
Computing Delaunay Triangulations in

Manhattan and Maximum Metric

Michael J�unger Volker Kaibel Stefan Thienel

Institut f�ur Informatik

Universit�at zu K�oln

January 9, 1995

Abstract

We modify the incremental algorithm for computing Voronoi diagrams in the

Euclidean metric proposed by Ohya, Iri and Murota [6] in order to obtain an

algorithm for computing Voronoi diagrams (resp. Delaunay triangulations) in Man-

hattan and Maximum metric, that is rather simply to implement. We generalize

the notions of \Voronoi diagram" and \Delaunay triangulation" in such a way that

these structures still can be computed by an algorithm very similar to the one of

Ohya, Iri and Murota, and that they contain { as special cases { analogons

to the Euclidean Voronoi diagram (Delaunay triangulation) in the Manhattan and

Maximum metric. In this paper, we give a detailed description of the algorithm,

that makes it (rather) easy to write a computer program that computes Delaunay

triangulations for Manhattan or Maximum metric.

Keywords: Delaunay triangulation, Voronoi diagram, Manhattan metric, Max-

imum metric

1 Introduction

Voronoi diagrams are structures like those shown in Figure 1. The dots are called \genera-

tors", and the Voronoi diagram consists of a set of regions, each one containing exactly one

generator, having the property that for all the points inside such a region the generator in

that region is a nearest neighbour among all the generators. If we measure distances by

the Euclidean metric, the Voronoi diagram looks like Figure 1(a), if we choose Manhattan

metric or Maximummetric, the Voronoi diagrams have shapes like shown in Figures 1(b)

resp. 1(c). If we consider these diagrams as (embedded) planar graphs we can construct

the dual graphs, and these ones are { roughly spoken { the Delaunay triangulations of the

generator set (according to the respective metric). Such Delaunay triangulations contain

1

(a) Euclidean metric (b) Manhattan metric (c) Maximum metric

Figure 1: Voronoi diagrams of bier127 out of the TSPLIB for three metrics

much information about the neighbourhood structure of the generators, and therefore,

they are useful tools in many algorithms (e.g., computing minimum spanning trees, k-

nearest-neighbour graphs, etc.).

In case of the Euclidean metric, one may de�ne those regions (called \Voronoi regions")

simply as the set of all points being closer to the respective generator than to any other

one. In case of the Manhattan metric (and also for the Maximum metric) this is not

practicable anymore. The occuring problems are due to the fact that the set of all points

having equal distance to two distinct generators p

1

and p

2

in the Euclidean metric is

simply the perpendicular bisector of the line segment joining p

1

and p

2

, while it has the

following shape in case of the Manhattan metric (and a similar one in the Maximum

metric), and therefore, is no longer adequate to be used as \separator" of the Voronoi

regions.

p
1

p
2

Hence, in case of the Manhattan metric, one cannot longer base all notions and algorithmic

decisions just on the metric.

In this paper, we propose an abstract algorithmic frame for computing Delaunay triangu-

lations (from which one can also compute the corresponding Voronoi diagrams) that uses

an incremental method. We describe how to �ll this frame in order to obtain a \Voronoi

diagram" with respect to the Manhattan metric. It will turn out that computing Delau-

nay triangulations in the Maximum metric can easily be reduced to the computation in

the Manhattan metric. How to use the frame in order to derive an (numerical stable)

algorithm for the Euclidean metric is described in J

�

unger, Kaibel and Thienel [2].

2

The aim of this paper is to present a complete detailed description of the algorithm such

that it is possible to write a computer program for computing Delaunay triangulations in

Manhattan metric (and Maximummetric) without many di�culties. We decided to focus

on this algorithmical aspect rather than on the theoretical one. Therefore, we do not give

proofs for most of our claims, since otherwise, without shortening of the algorithmical

part, the extent of the paper would have grown over the acceptable limit. For a complete

proof of the correctness of the algorithm we refer to Kaibel [3].

2 The Abstract Algorithmic Frame

In order to derive an abstract algorithmic frame for the computation of Voronoi diagrams

(resp. Delaunay triangulations) in various metrics, we �rst develop an abstract de�nition

of these objects inspired by two goals. First, we want the abstract objects to be the

well known Voronoi diagrams (resp. Delaunay triangulations) in the special case of the

Euclidean metric, and second, we want to stay able to compute these structures by a

re�ned version of the incremental algorithm proposed by Ohya, Iri and Murota [6].

The basic concept of our abstract formulation is the notion of a bisector { de�ned inde-

pendently from the notion of metric. This approach is similar to that of Klein [4] and

Klein, Mehlhorn and Meiser [5]. The di�erence of their and our ways of de�ning

the abstract Voronoi diagram is due to the reason that we intend to use the \simple"

incremental algorithm for its computation.

Let us stipulate some notations. Let � � fc : R �! R j c Jordan curveg the set

of all Jordan curves satisfying lim

t!1

kc(t)k = lim

t!�1

kc(t)k = 1. We denote the

set of supports of such curves by � := fc(R) j c 2 �g. Hence, each C 2 � divides

the a�ne plane R

2

into two regions G

1

and G

2

, such that R

2

= G

1

[C [G

2

and

G

1

\G

2

= G

1

\C = G

2

\C = ; hold. By � := f(t; t) j t 2 Rg we denote the diagonal of

R

2

. For a subset A � R

2

we denote by @A its boundary and by A its closure, both with

respect to the canonical (norm-induced) topology on R

2

.

We come to the central de�nition.

De�nition 2.1 A map b : (R

2

�R

2

) n� �! � is called a \bisector function" if for any

three pairwise distinct points p

1

; p

2

; p

3

2 R

2

the following �ve conditions are valid:

(i) b(p

1

; p

2

) = b(p

2

; p

1

)

(Symmetry)

(ii) b(p

1

; p

2

) divides R

2

into two regions G(p

1

; p

2

) and G(p

2

; p

1

) satisfying p

1

2

G(p

1

; p

2

) and p

2

2 G(p

2

; p

1

).

