
�

An Implementation of the

Hopcroft and Tarjan

Planarity Test and Embedding Algorithm

Kurt Mehlhorn

Max-Planck-Institut f�ur Informatik,

66123 Saarbr�ucken, Germany

Petra Mutzel

Institut f�ur Informatik,

Universit�at zu K�oln, 50969 K�oln, Germany

Stefan N�aher

Max-Planck-Institut f�ur Informatik,

66123 Saarbr�ucken, Germany

Abstract

We describe an implementation of the Hopcroft and Tarjan planarity test and em-

bedding algorithm. The program tests the planarity of the input graph and either

constructs a combinatorial embedding (if the graph is planar) or exhibits a Kuratowski

subgraph (if the graph is non-planar).

Contents

1. Introduction : 1

8. Making the Graph Biconnected : 5

13. The Planarity Test : 8

26. Constructing the Embedding : 16

34. E�ciency : 24

35. A Demo : 25

42. Some Theory : 30

�

This work was supported in part by the German Ministry for Research and Technology (Bundesminis-

terium f�ur Forschung und Technologie) under grant ITS 9103 and by the ESPRIT Basic Research Actions

Program under contract No. 7141 (project ALCOM II).

1. Introduction.

We descibe two procedures to test the planarity of a graph G:

bool planar (graph &G;bool embed = false)

and

bool planar (graph &G; listhedgei &P;bool embed = false).

Both take a directed graph G and test it for planarity. If the graph is planar and bidirected,

i.e., for every edge of G its reversal is also in G, and the argument embed is true, then they

also compute a combinatorial embedding of G (by suitably reordering its adjacency lists).

If the graph G is non-planar then the �rst version of planar only records that fact. The

second version in addition returns a subgraph of G homeomorphic to K

3;3

or K

5

(as a list

P of edges). For a planar graph G the running time of both versions is linear (cf. section 34

for more detailed information). For non-planar graphs G the �rst version runs in linear time

but the second version runs in quadratic time. We are aware of the linear time algorithm of

Williamson [Wil84] to �nd Kuratowski subgraphs but have not implemented it.

The implementation of planar is based on the LEDA platform of combinatorial and geo-

metric computing [Nae93, MN89]. It is part of the LEDA-distribution (available through

anonymous ftp at cs.uni-sb.de). In this document we describe the implementation of both

versions of planar and a demo, and report on our experimental experience.

Procedure planar is based on the Hopcroft and Tarjan linear time planarity testing algorithm

as described in [Meh84, section IV.10]. For the sequel we assume knowledge of section IV.10

of [Meh84]. A revised version of that section is included in this document (see section 42)

for the convenience of the reader. Our procedure planar di�ers from [Meh84, section IV.10]

in two respects: Firstly, it works for arbitrary directed graphs and not only for biconnected

undirected graphs. To this end we augment the input graph by additional edges to make

it biconnected and bidirected. The augmentation does not destroy planarity. Secondly,

the embedding phase follows the presentation in [MM94]. We want to remark that the

description of the embedding phase given in [Meh84, section IV.10] is false. The essential

part of [MM94] is reprinted in section 26.

This document de�nes the �les planar :h, planar :c, and demo :c. planar :c contains the code

for procedure planar , demo :c contains the code for a demo, and planar :h consists of the

declarations of procedure planar . The third �le is de�ned in section 35, the structure of the

�rst two �les is as follows:

h planar.h 1 i �

bool planar (graph &G;bool embed = false);

bool planar (graph &G; listhedgei &P;bool embed = false);

void Make biconnected graph (graph &G);

2.h planar.c 2 i �

h includes 3 i;

h typedefs, global variables and class declarations 11 i;

h auxiliary functions 9 i;

h �rst version of planar 5 i;

h second version of planar 4 i;

1

3. We include parts of LEDA (who would want to work without it) [Nae93, MN89]. We

need stacks, graphs, and graph algorithms.

h includes 3 i �

#include <LEDA/stack.h>

#include <LEDA/graph.h>

#include <LEDA/graph_alg.h>

#include "planar.h"

See also section 36.

This code is used in sections 2 and 35.

4. The second version of planar is easy to describe. We �rst test the planarity of G using

the �rst version. If G is planar then we are done. If G is non-planar then we cycle through

the edges of G. For every edge e of G we test the planarity of G�e. If G�e is planar we add

e back in. In this way we determine a minimal (with respect to set inclusion) non-planar

subgraph of G, i.e., either a K

5

or a K

3;3

.

h second version of planar 4 i �

bool planar (graph &G; listhedgei &P;bool embed = false)

f

if (planar (G; embed)) return true ;

=� We work on a copy H of G since the procedure alters G; we link every vertex and

edge of H with its original. For the vertices we also have the reverse links. �=

GRAPHhnode; edgei H;

node arrayhnodei link (G);

node v;

forall nodes (v;G) link [v] = H:new node (v);

=� This requires some explanation. H:new node (v) adds a new node to H, returns the

new node, and makes v the information associated with the new node. So the statement

creates a copy of v and bidirectionally links it with v �=

edge e;

forall edges (e;G) H:new edge (link [source(e)]; link [target (e)]; e);

=� link [source(e)] and link [target (e)] are the copies of source (e) and target (e) in H.

The operation H:new edge creates a new edge with these endpoints, returns it, and

makes e the information of that edge. So the e�ect of the loop is to make the edge set

of H a copy of the edge set of G and to let every edge of H know its original. We can

now determine a minimal non-planar subgraph of H �=

listhedgei L = H:all edges ();

edge eh ;

forall (eh ; L) f

e = H[eh]; == the edge in G corresponding to eh

node x = source (eh);

node y = target (eh);

H:del edge (eh);

if (planar (H)) H:new edge (x; y; e);

== put a new version of eh back in and establish the correspondence

g

=� H is now a homeomorph of either K

5

or K

3;3

. We still need to translate back to G.

�=

2

P :clear ();

forall edges (eh ;H) P :append (H[eh]);

return false ;

g

This code is used in section 2.

5. The �rst version of planar is also quite simple to describe. Graphs with at most three

vertices are always planar. So assume that G has more than three vertices. We �rst add

edges to G to make it bidirected and then add some more edges to make it biconnected (of

course, without destroying planarity). Then we test the planarity of the extended graph

and construct an embedding. Since planar alters the input graph, it works on a copy of it.

h �rst version of planar 5 i �

bool planar (graph &Gin ;bool embed = false)

=� Gin is a directed graph. planar decides whether Gin is planar. If it is and embed �

true then it also computes a combinatorial embedding of Gin by suitably reordering its

adjacency lists. Gin must be bidirected in that case. �=

f

int n = Gin :number of nodes ();

if (n � 3) return true ;

if (Gin :number of edges () > 6 � n� 12) return false ;

=� An undirected planar graph has at most 3n � 6 edges; a directed graph may have

twice as many �=

hmake G a copy of Gin and add edges to make G bidirected 6 i;

hmake G biconnected 8 i;

h test planarity 13 i;

if (embed) h construct embedding 26 i;

return true ;

g

This code is used in section 2.

6. We make G a copy of Gin and bidirectionally link all vertices and edges. Then we add

edges to G to make it bidirected. In Gin is bidirected we record whether we needed to add

edges.

hmake G a copy of Gin and add edges to make G bidirected 6 i �

GRAPHhnode; edgei G;

edge arrayhedgei companion in G (Gin);

node arrayhnodei link (Gin);

bool Gin is bidirected = true ;

f

node v;

forall nodes (v;Gin) link [v] = G:new node (v); == bidirectional links

edge e;

forall edges (e;Gin)

companion in G [e] = G:new edge (link [source(e)]; link [target (e)]; e);

g

h bidirect G 7 i;

This code is used in section 5.

3

7. We bidirect G. We �rst assign numbers to nodes and edges. We make sure that the two

versions of the same undirected edge get the same number but versions of distinct undirected

edges get di�erent numbers. Then we sort the edges according to numbers. Finally we step

through the sorted list of edges and add missing edges.

h bidirect G 7 i �

f

node arrayhinti nr (G);

edge arrayhinti cost (G);

int cur nr = 0;

int n = G:number of nodes ();

node v;

edge e;

forall nodes (v;G) nr [v] = cur nr

++

;

forall edges (e;G)

cost [e] = ((nr [source (e)] < nr [target (e)]) ? n � nr [source (e)] + nr [target (e)] :

n � nr [target (e)] + nr [source(e)]);

G:sort edges (cost);

listhedgei L = G:all edges ();

while (:L:empty ()) f

e = L:pop ();

=� check whether the �rst edge on L is equal to the reversal of e. If so, delete it from

L, if not, add the reversal to G �=

if (:L:empty () ^ (source (e) � target (L:head ())) ^ (source (L:head ()) � target (e)))

L:pop();

else f

G:new edge (target (e); source (e));

Gin is bidirected = false ;

g

g

g

This code is used in section 6.

4

8. Making the Graph Biconnected.

We make G biconnected. We �rst make it connected by linking all roots of a DFS-forest.

Assume now that G is conected. Let a be any articulation point and let u and v be neighbors

of a belonging to di�erent biconnected components. Then there are embeddings of the two

components with the edges fu; ag and fv; ag on the boundary of the unbounded face. Hence

we may add the edge fu; vg without destroying planarity. Proceeding in this way we make

G biconnected.

In Make biconnected graph we change the graph while working on it. But we modify only

those adjacency lists that will not be touched later.

We need the biconnected version of G (G will be further modi�ed during the planarity test)

in order to construct the planar embedding. So we store it as a graph H. For every edge of

Gin and G we store a link to its copy in H. In addition every edge of H is made to know

its reversal.

hmake G biconnected 8 i �

Make biconnected graph (G);

hmake H a copy of G 12 i;

This code is used in section 5.

9. We give the details of the procedure Make biconnected graph . We �rst make G con-

nected by linking all roots of the DFS-forest. In a second step we make G biconnected.

h auxiliary functions 9 i �

void Make biconnected graph (graph &G)

f

node v;

node arrayhbooli reached (G; false);

node u = G:�rst node ();

forall nodes (v;G) f

if (:reached [v]) f

=� explore the connected component with root v �=

DFS(G; v; reached);

if (u 6= v) f

=� link v's component to the �rst component �=

G:new edge (u; v);

G:new edge (v; u);

g == end if

g == end not reached

g == end forall

=� G is now connected. We next make it biconnected. �=

forall nodes (v;G) reached [v] = false ;

node arrayhinti dfsnum (G);

node arrayhnodei parent (G; nil);

int dfs count = 0;

node arrayhinti lowpt (G);

dfs in make biconnected graph (G;G:�rst node (); dfs count ; reached ; dfsnum ; lowpt ;

parent);

g == end Make biconnected graph

5

See also sections 10, 15, 16, 18, and 27.

This code is used in section 2.

10. We still have to give the procedure dfs in make biconnected graph . It determines ar-

ticulation points and adds appropriate edges whenever it discovers one. For a proof of

correctness we refer the reader to [Meh84, section IV.6].

h auxiliary functions 9 i +�

void dfs in make biconnected graph (graph &G;node v; int &dfs count ;

node arrayhbooli &reached ;

node arrayhinti &dfsnum ;node arrayhinti &lowpt ;node arrayhnodei

&parent)

f

node w;

edge e;

dfsnum [v] = dfs count

++

;

lowpt [v] = dfsnum [v];

reached [v] = true ;

if (:G:�rst adj edge (v)) return; == no children

node u = target (G:�rst adj edge (v)); == �rst child

forall adj edges (e; v) f

w = target (e);

if (:reached [w]) f

=� e is a tree edge �=

parent [w] = v;

dfs in make biconnected graph (G;w; dfs count ; reached ; dfsnum ; lowpt ; parent);

if (lowpt [w] � dfsnum [v]) f

=� v is an articulation point. We now add an edge. If w is the �rst child and v

has a parent then we connect w and parent [v], if w is a �rst child and v has no

parent then we do nothing. If w is not the �rst child then we connect w to the

�rst child. The net e�ect of all of this is to link all children of an articulation

point to the �rst child and the �rst child to the parent (if it exists) �=

if (w � u ^ parent [v]) f

G:new edge (w; parent [v]);

G:new edge (parent [v]; w);

g

if (w 6= u) f

G:new edge (u;w);

G:new edge (w; u);

g

g == end if lowpt = dfsnum

lowpt [v] = Min (lowpt [v]; lowpt [w]);

g == end tree edge

else lowpt [v] = Min (lowpt [v]; dfsnum [w]); == non tree edge

g == end forall

g == end dfs

11. Because we use the function dfs in make biconnected graph before its declaration, let's

add it to the global declarations.

