ANGEWANDTE MATHEMATTIIK UND
INFORMATIIK

UNIVERSITAT ZU KOLN

Report No. 95-189

The Complexity of the Falsifiability Problem
for Pure Implicational Formulas

by
P. Heusch

1995

Accepted for MFCS’95

Institut fir Informatik
Universitat zu Koln
Pohligstr. 1

D-50969 Koln

The Complexity of the Falsifiability Problem
for Pure Implicational Formulas

Peter Heusch!

Abstract

Since it is unlikely that any NP-complete problem will ever be
efficiently solvable, one is interested in identifying those special cases
that can be solved in polynomial time. We deal with the special
case of Boolean formulas where the logical implication — is the only
operator and any variable (except one) occurs at most twice. For these
formulas we show that an infinite hierarchy S; C S9--- exists such
that we can test any formula from S; for falsifiability in time O(ni),
where n is the number of variables in the formula. We describe an
algorithm that finds a falsifying assignment, if one exists. Furthermore
we show that the falsifiability problem for (J;2, S; is NP-complete by
reducing the SAT-Problem. In contrast to the hierarchy described by
Gallo and Scutella for Boolean formulas in CNF, where the test for
membership in the k-th level of the hierarchy needs time O(nk), our
hierarchy permits a linear time membership test. Finally we show
that S7 is neither a sub- nor a superset of some commonly known
classes of Boolean formulas, for which the SAT-Problem has linear
time complexity (Horn formulas, 2-SAT, nested satisfiability).

Subject classification: algorithms and data structures, logic in computer sci-
ence.

1 Introduction

The satisfiability problem (SAT) for Boolean formulas in conjunctive normal
form (CNF) was the first problem that was shown to be NP—complete, [1].
For this reason, its complexity has been the subject of quite a number of
studies. However, CNF-SAT shows a sort of threshold behaviour, yielding
the effect that for many input restrictions for which the problem is solvable in
polynomial time the problem becomes NP-complete even if the set of inputs
is only slightly extended.

1Universitét zu Kéln, Pohligstr.1, D-50969 Koln, email: heusch@informatik.uni-koeln.de, Fax: (02 21) 4 70 - 53 87

One example of such a class is the class of CNF—-formulas where every
variable may occur at most twice, for inputs from this class the SAT—problem
is solvable in linear time, if however three occurrences of a variable are allowed
in the input formulas, the satisfiability problem is NP—complete. There are
also classes (; of formulas where for any F' € C; the satisfiability problem is
solvable in time O(| F'|"), |F'| denoting the number of variables in the formula,
for example the classes C; where every formula in (; is satisfiable by setting
at most ¢ variables to true, but this classification is quite unsatisfactory in
the sense that the test whether a given F' belongs to some class (', may need
up to O(| F'|*) steps. Important classes showing this behaviour are the classes
I'; defined by Gallo and Scutella, [2].

We will present a new hierarchy S C Sy C --- with the property that
for every F' € S; the falsifiability can be solved in time O(|F|'), while the
test whether ' € S; can be solved in linear time. Furthermore, we will prove
that every SAT—problem is polynomially reducible to some problem in J; 5;,
hence the falsifiability problem for |J; S; is NP—complete.

The remaining part of this paper is organized in the following way: the
rest of this chapter contains the definitions needed, in chapter 2 we prepare
our main result while chapter 3 contains the main result. In the last chapter
we give a relationship between the class of formulas solvable in linear time
by our algorithm and other classes for which satisfiability is solvable in linear
time.

A Boolean formula £ = C7y A Cy A ... A C, in conjunctive normal form
(CNF) over n Variables wvy,...,v, is a conjunction of clauses Cy,...,C,,
where each clause C; is a disjunction of literals z;,, ..., z;,, a literal is either
stands for a variable (positive literals) or its complement (negative literals).
A Boolean formula is in pure implicational form (PIF), iff it contains only
positive literals and the only connective being used is the logical implication.
For any implication A — B we call A the implicant and B the consequence
of the implication. Since the implication is a nonassociative connective, we
define A — B — C to be read as A — (B — (). An assignment ¢ :
{v1,...,0,} = {true, false} satisfies a Boolean formula F, iff F' evaluates
to true when every variable v is replaced by #(v) and the usual evaluation
rules for Boolean operators are applied, ¢ falsifies F' iff F' evaluates to false.
A partial assignment is a function ¢ : {vy,...,v,} — {true, false,undef}, a

(partial) assignment ¢’ extends a partial assignment ¢, iff

t(v) £ undef = t'(v) = t(v).

An assignment ¢’ is called 1-extension of a partial assignment ¢, if ¢’ extends
t and t(v) = undef implies t'(v) = true.
For any Boolean formula F' = F; — F; and for any subformula £ of I
we define
0 if ' =F',
Di(F', F) = { L+ Dy(F', Fy) if F' lies in the implicant of F,
Di(F', F») if /' lies in the consequence of F'.

