
ANGEWANDTE MATHEMATIK UND INFORMATIK

UNIVERSIT

�

AT ZU K

�

OLN

Report No. 95.191

Solving large-scale traveling salesman

problems with parallel Branch-and-Cut

by

Michael J�unger

Peter St�ormer

1995

ZENTRUM F

�

UR PARALLELES RECHNEN (ZPR)

Institut f�ur Informatik

Universit�at zu K�oln

Pohligstra�e 1

D-50969 K�oln

Addresses of the authors:

Michael J�unger

Institut f�ur Informatik

Universit�at zu K�oln

Pohligstra�e 1

D-50969 K�oln

Germany

E-mail: mjuenger@informatik.uni-koeln.de

Telephone:

+

49/221/470-5313

Peter St�ormer

Institut f�ur Informatik

Universit�at zu K�oln

Pohligstra�e 1

D-50969 K�oln

Germany

E-mail: stoermer@informatik.uni-koeln.de

Telephone:

+

49/221/470-5315

Abstract

We introduce the implementation of a parallel Branch-and-Cut algorithm

to solve large-scale traveling salesman problems.

Rather than using the well-known models of homogeneous distribution

and simple Master/Slave communication, we present a more sophisticated

distribution that takes the advantage of several independent features of a

Branch-and-Cut code.

Computational results are reported for several instances of the TSPLIB.

1

1 Introduction

In the last years the Branch-and-Cut method has shown to be the state-of-the-art

for several hard combinatorial optimization problems, such as the traveling salesman

problem (TSP), the linear ordering problem and the max-cut problem. Although

being able to solve large problem instances, enormous amounts of time have to be

invested. Speeding up the algorithms and thereby being able to solve larger problem

instances is therefore most desirable.

On the side of the hardware, in the last decade a totally new architecture has

been made available: parallel computers constructed with microprocessors. Today,

the fastest computers in the world use high-level parallelism. They make possible

the solution of problems a sequential computer is not able to cope with. Parallel

computing is therefore receiving a rapidly increasing amout of attention.

In this paper, we describe the combination of these two powerful methods: a

parallel Branch-and-Cut algorithm, solving large-scale traveling salesman problems.

Since the Branch-and-Cut method is a general method to solve large combinatorial

optimization problems, we plan to build a general parallel Branch-and-Cut frame-

work in the future.

The original sequential Branch-and-Cut TSP code was written by Michael J�un-

ger, Gerhard Reinelt and Stefan Thienel. A complete description as well as compu-

tational results can be found in [JRT94]. In this paper only those features will be

explained that are necessary to understand the parallel algorithm.

The organization of the present paper is as follows.

Section 2 shows the history of prior practical work in the �eld of parallel Branch-

and-Bound and parallel Branch-and-Cut.

In section 3 we give a general account of our parallel implementation. Section 4

presents the fully parallelized Branch-and-Cut algorithm and all its features. The

�nal section 5 shows computational results for an implementation on Thinking Ma-

chines' CM-5.

2 2. SURVEY OF PRIOR WORK

2 Survey of prior work

The literature of parallel Branch-and-Bound algorithms gives particular attention

to the following three topics:

� speedup anomalies,

� tree search strategies,

� decentralized versus centralized control.

The speedup of a parallel algorithm is de�ned as

speedup

p

=

T

s

T

p

where T

s

is the worst-case running time of the fastest known sequential algorithm for

the given problem, and T

p

is the worst-case running time of the parallel algorithm

on p processors ([Akl89]). Clearly, the larger the speedup, the better the parallel

algorithm.

An absolute superlinear speedup, i. e., a speedup achieved by a parallel algorithm

that is greater than the number of processors used, is theoretically not possible,

since otherwise the sequential algorithm with running time T

s

is not really the

fastest possible. However, since the assumption that a single processor can always

emulate multiple processors without a loss of e�ciency is questionable for real-world

algorithms, we will talk of superlinear speedup relative to the serial algorithm at

hand (see also [Qui94, BT98] for this discussion).

Very early on, it became evident that parallel versions of standard Branch-

and-Bound techniques can have speedup anomalies, such as (relative) superlinear

speedups (also called acceleration anomalies) and so-called deceleration anomalies.

Acceleration anomalies occur in Branch-and-Bound because of the order in which

the search tree is evaluated. This order a�ects the amount of work to be done later

on. The size of the search tree can vary as the number of processors increases.

In [Eck93] this is called search anomaly.

The case when a given Branch-and-Bound algorithm takes more time when in-

stantiated on p

2

> p

1

processors than on p

1

is called deceleration anomaly.

Many researchers discussed conditions under which both types of anomalies

can or cannot occur. Theoretical treatises on speedup and performance for par-

allel Branch-and-Bound algorithms may be found in [QD86, LSp85, IYF79, LW84,

3

LW86a, LW86b, LW90]. [KL86] give a tutorial introduction to the literature on

parallel computers and algorithms that is relevant for combinatorial optimization.

The e�ects of parallel Branch-and-Bound algorithms that expand several nodes

simultaneously were shown in simulations by [IFY79, IYF79, LW84, LW86a, LW86b,

LW90, LSa84, Moh82] as well as in experiments by [WM84]. [LSa84] and [LW84,

LW86a, LW90] studied the likelihood of branch-and-bound algorithms exhibiting

deceleration and acceleration anomalies.

In Branch-and-Cut the philosophy is to do a much bigger e�ort of �nding lower

bounds than in Branch-and-Bound. Therefore, the computation of a single Branch-

and-Cut node takes much more time than in Branch-and-Bound. Moreover, the

number of nodes in the enumeration tree is far bigger in Branch-and-Bound. The

described e�ects are thus expected to be less frequent for our parallel Branch-and-

Cut algorithm. This is also shown in [Can88, CH90]. In their parallel Branch-and-

Cut algorithm for general zero-one integer programming problems they observed

deceleration anomalies only for problems which could be solved very quickly.

Another important research topic is the implementation of tree search strategies.

Much of the early research concentrated on depth-�rst and breadth-�rst search

because of the memory limitations of available computers. [PNR88] claim that

using depth-�rst search results in �nding better solutions earlier and reducing the

Branch-and-Bound tree signi�cantly. [IFY79, IYF79, EH80, FM85] showed that

with the depth-�rst approach and an appropriately chosen number of processors

linear and superlinear speedup can be obtained. [WM84] made similar experiments

with best-�rst approaches. [GK92] provide an overview of parallel algorithms with

di�erent search strategies for solving discrete optimization problems.

A third prominent topic in the literature is that of central versus decentralized

control of the search process. One possibility is to keep the \pool" of active Branch-

and-Bound nodes in shared memory, using locking mechanisms to prevent multiple

processors from making inconsistent changes to the pool. Experiments and sim-

ulations considering this model may be found in [IFY79, PM92, PNR88, Rou87].

On systems with distributed memory an essentially equivalent scheme is to distin-

guish one particular processor as a \Master" responsible for assigning subproblems

to \Slave" or \Worker" processors (see e. g. [dRT88]). [Eck93] and [KG92] say that

this scheme su�ers from a lack of theoretical \scalability". However, we use this

Master-Slave model and show good results for it. This, again, has the reason in the

di�erence between Branch-and-Bound and Branch-and-Cut: In Branch-and-Cut, in-

troducing a Master does not lead to a bottleneck, since the computation time for

4 3. STRUCTURE OF THE ALGORITHM

one Branch-and-Cut node on the Slaves is far larger than in Branch-and-Bound.

The other possibility for algorithms on computer systems without shared memory

is a \homogeneous" distribution of processors. This means that all processors do es-

sentially the same, and the pool of active Branch-and-Bound nodes has to be divided

and distributed over the processors. Proposals for such approaches date back to

[EH80]. [KZ88] have proposed and analyzed a very simple load distribution scheme

(see also [MS90] and [Ran90]), which is compared to a centralized scheme in [Eck93]:

each newly generated subproblem is sent to the pool of a randomly chosen processor.

