976) that B_{k}^{\prime} exists if and only if T_{k} can be converted into an equivalent $P Q$-tree T_{k}^{\prime} such that all pertinent leaves appear consecutively in the frontier of T_{k}^{\prime}. Booth and Lueker (1976) have defined a set of patterns and replacements called templates that can be used to reduce the $P Q$-tree such that the leaves corresponding to edges of the set E_{k+1} appear consecutively in all permissible permutations. To construct T_{k+1} from T_{k} they first reduce T_{k} by use of the templates and then replace all leaves corresponding to virtual edges incident to vertices labeled $k+1$ by a P-node, whose children are the leaves corresponding to the incoming edges of the vertex $k+1$ in G.
The planarity testing algorithm now starts with T_{1} and constructs a sequence of $P Q$ trees T_{1}, T_{2}, \ldots. If the graph is planar, the algorithm terminates after constructing T_{n-1}. Otherwise it terminates after detecting the impossibility of reducing some $T_{k}, 1 \leq k<n$.

2.2 Principle of an approach for planarization

The basic idea of a planarization algorithm using $P Q$-trees presented by Jayakumar et al. (1989) is to construct the sequence of $P Q$-trees $T_{1}, T_{2}, \ldots, T_{n-1}$ by deleting an appropriate number of pertinent leaves every time the reduction fails, such that the resulting $P Q$-tree becomes reducible. In every step of the algorithm PLANARIZE, a maximal consecutive sequence of pertinent leaves is computed by using a $[w, h, a]$-numbering (see Jayakumar et al., 1989). All pertinent leaves that are not adjacent to the maximal pertinent sequence are removed from the $P Q$-tree in order to make it reducible. Hence the edges corresponding to the leaves are removed from G and the resulting graph G_{p} is planar.
It has been shown by Jayakumar et al. (1989) that the graph G_{p} computed by PLANARIZE is not necessarily maximal planar. The authors therefore suggest to apply a
second phase MAX-PLANARIZE, also based on $P Q$-trees. Knowing which edges have been removed from G to construct G_{p}, edges from $G-G_{p}$ are added back to G_{p} in the second phase without destroying planarity.
During the reduction of a vertex v, there may exist nonpertinent leaves that are in all permissible permutations of the $P Q$-tree T_{v-1} between a pertinent leaf l_{v} and its maximal pertinent sequence. This maximal pertinent sequence has been determined with the help of the $[w, h, a]$-numbering. In order to make the tree T_{v-1} reducible, the leaf l_{v} is removed from the tree and the corresponding edge is removed from the graph G, guaranteeing that the subgraph G_{p} will be planar. However, it may occur that the nonpertinent leaves that are positioned between l_{v} and its maximal pertinent sequence in T_{v-1}, are removed as well from a tree $T_{k}, v \leq k<n$, in order to obtain reducibility. Therefore, there is no need to remove the edge corresponding to l_{v} from the graph G.
In order to find leaves such as l_{v}, Jayakumar et al. (1989) use the algorithm MAXPLANARIZE. In step i, both PLANARIZE as well as MAX-PLANARIZE reduce the same vertex i. The difference between the $P Q$-trees in the two algorithms is, according to the authors, that all leaves that have been deleted in PLANARIZE are ignored in MAXPLANARIZE from the moment they are introduced into the tree until they get pertinent. This causes the nonpertinent leaves between the pertinent leaf l_{v} and its maximal pertinent sequence to be ignored. Hence l_{v} is adjacent to its maximal pertinent sequence and the corresponding edge can be added back to G_{p}, while the leaves between l_{v} and the maximal pertinent sequence are removed from the $P Q$-tree.

2.3 On the incorrectness of the algorithm

While some incorrect details of the approach of Jayakumar et. al. have been described in a technical report by Kant (1992), who attempted to correct the algorithm, a major problem has not been detected.
Jayakumar et al. assume that the maximal planar subgraph G_{p} is biconnected for the correct application of the Lempel-Even-Cederbaum algorithm. Furthermore, as they have stated correctly, this is necessary in order to have an st-numbering. Nevertheless, the $P Q$-trees in MAX-PLANARIZE are constructed according to the $s t$-numbering that was computed for the graph G.
As a matter of fact, the $s t$-numbering of G does not imply an $s t$-numbering of any subgraph G_{p} even if the subgraph G_{p} is biconnected. This results in two problems, of which one is crucial and cannot be dealt with even by the ideas described by Kant (1992).
Both problems are based on the fact that during the application of PLANARIZE for some vertices of V all incoming edges may be deleted from the graph while the resulting graph G_{p} stays biconnected. In this abstract, we consider only the crucial problem. The other problem is described in detail by Jünger et al. (1996).
The planarization algorithm of Jayakumar et al. (1989) does not obey an important invariant implied by the following lemma, shown by Even (1979).

