
Angewandte Mathematik und Informatik

Universit

�

at zu K

�

oln

Report No. 96.218

Optimal Oblivious Permutation Routing

in Small Hypercubes

by

Thomas Seifert

1

, Ewald Speckenmeyer

1996

Universit�at zu K�oln

Institut f�ur Informatik / Lehrstuhl III

Pohligstr. 1

D-50969 K�oln

1

This research was supported by the Deutsche Forschungsgemeinschaft under reference number Sp

317/2-1.

1991 Mathematics Subject Classi�cation: 94C99

Keywords: Routing, Oblivious Routing, Hypercubes, Permutations

Optimal Oblivious Permutation Routing

in Small Hypercubes

Thomas Seifert

y

, Ewald Speckenmeyer

Universit�at zu K�oln

Institut f�ur Informatik / Lehrstuhl III

Pohligstr. 1, D-50969 K�oln

e-mail: fseifert,espg@informatik.uni-koeln.de

24th January 1996

Abstract

For each d � 8 we provide an oblivious algorithm for routing any permutation

on the d-dimensional hypercube in at most d communication steps. To prove

our result we show that any 1-to-2

d

0

-routing problem and any 2

d

0

-to-1-routing

problem can be solved in at most d

0

(d

0

� 4) coummunication steps on a d

0

-

dimensional hypercube. Furthermore we present a class of e�ciently working

routing algorithms which allows us to make an improved statement about the

complexity of some of the provided algorithms.

1 Introduction

Many di�erent routing problems on the most popular networks have been examined

in the past. In this paper we consider the d-dimensional binary hypercube and the

problem of routing permutations with an oblivious routing algorithm. It is well known

that any deterministic oblivious permutation routing algorithm working on a n-node

degree-d network, will need at least

p

n=(2d) parallel communication steps in the worst

case [KKT90]. Applying this result to d-dimensional hypercubes we can conclude that

there is no oblivious algorithm for routing permutations using at most d communication

steps, if d � 19. The best known oblivious routing algorithm for a d-dimensional

hypercube with n = 2

d

vertices works in

2

p

n

logn�2 log logn+2

+

logn

2

communication steps

[KKT90]. Table 1, column 4 shows the values of this function for 1 � d � 20. For

each d the cited algorithm requires more than d communication steps. This is not

optimal. In this paper we provide optimal algorithms for binary hypercubes with up

to 256 processors (i.e. d � 8).

Anyway, this result is interesting since there is no online algorithm for the d-dimensional

hypercube, deterministically routing any permutation in time O(d). It is however

1

possible to route a �xed permutation in O(d) parallel communication steps, i.e., there is

an o�ine algorithm for e�ciently routing permutations. In addition, there are routing

algorithms based on fast sorting algorithms [CP90], which run in time O(d log d). Also

there are algorithms which work with high probability im time O(d) [LMRR94].

This paper is organized as follows: In section 2 we provide some basics and de�nitions.

Section 3 describes a class of e�ciently working routing algorithms. Immediately, we

get an improved statement about the complexity of the well known greedy algorithm

on 2-dimensional grids. In section 4 we provide the routing algorithm for hypercubes

and prove its complexity. Finally we summarize our results in section 5 and list several

open problems.

d = logn n �

p

n

2�log

2

(n)

�

2

p

n

logn�2 log logn+2

+

logn

2

1 2 0,707107 1,4428

2 4 0,5 3,0

3 8 0,471405 4,5911

4 16 0,5 6,0

5 32 0,565685 7,3017

6 64 0,666667 8,6536

7 128 0,808122 10,184

8 256 1,0 12,0

9 512 1,25708 14,211

10 1024 1,6 16,9489

11 2048 2,05704 20,3837

12 4096 2,66667 24,7406

13 8192 3,48114 30,3211

14 16384 4,57143 37,5297

15 32768 6,03398 46,9111

16 65536 8,0 59,2

17 131072 10,6482 75,3889

18 262144 14,2222 96,8205

19 524288 19,0547 125,314

20 1048576 25,6 163,338

Table 1: column 1: dimension d; column 2: number of processors n; column 3:

lower bound for oblivious routing algorithms on hypercubes; column 4: number

of communication steps used by the best known oblivious routing algorithm on

hypercubes.