On some multiprocessor systems this may be too costly in terms of communication.

This is especially true of older systems. Thus, works such as [FM85, NK87] propose

methods in which work is transferred between pairs of processors only when one

processor completely runs out of work. Other authors have suggested schemes in

which a work balancing is achieved by a periodic exchange of information about the

work pools ([AM88, KRN88, LM89, LM92, LMRT92, NK87, Vor86, Vor87]).

[AM88, Eck93, MRRT91, RRM93] include comparisons of central and distributed

control in various contexts.

3 Structure of the algorithm

Our parallel Branch-and-Cut implementation has the structure shown in �gure 1.

Each of the small boxes in the �gure can be viewed as a sequential program with

the possibility of sending and receiving data to and from other programs. The lines

leading from one box to another show that there may be communication between

these programs.

The di�erent programs have the following task: There is a Master having the

overall view of the advance of the solution, several Node Solvers that are responsible

for the computation of the nodes of the Branch-and-Cut tree, an Auxiliary Problem

Solver (APS) that solves subproblems which are not really necessary for the cor-

rectness of the solution but speed up the algorithm, and a Pool that stores globally

valid constraints.

Both the APS and the Pool consist of a Master and a quantity of Slaves. From

\outside", only the Master can be accessed. It receives messages and thereupon

decides which Slave has to get which job.

The parallel TSP code was designed following four major goals:

(1) As many independent parts of the original sequential algorithm should be

executed independently, as possible.

5

Slave kSlave 1

parallel Pool

Master

Poolmaster

Pool-

slave 1

Pool-

slave m

B&C Node

Solver 1 Solver n
B&C Node

APS-Master

APS- APS-

Auxiliary Problem Solver (APS)

Figure 1: Structure of the parallel Branch-and-Cut code

6 3. STRUCTURE OF THE ALGORITHM

(2) The program should be exible with respect to reusability for a general Branch-

and-Cut code in the future as well as the problems we wanted to solve and

the number of processors available.

(3) Algorithms �nding upper bounds (i. e. tours) and new violated inequalities,

which could not be employed in the sequential code because of their long

running time, should run in parallel to the rest of the program.

(4) The communication between processors should be minimized.

To achieve a reusability of the code ((2) of the above goals), we use the program-

ming language C

++

. This allows us to create classes which are valid also for a more

general Branch-and-Cut code than the speci�c TSP solver. This includes classes for

the message passing, the Pool and many other parts of the program. Classes for

message passing are useful when the program shall be ported to a di�erent parallel

computing environment, e. g., a workstation cluster or a di�erent parallel computer.

Then mainly the message passing class has to be reimplemented, while the other

parts of the program can be preserved.

In a general Branch-and-Cut code the Pool has to store several di�erent types

of constraints. Therefore it is necessary to have a general pool class from which

speci�c pools can be derived. The functionality of the pool will always be the same

(functions to put constraints into and get constraints out of the Pool, pool separation

etc.), only the way the stored constraints look like is di�erent.

To be able to specify a desired con�guration of the available processors we use

a Con�g �le. In this �le all information about the processors, their tasks and the

according parameters can be de�ned. This allows us to arrange the processors in a

way suitable for the given problem. If e. g. the pool separation is needed very rarely,

the number of Poolslaves can be set rather small. Then perhaps more processors are

needed as Branch-and-Cut Node Solvers. It is also possible to start two processors

with the same task but di�erent parameters.

Goal (3) shows a very powerful feature of parallel programming: We are in the

position to speed up a sequential code by using a set of processors not only for the

original task, but also for new tasks, whose solution was impossible before.

The minimization of communication is certainly another important aim, al-

though it lies in the nature of our algorithm to have a lot of communication e. g.

to update the bounds, the Pool and the new solutions. However, especially for the

parallel Pool we found some possibilities to reduce the communication in order not

to get a bottleneck when many Node Solvers are working.

7

All parts of the model will be explained in detail in the following chapter.

4 The algorithm in detail

4.1 Node Solvers

The Branch-and-Cut Node Solvers are the processors responsible for the evaluation

of the Branch-and-Cut nodes. They receive the data for a new node from the

Master and start the evaluation. The main routine consists of a separation phase

where new constraints are separated and added to the LP, an LP solving phase

where the augmented LP is solved and a communication phase where new updating

information is received from the Master. These phases are explained in the following

subsections. There are several possibilities when the main routine is left. Then

the Node Solver sends an according message to the Master as well as necessary

information and waits for information of the next Branch-and-Cut node to compute.

Table 1 summarizes the possible cases for the main routine to be left.

Table 1: Events that lead to an end of a Branch-and-Cut node computation

event message corresp. information

the guarantee is reached GUAR_REACHED |

no more constraints found BRANCH - LP value

- statuses of the constraints

- constraint ID of each constraint

- statuses of the variables

- values of the variables

- sparse graph

- set variables

a contradiction occurred CONTRADICTION - LP value

- statuses of the variables

- set variables

llb � gub - LP value

LP is infeasible FATHOM - statuses of the variables

frac. solution is feasible - set variables

We will now describe the di�erent phases of the Node Solver program.

8 4. THE ALGORITHM IN DETAIL

4.1.1 Starting a new Branch-and-Cut node

Before starting the main loop, information about the current Branch-and-Cut node

has to be received. This information contains the following:

� the current global upper bound,

� data about the parent of the Branch-and-Cut node, i. e., the number of equal-

ities, the constraint IDs of all active constraints in the last LP solved (con-

straint IDs are unique numbers corresponding to slots in the parallel Pool,

s. section 4.3), the number of variables and the statuses of the constraints and

of the variables,

� data about the current LP (statuses of the variables and the constraints)

� the sparse graph,

� other information, e. g., the ID of the Branch-and-Cut node, the level in the

Branch-and-Cut tree and a ag whether the node is the root of the remaining

tree.

Having received this information, the Node Solver is able to regenerate a �rst

LP by receiving the constraints that were active in the last LP of the parent from

the parallel Pool. Then the main loop is entered.

There are some functions which need the resources of the parallel Pool very

intensively. These are mainly the regeneration of the LP at the beginning of a

Branch-and-Cut node computation or when new variables have been added, and the

pricing. In these cases, those constraints in the Pool that are active in the current

LP are used to restore the needed information. In a straightforward implementation,

all these constraints can be received from the parallel Pool again and again as soon

as they are needed. But this would encumber the Pool with too many requests.

Therefore, in order to avoid bottlenecks at the Poolmaster, the active constraints

are stored not only in the parallel Pool, but also in a local pool of a Node Solver. This

pool is used as follows. At the beginning of a Branch-and-Cut node computation the

Node Solver loads all constraints that were active on the parent node into the local

pool. It may even be the case, that in this local pool there exist already some of

these constraints because they were used by the Node Solver in the computation of

other Branch-and-Cut nodes as well. Then loading this constraint can be omitted.

Having �nished this initial loading, the �rst LP can be regenerated without a further

access to the parallel Pool. In the separation phase, all separated constraints are

4.1 Node Solvers 9

not only sent to the parallel Pool, but also stored in the local pool. Also constraints

that come from the Pool during a pool separation are stored here. Thereby, the

pricing and the regeneration just act on locally held constraints. That leads to less

load on the parallel Pool and a smaller overall running time.

4.1.2 Main loop of a Node Solver

As LP solver we use CPLEX by R. E. Bixby.

Solving the LP yields a fractional solution that can be exploited in several ways.

First, it is used for the separation of constraints. Second, it can help �nd better

feasible solutions, since it contains a number of variables equal to 1 and a certain

number of variables whose values are close to 1. The exploitation of fractional

solutions in this way is done by the APS. Therefore, every fractional solution that

does not contain subtours is sent to the APS-Master as soon as it is known from

the LP solving phase.

It may happen that the fractional solution is also feasible. In this case the feasible

solution is sent also the APS, because the APS administers all feasible solutions.

Then the communication phase starts. Here, the Node Solver sends a request

message to the Master, and the Master replies by sending the following information:

� The lower bound of the root of the remaining Branch-and-Cut tree.