Lemma 2.1 Let $G=(V, E)$ be a planar graph with an st-numbering and let $1 \leq k \leq n$. If the edge (t, s) is drawn on the boundary of the outer face in an embedding of G, then all vertices and edges of $G-G_{k}$ are drawn in the outer face of the plane subgraph G_{k} of G.

This result allowed Lempel, Even, and Cederbaum (1967) to transform the problem of planarity testing to the construction of a sequence of bush forms $B_{k}, 1 \leq k \leq n$. For a planar graph G, edges and vertices that have not been introduced into the current subgraph G_{k} are always embedded into the outer face of G_{k}.
The approach of Jayakumar et al. (1989) does not obey this invariant in the second phase. There exist edges that have to be embedded into an inner face of some G_{k}, even if (t, s) is drawn on the outer face. Due to the above lemma, the correction step MAX-PLANARIZE only considers edges for reintroduction into the planar subgraph G_{p} that are on the outer face of the current graph G_{k}. Since the numbering that is used to determine the order in which the vertices are reduced does not correspond to an st-numbering of G_{p} in general, the algorithm of Jayakumar et al. (1989) ignores edges that have to be added into an inner face of the embedding of a current graph G_{k}. This fact is fatal, as we are about to show now.

Figure 1: Part of a bush form B_{k-1}

Figure 2: Part of a $P Q$-tree corresponding to bush form B_{k-1}

In Figure 1, a part of a bush form $B_{k-1}, 1<k \leq n$ of a graph G is shown. The virtual vertices corresponding to the vertex k are labeled $k_{1}, k_{2}, \ldots, k_{5}$ and all other virtual vertices are left unlabeled. The corresponding part of the $P Q$-tree is shown in Figure 2. Obviously, there do not exist any reversions or permutations such that the virtual vertices of k occupy consecutive positions. Hence, the graph G is not planar. Applying the $[w, h, a]$-numbering of Jayakumar et al. (1989) allows us to delete the virtual vertex k_{5} and to reduce the other four vertices $k_{1}, k_{2}, k_{3}, k_{4}$. The resulting bush form B_{k} is planar and the relevant part is
shown in Figure 3. Figure 4 shows the corresponding part of the $P Q$-tree. Assume now that all descendants of k have to be removed from the $P Q$-tree in a later step. Hence all incoming edges incident on k are removed from the tree. Now assume further that there exists a path $v_{1}, v_{2}, \ldots, v_{l}$ in G_{p} such that

- for all $i, j, 1 \leq i<j \leq l$ the inequality $v_{i}<v_{j}$ holds,
- the edge $\left(v_{2}, v_{1}\right)$ corresponds to one of the virtual edges that are between the leaf k_{5} and the maximal pertinent sequence $k_{1}, k_{2}, k_{3}, k_{4}$ in all $P Q$-trees equivalent to T_{k-1},
- $v_{l}=t$.

Figure 3: Part of a bush form B_{k}

Figure 4: Part of a $P Q$-tree corresponding to bush form B_{k}

This path guarantees that all outgoing edges of the vertex k cannot be embedded into the outer face of the embedding of B_{k-1} without crossing an edge on this path. Hence the edge $e_{k_{5}}$ corresponding to the leaf k_{5} is not considered by the algorithm MAX-PLANARIZE as being an edge that does not destroy planarity. Therefore, $e_{k_{5}}$ is not added back to the planar subgraph G_{p}.
Nevertheless adding the edge $e_{k_{5}}$ to G_{p} may not destroy planarity of G_{p} as is shown in our example in Figure 5. Since all incoming edges of the vertex k have been deleted by PLANARIZE and are not added back by MAX-PLANARIZE, it may be possible to swap the vertex k into an inner face of the embedding of B_{k} such that the virtual vertex k_{5} can be identified with k and the edge $e_{k_{5}}$ is embedded into the bush form B_{k} without destroying planarity.