6

h typedefs, global variables and class declarations 11 i �

void dfs in make biconnected graph (graph &G;node v; int &dfs count ;

node arrayhbooli &reached ;node arrayhinti &dfsnum ;node arrayhinti

&lowpt ;node arrayhnodei &parent);

See also sections 14, 17, and 20.

This code is used in section 2.

12. We make H a copy of G and create bidirectional links between the vertices and edges

of G and H. Also, each edge in Gin gets a link to its copy in H and every edge of H gets

to know its reversal. More precisely, H[G[v]] = v for every node v of G and H[G[e]] = e for

every edge e ofG, and companion in H [ein] is the edge inH corresponding to the edge ein of

Gin for every edge ein of Gin . Finally, if e = (u; v) is an edge of H then reversal [e] = (v; u).

hmake H a copy of G 12 i �

GRAPHhnode; edgei H;

edge arrayhedgei companion in H (Gin);

f

node v;

forall nodes (v;G) G:assign (v;H:new node (v));

edge e;

forall edges (e;G) G:assign (e;H:new edge (G[source(e)]; G[target (e)]; e));

edge ein ;

forall edges (ein ;Gin) companion in H [ein] = G[companion in G [ein]];

g

edge arrayhedgei reversal (H);

compute correspondence (H; reversal);

This code is used in section 8.

7

13. The Planarity Test.

We are now ready for the planarity test proper. We follow [Meh84, page 95]. We �rst

compute dfsnumber s and parent s, we delete all forward edges and all reversals of tree edges,

and we reorder the adjaceny lists as described in [Meh84, page 101]. We then test the strong

planarity. The array alpha is needed for the embedding process. It records the placement

of the subsegments.

h test planarity 13 i �

node arrayhinti dfsnum (G);

node arrayhnodei parent (G; nil);

reorder (G; dfsnum ; parent);

edge arrayhinti alpha (G; 0);

f

listhinti Att ;

alpha [G:�rst adj edge (G:�rst node ())] = left ;

if (:strongly planar (G:�rst adj edge (G:�rst node ()); G;Att ; alpha ; dfsnum ; parent))

return false ;

g

This code is used in section 5.

14. We need two global constants left and right .

h typedefs, global variables and class declarations 11 i +�

const int left = 1;

const int right = 2;

15. We give the details of the procedure reorder . It �rst performs DFS to compute dfsnum ,

parent , lowpt1 and lowpt2 , and the list Del of all forward edges and all reversals of tree

edges. It then deletes the edges in Del and �nally it reorders the edges.

h auxiliary functions 9 i +�

void reorder (graph &G;node arrayhinti &dfsnum ;node arrayhnodei &parent)

f

node v;

node arrayhbooli reached (G; false);

int dfs count = 0;

listhedgei Del ;

node arrayhinti lowpt1 (G); lowpt2 (G);

dfs in reorder (Del ; G:�rst node (); dfs count ; reached ; dfsnum ; lowpt1 ; lowpt2 ; parent);

=� remove forward and reversals of tree edges �=

edge e;

forall (e;Del) G:del edge (e);

=� we now reorder adjacency lists as described in [Meh84, page 101] �=

node w;

edge arrayhinti cost (G);

8

forall edges (e;G) f

v = source (e);

w = target (e);

cost [e] = ((dfsnum [w] < dfsnum [v]) ? 2 � dfsnum [w] : ((lowpt2 [w] � dfsnum [v]) ?

2 � lowpt1 [w] : 2 � lowpt1 [w] + 1));

g

G:sort edges (cost);

g

16. We still have to give the procedure dfs in reorder . It's a bit long but standard.

h auxiliary functions 9 i +�

void dfs in reorder (listhedgei &Del ;node v; int &dfs count ;node arrayhbooli

&reached ;

node arrayhinti &dfsnum ;node arrayhinti &lowpt1 ;node arrayhinti

&lowpt2 ;

node arrayhnodei &parent)

f

node w;

edge e;

dfsnum [v] = dfs count

++

;

lowpt1 [v] = lowpt2 [v] = dfsnum [v];

reached [v] = true ;

forall adj edges (e; v) f

w = target (e);

if (:reached [w]) f

=� e is a tree edge �=

parent [w] = v;

dfs in reorder (Del ; w; dfs count ; reached ; dfsnum ; lowpt1 ; lowpt2 ; parent);

lowpt1 [v] = Min (lowpt1 [v]; lowpt1 [w]);

g == end tree edge

else f

lowpt1 [v] = Min (lowpt1 [v]; dfsnum [w]); == no e�ect for forward edges

if ((dfsnum [w] � dfsnum [v]) _ w � parent [v])

=� forward edge or reversal of tree edge �=

Del :append (e);

g == end non-tree edge

g == end forall

=� we know lowpt1 [v] at this point and now make a second pass over all adjacent edges

of v to compute lowpt2 �=

forall adj edges (e; v) f

w = target (e);

if (parent [w] � v) f

=� tree edge �=

if (lowpt1 [w] 6= lowpt1 [v]) lowpt2 [v] = Min (lowpt2 [v]; lowpt1 [w]);

lowpt2 [v] = Min (lowpt2 [v]; lowpt2 [w]);

g == end tree edge

else == all other edges

if (lowpt1 [v] 6= dfsnum [w]) lowpt2 [v] = Min (lowpt2 [v]; dfsnum [w]);

g == end forall

g == end dfs

9

17. Because we use the function dfs in reorder before its declaration, let's add it to the

global declarations.

h typedefs, global variables and class declarations 11 i +�

void dfs in reorder (listhedgei &Del ;node v; int &dfs count ;node arrayhbooli

&reached ;

node arrayhinti &dfsnum ;node arrayhinti &lowpt1 ;node arrayhinti &lowpt2 ;

node arrayhnodei &parent);

18. We now come to the heart of the planarity test: procedure strongly planar . It takes a

tree edge e0 = (x; y) and tests whether the segment S(e0) is strongly planar. If successful it

returns (in Att) the ordered list of attachments of S(e0) (excluding x); high DFS-numbers

are at the front of the list. In alpha it records the placement of the subsegments.

strongly planar operates in three phases. It �rst constructs the cycle C(e0) underlying the

segment S(e0). It then constructs the interlacing graph for the segments emanating from

the spine of the cycle. If this graph is non-bipartite then the segment S(e0) is non-planar.

If it is bipartite then the segment is planar. In this case the third phase checks whether the

segment is strongly planar and, if so, computes its list of attachments.

h auxiliary functions 9 i +�

bool strongly planar (edge e0 ;graph &G; listhinti &Att ; edge arrayhinti &alpha ;

node arrayhinti &dfsnum ;node arrayhnodei &parent)

f

h determine the cycle C(e0) 19 i;

h process all edges leaving the spine 21 i;

h test strong planarity and compute Att 25 i;

return true ;

g

19. We determine the cycle C(e0) by following �rst edges until a back edge is encountered.

wk will be the last node on the tree path and w0 is the destination of the back edge. This

agrees with the notation of [Meh84].

h determine the cycle C(e0) 19 i �

node x = source (e0);

node y = target (e0);

edge e = G:�rst adj edge (y);

node wk = y;

while (dfsnum [target (e)] > dfsnum [wk]) == e is a tree edge

f

wk = target (e);

e = G:�rst adj edge (wk);

g

node w0 = target (e);

This code is used in section 18.

10

20. The second phase of strongly planar constructs the connected components of the in-

terlacing graph of the segments emananating from the the spine of the cycle C(e0). We

call a connected component a block. For each block we store the segments comprising its

left and right side (lists Lseg and Rseg contain the edges de�ning these segments) and the

ordered list of attachments of the segments in the block; lists Latt and Ratt contain the

DFS-numbers of the attachments; high DFS-numbers are at the front of the list. Blocks are

so important that we make them a class.

We need the following operations on blocks.

The constructor takes an edge and a list of attachments and creates a block having the edge

as the only segment in its left side.

ip interchanges the two sides of a block.

head of Latt and head of Ratt return the �rst elements on Latt and Ratt respectively and

Latt empty and Ratt empty check these lists for emptyness.

left interlace checks whether the block interlaces with the left side of the topmost block of

stack S. right interlace does the same for the right side.

combine combines the block with another block Bprime by simply concatenating all lists.

clean removes the attachment w from the block B (it is guaranteed to be the �rst attachment

of B). If the block becomes empty then it records the placement of all segments in the block

in the array alpha and returns true. Otherwise it returns false.

add to Att �rst makes sure that the right side has no attachment above w0 (by ipping);

when add to Att is called at least one side has no attachment above w0 . add to Att then

adds the lists Ratt and Latt to the output list Att and records the placement of all segments

in the block in alpha . We advise the reader to only skim the rest of the section at this point

and to come back to it when the procedures are �rst used.

h typedefs, global variables and class declarations 11 i +�

class block f

private: listhinti Latt ; Ratt ; == list of attachments

listhedgei Lseg ; Rseg ; == list of segments represented by their de�ning edges

public: block(edge e; listhinti &A)

f

Lseg :append (e);

Latt :conc(A); == the other two lists are empty

g

�block() f g

void ip ()

f

listhinti ha ;

listhedgei he ;

=� we �rst interchange Latt and Ratt and then Lseg and Rseg �=

ha :conc(Ratt); Ratt :conc(Latt); Latt :conc (ha);

he :conc (Rseg); Rseg :conc(Lseg); Lseg :conc(he);

g

int head of Latt () f return Latt :head (); g

bool empty Latt () f return Latt :empty (); g

int head of Ratt () f return Ratt :head (); g

bool empty Ratt () f return Ratt :empty (); g

11

bool left interlace (stackhblock �i &S)

f =� check for interlacing with the left side of the topmost block of S �=

if (Latt :empty ()) error handler (1; "Latt is never empty");

if (:S:empty ()^:((S:top ())

~

empty Latt ())^Latt :tail () < (S:top())

~

head of Latt ())

return true ;

else return false ;

g

bool right interlace (stackhblock �i &S)

f =� check for interlacing with the right side of the topmost block of S �=

if (Latt :empty ()) error handler (1; "Latt is never empty");

if (:S:empty ()^:((S:top())

~

empty Ratt ())^Latt :tail () < (S:top())

~

head of Ratt ())

return true ;

else return false ;

g

void combine (block �&Bprime)

f =� add block Bprime to the rear of this block �=

Latt :conc(Bprime

~

Latt);

Ratt :conc(Bprime

~

Ratt);

Lseg :conc(Bprime

~

Lseg);

Rseg :conc (Bprime

~

Rseg);

delete (Bprime);

g

bool clean (int dfsnum w ; edge arrayhinti &alpha ;node arrayhinti &dfsnum)

f =� remove all attachments to w; there may be several �=

while (:Latt :empty () ^ Latt :head () � dfsnum w) Latt :pop ();

while (:Ratt :empty () ^ Ratt :head () � dfsnum w) Ratt :pop ();

if (:Latt :empty () _ :Ratt :empty ()) return false ;

=�Latt and Ratt are empty; we record the placement of the subsegments in alpha .

�=

edge e;

forall (e;Lseg) alpha [e] = left ;

forall (e;Rseg) alpha [e] = right ;

return true ;

g

void add to Att (listhinti &Att ; int dfsnum w0 ; edge arrayhinti &alpha ;

node arrayhinti &dfsnum)

f =� add the block to the rear of Att . Flip if necessary �=

if (:Ratt :empty () ^ head of Ratt () > dfsnum w0) ip ();

Att :conc (Latt);

Att :conc (Ratt);

=� This needs some explanation. Note that Ratt is either empty or fw0g. Also if

Ratt is non-empty then all subsequent sets are contained in fw0g. So we indeed

compute an ordered set of attachments. �=

edge e;

forall (e;Lseg) alpha [e] = left ;

forall (e;Rseg) alpha [e] = right ;

g

g;

12

21. We process the edges leaving the spine of S(e0) starting at node wk and working

backwards. The interlacing graph of the segments emanating from the cycle is represented

as a stack S of blocks.

h process all edges leaving the spine 21 i �

node w = wk ;

stackhblock �i S;

while (w 6= x) f

int count = 0;

forall adj edges (e; w) f

count

++

;

if (count 6= 1) == no action for �rst edge

f

h test recursively 22 i;

h update stack S of attachments 23 i;

g == end if

g == end forall

h prepare for next iteration 24 i;

w = parent [w];

g == end while

This code is used in section 18.

