
Introduction to

ABACUS|A Branch-And-CUt System

Michael J�unger and Stefan Thienel

�

February 1997

Abstract

The software system ABACUS is an object-oriented framework for the implementation of

branch-and-cut and branch-and-price algorithms. This paper shows the basics of its application

to combinatorial and mixed integer optimization problems.
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1 Introduction

ABACUS|A Branch-And-CUt System is an object oriented framework for the implementation

of branch-and-cut algorithms, branch-and-price algorithms, and their combination. While classical

frameworks (e.g., Cplex [3], MINTO [8], OSL [5]) focus on general mixed integer optimization

problems, ABACUS is also designed for combinatorial optimization problems. In addition to the

general mixed integer optimization problem [10], ABACUS has already been successfully applied to

the traveling salesman problem [10], the binary cutting stock problem [10], the feedback vertex set

problem [4], the multiple sequence alignment problem [9], and the betweenness problem [2]. Other

applications are currently under development at various research sites.

This paper should give the reader the basic ideas of the capabilities and the usage of ABACUS,

and encourage its application. A comprehensive description of the design of ABACUS can be found

in [7, 10]. Further details on the use of the software systems are given in [11, 12]. For the description

of branch-and-cut and branch-and-price algorithms we refer to [1, 6, 10].

Section 2 surveys the features of ABACUS. In Section 3 we show how ABACUS can be used

for the implementation of a branch-and-cut or branch-and-price algorithm. More advanced parts of

ABACUS are briey sketched in Section 4.

2 Features

ABACUS is a software system written in the programming language C++with the following features.
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2.1 Algorithms

ABACUS provides a branch-and-bound-algorithm using linear programming relaxations. The op-

timization of the subproblems of the branch-and-bound tree is performed by a cutting plane and/or

a column generation algorithm. The separation of cutting planes and the pricing of variables can be

optionally added by the user.

2.2 Optimization Problems

Solvers for both mixed integer and combinatorial optimization problems can be implemented based

on ABACUS. Combinatorial optimization problems are usually formulated with constraints and

variables containing a lot of structural information, e.g., represent special subgraphs or describing a

partial crew scheduling. This important information is lost as soon as the variables and constraints

are converted into a matrix. Therefore, ABACUS provides an abstract representation of constraints

and variables and performs the conversion to matrix form internally.

2.3 Branching

ABACUS supports classical branching on a binary or integer branching variable and on branching

constraints. Moreover, ABACUS provides a simple branching scheme that should support the

implementation of almost any other branching technique. Also non-binary branch-and-bound trees

are possible.

2.4 Linear Programs

ABACUS contains an interface to the linear program that is independent of the LP-solver. ABA-

CUS 1.2 supports only Cplex 2.2 [3] or newer versions. Further linear programming solvers will be

supported in the future.

2.5 Pools

Any constraint and variable, either used in the initialization or dynamically generated, is stored in

a pool. ABACUS provides a default pool concept that should be su�cient for many applications.

However, it is possible to adapt the pools to the needs of the application.

2.6 Strategies

Various strategies for the selection of the branching variable, the elimination of constraints or vari-

ables, the frequency of the separation or pricing, the �xing of variables, etc., are implemented in

ABACUS. These system strategies can be controlled with various parameters or can be replaced

by problem speci�c strategies in a simple way.
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3 First Steps

ABACUS is a collection of C++ classes. A new branch-and-cut or branch-and-price algorithm is

implemented by deriving problem speci�c classes from some base classes. Usually, only four base

classes of ABACUS are involved: VARIABLE, CONSTRAINT, MASTER, and SUB.

The class VARIABLE is the base class for any variable used in an application while any constraint

has to be derived from the base class CONSTRAINT. The class MASTER contains \global" data and

controls the branch-and-bound algorithm. A class derived from MASTER can, e.g., store the data of a

problem instance. Finally, the class SUB represents a subproblem of the branch-and-bound tree. It

implements the backbone of the cutting plane or column generation algorithm. By deriving a class

from the class SUB, problem speci�c separation and pricing algorithms can be added.

In general, problem speci�c functions are added by the de�nition of virtual functions in derived

classes. Figure 1 shows how the problem speci�c classes MYCONSTRAINT, MYVARIABLE, MYMASTER, and

MYSUB are derived from their base classes.

CONSTRAINT

MYCONSTRAINT

VARIABLE

MYVARIABLE

SUB

MYSUB

MASTER

MYMASTER

Figure 1: Deriving problem speci�c classes.