(In particular, we have p

1

; p

2

62 b(p

1

; p

2

).)

(iii) b(p

1

; p

2

) [b(p

1

; p

3

) divides the plane R

2

into not bounded regions.

(b(p

1

; p

2

) and b(p

1

; p

3

) shall have a connected intersection.)

3

(iv) jb(p

1

; p

2

) \ b(p

2

; p

3

) \ b(p

3

; p

1

)j � 1

(This property will enable us to give an adequate de�nition of a \Voronoi point".)

(v) p 2 G(p

1

; p

2

); G(p

2

; p

3

)) p 2 G(p

1

; p

3

)

(This transitivity condition is a generalization of the relation \is closer than".)

If b is any bisector function, b(p

1

; p

2

) is called the \bisector of p

1

and p

2

".

One readily sees that especially the map de�ned via the perpendicular bisectors of two

points (yielding to the usual Euclidean Voronoi diagram) satis�es the requirements de-

manded in the above de�nition.

Now, we de�ne a number of notions known in connection with Euclidean Voronoi dia-

grams.

De�nition 2.2 Let p

1

; p

2

; p

3

2 R

2

be three pairwise distinct points in R

2

, and let b be

a bisector function. If b(p

1

; p

2

) \ b(p

2

; p

3

) \ b(p

3

; p

1

) 6= ; holds, the (by part (iv) of the

preceding de�nition uniquely determined) point vp(p

1

; p

2

; p

3

) 2 R

2

with fvp(p

1

; p

2

; p

3

)g =

b(p

1

; p

2

) \ b(p

2

; p

3

) \ b(p

3

; p

1

) is called the \Voronoi point" of p

1

; p

2

and p

3

.

De�nition 2.3 Let
 = fg

1

; : : : ; g

n

g � R

2

be a �nite subset of R

2

.

(i) For all g 2
 we call vr(g) := vr

(g) :=

T

h2
nfgg

G(g; h) the \Voronoi region" of g.

(ii) We call vd(
) :=

S

g2

@vr(g) the \Voronoi diagram" of
.

(iii) For all g; h 2
 (g 6= h) ve(g; h) := ve

(g; h) := vr(g)\vr(h) is called the \Voronoi

edge" of g and h.

For the rest of the paper, let
 = fg

1

; : : : ; g

n

g � R

2

be a set of \generators" and b any

bisector function.

By exploiting the features of a bisector function, one can show the following �ve properties:

(i) vr(g) is a simply connected region for any g 2 R

2

.

(ii) @vr(g) is a Jordan curve for any g 2 R

2

.

(iii) ve(g; h) is connected for all g; h 2
 (g 6= h).

(iv) The closed hulls of all Voronoi regions cover the whole plane, i.e, R

2

=

S

g2

vr(g).

(v) The cover in (iv) is \nearly a partition" of the plane, more precisely we have vr(g)\

vr(h) = ; for all g; h 2
.

4

These �ve facts indicate that vd(
) has a shape as shown in Figure 2, where each of the

regions is the Voronoi region of the (unique) generator it contains.

The incremental algorithm we will describe later makes essential use of the (intuitively

distinguished) \branching points" in the Voronoi diagram. The following proposition can

be proved by showing that ve(g; h) � b(g; h) holds for any pair g; h 2
 (g 6= h).

Proposition 2.4 Let g; h; f 2
 be pairwise distinct, and let vr(g)\vr(h)\vr(f) = fsg.

Then s = vp(g; h; f) holds.

Suppose, we know that three Voronoi regions touch each other in one of those branching

points. Then the proposition provides the possibility to determine the Voronoi point of

the three involved generators just by examining the bisectors generated by these three

generators.

Next, we want to derive from our notion of a Voronoi diagram the notion of a \Delaunay

triangulation".

De�nition 2.5 The \Pre-Delaunay graph" pd := pd(
) := (
; E) of
 is the graph

de�ned by (g; h) 2 E , jve(g; h)j > 1.

Note that (due to the fact that the Voronoi regions are regions, and therefore path con-

nected) vd(
) induces an embedding of the planar graph pd(
). According to this embed-

ding, the branching points in vd(
) correspond to the inner faces of pd(
). Now suppose

that a branching point in vd(
) has \degree" greater than three. Then the corresponding

face in pd(
) is no triangle. This is the reason, why people often assume the generators

to be in general position, i.e., with respect to the Euclidean metric, no four of them lying

on a common circle; an assumption that is unlikely to hold for practical instances. A

di�culty arising from the occurrence of such faces (being no triangles) in a Delaunay

triangulation is that it makes the incremental algorithm more complicated.

De�nition 2.6 A \Delaunay triangulation" dt = dt(
) of
 is a plane extension of

pd(
), where the outer face was not changed, and all inner faces are triangles.

5

Any Delaunay triangulation determines in a unique way a Voronoi diagram but the

converse is not true. When the bisectors are the perpendicular bisectors (as for the

Euclidean metric), it follows from the convexity of the Voronoi regions that any Delaunay

triangulation may be embedded straight line, i.e. using straight line segments for the

edges. Moreover, it is possible to show this also for the bisectors that we will de�ne for

the Manhattan metric in the following section, although they do not give rise to convex

Voronoi regions.

For the sequel, let dt be a Delaunay triangulation of
 and vd the corresponding Voronoi

diagram. Proposition 2.4 leads to the observation that every triangle in dt represents the

Voronoi point of the three generators de�ning that triangle.

De�nition 2.7 We say, such a Voronoi point belonging to a triangle of the Delaunay

triangulation dt is \active" in dt.

Now we are able to describe the algorithmic frame. In our exposition, we will use both

the notions Voronoi diagram and Delaunay triangulation, always keeping in mind their

relationship established above. The algorithm is based on a combination of the methods

proposed by Ohya, Iri and Murota [6] and Sugihara [8].

