
x1 TSP 1.0 TSP 1

1. TSP.

This program implements a branch-and-cut algorithm for the symmetric traveling salesman (TSP) problem

based on the branch-and-cut framework ABACUS. It does neither provide a practically e�cient algorithm

for the traveling salesman problem nor it is a state-of-the-art implementation of branch-and-cut algorithm

for this optimization problem. This program has nothing in common with the one presented in [Thi95]

except that it is also based on ABACUS. The author of this program is aware that many functions could be

implemented better. However, the ONLY purpose of this program is to show how a branch-and-cut algorithm

can be implemented with ABACUS. Therefore we sacri�ce e�ciency for didactic reasons. Descriptions of

branch-and-cut algorithms for the traveling salesman problem can be found in [PR91] and [JRT94].

On a �rst sight the reader of this example might get the feeling due to the length of this document

that an application based on ABACUS requires a signi�cant amount of implementation. While this can

be true for sophisticated implementations for some applications this example is mainly blown up by its

detailed documentation and the explanation and implementation of some additional features of ABACUS.

A \minimal" branch-and-cut TSP-solver using ABACUS could be much shorter!

The problem instances that can be solved with this simple TSP-solver must be in TSPLIB format [Rei91]

and the distance between two nodes must be given by the two dimensional Euclidean distance (edge weight

type EUC 2D).

This program is written in the literate programming system CWEB [KL93]. But also readers not familiar

with this system should be able to read this program.

2. Given the complete graph K

n

= (V

n

; E

n

) with edge weights c

e

for every edge e 2 E

n

, the symmetric

traveling salesman problem is to �nd a tour with minimum length, i.e., with minimum sum of its edge

weights.

For a node set W of a graph we denote by �(W ) the set of edges with exactly one endnode in W (if

W = fvg we write �(v)). Edge sets induced by a node set W in this way are called cuts. For W � V we

denote by E(W ) the set of all edges in E with both endnodes in W . For an edge set F we denote by x(F )

the sum of the variables associated with the edges in F .

By identifying with each edge e 2 E

n

of the graph a 0-1 variable x

e

2 f0; 1g

E

n

we obtain an integer

programming formulation of the TSP:

min c

T

x

s.t. x(�(v)) = 2 for all v 2 V

x(�(W )) � 2 for all ; 6=W � V

0 � x � 1

x integer.

The variables having value 1 in a feasible solution of this integer program are in one-to-one correspondance

with the edges of a tour.

The equations require that each node is incident to exactly two edges and are called degree constraints.

The inequalities forbid subtours, and are therefore called subtour elimination constraints. By subtracting

the degree constraint x(�(v)) = 2 for each node v 2W of a subtour elimination constraint and dividing the

inequality by �2 we obtain the equivalent format x(E(W )) �W � 1.

3. The basic idea of ABACUS for the development of a new application is the derivation of problem speci�c

classes from a small amount of base classes. For every application a problem speci�c master and a problem

speci�c subproblem have to be derived from the base classes MASTER and SUB. Our master for the

traveling-salesman problem is implemented in the class TSPMASTER and the corresponding subproblem

in the class TSPSUB.

Problem speci�c structure of constraints and variables can be exploited by deriving classes from the

base classes CONSTRAINT and VARIABLE. A variable in our implementation is in one-to-one

correspondence with the edge of a graph. Therefore, we represent this variable by the class EDGE.



2 TSP TSP 1.0 x3

The degree constraints and the subtour elimination constraints are implemented in the classes DEGREE

and SUBTOUR, respectively, which are derived from the abstract base class CONSTRAINT. The

inheritance tree of these classes is presented in Figure 1. The problem speci�c classes are surrouned by a

bold frame.

ABACUSROOT

GLOBAL SUB CONVAR

MASTER TSPSUB CONSTRAINTVARIABLE

TSPMASTER DEGREE SUBTOUREDGE

Figure 1. The TSP inheritance tree.

Since the problem speci�c constraint and variable classes are used in the class TSPMASTER and

TSPSUB, we �rst describe the declaration and de�nition of these classes. After the implementation of the

classes TSPMASTER and TSPSUB we present a short main program for starting the optimization.



x4 TSP 1.0 EDGE 3

4. EDGE.

As explained at the beginning each edge of the complete graph is identi�ed with a variable in the integer

programming formulation of the traveling salesman problem. Therefore, we derive the class EDGE from

the base class VARIABLE in order to store the two end nodes of the edge.

h edge.h 4 i �

#ifndef EDGE_H

#de�ne EDGE_H

#include "variable.h"

class EDGE : public VARIABLE f

public:

EDGE(MASTER �master ; int tail ; int head ;double obj );

virtual �EDGE( );

int tail ( ) const;

int head ( ) const;

private:

int tail ; =� the tail node of the edge �=

int head ; =� the head node of the edge �=

g;

#endif =� :EDGE_H �=

5. All member functions are de�ned in the �le edge.cc.

h edge.cc 5 i �

#include "edge.h"

#include "master.h"

See also sections 6, 7, 8, and 9.

6. The constructor.

Arguments:

master

A pointer to the corresponding master of the optimization.

tail

The tail of the edge associated with the variable.

head

The head of the edge associated with the variable.

obj

The objective function coe�cient of the variable.

In the call of the base class constructor we make sure that a variable associated with the edge of a graph is

not dynamic, but globally valid. It is a binary variable, which has hence lower bound 0:0 and upper bound

1:0.

h edge.cc 5 i +�

EDGE ::EDGE(MASTER �master ; int tail ; int head ;double obj ):

VARIABLE(master ; 0; false ; false ; obj ; 0:0; 1:0; VARTYPE ::Binary );

tail (tail );

head (head )

f g

7. The destructor.

h edge.cc 5 i +�

EDGE ::�EDGE( )

f g



4 EDGE TSP 1.0 x8

8. The function tail ( ).

Return Value:

The tail nodeof the edge.

h edge.cc 5 i +�

int EDGE ::tail ( ) const

f

return tail ;

g

9. The function head ( ).

Return Value:

The head node of the edge.

h edge.cc 5 i +�

int EDGE ::head ( ) const

f

return head ;

g



x10 TSP 1.0 DEGREE 5

10. DEGREE.

The simplest constraints for the traveling salesman problem besides the trivial inequalities 0 � x

e

� 1,

which are considered by the lower and upper bounds of the variables, are the degree constraints x(�(v)) = 2

which require that every node v is incident to exactly two edges. A degree constraint is uniquely determined

by the corresponding node.

This class is derived from the abstract base class CONSTRAINT.

h degree.h 10 i �

#ifndef DEGREE_H

#de�ne DEGREE_H

#include "constraint.h"

class DEGREE : public CONSTRAINT f

public:

DEGREE(MASTER �master ; int v);

virtual �DEGREE( );

virtual double coe� (VARIABLE �v);

private:

int node ; =� the node associated with the degree constraint �=

g;

#endif =� :DEGREE_H �=

11. All member functions are de�ned in the �le degree.cc.

h degree.cc 11 i �

#include "degree.h"

#include "edge.h"

See also sections 12, 13, and 14.

12. The constructor.

Arguments:

master

A pointer to the corresponding master of the optimization.

v

The number of the associated node.

In the call of the base class constructor we make sure that the constraint is not assiociated with a speci�c

subproblem, is an equation, has right hand side 2:0, will not be removed from the LP-relaxation, is globally

valid, and that it can be lifted.

h degree.cc 11 i +�

DEGREE ::DEGREE(MASTER �master ; int v):

CONSTRAINT(master ; 0; CSENSE ::Equal ; 2:0; false ; false ; true);

node (v)

f g

13. The destructor.

h degree.cc 11 i +�

DEGREE ::�DEGREE( )

f g

14. The function coe� ( ) de�nes the pure virtual function of the base classCONVAR for the computation

of a coe�cient of a variable in a degree constraint. The coe�cient of a variable associated with an edge (t; h)

is 1 if one of the two nodes t and h is the constraint de�ning node. Otherwise, the coe�cient of the edge is

0.