3.1 Constraints and Variables

The �rst step in the implementation of a new application is the analysis of its variable and constraint

structure. We require at least one constraint class derived from the class CONSTRAINT and at least

one variable class derived from the class VARIABLE. Since variables and constraints of combinatorial

optimization problems contain a lot of structure, the classes derived from the classes CONSTRAINT

and VARIABLE do not have to represent the support and coe�cients in some sparse vector form. The

transformation of constraints and variables to a matrix form is performed internally using the pure

virtual functions CONSTRAINT::coeff(VARIABLE *v) and VARIABLE::coeff(CONSTRAINT *c).

We derive from the class VARIABLE the class MYVARIABLE storing the attributes speci�c to the

variables of our application, e.g., its number, or the tail and the head of the associated edge of a

graph.

class MYVARIABLE : public VARIABLE {

public:

virtual double coeff(CONSTRAINT *c);

// other members

};

Then we derive the class MYCONSTRAINT from the class CONSTRAINT
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class MYCONSTRAINT : public CONSTRAINT {

public:

virtual double coeff(VARIABLE *v);

// other members

};

The function CONSTRAINT::coeff(VARIABLE *v) is a pure virtual function. Hence, we de�ne it in

the class MYCONSTRAINT. It returns the coe�cient of variable v in the constraint. Usually, we need in

an implementation of the function MYCONSTRAINT::coeff(VARIABLE *v) access to the application

speci�c attributes of the variable v. Therefore, we have to cast v to a pointer to an object of the

class MYVARIABLE for the computation of the coe�cient of v.

The function CONSTRAINT::coeff() is used within the framework when the row format of a

constraint is computed, e.g., when the linear program is set up, or a constraint is added to the

linear program. When the column associated with a variable is generated, then the virtual member

function VARIABLE::coeff() is used.

ABACUS is not restricted to a single constraint/variable pair within one application. There can

be an arbitrary number of constraint and variable classes. It is only required that the coe�cients of

the constraint matrix can be safely computed for each constraint/variable pair.

3.2 The Master

There are three main reasons why we require a problem speci�c master of the optimization. First,

we have to embed problem speci�c data members like the problem formulation. Second, the initial

constraint and variable systems have to be set up. Third, the initialization of the �rst subproblem

has to be performed, i.e., the root node of the branch-and-bound tree has to be initialized with a

subproblem of the class MYSUB.

Therefore, a problem speci�c master has to be derived from the class MASTER:

class MYMASTER : public MASTER

{

// members of the class

};

3.2.1 The Constructor

Usually, the input data are read from a �le by the constructor or they are speci�ed by the arguments

of the constructor. The following example of a constructor for the class MYMASTER sets up the master

of a branch-and-cut algorithm for a minimization problem.

MYMASTER::MYMASTER(const char *problemName) :

MASTER(problemName, true /* cutting */, false /* pricing */, OPTSENSE::Min)

{

// read the data from the file problemName

}
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3.2.2 Initialization of the Constraints and Variables

The constraints and variables that are not generated dynamically, e.g., the degree constraints of

the traveling salesman problem or the constraints and variables of the problem formulation of a

general mixed integer optimization problem, have to be set up and inserted in pools in the function

MYMASTER::initializeOptimization(). This virtual function is called when the optimization is

started.

By default, ABACUS provides three di�erent pools: one for variables and two for constraints.

The �rst constraint pool stores the constraints that are not dynamically generated and with which

the �rst LP-relaxation of the �rst subproblem is initialized. The second constraint pool is empty

at the beginning and is �lled up with dynamically generated cutting planes. In general, ABACUS

provides a more exible pool concept, but for many applications the default pools are su�cient.

After the initial variables and constraints are generated they have to be inserted into the default

pools by calling the function

virtual void MASTER::initializePools(

BUFFER<CONSTRAINT*> &constraints,

BUFFER<VARIABLE*> &variables,

int varPoolSize,

int cutPoolSize,

bool dynamicCutPool = false);

A BUFFER is a generic ABACUS class that is very similar to an array. Here, constraints are the

initial constraints, variables are the initial variables, varPoolSize is the initial size of the variable

pool, and cutPoolSize is the initial size of the cutting plane pool. The size of the variable pool is

always dynamic, i.e., this pool is increased if required. By default, the size of the cutting plane pool

is �xed, but it becomes dynamic if the argument dynamicCutPool is true.