The incremental step is much easier if the newly arising Voronoi region is known to be

bounded. To guarantee this for all the incremental steps, we initially determine a set

0

of dummy generators having the property that for all g 2
 the Voronoi region vr

0

[fgg

(g)

in the Voronoi diagram of

0

[fgg is bounded. Then, we start the computation by deter-

mining a Delaunay triangulation of

0

(this shall be easy if

0

is chosen appropriately),

and afterwards we add successively all the generators of
 by the incremental step de-

scribed below. After all the generators are inserted, we remove the dummies, and adjust

the Delaunay triangulation. Choosing and removing of the generators are dependent on

the bisector function, of course.

We stipulate the following notations. Let
 = fg

1

; : : : ; g

n

g be a set of generators. For

any j 2 f1; : : : ; ng we set

j

:= fg

1

; : : : ; g

j

g, we denote the Voronoi diagram of

j

by vd

j

,

and we write vr

j

(g) for the Voronoi region of any g 2

j

in vd

j

.

The Figure 2 illustrates the insertion step of the incremental algorithm.

Figure 2: The insertion step

6

Besides introducing and removing the dummies, the algorithm has as its only bisector

speci�c components the following two functions.

The �rst is de�ned for any pairwise distinct generators z; a; b 2
 [

0

.

Closer(z; a; b)

TRUE, if z 2 G(a; b)

FALSE, otherwise

The second is de�ned for any four pairwise distinct generators z; a; b; c 2
 [

0

, where

dt

0

is a Delaunay triangulation of
 n fzg and vp(a; b; c) is active in dt

0

.

CheckVP(z; a; b; c)

IN, if there exists ! 2 fa; b; cg such that vp(a; b; c) 2 G(z; !)

OUT, if there exists ! 2 fa; b; cg such that vp(a; b; c) 2 G(!; z)

ON, otherwise

Before giving the detailed algorithm, we briey describe how the augmenting (incremental)

step is performed. Therefore suppose, g

i

(i 2 f1; : : : ; ng) is the generator to insert.

We �rst determine a generator nn 2

i�1

, such that g

i

2 vr

i�1

(g

j

). This is done

by the subroutine NearestNeighbour that starts its search at a candidate cand =

ini guess(i) 2

i�1

. The array ini guess is determined in a procedure Preprocessing

that also may reorder the generators in
 (which may lead to signi�cant running time

improvements, cf. Ohya, Iri and Murota [6]). NearestNeighbour searches (using

the function Closer) all the neighbours of cand in dt

0

for anyone being \closer" to g

i

than

cand itself. If one of the neighbours does so, it becomes the new cand, and we proceed in

the same way. Otherwise, cand is the generator we searched for. The correctness of this

procedure can be proved by exploiting the bisector properties.

Now, starting with nn, we modify all the Voronoi regions \touched" by the new one

and \connect" the corresponding generators with g

i

in the new Delaunay triangulation

(cf. Figure 2). This update is done by searching those of the in dt

0

active Voronoi points

on the boundary of the currently modi�ed Voronoi region that will not be active anymore

in the new Delaunay triangulation. These decisions are done by the function CheckVP.

Having found all these Voronoi points, we also know the Voronoi region to modify next.

The modi�cation of the Voronoi region of nn is done by the procedure InitialModify.

When modifying the further Voronoi regions, we can exploit the additional information

by which Voronoi edge we \entered" the region to speed up computations. Hence, for all

the other concerned generators we use the procedure Modify.

7

We conclude this section by a detailed description of the whole algorithmic frame.

Algorithm IncrementalDelaunay

Input :
 = fg

1

; : : : ; g

n

g � R

2

Output : A Delaunay triangulation of

(1) Preprocessing

{ Order the generators

{ Determine the initial guesses ini guess(g

i

)

(2)

0

:= IntroduceDummies(
)

(3) Determine Delaunay graph D

0

of

0

(4) for i := 1 to n do

(5) D

i

:= AugmentDelaunay(D

i�1

; g

i

; ini guess(g

i

))

(6) D := RemoveDummies(D

n

)

(7) return D

Subroutine AugmentDelaunay(D

old

; new gen; initial guess)

(1) D

new

:= D

old

(2) nn := NearestNeighbour(D

old

; new gen; initial guess)

(3) (next vr; depart edge) := InitialModify(D

new

;D

old

; nn; new gen)

(4) while next vr 6= nn do

f

(5) vr := next vr

(6) arrive edge := depart edge

(7) (next vr; depart edge) :=Modify(D

new

;D

old

; vr; arrive edge; new gen)

g

Subroutine NearestNeighbour(D;new gen; initial guess)

(1) act gen := initial guess

(2) for all cand 2 Inz

D

(act gen) do

f

(3) if Closer(new gen; cand; act gen) then

f

8

(4) act gen := cand

(5) goto (2)

g

g

(6) return act gen

The following macro is de�ned in order to ease reading.

STEP

i := j

Let (vr; j) be the successor of (vr; i) in Inz

D

old

(vr)

Subroutine InitialModify(D

old

;D

new

; vr; new gen)

(1) Determine i and j such that (vr; j) is the successor of (vr; i) in Inz

D

old

(vr) and

CheckVP(new gen; vr; i; j) = OUT.

(2) found := FALSE

(3) while not found do

f

(4) pos := OUT

(5) while pos = OUT do

f

(6) STEP

(7) pos =CheckVP(new gen; vr; i; j)

g

(8) if pos = IN then found := TRUE

(9) arrive edge := (vr; i)

(10) while pos 6= OUT do

f

(11) STEP

(12) pos =CheckVP(new gen; vr; i; j)

(13) if pos = IN then found := TRUE

g

(14) depart edge := (vr; i)

(15) if found then goto (16)

g

(16) Remove from D

new

all edges, that coincide with vr between

arrive edge and depart edge

(17) Insert (vr; new gen) into D

new

(18) return (next vr; depart edge)

9

Subroutine Modify(D

old

;D

new

; vr; arrive edge; new gen)

(1) Let (vr; i) := arrive edge

(2) Let (vr; j) be the successor of (vr; i) in Inz

D

old

(vr)

(3) while CheckVP(new gen; vr; i; j) 6= OUT do STEP

(4) depart edge := (vr; i)

(5) Remove from D

new

all edges, that coincide with vr between

arrive edge and depart edge

(6) Insert (vr; new gen) into D

new

(7) return (i; depart edge)

3 Implementation for the Manhattan Metric

If d : R

2

� R

2

�! R is any metric, we call for any pair p; q 2 R

2

(p 6= q) the set

fr 2 R

2

j d(r; p) = d(r; q)g the \metric bisector" of p and q (according to the metric d).