6 DEGREE TSP 1.0 x14

Return Value:

The coe�cient of edge (t; h) associated with the variable �v.

Arguments:

v

The pointer to the variable v must be of type EDGE �. Using RTTI the cast from VARIABLE �

to EDGE � could be done more safely. However, this language feature is currently not supported by

the GNU-compiler on all architectures.

h degree.cc 11 i +�

double DEGREE ::coe� (VARIABLE �v)

f

EDGE �edge = (EDGE �) v;

if (edge

~

tail ( ) � node _ edge

~

head ( ) � node ) return 1:0;

else return 0:0;

g



x15 TSP 1.0 SUBTOUR 7

15. SUBTOUR.

This class implements the subtour elimination constraint for the symmetric traveling salesman problem.

Given a subset W of the nodes set V with 2 � jW j � jV j � 2, then the subtour elimination constraint

x(E(W )) � jW j � 1

must hold. As explained at the beginning this inequality has the equivalent form x(�(W )) � 2. While we

are using the �rst format for adding the inequality to the linear programming relaxation, the second format

is used for the solution of the separation problem.

We represent the subtour elimination constraint by storing the nodes of the set W . This format (com-

pressed format) saves memory, but the computation of the coe�cient of variable requires O(W ) time. There-

fore, we provide a second format (expanded format) that uses more memory but enables us to compute the

coe�cient of a variable in constant time using O(n) storage space. This expanded format is given by an

array of type bool that stores for each node if it is contained in the set W or not. The computation and

the deletion of the expanded format is done by rede�ning the virtual functions expand ( ) and compress ( ) of

the base class CONVAR.

ABACUS will automatically call the function expand ( ) when \many" coe�cients of the constraint have to

be computed and remove the expanded format by calling compress ( ) when these computations are done. In

general it is not required to rede�ne the functions expand ( ) and compress ( ) but it might be useful depending

on the storage format of the constraint.

h subtour.h 15 i �

#ifndef SUBTOUR_H

#de�ne SUBTOUR_H

#include "constraint.h"

class SUBTOUR : public CONSTRAINT f

public:

SUBTOUR(MASTER �master ; int nNodes ; int �nodes );

�SUBTOUR( );

virtual double coe� (VARIABLE �v);

private:

virtual void expand ( );

virtual void compress ( );

ARRAYhinti nodes ; =� the nodes of the set W �=

bool �marked ; =� array for the expanded format �=

SUBTOUR(const SUBTOUR &rhs ); =� de�nition omitted �=

const SUBTOUR &operator=(const SUBTOUR &rhs ); =� de�nition omitted �=

g;

#endif =� :SUBTOUR_H �=

16. All member functions are de�ned in the �le subtour.cc.

h subtour.cc 16 i �

#include "tspmaster.h"

#include "subtour.h"

#include "edge.h"

See also sections 17, 18, 19, 22, and 23.

17. The constructor.

Arguments:

master

A pointer to the corresponding master of the optimization.



8 SUBTOUR TSP 1.0 x17

nNodes

The number of nodes de�ning the constraint.

nodes

An array with the nodes de�ning the constraints.

When call the base class constructor we make sure that the constraint has no associated subproblem, is an

�-inequality, has right hand side nNodes � 1, may be removed again from the LP-relaxation, is globally

valid, and can be lifted.

h subtour.cc 16 i +�

SUBTOUR ::SUBTOUR(MASTER �master ; int nNodes ; int �nodes ):

CONSTRAINT(master ; 0; CSENSE ::Less ;nNodes � 1; true ; false ; true );

nodes (master ;nNodes );

marked (0)

f

for (int i = 0; i < nNodes ; i

++

) nodes [i] = nodes [i];

g

18. The destructor.

h subtour.cc 16 i +�

SUBTOUR ::�SUBTOUR( )

f

if (expanded ) delete [ ]marked ;

g

19. The function coe� ( ) computes the coe�cient of the edge (t; h). It rede�nes the pure virtual function

of the base class CONSTRAINT. The coe�cient of an edge (t; h) of a subtour elimination constraint is 1

if both nodes t and h belong to the node set nodes , otherwise its coe�cient is 0.

Return Value:

The coe�cient of variable �v.

Arguments:

v

A pointer to a variable that must be of type EDGE �.

Using RTTI the cast from VARIABLE � to EDGE � could be done more safely. However, this language

feature is currently not supported by the GNU-compiler on all architectures.

h subtour.cc 16 i +�

double SUBTOUR ::coe� (VARIABLE �v)

f

if (expanded ) f

h compute coe�cient for subtour in expanded format 20 i;

g

else f

h compute coe�cient for subtour in compressed format 21 i;

g

g

20. The coe�cient is 1 if both the tail node and the head node of the edge are marked in the expanded

format.

h compute coe�cient for subtour in expanded format 20 i �

if (marked [((EDGE �) v)

~

tail ( )] ^marked [((EDGE �) v)

~

head ( )]) return 1:0;

else return 0:0;

This code is used in section 19.



x21 TSP 1.0 SUBTOUR 9

21. In the compressed format we have to scan the set of nodes de�ning the constraint. We stop the scan

as soon as both the tail node and the head node of the edge are found. In this case the coe�cient is one,

otherwise we return 0.

h compute coe�cient for subtour in compressed format 21 i �

int t = ((EDGE �) v)

~

tail ( );

int h = ((EDGE �) v)

~

head ( );

bool tFound = false ;

bool hFound = false ;

for (int v = 0; v < nodes :size ( ); v

++

)

if (nodes [v] � t) f

if (hFound ) return 1:0;

tFound = true ;

g

else if (nodes [v] � h) f

if (tFound ) return 1:0;

hFound = true ;

g

return 0:0;

This code is used in section 19.

22. The function expand ( ) rede�nes a virtual function of the base class CONVAR in order to compute

the expanded format. In the expanded format of a subtour elimination constraint we store in the array

marked of type bool for each node if it is contained in the set de�ning the constraint.

ABACUS makes sure that the function expand ( ) is not called from any function of its kernel, if the

constraint is already expanded. Since the function expand ( ) is a private member of the class SUBTOUR

and not called from any other function of this class we can be sure that repeated expansion cannot cause

any memory leaks.

h subtour.cc 16 i +�

void SUBTOUR ::expand ( )

f

int n = ((TSPMASTER �) master )

~

nNodes ( );

marked = new bool [n];

for (int v = 0; v < n; v

++

) marked [v] = false ;

int nNodesSubTour = nodes :size ( );

for (int v = 0; v < nNodesSubTour ; v

++

) marked [nodes [v]] = true ;

g

23. The function compress ( ) deletes the array storing the expanded format. Like for the function expand ( )

ABACUS makes sure that the constraint is not compressed again if it is already in compressed format.

h subtour.cc 16 i +�

void SUBTOUR ::compress ( )

f

delete [ ]marked ;

g



10 TSPMASTER TSP 1.0 x24

24. TSPMASTER.

The class TSPMASTER is derived from the abstract base class MASTER. Its main purpose is the

initialization of the pools with the problem speci�c constraints and variable, the storage of the input data,

and the memorization of the best tour.

h tspmaster.h 24 i �

#ifndef TSPMASTER_H

#de�ne TSPMASTER_H

#include "master.h"

class TSPMASTER : public MASTER f

public:

TSPMASTER(const char �problemName );

virtual �TSPMASTER( );

virtual SUB ��rstSub( );

int dist (int t; int h);

virtual void output ( );

void newSubTours (int n);

void updateBestTour (double �xVal );

int nNodes ( ) const;

int nearestNeighbor (ARRAYhinti &succ);

private:

void readTsplibFile (const char ��leName );

virtual void initializeOptimization ( );

virtual void initializeParameters ( );

int nNodes ; =� the number of nodes of the problem instance �=

double �xCoor ; =� the x-coordinate of each node �=

double �yCoor ; =� the y-coordinate of each node �=

int nSubTours ; =� the number of generated subtour elimination constraints �=

int �bestSucc ; =� the successor of each node in the best know tour �=

bool showBestTour ; =� if true , the best tour is output �nally �=

TSPMASTER(const TSPMASTER &rhs ); =� de�nition omitted �=

const TSPMASTER &operator=(const TSPMASTER &rhs ); =� de�nition omitted �=

g;

#endif =� :TSPMASTER_H �=

25. First we speci�y the required include �les.

h tspmaster.cc 25 i �

extern "C"

f

#include <stdio.h>

#include <string.h>

#include <math.h>

g

#include "tspmaster.h"

#include "tspsub.h"

#include "edge.h"

#include "degree.h"

See also sections 26, 33, 34, 41, 42, 48, 55, 56, 59, 60, 65, and 66.