� The current global upper bound. This is very important, since new upper

bounds may show that this Branch-and-Cut node can be fathomed.

� A list of new edges. If the APS found a new tour, the edges of this tour are

added to the sparse graph on the Master. The Master then sends these new

edges also to the Node Solvers in the communication phase in order to update

their sparse graphs. By this means we augment the set of active variables

without pricing.

� A ag whether the Branch-and-Cut node n that the Node Solver is currently

working on has become the root of the remaining Branch-and-Cut tree. This

may happen if other Node Solvers fathomed all other children of the parent

node of n.

In the separation phase new constraints are generated that are violated in the

current fractional solution. We use a hierarchical separation in three stages. The

second and the third stage are only executed if the respective previous stages did

10 4. THE ALGORITHM IN DETAIL

not generate new inequalities. In the �rst stage we call the separation routines

for subtour elimination and simple combs. In the second stage we try to identify

two-matching constraints. Each constraint found is sent to the parallel Pool. The

Pool sends back a unique number (the so-called constraint ID) that can be used

for further access to the constraint in the Pool. After the second stage it has to be

decided which constraints shall be added to the current constraint matrix of the LP.

Since every constraint has a constraint ID and the Pool stores a constraint only once

(s. section 4.3), the constraint ID can be used to determine whether a new constraint

does already exist in the current LP. Of course, only those constraints are added

to the LP that do not exist yet. The third separation stage is the pool separation.

To start its execution a small POOLSEP message is sent to the Poolmaster together

with the current fractional solution. The Poolmaster then sends back all separated

constraints. The pool separation checks for violated comb or clique tree inequalities

that are not already in the LP. We could do pool separation also with subtour

elimination constraints and two-matching constraints before calling the respective

separation routines, but usually direct separation is more e�cient for these types of

inequalities.

In the current implementation we use an exact subtour elimination constraint

separator ([CP80]), a heuristic for the separation of two-matching constraints of

[PRi90], which is based on the exact separation algorithm of [PRa82] and heuris-

tics for separating comb constraints and clique tree constraints (based on ideas of

[GH91]). The latter are separated by the APS-Slaves (s. section 4.4).

There is an important di�erence with respect to the process of �nding violated

inequalities between a program with a single Node Solver as in the sequential TSP

code and a program with a set of Node Solvers as described here. Certainly, the

computation of the Branch-and-Cut tree is reasonably faster. But this is not the only

innovation. More important is, that the constraints which are stored in the parallel

Pool by one Node Solver may be violated in the solution of another Node Solver.

Therefore, the computation of the Branch-and-Cut nodes in parallel brings up a new

quality of problem solving: The Node Solvers \help" each other �nd new violated

inequalities, rather than one Node Solver pro�ting of its former computations, as

in the sequential case. [Can88] and [CH90] specify this as the main reason for

super-linear speedup.

4.2 Master 11

4.2 Master

The Master is the processor having a \global" view of the solution progress. The

Node Solvers get their jobs from the Master and send back the results to it. The

Master is responsible for the distribution of the Branch-and-Cut nodes to the Node

Solvers. Moreover, it stops the whole Branch-and-Cut algorithm as soon as either

the required guarantee is reached, or no more Branch-and-Cut nodes have to be

processed.

In detail, the Master has to store the following information:

� The global upper and the global lower bound.

The upper bounds are obtained from the Auxiliary Problem Solver.

The local lower bounds are received continously from the Node Solvers. This

may lead to an increase of the global lower bound and therefore stop the whole

algorithm, if the guarantee requirement is reached.

� A list of all Branch-and-Cut nodes. This is the Branch-and-Cut tree known so

far. It includes the set variables and their related statuses (settolowerbound,

settoupperbound) for each node, the local lower bound of the corresponding

subproblem, the constraint IDs of all constraints active in the last LP solved,

and the basis of the last processed LP (i. e., the statuses of the variables and

the constraints) in order to avoid phase 1 of the simplex algorithm.

� Information about each Node Solver. This means the state in which the Node

Solver is (busy, idle) and a pointer to the current Branch-and-Cut node it is

working on.

� The \global" sparse graph and reserve graph. These graphs are needed to

start a new Branch-and-Cut node. They are initialized at the beginning of

the algorithm. When a Node Solver stops the computation of a Branch-and-

Cut node (since one of the events shown in table 1 occurred), it sends back

it's current sparse graph. The Master's sparse graph is then augmented by all

new edges.

A sketch of the algorithm running on the Master is shown on page 13. The main

routine waits for incoming messages and reacts according to them. The message

type coming most frequently is the so-called update request of the Node Solvers.

Here, the Node Solver wants to know whether there is some important information

available. The Master then sends back the data described in section 4.1.2 (the

12 4. THE ALGORITHM IN DETAIL

communication phase). To this end an edge list for each Node Solver is maintained.

This list stores all edges that may be new to the corresponding Node Solver. It is

initially empty and augmented by new edges of the feasible solutions coming from

the APS and by new edges in the sparse graphs coming from the Node Solvers

when branching is necessary. As soon as a Node Solver is requesting for update, its

edge list is sent to it and emptied afterwards. This way, the \global" sparse graph

is available for every Node Solver. This is done, because variables which became

active in a Branch-and-Cut node have a good probability to be in the optimum tour

and should be in the LP as soon as possible.

Other functions the Master has to execute are:

� initialize_algorithm

This includes: reading the problem data, initializing global variables, con-

structing a �rst tour, constructing the sparse and the reserve graph, sending

initializing messages to the Node Solvers, the APS and the parallel Pool.

� start_node_solver

When a Node Solver is started to process a Branch-and-Cut node, the neces-

sary data has to be sent (explained in section 4.1.1).

� determine_global_lower_bound

Whenever a new local lower bound was received from a Node Solver, or a

Branch-and-Cut node could be marked inactive (because of fathoming, branch-

ing or contradictions), the new global lower bound is determined, which is the

minimumof the lower bounds of all active Branch-and-Cut nodes. If the global

lower bound has changed, the guarantee requirement might be satis�ed, and

the algorithm can stop.

� select_new_node

A Branch-and-Cut node is selected from the set of active Branch-and-Cut

nodes. If the list of nodes is empty and no Node Solver is busy, the optimality

of the best known tour can be concluded. Otherwise the selected node is sent

to the next idle Node Solver. After a successful selection, variable settings

have to be adjusted according to the information stored in the Branch-and-

Cut tree. If it turns out that some variable must be set to 0 or 1, yet has

been �xed to the opposite value in the meantime, we have a contradiction. In

this case the node is fathomed. If the local lower bound llb of the selected

node is greater than or equal to the global upper bound gub, we fathom the

4.2 Master 13

Algorithm for the Master

initialize algorithm;

start node solver with the root problem;

do

f wait for a message from the APS or a Node Solver;

switch (received message)

f case new gub: // from the APS

store new gub;

augment sparse graph;

store edge list for each busy Node Solver;

if (guarantee reached)

global stop = true;

break;

case new llb: // from a Node Solver

determine global lower bound;

if (guarantee reached)

global stop = true;

break;

case update request: // from a Node Solver

send back update information; break;

case satis�ed: // from a Node Solver

global stop = true; break;

case branch, fathom, contradiction: // from a Node Solver

receive information shown in table 1;

fathom or branch the node (received message);

determine global lower bound;

while (there is an idle Node Solver and

the Branch-and-Cut tree is not empty)

f select new node;

if (no more node)

f if (all Node Solvers idle) global stop = true; g

else

start node solver with the selected node;

g

break;

g

g

while (global stop == false);

tell all processors to stop;

14 4. THE ALGORITHM IN DETAIL

node immediately without sending it to any Node Solver and continue with

the selection process. A Branch-and-Cut node has pointers to its parent and

its two children. So it is su�cient to store a set variable only once in any

path from the root to a leaf in the Branch-and-Cut tree. If a new problem is

selected, only the highest ancestor of the old node and the new leaf has to be

determined. The set variables on the path from the old node to the common

are then reset, while the set variables on the path from the common ancestor

to the new leaf are set.