If d

1

is the Manhattan metric (i.e., d

1

(p; q) = jp

x

�q

x

j+ jp

y

�q

y

j for all p; q 2 R

2

), then for

any two distinct points p; q 2 R

2

(p 6= q) the metric bisector of p and q (w.l.o.g. p

x

� q

x

)

looks as shown in the following �gures, where in the third case the grey regions belong to

the metric bisector:

1. jp

x

� q

x

j > jp

y

� q

y

j

α α

β α βp
β α β

q p

q

(� := jp

y

� q

y

j and � :=

jp

x

�q

x

j�jp

y

�q

y

j

2

)

2. jp

x

� q

x

j < jp

y

� q

y

j

α

β

α

β

p

qα

β

α

β

p

q

(� := jp

x

� q

x

j and � :=

jp

y

�q

y

j�jp

x

�q

x

j

2

)

10

3. jp

x

� q

x

j = jp

y

� q

y

j

We de�ne a function b

1

: (R

2

�R

2

)n� �! � by assigning to any pair (p; q) 2 (R

2

�R

2

)n�

the fat line in the appropriate �gure above.

By making many case distinctions, one can prove the following proposition.

Proposition 3.1 The function b

1

is a bisector function.

For the rest of this section, all notions corresponding to a bisector function correspond

to b

1

. Obviously, for any triple p; q; r 2 R

2

(p 6= q) the relation d

1

(r; p) < d

1

(r; q) implies

r 2 G(p; q).

Observation 3.2 If we have for p 2 R

2

and g 2
 as well as d

1

(p; g) < d

1

(p; h) for all

h 2
 n fgg then p is contained in vr

(g).

3.1 Inserting the dummies

Suppose, all the generators out of
 are located in the grey part � of the following �gure,

where � =

y

max

�y

min

2

and � =

x

max

�x

min

2

.

ξ ξ

η

η

α

β

dum1 dum2 dum3

dum4

dum5dum6dum7

dum8

Π

Figure 3: Inserting the dummies

11

Proposition 3.3 If

0

= fdum

1

; : : : ; dum

8

g is de�ned according to Figure 3.1, and if

furthermore � > � and � > �, then b

1

(g; dum

i

)\ vr

0

(dum

i

) is bounded for all g 2
 and

for all i 2 f1; : : : ; 8g.

This proposition leads immediately to the following procedure for inserting the dummy

generators, where we choose � := � := 2(� + �) + 1 due to reasons, that become clear in

the next subsection.

Subroutine IntroduceDummies

Input :
 = fg

1

; : : : ; g

n

g � R

2

Output : fdum

1

; : : : ; dum

8

g � R

2

, such that in the Voronoi diagram of

0

[fgg

the Voronoi region of g is bounded for all g 2
.

(1) x

max

:= maximum of all x-coordinates of

x

min

:= minimum of all x-coordinates of

y

max

:= maximum of all y-coordinates of

y

min

:= minimum of all y-coordinates of

(2) � :=

y

max

�y

min

2

� :=

x

max

�x

min

2

(3) � := � := 2(� + �) + 1

(4) dum

1

:= (x

min

� �; y

min

� �)

dum

2

:= (x

min

+ �; y

min

� �)

dum

3

:= (x

max

+ �; y

min

� �)

dum

4

:= (x

max

+ �; y

min

+ �)

dum

5

:= (x

max

+ �; y

max

+ �)

dum

6

:= (x

min

+ �; y

max

+ �)

dum

7

:= (x

min

� �; y

max

+ �)

dum

8

:= (x

min

� �; y

min

+ �)

(5) return fdum

1

; : : : ; dum

8

g

3.2 Removing the dummies

The following observation follows immediately from the de�nition of the bisector func-

tion b

1

.

Observation 3.4 For any triple a; b; c 2
 vp(a; b; c) is not outside the rectangle � in

Figure 3.1.

Using our special choice of � and �, one can show that any point in � is closer (with

respect to d

1

) to every generator out of
 than to any of the dummy generators. This

together with Observation 3.2 implies the following proposition.

12

Proposition 3.5 For any g 2
 and any i 2 f1; : : : ; 8g the Voronoi region vr(dum

i

) in

V

dum

satis�es vr(dum

i

) \ � = ;.

Now we can conclude that in order to turn a Voronoi diagram of
 [

0

into a Voronoi

diagram of
, we just have to remove all Voronoi edges that are belonging to dummy

generators, and afterwards extend all those Voronoi edges to in�nity that are ending with

no continuation after this removal. The correctness of this procedure is due to the facts

that these \elongations" start outside � (by Proposition 3.5) and so they do not give rise

to new Voronoi points (by Observation 3.4).

Subroutine RemoveDummies

Input : Delaunay triangulation D

dum

of
 [

0

(where

0

= IntroduceDummies(
))

Output : Delaunay triangulation of

(1) D := D

dum

(2) Remove from D all dummies and the edges incident to them.

(3) return D

3.3 Numerical operations

To complete the algorithm for the Manhattan metric it remains to de�ne the two functions

Closer and CheckVP. Therefore, we �rst de�ne two auxiliary functions. The �rst one

decides if the line passing through two given (distinct) points has slope +1, �1 or a slope

in R n f�1;+1g.