22. Let e be any edge leaving the spine. We need to test whether S(e) is strongly planar

and if so compute its list A of attachments. If e is a tree edge we call our procedure

recursively and if e is a back edge then S(e) is certainly strongly planar and target (e) is the

only attachment. If we detect non-planarity we return ase and free the storage allocated

for the blocks of stack S.

h test recursively 22 i �

listhinti A;

if (dfsnum [w] < dfsnum [target (e)]) f

=� tree edge �=

if (:strongly planar (e;G;A; alpha ; dfsnum ; parent)) f

while (:S:empty ()) delete (S:pop ());

return false ;

g

g

else A:append (dfsnum [target (e)]); == a back edge

This code is used in section 21.

23. The list A contains the ordered list of attachments of segment S(e). We create an new

block consisting only of segment S(e) (in its L-part) and then combine this block with the

topmost block of stack S as long as there is interlacing. We check for interlacing with the

L-part. If there is interlacing then we ip the two sides of the topmost block. If there is still

interlacing with the left side then the interlacing graph is non-bipartite and we declare the

graph non-planar (and also free the storage allocated for the blocks). Otherwise we check

for interlacing with the R-part. If there is interlacing then we combine B with the topmost

block and repeat the process with the new topmost block. If there is no interlacing then we

push block B onto S.

13

h update stack S of attachments 23 i �

block �B = new block (e; A);

while (true) f

if (B

~

left interlace(S)) (S:top ())

~

ip ();

if (B

~

left interlace(S)) f

delete (B);

while (:S:empty ()) delete (S:pop ());

return false ;

g

;

if (B

~

right interlace(S)) B

~

combine (S:pop ());

else break;

g == end while

S:push (B);

This code is used in section 21.

24. We have now processed all edges emanating from vertex w. Before starting to process

edges emanating from vertex parent [w] we remove parent [w] from the list of attachments of

the topmost block of stack S. If this block becomes empty then we pop it from the stack

and record the placement for all segments in the block in array alpha .

h prepare for next iteration 24 i �

while (:S:empty () ^ (S:top())

~

clean (dfsnum [parent [w]]; alpha ; dfsnum))

delete (S:pop ());

This code is used in section 21.

25. We test the strong planarity of the segment S(e0).

We know at this point that the interlacing graph is bipartite. Also for each of its connected

components the corresponding block on stack S contains the list of attachments below x.

Let B be the topmost block of S. If both sides of B have an attachment above w0 then

S(e0) is not strongly planar. We free the storage allocated for the blocks and return false.

Otherwise (cf. procedure add to Att) we �rst make sure that the right side of B attaches

only to w0 (if at all) and then add the two sides of B to the output list Att . We also record

the placements of the subsegments in alpha .

h test strong planarity and compute Att 25 i �

Att :clear ();

while (:S:empty ()) f

block �B = S:pop ();

if (:(B

~

empty Latt ()) ^ :(B

~

empty Ratt ()) ^ (B

~

head of Latt () >

dfsnum [w0]) ^ (B

~

head of Ratt () > dfsnum [w0])) f

delete (B);

while (:S:empty ()) delete (S:pop ());

return false ;

g

B

~

add to Att (Att ; dfsnum [w0]; alpha ; dfsnum);

delete (B);

14

g == end while

=� Let's not forget (as the book does) that w0 is an attachment of S(e0) except if w0 = x.

�=

if (w0 6= x) Att :append (dfsnum [w0]);

This code is used in section 18.

15

26. Constructing the Embedding.

We now discuss how the planarity testing algorithm can be extended so that it also computes

a planar map. Consider a segment S(e

0

) = C+S(e

1

)+ : : :+S(e

m

) consisting of cycle C and

emanating segments S(e

1

); : : : ; S(e

m

) and recall that the proofs of Lemmas 8 and 9 describe

how the embeddings of the S(e

i

)'s have to be combined to yield a canonical embedding of

S(e

0

). Our goal is to turn these proofs into an e�cient algorithm.

The proofs of Lemmas 8 and 9 demonstrate two things:

� How to test whether IG(C) is bipartite and how to construct a partition fL;Rg of its

vertex set, and

� how to construct an embedding of S(e

0

) from the embeddings of the S(e

i

)'s. This

involves ipping of embeddings as we incrementally construct the embedding of S(e

0

).

Suppose now that some benign agent told us that IG(C) were bipartite and gave us an

appropriate partition fL;Rg of its vertex set, i.e., a partition fL;Rg such that no two

segments in L and no two segments in R interlace and such that A(e

i

)\fw

1

; : : : ; w

r�1

g = ;

for any segment S(e

i

) 2 R. Here, as before, w

0

; : : : ; w

r

denotes the stem of C. Then no

ipping would ever be necessary; we can simply combine the embeddings of the S(e

i

)'s as

prescribed by the partition fL;Rg. More precisely, to construct a canonical embedding of

S(e

0

) draw the path w

0

; : : : ; w

k

(consisting of stem w

0

; : : : ; w

r

, edge e

0

= (w

r

; w

r+1

) and

spine w

r+1

; : : : ; w

k

) as a vertical upwards directed path, add edge (w

k

; w

0

), and then for i,

1 � i � m, and S(e

i

) 2 L extend the embedding of C + S(e

1

) + : : :S(e

i�1

) by glueing a

canonical embedding of S(e

i

) onto the left side of the vertical path, and for i, 1 � i � m,

and S(e

i

) 2 R extend the embedding of C + S(e

1

) + : : :+ S(e

i�1

) by glueing a reversed

canonical embedding of S(e

i

) onto the right side of the vertical path. Similarly, if the goal is

to construct a reversed canonical embedding of S(e

0

) then, if S(e

i

) 2 L, a reversed canonical

embedding of S(e

i

) is glued onto the right side of the vertical path, and if S(e

i

) 2 R, then

a canonical embedding of S(e

i

) is glued onto the left side of the vertical path.

Who is the benign agent which tells us that IG(C) is bipartite and gives us the appropriate

partition fL;Rg of the segments emanating from C = C(e

0

)? It's the call stronglyplanar(e

0

).

After all, it tests whether IG(C) is bipartite and computes a bipartition of its vertex set.

Let S(e) be a segment emanating from C and let B be the connected component of IG(C)

containing S(e). The call stronglyplanar(e

0

) computes B iteratively. The construction of B

is certainly completed when B is popped from stack S. Put S(e) into R when S(e) 2 RB at

that moment and put S(e) into L otherwise. With this extension, algorithm stronglyplanar

computes the partition fL;Rg of the segments emanating from C in linear time. We assume

for notational convenience that the partition (more precisely, the union of all partitions for

all cycles C(e

0

) encountered in the algorithm) is given as a function � : S ! fL;Rg where

S is the set of edges for which stronglyplanar is called.

We next give the algorithmic details of the embedding process. We �rst use procedure

stronglyplanar to compute the mapping �. We then use a procedure embedding to actu-

ally compute an embedding. The procedure embedding takes two parameters: an edge e

0

and a ag t 2 fL;Rg. A call embedding(e

0

; L) computes a canonical embedding of S(e

0

)

and a call embedding(e

0

; R) computes a reversed canonical embedding of S(e

0

). The call

embedding((1; 2); L) embeds the entire graph.

The embedding of S(e

0

) computed by embedding(e

0

; t) is represented in the following non-

standard way:

16

1. For the vertices v 2 V (e

0

) we use the standard representation, i.e., the cyclic list of the

incident edges corresponding to the clockwise ordering of the edges in the embedding.

2. For the vertices in the stem we use a non-standard representation. For each vertex

w

i

2 fw

0

; : : : ; w

r

g let the lists AL(w

i

) and AR(w

i

) be such that the catenation of

(w

i

; w

i+1

), AR(w

i

), (w

i

; w

i�1

), and AL(w

i

) corresponds to the clockwise ordering of

the edges incident to w

i

in the embedding. Here, w

�1

= w

k

. Note that AR(w

i

) = ;

for 1 � i < r if t = L, and AL(w

i

) = ; for 1 � i < r, if t = R. The lists AL(w

i

),

AR(w

i

), 0 � i � r, are returned in an implicit way: AL(w

r

) and AR(w

r

) are returned

as the list T = AL(w

r

); (w

r

; w

r+1

), AR(w

r

) and the other lists are returned as the list

A = AR(w

r�1

); : : : ; AR(w

0

); (w

0

; w

k

); AL(w

0

); : : : ; AL(w

r�1

), cf. Figure 1.

The procedure embedding has the same structure as the procedure stronglyplanar and is

given in Program 1 on page 18. It �rst constructs the stem and the spine (line (1)) of cycle

C(e

0

), then walks down the spine (lines (3) to (14)), and �nally computes the lists T and A

it wants to return (lines (15) and (16)).

We �rst discuss the walk down the spine. Suppose that the walk has reached vertex w

j

. We

�rst recursively process the edges emanating from w

j

(lines (4) to (10)), and then compute

the cyclic adjacency list of vertex w

j

and prepare for the next iteration (lines (11) to (13)).

We discuss lines (4) to (10) �rst. In general, some number of edges emanating from w

j

and

all edges incident to vertices w

l

with l > j will have been processed already. In agreement

with our previous notation call the processed edges e

1

; : : : ; e

i�1

. We claim that the following

statement is an invariant of the loop (4) to (10): T concatenated with (w

j

; w

j�1

) is the cyclic

adjacency list of vertex w

j

in the embedding of C+S(e

1

)+: : :+S(e

i�1

), and AL and AR are

the catenation of lists AL(w

0

); : : : ; AL(w

j�1

) and AR(w

j�1

); : : : ; AR(w

0

) respectively where

(w

l

; w

l+1

), AR(w

l

); (w

l

; w

l�1

); AL(w

l

) is the cyclic adjacency list of vertex w

l

, 0 � l � j�1,

in the embedding ofC+S(e

0

)+: : :+S(e

i�1

). The lists T ,AL, andAR are certainly initialized

correctly in line (2). Assume now that we process edge e

0

= e

i

emanating from w

j

. The ag

�(e

0

) indicates what kind of embedding of S(e

i

) is needed to build a canonical embedding

of S(e

0

); the opposite kind of embedding of S(e

i

) is needed to build a reversed canonical

embedding of S(e

0

). So the required kind is given by t � �(e

0

), where L � L = R � R = L

and L � R = R � L = R. The call embedding(e

0

; t � �(e

0

)) computes the cyclic adjacency

lists of the vertices in V (e

0

) and returns lists T

0

and A

0

as de�ned above. If S(e

i

) has to be

glued to the left side of the vertical path w

0

; : : : ; w

k

, i.e., if t = �(e

0

) then we append T

0

to

the front of T and A

0

to the end of AL, cf. Figure 2. Analogously, if S(e

i

) has to be glued

to the right side of the path w

0

; : : : ; w

k

, i.e., if t 6= �(e

0

), then we append T

0

to the end of

T and A

0

to the front of AR. This clearly maintains the invariant.

Suppose now that we have processed all edges emanating from w

j

. Then (w

j

; w

j�1

) con-

catenated with T is the cyclic adjacency list of vertex w

j

(line (11)).

We next prepare for the treatment of vertex w

j�1

. Let T

0

and T

00

be the list of darts incident

to w

j�1

from the left and from the right respectively and having their other endpoint in an

already embedded segment. List T

0

is a su�x of AL and list T

00

is a pre�x of AR. The

catenation of T

0

; (w

j�1

; w

j

), T

00

, and (w

j�1

; w

j�2

) is the current clockwise adjacency list

of vertex w

j�1

. Thus lines (12) and (13) correctly initialize AL, AR, and T for the next

iteration.