2 Preliminaries

A network is a simple, undirected graph G = (V;E). Its vertices are also called

processors. A packet routing problem can be described by a �nite number of data

packets, each to be sent from a source processor to a target processor. To achieve

this a packet is only allowed to use the edges of the network, which are also called

links. A network is assumed to work in discrete time steps and in each time step each

link can be used to transport at most one packet. This is also called simultaneous

full-duplex routing. We exclusively consider static routing problems, i.e. all packets

to be routed are present in the network when the routing commences and cannot be

2

generated dynamically. Packets are considered to be atomic with a constant size which

is independent from the number of processors. A routing problem is said to be a k-

to-l routing problem if each vertex is the source of at most k packets and each vertex

is the destination of at most l packets. A routing algorithm is a strategy to solve

a class of routing problems on a �xed network. A routing algorithm is called to be

oblivious if the path to be travelled by a packet depends on the origin and destination

of the packet only. A routing algorithm works online if at each time step the link

to be used by a packet can be locally determined within the packet's processor. The

cross product of graphs G

1

= (V

1

; E

1

) and G

2

= (V

2

; E

2

) is a graph G = (V;E)

with V = f(v

1

; v

2

) j v

1

2 V

1

; v

2

2 V

2

g and E = f((u; x); (v; x)) j (u; v) 2 E

1

; x 2

V

2

g [f((x; u); (x; v)) j (u; v) 2 E

2

; x 2 V

1

g: [Lei92, section 3.1.2] A d-dimensional

hypercube is a network HC

d

= (V;E) with n = 2

d

processors, where a communication

link between two processors v and w exists if and only if the binary representations

of v and w di�er in exactly one bitposition. If q and z are two processors of a d-

dimensional hypercube, then dist(q; z) := num1bits(q �

bin

z) is called the distance

between q and z, i.e. the number of bitpositions where the binary representations of

q and z are di�erent. A 1-dimensional grid (linear array) is a network with a set of

processors V = f1; : : : ; ng, where processor i 2 f2; : : : ; n � 1g is linked together with

processors i� 1 and i+1 and no other edges exist. A 2-dimensional grid (rectangular

array) is a cross product of 2 linear arrays.

3 An e�cient solvable class of routingproblems

Let G = (V;E) be a network and R a routing algorithm, which solves a class of

static routing problems on G. Furthermore let P = ((q

1

; z

1

); : : : ; (q

m

; z

m

)) be a routing

problem from this class, i.e. (q

i

; z

i

) 2 V

2

is a pair of source-/destination processors of

the i-th packet. The procedure how R solves the routing problem P can be described

by

� a set of pathes W

1

; : : : ;W

m

, where W

i

= (q

i

= v

i1

; v

i2

; : : : ; z

i

= v

il

i

) is the path

which the i-th packet has to travel, and

� a contention-resolution protocol, which determines which packet is sent �rst when

there are many packets competing with each other for using a single link.

Let p be a packet, t � 0 a time step and v 2 V a processor. Then let %(p; t) be the

length of the path which is used by p in accordance with R beginning with the vertex

where p resides at time step t. %(p; t) is also called remaining path length of p at time

step t. If p has not arrived at its destination in time step t, let �(p; t) denote the directed

edge which is to be used by p in time step t. Furthermore let P(v; t) be a set of packets

on processor v at time step t with a destination di�erent from v. Now let p; q 2 P(v; t).

A link contention at time step t between q and p is given if �(p; t) = �(q; t). If there is

a link contention between q and p, the remaining path lengths of the two packets are

di�erent (%(p; t) 6= %(q; t)) and if the packet with the greater remaining path length is

sent �rst, then this contention-resolution protocol is called farthest-�rst-strategy. We

call the farthest-�rst-strategy applicable if �(p; t) = �(q; t) and %(p; t) 6= %(q; t).