� tell_all_processors_to_stop

At the end, the Master sends a STOP message to all other processors. They

print some statistics and stop immediately whatever they were working on.

4.3 Parallel Pool

During the whole computation, we keep a pool of active and nonactive facet de�ning

inequalities of the traveling salesman polytope. The active inequalities are the ones

that are in the LP of a Node Solver and both stored in the pool and in the constraint

matrix of the corresponding Node Solver, whereas the inactive constraints are only

present in the pool. An inequality becomes inactive, if it is not binding in any of

the LP solutions of the Node Solvers. When required, it is easily regenerated from

the pool and made active later in the computation.

The pool can only provide its full power if all constraints are available to all

Node Solvers. Therefore, a straightforward implementation could make one proces-

sor maintain the pool and answer the requests (also called jobs) coming from the

Node Solvers. However, the main feature of the pool is the pool separation, i. e.

�nding new violated inequalities without being forced to call a separator. This pool

separation has to be fast if it shall be worthwhile. Furthermore, many Node Solvers

are requesting for the pool separation, which could lead to a bottleneck. Therefore,

in order to make the pool separation as e�cient as possible, we \cut" the Pool

into several pieces and put each piece onto a di�erent processor. This leads to the

structure of the parallel Pool shown in �gure 1.

The Poolmaster is the interface between the Poolslaves and the other processors

(APS, Node Solvers and Master). It holds the information on which Poolslave which

inequality can be found and knows, what the Poolslaves are doing at every moment

(this is done by a class poolslave_manager that stores for each Poolslave what job

it is working on, or if it is idle). Furthermore, it holds a queue of the incoming

4.3 Parallel Pool 15

requests and decides, which job is the next to be executed. This is done as follows.

Each type of request has a priority. As soon as a request is coming, it is stored in a

priority queue at a position according to its priority. Whenever it may be possible

that a request is executable (this is the case when either the request came into the

queue or a Poolslave stopped its current job), the queue is scanned for executable

jobs, starting at the node carrying the job with the highest priority and stopping if

an executable job was found or all jobs were scanned. Some jobs need all Poolslaves

for execution, some just occupy one Poolslave. If two jobs do not need the same

Poolslave (e. g. because the requested constraints lie on di�erent slaves), they can

be executed in parallel.

The algorithm running on the Poolmaster is shown on page 16.

The following functions are supported by the parallel Pool. They are listed in

decreasing order of priority:

� Initialization

For the initialization of the parallel Pool the Poolmaster receives the maximum

number of constraints (from the Master). This number is sent to each Pool-

slave, who then calculates its own local number of constraints out of the global

maximum and allocates space according to this local number. Initialization

has the highest priority and is executed by all Poolslaves.

� Insertion of an inequality

The Poolmaster receives the inequality to be stored. Then it immediately

checks whether the inequality has to be stored at all, because it may be the

case that it is already in the pool. To this end, a hashing number is computed

for the inequality. This number is looked up in a hash table that contains the

numbers of all constraints in the pool together with their constraint IDs. If

the constraint does already exist, its constraint ID is sent back immediately,

and the request is not stored in the queue at all. Otherwise, the request is

stored in the queue. It is executable as soon as one Poolslave is idle. When

an insertion request is executed, the sender of the inequality gets back a new

constraint ID. Whenever the sender needs access to this constraint in the

future, it has to specify this constraint ID to identify the constraint. Then the

inequality is sent to the Poolslave that has the smallest load and is idle. In

our implementation the Poolslave with the smallest load is the one that holds

the smallest number of constraints. Another possibility is to measure the load

as the sum of the sizes of all stored constraints.

16 4. THE ALGORITHM IN DETAIL

Algorithm for the Poolmaster

initialize internal data structures;

do

f wait for a message from any processor;

switch (type of sender)

f case Node Solver, APS, Master:

if (job is executable immediately)

execute job;

else

store job in prio queue;

break;

case Poolslave:

look up, which job the Poolslave has been executing;

receive result according to the job and forward it if necessary;

if (Poolslave is last one working on this job)

remove job;

break;

g

do

f scan the priority queue for an executable job with highest priority;

if (found)

send job and necessary data to all participating Poolslaves;

g

while (an executable job could be found);

g

while (parallel pool is not stopped by Master);

print statistics;

4.3 Parallel Pool 17

The insertion has a high priority, because it is important to have constraints

in the pool as soon as possible. A pool separation already stored in the request

queue might �nd them violated for the given fractional solution.

� Extraction of a constraint

The Poolmaster receives the constraint ID of the demanded constraint, for-

wards the request to the respective Poolslave and sends the constraint back

to the requester on receipt from the Poolslave.

� Deletion of an inequality

Having received the constraint ID of the inequality to delete, the Poolmaster

can execute this request when the Poolslave that carries this constraint gets

idle.

� getting and setting constraint elements

A constraint in the pool has the following entries:

{ constr_len

{ entry-array

{ constr_ID

{ rhs

{ n_active

{ lp_index

constr_len just stores the length of the entry-array. For a more detailed

description of the entry-array see [JRT94].

constr_ID stores the constraint ID of the constraint, rhs is the right hand

side. The element n_active holds the number of active Branch-and-Cut nodes

where this constraint is active. The lp_index is an array that stores for each

Node Solver which row of the constraint matrix of the LP the constraint lies

in, or 0, if it is not in the LP of the corresponding Node Solver.

All these elements can be demanded. Therefore, the constraint ID and the

desired entry type have to be sent. The Poolmaster looks up in its constraint

table where to �nd the constraint and forwards the request to the respective

Poolslave. This Slave sends back the entry to the Poolmaster who forwards

the result back to the requester.

18 4. THE ALGORITHM IN DETAIL

The elements n_active, rhs and the Node Solver's own lp_index can be set

by a similar setting request. Here also the new value has to be sent.

� Cleanup

If the pool is getting too full, cleanup requests can tell the Pool to delete

unnecessary constraints. In a soft cleanup the Poolmaster tells the Poolslaves

to throw away all those constraints whose n_active entry and all lp_index

elements are equal to 0, i. e., all inactive constraints. In a hard cleanup (used

if the soft cleanup did not delete enough constraints) also those constraints are

deleted that have their n_active entry greater than 0 while all the lp_index

elements are equal to 0. These are those constraints that are currently not

active in any LP, but that were active in the last LP of the parents of active

Branch-and-Cut nodes.

In our implementation the Master checks the load of the pool every 20th

update request and calls a soft cleanup if more than 85% of all constraint slots

are occupied. A hard cleanup is called if the soft cleanup did not delete a

single constraint at all.

� FORALL requests

A special issue can be used to speed up the communication in cases where

elements of all constraints in the Pool are needed. A Node Solver can send a

FORALL ag followed by the request for an element of the Pool (e. g. the size of

a constraint). The Poolmaster then sends back the element-constraint ID pair

of all constraints in the Pool. With this method of getting information out of

the parallel Pool a lot of overhead can be avoided. Without the FORALL ag,

the requester has to send a request for each constraint in the Pool. Using the

ag, only two messages (the ag and the request for an element) are necessary

to get the same information.

� Pool separation

For the pool separation a fractional solution is needed. This is sent to all

Poolslaves participating in the pool separation. All separated constraints are

sent back to the Poolmaster and collected here. As soon as the last Poolslave

has sent its constraints, the whole constraint list is sent back to the requester

(one of the Node Solvers).

A pool separation is not really necessary for the correctness of the Branch-

and-Cut algorithm. It helps the Node Solvers raise their local lower bounds.

4.4 Auxiliary Problem Solver (APS) 19

Therefore, the pool separation need not be executed by all Poolslaves. Hence

it is considered executable as soon as 75% of the Poolslaves are idle. By this

technique large waiting times for the Node Solvers are avoided.

