
ANGEWANDTE MATHEMATIK UND

INFORMATIK

UNIVERSIT

�

AT ZU K

�

OLN

Report No. 95{189

The Complexity of the Falsi�ability Problem

for Pure Implicational Formulas

by

P. Heusch

1995

Accepted for MFCS'95

Institut f�ur Informatik

Universit�at zu K�oln

Pohligstr. 1

D{50969 K�oln

The Complexity of the Falsi�ability Problem

for Pure Implicational Formulas

Peter Heusch

1

Abstract

Since it is unlikely that any NP-complete problem will ever be

e�ciently solvable, one is interested in identifying those special cases

that can be solved in polynomial time. We deal with the special

case of Boolean formulas where the logical implication ! is the only

operator and any variable (except one) occurs at most twice. For these

formulas we show that an in�nite hierarchy S

1

� S

2

� � � exists such

that we can test any formula from S

i

for falsi�ability in time O(n

i

),

where n is the number of variables in the formula. We describe an

algorithm that �nds a falsifying assignment, if one exists. Furthermore

we show that the falsi�ability problem for

S

1

i=1

S

i

is NP-complete by

reducing the SAT-Problem. In contrast to the hierarchy described by

Gallo and Scutella for Boolean formulas in CNF, where the test for

membership in the k-th level of the hierarchy needs time O(n

k

), our

hierarchy permits a linear time membership test. Finally we show

that S

1

is neither a sub- nor a superset of some commonly known

classes of Boolean formulas, for which the SAT-Problem has linear

time complexity (Horn formulas, 2-SAT, nested satis�ability).

Subject classi�cation: algorithms and data structures, logic in computer sci-

ence.

1 Introduction

The satis�ability problem (SAT) for Boolean formulas in conjunctive normal

form (CNF) was the �rst problem that was shown to be NP{complete, [1].

For this reason, its complexity has been the subject of quite a number of

studies. However, CNF{SAT shows a sort of threshold behaviour, yielding

the e�ect that for many input restrictions for which the problem is solvable in

polynomial time the problem becomes NP{complete even if the set of inputs

is only slightly extended.

1

Universit�at zu K�oln, Pohligstr.1, D{50969 K�oln, email: heusch@informatik.uni-koeln.de, Fax: (02 21) 4 70 - 53 87

One example of such a class is the class of CNF{formulas where every

variable may occur at most twice, for inputs from this class the SAT{problem

is solvable in linear time, if however three occurrences of a variable are allowed

in the input formulas, the satis�ability problem is NP{complete. There are

also classes C

i

of formulas where for any F 2 C

i

the satis�ability problem is

solvable in timeO(jF j

i

), jF j denoting the number of variables in the formula,

for example the classes C

i

where every formula in C

i

is satis�able by setting

at most i variables to true, but this classi�cation is quite unsatisfactory in

the sense that the test whether a given F belongs to some class C

k

may need

up to O(jF j

k

) steps. Important classes showing this behaviour are the classes

�

i

de�ned by Gallo and Scutella, [2].

We will present a new hierarchy S

1

� S

2

� � � � with the property that

for every F 2 S

i

the falsi�ability can be solved in time O(jF j

i

), while the

test whether F 2 S

i

can be solved in linear time. Furthermore, we will prove

that every SAT{problem is polynomially reducible to some problem in

S

i

S

i

,

hence the falsi�ability problem for

S

i

S

i

is NP{complete.

The remaining part of this paper is organized in the following way: the

rest of this chapter contains the de�nitions needed, in chapter 2 we prepare

our main result while chapter 3 contains the main result. In the last chapter

we give a relationship between the class of formulas solvable in linear time

by our algorithm and other classes for which satis�ability is solvable in linear

time.

A Boolean formula F = C

1

^ C

2

^ : : : ^ C

r

in conjunctive normal form

(CNF) over n Variables v

1

; : : : ; v

n

is a conjunction of clauses C

1

; : : : ; C

r

,

where each clause C

l

is a disjunction of literals x

i

1

; : : : ; x

i

k

, a literal is either

stands for a variable (positive literals) or its complement (negative literals).