3

In what follows we consider routing algorithms which always permit to apply the

farthest-�rst-strategy, i.e. routing algorithms with the following property:

8v 2 V : 8t � 0 : p; q 2 P(v; t)) %(p; t) 6= %(q; t) oder �(p; t) 6= �(q; t): (1)

I.e., in each time step there is no link contention between packets on a processor or the

remaining path lengths are di�erent.

Apart from this we assume that all considered routing algorithms e�ectivly apply the

farthest-�rst-strategy, if it is applicable.

The main result of this section is the following theorem:

Theorem 3.1 Let R be a routing algorithm. We assume that the farthest-�rst-

strategy is always applicable. Let P be a routing problem which is solved by R. Let m

be the maximal total path length which appears when P is solved with R. Then P is

solved by R in at most m time steps.

Proof: By applying property (1) we observe that in the �rst communication step all

packets with remaining path length m can move toward their target processors. After

this only packets with remaining path length less or equal m� 1 exist. Inductively, it

follows that with completing the i-th communication step only packets with remaining

path length less or equal m� i exist, for all i 2 f1; : : : ;mg. Therefore, with completing

the m-th communication step all packets have reached their target. 2

In what follows we present a simple application of this theorem: It is well known that

each 1-to-1-routing problem on the 2-dimensional grid can be solved online with the

greedy algorithm in at most n+m�2 communication steps [Lei92, section 1.7.1]. The

greedy algorithm works as follows: Each packet is sent within its source processor's

row using the shortest path to the destination processor's column. Within this column

each packet is sent using the shortest path to its destination processor.

Using theorem 3.1 we can tighten the preceding statement about the complexity of the

greedy algorithm as follows.

Theorem 3.2 Let P be a 1-to-1-packet routing problem on the 2-dimensional grid

solved by the greedy algorithm. Let l be the maximum of the lengths of all shortest

pathes the packets have to be routed in accordance with P . Then P is solved in exactly

l time steps.

Proof: We only have to test the preconditions to be able to apply theorem 3.1.

Using the greedy algorithm each packet can be transported within the row of its source

processor without any link contention. Since we have a 1-to-1-routing problem, the

remaining path lengths of the contentious packets are di�erent. Therefore the farthest-

�rst-startegy is always applicable and the claim is proven. 2

4

Figure 1: For all pairs of source and destination processors (q; z) the path P

q;z

2 P

1

mit dist(q; z) � 2 is shown.

4 Routing algorithms on the hypercube

In what follows we present a simple algorithm to optimally solve 1-to-1-routing prob-

lems on the d-dimensional hypercube if d � 8. The routing of permutations is a special

case of 1-to-1-routing.

The algorithm works as follows: the d-dimensional hypercube is considered as cross

product of two hypercubes with dimensions d

1

:=

l

d

2

m

and d

2

:=

j

d

2

k

, respectively. We

will prove that on the d

0

-dimensional hypercube every 1-to-2

d

0

-routing problem and

every 2

d

0

-to-1-routing problem can be solved in at most d

0

communication steps. If

d

0

� 3 the presented algorithms use at most m � d

0

time steps, where m denotes the

maximum path length of all packets.

First of all we de�ne two path systems P

1

and P

2

, each consisting of pathes P

q;z

for each ordered pair of source and destination processors (q; z) in the 3-dimensional

hypercube HC

3

. The pathes P

q;z

in P

1

are de�ned as follows: If dist(q; z) = 0, then

is q = z and P

q;z

is de�ned to be the path of length 0. If dist(q; z) = 1, then P

q;z

is de�ned as the unique path of length 1 from q to z in HC

3

. For all pairs (q; z)

with dist(q; z) 2 f2; 3g the corresponding pathes are shown in �gure 1. The path

system P

2

is de�ned to include the pathes which are reverse to the pathes in P

1

, i.e.