Some small requests can be answered by the Poolmaster immediately. These are

questions about the maximum number of constraints storable in the parallel Pool,

about the number of constraints stored currently and whether a constraint with a

given constraint ID exists in the pool.

The Auxiliary Problem Solver has a link to the Poolmaster to send newly sep-

arated constraints to it. These are stored on one of the Poolslaves just like every

other constraint.

One problem arises when several processors have access to the parallel Pool.

When a Node Solver inserts a new constraint, this is marked inactive initially (by

setting n_active and all lp_indexes to 0). It becomes active when the correspond-

ing Node Solver sets its lp_index. This is normally happening directly after the

insertion. However, it may be that between these two requests (insertion and set-

ting the lp_index) the Master calls a soft cleanup. Then the new constraint will be

deleted although it is needed directly afterwards. Therefore, all constraints coming

from the Node Solvers get a protection ag that protects them from being deleted.

As soon as the lp_index element gets set, this protection is cancelled. By this means

an accidential deletion of constraints is avoided. Constraints coming from the APS

do not get this ag, because they will not be needed in an LP immediately.

4.4 Auxiliary Problem Solver (APS)

Generally, the Auxiliary Problem Solver is supposed to serve as a \device" that

provides global bounds (upper bounds for a minimization problem and lower bounds

in a maximization problem) and runs other algorithms that help shorten the overall

running time and that can and should be executed independently from the rest

of the Branch-and-Cut algorithm. It is written with regard to a general use for

problems that can be solved with the Branch-and-Cut method.

In our case, the APS has the following two tasks:

(1) �nding traveling salesman tours and thereby global upper bounds,

(2) separating new inequalities.

Job (2) is mainly done by the Node Solvers in their separation phase. However,

our separation algorithm for comb constraints and clique tree constraints takes too

20 4. THE ALGORITHM IN DETAIL

much running time to be called in every separation phase. Therefore, in order to

get these constraints despite this fact, we call the separator on the APS-Slaves.

The structure of the Auxiliary Problem Solver is the same as that of the parallel

Pool: a Master (here called APS-Master) receives messages from \the outer world"

and holds them in a queue. The APS-Slaves do jobs ordered by the APS-Master.

4.4.1 APS-Master

The \messages" are the fractional solutions received from the Node Solvers when

their LP solving phase is over. These fractional solutions are stored in a queue and

get a priority corresponding to each job type (tour heuristics or separation).

As soon as an APS-Slave gets idle, the following steps are executed by the APS-

Master:

� determine which type of job shall be executed according to some \outer"

strategy described below,

� �nd the fractional solution in the queue that has the highest priority for the

chosen job type,

� send the chosen fractional solution to the idle APS-Slave together with infor-

mation about job type and \inner" strategy.

When a fractional solution has been used once for all job types, it is deleted from

the queue.

The priorities for the two types of jobs are calculated as follows. For tour heuris-

tics, the priority is the number of ones in the fractional solution. We believe that

the more ones a solution has, the higher is the probability that this solution leads

to a good tour. Thus, the solution with the most ones is the candidate for the next

tour improvement. Since no such priority can be given with respect to the separa-

tion, we use the same here as for the tour heuristics. This is done in order to be

able to delete a fractional solution from the queue as soon as possible: a fractional

solution that is chosen for tour heuristics will also be chosen for separation and can

be removed afterwards.

The tasks to be distributed over the APS-Slaves have to be chosen in a resonable

way. It may be desirable to modify the amount of calls for the given job types while

the overall solution advances. Therefore, we implemented a strategy class that

watches the process of �nding bounds and changes the current strategy accordingly.

This is done in the following way: The whole strategy for the APS consists of several

4.4 Auxiliary Problem Solver (APS) 21

so-called outer strategies. An outer strategy carries the information how many APS-

Slaves (in percent) shall work on each of the job types. This can be for example

20% for the �rst, 30% for the second and 50% for the third job type. For each job

type in each outer strategy there may be de�ned a list of several inner strategies.

Inner strategies are strategies that concern the execution of the speci�c types of

jobs. If, e. g., job type two in the example above has three di�erent strategies, the

inner strategies for this job type can be de�ned as 10% with strategy 1, 5% with

strategy 2 and 15% with strategy 3. Thus, not only do the outer strategies de�ne

which percentage is used for each job type, but also how many APS-Slaves inside

the job type shall work on which inner strategy.

Each outer strategy is coupled with a guarantee. This guarantee has to be

ful�lled for the current best feasible solution in order to employ the corresponding

strategy.

All strategy information can be de�ned by the user in a strategy �le. This �le

is read by the APS-Master at the beginning of the algorithm.

In the implementation of our parallel Branch-and-Cut code for the TSP, we chose

a strategy that we consider reasonable due to our experiences with the sequential

TSP code. The need for the results from the two available job types shifts from

�nding global upper bounds to the separation of constraints while proceeding in

the overall solution. At the beginning it is important to �nd good tours. Therefore

short-time improvement heuristics are used to get �rst results. Often, a tour close to

the optimal tour can be found rather early. Then the hard work is to �nd an optimal

tour and to prove it by raising the lower bound. Therefore the tour improvement

should be switched to heuristics consuming more time but being able to �nd tours

of a better quality, and the separation of constraints should be reinforced as the

algorithm advances.

A strategy �le that worked well for our purposes is shown in table 2: the tour

improvement starts with fast heuristics that �nd �rst good tours. The heuristics

increase in complexity, taking more time but �nding better upper bounds. Less

processors work on the tour improvement as the program advances. The constraint

separation is executed by a growing number of processors, generating increasingly

more constraints.

We have �ve di�erent strategies for the tour heuristics. The higher the number

of the inner strategy the more complicated gets the heuristic and the longer is the

corresponding running time. The separation of constraints has always the same

strategy. Furthermore, if a Node Solver sends a feasible solution to the APS-Master

22 4. THE ALGORITHM IN DETAIL

Table 2: TSP strategy �le for the APS-Master

stra- guar- tour comb and clique

tegy antee heuristics tree separation

1 1 20% 0 30% 1 30% 2 10% 4 10% 0

2 1.0% 30% 1 30% 2 20% 3 10% 4 10% 0

3 0.2% 10% 1 10% 2 50% 3 20% 4 10% 0

4 0.1% 10% 2 30% 3 20% 4 40% 0

5 0.05% 10% 2 10% 3 10% 4 70% 0

because a fractional solution was feasible, the current outer strategy is set to the

last possible strategy. This is done, because feasible solutions from the Node Solvers

are supposed to yield very good upper bounds, and therefore a strategy should be

chosen that tries to prove the current best upper bound.

In �gure 1 a connection between the APS-Master and the Master can be seen.

This connection is used whenever an APS-Slave has found a feasible solution that

is better (in terms of the TSP: a tour that is shorter) than the current best one.

Then this solution is sent to the Master who will use it for further processing. In

our TSP code the Master looks up its sparse graph and adds those edges of the tour

that are currently not in the graph.

APS-Slaves that work on a separation job do not send their separated constraints

to the APS-Master (who could forward them to the parallel Pool), but directly to

the Pool. This connection is left out for clarity in �gure 1. It speeds up the insertion

of constraints into the Pool. The APS-Master only gets a message from a separating

APS-Slave when the separation is over. Then this APS-Slave is known to be free for

the next job, and the APS-Master will supply it with the task the current strategy

orders.

The algorithm running on the APS-Master is shown on page 23.