26. The Constructor.

Arguments:



x26 TSP 1.0 TSPMASTER 11

problemName

The name of the optimization problem instance. If problemName starts with "./" then the input �le

with the same name is searched in the current working directory, if the problem name starts with "/"

then the absolute path name of the problem instances is taken, otherwise the input �le is searched in the

directory de�ned by the environment variable TSPLIB_DIR. The input �le must be in TSPLIB-format

having edge weight type EUC 2D (two-dimensional Euclidean distance).

The constructor calls �rst the constructor of its base class MASTER. The second argument of the

constructor of MASTER is true because we are using cutting plane generation for the solution of the

subproblems. Since no variables are generated dynamically the third argument of the base class constructor

is false . To indicate that the traveling salesman problem is a minimization problem we set the sense of the

optimization to OPTSENSE ::Min . If in another application the sense of the optimization is still unknown (e.g.,

if it is later read from a �le), the fourth argument of MASTER( ) can be omitted. However, it must be

later initialized by callingMASTER :: initializeOptSense (s) where s is OPTSENSE ::Min or OPTSENSE ::Max .

In the body of the constructor the problem data is read and memory is allocated.

h tspmaster.cc 25 i +�

TSPMASTER ::TSPMASTER(const char �problemName ):

MASTER(problemName ; true ; false ; OPTSENSE ::Min );

nNodes (0);

xCoor (0);

yCoor (0);

nSubTours (0);

bestSucc (0);

showBestTour (false )

f

h read the input data 27 i;

h allocate further memory for class TSPMASTER 31 i;

h clean up TSPMASTER ::TSPMASTER( ) 32 i;

g

27. h read the input data 27 i �

h check if problemName is not 0 28 i;

h determine the complete �le name 29 i;

readTsplibFile (�leName );

This code is used in section 26.

28. h check if problemName is not 0 28 i �

if (problemName � 0) f

err ( )� "TSPMASTER::TSPMASTER(): problem name is missing."� endl ;

exit (Fatal );

g

This code is used in section 27.

29. If problemName does not start with "./" or "/" we have to determine the location of the TSPLIB.

h determine the complete �le name 29 i �

char ��leName ;

if (problemName [0] � '/'_ strlen (problemName ) > 1^ problemName [0] � '.'^ problemName [1] � '/')

f

�leName = new char [strlen (problemName ) + 1];

sprintf (�leName ; "%s"; problemName );

g

else f



12 TSPMASTER TSP 1.0 x29

h �nd the location of the TSPLIB 30 i;

�leName = new char [strlen (tsplib ) + strlen (problemName ) + 2];

sprintf (�leName ; "%s/%s"; tsplib ; problemName );

g

This code is used in section 27.

30. The location of the TSPLIB is determined with the help of the environment variable TSPLIB_DIR.

h �nd the location of the TSPLIB 30 i �

const char �tsplib = getenv ("TSPLIB_DIR");

if (tsplib � 0) f

err ( )� "TSPMASTER::TSPMASTER(): environment variable ";

err ( )� "TSPLIB_DIR not found" � endl ;

exit (Fatal );

g

This code is used in section 29.

31. h allocate further memory for class TSPMASTER 31 i �

bestSucc = new int [nNodes ];

This code is used in section 26.

32. h clean up TSPMASTER ::TSPMASTER( ) 32 i �

delete [ ]�leName ;

This code is used in section 26.

33. The destructor frees the memory allocated in the constructor.

h tspmaster.cc 25 i +�

TSPMASTER ::�TSPMASTER( )

f

delete [ ]xCoor ;

delete [ ]yCoor ;

delete [ ]bestSucc ;

g

34. The function readTsplibFile ( ) reads a problem instance in TSPLIB-format if the edge weight type is

EUC 2D. The arrays xCoor and yCoor storing the coordinates of the nodes are allocated in the function.

Also the number of nodes nNodes is initialized.

Arguments:

�leName

The name of the input �le.

h tspmaster.cc 25 i +�

void TSPMASTER ::readTsplibFile (const char ��leName )

f

h open the input �le 35 i;

h read the problem 36 i;

h close the TSPLIB �le 40 i;

g

35. h open the input �le 35 i �

FILE �tspFile = fopen (�leName ; "r");

if (tspFile � �) f =� NULL is written � in CWEB �=



x35 TSP 1.0 TSPMASTER 13

err ( )� "TSPMASTER::TSPMASTER(): ";

err ( )� "TSPLIB file "� �leName � " could not be opened." � endl ;

exit (Fatal );

g

This code is used in section 34.

36. h read the problem 36 i �

h check the problem type and read the dimension 37 i;

h have all required keywords been found in the �le? 38 i;

h read the coordinates of the nodes 39 i;

This code is used in section 34.

37. The TSPLIB provides several input formats. For simpli�cation in this example we only can read

problems having edge weight type "EUC_2D". In order to determine the number of nodes of the problem we

look for a line starting with the string "DIMENSION :". The edge weight type of the problem instance is

correct if we �nd a line of the form "EDGE_WEIGHT_TYPE : EUC_2D" or "EDGE_WEIGHT_TYPE: EUC_2D".

As soon as we reach a line starting with the string "NODE_COORD_SECTION" we can continue with stop

analyzing the speci�cation part of the TSPLIB-�le.

h check the problem type and read the dimension 37 i �

const int maxCharPerLine = 1024;

char lineBuf [maxCharPerLine + 1];

bool dimensionFound = false ;

bool typeFound = false ;

bool coordSectionFound = false ;

while (fgets (lineBuf ;maxCharPerLine ; tspFile )) f

if (strncmp(lineBuf ; "DIMENSION"; strlen ("DIMENSION")) � 0) f

if (sscanf (lineBuf ; "DIMENSION : %d";&nNodes ) 6= 1) f

err ( )� "Error when reading dimesion of problem." � endl ;

exit (Fatal );

g

dimensionFound = true ;

g

else if (strncmp(lineBuf ; "EDGE_WEIGHT_TYPE"; strlen ("EDGE_WEIGHT_TYPE")) � 0) f

if (strncmp(lineBuf ; "EDGE_WEIGHT_TYPE : EUC_2D"; strlen ("EDGE_WEIGHT_TYPE : EUC_2D")) ^

strncmp(lineBuf ; "EDGE_WEIGHT_TYPE: EUC_2D"; strlen ("EDGE_WEIGHT_TYPE: EUC_2D"))) f

err ( )� "Invalid EDGE_WEIGHT_TYPE, must be EUC_2D." � endl ;

exit (Fatal );

g

typeFound = true ;

g

else if (strncmp(lineBuf ; "NODE_COORD_SECTION"; strlen ("NODE_COORD_SECTION")) � 0) f

coordSectionFound = true ;

break;

g

g

This code is used in section 36.