P

2

:= f(v

1

; v

2

; : : : ; v

k

) j (v

k

; : : : ; v

2

; v

1

) is path in P

1

g. Now we are able to formulate

and prove the following lemma:

Lemma 4.1 Let d � 3. There is an oblivious routing algorithm which solves any

1-to-2

d

-routing problem on the d-dimensional hypercube in at most d time steps.

Proof: First of all we assume d = 3. The oblivious routing algorithm we use is based

on the path system P

1

. In what follows, we will show that the farthest-�rst-strategy is

always applicable. Then the assertion for d = 3 follows by applying theorem 3.1 and

using the fact that the longest path has length 3. Now let p

1

and p

2

be any two packets

with source processors q

1

and q

2

and destination processors z

1

and z

2

, respectively.

We make the following observations:

� Each packet with total path length 1 arrives at its target in the �rst communi-

cation step without any link contention, since each processor is the source of at

most one packet. I.e., a packet with total path length 1 can never content with

any other packet.

5

� If both p

1

and p

2

have total path length 3, then p

1

and p

2

can never have a link

contention, since any two (directed) edges belonging to two di�erent pathes of

total length 3 are di�erent from each other. This can easily be veri�ed by looking

up at �gure 1 (upper row).

� If both p

1

and p

2

have total path length 2, then there cannot be any link con-

tention concerning these packets. This can be seen as follows: Both p

1

and p

2

use the �rst link without contention. If there would be a contention between p

1

and p

2

when using the second edge of their pathes, then p

1

and p

2

would have the

same target. But as can be seen in �gure 1 (lower row), two packets having total

path length 2, the same target and di�erent sources, are always moved along

di�erent links towards their targets.

� Let us assume that p

1

has total path length 2 and p

2

has total path length 3. If

p

1

and p

2

have a link contention, then they have also di�erent remaining path

lengths. This can be seen as follows: Both p

1

and p

2

use the �rst edge of their

pathes without link contention. Therefore, if there is a link contention, then with

regard to the second edge of the path of p

1

. If there occurs no contention in the

second communication step, then there will be never a link contention between

these two packets since p

1

arrives within the second communication step at its

destination processor. But in this case p

1

and p

2

have di�erent remaining path

lengths since both packets have moved exactly one edge. On top of that p

1

can

only content with at most one packet with total path length 3, since for each

(directed) edge there is at most one path of total length 3 containing this edge.

Altogether we have shown that either there is no link contention between p

1

and p

2

or

their remaining path lengths are di�erent.

We now consider the case d 2 f0; 1; 2g. Each 1-to-2

d

-routing problem on the d-di-

mensional hypercube can be extented to a 1-to-8-routing problem on a 3-dimensional

hypercube, so that the greatest total path length is d. The routing algorithm we use

is obtained by restriction of the routing algorithm on the 3-dimensional hypercube to

the considered hypercube. In accordance with the explanations in the �rst part of this

proof the farthest-�rst-strategy is always applicable, so that by using theorem 3.1 the

claim also follows for d 2 f0; 1; 2g. 2

Lemma 4.2 Let d � 3. There is an oblivious routing algorithm which solves any

2

d

-to-1-routing problem on the d-dimensional hypercube in at most d time steps.

Proof: This proof is similar to the proof of lemma 4.1. Again we show the claim

for the case d = 3. The used oblivious routing algorithm is based on the pathes in

path system P

2

. In what follows, we will show that the farthest-�rst-strategy is always

applicable. Then the assertion for d = 3 follows by applying theorem 3.1 and using the

fact that the longest path has length 3.

Now let p

1

and p

2

be any two packets with source processors q

1

and q

2

and destination

processors z

1

and z

2

, respectively. We make the following observations:

� If there is a packet with total path length 1 which does not reach its destination

in the �rst or a following communication step, then it contents with a packet

with total path length greater than 1. Otherwise there would be a processor

which is the destination of at least two packets. Since the algorithm works on a

8-to-1-routing problem this is not possible.