4.4.2 APS-Slaves

The APS-Slaves wait for messages from the APS-Master. Each message consists of

a ag that speci�es the job that has to be done and corresponding information for

that job. In our TSP code there are two possibilities:

� separation of comb and clique tree constraints: fractional solution with highest

separation priority (see above)

4.4 Auxiliary Problem Solver (APS) 23

Algorithm for the APS-Master

initialize internal data structures;

do

f wait for a message from any processor;

switch (type of sender)

f case Master: // this message is received only once at the beginning

receive initialization;

initialize global data;

break;

case Node Solver:

if (message is fractional solution)

f store solution in the queue;

while (an idle APS-Slave exists and a job is in the queue)

send job to idle APS-Slave according to the current strategy;

g

else // message is feasible solution

if (solution is better than current best known)

f store solution as best known;

set outer strategy to last possible strategy;

g

break;

case APS-Slave:

if (APS-Slave �nished)

f look up, which job the APS-Slave has been executing;

receive result according to the job;

update strategy if necessary;

if (a job is in the queue)

send job to idle APS-Slave according to the current strategy;

g

else // APS-Slave requests for best upper bound

send back current global upper bound;

break;

g

g

while (APS is not stopped by Master);

print statistics;

24 4. THE ALGORITHM IN DETAIL

� tour heuristics: fractional solution with highest tour priority, best known up-

per bound

The APS-Slaves starts the computations as soon as all necessary data is trans-

mitted. Having �nished the job, an APS-Slave gets back into the idle state and

waits for the next message.

For the traveling salesman problem a host of heuristics is available. Usually, they

are employed independent of lower bound computations. They are used to give a

good feasible solution before a Branch-and-Bound algorithm is started. Then it is

left to the Branch-and-Bound algorithm to �nd further tours and the optimum. In

our opinion the fractional LP solutions occuring in the lower bound computations

on the Node Solvers give hints on the structure of optimum or near optimum tours.

Therefore, rather than running heuristics in an isolated way we constructed an

algorithmic framework that integrates upper and lower bound computations: On

the one hand fractional solutions are used to �nd upper bounds, on the other hand,

feasible solutions are used to augment the sparse graph and the set of active variables

of the Node Solvers.

A fractional LP solution contains a number of variables equal to 1, and some vari-

ables have values close to 1. We exploit this to form a starting tour for subsequent

improvement heuristics in the following way. The edges are sorted in descending

order according to their values in the current LP solution. The resulting list is

scanned, and edges become part of the tour if they do not produce a subtour with

the edges selected so far. This gives a system of paths which now have to be con-

nected. To this end, a savings heuristic ([CW64]), originally developed for vehicle

routing problems, is used.

Having computed a �rst tour we try to improve it by local modi�cations. Here we

use variants of the three-opt heuristic and of the Lin-Kernighan heuristic ([LK73]).

The basic principle is to build complicated tour modi�cations that are composed

of simple moves where not all of these moves necessarily have to decrease the tour

length. To obtain reasonable running times the e�ort to �nd the parts of the com-

posed move has to be limited. This limitation depends on the current inner strategy

and the progress of the improvement heuristics. If the length of the current tour

is close to the best known solution, more CPU time is spent, and the modi�cation

possibilities of the Lin-Kernighan heuristic and the three-opt exchange are extended.

Before employing time-consuming heuristics the APS-Master is queried about the

current best upper bound. It may be the case that other APS-Slaves have found bet-

ter tours in the meantime and a costly improvement heuristic has become worthless

25

because it is anticipated that our limited heuristics will not yield a better solution

within moderate time limits. Also, trying to improve the same tour several times is

avoided by using a hashing scheme for the detection of identical tours.

As soon as a heuristic yielded a tour that is shorter than the best known one,

this is sent to the APS-Master. Thereby, other processors get the new information

very quickly and can take advantage of it.

For a full description of the exploitation of LPs see [JRT94]. Details about

TSP heuristics and their computational performance can be found in [JRR95] and

[Rei92].

5 Implementation

Regarding the structure shown in �gure 1 we wanted to implement our parallel

Branch-and-Cut algorithm on a massively parallel computer, whose diameter, i. e.,

the maximal distance between two processors, is as small as possible. A grid archi-

tecture for example would be unsuitable. Some processors communicate with nearly

all others (e. g. the Master, the Poolmaster and the Node Solvers), and in this type

of topology too much time would be spent by sending via other processors. A grid

is much more useful for applications where the underlying problem can be mapped

well into it and where the communication is restricted to the next neighbors.

Furthermore, a massively parallel computer with a lot of processors and a small

memory on each processor is no adequate environment for our needs. A computer

with a few hundred processors each having a bigger memory is much more useful.

With respect to these considerations, we implemented the parallel Branch-and-

Cut code on Thinking Machines' CM-5 ([Thi92]).

5.1 Thinking Machines' CM-5

The CM-5 we used for our computations is a MIMD multiprocessor ([Fly72]) con-

sisting of 64 SPARC-2 microprocessors with 32 MByte RAM on each processor.

The topology of the so-called data network (the network used for the communica-

tion between two processors) is a fat tree (4-ary hypertree, s. �gure 2 and [Qui94]).

The processing nodes are the leaves of the tree, whereas all other processors in

the tree manage the communication. A 4-ary hypertree with depth d has 4

d

leaves

and 2

d

(2

d+1

� 1) nodes in all. The diameter of this network is 2d = 6 in our speci�c

26 5. IMPLEMENTATION

Figure 2: A fat tree (4-ary hypertree) with 16 leaves

case of 64 processing nodes. The 64 processors can be separated into partitions of

sizes 16, 32 or 64.

The Branch-and-Cut algorithm was implemented in the C

++

programming lan-

guage ([Str93]), using the CMMD 3.2 message passing environment available for the

CM-5 ([Thi94]), under the CMOST 7.3 operating system.

The program was compiled with the GNU C

++

compiler with optimization option

O3.

5.2 Computational results

We tested the parallel algorithm for several instances of the TSPLIB ([Rei91a,

Rei91b]) on 16, 32 and 64 processors. In order to get a reference for speedup

considerations, we ran our sequential Branch-and-Cut code (written in C) on one

processor.

All computational results are shown in tables 4 and 5. The larger problems were

only tested on 32 and 64 processors. Very small problems were run on 16 processors.

The strategy of the APS was shown on page 22. The distribution of Slaves and Node

Solvers can be seen in table 3.

The instances rat575, d657, and u724 could not be solved because of a lack of

memory on the processors. As one can see also in the �gures 3 through 5 we gain a

good speedup especially for the larger problems. Small instances yield only a small

speedup, because the possibility to solve several Branch-and-Cut nodes in parallel

is very small, and the number of pool separations is low.

5.2 Computational results 27

The speedup for 32 and 64 processors is better than the one for 16 processors.

However, the di�erence between running times on 32 processors and on 64 processors

is not very large. Often 32 processors took less time than 64 processors. This

results from the fact that the number of Branch-and-Cut nodes active at one time

(i. e., nodes that can be computed parallely) is often not larger than 15. Then

the remaining Node Solvers in the partition of 64 processors stay idle all the time.

This means that the 32 processor partition and the 64 processor partition actually

used the same amount of Node Solvers. The di�erences in the running times then

result just in small di�erences that come from constraints that were added by the

APS-Slaves sooner or later.

The problem instance p654 is a bit pathological. Here, the global lower bound is

equal to the optimum value very soon in the root node, and then the algorithm takes

its time in searching for the corresponding tour. It is just a matter of luck, when

this tour is found by the APS-Slaves, and in our case the 16 processor partition was

more lucky than the 64 processors, and 32 processors gave the best result.

Unfortunately, no larger problem instances could be solved because of the mem-

ory limitations of the CM-5 we used. The results show that the larger the instances

get, the more reasonable is the use of many Node Solvers.