The function initializeOptimization() can be also used to determine a feasible solution by

a heuristic such that the primal bound can be initialized.

Hence, the function initializeOptimization() could look as follows, under the assumption

that the functions nVar() and nCon() are de�ned in the class MYMASTER and return the number of

variables and the number of the constraints, respectively. In the example we initialize the size of

the cut pool with 2*nCon().

After the pools are set up the primal bound is initialized with the value of a feasible solu-

tion returned by the function MYMASTER::myHeuristic(). While the initialization of the pools is

mandatory, the initialization of the primal bound is optional.

void MYMASTER::initializeOptimization()

{

BUFFER<VARIABLE*> variables(this, nVar());

for (int i = 0; i < nVar(); i++)

variables.push(new MYVARIABLE(/* arguments of constructor */));

BUFFER<CONSTRAINT*> constraints(this, nCon());

for (i = 0; i < nCon(); i++)

constraints.push(new MYCONSTRAINT(/* arguments of constructor */));

initializePools(constraints, variables, nVar(), 2*nCon());

primalBound(myHeuristic());
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}

3.2.3 The First Subproblem

The root of the branch-and-bound tree has to be initialized with an object of the problem speci�c

subproblem class MYSUB, which is derived from the class SUB. This initialization must be performed by

a de�nition of the pure virtual function firstSub(), which returns a pointer to the �rst subproblem.

In the following example we assume that the constructor of the class MYSUB for the root node of the

enumeration tree has only a pointer to the associated master as argument.

SUB *MYMASTER::firstSub()

{

return new MYSUB(this);

}

3.3 The Subproblem

Finally, we have to derive a problem speci�c subproblem from the class SUB:

class MYSUB : public SUB

{

// members of the class

};

Besides the constructors only two pure virtual functions of the base class SUB have to be de�ned in

any application, which check if a solution of the LP-relaxation is a feasible solution of the mixed

integer optimization problem, and generate the sons after a branching step, respectively. Moreover,

the main functionality of the problem speci�c subproblem is to enhance the branch-and-bound

algorithm optionally with dynamic variable and constraint generation and LP-based heuristics.

3.3.1 The Constructors

The class SUB has two di�erent constructors: one for the root node of the branch-and-bound-tree

and one for all other subproblems. This di�erentiation is required as the constraint and variable set

of the root node can be initialized explicitly, whereas for the other nodes this data is copied from

the father node and possibly modi�ed by a branching rule. Therefore, we have to implement these

two constructors for the class MYSUB.

The numbers in the following example of a root node constructor give the amount of additional

memory that should be allocated for dynamically generated constraints and variables. Good esti-

mations of these values reduce memory consumption and run time for reallocation. However, an

incorrect estimation cannot cause a run error since ABACUS automatically performs reallocations

for all internal memory.

MYSUB::MYSUB(MYMASTER *master) :

SUB(master,

50.0, // additional space for constraints

0.0, // additional space for variables
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100.0 // additional space for nonzero coefficients

)

{ }

With further optional arguments of the root node constructor it is also possibly to initialize explicitly

the �rst solved linear program. If these arguments are omitted as in our example the linear program

is initialized with the constraints and variables stored in the pools (see Section 3.2.2).

While there are some alternatives for the implementation of the root node constructor, the

constructor of the non-root nodes has usually the same form for all applications, but might be

augmented with some problem speci�c initializations.

MYSUB::MYSUB(MASTER *master, SUB *father, BRANCHRULE *branchRule) :

SUB(master, father, branchRule)

{ }

The class BRANCHRULE de�nes the modi�cation of the father subproblem in order to generate the

sons. As long as standard branching is applied, the user does not have to care about this class.

In the function MYMASTER::firstSub() the root node constructor of the class MYSUB has to

be called (see Section 3.2.3). The constructor for non-root nodes must be applied in the function

MYSUB::generateSon() (see Section 3.3.3).