6

� If both p

1

and p

2

have total path length 3, then p

1

and p

2

can never have a link

contention, since any two (directed) edges belonging to two di�erent pathes of

total length 3 are di�erent from each other. This can easily be veri�ed by looking

at �gure 1 (upper row). The pathes of p

1

and p

2

are di�erent since otherwise

they would have the same destination.

� If both p

1

and p

2

have total path length 2, then we consider two cases: Case 1: p

1

and p

2

have the same source processor. Then p

1

and p

2

have di�erent destinations

since we are working on a 8-to-1-routing problem. Figure 1 (lower row) shows

that two pathes both having total path length 2, the same source, and di�erent

destinations, are edge disjoint. Therefore there cannot be a link congestion.

Case 2: p

1

and p

2

have di�erent source processors. Then the �rst edge of their

pathes are di�erent, since the sources are di�erent. The same holds for the second

edges of their pathes, since p

1

and p

2

have di�erent destinations. Therefore, if

there is a link contention between p

1

and p

2

, then with regard to an edge which

is the �rst edge of the path of p

1

and the second edge of the path of p

2

, or the

other way round. But this means that the remaining path lengths are di�erent.

� Let us assume that p

1

has total path length 2 and p

2

has total path length 3.

Again we consider two cases: Case 1: p

1

and p

2

have the same source processor.

If the pathes of p

1

and p

2

have a common edge, then the remaining path lengths

are di�erent. Case 2: p

1

and p

2

have di�erent source processors. Then the �rst

edges of their pathes are di�erent, since the sources are di�erent. Let e be the

second edge of the path of p

1

. Then e cannot be the third edge of the path of

p

2

, since the packets would have the same destinations. Therefore the remaining

path lengths are di�erent, if there is a link contention with regard to edge e.

Altogether we have shown that either there is no link contention between p

1

and p

2

or

their remaining path lengths are di�erent.

We now consider the case d 2 f0; 1; 2g. As in the proof of lemma 4.1 we observe:

Each 2

d

-to-1-routing problem on the d-dimensional hypercube can be extented to a

8-to-1-routing problem on a 3-dimensional hypercube, so that the greatest total path

length is d. The routing algorithm we used is obtained by restriction of the routing

algorithm on the 3-dimensional hypercube to the considered hypercube. In accordance

with the explanations in the �rst part of this proof the farthest-�rst-strategy is always

applicable, so that by using theorem 3.1 the claim also follows for d 2 f0; 1; 2g. 2

In what follows we de�ne the path systems P

3

and P

4

in the 4-dimensional hypercube.

We consider �gure 2, the left hand graph. It is easy to verify that the graph repre-

sents a 4-dimensional hypercube. Let us denote the red drawn circuits with C and

�

C. Furthermore we de�ne A to be the orientation counterclockwise and

�

A to be the

orientation clockwise. Let a; b 2 C and O 2 fA;

�

Ag. With dist

O

(a; b) we denote the

minimal number of edges on C, which must be passed when travelling from a using

orientation O to b.

For each ordered pair of processors (q; z) let P

3

contain a directed path P

q;z

de�ned as

follows:

� If both q and z are on C and dist

A

(q; z) � 4, then P

q;z

starts at q and runs along

C using orientation A to q.

7

8

12

7

15

1

9

13

88

0

14

3

10

11

2

6

4

5

z

w u

w

0

z

0

q

1

q

0

2

q

0

1

u

0

A

q

3

q

2

q

0

3

Figure 2: Representation of a 4-dimensional hypercube.

� If both q and z are on C and dist

A

(q; z) > 4, then P

q;z

starts at q and runs along

C using orientation

�

A to q.

� If q 2 C and z 2

�

C, let u;w 2 C be the unique vertices incident with z and

dist

A

(u;w) = 2. If dist

A

(q; u) � 3, then P

q;z

starts at q and runs along C using

orientation A to u and then uses link (u; z). Edge (u; z) is called a type-1-link.