Figure 5: Part of a bush form B_{k} with $e_{k_{5}}$ embedded

Therefore, the strategy of using $P Q$-trees presented by Jayakumar et al. (1989) does not compute a maximal planar subgraph in general. Furthermore, we point out that the same problem holds for the modified version of this algorithm, presented by Kant (1992). This version follows a similar strategy of computing a spanning planar subgraph G_{p} using PLANARIZE and then adding edges that do not destroy planarity in a second phase. The order of reductions that is used to insert vertices into existing bush forms is the same as the one implied by the st-numbering on G. Hence this approach is not able to compute a maximal planar subgraph for the same reason.
Summarizing, we state the following lemma that has been shown in the discussion above.
Lemma 2.2 Let $G=(V, E)$ be a nonplanar graph. Let $G_{p}=\left(V, E_{p}\right), E_{p} \subseteq E$, be a planar subgraph of G, such that G_{p} was obtained from G by

1. computing an st-numbering for all vertices and
2. applying the algorithm of Lempel, Even, and Cederbaum (1967) constructing a sequence of bush forms $B_{k}, 1 \leq k \leq n$, by embedding a maximal number of outgoing edges of a vertex $k, 1<k \leq n$, in the outer face of B_{k-1} without crossings, deleting all other outgoing edges of k.

Let $G_{p}^{\prime}=\left(V, E_{p}^{\prime}\right)$, be a planar subgraph of G such that

1. $E_{p} \subseteq E_{p}^{\prime} \subseteq E$,
2. the graph G_{p}^{\prime} is computed by constructing a sequence of bush forms $B_{k}^{\prime}, 1 \leq k \leq n$, based on the st-numbering used for determining G_{p}, and possibly embedding outgoing edges $e \in E \backslash E_{p}$ of every vertex $k, 1<k \leq n$, without crossings in the outer face of B_{k-1}.

Then the subgraph G_{p}^{\prime} is not necessarily maximal planar.

Considering a computation of an $s t$-numbering for the planar subgraph G_{p} in order to augment G_{p} to a maximal planar subgraph of G and then construct a sequence of bush forms $B_{k}^{\prime}, 1 \leq k \leq n$, is aggravated by the fact that the graph G_{p} is not biconnected in general. Furthermore, the difference between the bush forms of the first phase and the second phase may result in the deletion of the edges of G_{p} as soon as edges of $E \backslash E_{p}$ are added to G_{p}.