3.3.2 The Feasibility Check

After the LP-relaxation is solved, ABACUS has to check if the optimum LP-solution is a feasi-

ble solution of our optimization problem. Therefore, we have to de�ne the pure virtual function

feasible() in the class MYSUB, which should return true if the LP-solution is a feasible solution of

the optimization problem, and false otherwise:

bool MYSUB::feasible()

{

if (/* LP-solution is feasible */) return true;

else return false;

}

If all constraints of the integer programming formulation are present in the LP-relaxation, then the

LP-solution is feasible if all discrete variables have integer values. This check can be performed by

calling the member function SUB::integerFeasible():

bool MYSUB::feasible()

{

return integerFeasible();

}

If the LP-solution is feasible and its value is better than the primal bound, then ABACUS auto-

matically updates the primal bound.
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3.3.3 The Generation of the Sons

Like the pure virtual function firstSub() of the class MASTER, which generates the root node of

the branch-and-bound tree, we need a function generating a son of a subproblem. This function is

required as the nodes of the branch-and-bound tree have to be identi�ed with a problem speci�c

subproblem of the class MYSUB. This is performed by the pure virtual function SUB::generateSon(),

which calls the constructor for a non-root node of the class MYSUB and returns a pointer to the

newly generated subproblem. If the constructor for non-root nodes of the class MYSUB has the same

arguments as the corresponding constructor of the base class SUB, then the function generateSon()

can have the following form:

SUB *MYSUB::generateSon(BRANCHRULE *rule)

{

return new MYSUB(master_, this, rule);

}

This function is automatically called during a branching process. If the built-in branching strategies

are used, we do not have to care about the generation of the branching rule rule.

3.3.4 A Branch-and-Bound Algorithm

The two constructors, the function feasible(), and the function generateSon() must be imple-

mented for the subproblem class MYSUB of every application. As soon as these functions are available,

a branch-and-bound algorithm can be performed. All other functions of the class MYSUB that we are

going to explain now, are optional in order to improve the performance of the implementation.

3.3.5 The Separation

By rede�nig the virtual function SUB::separate() problem speci�c cutting planes can be generated.

int MYSUB::separate()

{

// perform separation and return number of new constraints

}

We distinguish between the separation from scratch and the separation from a constraint pool.

Newly generated constraints have to be added by the function addCons(). Constraints generated in

earlier iterations that have been become inactive in the meantimemight still be contained in the cut

pool. These constraints can be regenerated by calling the function constraintPoolSeparation(),

which adds the constraints to the bu�er without an explicit call of the function addCons().

A very simple separation strategy is implemented in the following example of the function

separate(). Only if the pool separation fails, we generate new cuts from scratch. The function

mySeparate() performs here the application speci�c separation. If more cuts are added with the

function addCons() than there is space in the internal bu�er for cutting planes, then the redundant

cuts are discarded. The function addCons() returns the number of actually added cuts.

int MYSUB::separate()

{
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int nCuts = constraintPoolSeparation();

if (!nCuts) {

BUFFER<CONSTRAINT*> newCuts(master_, /* size of the buffer */);

nCuts = mySeparate(newCuts);

if (nCuts) nCuts = addCons(newCuts);

}

return nCuts;

}

If not all constraints of the integer programming formulation are active, and all discrete variables have

integer values, then the solution of a separation problem might be required to check the feasibility

of the LP-solution. In order to avoid a redundant call of the same separation algorithm later in the

function separate(), constraints can be already added here by the function addCons().

In the following example of the function feasible() the separation is even performed if there

are discrete variables with fractional values such that the separation routine does not have to be

called a second time in the function separate().

bool MYSUB::feasible()

{

BUFFER<CONSTRAINT*> newCuts(master_, /* size of the buffer */);

bool feasible;

if (integerFeasible()) feasible = true;

else feasible = false;

int nSep = mySeparate(newCuts);

if (nSep) {

feasible = false;

addCons(newCuts);

}

return feasible;

}

3.3.6 Pricing out Inactive Variables

The dynamic generation of variables is performed very similarly to the separation of cutting planes.

Here, the virtual function SUB::pricing() has to be rede�ned. We illustrate the rede�nition of

the function pricing() by an example that is an analogon to the example given for the function

separate().

int MYSUB::pricing()

{

int nNewVars = variablePoolSeparation();

if (!nNewVars) {

BUFFER<VARIABLE*> newVariables(master_, /* size of the buffer */);

nNewVars = myPricing(newVariables);

if (nNewVars) nNewVars = addVars(newVariables);
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}

return nNewVars;

}

3.3.7 Heuristics

After the LP-relaxation has been solved in the subproblem optimization, ABACUS calls the virtual

function SUB::improve(). Again, the default implementation does nothing, but in a rede�nition in

the derived class MYSUB application speci�c heuristics can be inserted:

int MYSUB::improve(double &primalValue)

{

// perform heuristic, store its value in primalValue

// return 1 for better solution, 0 otherwise

}

3.4 Starting the Optimization

After the problem speci�c classes are de�ned as discussed in the previous sections, the optimization

can be performed with the following main program. We suppose that the only parameter of the

constructor of class MYMASTER is the name of the input �le.