38. Before reading the coordinates of the nodes we check if all required keywords in the �le have been

found.

h have all required keywords been found in the �le? 38 i �

if (:typeFound ) f



14 TSPMASTER TSP 1.0 x38

err ( )� "Keyword EDGE_WEIGHT_TYPE not found in file " � �leName � ".";

err ( )� endl ;

exit (Fatal );

g

if (:dimensionFound ) f

err ( )� "Keyword DIMENSION not found in file "� �leName � ".";

err ( )� endl ;

exit (Fatal );

g

if (:coordSectionFound ) f

err ( )� "Keyword  NODE_COORD_SECTION not found in file "� �leName ;

err ( )� "." � endl ;

exit (Fatal );

g

This code is used in section 36.

39. A line of the "NODE_COORD_SECTION" consists of a number of the node and its x- and y-coordinate.

We drop the node number given in the line and number all nodes consecutively from 0 to nNodes � 1.

h read the coordinates of the nodes 39 i �

xCoor = new double [nNodes ];

yCoor = new double [nNodes ];

int nodeNumber ;

for (int i = 0; i < nNodes ; i

++

)

if (fscanf (tspFile ; "%d %lf %lf";&nodeNumber ; xCoor + i; yCoor + i) 6= 3) f

err ( )� "Error while reading coordinates of node " � nodeNumber � "." � endl ;

exit (Fatal );

g

This code is used in section 36.

40. h close the TSPLIB �le 40 i �

if (fclose (tspFile )) f

err ( )� "TSPMASTER::TSPMASTER(): error in closing file "� �leName � "." � endl ;

exit (Fatal );

g

This code is used in section 34.

41. The function �rstSUB ( ) rede�nes a pure virtual function of the base class MASTER.

Return Value:

A pointer to the root node of the enumeration tree.

The root of the branch-and-bound tree is initialized with an object of the type TSPSUB. For any other

application the function �rstSub( ) has to be implemented in the same way replacing TSPSUB with the

name of the problem speci�c subproblem class derived from the class SUB.

h tspmaster.cc 25 i +�

SUB �TSPMASTER ::�rstSub( )

f

return new TSPSUB (this);

g

42. The function initializeOptimization ( ) rede�nes a virtual dummy function of the base classMASTER.

Its main purpose is the initialization of the constraint and variable pools. The initialization of these pools

must also be performed in any other application using ABACUS. This initialization can also be done in the



x42 TSP 1.0 TSPMASTER 15

constructor of the problem speci�c class derived fromMASTER, but we recommend to follow our strategy

rede�ning the function initializeOptimization ( ) in a similar way.

h tspmaster.cc 25 i +�

void TSPMASTER :: initializeOptimization ( )

f

h output a banner 43 i;

h generate the variables 44 i;

h generate the degree constraints 45 i;

h initialize the pools 46 i;

h compute a nearest neighbor tour 47 i;

g

43. h output a banner 43 i �

out ( )� "A Simple TSP-Solver." � endl ;

out ( )� "Copyright (c) 1996, Stefan Thienel."� endl � endl ;

out ( )� "The intension of this program is to demonstrate various "� endl ;

out ( )� "features of ABACUS, but NOT the fast solution of"� endl ;

out ( )� "traveling salesman problems."� endl � endl ;

This code is used in section 42.

44. Each variable in this traveling salesman problem solver is associated with an edge of the undirected

graph. We create these variables using the class EDGE that is derived from the base class VARIABLE.

The objective function coe�cient of each variable is computed by the function dist (t; h) giving the distance

of node t and h.

h generate the variables 44 i �

int nEdges = (nNodes � (nNodes � 1))=2;

BUFFERhVARIABLE �i variables (this;nEdges );

for (int t = 0; t < nNodes � 1; t

++

)

for (int h = t+ 1; h < nNodes ; h

++

) variables :push (new EDGE (this; t; h; dist (t; h)));

This code is used in section 42.

45. In any solution for the traveling salesman problem each node must have exactly two incident edges.

Therefore we generate for each node a degree constraint having the form x(�(v)) = 2 with an object of the

class DEGREE.

h generate the degree constraints 45 i �

BUFFERhCONSTRAINT �i degreeConstraints (this;nNodes );

for (int i = 0; i < nNodes ( ); i

++

) degreeConstraints :push (new DEGREE(this; i));

This code is used in section 42.

46. Any constraint and variable used in the optimization has to be stored in a pool. ABACUS distinguishes

three di�erent pools: the constraint pool, the cut pool, and the variable pool.

The constraint pool stores the constraints that should be included in any LP-relaxation. Therefore, we add

the degree constraints to this pool. The size of the constraint pool is adapted to the number of constraints

contained in the bu�er degreeConstraints .

We initialize the variable pool with the edges of the graph stored in the bu�er variables . Since no variables

are generated dynamically we set its size to nEdges . If in another application variables are generated

dynamically then the size of the variable pool must not be initialized with the maximal possible number of

variables because the variable pool is reallocated automatically if necessary. Therefore, only an initial guess

of its size should be used in this initialization.

Finally, we specify the size of the cut pool, storing all cutting planes generated during the optimization,

to 5 � nNodes . This value is only an estimation according to our experience with the traveling salesman



16 TSPMASTER TSP 1.0 x46

problem. Suitably estimations have to be determined for every particular optimization problem. Here,

we omit the last argument of the function initializePools ( ). Therefore its default value is taken, i.e., the

constraint pool is not increased if it is full, but non-active constraints are removed instead.

h initialize the pools 46 i �

initializePools (degreeConstraints ; variables ;nEdges ; 5 � nNodes );

This code is used in section 42.

47. In order to show how the primal bound can be initialized we compute a nearest-neighbor tour. The

primal bound is set with the function primalBound ( ). The computation of an initial primal bound is not

required for the correctness of the optimization.

After setting the primal bound, we initialize the best tour storing in the array bestSucc .

h compute a nearest neighbor tour 47 i �

ARRAYhinti succ(this;nNodes );

int length = nearestNeighbor (succ);

primalBound (length );

for (int i = 0; i < nNodes ; i

++

) bestSucc [i] = succ [i];

This code is used in section 42.

48. The function nearestNeighbor ( ) is a rather simple implementation for the determination of a nearest

neighbor tour. We start at node 0 and insert the nearest neighbor of the previously inserted nodes until all

nodes are included in the tour. Finally we have to close the tour from the last inserted node to node 0.

Return Value:

The length of the tour.

Arguments:

succ

Stores the successor of each node in the tour after the execution of the function. The size of this array

must be at least the number of nodes of the traveling salesman problem.

h tspmaster.cc 25 i +�

int TSPMASTER ::nearestNeighbor (ARRAYhinti &succ)

f

h local variables (TSPMASTER ::nearestNeighbor ( )) 49 i;

h initialize the partial tour with node 0 50 i;

h collect the other nodes 51 i;

h close the tour and return its length 54 i;

g

49. h local variables (TSPMASTER ::nearestNeighbor ( )) 49 i �

ARRAYhbooli marked (this;nNodes ; false ); =� collected nodes become marked �=

int length ; =� the length of the tour �=

int front ; =� the last collected node �=

int next ; =� the next collected node �=

int minDist ; =� the distance between front and next �=

This code is used in section 48.

50. h initialize the partial tour with node 0 50 i �

marked [0] = true ;

front = 0;

length = 0;

This code is used in section 48.



x51 TSP 1.0 TSPMASTER 17

51. h collect the other nodes 51 i �

for (int i = 0; i < nNodes � 1; i

++

) f

h �nd the node next having minimal distance to front 52 i;

h add next to the partial tour 53 i;

g

This code is used in section 48.

52. h �nd the node next having minimal distance to front 52 i �

minDist = INT_MAX;

for (int j = 0; j < nNodes ; j

++

)

if (:marked [j] ^ (dist (front ; j) < minDist )) f

next = j;

minDist = dist (front ; j);

g

This code is used in section 51.