Suppose now that all edges emanating from the spine of C(e

0

) have been processed, i.e.,

control reaches line (15). At this point, list T is the ordered list of darts incident to w

r

(except (w

r

; w

r�1

)) and the two lists AL and AR are the ordered list of darts incident to

the two sides of the stem of C(e

0

). Thus T and the catenation of AR; (w

0

; w

k

), and AL are

the two components of the output of embedding(e

0

; t). We summarize in

17

(0) procedure embedding(e

0

: edge, t: fL;Rg)

(� computes an embedding of S(e

0

), e

0

= (x; y), as described in the text;

it returns the lists T and A de�ned in the text �)

(1) �nd the spine of segment S(e

0

) by starting in node y and always

take the �rst edge of every adjacency list until a back edge is

encountered. This back edge leads to node w

0

= lowpt[y].

Let w

0

; : : : ; w

r

be the tree path from w

0

to x = w

r

and

let w

r+1

= y; : : : ; w

k

be the spine constructed above.

(2) AL AR empty list of darts;

T (w

k

; w

0

); (� a list of darts �)

(3) for j from k downto r + 1

(4) do for all edges e

0

(except the �rst) emanating from w

j

(5) do (T

0

; A

0

) embedding(e

0

; t� �(e

0

))

(6) if t = �(e

0

)

(7) then T T

0

conc T ; AL AL conc A

0

(8) else T T conc T

0

; AR A

0

conc AR

(9) �

(10) od

(11) output (w

j

; w

j�1

) conc T ; (� the cyclic adjacency list of vertex w

j

�)

(12) let AL = AL

0

conc T

0

and AR = T

00

conc AR

0

where T

0

and T

00

contain all darts incident to w

j�1

;

(13) AL AL

0

; AR AR

0

; T T

0

conc (w

j�1

; w

j

) conc T

00

(14) od

(15) A AR conc (w

0

; w

k

) conc AL;

(16) return T and A

(17) end

Program 1

Theorem 1 Let G = (V;E) be a planar graph. Then G can be turned into a planar map

(G; �) in linear time.

In our implementation we follow the book except in three minor points. G has only one

directed version of each edge but H has both. In the embedding phase we need both

directions and therefore construct the embedding of H and later translate it back to Gin .

Secondly, we do not construct the embedding of H vertex by vertex but in one shot. To

that e�ect we compute a labelling sort num of the edges of H and later sort the edges.

Thirdly, the book makes reference to edges (w

i�1

; w

i

) and their reversals. To make these

edges available we compute an array tree edge into that contains for each node the incoming

tree edge.

We �nally want to remark on our convention for drawing lists. In Figures 1 and 2 the arrows

indicate the end (!!!) of the lists.

18

AR(w

r�1

)

AR(w

r�2

)

AR(w

1

)

AR(w

0

)

AL(w

r

)

AL(w

r�1

)

AL(w

r�2

)

AL(w

1

)

AL(w

0

)

A

w

0

w

1

w

r�1

w

r�1

w

r

w

k

T

w

r+1

AR(w

r

)

Figure 1: A call embedding (e

0

; t) returns lists T and A.

19

AL

T

AL

AR

A

0

T

S(e

0

)

T

0

w

j�1

w

j

w

l

w

l

w

j

T

0

A

0

w

j�1

AR

Figure 2: Glueing S(e

0

) to the left or right side of the path w

0

; : : : ; w

k

respectively.

20

h construct embedding 26 i �

f

listhedgei T ; A; == lists of edges of H

int cur nr = 0;

edge arrayhinti sort num (H);

node arrayhedgei tree edge into (G);

embedding (G:�rst adj edge (G:�rst node ()); left ; G; alpha ; dfsnum ; T ; A; cur nr ;

sort num ; tree edge into ; parent ; reversal);

=� T contains all edges incident to the �rst node except the cycle edge into it. That

edge comprises A �=

T :conc (A);

edge e;

forall (e; T) sort num [e] = cur nr

++

;

edge arrayhinti sort Gin (Gin);

f

edge ein ;

forall edges (ein ;Gin) sort Gin [ein] = sort num [companion in H [ein]];

g

Gin :sort edges (sort Gin);

g

This code is used in section 5.

27. It remains to describe procedure embedding .

h auxiliary functions 9 i +�

void embedding (edge e0 ; int t;GRAPHhnode; edgei &G; edge arrayhinti &alpha ;

node arrayhinti &dfsnum ; listhedgei &T ; listhedgei &A; int &cur nr ;

edge arrayhinti &sort num ;node arrayhedgei &tree edge into ;

node arrayhnodei &parent ; edge arrayhedgei &reversal)

f

h embed: determine the cycle C(e0) 28 i;

h process the subsegments 29 i;

h prepare the output 33 i;

g

28. We start by determining the spine cycle. This is precisley as in strongly planar .

We also record for the vertices w

r+1

, : : :, w

k

, and w

0

the incoming cycle edge either in

tree edge into or in the local variable back edge into w0 . This is line (1) of Program1.

h embed: determine the cycle C(e0) 28 i �

node x = source (e0);

node y = target (e0);

tree edge into [y] = e0 ;

edge e = G:�rst adj edge (y);

node wk = y;

21

while (dfsnum [target (e)] > dfsnum [wk]) == e is a tree edge

f

wk = target (e);

tree edge into [wk] = e;

e = G:�rst adj edge (wk);

g

node w0 = target (e);

edge back edge into w0 = e;

This code is used in section 27.

29. Lines (2) to (14).

h process the subsegments 29 i �

node w = wk ;

listhedgei Al ; Ar ;

listhedgei Tprime ; Aprime ;

T :clear ();

T :append (G[e]); == e = (wk ;w0) at this point, line (2)

while (w 6= x) f

int count = 0;

forall adj edges (e; w) f

count

++

;

if (count 6= 1) == no action for �rst edge

f

h embed recursively 30 i;

h update lists T , Al , and Ar 31 i;

g == end if

g == end forall

h compute w's adjacency list and prepare for next iteration 32 i;

w = parent [w];

g == end while

This code is used in section 27.

30. Line (5). The book does not distinguish between tree and back edges but we do here.

h embed recursively 30 i �

if (dfsnum [w] < dfsnum [target (e)]) f

=� tree edge �=

int tprime = ((t � alpha [e]) ? left : right);

embedding (e; tprime ; G; alpha ; dfsnum ;Tprime ;Aprime ; cur nr ; sort num ;

tree edge into ; parent ; reversal);

g

else f

=� back edge �=

Tprime :append (G[e]); == e

Aprime :append (reversal [G[e]]); == reversal of e

g

This code is used in section 29.

22

31. Lines (6) to (9).

h update lists T , Al , and Ar 31 i �

if (t � alpha [e]) f

Tprime :conc(T);

T :conc (Tprime); == T = Tprime conc T

Al :conc (Aprime); ==Al = Al conc Aprime

g

else f

T :conc (Tprime); == T = T conc Tprime

Aprime :conc(Ar);

Ar :conc (Aprime); == Ar = Aprime conc Ar

g

This code is used in section 29.

32. Lines (11) to (13).

h compute w's adjacency list and prepare for next iteration 32 i �

T :append (reversal [G[tree edge into [w]]]); == (w

j�1

; w

j

)

forall (e; T) sort num [e] = cur nr

++

;

=� w's adjacency list is now computed; we clear T and prepare for the next iteration by

moving all darts incident to parent [w] from Al and Ar to T . These darts are at the rear

end of Al and at the front end of Ar �=

T :clear ();

while (:Al :empty () ^ source (Al :tail ()) � G[parent [w]])

== parent [w] is in G, Al :tail in H

f

T :push (Al :Pop ()); ==Pop removes from the rear

g

T :append (G[tree edge into [w]]); == push would be equivalent

while (:Ar :empty () ^ source (Ar :head ()) � G[parent [w]]) ==

f

T :append (Ar :pop ()); == pop removes from the front

g

This code is used in section 29.

33. Line (15). Concatenate Ar , (w

0

; w

r

), and Al .

h prepare the output 33 i �

A:clear ();

A:conc (Ar);

A:append (reversal [G[back edge into w0]]);

A:conc (Al);

This code is used in section 27.

23

34. E�ciency.

Under LEDA 3.0 the space requirement of the �rst version of planar is approximately

160(n+m)+100�m Bytes, where n andm denote the number of nodes and edges respectively

and � is the fraction of edges in the input graph that do not have their reversal in the input

graph. For the pseudo-random planar graphs generated in the demo we have � = 0 and

m = 4n and hence the space requirement is about 800n Bytes. The second version needs an

additional 54n+ 66m Bytes.

The running time of planar is about 50 times the running time of STRONG_COMPONENTS. On

a 50 MIPS SPARC10 workstation the planarity of a planar graph with 16000 nodes and

30000 edges (� = 0) is tested in about 10 seconds. It takes 5.4 seconds to make the graph

bidirected and biconnected, about 3.9 seconds to test its planarity, and another 6.1 seconds

to construct an embedding. The space requirement is about 15 MByte.

24

35. A Demo.

The demo allows the user to either interactively construct a graph using LEDA's graph

editor or to construct a random graph, or to construct a \pseudo-random" planar graph

(the graph de�ned by an arrangement of random line segments). The graph is then tested

for planarity. If the graph is planar a straight-line embedding is output. If the graph is

non-planar a Kuratowski subgraph is highlighted.

The demo proceeds in cycles. In each cycle we �rst clear the graphics window W and the

graph G and then give the user the choice of a new input graph.

h demo.c 35 i �

h includes 3 i;

h procedure to draw graphs 37 i;

main ()

f

h initiation and declarations 38 i;

while (true) f

h select graph 39 i;

h test graph for planarity and show output 40 i;

h reset window 41 i;

g

return 0;

g

36. We need to include planar :h and various parts of LEDA.

h includes 3 i +�

#include "planar.h"

#include <LEDA/graph.h>

#include <LEDA/graph_alg.h>

#include <LEDA/window.h>

#include <LEDA/graph_edit.h>

37. We need a simple procedure to draw a graph in a graphics window. The numbering

of the nodes is optional.

h procedure to draw graphs 37 i �

void draw graph (const GRAPHhpoint; inti &G;window &W;bool

numbering = false)

f

node v;

edge e;

int i = 0;

forall edges (e;G) W:draw edge (G[source (e)]; G[target (e)]; blue);

if (numbering)

forall nodes (v;G) W:draw int node (G[v]; i

++

; red);

else

forall nodes (v;G) W:draw �lled node (G[v]; red);

g

This code is used in section 35.

25

38. We give the user a short explanation of the demo and declare some variables.

h initiation and declarations 38 i �

panel P ;

P:text item ("This demo illustrates planarity testing and planar straight\

-line");

P:text item ("embedding. You have two ways to construct a graph: either i\

nteractively");

P:text item ("using the LEDA graph editor or by calling one of two graph \

generators.");

P:text item ("The first generator constructs a random graph with a certain");

P:text item ("number of nodes and edges (you will be asked how many) and \

the ");

P:text item ("second generator constructs a planar graph by intersecting\

 a certain");

P:text item ("number of random line segments in the unit square (you will\

 be asked how many).");

P:text item (" ");

P:text item ("The graph is displayed and then tested for planarity.");

P:text item ("If the graph is non-planar a Kuratowski subgraph is highlig\

hted.");

P:text item ("If the graph is planar, a straight-line drawing is produced.");

P:button ("continue");

P:open ();

window W ;

GRAPHhpoint; inti G;

node v; w;

edge e;

int n = 250;

int m = 250;

const double pi = 3:14;

panel P1("PLANARITY TEST");

P1:int item ("|V| = "; n; 0; 500);

P1:int item ("|E| = ";m; 0; 500);

P1:button ("edit");

P1:button ("random");

P1:button ("planar");

P1:button ("quit");

P1:text item (" ");

P1:text item ("The first slider asks for the number n of nodes and");

P1:text item ("the second slider asks for the number m of edges.");

P1:text item ("If you select the random input button then a graph with");

P1:text item ("that number of nodes and edges is constructed, if you");

P1:text item ("select the planar input button then 2.5 times square-root o\

f n");

P1:text item ("random line segments are chosen and intersected to yield");

P1:text item ("a planar graph with about n nodes, and if you select the");

P1:text item ("edit button then the graph editor is called.");

P1:text item (" ");

This code is used in section 35.