3 Case study: leveled planarity testing

3.1 Principle of an approach for recognizing leveled planar dags

Let $G=(V, E)$ be a directed acyclic graph. A leveling of G is a function lev : $V \rightarrow \mathbb{Z}$ mapping the nodes of G to integers such that $\operatorname{lev}(v)=\operatorname{lev}(u)+1$ for all $(u, v) \in E . G$ is called a leveled dag if it has a leveling. If $\operatorname{lev}(v)=j$, then v is a level- j vertex. Let $V_{j}=l e v^{-1}(j)$ denote the set of level- j vertices. Each V_{j} is a level of G.
For the rest of this section, we consider G to be a leveled dag with $m \in \mathbb{N}$ levels. An embedding of G in the plane is called leveled if the vertices of every $V_{j}, 1 \leq j \leq m$, are placed on a horizontal line $l_{j}=\{(x, m-j) \mid x \in \mathbb{R}\}$, and every edge $(u, v) \in E$, $u \in V_{j}, v \in V_{j+1}$ is drawn as straight line segment between the lines l_{j} and l_{j+1}. A leveled embedding of G is called leveled planar if no two edges cross except at common endpoints. A leveled dag is leveled planar, if it has a leveled planar embedding. The dag G is obviously leveled planar, if all its components are leveled planar. We therefore assume that G is connected.
A leveled embedding of G determines for every $V_{j}, 1 \leq j \leq m$, a total order \leq_{j} of the vertices of V_{j}, given by the left to right order of the nodes on l_{j}. In order to test whether a leveled embedding of G is leveled planar, it is sufficient to find an order of the vertices of every set $V_{j}, 1 \leq j<m$, such that for every pair of edges $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right) \in E$ with $\operatorname{lev}\left(u_{1}\right)=\operatorname{lev}\left(u_{2}\right)=j$ and $u_{1} \leq_{j} u_{2}$ it follows that $v_{1} \leq_{j+1} v_{2}$. Apparently, the ordering $\leq_{j}, 1 \leq j \leq m$, describes a permutation of the vertices of V_{j}. Let G_{j} denote the subgraph of G, induced by $V_{1} \cup V_{2} \cup \ldots \cup V_{j}$. Unlike G, G_{j} is not necessarily connected.
The basic idea of the leveled planarity testing algorithm presented by Heath and Pemmaraju (1996a,b) is to perform a top-down sweep processing the levels in the order $V_{1}, V_{2}, \ldots, V_{m}$ computing for every level $V_{j}, 1 \leq j \leq m$, a set of permutations of the vertices of V_{j} that appear in some leveled planar embedding of G_{j}. In case that the set of permutations for G_{m} is not empty, the graph $G=G_{m}$ is obviously leveled planar.
As long as the graph G_{j} is connected for some $j \in\{1,2,3, \ldots, m\}$ standard $P Q$-tree techniques similar to the ones used in the planarity test can be applied in order to determine the required set of permutations (see Di Battista and Nardelli, 1988). In case that $G_{j}, 1 \leq j<m$, consists of more than one connected component, Heath and Pemmaraju suggest to use a $P Q$-tree for every component and formulate a set of rules of how to merge components F_{1} and F_{2}, respectively their corresponding $P Q$-trees T_{1} and T_{2}, if F_{1} and F_{2} both are adjacent to some vertex $v \in V_{j+1}$.
The authors first reduce the pertinent leaves of T_{1} and T_{2} corresponding to the vertex v. After successfully performing the reduction, the consecutive sequence of pertinent leaves
is replaced by a single pertinent representative in both T_{1} and T_{2}. Going up one of the trees $T_{i}, i \in\{1,2\}$, from its pertinent representative, an appropriate position is searched, allowing the tree $T_{j}, j \neq i$ to be placed into T_{i}. After successfully performing this step the resulting tree T^{\prime} has two pertinent leaves corresponding to the vertex v, which again are reduced. If any of the steps fails, Heath and Pemmaraju state that the graph G is not leveled planar.
Merging two $P Q$-trees T_{1} and T_{2} corresponds to merging the two components F_{1} and F_{2} and is accomplished using certain informations that are stored at the nodes of the $P Q$-trees. For any subset S of the set of vertices in $V_{j}, 1 \leq j \leq m$, that belong to a component F, define $\operatorname{ML}(S)$ to be the greatest $d \leq j$ such that $V_{d}, V_{d+1}, \ldots, V_{j}$ induces a dag in which all nodes of S occur in the same connected component. For a Q-node q in the corresponding $P Q$-tree T_{F} with ordered children $r_{1}, r_{2}, \ldots, r_{t}$ maintain in node q integers denoted ML $\left(r_{i}, r_{i+1}\right)$, where $1 \leq i<t$, satisfying ML $\left(r_{i}, r_{i+1}\right)=\operatorname{ML}\left(\right.$ frontier $\left(r_{i}\right) \cup$ frontier $\left(r_{i+1}\right)$). For a P-node p maintain in p a single integer denoted $\operatorname{ML}(p)$ that satisfies $\operatorname{ML}(p)=\operatorname{ML}($ frontier $(p))$. Furthermore define $\operatorname{LL}(F)$ to be the smallest d such that F contains a vertex in V_{d} and maintain this integer at the root of the corresponding $P Q$ tree.
Using these LL- and ML-values, Heath and Pemmaraju (1996a,b) describe a set of rules how to connect two $P Q$-trees claiming that the pertinent leaves of the new tree T^{\prime} are reducible if and only if the corresponding component F^{\prime} is leveled planar.

3.2 On the incorrectness of the algorithm

Within the merge phase, pertinent leaves are reduced pairwise in any given order. This includes the pairwise reduction of pertinent leaves of different components as well. Hence, components that have pertinent leaves of the same vertex in their frontier, are merged in an arbitrary order.
Consider four different components $F_{1}, F_{2}, F_{3}, F_{4}$ and their corresponding $P Q$-trees $T_{1}, T_{2}, T_{3}, T_{4}$ each having at least one pertinent leaf corresponding to some level- j vertex k. For simplicity, assume that the pertinent leaves of every component appear consecutively in all permutations on one side of their $P Q$-trees and assume further that the smallest common ancestor of the pertinent leaves and some other leaves is a Q-node. In Figure 6 such a component $F_{i}, i \in\{1,2,3,4\}$, and its corresponding $P Q$-tree $T_{i}, i \in\{1,2,3,4\}$, is shown. The number $c_{i}, i \in\{1,2,3,4\}$, depicts the ML-value between the leftmost pertinent leaf and the frontier of its left neighbor. We have marked all pertinent leaves with a k for simplicity.
Assuming that the following condition,

$$
L L\left(F_{1}\right) \leq c_{1}<L L\left(F_{2}\right) \leq c_{2}<L L\left(F_{3}\right) \leq c_{3}<L L\left(F_{4}\right) \leq c_{4}
$$

on the ML- and LL-values of the components holds, it is possible to merge all four components into one component such that the pertinent leaves form a consecutive sequence. Figure 7 shows the four components, indicating how the components can be merged so that a reduction of the pertinent leaves becomes possible.
Consider the following merge operations on the components $F_{1}, F_{2}, F_{3}, F_{4}$ and their corresponding $P Q$-trees:

Figure 6: Component F_{i} and its corresponding $P Q$-tree T_{i}. On the left side of F_{i}, some levels of F_{i} are indicated. The value c_{i} is equal to $\operatorname{ML}\left(\left\{v_{p}^{i}, k\right\}\right)$.