We call any line having slope +1 or �1 a \critical line". For any point r 2 R

2

, we denote

by g

+

(r) resp. g

�

(r) the line passing through r and having slope +1 resp. �1.

Function OnLine

Input : a; b 2 R

2

Output : +(�), if a; b are on a line with slope +1(�1),

otherwise FALSE

(1) if a

x

� a

y

= b

x

� b

y

then return +

(2) if a

x

+ a

y

= b

x

+ b

y

then return �

(3) return FALSE

13

The second auxiliary function permits us to use formulations like \if z 2 G(a; b) : : : ".

Function Assign

Input : z; a; b 2 R

2

Output : FIRST, if z 2 G(a; b)

SECOND,if z 2 G(b; a)

ON, if z 2 b

1

(a; b)

(1) d

a

:= d

1

(z; a)

d

b

:= d

1

(z; b)

(2) if d

a

< d

b

then return FIRST

(3) if d

b

< d

a

then return SECOND

(4) exception := OnLine(a; b)

(5) if exception = FALSE then return ON

(6) if a

x

> b

x

then

f

(7) Swap a; b

(8) swapped := TRUE

g

(9) else

(10) swapped := FALSE

(11) if exception = + then

f

(12) if z

y

< a

y

then

(13) ret := FIRST

(14) else if z

y

> b

y

then

(15) ret := SECOND

(16) else

(17) return ON

g

(18) else

f

(19) if z

x

< a

x

then

(20) ret := FIRST

(21) else if z

x

> b

x

then

(22) ret := SECOND

(23) else

(24) return ON

g

(25) if swapped then

f

14

(26) if ret = FIRST then

(27) return SECOND

(28) else

(29) return FIRST

g

(30) else

(31) return ret

The de�nition of the function Closer is now trivial.

Function Closer

Input : z; a; b 2 R

2

Output : TRUE, if z 2 G(a; b), otherwise FALSE

(1) if z 2 G(a; b) then

(2) return TRUE

(3) else

(4) return FALSE

We come to the de�nition of the function CheckVP. For the sequel, let z; a; b; c 2 R

2

be pairwise distinct, such that the Voronoi point vp := vp(a; b; c) exists. The de�nition

of the bisector function b

1

implies that d

1

(vp; a) = d

1

(vp; b) = d

1

(vp; c). One possibility

to compute the function CheckVP is to calculate vp �rst, and afterwards perform the

necessary checks for each generator out of fa; b; cg. Computing vp explicitly can be done

in the case that no two points out of a; b; c lie on a common critical line by solving a

2 � 2 equation system that is not a linear one, since it contains expressions like jx� yj.

However, by examining the relative position of a; b; c to each other, one can get rid of these

\absolute values". If two generators out of a; b; c are located on a common critical line,

one has to perform lots of case distinctions to �gure out vp. We also implemented this

version of CheckVP, but we found out that our other method (computing CheckVP

without explicitly calculating vp) is more e�cient. Therefore, we just describe this second

method here.

We know from the above equation that vp is the center of a certain sphere (with respect

to the Manhattan metric) having a, b and c on its boundary. In the Manhattan metric,

a sphere S

M;%

:= fp 2 R

2

j d

1

(p;M) = %g having centerM 2 R

2

and radius % 2 R

2

looks

as follows:

15

M
ρ

NE

SESW

NW

The diameter of the sphere is D := 2%. From now on, let S be the sphere having vp as

center and a, b, and c on its boundary. Obviously, we have opposite sides of such a sphere

(i.e., sides being parallel but not identical), and hence we can speak about a side being

located between two opposite sides.

Our algorithm to compute the function CheckVP is based on the following two lemmata

that describe how to determine the value of the function CheckVP just from knowledge

about the position of z relative to S. The rest of the algorithm just consists of determining

that position.

The �rst lemma describes the case that z does not lie on the boundary of S. One proves

it by simply comparing some distances.

Lemma 3.6 We have:

(i) If z lies inside S then there exists an ! 2 fa; b; cg such that vp(a; b; c) 2 G(z; !)

holds.

(ii) If z lies outside S then there exists an ! 2 fa; b; cg such that vp(a; b; c) 2 G(!; z)

holds.

The second one deals with the more complicated case that z is located on the boundary

of S. Its proof proceeds by several case distinctions concerning the relative position of z

and a; b; c.

Lemma 3.7 Let z be on the sphere S, and let be � 2 fa; b; cg. Then the following

implications hold:

(i) If z is not on the same side of S as � then vp 2 b

1

(z; �).

(ii) If z is on the same side � of S as � then:

(a) � = NW:

vp 2

8

>

<

>

:

G(z; �); if z

x

< �

x

and z 6= W

G(�; z); if �

x

< z

x

and � 6= W

b(z; �); otherwise

9

>

=

>

;

16

(b) � = NE:

vp 2

8

>

<

>

:

G(z; �); if z

x

< �

x

and z 6= N

G(�; z); if �

x

< z

x

and � 6= N

b

1

(z; �); otherwise

9

>

=

>

;

(c) � = SE:

vp 2

8

>

<

>

:

G(z; �); if z

x

> �

x

and z 6= E

G(�; z); if �

x

> z

x

and � 6= E

b

1

(z; �); otherwise

9

>

=

>

;

(d) � = SW:

vp 2

8

>

<

>

:

G(z; �); if z

x

> �

x

and z 6= S

G(�; z); if �

x

> z

x

and � 6= S

b

1

(z; �); otherwise

9

>

=

>

;

To derive a complete algorithm for the computation of the function CheckVP we have

to do two things:

(i) We have to develop a criterion that enables us to decide whether z lies inside, outside

or on the boundary of S.

(ii) We need a test that decides for a given corner � of S and a point e on the boundary

of S, if e = �.