If dist

A

(q; u) = 7, then P

q;z

starts at q and runs along C using orientation A to

w and then uses link (w; z). If dist

A

(q; u) 2 f4; 5; 6g, then P

q;z

starts at q and

runs along C using orientation

�

A to w and then uses link (w; z). Edge (w; z) is

called a type-2-link.

In �gure 2, the right hand graph, the pathes P

q

i

;z

(red) and P

q

0

i

;z

0
(blue) are shown for

i 2 f1; 2; 3g.

Let path system P

4

contain all reversed pathes of the pathes in P

3

.

Lemma 4.3 There is an oblivious routing algorithm which solves any 1-to-16-routing

problem on the 4-dimensional hypercube in at most 4 time steps.

Proof: A packet with source processor q and target processor z is moved along the

path P

q;z

2 P

3

. First of all we observe that any packet is able to move along a circuit

without any link contention, since each processor is source of at most one packet. Every

blue edge can only occur as last edge of a path P

q;z

and only with respect to a blue edge

a link contention may occur. Now let z 2

�

C a destination and u;w 2 C the unique

vertices incident with z such that dist

A

(u;w) = 2. The packets moving along link (u; z)

to z use the edge (u; z) within the communication steps 1{4 without any contention.

With respect to link (w; z) there may be a link contention between the packet with

source q

0

(dist

A

(q

0

; w) = 1) and at most three other packets moving along (w; z) to z.

We de�ne the packet with source q

0

to use the edge (w; z) in the fourth communication

step, while the other three packets use link (w; z) in the communication steps 1{3. Since

each path in P

3

has maximum path length 4 it follows with the previous explanations

that each packet arrives within 4 communication steps at its destination. 2

8

The reader may recognize that this routing algorithm works with any contention-

resolution protocol as far as a packet is moved as soon as possible.

Lemma 4.4 There is an oblivious routing algorithm which solves any 16-to-1-routing

problem on the 4-dimensional hypercube in at most 4 time steps.

Proof: We use the routing algorithm de�ned by the path system P

4

. As far as possible

arising link contentions are resolved using the farthest �rst strategy. If other link

contentions occur, i.e. if packets with identical remaining path length are contenting

with each other, an arbitrarily choosen packet among all involved packets is moved

�rst.

First of all we realize that each packet which has to change the circuit in order to reach

its destination, either is moved exactly once across a type-1-edge or a type-2-edge. A

packet with total path length (tpl) 5 � i (which has to move across a type-1-edge) at

the latest moves across a type-1-edge in the i-th communication step (cs). A packet

with tpl 3 is moved in the �rst cs, a packet with tpl 2 is at the latest moved in the third

cs and a packet with tpl 1 is at the latest moved in the fourth cs across a type-2-edge.

Anyway, the following statement B(i) holds for each i 2 f1; 2; 3; 4g: After the i-th cs

all packets with remaining path length 4� i have reached the circuit of its destination.

Furthermore we observe that each packet has a remaining path length (rpl) of at most 3

after the �rst cs.

We consider the following chain of implications for i 2 f1; 2; 3g: if after the i-th cs only

packets with rpl less or equal 4 � i are left and if after the i-th cs all packets with rpl

4� i have reached the circuit of its destination processor (B(i)), then any two packets

with rpl 4� i cannot content with each other, since we have a 16-to-1-routing problem.

Therefore all packets with rpl 4� i can move in the (i+ 1)-th cs.

Since each packet with rpl 4 can move in the �rst cs (on each node there are at most

two packets with tpl 4, which surely have to move across two di�erent links), there

are only packets with a rpl less or equal 3 left. Using this chain of implications we

inductively conclude that each packet arrives at its destination after 4 cs. 2

Theorem 4.1 Let d � 8. There is an oblivious routing algorithm which solves any

1-to-1-routing problem on the d-dimensional hypercube in at most d time steps.

Proof: If d � 3 the assertion is proved by lemma 4.1, since any 1-to-1-routing problem

is a special case of a 1-to-2

d

-routing problem.