If F'is represented by a tree then D;(F’, F') denotes the number of left edges
we have to pass on the path from the root of £ to the root of F’. The set

B(F)={F'|F'"is subformula of F, D;(F", F) =0}

is called the backbone of F', those subformulas F” of F' that have D;(F', F') =
1 are called the backbone implicants of F'. The backbone of F' contains ex-
actly one subformula that is a variable, this variable is the rightmost variable
V,(F). The set of Boolean formulas in PIF where every variable except the
rightmost variable occurs at most twice is called 2-PIF. A backbone impli-
cant F' of F is called a critical subformula, w.r.t a partial assignment ¢, iff
t(V.(F")) = false. We will see that the number of critical subformulas plays
an important role in the analysis of the falsifying algorithm. If a subformula
I of I'is critical and F" is a backbone implicant of F’, we call I com-
pensating (w.r.t a partial assignment), if ¢ falsifies F”. This is due to the
fact that a formula F' in PIF can be satisfied by setting V,(F') to true or by
falsifying at least one of the backbone implicants, hence to falsify F', V,(F)
must be set to false and all backbone implicants have to be satisfied.

2 A hierarchy for pure implicational formu-
las

We will now define the formula subsets that subdivide 2-PIF and prove some
results about them as well as about 2-PIF itself. We define S; to contain
all those formulas F' in 2-PIF, such that V,(F') occurs at most ¢ times in F'.
The definition of these sets immediately implies the following lemma:

3

Lemma 1 For any Boolean formula F' in 2-PIF, the membership problem
whether F' belongs to S; can be determined in linear time.

Proof Obvious.

Another interesting point that a hierarchy must fulfill to be interesting is
that it must also be a real hierarchy, i.e. that it must not collapse beyond a
certain class, as in the case of CNF-SAT, where an increase of the number
k of literals allowed in one clause does not change the complexity of the
problem it & > 3. The following theorem based on a theorem by Kleine
B”uning et al. given in [3], however, gives a strong hint that this is indeed
the case with the hierarchy induced by the S;:

Theorem 1 The falsifiability problem for formulas in 2-PIF is NP-complete.

Proof We reduce the wellknown NP—complete SAT—problem for Boolean
formulas in CNF where every variable occurs at most 3 times to the falsi-
fiability problem for Boolean formulas in PIF. Let F' be such a formula in
CNF. W.l.o.g. we may assume that every variable with 3 occurrences occurs
exact once positive and twice negative in F'. Let a be such a variable and let
C', Cy be the clauses such that ¢y = —a VvV C] and Cy = —a V C}. We then
introduce new variables @', a” and replace Cy, Cy by —a V (¢’ A "), =a' Vv C]
and —a” V C). By repeating this process for every variable occurring three
times in F' we get a new formula F’ s.t. every variable is contained at most
twice in F”.

The next step is to eliminate the logical operations A, V and —. Without
changing the number of variables this can be achieved by substitution of ¢ —
false for —a, (a — false) — bfor a Vb and (¢« — (b — false)) — false for
a A 'b. At this point we may apply some simplification rules, e.g. substituting
a for a — false — false. To eliminate the logical constant false, we replace
every occurrence of false by a new variable z, which will forced to be set to
false later on.

Let F" be the result of these transformations. Clearly, £ contains every
variable at most twice and is satisfiable by every assignment that satisfies the
original formula F' and sets z to false, thereby setting those “variables” to
false, where z was replaced for the constant value false. This immediately
results in the formula /' — =z being falsifiable iff F' was satisfiable, hence
the falsifiability problem for Boolean formulas in 2-PIF is NP-complete.O

3 Main Theorem

Theorem 1 showed that every NP-complete problem must be contained in
one of the set 5;. In the next step we show that our hierarchy is indeed
a polynomial hierarchy, i.e. that the falsifiability problem is polynomially
solvable for every fixed 5;.

We will formulate this by proving the runtime bound and the correctness
for the following algorithm PIF _solve, initially called with the parameters F'
and (.

procedure PIF solve(F:PIF,Z:set);

begin
let F=F — ... F,—...= F, — =z
7z =7ZU{z}

if Zn; Vo(F;) =0 then begin
print solution Z and exit
end
find the smallest j such that V,(F))e€ Z
let F]' =G —...Gy— 72
for 1=1 to h do begin
PIF solve(F) — ...Fj_y = Fj41 — ... = G, 7)
end
end
This can also be seen as a graph manipulation process: if the formula is
interpreted as a tree where the inner nodes correspond to operators and the
outer nodes correspond to variables, then we can falsify the formula from
figure 1 iff for at least one ¢ the formula given in figure 2 is falsifiable.