The second task will be solved by Lemma 3.12, the �rst one will be performed by Propo-

sition 3.10. To apply that proposition, it will be nessecary to rename a; b; c into p; q; r

such that p and q lie on opposite sides �

p

resp. �

q

of S, and r lies on a side between �

p

and �

q

. That a; b; c are always in such a constellation, and how to determine it, is told

by the following two lemmata. Again, the �rst one describes a simple case, namely the

one in which no two points of a; b; c are located on a critical line. Then, the three points

a, b and c lie on three di�erent sides of S, and one easily proves the following lemma.

Lemma 3.8 Let a; b; c 2 R

2

have the property that no two of the three points are located

on a critical line. Choose p; q 2 fa; b; cg such that d

1

(p; q) is the maximal distance between

any two of the three points a; b; c.

Then we have D = d

1

(p; q), and p and q are located on opposite sides of S. The third

point r lies between p and q.

Now, we come to the more complicated case that there are (at least) two points among

a; b; c lying on a critical line. The key to handle this case is to \perturb" a; b; c slightly in

order to return to the easy case (actually, we just perturb b).

17

Due to the fact that vp(a; b; c) is supposed to exist it follows from the de�nition of the

bisector function b

1

that it is impossible for all three points a; b; c to be on one common

critical line. Let us assume that a and b are located on a critical line. If c neither lies on

a critical line with a nor with b then we say that one \critical pair" exists. Otherwise, we

have (at least) two critical pairs, and we assume that b and c are located on a common

critical line. Note that these two critical lines (the one of a; b and the one of b; c) cannot

have the same slope, since otherwise a; b; c would lie on a common critical line. Hence, we

assume (in the case of two critical pairs) that a and b are located on a critical line having

slope +1, and b and c on one with slope �1.

The following two tables (for the two cases of one or two critical pairs) de�ne the \"-

perturbation" of b, where in the �rst one the \+" and \�" in the �rst column mean that

a and b lie on a critical line having slope +1 resp. �1.

a

x

< b

x

a

x

> b

x

+ b

0

x

:= b

x

; b

0

y

:= b

y

+ " b

0

x

:= b

x

; b

0

y

:= b

y

� "

� b

0

x

:= b

x

+ " ; b

0

y

:= b

y

b

0

x

:= b

x

� " ; b

0

y

:= b

y

Table 1: One critical pair

a

x

< b

x

a

x

> b

x

b

x

< c

x

b

0

x

:= b

x

� " ; b

0

y

:= b

y

b

0

x

:= b

x

; b

0

y

:= b

y

� "

b

x

> c

x

b

0

x

:= b

x

; b

0

y

:= b

y

+ " b

0

x

:= b

x

+ " ; b

0

y

:= b

y

Table 2: Two critical pairs

The following lemma (that one can prove by examination of the relative positions of a; b; c

in some case distinctions) gives the method how to rename a; b; c to p; q; r in the demanded

way in the case of existence of critical pairs.

Lemma 3.9 Let a; b; c 2 R

2

be in such positions, that a and b lie on a common critical

line, and that in the case of the existence of another critical pair b; c is such a pair. If

more than one critical pairs exist then let a; b lie on a critical line having slope +1 and b; c

18

on one with slope �1. Let " :=

1

2

and let b

0

be the "-perturbation of b. Let p

0

; q

0

2 fa; b

0

; cg

be chosen such that d

1

(p

0

; q

0

) is the maximal distance between any two of the three points

a; b

0

and c.

Let

p :=

(

b; if p

0

= b

0

p

0

; otherwise

)

and q :=

(

b; if q

0

= b

0

q

0

; otherwise

)

.

Then D = d

1

(p; q) holds, and p and q are located on opposite sides of S. The third point

r lies between p and q.

The following proposition states how to compute (with the knowledge of the two preceding

lemmata) the position of z relative to S.

Proposition 3.10 Let p and q be located on opposite sides �

p

and �

q

of S, and let r lie

on a side between �

p

and �

q

of S having slope � 2 f+;�g. Let for i 2 fp; q; rg

t

i

:=

8

>

<

>

:

IN; if d

1

(z; i) < D

ON; if d

1

(z; i) = D

OUT; if d

1

(z; i) > D

9

>

=

>

;

.

Let furthermore

� :=

(

"; if p or q are above g

�

(r)

#; if p or q are below g

�

(r)

)

(p and q can neither lie on di�erent sides of g

�

(r), nor both on g

�

(r)) and

 :=

8

>

<

>

:

"; if z is above g

�

(r)

�; if z is on g

�

(r)

#; if z is below g

�

(r)

9

>

=

>

;

.

Finally, let

t

0

r

:=

8

>

<

>

:

IN; if = �

ON; if = �

OUT; otherwise

9

>

=

>

;

.

Then z is located

in the interior of S, if all t

p

; t

q

; t

r

; t

0

r

are IN

in the exterior of S, if any of t

p

; t

q

; t

r

; t

0

r

is OUT,

on S, otherwise.

The value � in the preceding proposition can be computed as described in the following

remark.

19

Remark 3.11 If p and q lie on opposite sides �

p

and �

q

then we have (note that p; q; r

do not lie on a common side):

f�

p

;�

q

g = fSW;NEg: r 2 NW, if p od q are below g

+

(r)

r 2 SE, if p od q are above g

+

(r)

f�

p

;�

q

g = fNW;SEg: r 2 NE, if p or q are below g

�

(r)

r 2 SW, if p or q are above g

�

(r)

The question if a point s lies above or below a line g

"

(t) (" 2 f+;�g) may be decided as

follows:

" = +: s lies above g

+

(t), if s

y

� s

x

> t

y

� t

x

s lies below g

+

(t), if s

y

� s

x

< t

y

� t

x

" = �: s lies above g

�

(t), if s

y

+ s

x

> t

y

+ t

x

s lies below g

�

(t), if s

y

+ s

x

< t

y

+ t

x

The �nal lemma in this section provides the needed test if a given point e on the boundary

of S is a certain corner � of S.

Lemma 3.12 Let � 2 fW;N;E; Sg and z 2 S, as well as

z

0

:=

8

>

>

>

<

>

>

>

:

z + (D; 0); if � = W

z + (0;�D); if � = N

z + (�D; 0); if � = E

z + (0;D); if � = S

9

>

>

>

=

>

>

>

;

.