If d 2 f4; 5; 6; 7; 8g the given hypercube is considered as cross product of a d

1

-dimen-

sional hypercube h

1

and a d

2

-dimensional hypercube h

2

with d

1

:=

l

d

2

m

and d

2

:=

j

d

2

k

.

The routing problem on the d-dimensional hypercube is solved by �rst solving 1-to-

2

d

1

-routing problems in 2

d

2

copies of h

1

and then solving 2

d

2

-to-1-routing problems

in 2

d

1

copies of h

2

. A packet with source processor (q

d

; : : : ; q

1

) is �rst sent to ver-

tex (z

d

; : : : ; z

d�d

1

+1

; q

d�d

1

; : : : ; q

1

) (problems A) and afterwards to processor (z

d

; : : : ; z

1

)

(problems B).

Since each processor is the source of at most one packet, it is guaranteed that each

problem A is a 1-to-2

d

1

-routing problem which can be solved in at most d

1

communica-

tion steps by applying lemma 4.1 and lemma 4.3, respectivley. Accordingly, since each

processor is the destination of at most one packet, it is guaranteed that each problem B

9

is a 2

d

1

-to-1-routing problem which can be solved in at most d

2

communication steps

by applying lemma 4.2 and lemma 4.4, respectivley. Since all partial problems are

solved using a oblivious routing algorithm, the whole algorithm works oblivious, too.

Finally, it is obvious that any packet uses at most d communication steps to reach its

destination. 2

5 Final remarks

We have shown that any 1-to-1-routing problem on the d-dimensional hypercube can

be solved using at most d communication steps with an oblivious routing algorithm,

if d � 8. It is not known, whether this is also possible for d 2 f9; : : : ; 18g. We surely

know that it is impossible, if d � 19 because of the cited lower bound.

Our approach cannot be extented to higher dimensional hypercubes (d � 9). In the case

d = 9 we would have to solve a 1-to-16-routing problem (or a 16-to-1-routing problem)

on a 5-dimensional hypercube in at most 5 time steps. However, this is not possible,

since there are 16 vertices with distance greater or equal 3 from a given processor v.

Consider the routing problem where 16 packets starting on these processors have to

be moved to v. These packages would have to use the edges incident with v in the

communication steps 3, 4 and 5. However, at most 15 packets can be moved within

3 time steps on v.

In the presented algorithms for 1-to-16-routing and 16-to-1-routing, there are packets

with distance 2 (between source and destination) which move using pathes of length 4.

It is an open problem if there is an oblivious routing algorithm, such that each packet

with source q and destination z uses a path of length dist(q; z). It is also an open

problem whether such an algorithm can guarantee that each packet can reach its des-

tination within m time steps, where m denotes the maximal total path length in the

given problem.

References

[CP90] R. Cypher and C.G. Plaxton. Deterministic sorting in nearly logarithmic

time on the hypercube and related computers. In Proceedings of the 22nd

Annual ACM Symposium on Theory of Computing (Baltimore, Maryland,

May 14{16, 1990), pages 193{203, New York, 1990. ACM SIGACT, ACM

Press.

[KKT90] C. Kaklamanis, D. Krizanc, and T. Tsantilas. Tight bounds for oblivious

routing in the hypercube. In Proceedings of the 2nd Annual ACM Sympo-

sium on Parallel Algorithms and Architectures SPAA '90 (Island of Crete,

Greece, July 2-6, 1990), pages 31{36, New York, 1990. ACM SIGACT,

ACM SIGARCH, ACM Press.

[Lei92] F. Thomson Leighton. Introduction to parallel algorithms and architectures:

Arrays, trees, hypercubes. Morgan Kaufmann Publishers Inc., San Mateo,

CA, 1992.

10

[LMRR94] F. Thomson Leighton, Bruce M. Maggs, AbhiramG. Ranade, and Satish B.

Rao. Randomized routing and sorting on �xed-connection networks. J.

Algorithms, 17:157{205, 1994.

11