26

39. We display the panel P1 until the user makes his choice. Then we construct the

appropriate graph.

h select graph 39 i �

int inp = P1:open (W); == P1 is displayed until a button is pressed

if (inp � 3) break; == quit button pressed

W:init (0; 1000; 0);

W:set node width (5);

switch (inp) f

case 0:

f == graph editor

W:set node width (10);

G:clear ();

graph edit (W;G; false);

break;

g

case 1:

f == random graph

G:clear ();

random graph (G;n;m);

=� eliminate parallel edges and self-loops �=

eliminate parallel edges (G);

listhedgei Del = G:all edges ();

forall (e;Del)

if (G:source(e) � G:target (e)) G:del edge (e);

=� draw the graph with its nodes on a circle �=

oat ang = 0;

forall nodes (v;G) f

G[v] = point(500 + 400 � sin (ang); 500 + 400 � cos (ang));

ang += 2 � pi =n;

g

draw graph (G;W);

break;

g

case 2:

f == pseudo-random planar graph

node arrayhdoublei xcoord (G);

node arrayhdoublei ycoord (G);

G:clear ();

random planar graph (G; xcoord ; ycoord ; n);

forall nodes (v;G) G[v] = point(1000 � xcoord [v]; 900 � ycoord [v]);

draw graph (G;W);

break;

g

g

This code is used in section 35.

40. We test the planarity of our graph G using our procedure planar .

27

h test graph for planarity and show output 40 i �

if (PLANAR(G; false)) f

if (G:number of nodes () < 4)

W:message ("That's an insult: Every graph with |V| <= 4 is planar");

else f

W:message ("G is planar. I compute a straight-line embedding ...");

=� we �rst make G bidirected. We remember the edges added in n edges �=

node arrayhinti nr (G);

edge arrayhinti cost (G);

int cur nr = 0;

int n = G:number of nodes ();

node v;

edge e;

forall nodes (v;G) nr [v] = cur nr

++

;

forall edges (e;G)

cost [e] = ((nr [source (e)] < nr [target(e)]) ? n � nr [source(e)] + nr [target (e)] :

n � nr [target (e)] + nr [source (e)]);

G:sort edges (cost);

listhedgei L = G:all edges ();

listhedgei n edges ;

while (:L:empty ()) f

e = L:pop ();

if (:L:empty () ^ source (e) � target (L:head ()) ^ target (e) � source (L:head ()))

L:pop ();

else f

n edges :append (G:new edge (target (e); source(e)));

g

g

Make biconnected graph (G);

PLANAR(G; true);

node arrayhinti xcoord (G); ycoord (G);

STRAIGHT_LINE_EMBEDDING(G; xcoord ; ycoord);

oat f = 900:0=(2 �G:number of nodes ());

forall nodes (v;G) G[v] = point(f � xcoord [v] + 30; 2 � f � ycoord [v] + 30);

forall (e; n edges) G:del edge (e);

W:clear ();

if (inp � 0) draw graph (G;W; true); == with node numbering

else draw graph (G;W);

g

g

else f

W:message ("Graph is not planar. I compute the Kuratowski subgraph ...");

listhedgei L;

PLANAR(G;L; false);

node arrayhinti deg (G; 0);

int lw = W:set line width (3);

edge e;

forall (e; L) f

28

node v = source (e);

node w = target (e);

deg [v]

++

;

deg [w]

++

;

W:draw edge (G[v]; G[w]);

g

int i = 1;

=� We highlight the Kuratowski subgraph. Nodes with degree are drawn black. The

nodes with larger degree are shown green and numbered from 1 to 6 �=

forall nodes (v;G) f

if (deg [v] � 2) W:draw �lled node (G[v]; black);

if (deg [v] > 2) f

int nw =W:set node width (10);

W:draw int node (G[v]; i

++

; green);

W:set node width (nw);

g

g

W:set line width (lw);

g

This code is used in section 35.

41. We reset the graphics window.

h reset window 41 i �

W:set show coordinates (false);

W:set frame label ("click any button to continue");

W:read mouse (); == wait for a click

W:reset frame label ();

W:set show coordinates (true);

This code is used in section 35.

29

42. Some Theory.

We give the theory underlying the planarity test as described in [Meh84, section IV.10].

Our next topic is a linear time planarity testing algorithm. Since a graph is planar i� its

biconnected components are (cf. [Meh84, section IV.6] for a linear time algorithm to compute

the biconnected components of a graph) we can restrict our attention to biconnected graphs.

Also we can con�ne ourselves to graphs with m � 3n� 6. The planarity testing algorithm

is an extension of depth-�rst-search. In the sequel we will always identify nodes with their

DFS-number. A DFS on the directed version of G = (V;E) partitions the darts of G into

the sets T , F and B. For the planarity testing algorithm we consider the directed graph

(V; T [F

�1

) and call the edges in T tree edges and the edges in F

�1

back edges. Also, we

write B instead of F

�1

. Note that this notation di�ers slightly from the one used in [Meh84,

section IV.5]. There, reversals of tree edges were also called back edges.

We will now describe the idea underlying the planarity Algorithm. Let C be any cycle

starting in the root of the dfs-tree and consisting of tree edges followed by one back edge.

Such a cycle exists since G is assumed to be biconnected. For every edge e = (x; y) emanating

from the cycle, i.e., x lies on C but e is not an edge of the cycle we consider the segment S(e)

de�ned as follows. If e is a back edge then S(e) is the cycle formed by the tree path from y

to x together with the edge e. If e is a tree edge then S(e) consists of the subgraph spanned

by the set V (e) = fw; y

�

!

T

wg of nodes reachable from y by tree edges, all back edges

starting in a node in V (e) and ending in a node on cycle C (which is then an ancestor of x),

and the tree path from the lowest attachment of S(e) to cycle C to node y.

Example: In Figure 3 the cycle C consists of the tree path from node 1 to node 9 and the

back edge (9; 1). The four edges (9; 10), (7; 5), (7; 13) and (6; 4) emanate from the cycle. The

segment S((9; 10)) consists of the subgraph spanned by f10; 11; 12g, the back edges (11; 8),

(11; 7) and (12; 5), and the tree path from 5 to 10. The segment S((9; 10)) is attached to

the cycle in the nodes 9, 8, 7 and 5.

We test the planarity of G in a two step process. In the �rst step we test whether C +S(e),

the graph consisting of cycle C and segment S(e), is planar for every edge e emanating

from cycle C. This is equivalent to testing whether the segment S(e) has a strongly planar

embedding, i.e., an embedding where all attachments of S(e) to the cycle C lie on the

boundary of the outer face. In order to test the strong planarity of S(e) we will use the

algorithm recursively. Suppose now that the segments S(e) are all strongly planar. We then

try in a second step to merge the embeddings found in step one. The merging process has

to decide for each segment S(e) whether it should be placed inside or outside the cycle C.

For this purpose, it only needs to take into account the set of attachments of the di�erent

segments emanating from C and their interaction. In our example, the segments S((7; 5))

and S((6; 4)) have to be embedded on di�erent sides ofC because these segments \interlace".

We will next describe the theory behind both steps in detail. With an edge e = (x; y)

we associate a cycle C(e) and a segment S(e) as follows. If e is a back edge then C(e)

and S(e) consist of the tree path from y to x and the edge e. If e is a tree edge then let

V (e) = fw; y

�

!

T

wg be the set of tree successors of y and let lowpt[y] = minfz; (w; z) is a

back edge and w 2 V (e)g be the lowest endpoint of a back edge starting in V (e). The cycle

C(e) consists of a tree path from lowpt[y] to w, where w 2 V (e) and (w; lowpt[y]) 2 B is

such a back edge. The segment S(e) consists of C(e), the subgraph spanned by V (e) and all

back edges starting in a node in V (e). Note that the segment S(e) is uniquely de�ned but

that there may be several choices for the cycle C(e). We divide the tree path underlying the

30

Figure 3: A dfs-tree of a planar graph

cycle C(e) into two parts, its stem and its spine. The stem consists of the part ending in x.

The spine is empty if e is a back edge and it is the part starting in y if e is a tree edge.

In our example, the cycle C((9; 10)) consists of the tree path from 5 to 12 followed by the

back edge (12; 5). The stem is the tree path from 5 to 9 and the spine is the tree path from 10

to 12. The cycle C((1; 2)) consists of the tree path from 1 to 9 and the back edge (9; 1). Its

stem is the node 1.

A segment S(e) is called strongly planar if there is an embedding of S(e) such that the

stem of the cycle C(e) borders the outer face. An embedding with this property is called

a strongly planar embedding of S(e). Let w

0

; w

1

; : : : ; w

r

with e = (w

r

; y) be the stem

of C(e). A strongly planar embedding of S(e) is called canonical (reversed canonical) if

for all i, 0 < i < r, the edge fw

i

; w

i+1

g immediately follows (precedes) the edge fw

i

; w

i�1

g

in the counterclockwise ordering of edges incident to w

i

. Note that every strongly planar

embedding is either canonical or reversed canonical.

In Figure 3 the embeddings of segments S((9; 10)) and S((7; 13)) are both strongly pla-

nar, the embedding of S((7; 13)) is canonical and the embedding of S((9; 10)) is reversed

canonical.

Lemma 2 Let G be a biconnected graph and let e be the unique tree edge starting in the

root of the dfs-tree. Then S(e) = G and G is planar i� S(e) is strongly planar.

31

Proof: Let e = (1; 2) be the unique tree edge incident to node 1. Then V (e) = f2; : : : ; ng

and hence S(e) = G. Also, the stem of C(e) consists only of vertex 1 and hence S(e) is

strongly planar i� it is planar.

Lemma 2 shows that we can con�ne ourselves to a test of strong planarity. Now let e

0

be an edge and C = C(e

0

) be the cycle associated with e

0

. An edge e = (x; y) is said

to emanate from C if x lies on the spine of C but e does not belong to C. Clearly, if e

emanates from C(e

0

) then the stem of C(e) is part of the tree path underlying C(e

0

) and

S(e) is a subgraph of S(e

0

). Also, S(e

0

) is the union of C(e

0

) and the segments S(e), where

e emanates from C(e

0

). The basis of step 1 of the planarity algorithm is the following

Lemma 3 Let C = C(e

0

) be a cycle and let e emanate from C. Then C + S(e) is planar

i� S(e) is strongly planar.

Proof: \)": Consider any embedding of C + S(e). The cycle C divides the plane into a

bounded and an unbounded region. We may assume w.l.o.g. that the edge e = (x; y) lies

in the bounded region. Hence all nodes in V (e) must lie in the bounded region since every

node in V (e) is reachable from y without passing through a node of C. If we remove the

part of cycle C between x and lowpt[y] then we have the desired strongly planar embedding

of S(e).

\(": Given a strongly planar embedding of S(e) we can clearly add the missing part of C

to obtain an embedding of C + S(e).

For step 2 of the algorithm we need the concepts of attachments and interlacing. Let

C = C(e

0

) and let e = (x; y) emanate from C. The set A(e) of attachments of segment S(e)

to cycle C is de�ned to be the set fx; yg if e is a back edge and the set fxg[fz; (w; z) is a

back edge, w 2 V (e) and z =2 V (e)g if e is a tree edge. Two segments S(e) and S(e

0

) where

e and e

0

emanate from C are said to interlace if either there are nodes x < y < z < u

on cycle C such that x; z 2 A(e) and y; u 2 A(e

0

) or A(e) and A(e

0

) have three points in

common (cf. Fig. 4; note that the segments shown may have further attachments). Clearly,

Figure 4: Interlacing segments

interlacing segments cannot be embedded on the same side of C. The interlacing graph

IG(C) with respect to cycle C is de�ned as follows: The nodes of IG(C) are the segments

32

S(e) where e emanates from C. Also, S(e) and S(e

0

) are connected by an edge i� S(e) and

S(e

0

) interlace. The interlacing graph for the cycle C((1; 2)) of Figure 3 is shown in Figure 5.