Let furthermore t

p

; t

q

; t

r

and t

0

r

be as in Proposition 3.10 with z

0

instead of z. Then we

have:

z = � if and only if t 6= OUT holds for all t 2 ft

p

; t

q

; t

r

; t

0

r

g:

Now, we have introduced all the needed tools to propose the desired algorithm for com-

puting the function CheckVP.

Funktion CheckVP

Input : z; a; b; c 2 R

2

Output : IN, if ! 2 fa; b; cg exists such that vp(a; b; c) 2 G(z; !)

OUT, if ! 2 fa; b; cg exists such that vp(a; b; c) 2 G(!; z)

ON, otherwise

20

(1) Check, if there are critical pairs under a; b; c;

if yes, rename a; b; c as decribed above.

(2) Determine p; q; r and D according to Lemma 3.8 resp. 3.9.

(3) Determine t

p

; t

q

; t

r

and t

0

r

as in Proposition 3.10.

(4) if t = IN holds for all t 2 ft

p

; t

q

; t

r

; t

0

r

g then return TRUE

(5) if t 2 ft

p

; t

q

; t

r

; t

0

r

g exists such that t = OUT holds then return FALSE

(6) for each ! 2 fa; b; cg do

f

(7) By using Lemma 3.7 determine if

vp 2 G(z; !) ; vp 2 G(!; z) or vp 2 b

1

(z; !):

(8) if vp 2 G(z; !)

(9) return IN

(10) if vp 2 G(!; z)

(11) return OUT

g

(12) return ON

4 A Gift: Implementation for the MaximumMetric

Let d

1

: R

2

�R

2

�! R be the Maximummetric, i.e., d

1

(p; q) = maxfjq

x

�p

x

j; jq

y

�p

y

jg

for all p; q 2 R

2

.

Again, let
 � R

2

be a �nite set of generators.

De�nition 4.1 The mapping : R

2

�! R

2

is de�ned by (p) :=

1

2

(p

x

+ p

y

; p

y

� p

x

)

for all p 2 R

2

.

 is a bijection that is continuous in both directions (according to the canonical topology).

The following proposition allows us to reduce the problem in the Maximum metric to a

problem in the Manhattan metric, as already mentioned by J

�

unger, Reinelt and

Zepf [1]. It holds due to the fact that maps the \1-sphere" in the Maximum metric

onto the \1-sphere" in the Manhattan metric (and vice versa).

Proposition 4.2 d

1

(p; q) = d

1

((p); (q)) holds for all p; q 2 R

2

.

For p; q 2 R

2

(p 6= q) we de�ne b

1

(p; q) :=

�1

(b

1

((p); (q))).

Since is a continuous bijection, the property of being a bisector function carries over

from b

1

to b

1

.

Proposition 4.3 The function b

1

is a bisector function.

Let be p; q 2 R

2

(p 6= q). Then b

1

(p; q) looks as follows (w.l.o.g. let p

x

� q

x

):

21

1. jp

x

� q

x

j < jp

y

� q

y

j

α

α

α

α

p

q

α

α

α

α
p

q

(� :=

jp

y

�q

y

j

2

)

2. jp

x

� q

x

j > jp

y

� q

y

j

α

α
α

α

α

α

α

α

p

q p

q

(� :=

jp

x

�q

x

j

2

)

3. jp

x

� q

x

j = jp

y

� q

y

j

p

q
α

α α
α

p

q
α

α

α

α

As a bijection, commutes with intersection of sets. Hence, by applying the transfor-

mation , the Voronoi regions in the L

1

-Voronoi diagram of
 transform to the Voronoi

regions of the L

1

-Voronoi diagram of
. Due to the continuity of , also the closures of

these regions transform to each other. Hence, we get the �nal proposition.

Proposition 4.4 If dt is a Delaunay triangulation of (
) (according to the bisector

function b

1

), then dt is (via identi�cation of
 with (
) using the bijection) a Delaunay

triangulation of
 according to the bisector function b

1

.

22

5 Computational Results

We implemented the proposed algorithm for computing Delaunay triangulations in the

Manhattan metric and in the Maximum metric, as well as in the Euclidean metric (cf.

J

�

unger, Kaibel and Thienel [2]. There we describe how we build a numerically robust

algorithm basing on the abstract algorithmic frame we proposed in section 2) on a SUN

SPARCstation 10 model 41 using the programming language C. We chose SUN's compiler

acc (1.0) with the compiler optimization option -fast. By sending an e-mail request

to kaibel@informatik.uni-koeln.de you can obtain the library delvor (together with

a short documentation) that provides functions to compute Delaunay triangulations in

Manhattan metric, Maximummetric or Euclidean metric, as well as functions to calculate

the corresponding Voronoi diagrams.

We give a brief overview in two tables of our computational experiences with this code.

They both show running times of our program for Manhattan metric and Maximum

metric, where we give both times, for calculating the function CheckVP either by ex-

plicit computation of the Voronoi point (columns labeled \+vp") or without its explicit

computation (columns labeled \�vp").

Table 3 deals with instances arising from the TSPLIB [7]. The �rst column contains the

name of the instance, where the number in that name is always the number of generators.

It is a little striking that the di�erence between the running times for computation with

and without explicit determination of the Voronoi points is smaller in case of theMaximum

metric. In our opinion, this is due to the reason that many instances in the TSPLIB

have lots of generators lying on lines being parallel to the coordinate-axes. Applying the

transformation of Section 4 yields many critical pairs. In case of no two out of a; b; c lying

on a common critical line the method for computing CheckVP we described in Section 3

�nishes nearly immediately after detection of that \nice case", while the method with

explicit computation of the Voronoi point still has to perform some comparisons in order

to get rid of those \j : : : j" in the equation system. If we are not in the \nice case", both

methods have to make a similar number of comparisons, and therefore, if the \bad cases"

outweigh, the di�erence of e�ciency of the two methods gets smaller.