A Boolean formula is in pure implicational form (PIF), i� it contains only

positive literals and the only connective being used is the logical implication.

For any implication A! B we call A the implicant and B the consequence

of the implication. Since the implication is a nonassociative connective, we

de�ne A ! B ! C to be read as A ! (B ! C). An assignment t :

fv

1

; : : : ; v

n

g 7! ftrue; falseg satis�es a Boolean formula F , i� F evaluates

to true when every variable v is replaced by t(v) and the usual evaluation

rules for Boolean operators are applied, t falsi�es F i� F evaluates to false.

A partial assignment is a function t : fv

1

; : : : ; v

n

g 7! ftrue; false; undefg, a

2

(partial) assignment t

0

extends a partial assignment t, i�

t(v) 6= undef) t

0

(v) = t(v):

An assignment t

0

is called 1{extension of a partial assignment t, if t

0

extends

t and t(v) = undef implies t

0

(v) = true.

For any Boolean formula F = F

1

! F

2

and for any subformula F

0

of F

we de�ne

D

l

(F

0

; F) =

8

>

<

>

:

0 if F = F

0

,

1 +D

l

(F

0

; F

1

) if F

0

lies in the implicant of F ,

D

l

(F

0

; F

2

) if F

0

lies in the consequence of F .

If F is represented by a tree then D

l

(F

0

; F) denotes the number of left edges

we have to pass on the path from the root of F to the root of F

0

. The set

B(F) = fF

0

jF

0

is subformula of F;D

l

(F

0

; F) = 0g

is called the backbone of F , those subformulas F

0

of F that have D

l

(F

0

; F) =

1 are called the backbone implicants of F . The backbone of F contains ex-

actly one subformula that is a variable, this variable is the rightmost variable

V

r

(F). The set of Boolean formulas in PIF where every variable except the

rightmost variable occurs at most twice is called 2{PIF. A backbone impli-

cant F

0

of F is called a critical subformula, w.r.t a partial assignment t, i�

t(V

r

(F

0

)) = false. We will see that the number of critical subformulas plays

an important role in the analysis of the falsifying algorithm. If a subformula

F

0

of F is critical and F

00

is a backbone implicant of F

0

, we call F

00

com-

pensating (w.r.t a partial assignment t), if t falsi�es F

00

. This is due to the

fact that a formula F in PIF can be satis�ed by setting V

r

(F) to true or by

falsifying at least one of the backbone implicants, hence to falsify F , V

r

(F)

must be set to false and all backbone implicants have to be satis�ed.

2 A hierarchy for pure implicational formu-

las

We will now de�ne the formula subsets that subdivide 2{PIF and prove some

results about them as well as about 2{PIF itself. We de�ne S

i

to contain

all those formulas F in 2{PIF, such that V

r

(F) occurs at most i times in F .

The de�nition of these sets immediately implies the following lemma:

3

Lemma 1 For any Boolean formula F in 2{PIF, the membership problem

whether F belongs to S

i

can be determined in linear time.

Proof Obvious.

2

Another interesting point that a hierarchy must ful�ll to be interesting is

that it must also be a real hierarchy, i.e. that it must not collapse beyond a

certain class, as in the case of CNF{SAT, where an increase of the number

k of literals allowed in one clause does not change the complexity of the

problem if k � 3. The following theorem based on a theorem by Kleine

B"uning et al. given in [3], however, gives a strong hint that this is indeed

the case with the hierarchy induced by the S

i

:

Theorem 1 The falsi�ability problem for formulas in 2{PIF is NP{complete.