This graph is bipartite with segments S

1

and S

3

forming one of the sides of the bipartite

graph. Note also that the planar embedding of the graph of Figure 3 has S

1

and S

3

on one

side of C and S

2

and S

4

on the other side of C.

Figure 5: Interlacing graph

Lemma 4 Let e

0

be a tree edge, let C = C(e

0

) = w

0

!

T

w

1

!

T

� � �!

T

w

k

!

B

w

0

and let e

0

=

(w

r

; w

r+1

). Let e

1

; : : : ; e

m

be the edges leaving the spine of C, i.e., they leave the cycle in

nodes w

j

, r < j � k. Then S(e

0

) is planar i� S(e

i

) is strongly planar for every i, 1 � i � m,

and IG(C) is bipartite, i.e., there is a partition L;R of fS(e

1

); : : : ; S(e

m

)g such that no two

segments in L resp. R interlace. Moreover, segment S(e

0

) is strongly planar i� in addition

for every connected component B of IG(C): either fw

1

; : : : ; w

r�1

g\

S

S(e)2B\L

A(e) = ; or

fw

1

; : : : ; w

r�1

g \

S

S(e)2B\R

A(e) = ;.

Proof: \)": Note �rst that S(e

0

) = C + S(e

1

) + � � �+ S(e

m

). Hence, if S(e

0

) is planar

then C + S(e

i

), 1 � i � m, is planar and hence S(e

i

) is strongly planar by Lemma 3.

Consider any planar embedding of S(e

0

). Let L = fS(e

i

); S(e

i

) is embedded inside cycle

C, 1 � i � mg and let R be the remaining segments. Then no two segments in L resp. R

interlace because interlacing segments have to be embedded on di�erent sides of C. Hence

IG(C) is bipartite. Finally, assume that S(e

0

) is strongly planar. Consider any strongly

planar embedding of S(e

0

), i.e., tree path w

0

!w

1

!w

2

!� � �!w

r

borders the outer face.

Then no segment S(e

i

), 1 � i � m, which is embedded outside C can have an attachment

in fw

1

; : : : ; w

r�1

g and hence fw

1

; : : : ; w

r�1

g \

S

S(e)2R

A(e) = ;.

\(": The proof of this direction is postponed. It will be given in Lemma 9.

Lemma 4 suggests an algorithm for testing strong planarity. In order to test strong planarity

of a segment S(e

0

), test strong planarity of the segments S(e

i

), 1 � i � m, construct the

interlacing graph and test for the conditions stated in Lemma 4. Unfortunately, the size

of the interlacing graph might be quadratic and therefore we cannot a�ord to construct

the interlacing graph explicitly. Rather, we compute the connected components (and their

partition into left and right side) of IG(C) and an embedding of S(e

0

) = C + S(e

1

) + � � �+

S(e

m

) by considering segment by segment. We start with cycle C and then try to add

segment by segment. We will consider the segments S(e

1

); : : : ; S(e

m

) in an order such that

adding a canonical embedding of S(e

i+1

) to an embedding of C + S(e

1

) + � � �+ S(e

i

) can

always be achieved (if at all) in a particularly simple way, namely by moving some of the

S(e

l

), l � i, to the other side of C and then adding S(e

i+1

) inside C and close to the tree path

underlying C, cf. Figure 10. In that �gure the segment S(e

i+1

) emanates from w

j

, e

i+1

=

(w

j

; y) and z = minA(e

i+1

) is the lowest attachment of S(e

i+1

). Also, there is a face F

inside C such that the tree path from z to w

j

is on the boundary of F . Clearly, a canonical

33

embedding of S(e

i+1

) can be added inside F to the embedding of C + S(e

1

)+ � � �+ S(e

i

) in

this case.

In order to follow this embedding strategy we should �rst consider all segments emanating

from w

k

, then all segments emanating from w

k�1

, : : : . For any node w

j

we consider the

segments emanating from w

j

in the order of lowest attachment, considering the segments

with lower attachment �rst. Among the segments emanating from w

j

and having the same

lowest attachment, say w

i

with i < j, we �rst consider the segments having only w

i

and w

j

as attachments and then all the others (there can be at most two segments of the latter kind

because any two such segments interlace). We will now show how to compute this ordering

on the edges emanating from C. We do so by showing how to reorder the adjacency list of

each node such that the order of the adjacency list corresponds to the order de�ned above.

For every node v let

lowpt [v] = min(fvg [fz; v

�

!

T

w!

B

z for some w 2 V g); and

lowpt2 [v] = min(fvg [fz; v

�

!

T

w!

B

z for some w 2 V and z 6= lowpt[v]g):

lowpt [v] is the lowest node reachable from v by a sequence of tree edges followed by one back

edge. Since G is assumed to be biconnected we have lowpt [v] < v for all v 6= 1. lowpt2 [v] is

the second lowest node reachable from v in this way, if there is one. The default value for

both functions is v. The functions lowpt and lowpt2 are easily computed during dfs since

lowpt[v] = min(fvg [fz; (v; z) 2 Bg [flowpt[w]; (v; w) 2 Tg)

and

lowpt2 [v] = min(fvg [fz; (v; z) 2 B and z 6= lowpt[v]g

[flowpt[w]; (v; w) 2 T; lowpt[w] 6= lowpt[v]g

[flowpt2 [w]; (v; w) 2 Tg):

These equations suggest to compute lowpt and lowpt2 by two separate applications of dfs. In

the �rst application of dfs one computes lowpt and in the second application one computes

lowpt2 using lowpt. We leave it to the reader to show that one dfs su�ces to compute both

functions. For an edge e = (w

j

; y) let

lowpt[e] = if e 2 B then y else lowpt[y] fi:

Then lowpt [e] = minA(e) and jA(e)j � 3 i� e 2 T and lowpt2 [y] < w

j

for any edge e =

(w

j

; y) emanating from the cycle C. We want to reorder the adjacency list of w

j

such

that an edge e = (w

j

; y) is before an edge e

0

= (w

j

; y

0

) if either lowpt [e] < lowpt[e

0

] or

lowpt [e] = lowpt [e

0

] and jA(e)j = 2 and jA(e

0

)j � 3. Let c : E ! IN be de�ned by

c((v; w)) =

8

<

:

2 �w if (v; w) 2 B;

2 � lowpt [w] if (v; w) 2 T and lowpt2 [w] � v;

2 � lowpt [w] + 1 if (v; w) 2 T and lowpt2 [w] < v.

Then reordering an adjacency list according to non-decreasing values of c yields the desired

ordering of outgoing edges. We can do the reordering in linear time by bucket sort. Have

2n initially empty buckets. Step through the edges of G one by one and throw edge (v; w)

into bucket c((v; w)). After having done so we go through the buckets in decreasing order.

When edge (v; w) is encountered we add (v; w) to the front of v's adjacency list.

34

In our example, the edges out of node 7 are ordered (7; 8); (7; 13); (7; 5) and the edges out

of node 11 are ordered (11; 12); (11; 7); (11;8).

From now on, we assume that adjacency lists are reordered in the way described above. The

reordering has the additional property that a cycle C(e

0

) for a tree edge e

0

= (x; y) is very

easy to �nd. We start at node y and construct a path by always taking the �rst edge out

of each node until a back edge is encountered. This path is a spine of C(e

0

), as is easily

veri�ed.

We now resume the discussion of how to deal with the interlacing graph. As in Lemma 4,

C = C(e

0

),

C = w

0

!

T

w

1

!

T

� � �!

T

w

k

!

B

w

0

and e

0

= (w

r

; w

r+1

) for some r. Let e

1

; : : : ; e

m

be the edges leaving the spine of C in

order , i.e., the edges leaving w

k

are considered �rst and for each w

j

the edges are ordered

as described above. Let IG

i

(C) be the subgraph of IG(C) spanned by S(e

1

); : : : ; S(e

i

). If

IG

i

(C) is non-bipartite then so is IG(C) and hence S(e

0

) is not strongly planar. If IG

i

(C) is

bipartite then every connected component (= block) of IG

i

(C) is. If B is a block of IG

i

(C)

then we use LB , RB to denote the partition of B induced by the bipartite graph.

Our next goal is to describe how the blocks of IG

i+1

(C) can be obtained from the blocks of

IG

i

(C). Let e

i+1

= (w

j

; y). For every block B of IG

i

(C) let

ALB = fw

h

; 0 � h < j and w

h

2 A(e) for some S(e) 2 LBg

be the set of attachments (below w

j

) of segments in LB . ARB is de�ned similarly.

Lemma 5 If IG

i

(C) is bipartite, then:

a) There is some ordering of the blocks of IG

i

(C), say B

1

; B

2

; : : : ; B

h

; B

h+1

; : : : such that

max(ALB

l

[ARB

l

) � min(ALB

l+1

[ARB

l+1

)

for 1 � l < h and ALB

l

= ARB

l

= ; for l > h.

b) IG

i+1

(C) is bipartite i� for all l, 1 � l � h, either maxALB

l

� minA(e

i+1

) or

maxARB

l

� minA(e

i+1

).

c) c) If IG

i+1

(C) is bipartite then the blocks of IG

i+1

(C) can be obtained as follows:

Assume w.l.o.g. that maxALB

l

� minA(e

i+1

) for all l. (This can always be achieved

by interchanging LB and RB for some blocks B.) Let d = min(fl; maxARB

l

>

minA(e

i+1

)g[fh+1g). Then the blocks of IG

i+1

(C) are B

1

; : : : ; B

d�1

; B

d

[� � �[B

h

[

fS(e

i+1

)g; B

h+1

; : : : .

d) If IG

i+1

(C) is bipartite and S(e

l

), 1 � l � i + 1, are strongly planar then there is a

planar embedding of C + S(e

1

) + � � �+ S(e

i+1

) such that all segments in

S

l

LB

l

are

embedded inside C and all segments in

S

l

RB

l

are embedded outside C.

Proof: We use induction on i. For i = 0 little remains to be shown. IG

0

(C) is empty and

IG

1

(C) consists of a single node. This shows a), b) and c). For part d) we only have to

observe that S(e

1

) can be embedded inside as well as outside C, if S(e

1

) is strongly planar.

So let us turn to the case i > 0. We will show parts b), c), a) and d) in this order.

35

b) \)": Note �rst that it su�ces to show the following

Claim 6 If maxALB

l

> minA(e

i+1

) for some l then there is a segment S(e) 2 LB

l

such

that S(e) and S(e

i+1

) interlace.

Suppose that we have shown Claim 6. If there were l, 1 � l � h, such that maxALB

l

>

minA(e

i+1

) and maxARB

l

> minA(e

i+1

) then S(e

i+1

) interlaces with a segment S(e) 2

LB

l

and a segment S(e

0

) 2 RB

l

by Claim 6. Since S(e) and S(e

0

) belong to the same block

there is a path from S(e) to S(e

0

) in IG

i

(C). Since IG

i

(C) is bipartite this path necessarily

has odd length. Together with edges fS(e); S(e

i+1

)g and fS(e

i+1

); S(e

0

)g we obtain an odd

length cycle in IG

i+1

(C). Hence IG

i+1

(C) is non-bipartite, a contradiction. We still have

to show Claim 6.

Proof of Claim 6: Let z = minA(e

i+1

). Since maxALB

l

> z there must be a segment

S(e) 2 LB

l

such that w 2 A(e) for some w with z

+

!

T

w

+

!

T

w

j

. Edge e emanates from node

w

p

for some p � j.

Case 1 : p > j.

Then z

+

!

T

w

+

!

T

w

j

+

!

T

w

p

, z; w

j

2 A(e

i+1

) and w;w

p

2 A(e). Hence segments S(e) and

S(e

i+1

) interlace (cf. Figure 6).

Figure 6: Case 1

Case 2 : p = j.

Let e = (w

j

; u). Since e is considered before e

i+1

and hence minA(e) � z, edge e cannot be

a back edge. (If it were a back edge then minA(e) = u = w > z, a contradiction.) Hence e

is a tree edge and minA(e) = lowpt [u].

Case 2.1 : lowpt[u] < z.

Then lowpt[u]

+

!

T

z

+

!

T

w

+

!

T

w

j

, lowpt[u]; w 2 A(e) and z; w

j

2 A(e

i+1

). Hence segments S(e)

and S(e

i+1

) interlace (cf. Fig. 7).