53. h add next to the partial tour 53 i �

marked [next ] = true ;

length += minDist ;

succ [front ] = next ;

front = next ;

This code is used in section 51.

54. h close the tour and return its length 54 i �

succ [front ] = 0;

length += dist (front ; 0);

return length ;

This code is used in section 48.

55. The function dist ( ).

Return Value:

The two-dimensional Euclidean distance between node t and node h rounded to the nearest integer

(TSPLIB speci�es integer distances for all problem).

Arguments:

t

The �rst end node of an edge.

h

The second end node of an edge.

h tspmaster.cc 25 i +�

int TSPMASTER ::dist (int t; int h)

f

double xd = xCoor [t]� xCoor [h];

double yd = yCoor [t]� yCoor [h];

return (int) 
oor (sqrt (xd � xd + yd � yd ) + 0:5);

g

56. The function output ( ) rede�nes a virtual dummy function of the base class master to output statistics

of the run and the best tour. This function is called at the end of the optimization after the output of the

ABACUS statistics.

h tspmaster.cc 25 i +�



18 TSPMASTER TSP 1.0 x56

void TSPMASTER ::output ( )

f

h output statistics on constraint generation 57 i;

h output best tour 58 i;

g

57. h output statistics on constraint generation 57 i �

out ( )� endl ;

out ( )� "Statistics on TSP-constraints"� endl � endl ;

out ( )� "  Subtour Elimination Constraints: "� nSubTours � endl ;

out ( )� endl ;

This code is used in section 56.

58. The best tour is only output if showBestTour is true . This 
ag can be controlled by the parameter

ShowBestTour in the con�guration �le .tsp.

h output best tour 58 i �

if (showBestTour ) f

out ( )� "Best tour: 0";

int v = bestSucc [0];

while (v 6= 0) f

out ( )� ' ' � v;

v = bestSucc [v];

g

out ( )� endl ;

g

This code is used in section 56.

59. The function newSubTours increments the counter for the generated subtour elimination constraints.

Arguments:

n

The number of new generated subtour elimination constraints.

h tspmaster.cc 25 i +�

void TSPMASTER ::newSubTours (int n)

f

nSubTours += n;

g

60. The function updateBestTour ( ) replaces the tour stored in bestSucc by extracting it from an incidence

vector.

Arguments:

xVal

An array storing an incidence vector of a tour. The length of this array must be the number of edges of

the complete graph.

h tspmaster.cc 25 i +�

void TSPMASTER ::updateBestTour (double �xVal )

f

h local variables (TSPMASTER ::updateBestTour ( )) 62 i;

h �nd the two neighbors of each node 63 i;

h assign the successor of each node 64 i;

g



x61 TSP 1.0 TSPMASTER 19

61. The arrays neigh1 and neigh2 store for each node the �rst and the second neighbor, respectively. A

node does not have a �rst or second neighbor so far, if the corresponding component of these arrays is �1.

62. h local variables (TSPMASTER ::updateBestTour ( )) 62 i �

ARRAYhinti neigh1 (this;nNodes ;�1);

ARRAYhinti neigh2 (this;nNodes ;�1);

double oneMinusEps = 1:0�machineEps ( );

int edge = 0;

This code is used in section 60.

63. h �nd the two neighbors of each node 63 i �

for (int t = 0; t < nNodes � 1; t

++

)

for (int h = t+ 1; h < nNodes ; h

++

) f

if (xVal [edge ] > oneMinusEps ) f

if (neigh1 [t] 6= �1) neigh2 [t] = h;

else neigh1 [t] = h;

if (neigh1 [h] 6= �1) neigh2 [h] = t;

else neigh1 [h] = t;

g

else if (xVal [edge ] > machineEps ( )) f

err ( )� "TSPMASTER::update(): x is not incidence vector of a tour"� endl ;

exit (Fatal );

g

edge

++

;

g

This code is used in section 60.

64. h assign the successor of each node 64 i �

int v; w;

bestSucc [0] = neigh1 [0];

v = 0;

for (int i = 0; i < nNodes � 1; i

++

) f

w = bestSucc [v];

if (neigh1 [w] � v) bestSucc [w] = neigh2 [w];

else bestSucc [w] = neigh1 [w];

v = w;

g

This code is used in section 60.

65. The function nNodes ( ).

Return Value:

The number of nodes of the problem instance.

h tspmaster.cc 25 i +�

int TSPMASTER ::nNodes ( ) const

f

return nNodes ;

g

66. The function initializeParameters ( ) rede�nes a virtual dummy function of the base classMASTER.

This function is called at the beginning of the optimization. We show how a parameter for the traveling

salesman problem can read using the ABACUS parameter reading facilities.



20 TSPMASTER TSP 1.0 x66

The function readParamters ( ) reads the �le .tsp that must be in the ABACUS parameter �le format

(see the user's guide). All parameters together with their values are added to an internal parameter table.

From this table parameters can be read with the function getParameter ( ) that is overloaded for most basic

data types.

h tspmaster.cc 25 i +�

void TSPMASTER :: initializeParameters ( )

f

readParameters (".tsp");

int status = getParameter ("ShowBestTour"; showBestTour );

if (status ) f

err ( )� "Parameter ShowBestTour not in configuration file .tsp."� endl ;

exit (Fatal );

g

g



x67 TSP 1.0 TSPSUB 21

67. TSPSUB.

The class TSPSUB is derived from the abstract class SUB and implements the problem speci�c functions

for the optimization of a subproblem (node of the branch-and-bound tree). In particular, this is the feasibility

test for a solution of the LP-relaxation and the separation of cutting planes.

h tspsub.h 67 i �

#ifndef TSPSUB_H

#de�ne TSPSUB_H

#include "sub.h"

class TSPMASTER;

class EDGE;

class TSPSUB : public SUB f

public:

TSPSUB(MASTER �master ;SUB �father ; BRANCHRULE � branchRule );

TSPSUB(MASTER �master );

virtual �TSPSUB( );

virtual bool feasible ( );

virtual SUB �generateSon (BRANCHRULE � rule );

virtual int separate ( );

double minCut (int &nCutNodes ; int �cutNodes );

private:

TSPMASTER �tspMaster ( );

EDGE �edge (int i);

g;

#endif =� :TSPSUB_H �=

68. All member functions are de�ned in the �le tspsub.w.

h tspsub.cc 68 i �

#include "tspsub.h"

#include "tspmaster.h"

#include "fastset.h"

#include "edge.h"

#include "subtour.h"

#include "lpsub.h"

extern "C"

f

#include "PadbergRinaldi.h"

g

See also sections 69, 70, 71, 72, 77, 78, 82, 87, and 88.

69. The constructor for the root node of the enumeration tree.

Arguments:

master

A pointer to the corresponding master of the optimization.

Calling the constructor of the base class SUB we indicate that 10% additional storage space for constraints,

no additional storage space for variables, and 50% additional space for the nonzeros of the constraint matrix

in the LP-solver should be allocated.

h tspsub.cc 68 i +�

TSPSUB ::TSPSUB(MASTER �master ):

SUB(master ; 10; 0; 50)

f g



22 TSPSUB TSP 1.0 x70

70. The constructor for a son of an existing node.

Arguments:

master

A pointer to the corresponding master of the optimization.

father

A pointer to the father in the enumeration tree.

branchRule

The rule de�ning the subspace of the solution space associated with this node.

h tspsub.cc 68 i +�

TSPSUB ::TSPSUB(MASTER �master ;SUB �father ; BRANCHRULE � branchRule ):

SUB(master ; father ; branchRule )

f g

71. The destructor.

h tspsub.cc 68 i +�

TSPSUB ::�TSPSUB( )

f g

72. The LP-solution of a traveling salesman problem is feasible if all variables have values zero or one

and no subtour elimination constraint is violated. Instead of solving the separation problem for the subtour

elimination constraint, we check �rst if there is no fractional value. In this case the LP-solution is the

incidence vector of a tour if the graph induced by the edges having value one is connected. Remember, the

degree constraints hold for each node.