Table 3: Distribution of Slaves and Node Solvers on di�erent partitions

16 processors: 32 processors: 64 processors:

5 Node Solvers 13 Node Solvers 30 Node Solvers

5 APS-Slaves 8 APS-Slaves 16 APS-Slaves

3 Poolslaves 8 Poolslaves 15 Poolslaves

28 5. IMPLEMENTATION

Table 4: Computational results comparing the sequential B&C and the parallel

B&C algorithm

Probl. seq. B&C parallel B&C

time #nodes #procs time #nodes

par time

seq time

� 100 [%]

16 5:28 309 34.6

pr76 15:48 263 32 3:41 251 23.3

64 4:54 245 31.0

gr120 0:28 3 16 0:14 3 50.0

bier127 0:16 1 16 0:08 1 50.0

16 2:12 39 63.8

pr152 3:27 13 32 1:23 19 40.1

64 2:46 19 80.2

16 2:16 17 28.9

rat195 7:50 39 32 1:47 23 22.8

64 1:52 23 23.8

16 1:44 47 28.3

d198 6:04 27 32 1:40 65 27.5

64 2:43 75 44.8

16 5:42 53 19.1

gr229 29:49 53 32 2:11 23 7.3

64 3:25 33 11.5

16 3:08 31 58.0

gil262 5:24 9 32 3:01 17 55.9

64 3:44 21 69.1

pr264 0:46 3 16 0:30 3 65.2

mat280 0:28 3 16 0:22 3 78.6

16 11:00 85 13.1

pr299 84:02 109 32 7:17 87 8.7

64 10:01 47 11.9

16 2:23 11 22.0

lin318 10:50 19 32 3:20 19 30.8

64 3:25 15 31.5

pr439 297:51 223

32 26:37 173 8.9

64 25:25 131 8.5

pcb442 106:25 435

32 8:16 265 7.8

64 7:52 173 7.4

att532 216:19 133

32 26:01 213 12.0

64 25:09 199 11.6

5.2 Computational results 29

Table 5: Computational results comparing the sequential B&C and the parallel

B&C algorithm { continued

Probl. seq. B&C parallel B&C

time #nodes #procs time #nodes

par time

seq time

� 100 [%]

16 7:33 15 16.0

ali535 47:13 13 32 6:58 17 14.8

64 7:21 21 15.6

u574 65:15 7

32 14:38 81 22.4

64 12:12 49 18.7

rat575 1158:05 829 |

16 4:59 51 32.9

p654 15:09 55 32 3:14 35 21.3

64 5:34 85 36.7

d657 1718:57 713 |

16 14:59 53 9.1

gr666 165:17 51 32 24:45 213 15.0

64 14:53 73 9.0

u724 3368:19 1189 |

rat783 52:50 13

32 8:55 53 16.9

64 6:46 9 12.8

10

20

30

40

50

60

70

80

90

100

(p
ar

.
ru

n
ti

m
e

/
se

q
.

ru
n

ti
m

e)
 *

 1
0

0
 [

%
]

p
r7

6

g
r1

2
0

b
ie

r1
2

7

p
r1

5
2

ra
t1

9
5

d
1

9
8

g
r2

2
9

g
il

2
6

2 p
r2

6
4

m
at

2
8

0

p
r2

9
9 li

n
3

1
8

al
i5

3
5

p
6

5
4

g
r6

6
6

Figure 3: Computational results on 16 processors

3
0

5
.

I
M
P
L
E
M
E
N
T
A
T
I
O
N

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

(par. runtime / seq. runtime) * 100 [%]

pr76

pr152

rat195

d198

gr229

gil262

pr299

lin318

pr439

pcb442

att532

ali535

u574

p654

gr666

rat783

F
i
g
u
r
e
4
:
C
o
m
p
u
t
a
t
i
o
n
a
l
r
e
s
u
l
t
s
o
n
3
2
p
r
o
c
e
s
s
o
r
s

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

(par. runtime / seq. runtime) * 100 [%]

pr76

pr152

rat195

d198

gr229

gil262

pr299

lin318

pr439

pcb442

att532

ali535

u574

p654

gr666

rat783

F
i
g
u
r
e
5
:
C
o
m
p
u
t
a
t
i
o
n
a
l
r
e
s
u
l
t
s
o
n
6
4
p
r
o
c
e
s
s
o
r
s

31

6 Conclusion and future work

We introduced the implementation of a parallel Branch-and-Cut algorithm that

distributes the overall work neither homogeneously nor in a simple Master/Slave

correlation but in a more sophisticated manner that takes advantage of the several

independent features of a Branch-and-Cut code. The computational results show

that this implementation makes sense especially for large instances.

However, the current static work distribution, i. e., each processor is given its

task (APS-Slave, Node Solver, etc.) in advance and works with it throughout the

solution, is rather restrictive. It showed that a great amount of Node Solvers on the

partition of 64 processors leads to more speedup with respect to 32 processors only

for very large instances, since most of the Node Solvers are idle most of the time.

Therefore, we are currently working on a dynamic work distribution. This will work

as follows: Starting the algorithm one Node Solver will compute the root node,

while the other processors are employed as usual. The amount of Node Solvers will

then grow and shrink according to the actually necessary number due to branching

and fathoming of Branch-and-Cut nodes. Node Solvers that run out of work can

become either APS-Slaves or Poolslaves and vice versa. By this means we expect to

gain an even larger speedup, since more processors are at hand for the computation

of upper bounds and constraints or for a faster pool separation.

32 REFERENCES

References

[AM88] Abdel-Rahman T. S. and T. N. Mudge: Parallel branch and bound algorithms

on hypercube multiprocessors, in: Proceedings of the Third Conference on

Hypercube Concurrent Computers and Applications, Pasadena, CA (1988).

[Akl89] Akl S. G.: The Design and Analysis of Parallel Algorithms, Prentice-Hall

(1989)

[Bay72] Bayer R.: Symmetric binary b-trees: Data structure and maintenance algo-

rithms, Acta Informatica 1 (1972) 290{306.

[BT98] Bertsekas D. P. and J. N. Tsitsiklis: Parallel and distributed computation:

numerical methods, Prentice-Hall (1989).

[Can88] Cannon T. L.: Large-scale zero-one linear programming on distributed work-

stations, Ph.D. dissertation, Department of Operations Research and Applied

Statistics, George Mason University, Fairfax, VA (1988).

[CH90] Cannon T. L. and K. L. Ho�man: Large-scale 0-1 linear programming on

distributed workstations, Annals of Operations Research 22 (1990) 181{217.

[CW64] Clarke G. and J. W. Wright: Scheduling of vehicles from a central depot to

a number of delivery points, Operations Research 12 (1964) 568{581.

[CLR90] Cormen T. H., C. E. Leiserson, and R. L. Rivest: Introduction to algorithms,

MIT Press (1990) Cambridge.

[CP80] Crowder H. and M. W. Padberg: Solving large-scale symmetric traveling

salesman problems to optimality, Management Science 26 (1980) 495{509.

[dRT88] de Bruin A., A. H. G. Rinnooy Kan, and H.W. J. M. Trienekens: A simulation

tool for the performance evaluation of parallel branch and bound algorithms,

Mathematical Programming 42 (1988) 245{271.

[Eck93] Eckstein J.: Parallel Branch-and-Bound Algorithms for General Mixed Inte-

ger Programming on the CM-5, Thinking Machines Corporation, Technical

Report TMC-257 (1993).

[EH80] El-Dessouki O. I. and W. H. Huen: Distributed Enumeration on Between

Computers, IEEE Transactions on Computers C-29 9 (1980) 818{825.

[FM85] Finkel R. A. and U. Manber: DIB { A distributed implementation of back-

tracking, ACM Transactions on Programming Languages and Systems 9

(1987) 235{256.

[Fly72] Flynn M. J.: Some Computer Organizations and their E�ectiveness, IEEE

Transactions on Computers C-21 9 (1972) 948{960.

[GK92] Grama A. Y. and V. Kumar: Parallel Processing of Discrete Optimization

Problems: A Survey, University of Minnesota, Minneapolis, MN 55455 (1992)

REFERENCES 33

[GH91] Gr�otschel M. and O. Holland: Solution of large-scale symmetric traveling

salesman problems, Mathematical Programming 51 (1991) 141{202.

[GS78] Guibas L. J. and R. Sedgewick: A diochromatic framework for balanced trees,

in: Proceedings of the 19th annual symposium on foundations of computer

science, IEEE Computer Society (1978) 8{21.

[IFY79] Imai M., T. Fukumura, and Y. Yoshida: A parallelized branch-and-bound

algorithm: implementation and e�ciency, Systems, Computers, Controls 10,

3 (1979) 62{70.