36

Figure 7: Case 2.1

Case 2.2 : lowpt[u] = z.

Since w 2 A(e) we have lowpt2 [u] < w

j

. Since e is considered before e

i+1

we must have

jA(e

i+1

)j � 3, and hence edge e

i+1

cannot be a back edge. Rather, it must be a tree edge

and we must have lowpt2 [y] < w

j

. If lowpt2 [y] 6= lowpt2 [u], say lowpt2 [y]

+

!

T

lowpt2 [u], then

we have z

+

!

T

lowpt2 [y]

+

!

T

lowpt2 [u]

+

!

T

w

j

, z; lowpt2 [u] 2 A(e), and lowpt2 [y]; w

j

2 A(e

i+1

).

Hence S(e

i+1

) and S(e) interlace (cf. Fig. 8). If lowpt2 [y] = lowpt2 [u] then A(e) and A(e

i+1

)

have three points in common and hence S(e

i

) and S(e

i+1

) interlace (cf. Figure 9).

\(": Assume now that maxALB

l

� minA(e

i+1

) or maxARB

l

� minA(e

i+1

) for all l,

1 � l � h. By interchanging LB

l

and RB

l

, if necessary, we can achieve that maxALB

l

�

minA(e

i+1

) for all l, 1 � l � h.

Claim 7 Let S(e) 2

S

l

LB

l

be arbitrary. Then S(e) and S(e

i+1

) do not interlace.

Proof: A(e

i+1

) � fw; minA(e

i+1

)

�

!

T

w

�

!

T

w

j

g and A(e) � fw; w

�

!

T

minA(e

i+1

) or

w

j

�

!

T

wg. Hence S(e) and S(e

i+1

) do not interlace.

The bipartiteness of IG

i+1

(C) now follows from Claim 7 because it is safe to add S(e

i+1

)

to the \left side" of the interlacing graph.

c) Assume that IG

i+1

(C) is bipartite. Then for all l, 1 � l � h, maxALB

l

� minA(e

i+1

)

or maxARB

l

� minA(e

i+1

) by part b). By interchanging LB

l

and RB

l

, if necessary, we

can achieve maxALB

l

� minA(e

i+1

) for all l, 1 � l � h. Let d = min(fl; maxARB

l

>

minA(e

i+1

)g [fh+ 1g).

37

Figure 8: Case 2.2, lowpt2 [y] 6= lowpt2 [u]

Figure 9: Case 2.2, lowpt2 [y] = lowpt2 [u]

Claim 8 For all l: There is a segment S(e) 2 RB

l

such that S(e) and S(e

i+1

) interlace i�

d � l � h.

Proof: \(": Let d � l � h. Then

38

minA(e

i+1

) < maxARB

d

[by de�nition of d]

� maxARB

l

[by induction hypothesis, part a) and d � l]

< w

j

[since l � h]

and hence there is a segment S(e) 2 RB

l

such that S(e) and S(e

i+1

) interlace by Claim 6.

\)": (Indirect.) Let l < d or l > h and let S(e) 2 RB

l

. Then A(e) � fw; w

j

�

!

T

wg if

l > h and A(e) � fw; w

j

�

!

T

w or w

�

!

T

minA(e

i+1

)g if l < d. The former inclusion follows

from the de�nition of h, the latter inclusion follows from the de�nition of d, and part a) of

the induction hypothesis. Also A(e

i+1

) � fw; minA(e

i+1

)

�

!

T

w

�

!

T

w

j

g and hence S(e) and

S(e

i+1

) do not interlace.

We conclude from Claims 7 and 8 that S(e

i+1

) is connected to segments in blocks B

d

; : : : ; B

h

.

Hence the blocks of IG

i+1

(C) are B

1

; : : : ; B

d�1

; B

d

[� � � [B

h

[fS(e

i+1

)g; B

h+1

; : : : . Let

B = B

d

[� � � [B

h

[fS(e

i+1

)g be the new block. Then B can be partitioned into LB and

RB where LB =

S

d�l�h

LB

l

[fS(e

i+1

)g and RB =

S

d�l�h

RB

l

. Moreover, if d � h,

maxARB

d

� minARB

d+1

� maxARB

d+1

� � � � � minARB

h

� maxARB

h

by part a) and

maxALB

d

� minALB

d+1

� maxALB

d+1

� � � � � minALB

h

� maxALB

h

� minA(e

i+1

)

by part a) and the assumption that maxALB

l

� minA(e

i+1

) for all l, 1 � l � h.

a) Follows immediately from part c). The ordering of the blocks of IG

i+1

(C) given in part c)

satis�es the conditions required in part a). This follows immediately from the discussion

completing the proof of part c).

d) Assume that IG

i+1

(C) is bipartite and that S(e

l

), 1 � l � i+1, are strongly planar. Let

B

0

1

, B

0

2

, : : : be the blocks of IG

i+1

(C). By part c) we have B

0

1

= B

1

, : : : , B

0

d�1

= B

d�1

,

B

0

d

= B

d

[� � � [B

h

[fS(e

i+1

)g, B

0

d+1

= B

h+1

, : : : , where B

1

, B

2

, : : : are the blocks of

IG

i

(C). Moreover, LB

0

l

= LB

l

, RB

0

l

= RB

l

for l < d, LB

0

d+l

= LB

h+l

, RB

0

d+l

= RB

h+l

for l � 1 and LB

0

d

=

S

d�l�h

LB

l

[fS(e

i+1

)g and RB

0

d

=

S

d�l�h

RB

l

. By induction

hypothesis there is a planar embedding of C + S(e

1

) + � � �+ S(e

i

) such that all segments

in

S

l

LB

l

are embedded inside C and all segments in

S

l

RB

l

are embedded outside C. By

the proof of Claim 7 no segment S(e) 2

S

l

LB

l

has an attachment w which lies strictly

between minA(e

i+1

) and w

j

. Thus there is a face F inside C such that the tree path from

minA(e

i+1

) to w

j

is part of the boundary of F . All attachments of S(e

i+1

) lie between

minA(e

i+1

) and w

j

inclusively. Moreover, S(e

i+1

) is strongly planar and hence there is a

planar embedding of S(e

i+1

) where the tree path from minA(e

i+1

) to w

j

borders the outer

face. We can add this embedding to the embedding of C + S(e

1

) + � � �+ S(e

i

) by putting it

inside face F . In this way we obtain a planar embedding of C + S(e

1

) + � � �+ S(e

i+1

) (cf.

Fig. 10). This completes the proof of Lemma 5.

Lemma 9 The if-part of Lemma 4 holds.

Proof: If IG(C) is bipartite and S(e

i

), 1 � i � m, is strongly planar then by Lemma

5 d) there is an embedding of C + S(e

1

) + � � �+ S(e

m

) = S(e

0

) such that all segments in

S

i

LB

i

are embedded inside C and all segments in

S

i

RB

i

are embedded outside C. In

particular, S(e

0

) is planar. Assume now that in addition ALB

l

\ fw

1

; : : : ; w

r�1

g = ; or

ARB

l

\ fw

1

; : : : ; w

r�1

g = ; for all l where ALB

l

and ARB

l

are de�ned with j = r + 1,

i.e., when all edges e

1

; : : : ; e

m

are embedded. We may assume w.l.o.g. (by interchanging L

39

Figure 10: Addition of S(e

i+1

) inside F

and R for some blocks) that ARB

l

\ fw

1

; : : : ; w

r�1

g = ; for all l. Thus outside C there are

no attachments to nodes w

1

; : : : ; w

r�1

and hence there is a face F outside C such that the

stem w

0

; : : : ; w

r

of S(e

0

) borders F . We can now turn F into the outer face and in this way

obtain a canonical embedding of S(e

0

).

We illustrate Lemma 5 on our example. Let C be the cycle which runs from node 1 to

node 9 along tree edges and then back to node 1. There are four segments emanating

from this cycle: S

1

= S((9; 10)), S

2

= S((7; 13)), S

3

= S((7; 5)) and S

4

= S((6; 4)). All

four segments are strongly planar. When segment S

2

= S((7; 13)) is considered, we have:

IG

1

(C) has one block B

1

consisting of segment S

1

. Say S

1

belongs to RB

1

. Then ALB

1

= ;

and ARB

1

= f5g. Lemma 5 b) is satis�ed and hence IG

2

(C) is bipartite. We have d = 1

in Lemma 5 c) and hence IG

2

(C) has only block B

1

, say LB

1

= fS

2

g and RB

1

= fS

1

g.

Then ALB

1

= f3; 4g and ARB

1

= f5g when S

3

is considered. IG

3

(C) is bipartite and has

two blocks B

1

and B

2

, say LB

1

= fS

2

g, RB

1

= fS

1

g, RB

2

= fS

3

g. Then ALB

1

= f3; 4g,

ARB

1

= f5g, ARB

2

= f5g, ALB

2

= ; when S

4

is considered. S

4

forces us to merge blocks

B

1

and B

2

, i.e., d = 1 in Lemma 5 c), and hence IG

4

(C) has only one block B

1

. Moreover

LB

1

= fS

2

; S

4

g and RB

1

= fS

1

; S

3

g.

It is now easy to derive an e�cient way of dealing with the interlacing graph from Lemma 5.

Suppose that we processed edges e

1

; : : : ; e

i

already and want to process edge e

i+1

next. At

this point we keep blocks B

1

; : : : ; B

h

in a stack S where h is de�ned as in Lemma 5 a). Also

for each l, 1 � l � h, we maintain the multi-sets ALB

l

and ARB

l

in a doubly linked list.

The lists ALB

l

and ARB

l

are ordered according to DFS-numbers. From the stack position

corresponding to B

l

we have pointers to the front and back end of lists ALB

l

and ARB

l

.

The test for bipartiteness of IG

i+1

(C) given in Lemma 5 b) is now easily implemented by

Program 2.

The running time of Program 2 is clearly O(h�d+2). Also, it correctly computes d as de�ned

in Lemma 5 c). The new blocks of IG

i+1

(C) are now easily formed by Program 3. The

running time of Program 3 is also clearly O(h�d+2) provided we are given (A(e

i+1

)�fw

j

g).

Also, it correctly computes lists ALB and ARB. Note that these lists are ordered according

to the remark at the end of the proof of Lemma 5 c). We can now give the complete planarity

testing algorithm, see Program 4.

40

l h+ 1;

while max(ALB

l�1

[ARB

l�1

) > lowpt[e

i+1

]

do if ALB

l�1

is non-empty and maxALB

l�1

> lowpt [e

i+1

]

then interchange LB

l�1

and RB

l�1

fi;

if ALB

l�1

is non-empty and maxALB

l�1

> lowpt [e

i+1

]

then IG

i+1

(C) is not bipartite and hence

the graph can be declared non-planar fi;

l l � 1

od;

d l.

Program 2

ALB ARB ;;

for l from d to h

do ALB ALB concatenated with ALB

l

;

ARB ARB concatenated with ARB

l

od;

ALB ALB concatenated with (A(e

i+1

) � fw

j

g);

pop B

h

; : : : ; B

d

from stack S;

add B to stack S.

Program 3

Lemma 10 Program 4 tests strong planarity in linear time and space.

Proof: Observe �rst that line (1) determines the spine of cycle C(e

0

) in time proportional

to the length of the spine. The stem w

0

; : : : ; w

r

is not explicitly constructed; we only

mention it in order to keep the same notation as in Lemmas 4 and 5. Next we argue that

bipartiteness of IG(C) is tested correctly. The correctness of loop (4){(8) is obvious from

the discussions above. Suppose now that we processed all edges emanating from w

j

. In

order to prepare for processing the edges emanating from w

j�1

we only have to delete all

occurrences of w

j�1

on lists ALB

l

and ARB

l

. This is done in lines (9){(14). Note that all

occurrences of w

j�1

must be in the top entries of stack S by Lemma 5 a). Hence lines (9){

(14) work correctly. When control reaches line (16) the interlacing graph IG(C) is bipartite

and hence S(e

0

) is planar. Moreover, for every block B in the stack S the lists ALB and

ARB contain exactly the attachments below w

r

of segments in the block. In line (18) we

now test the condition for strong planarity given in Lemma 4. It states that for all blocks B

of IG(C) either fw

1

; : : : ; w

r�1

g\

S

S(e)2LB

A(e) = ; or fw

1

; : : : ; w

r�1

g\

S

S(e)2RB

A(e) = ;.