We check if the graph induced by the edges with value 1 is connected with the help of a disjoint set data

structure (ABACUS class FASTSET). Initially each node is the representative of a set containing only

this node. We scan all edges. If there is a edge with value one we check if the two end nodes are contained

in disjoint sets. If this is the case unit the two sets and continue. Otherwise the LP-solution is not the

incidence vector of a tour except if the edge between the two nodes is the last edge closing the tour.

Return Value:

true

If the LP-solution is the incidence vector of a tour,

false

otherwise.

h tspsub.cc 68 i +�

bool TSPSUB :: feasible ( )

f

h local variables (TSPSUB :: feasible ( )) 73 i;

h initialize the connected components with the single nodes of the graph 74 i;

h check if LP-value is integer for each edge and no subtour is induced 75 i;

g

73. h local variables (TSPSUB :: feasible ( )) 73 i �

FASTSET conComp (master ; tspMaster ( )

~

nNodes ( ));

=� each set represents a connected component �=

double x; =� the LP-value of a variable �=

int t; =� the tail node associated with this variable �=

int h; =� the head node associated with this variable �=

double eps = master

~

machineEps ( );

double oneMinusEps = 1:0� eps ;

This code is used in section 72.



x74 TSP 1.0 TSPSUB 23

74. h initialize the connected components with the single nodes of the graph 74 i �

for (int i = 0; i < tspMaster ( )

~

nNodes ( ); i

++

) conComp :makeSet (i);

This code is used in section 72.

75. If the member function unionSets ( ) of the class FASTSET returns false , then t and h are contained

already in the same set. Only if there are as many edges with value 1:0 as nodes in the graph and there is

only one connected component, then the solution is feasible as the degree constraints hold for each node.

If there are no fractional edges, but there is a subtour, then we we �nd this subtour already before the

last edge is added.

h check if LP-value is integer for each edge and no subtour is induced 75 i �

int nEdges = 0; =� the number of edges with value 1; �=

for (int i = 0; i < nVar ( ); i

++

) f

x = xVal [i];

if (x > oneMinusEps ) f

t = edge (i)

~

tail ( );

h = edge (i)

~

head ( );

if (

++

nEdges � tspMaster ( )

~

nNodes ( )) f

hLP-solution is incidence vector of a tour 76 i;

g

if (:conComp :unionSets (t; h)) return false ;

g

else if (x � eps ) return false ;

g

return false ;

This code is used in section 72.

76. If this tour is shorter than the best known one, then we update it in the associated object of the class

TSPMASTER. It is not necessary, but although no error, to update the value primal bound. This task is

performed by ABACUS.

hLP-solution is incidence vector of a tour 76 i �

if (master

~

betterPrimal (lp

~

value ( ))) tspMaster ( )

~

updateBestTour (xVal );

return true ;

This code is used in section 75.

77. The function generateSon ( ) rede�nes a pure virtual function of the base class SUB. While the function

TSPMASTER ::�rstSub( ) initializes the root node of the branch and bound tree with a problem speci�c

subproblem, this function generates a problem speci�c son of a subproblem.

Usually in all applications this function is de�ned like this one line function.

Return Value:

A pointer to a son of this subproblem, which is generated according to the branching rule rule .

Arguments:

rule

The branching rule for the generation of the son.

h tspsub.cc 68 i +�

SUB �TSPSUB ::generateSon (BRANCHRULE � rule )

f

return new TSPSUB (master ; this; rule );

g

78. The function separate ( ) generates violated subtour elimination constraint. Although the number of

subtour elimination constraints is exponential in the number of nodes of the graph, this separation problem



24 TSPSUB TSP 1.0 x78

can be solved in polynomial time by determining the minimum cut in the support graph, i.e., the graph

induced by the variables (edges) having non-zero value in the LP-solution. According to the de�nition of

a subtour elimination constraint, a subtour elimination constraint is violated if and only if the value of the

minimum cut in the support graph is less or equal than 2. The corresponding subtour elimination constraint

is given by one of the node sets de�ning a shore of this minimum cut.

Return Value:

The number of generated inequalities.

h tspsub.cc 68 i +�

int TSPSUB ::separate ( )

f

h compute the minimum cut in the support graph 79 i;

h set up the induced subtour elimination constraint 80 i;

h clean up and return number of constraints 81 i;

g

79. h compute the minimum cut in the support graph 79 i �

int nCutNodes ; =� the number of nodes of one shore of the cut �=

int �cutNodes = new int [tspMaster ( )

~

nNodes ( )]; =� the nodes of a shore of the cut �=

double cutValue ; =� the value of the minimum cut �=

cutValue = minCut (nCutNodes ; cutNodes );

master

~

out ( )� "mincut value = "� cutValue � " on " � nCutNodes � " nodes"� endl ;

This code is used in section 78.

80. If the value of the minimum cut is less than 2, we generate the constraint. A better implementation

would check if the cardinality of the complement of the nodes de�ning the minimum cut is smaller. In this

case one would prefer this equivalent cut induced by the complement.

The function addCons ( ) adds the generated constraint to the default cutting plane pool and the bu�er of

new constraints. This constraint is added to the current relaxation at the beginning of the next iteration.

h set up the induced subtour elimination constraint 80 i �

int nGen ; =� the number of generated constraints �=

if (cutValue < 2:0�master

~

eps ( )) f

nGen = 1;

BUFFERhCONSTRAINT �i constraint (master ; 1);

SUBTOUR �subTour = new SUBTOUR (master ;nCutNodes ; cutNodes );

constraint :push (subTour );

int nAdded = addCons (constraint );

if (nAdded 6= 1) f

master

~

err ( )� "Addition of constraint failed."� endl ;

exit (Fatal );

g

g

else nGen = 0;

This code is used in section 78.

81. h clean up and return number of constraints 81 i �

delete [ ]cutNodes ;

return nGen ;

This code is used in section 78.

82. The function minCut ( ) computes the minimcum cut in the support graph.



x82 TSP 1.0 TSPSUB 25

Return Value:

The value of the minimum cut.

Arguments:

nCutNodes

Holds the number of nodes stored in the array cutNodes after the function call.

cutNodes

Stores one shore of the minimum cut. This array must have the length at least the number of nodes of

the graph minus 1.

h tspsub.cc 68 i +�

double TSPSUB ::minCut (int &nCutNodes ; int �cutNodes )

f

h initialize the support graph 83 i;

h initialize the node induced subgraph 84 i;

h call the Padberg-Rinaldi algorithm 85 i;

h clean up and return (TSPSUB ::mincut ( )) 86 i;

g

83. The function we will use for solving the minimum cut problems requires that the nodes are numbered

beginning with 1 and the �rst used component of an array has the number 1.

h initialize the support graph 83 i �

int �tail = new int [nVar ( ) + 1]; =� the tail of the edges �=

int �head = new int [nVar ( ) + 1]; =� the head of the edges �=

double �x = new double [nVar ( ) + 1]; =� the weight of the edges �=

int nEdges = 0; =� the number of edges of the graph �=

for (int i = 0; i < nVar ( ); i

++

)

if (xVal [i] > master

~

machineEps ( )) f

++

nEdges ;

tail [nEdges ] = edge (i)

~

tail ( ) + 1;

head [nEdges ] = edge (i)

~

head ( ) + 1;

x[nEdges ] = xVal [i];

g

This code is used in section 82.

84. The function PadbergRinaldi ( ) can compute the minimum cut of a subgraph induced by a set of

nodes. Therefore, we store all nodes of the graph in the array node . However, a better implementation for

the solution of the separation problem would �rst compute the connected components of the support graph.