Proof We reduce the wellknown NP{complete SAT{problem for Boolean

formulas in CNF where every variable occurs at most 3 times to the falsi-

�ability problem for Boolean formulas in PIF. Let F be such a formula in

CNF. W.l.o.g. we may assume that every variable with 3 occurrences occurs

exact once positive and twice negative in F . Let a be such a variable and let

C

1

, C

2

be the clauses such that C

1

= :a _ C

0

1

and C

2

= :a _ C

0

2

. We then

introduce new variables a

0

, a

00

and replace C

1

, C

2

by :a_ (a

0

^ a

00

), :a

0

_C

0

1

and :a

00

_ C

0

2

. By repeating this process for every variable occurring three

times in F we get a new formula F

0

s.t. every variable is contained at most

twice in F

0

.

The next step is to eliminate the logical operations ^, _ and :. Without

changing the number of variables this can be achieved by substitution of a!

false for :a, (a! false)! b for a _ b and (a! (b! false))! false for

a^ b. At this point we may apply some simpli�cation rules, e.g. substituting

a for a! false! false. To eliminate the logical constant false, we replace

every occurrence of false by a new variable z, which will forced to be set to

false later on.

Let F

00

be the result of these transformations. Clearly, F

00

contains every

variable at most twice and is satis�able by every assignment that satis�es the

original formula F and sets z to false, thereby setting those \variables" to

false, where z was replaced for the constant value false. This immediately

results in the formula F

00

! z being falsi�able i� F was satis�able, hence

the falsi�ability problem for Boolean formulas in 2{PIF is NP{complete.

2

4

3 Main Theorem

Theorem 1 showed that every NP{complete problem must be contained in

one of the set S

i

. In the next step we show that our hierarchy is indeed

a polynomial hierarchy, i.e. that the falsi�ability problem is polynomially

solvable for every �xed S

i

.

We will formulate this by proving the runtime bound and the correctness

for the following algorithm PIF solve, initially called with the parameters F

and ;.

procedure PIF solve(F:PIF,Z:set);

begin

let F = F

1

! : : :F

j

! : : :! F

k

! z

Z = Z [fzg

if Z \

S

i

V

r

(F

i

) = ; then begin

print solution Z and exit

end

find the smallest j such that V

r

(F

j

) 2 Z

let F

j

= G

1

! : : :G

h

! z

0

for l=1 to h do begin

PIF solve(F

1

! : : :F

j�1

! F

j+1

! : : :! G

l

,Z)

end

end

This can also be seen as a graph manipulation process: if the formula is

interpreted as a tree where the inner nodes correspond to operators and the

outer nodes correspond to variables, then we can falsify the formula from

�gure 1 i� for at least one i the formula given in �gure 2 is falsi�able.

z

F
1

F
F

F

2

3

F

k

F’

F’

F’ z

1

2

3

j F’
i

F
1

F
F

2

3

F
F

j-1

j+1

Figure 1 Figure 2

5

As we mentioned, the number of critical subformulas plays an important role

for the runtime of the algorithm. The following lemma gives an upper bound

for this number:

Lemma 2 Let F be a formula in 2{PIF containing i occurrences of V

r

(F).

Then the number of critical formulas in any recursive call of PIF solve is

bounded above by i� 1.

Proof The proposition is surely true when PIF solve starts, since there may

be at most i�1 backbone implicants whose rightmost variable is z

0

:= V

r

(F).

If, however, we see the process of �nding critical and compensating subfor-

mulas as a variable renaming process|instead of storing those variables in

Z that we have decided to be assigned the value false, we could simply

rename them to z

0

|then we see that the number of occurrences of z

0

can

never go beyond i, since whenever two occurrences of z

0

are put into F by

selecting a compensating subformula, we delete two other occurrences of z

0

in the formula.

2

It remains to prove the correctness of PIF solve. This is expressed in the

following lemma:

Lemma 3 Let F be a formula in 2{PIF. Then F is falsi�able i� one of the

following conditions holds:

1. F doesn't contain any critical subformulas.

2. An assignment exists such that for every critical subformula F

0

of F

there is a compensating subformula F

00

.