[IYF79] Imai M., Y. Yoshida, and T. Fukumura: A parallel searching scheme for

multiprocessor systems and its application to combinatorial problems, in:

Proceedings of the 6th International Joint Conference on Arti�cial Intelligence

(1979) 416{418.

[JRR95] J�unger M., G. Reinelt, and G. Rinaldi: The Traveling Salesman Problem, in:

M. Ball, T. Magnanti, C. L. Monma, and G. Nemhauser (eds.): Handbooks in

Operations Research and Management Science, Vol. 7, North Holland (1995).

[JRT94] J�unger M., G. Reinelt, and S. Thienel: Provably Good Solutions for the

Traveling Salesman Problem, Zeitschrift f�ur Operations Research 40 (1994)

183{217.

[KZ88] Karp R. M. and Y. Zhang: A randomized parallel branch-and-bound proce-

dure, in: Proceedings of the ACM Annual Symposium on Theory of Com-

puting 20 (1988) 290{300.

[KL86] Kindervater G. A. P. and J. K. Lenstra: An introduction to parallelism in

combinatorial optimization, Discrete Applied Mathematics 14 (1986) 135{

156.

[KG92] Kumar V. and A. Gupta: Analyzing Scalability of Parallel Algorithms and

Architectures, revised version of November 1992, Technical Report TR 92R-

003, Department of Computer Science, University of Minnesota, Minneapolis,

MN (1991).

[KN87] Kumar V. and V. Nageshwara Rao: Parallel depth-�rst search. Part II. Analy-

sis, International Journal of Parallel Programming 16 (1987) 501{519.

[KRN88] Kumar V., K. Ramesh, and V. Nageshwara Rao: Parallel best-�rst search of

state-space graphs: a summary of results, in: Proceedings of the AAAI-88

Seventh National Conference on Arti�cial Intelligence, St. Paul, MN (1988).

[LSa84] Lai T.-H. and S. Sahni: Anomalies in parallel branch and bound algorithms,

Communications of the ACM 27, 6 (1984) 594{602.

[LSp85] Lai T.-H. and A. Sprague: Performance of parallel branch-and-bound algo-

rithms, IEEE Transactions on Computers, C-34 10 (1985) 962{964.

[LW84] Li G.-J. and B. W. Wah: Computational e�ciency of parallel approximate

branch-and-bound algorithms, in: Proceedings 1984 International Conference

on Parallel Processing (1984) 473{480.

34 REFERENCES

[LW86a] Li G.-J. and B.W.Wah: Coping with anomalies in parallel branch-and-bound

algorithms, IEEE Transactions on Computers, C-35 6 (1986) 568{573.

[LW86b] Li G.-J. and B. W. Wah: How good are parallel and ordered depth-�rst

searches?, in: Proceedings 1986 International Conference on Parallel Process-

ing (1986) 992{999.

[LW90] Li G.-J. and B. W. Wah: Computational e�ciency of parallel combinatorial

OR-tree searches, IEEE Transactions on Software Engineering 16 1 (1990)

13{31.

[LK73] Lin S. and B. W. Kernighan: An e�ective heuristic algorithm for the traveling

salesman problem, Operations Research 21 (1973) 498{516.

[LM89] L�uling R. and B. Monien: Two strategies for solving the vertex cover problem

on a transputer network, in: Proceedings of the Third International Workshop

on Distributed Algorithms, Nice (1989).

[LM92] L�uling R. and B. Monien: Load balancing for distributed branch and bound

algorithms, in: Proceedings of the International Parallel Processing Sympo-

sium, Beverly Hills, CA (1992)

[LMRT92] L�uling R., B. Monien, M. R�acke, and S. Tsch�oke: E�cient Parallelization of a

Branch & Bound Algorithm for the Symmetric Traveling Salesman Problem,

Department of Mathematics and Computer Science, University of Paderborn

(1992).

[MS90] Manzini G. and A. M. Somalvico: Probabilistic performance analysis of

heuristic search using parallel hash tables, in: Proceedings of the Interna-

tional Symposium on Arti�cial Intelligence and Mathematics, Ft. Lauderdale,

FL (1990).

[MRRT91] McKeown G. P., V. J. Rayward-Smith, S. A. Rush, and H. J. Turpin: Using

a transputer network to solve branch and bound problems, in: P. Welch, D.

Stiles, T. L. Kunii, A. Bakkers (eds.): Transputing '91, IOS Press Amsterdam

(1991).

[Moh82] Mohan J.: A study in parallel computation - the traveling salesman problem,

Technical Report CMU-CS-82-136, Computer Science Department, Carnegie-

Mellon University (1982).

[NK87] Nageshwara Rao V. and V. Kumar: Parallel depth-�rst search. Part I. Imple-

mentation, International Journal of Parallel Programming 16 (1987) 479{499.

[PRa82] Padberg M. W. and M. R. Rao: Odd minimum cut sets and b-matchings,

Mathematics of Operations Research 7 (1982) 67{80.

[PRi90] Padberg M. W. and G. Rinaldi: Facet identi�cation for the symmetric trav-

eling salesman polytope, Mathematical Programming 47 (1990) 219{257.

[PM92] Pekny J. F. and D. L. Miller: A parallel branch and bound algorithm for

solving large asymmetric traveling salesman problems, Mathematical Pro-

gramming 55 (1992) 17{33.

REFERENCES 35

[PNR88] Pruul E. A., G. L. Nemhauser, and R. A. Rushmeier: Branch-and-bound

and parallel computation: A historical note, Operations Research Letters 7,

2 (1988) 65{69.

[Qui94] Quinn M. J.: Parallel Computing: Theory and Practice,McGraw-Hill (1994).

[QD86] Quinn M. J. and N. Deo: An upper bound for the speedup of parallel best-

bound branch-and-bound algorithms, BIT 26, 1 (1986) 35{43.

[Ran90] Ranade A.: A Simpler Analysis of the Kharp-Zhang Parallel Branch-and-

Bound Method, Report UCB/CSD90/586, Computer Science Division, Uni-

versity of California, Berkeley, CA (1990).

[RRM93] Rayward-Smith V. J., S. A. Rush, and G. P. McKeown: E�ciency consid-

erations in the implementation of parallel branch-and-bound, Annals of the

Operations Research (1993)

[Rei91a] Reinelt G.: TSPLIB - A traveling salesman probllem library, ORSA Journal

on Computing 3 (1991) 376{384.

[Rei91b] Reinelt G.: TSPLIB - Version 1.2, Report No. 330, Schwerpunktprogramm

der Deutschen Forschungsgemeinschaft, Universit�at Augsburg (1991).

[Rei92] Reinelt G.: Fast heuristics for large geometric traveling salesman problems,

ORSA Journal on Computing 4 (1992) 206{217.

[Rou87] Roucairol C.: A parallel branch and bound algorithm for the quadratic as-

signment problem, Discrete Applied Mathematics 18 (1987) 211{225.

[Str93] Stroustrup B.: The C

++

programming language, second edition, AT&T Bell

Laboratories, Murray Hill, New Jersey (1993)

[Thi92] Thinking Machines Corporation: The Connection Machine CM-5, Technical

Summary, Cambridge, MA (1992)

[Thi94] Thinking Machines Corporation: CMMD Reference Manual, version 3.2,

Cambridge, MA (1994)

[Vor86] Vornberger O.: Implementing branch-and-bound in a ring of processors, in:

Proceedings of the CONPAR 86: Conference on Algorithms and Hardware for

Parallel Processing, Lecture Notes of Computer Science 237, Springer Verlag

(1986) 157{164.

[Vor87] Vornberger O.: Load Balancing on a Network of Transputers, Distributed

Algorithms 1987, Lecture Notes of Computer Science 312, Springer Verlag

(1987) 116{126.

[WM84] Wah B. W. and Y. W. E. Ma: MANIP { a multicomputer architecture

for solving combinatorial extremum-search problems, IEEE Transactions on

Computers C-33 5 (1984) 377{390.