Table 4 shows the same running time data for generator sets being uniformly pseudo-

randomly distributed in [0; 1]

2

. The �rst column contains the number of generators.

Here, we do not observe a great di�erence between the times for Manhattan metric and

Maximum metric, which supports our interpretation of the results for the TSPLIB in-

stances.

23

Problem L

1

(+vp) L

1

(-vp) L

inf

(+vp) L

inf

(-vp)

rl1323 0.53 0.33 0.50 0.45

nrw1379 0.52 0.35 0.52 0.35

1400 0.55 0.37 0.57 0.43

u1432 0.57 0.43 0.55 0.55

1577 0.63 0.40 0.60 0.57

d1655 0.72 0.43 0.63 0.60

vm1748 0.67 0.48 0.68 0.60

u1817 0.80 0.50 0.70 0.70

rl1889 0.72 0.48 0.70 0.65

d2103 0.97 0.60 0.82 0.83

u2152 0.95 0.60 0.82 0.78

u2319 1.05 0.77 0.95 0.88

pr2392 0.92 0.62 0.92 0.75

pcb3038 1.17 0.75 1.17 0.83

3795 1.75 1.12 1.62 1.48

fnl4461 1.68 1.12 1.73 1.13

rl5915 2.35 1.55 2.23 2.22

rl5934 2.33 1.55 2.25 2.15

d6960 2.83 1.90 2.80 2.28

pla7397 3.28 2.25 2.75 2.75

rl11849 5.02 3.33 4.80 4.42

brd14051 5.58 3.85 6.58 4.07

d18512 7.28 4.90 7.65 5.07

pla33810 15.50 10.35 13.72 12.48

pla85900 39.85 27.02 34.82 32.23

Table 3: Instances of the TSPLIB

#gen L

1

(+vp) L

1

(-vp) L

inf

(+vp) L

inf

(-vp)

4 0.00 0.00 0.00 0.00

8 0.00 0.00 0.00 0.02

16 0.00 0.02 0.02 0.02

32 0.02 0.00 0.02 0.00

64 0.02 0.00 0.03 0.02

128 0.02 0.03 0.05 0.02

256 0.08 0.05 0.10 0.07

512 0.18 0.12 0.22 0.12

1024 0.38 0.23 0.42 0.25

2048 0.83 0.52 0.88 0.53

4096 1.65 1.00 1.72 1.05

8192 3.43 2.08 3.58 2.15

16384 7.08 4.35 7.45 4.57

32768 14.32 9.10 15.53 9.43

65536 28.85 18.15 29.95 21.03

131072 62.23 40.28 65.10 40.10

Table 4: Instances arising from pseudo-randomly distributed generators

24

6 Conclusions

We have built the abstract algorithmic frame (basing on our de�nition of an abstract

Voronoi diagram) in order to derive fast and well implementable algorithms for com-

puting Delaunay triangulations in Euclidean metric, Manhattan metric, and Maximum

metric. Of course, the abstract de�nition admits many other bisector de�nitions. Once

one has de�ned such a bisector function, it \still remains" to implement procedures

for inserting and removing the dummies, as well as for calculating the two functions

Closer and CheckVP. It may be interesting to examine, if it is possible to get a com-

puter code for computing Delaunay triangulations and Voronoi diagrams in any L

p

-metric

(p = 1; 2; 3; : : :) using our framework.

25

References

[1] M. J�unger, G. Reinelt and D. Zepf: Computing Correct Delaunay Triangulations,

Computing 47 (1991), 43-49.

[2] M. J�unger, V. Kaibel and S. Thienel: A Practical Method for Computing Correct

Delaunay Triangulations in the Euclidean Metric, Report No. 94.158, Angewandte

Mathematik und Informatik, Universit�at zu K�oln (1994).

[3] V. Kaibel: Delaunay-Triangulation in verschiedenen Metriken, Diploma thesis, Insti-

tut f�ur Informatik, Universit�at zu K�oln (1993).

[4] R. Klein : Concrete and Abstract Voronoi Diagrams, Springer LNCS 400 (1989).

[5] R. Klein, K. Mehlhorn und S. Meiser : Randomized Incremental Construction of

Abstract Voronoi Diagrams, Informatik: Festschrift zum 60. Geburtstag von G�unter

Hotz, hrsg. von J. Buchmann, H. Ganzinger und W.J. Paul, Stuttgart (1992), 283-

308.

[6] T. Ohya, M. Iri und K. Murota: Improvements of the Incremental Method for the

Voronoi Diagram with Computational Comparisons of Various Algorithms, Journal

of the Operations Research Society of Japan 27 (1984), 306-337.

[7] G. Reinelt: TSPLIB { A Traveling Salesman Problem Library, ORSA Journal on

Computing 3 (1991), 376-384.

[8] K. Sugihara: A Simple Method for Avoiding Numerical Errors and Degeneracy in

Voronoi Diagram Construction, Research Memorandum RMI 88-14, Faculty of En-

gineering, University of Tokyo (1988).

[9] K. Sugihara und M. Iri: Geometric Algorithms in Finite-Precision Arithmetic, Re-

search Memorandum RMI 88-10, Faculty of Engineering, University of Tokyo (1988).

26

Michael J�unger

Institut f�ur Informatik

Universit�at zu K�oln

Pohligstr. 1

D-50969 K�oln

Germany

Telephone: 49 221 4705313

e-mail: mjuenger@informatik.uni-koeln.de

Volker Kaibel

Institut f�ur Informatik

Universit�at zu K�oln

Pohligstr. 1

D-50969 K�oln

Germany

Telephone: 49 221 4705314

e-mail: kaibel@informatik.uni-koeln.de

Stefan Thienel

Institut f�ur Informatik

Universit�at zu K�oln

Pohligstr. 1

D-50969 K�oln

Germany

Telephone: 49 221 4705307

e-mail: thienel@informatik.uni-koeln.de