Each connected component induces already a subtour elimination constraint. Then in addition, one would

solve the minimum cut problem in each subgraph induced by the nodes of a connected component. There

are further techniques to accelerate the solution of this separation problem (see [PR90]).

h initialize the node induced subgraph 84 i �

int �node = new int [tspMaster ( )

~

nNodes ( ) + 1]; =� the nodes inducing the graph �=

for (int i = 1; i � tspMaster ( )

~

nNodes ( ); i

++

) node [i] = i;

This code is used in section 82.

85. For the solution of the minimum cut problem, we use the Padberg-Rinaldi algorithm that is part of a

package for the solution of minimum cut problems [JRT96b] and turned out to be very fast for solving the

separation problem for the subtour elimination constraints [JRT96a].

The function PadbergRinaldi ( ) stores the nodes de�ning a shore of minimum the cut in the components

1,: : : , nCutNodes of an array and numbers the nodes beginning at 1. Therefore, we require an extra array

for calling this function and have to transform the node set.



26 TSPSUB TSP 1.0 x85

h call the Padberg-Rinaldi algorithm 85 i �

double cutValue ;

int �prCutNodes = new int [tspMaster ( )

~

nNodes ( ) + 1];

PadbergRinaldi (tspMaster ( )

~

nNodes ( );nEdges ; tspMaster ( )

~

nNodes ( ); 1;node ; tail ; head ; x;

&nCutNodes ; prCutNodes ;&cutValue);

for (int i = 0; i < nCutNodes ; i

++

) cutNodes [i] = prCutNodes [i+ 1]� 1;

This code is used in section 82.

86. h clean up and return (TSPSUB ::mincut ( )) 86 i �

delete [ ]prCutNodes ;

delete [ ]tail ;

delete [ ]head ;

delete [ ]node ;

delete [ ]x;

return cutValue ;

This code is used in section 82.

87. The function tspMaster ( ).

Return Value:

A pointer to the corresponding object of the class TSPMASTER.

h tspsub.cc 68 i +�

TSPMASTER �TSPSUB :: tspMaster ( )

f

return (TSPMASTER �) master ;

g

88. The function edge ( ).

Return Value:

A pointer to an object of the class EDGE corresponding to the i-th variable.

Arguments:

i

The number of a variable.

h tspsub.cc 68 i +�

EDGE �TSPSUB ::edge (int i)

f

return (EDGE �) variable (i);

g



x89 TSP 1.0 MAIN PROGRAM 27

89. MAIN PROGRAM.

The main program creates an object of the class TSPMASTER and invokes the optimization.

Return Value:

0

If the optimum solution has been computed,

1

otherwise.

Arguments:

argc

The number of arguments of the command line.

argv

The command line. The second string is the name of the �le storing the problem instance that should

be solved.

h tspmain.cc 89 i �

#include <iostream.h>

#include "tspmaster.h"

int main (int argc ; char ��argv )

f

h analyze command line arguments 90 i;

h generate a tsp and optimize 91 i;

h clean up and return (main ( )) 92 i;

g

90. h analyze command line arguments 90 i �

if (argc 6= 2) f

cerr � "usage: "� argv [0]� " <file>"� endl ;

return 1;

g

This code is used in section 89.

91. h generate a tsp and optimize 91 i �

TSPMASTER �tsp = new TSPMASTER (argv [1]);

MASTER ::STATUS status = tsp

~

optimize ( );

delete tsp ;

This code is used in section 89.

92. h clean up and return (main ( )) 92 i �

if (status ) return 1;

else return 0;

This code is used in section 89.



28 REFERENCES TSP 1.0 x93

93. REFERENCES.

[JRT94] M. J�unger, G. Reinelt, and S. Thienel (1994), Provably good solutions for the traveling salesman

problem, Zeitschrift f�ur Operations Research 40, 183{217.

[JRT96a] M. J�unger, G. Rinaldi, and S. Thienel (1996), Practical performance of minimum cut algorithms,

technical report, Universit�at zu K�oln, to appear.

[JRT96b] M. J�unger, G. Rinaldi, and S. Thienel (1996), MINCUT, software package, Universit�at zu K�oln,

to appear.

[KL93] D.E. Knuth and S. Levy (1993), The CWEB system of structured documentation, technical report

and software package, ftp://labrea.stanford.edu:/pub/cweb.

[PR90] M.W. Padberg and G. Rinaldi (1990), Facet identi�cation for the symmetric traveling salesman

polytope, Mathematical Programming 47, 219{257.

[PR91] M.W. Padberg and G. Rinaldi (1991), A branch-and-cut algorithm for the resolution of large-scale

symmetric traveling salesman problems, SIAM Review 33, 60{100.

[Rei91] G. Reinelt (1991), TSPLIB|A traveling salesman problem library, ORSA Journal on Computing

3, 376{384, http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html.

[Thi95] S. Thienel (1995), ABACUS|A Branch-And-CUt System, doctoral thesis, Universit�at zu K�oln,

1995.



x94 TSP 1.0 INDEX AND SECTION NAMES 29

94. INDEX AND SECTION NAMES.

addCons : 80.

argc : 89, 90.

argv : 89, 90, 91.

bestSucc : 24, 26, 31, 33, 47, 58, 60, 64.

betterPrimal : 76.

Binary : 6.

bool: 72.

branchRule : 67, 70.

BRANCHRULE: 67, 70, 77.

cerr : 90.

coe� : 10, 14, 15, 19.

compress : 15, 23.

conComp : 73, 74, 75.

constraint : 80.

CONSTRAINT: 12, 17.

coordSectionFound : 37, 38.

CSENSE: 12, 17.

cutNodes : 67, 79, 80, 81, 82, 85.

cutValue : 79, 80, 85, 86.

DEGREE: 10, 12, 13.

DEGREE_H: 10.

degreeConstraints : 45, 46.

dimensionFound : 37, 38.

dist : 24, 44, 52, 54, 55.

double: 14, 19, 82.

EDGE: 4, 6, 7, 67.

edge : 14, 62, 63, 67, 75, 83, 88.

EDGE_H: 4.

endl : 28, 30, 35, 37, 38, 39, 40, 43, 57, 58, 63,

66, 79, 80, 90.

eps : 73, 75, 80.

Equal : 12.

err : 28, 30, 35, 37, 38, 39, 40, 63, 66, 80.

exit : 28, 30, 35, 37, 38, 39, 40, 63, 66, 80.

expand : 15, 22, 23.

expanded : 18, 19.

false : 6, 12, 17, 21, 22, 26, 37, 49, 72, 75.

Fatal : 28, 30, 35, 37, 38, 39, 40, 63, 66, 80.

father : 67, 70.

fclose : 40.

feasible : 67, 72.

fgets : 37.

�leName : 24, 27, 29, 32, 34, 35, 38, 40.

�rstSUB : 41.

�rstSub : 24, 41, 77.


oor : 55.

fopen : 35.

front : 49, 50, 52, 53, 54.

fscanf : 39.

generateSon : 67, 77.

getenv : 30.

getParameter : 66.

h: 21, 24, 44, 55, 63, 73.

head : 4, 6, 9, 14, 20, 21, 75, 83, 85, 86.

head : 4, 6, 9.

hFound : 21.

i: 17, 39, 45, 47, 51, 64, 67, 74, 75, 83, 84, 85, 88.

initializeOptimization : 24, 42.

initializeOptSense : 26.

initializeParameters : 24, 66.

initializePools : 46.

int: 8, 9, 48, 55, 65, 78.

INT_MAX: 52.

j: 52.

length : 47, 49, 50, 53, 54.

Less : 17.

lineBuf : 37.

lp : 76.

machineEps : 62, 63, 73, 83.

main : 89.

makeSet : 74.

marked : 49, 50, 52, 53.

marked : 15, 17, 18, 20, 22, 23.

MASTER: 26.

master : 4, 6, 10, 12, 15, 17, 67, 69, 70.

master : 22, 73, 76, 77, 79, 80, 83, 87.