#include "mymaster.h"

int main(int argc, char **argv)

{

MYMASTER master(argv[1]);

MYMASTER::STATUS status = master.optimize();

if (status == MASTER::Optimal) return 0;

else return 1;

}

4 Advanced Steps

Section 3 shows how easily a branch-and-cut or branch-and-price algorithm can be implemented

with ABACUS. However, ABACUS contains more features that we briey want to sketch in this

section.

4.1 Other Pools

For a better control of the pool separation it can be advantageous to have more pools than ABACUS

provides in its default pool concept (e.g., a pool for every constraint type). In this case each pool

should become a member of the class MYMASTER. The pool in which a constraint is later inserted is

an optional additional argument of the function SUB::addCons().
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4.2 Compression of Constraints and Variables

Sometimes constraints and variables can be stored in a \compressed" format using a very small

amount of memory. However, such a format can be very ine�cient for the repeated computation of

coe�cients in row/column format by the function CONSTRAINT::coeff() and VARIABLE::coeff(),

respectively. Therefore, ABACUS supports the management of a second \expanded" format for

fast repeated coe�cient computation.

4.3 Enumeration Strategy

The enumeration strategies best-�rst search, depth-�rst search, breadth-�rst search and a diving

strategy are implemented in ABACUS. Problem speci�c strategies can be added be rede�ning a

virtual function comparing two subproblems.

4.4 Selection of the Branching Variable

The default branching variable selection strategy can be changed by the rede�nition of the virtual

function

int SUB::selectBranchingVariable(int &variable);

in a class derived from the class SUB. If a branching variable is found it has to be stored in the

argument variable and the function should return 0. If the function fails to �nd a branching

variable, it should return 1. Then, the subproblem is automatically fathomed.

4.5 Other Branching Strategies

For the implementation of di�erent branching strategies we have introduced the concept of branching

rules in the class BRANCHRULE. A branching rule de�nes the modi�cations of a subproblem in order

to generate one of its sons. The virtual function

int SUB::generateBranchRules(BUFFER<BRANCHRULE*> &rules);

returns 0 if it can generate branching rules and stores for each subproblem that should be generated,

a branching rule in the bu�er rules. If no branching rules can be generated this function returns 1

and the subproblem is fathomed.

4.6 Calling ABACUS Recursively

The separation or pricing problem in a branch-and-bound algorithm can be again a mixed integer

optimization problem. In this case, it might be appropriate to solve this problem also with an

application of ABACUS. Due to its object oriented design there can be an arbitrary number of

ABACUS optimizers, i.e., objects of classes derived from the class MASTER.

4.7 Fixing and Setting Variables by Logical Implications

ABACUS performs �xing and setting variables by reduced cost criteria automatically. Fixing and

setting variables by logical implications can be performed by the rede�nition of a virtual function.
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4.8 Parameters

A con�guration �le allows the modi�cation of system parameters for

- the enumeration strategy,

- the quality of the solution,

- the height of the enumeration tree,

- the cpu time limit,

- the elapsed time limit,

- the integrality assumption of the objective function,

- the tailing o� control,

- the delayed branching,

- the amount of output written to the standard output device and the log �le,

- the initialization of the primal bound,

- the frequency of pricing in branch-and-cut-and-price algorithms,

- the frequency of cutting plane generation,

- the �xing and setting of variables by reduced cost,

- the output of the linear programs,

- the pricing strategies of the LP-solver Cplex,

- the amount of output of the LP-solver Cplex,

- the number of bu�ered and added constraints and variables,

- the iteration limit of the cutting plane algorithm,

- the elimination of �xed and set variables,

- the reoptimization of new root nodes of the remaining branch-and-bound tree,

- the elimination of variables and constraints.

Moreover, ABACUS provides an easy to use concept for the implementation of application para-

meter �les.

4.9 Further Tuning

Although the default strategies of ABACUS proved good performance in various branch-and-cut

and branch-and-price algorithms further tuning might be required for special applications. Since

most ABACUS functions are virtual functions a substitution by a problem speci�c implementation

can be performed easily.

5 Availability

ABACUS can be obtained from:

http://www.informatik.uni-koeln.de/ls juenger/projects/abacus.html
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