F 1
F />
. -
i1 Fjﬂ Fiy
Figure 1 Figure 2

As we mentioned, the number of critical subformulas plays an important role
for the runtime of the algorithm. The following lemma gives an upper bound
for this number:

Lemma 2 Let F' be a formula in 2-PIF containing ¢« occurrences of V,(F').
Then the number of critical formulas in any recursive call of PIF _solve is
bounded above by ¢ — 1.

Proof The proposition is surely true when PIF _solve starts, since there may
be at most ¢ — 1 backbone implicants whose rightmost variable is zg := V,(F').
If, however, we see the process of finding critical and compensating subfor-
mulas as a variable renaming process—instead of storing those variables in
7 that we have decided to be assigned the value false, we could simply
rename them to zg—then we see that the number of occurrences of zy can
never go beyond 2, since whenever two occurrences of zy are put into I by
selecting a compensating subformula, we delete two other occurrences of z
in the formula.q

It remains to prove the correctness of PIF solve. This is expressed in the
following lemma:

Lemma 3 Let F' be a formula in 2-PII". Then I' is falsifiable iff one of the

following conditions holds:
1. F doesn’t contain any critical subformulas.

2. An assignment exists such that for every critical subformula F' of F
there is a compensating subformula F".

Proof If F' does not contain any critical subformulas, then it can easily be
falsified by assigning false to V,(F') and assigning true to all other variables,
this satisfies all backbone implicants, hence F'is falsified. Assume now that /'
contains critical subformulas. If we can extend the partial assignment implied
by Z in such a way that for every critical subformula formula a compensating
subformula exists, we get an assignment where for every critical subformula
at least one of its backbone implicants is assigned the value false, i.e. the
critical subformula is satisfied even if its rightmost variable was assigned the
value false. If we cannot extend the partial assignment given by Z in such a
way, then for every assignment at least one critical subformula F” exists such

that no backbone implicant of F' is compensating, hence every assignment
to the variables of F' will falsify # and therefore satisfy F.0

We note that for any formula F'=Fy — F;_y = F; = Fij4 - = F, — =
in 2-PIF the test whether a certain subformula F’ is compensating for a
critical subformula F} is the same as the test whether after removal of [}
from F' there exists an assignment that falsifies F' and F’ at the same time,
this can also be achieved by testing F'=Fy — F;_y — Fj41--- — F, = F'
for falsifiability under the condition that z = false.

Now we state our main result, whose correctness, after the preceeding
lemmas is almost obvious:

Theorem 2 Let F be a formula from 2-PIF with n variables and 1 > 2
occurrences of V,(F'), then PIF_solve finds a falsifying assignment for F' iff
one exists, furthermore the runtime of PIF solve is bounded by O(in'~!).

Proof Since there are no more than 2 — 1 critical formulas in F' at the same
time, there are at most Y4}, (Z) = O(n'~!) ways to distribute them amongst
all subformulas. To get a runtime bound, we note that at most 2: occurrences
of variables in Z are contained in I, hence the test whether ZNU; V,(F;) = 0
and the selection of j such that V,(F}) € Z can be carried out in time O(7),
all other steps take constant time, hence we get a runtime of O(in'~!). The
correctness follows from the fact that if no critical subformula is found, then
PIF solve prints a solution, else it enumerates all possible ways to find a

compensating subformula for ;.00

4 Relationships to other input classes

Since CNF-SAT is NP—complete, a number of input restrictions have been
developed that permit to test a formula for satisfiability in polynomial time.
The most common of these restrictions are restrictions for formulas in CNF,
they are defined as follows:

o 2-SAT: Clauses may contain at most 2 literals.
e Horn formulas: Clauses may contain at most 1 positive literal.

o Nested SAT: An ordering of the clauses must exist with the property
that if a clause C' preceeds another clause C” then no variable from '

except the first and the last (w.r.t to an ordering of the variables) may
be contained in C’.

e READ-2: No variable may occur more than twice in a formula.

It is well known that for inputs from these classes the satisfiability problem
is solvable in time proportional to the length of the formula, see [4, 3]. The
following remark formalizes the relationship between S; and these classes:

Remark 1 For any one of the classes 2-SAT, HORN, nested SAT and
READ-2 there is a boolean function function whose complement can be
expressed in Sy but that cannot be expressed in 2-SA'T, HORN, nested SAT
and READ-2, respectively.

References

[1] S. Cook. The Complexity of Theorem Proving Procedures. Proc. 3rd
Ann. ACM Symp. on Theory of Computing, pages 151-158, 1971.

[2] G. Gallo and M.G. Scutella. Polynomially Solvable Satisfiability Prob-
lems. Information Processing Letters, 29(5):221-227, 1988.

[3] H. Kleine Biining and T. Lettman. Aussagenlogik: Deduktion und Algo-
rithmen. B. G. Teubner, Stuttgart, 1994.

[4] D. E. Knuth. Nested satisfiability. Acta Informatica, 28:1-6, 1990.