Figure 7: Possible leveled planar arrangement of the components $F_{1}, F_{2}, F_{3}, F_{4}$.

1. merge F_{1} and F_{4} into component F^{\prime},
2. merge F^{\prime} and F_{3} into component $F^{\prime \prime}$,
3. merge $F^{\prime \prime}$ and F_{2} into component $F^{\prime \prime \prime}$.

The resulting $P Q$-tree $T^{\prime \prime \prime}$ corresponding to $F^{\prime \prime \prime}$ is shown in Figure 8. Obviously, the pertinent leaves do not form a consecutive sequence in any permissible permutation of the $P Q$-tree. Hence the algorithm presented by Heath and Pemmaraju (1996a,b) states leveled non planarity although the graph may be leveled planar.
As a matter of fact, the order of merging the components is important for testing a leveled dag. Moreover it is easy to see, that using different orderings while merging three or more components results in different equivalence classes of $P Q$-trees. So even if every order of merging $P Q$-trees with pertinent leaves results in a reducible $P Q$-tree, a $P Q$-tree may be constructed such that the leaves of some vertex l, $\operatorname{lev}(l)>j$ are not reducible, although the graph G is leveled planar. Hence the algorithm presented by Heath and Pemmaraju (1996a,b) may state incorrectly the leveled non planarity of a leveled planar graph.

Figure 8: $P Q$-tree $T^{\prime \prime \prime}$ whose pertinent leaves depicted by k are not reducible.

References

Booth, K. and Lueker, G. (1976). Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and System Sciences, 13, 335-379.

Chiba, N., Nishizeki, T., Abe, S., and Ozawa, T. (1985). A linear algorithm for embedding planar graphs using PQ-trees. Journal of Computer and System Sciences, 30, 54-76.

Di Battista, G. and Nardelli, E. (1988). Hierarchies and planarity theory. IEEE Transactions on systems, man, and cybernetics, 18(6), 1035-1046.

Even, S. (1979). Graph Algorithms. Computer Science Press, Potomac, Maryland.
Even, S. and Tarjan, R. E. (1976). Computing an st-numbering. Theoretical Computer Science, 2, 339-344.

Heath, L. and Pemmaraju, S. (1996a). Recognizing leveled-planar dags in linear time. In F. J. Brandenburg, editor, Proc. Graph Drawing '95, volume 1027 of Lecture Notes in Computer Science, pages 300-311. Springer Verlag.

Heath, L. and Pemmaraju, S. (1996b). Stack and queue layouts of directed acyclic graphs: Part II. Technical report, Department of Computer Science, Virginia Polytechnic Institute \& State University.

Jayakumar, R., Thulasiraman, K., and Swamy, M. (1986). On maximal planarization of non-planar graphs. IEEE Transactions on Circuits Systems, 33(8), 843-844.

Jayakumar, R., Thulasiraman, K., and Swamy, M. (1989). On $O\left(n^{2}\right)$ algorithms for graph planarization. IEEE Transactions on Computer-Aided Design, 8(3), 257-267.

Jünger, M., Leipert, S., and Mutzel, P. (1996). On computing a maximal planar subgraph using PQ-trees. Technical Report 96.227, Institut für Informatik der Universität zu Köln.

Kant, G. (1992). An $O\left(n^{2}\right)$ maximal planarization algorithm based on PQ-trees. Technical Report RUU-CS-92-03, Department of Computer Science, Utrecht University.

Lempel, A., Even, S., and Cederbaum, I. (1967). An algorithm for planarity testing of graphs. In Theory of Graphs: International Symposium: Rome, July 1966, pages 215232. Gordon and Breach, New York.

Ozawa, T. and Takahashi, H. (1981). A graph-planarization algorithm and its application to random graphs. In Graph Theory and Algorithms, volume 108 of Lecture Notes in Computer Science, pages 95-107. Springer Verlag.