Of course, we can always interchange L and R such that the latter is the case. It remains to

argue that lines (20) to (22) correctly compute the ordered set A(e

0

)� fxg of attachments.

Let l

0

be minimal such that max(ALB

l

0

[ARB

l

0

) � w

1

. Then ALB

l

[ARB

l

� fw

0

g for

l < l

0

and either ALB

l

0

� fw

0

g or ARB

l

0

� fw

0

g by line (18). Also min(ALB

l

[ARB

l

) �

max(ALB

l�1

[ARB

l�1

) � max(ARB

l

0

[ALB

l

0

) for l > l

0

by Lemma 5 a) and hence either

ALB

l

= ; or ARB

l

= ; for l > l

0

by line (18). Thus lines (20) to (22) work correctly and

the correctness proof is complete.

We still have to analyze the running time. Note �rst that stronglyplanar is called at most

once for each edge. Also, each tree edge belongs to exactly one spine. Hence the total time

spent in lines (1), (2), (3), (4), (5) (without counting the time spent within recursive calls),

41

(0) procedure stronglyplanar(e

0

: edge);

co tests whether segment S(e

0

), e

0

= (x; y), is strongly planar.

If so, it returns the ordered (according to dfsnum) list of

attachments of S(e

0

) excluding x oc

(1) �nd the spine of cycle C(e

0

) by starting in node y and always

taking the �rst edge on every adjacency list until a back edge is

encountered. This back edge leads to node w

0

= lowpt[y].

Let w

0

; : : : ; w

r

be the tree path from w

0

to x = w

r

and

and let w

r+1

= y; : : : ; w

k

be the spine constructed above;

(2) let S be an empty stack of blocks;

(3) for j from k downto r + 1

(4) do for all edges e

0

(except the �rst) emanating from w

j

(5) do stronglyplanar(e

0

);

(6) let A(e

0

) be the ordered list of attachments of S(e

0

)

as returned by the successful call stronglyplanar(e

0

);

(7) update stack S as described in Programs 2 and 3

(8) od;

(9) let B

h

be the top entry in stack S;

(10) while max(ALB

h

[ARB

h

) = w

j�1

(11) do remove node w

j�1

from ALB

h

and ARB

h

;

(12) if ALB

h

and ARB

h

become empty

(13) then pop B

h

from the stack; h h� 1 fi

(14) od

(15) od;

co if control reaches this point then IG(C) is bipartite.

We will now test for strong planarity and compute A(e

0

) oc

(16) L ;; co an empty list oc

(17) for l from 1 to h

(18) do if maxALB

l

� w

1

and maxARB

l

� w

1

(19) then declare S(e

0

) not strongly planar and stop fi;

(20) if ALB

l

6= ; and maxALB

l

� w

1

(21) then L L conc ARB

l

conc ALB

l

(22) else L L conc ALB

l

conc ARB

l

fi

(23) od;

(24) return L

(25) end.

Program 4

(6), (8), (9) and (16) is O(m). Let us look at line (7) next. Observe that line (7) is executed

at most once for each edge. Also, at most one block is pushed on stack S in one execution

of line (7), and execution time of line (7) is proportional to the number of entries removed

from stack S. Since only m elements are added to stacks S altogether, only m elements can

be removed and hence the total time spent in line (7) is O(m). The same argument shows

that the total time spent in lines (17){(23) is O(m), because the time spent in these lines is

proportional to the number of elements removed from stacks S in these lines. Lines (10){

(14) still remain to be considered. Only endpoints of back edges are placed on lists ALB

and ARB. No back edge is placed twice on a list and each back edge is removed at most

once. Hence the total cost of lines (10){(14) is O(m).

42

Theorem 11 Let G = (V;E) be a graph. Then planarity of G can be tested in time O(n).

Proof: If m > 3n� 6 then G is non-planar. If m � 3n� 6 then we can divide G into its

biconnected components in time O(m) = O(n). For each biconnected component we can

test its planarity in linear time. Also, a graph is planar i� its biconnected components are

planar.

References

[Meh84] K. Mehlhorn. Data Structures and E�cient Algorithms. Springer Verlag, 1984.

[MM94] K. Mehlhorn and P. Mutzel. On the embedding phase of the Hopcroft and Tarjan

planarity testing algorithm. Technical report no. 117/94, Max-Planck-Institut f�ur

Informatik, Saarbr�ucken, 1994.

[MN89] Kurt Mehlhorn and Stefan N�aher. LEDA: A library of e�cient data types and

algorithms. In MFCS 89, LNCS, 1989. CACM, to appear.

[Nae93] St. N�aher. LEDA Manual. Technical report, Max-Planck-Institut f�ur Informatik,

1993.

[Wil84] S.G. Williamson. Depth-�rst search and Kuratowksi subgraphs. Journal of the

ACM, 11:681{693, 1984.

43

Index

A: 20, 22, 26, 27.

add to Att : 20, 25.

Al : 29, 31, 32, 33.

all edges : 4, 7, 39, 40.

alpha : 13, 18, 20, 22, 24, 25, 26, 27,

30, 31.

ang : 39.

append : 4, 16, 20, 22, 25, 29, 30,

32, 33, 40.

Aprime : 29, 30, 31.

Ar : 29, 31, 32, 33.

assign : 12.

Att : 13, 18, 20, 25.

B: 23, 25.

back edge into w0 : 28, 33.

black : 40.

block: 20.

blue : 37.

Bprime : 20.

button : 38.

clean : 20, 24.

clear : 4, 25, 29, 32, 33, 39, 40.

combine : 20, 23.

companion in G : 6, 12.

companion in H : 12, 26.

compute correspondence : 12.

conc : 20, 26, 31, 33.

cos : 39.

cost : 7, 15, 40.

count : 21, 29.

cur nr : 7, 26, 27, 30, 32, 40.

deg : 40.

Del : 15, 16, 17, 39.

del edge : 4, 15, 39, 40.

demo : 1.

DFS: 9.

dfs count : 9, 10, 11, 15, 16, 17.

dfs in make biconnected graph : 9, 10,

11.

dfs in reorder : 15, 16, 17.

dfsnum : 9, 10, 11, 13, 15, 16, 17, 18, 19,

20, 22, 24, 25, 26, 27, 28, 30.

dfsnum w : 20.

dfsnum w0 : 20.

dfsnumber : 13.

draw edge : 37, 40.

draw �lled node : 37, 40.

draw graph : 37, 39, 40.

draw int node : 37, 40.

e: 4, 6, 7, 10, 12, 15, 16, 19, 20, 26,

28, 37, 38, 40.

eh : 4.

ein : 12, 26.

eliminate parallel edges : 39.

embed : 1, 4, 5.

embedding : 26, 27, 30.

empty : 7, 20, 22, 23, 24, 25, 32, 40.

empty Latt : 20, 25.

empty Ratt : 20, 25.

error handler : 20.

e0 : 18, 19, 27, 28.

f : 40.

false : 1, 4, 5, 7, 9, 13, 15, 20, 22, 23,

25, 37, 39, 40, 41.

�rst adj edge : 10, 13, 19, 26, 28.

�rst node : 9, 13, 15, 26.

ip : 20, 23.

G: 1, 4, 6, 9, 10, 11, 15, 18, 27, 37, 38.

Gin : 5, 6, 8, 12, 26.

Gin is bidirected : 6, 7.

graph edit : 39.

green : 40.

H: 4, 12.

ha : 20.

he : 20.

head : 7, 20, 32, 40.

head of Latt : 20, 25.

head of Ratt : 20, 25.

i: 37, 40.

init : 39.

inp : 39, 40.

int item : 38.

L: 4, 7, 40.

Latt : 20.

Latt empty : 20.

left : 13, 14, 20, 26, 30.

left interlace : 20, 23.

link : 4, 6.

lowpt : 9, 10, 11.

lowpt1 : 15, 16, 17.

lowpt2 : 15, 16, 17.

Lseg : 20.

lw : 40.

m: 38.

main : 35.

Make biconnected graph : 1, 8, 9, 40.

44

message : 40.

Min : 10, 16.

n: 5, 7, 38, 40.

n edges : 40.

new edge : 4, 6, 7, 9, 10, 12, 40.

new node : 4, 6, 12.

nil : 9, 13.

nr : 7, 40.

number of edges : 5.

number of nodes : 5, 7, 40.

numbering : 37.

nw : 40.

open : 38, 39.

P : 1, 4, 38.

parent : 9, 10, 11, 13, 15, 16, 17, 18, 21,

22, 24, 26, 27, 29, 30, 32.

pi : 38, 39.

PLANAR: 40.

planar : 1, 4, 5, 34, 36, 40.

pop : 7, 20, 22, 23, 24, 25, 32, 40.

Pop : 32.

push : 23, 32.

P1: 38, 39.

random graph : 39.

random planar graph : 39.

Ratt : 20.

Ratt empty : 20.

reached : 9, 10, 11, 15, 16, 17.

read mouse : 41.

red : 37.

reorder : 13, 15.

reset frame label : 41.

reversal : 12, 26, 27, 30, 32, 33.

right : 14, 20, 30.

right interlace : 20, 23.

Rseg : 20.

S: 20, 21.

set frame label : 41.

set line width : 40.

set node width : 39, 40.

set show coordinates : 41.

sin : 39.

sort edges : 7, 15, 26, 40.

sort Gin : 26.

sort num : 26, 27, 30, 32.

source : 4, 6, 7, 12, 15, 19, 28, 32,

37, 39, 40.

STRAIGHT_LINE_EMBEDDING: 40.

STRONG_COMPONENTS: 34.

strongly planar : 13, 18, 20, 22, 28.

T : 26, 27.

t: 27.

tail : 20, 32.

target : 4, 6, 7, 10, 12, 15, 16, 19, 22,

28, 30, 37, 39, 40.

text item : 38.

top : 20, 23, 24.

Tprime : 29, 30, 31.

tprime : 30.

tree edge into : 26, 27, 28, 30, 32.

true : 4, 5, 6, 10, 16, 18, 20, 23, 35, 40, 41.

u: 9, 10.

v: 4, 6, 7, 9, 10, 11, 12, 15, 16, 17,

37, 38, 40.

W : 37, 38.

w: 10, 15, 16, 21, 29, 38, 40.

wk : 19, 21, 28, 29.

w0 : 19, 20, 25, 28, 29.

x: 4, 19, 28.

xcoord : 39, 40.

y: 4, 19, 28.

ycoord : 39, 40.

45

List of Re�nements

h auxiliary functions 9, 10, 15, 16, 18, 27 i Used in section 2.

h bidirect G 7 i Used in section 6.

h compute w's adjacency list and prepare for next iteration 32 i Used in section 29.

h construct embedding 26 i Used in section 5.

h demo.c 35 i

h determine the cycle C(e0) 19 i Used in section 18.

h embed recursively 30 i Used in section 29.

h embed: determine the cycle C(e0) 28 i Used in section 27.

h �rst version of planar 5 i Used in section 2.

h includes 3, 36 i Used in sections 2 and 35.

h initiation and declarations 38 i Used in section 35.

hmake G a copy of Gin and add edges to make G bidirected 6 i Used in section 5.

hmake G biconnected 8 i Used in section 5.

hmake H a copy of G 12 i Used in section 8.

h planar.c 2 i

h planar.h 1 i

h prepare for next iteration 24 i Used in section 21.

h prepare the output 33 i Used in section 27.

h procedure to draw graphs 37 i Used in section 35.

h process all edges leaving the spine 21 i Used in section 18.

h process the subsegments 29 i Used in section 27.

h reset window 41 i Used in section 35.

h second version of planar 4 i Used in section 2.

h select graph 39 i Used in section 35.

h test graph for planarity and show output 40 i Used in section 35.

h test planarity 13 i Used in section 5.

h test recursively 22 i Used in section 21.

h test strong planarity and compute Att 25 i Used in section 18.

h typedefs, global variables and class declarations 11, 14, 17, 20 i Used in section 2.

h update lists T , Al , and Ar 31 i Used in section 29.

h update stack S of attachments 23 i Used in section 21.

46