Max : 26.

maxCharPerLine : 37.

Min : 26.

minCut : 67, 79, 82.

minDist : 49, 52, 53.

n: 22, 24, 59.

nAdded : 80.

nCutNodes : 67, 79, 80, 82, 85.

nearestNeighbor : 24, 47, 48.

nEdges : 44, 46, 75, 83, 85.

neigh1 : 61, 62, 63, 64.

neigh2 : 61, 62, 63, 64.

newSubTours : 24, 59.

next : 49, 52, 53.

nGen : 80, 81.

nNodes : 15, 17, 22, 24, 45, 65, 73, 74, 75,

79, 84, 85.

nNodes : 24, 26, 31, 34, 37, 39, 44, 45, 46, 47,

49, 51, 52, 62, 63, 64, 65.

nNodesSubTour : 22.

node : 84, 85, 86.

node : 10, 12, 14.

nodeNumber : 39.

nodes : 15, 17, 19.

nodes : 15, 17, 21, 22.

nSubTours : 24, 26, 57, 59.



30 INDEX AND SECTION NAMES TSP 1.0 x94

nVar : 75, 83.

obj : 4, 6.

oneMinusEps : 62, 63, 73, 75.

operator: 15, 24.

optimize : 91.

OPTSENSE: 26.

out : 43, 57, 58, 79.

output : 24, 56.

PadbergRinaldi : 84, 85.

prCutNodes : 85, 86.

primalBound : 47.

problemName : 24, 26, 28, 29.

push : 44, 45, 80.

readParameters : 66.

readParamters : 66.

readTsplibFile : 24, 27, 34.

rhs : 15, 24.

rule : 67, 77.

separate : 67, 78.

ShowBestTour : 58.

showBestTour : 24, 26, 58, 66.

size : 21, 22.

sprintf : 29.

sqrt : 55.

sscanf : 37.

status : 66, 91, 92.

strlen : 29, 37.

strncmp : 37.

SUB: 69, 70.

subTour : 80.

SUBTOUR: 15, 17, 18.

SUBTOUR_H: 15.

succ : 24, 47, 48, 53, 54.

t: 21, 24, 44, 55, 63, 73.

tail : 4, 6, 8, 14, 20, 21, 75, 83, 85, 86.

tail : 4, 6, 8.

tFound : 21.

true : 12, 17, 21, 22, 24, 26, 37, 50, 53, 58, 72, 76.

tsp : 91.

tspFile : 35, 37, 39, 40.

tsplib : 29, 30.

TSPLIB_DIR: 26, 30.

tspMaster : 67, 73, 74, 75, 76, 79, 84, 85, 87.

TSPMASTER: 24, 26, 33, 41, 67.

TSPMASTER_H: 24.

TSPSUB: 67, 69, 70, 71, 77, 87, 88.

TSPSUB_H: 67.

typeFound : 37, 38.

unionSets : 75.

updateBestTour : 24, 60, 76.

v: 10, 12, 14, 15, 19, 21, 22, 58, 64.

value : 76.

variable : 88.

VARIABLE: 6.

variables : 44, 46.

VARTYPE: 6.

void: 22, 23, 34, 42, 56, 59, 60, 66.

w: 64.

x: 73, 83.

xCoor : 24, 26, 33, 34, 39, 55.

xd : 55.

xVal : 24, 60, 63.

xVal : 75, 76, 83.

yCoor : 24, 26, 33, 34, 39, 55.

yd : 55.



TSP 1.0 NAMES OF THE SECTIONS 31

hLP-solution is incidence vector of a tour 76 i Used in section 75.

h add next to the partial tour 53 i Used in section 51.

h allocate further memory for class TSPMASTER 31 i Used in section 26.

h analyze command line arguments 90 i Used in section 89.

h assign the successor of each node 64 i Used in section 60.

h call the Padberg-Rinaldi algorithm 85 i Used in section 82.

h check if LP-value is integer for each edge and no subtour is induced 75 i Used in section 72.

h check if problemName is not 0 28 i Used in section 27.

h check the problem type and read the dimension 37 i Used in section 36.

h clean up and return (TSPSUB ::mincut ( )) 86 i Used in section 82.

h clean up and return (main ( )) 92 i Used in section 89.

h clean up and return number of constraints 81 i Used in section 78.

h clean up TSPMASTER ::TSPMASTER( ) 32 i Used in section 26.

h close the TSPLIB �le 40 i Used in section 34.

h close the tour and return its length 54 i Used in section 48.

h collect the other nodes 51 i Used in section 48.

h compute a nearest neighbor tour 47 i Used in section 42.

h compute coe�cient for subtour in compressed format 21 i Used in section 19.

h compute coe�cient for subtour in expanded format 20 i Used in section 19.

h compute the minimum cut in the support graph 79 i Used in section 78.

h degree.cc 11, 12, 13, 14 i

h degree.h 10 i

h determine the complete �le name 29 i Used in section 27.

h edge.cc 5, 6, 7, 8, 9 i

h edge.h 4 i

h �nd the location of the TSPLIB 30 i Used in section 29.

h �nd the node next having minimal distance to front 52 i Used in section 51.

h �nd the two neighbors of each node 63 i Used in section 60.

h generate a tsp and optimize 91 i Used in section 89.

h generate the degree constraints 45 i Used in section 42.

h generate the variables 44 i Used in section 42.

h have all required keywords been found in the �le? 38 i Used in section 36.

h initialize the connected components with the single nodes of the graph 74 i Used in section 72.

h initialize the node induced subgraph 84 i Used in section 82.

h initialize the partial tour with node 0 50 i Used in section 48.

h initialize the pools 46 i Used in section 42.

h initialize the support graph 83 i Used in section 82.

h local variables (TSPMASTER ::nearestNeighbor ( )) 49 i Used in section 48.

h local variables (TSPMASTER ::updateBestTour ( )) 62 i Used in section 60.

h local variables (TSPSUB :: feasible ( )) 73 i Used in section 72.

h open the input �le 35 i Used in section 34.

h output a banner 43 i Used in section 42.

h output best tour 58 i Used in section 56.

h output statistics on constraint generation 57 i Used in section 56.

h read the coordinates of the nodes 39 i Used in section 36.

h read the input data 27 i Used in section 26.

h read the problem 36 i Used in section 34.

h set up the induced subtour elimination constraint 80 i Used in section 78.

h subtour.cc 16, 17, 18, 19, 22, 23 i

h subtour.h 15 i

h tspmain.cc 89 i

h tspmaster.cc 25, 26, 33, 34, 41, 42, 48, 55, 56, 59, 60, 65, 66 i



h tspmaster.h 24 i

h tspsub.cc 68, 69, 70, 71, 72, 77, 78, 82, 87, 88 i

h tspsub.h 67 i



ANGEWANDTE MATHEMATIK UND INFORMATIK

UNIVERSIT

�

AT ZU K

�

OLN

Report 96.245

A Simple TSP-Solver: An ABACUS Tutorial

Version 1.0, August 1996

Stefan Thienel

Section Page

TSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1

EDGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3

DEGREE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5

SUBTOUR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 7

TSPMASTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 10

TSPSUB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 21

MAIN PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 27

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 28

INDEX AND SECTION NAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 29

Copyright

c


 1996 by Stefan Thienel

Permission is granted to copy and modify this document and the corresponding source �les for the de-

velopment of ABACUS applications. However, we ask all users to keep the original �les of this example

unmodi�ed to keep it consistent everywhere in the world. Therefore, modi�cation is only allowed if the

modi�ed �le receives a new name.

This work has been partially supported by ESPRIT LTR Project no. 20244 (ALCOM-IT) and H.C.M.

Institutional Grant no. ERBCHBGCT940710 (DONET).

1991 Mathematics Subject Classi�cation: 68-04, 90c11, 90c27

Keywords: Traveling Salesman Problem, Mixed Integer Programming