Proof If F does not contain any critical subformulas, then it can easily be

falsi�ed by assigning false to V

r

(F) and assigning true to all other variables,

this satis�es all backbone implicants, hence F is falsi�ed. Assume now that F

contains critical subformulas. If we can extend the partial assignment implied

by Z in such a way that for every critical subformula formula a compensating

subformula exists, we get an assignment where for every critical subformula

at least one of its backbone implicants is assigned the value false, i.e. the

critical subformula is satis�ed even if its rightmost variable was assigned the

value false. If we cannot extend the partial assignment given by Z in such a

way, then for every assignment at least one critical subformula F

0

exists such

6

that no backbone implicant of F

0

is compensating, hence every assignment

to the variables of F will falsify F

0

and therefore satisfy F .

2

We note that for any formula F = F

1

! F

j�1

! F

j

! F

j+1

� � � ! F

r

! z

in 2{PIF the test whether a certain subformula F

0

is compensating for a

critical subformula F

j

is the same as the test whether after removal of F

j

from F there exists an assignment that falsi�es F and F

0

at the same time,

this can also be achieved by testing F = F

1

! F

j�1

! F

j+1

� � � ! F

r

! F

0

for falsi�ability under the condition that z = false.

Now we state our main result, whose correctness, after the preceeding

lemmas is almost obvious:

Theorem 2 Let F be a formula from 2{PIF with n variables and i � 2

occurrences of V

r

(F), then PIF solve �nds a falsifying assignment for F i�

one exists, furthermore the runtime of PIF solve is bounded by O(in

i�1

).

Proof Since there are no more than i� 1 critical formulas in F at the same

time, there are at most

P

i�1

k=0

�

n

k

�

= O(n

i�1

) ways to distribute them amongst

all subformulas. To get a runtime bound, we note that at most 2i occurrences

of variables in Z are contained in F , hence the test whether Z\

S

i

V

r

(F

i

) = ;

and the selection of j such that V

r

(F

j

) 2 Z can be carried out in time O(i),

all other steps take constant time, hence we get a runtime of O(in

i�1

). The

correctness follows from the fact that if no critical subformula is found, then

PIF solve prints a solution, else it enumerates all possible ways to �nd a

compensating subformula for F

j

.

2

4 Relationships to other input classes

Since CNF{SAT is NP{complete, a number of input restrictions have been

developed that permit to test a formula for satis�ability in polynomial time.

The most common of these restrictions are restrictions for formulas in CNF,

they are de�ned as follows:

� 2{SAT: Clauses may contain at most 2 literals.

� Horn formulas: Clauses may contain at most 1 positive literal.

� Nested SAT: An ordering of the clauses must exist with the property

that if a clause C preceeds another clause C

0

then no variable from C

7

except the �rst and the last (w.r.t to an ordering of the variables) may

be contained in C

0

.

� READ{2: No variable may occur more than twice in a formula.

It is well known that for inputs from these classes the satis�ability problem

is solvable in time proportional to the length of the formula, see [4, 3]. The

following remark formalizes the relationship between S

2

and these classes:

Remark 1 For any one of the classes 2{SAT, HORN, nested SAT and

READ{2 there is a boolean function function whose complement can be

expressed in S

2

but that cannot be expressed in 2{SAT, HORN, nested SAT

and READ{2, respectively.

References

[1] S. Cook. The Complexity of Theorem Proving Procedures. Proc. 3rd

Ann. ACM Symp. on Theory of Computing, pages 151{158, 1971.

[2] G. Gallo and M.G. Scutella. Polynomially Solvable Satis�ability Prob-

lems. Information Processing Letters, 29(5):221{227, 1988.

[3] H. Kleine B�uning and T. Lettman. Aussagenlogik: Deduktion und Algo-

rithmen. B. G. Teubner, Stuttgart, 1994.

[4] D. E. Knuth. Nested satis�ability. Acta Informatica, 28:1{6, 1990.

8

