
Angewandte Mathematik und Informatik

Universit

�

at zu K

�

oln

Report No. 92.123

Weighted Fractional and Integral k�Matching in Hypergraphs

by

Anand Srivastav

1

, Peter Stangier

1994

Discrete Applied Maths, February 1995

Anand Srivastav

Institut f�ur Informatik | Lehrstuhl Algorithmen und Komplexit�at

Humboldt Universit�at zu Berlin

Unter den Linden 6

10099 Berlin

Germany

srivasta@informatik.hu-berlin.de

Peter Stangier

Institut f�ur Informatik

Universit�at zu K�oln

Pohligstr.1

50969 K�oln

Germany

e-mail: stangier@informatik.uni-koeln.de

1

supported by: Deutsche Forschungs Gemeinschaft



1991 Mathematics Subject Classi�cation: 05B40, 68Q25, 68R05

Keywords: Hypergraph matching, integer and linear programming, randomized algorithm, de-

randomization



Weighted Fractional and Integral k�Matching in

Hypergraphs

Anand Srivastav Peter Stangier

December 1994

Abstract

We consider the problem of �nding polynomial-time approximations of maximal weighted

k�matchings in a hypergraph and investigate the relationship between the integral and frac-

tional maxima of the corresponding 0-1 integer linear program and its LP-relaxation. We ex-

tend results of Raghavan, who gave a deterministic approximation algorithm for unweighted

k�matching, to the weighted case and compare the so obtained lower bound for the ratio of

the integer and fractional maximum with a lower bound of Aharoni, Erd}os and Linial.

0 Introduction

The weighted k�matching problem in a hypergraph is an interesting generalization of the classical

matching problem in graphs. It is stated as follows: Let H = (V;E) be a hypergraph with jV j = n

, jEj = m and k a positive integer. Let w

i

� 0 be rational weights of the hyperedges, i = 1; :::;m.

The objective is to �nd a subset of hyperedges with maximal weight, but with the restriction

that no vertex is contained in more than k of these hyperedges. While the 1-matching problem in

graphs is well-known to be solvable in polynomial time, �nding a maximal weight k-matching in a

hypergraph is NP-hard. Closely related to the k�matching problem is the k-set covering problem,

where the vertices of V have non-negative rational weights and the goal is to �nd a subset of the

vertices with minimal weight, whose intersection with each hyperedge has cardinality at least k.

We call the problems unweighted, if all the weights are identical to 1. Let us denote byM

R

resp. S

R

the fractional and by M

opt

resp. S

opt

the integral k-matching resp. k-set covering number. There

are two basic questions of combinatorial optimization, which have been investigated for hypergraph

matching and set covering in the last years:

1) For which instances of hypergraph matching and set covering a (deterministic) polynomial-time

approximation algorithm can be constructed ?

2) What is the relationship between the integral and fractional matching resp. set covering numbers

?

The investigation of the second question has been initiated by the work of Faber and Lov�asz [9],

Lov�asz [14] and F�uredi [10]. Lov�asz proved in [14] for unweighted 1-set covering the inequality

S

opt

� (1 + logn)S

R

. Recently this inequality was generalized by Kuzyurin [13] to general integer

programming (minimization problem) with non-negative integer datas. Kuzyurin's result implies

in particular for weighted k-set covering with non-negative integer weights S

opt

� (1 + logkn)S

R

.

In the unweighted case of 1-set covering Aharoni, Erd}os and Linial [1] improved on the bound

of Lov�asz and obtained to our knowledge the �rst tight bound for the ratio of the fractional

and integral matching number,

M

opt

M

R

�

M

R

n

. Recently F�uredi, Kahn and Seymour [11] con�rmed

a conjecture of F�uredi [10] and showed for the weighted 1-matching problem with uniform or

intersecting hypergraph H, or constant edge weights, the existence of a set of matching edges M
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obeying the stronger inequality

M

R

�

X

e2M

(jej � 1 +

1

jej

)w(e):

A di�erent direction of research was undertaken by Raghavan and Thompson [19], who gave

in the unweighted case assuming that k � 6 lnn a probabilistic approximation algorithm �nding a

k�matchingM such thatM � (1� �)M

opt

�O(

p

(1� �)M

R

), with some � 2 (0;

1

2

). Later Ragha-

van introduced the concept of pessimistic estimators, extending the derandomization technique of

conditional probabilities, and transformed this probabilistic result into a deterministic algorithm

with nearly the same approximation guarantee as achieved by the probabilistic algorithm [20].

But for k�matching with rational weights the problem of �nding polynomial-time approxima-

tion algorithms remained open. The purpose of this paper is to contribute to the solution of this

approximation problem.

Since the k�matching problem in hypergraphs is strongly NP-hard, there cannot exist an

arbitrarily good fully polynomial-time approximation algorithm [18]. Furthermore the results of

Arora et al [5] raise the conjecture that for arbitrary instances of weighted k�matching even

a polynomial-time approximation scheme might be out of reach. Nevertheless, not all instances

must be intractable for approximation. We will exhibit a large class of instances of the weighted

k�matching problem for which tight polynomial-time approximation algorithms do exist. Our main

result is

Theorem (Corollary 2.6, 2.7 and 2.8)

(i) Let 0 < � < 1 and let the edge weights be in [0; 1]. Suppose that k �

24 ln n

�

2

and k edges have

total weight at least 18�

�2

. Then with a derandomized algorithm we can �nd in polynomial-

time a k�matching M such that M � (1� �)M

opt

:

(ii) In the unweighted case the algorithm gives for all instances with k �

24 ln n

�

2

a k-matching M

such that M � M

opt

(1� �).

Furthermore we observe that the arguments of Aharoni, Erd}os and Linial [1] give for k-matching

the inequality

M

opt

M

R

�

M

R

nk

2

and show that the lower bound for

M

opt

M

R

of the randomized approach

is better than this "combinatorial" lower bound. The interesting open question arising here is

whether or not the stronger inequality

M

opt

M

R

�

M

R

nk

holds.

The essential methods we use are randomized rounding and derandomization.While randomized

rounding can be performed as in [19], derandomization causes the main computational di�culties.

The problem in the case of rational weights is that the basic method of conditional probabil-

ities/pessimistic estimators necessarily requires the computation of the exponential function on

the RAM model of computation. We solve this problem constructing a new class of pessimistic

estimators for the conditional probabilities under consideration, which can be derived from Mc-

Diarmids [15] proof of the Angluin-Valiant inequality on deviation of weighted sums of Bernoulli

trials from their mean. In [23] we gave a comprehensive analysis of this approach and showed al-

gorithmic counterparts of the classical large deviation inequalities on Binomial type distributions

due to Bernstein, Cherno�, Hoe�ding and Angluin/Valiant. These algorithmic inequalities can be

considered as an implementation of the conditional probability method of Erd}os, Selfridge [8],

and Spencer [2] and the pessimistic estimator technique of Raghavan [20] on the RAM model of

computation.

The total running time of our algorithm is the sum of the (dominating) time to solve the linear

programming relaxation of the integer program associated to the weighted hypergraph k-matching

problem and the time of derandomized rounding. A direct application of the results in [23] would

imply for weighted k-matching in hypergraphs an O(nm

2

log

mn

�

2

)-time derandomized rounding

algorithm. In this paper we show that at least for the weighted hypergraph matching problem
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derandomized rounding only needs O(m

2

logm+mn)-time, so we have a strongly-polynomial time

rounding algorithm.At this momentwe do not have a LP algorithm for hypergraph matching, which

matches the nearly quadratic running time of the rounding procedure. This motivates in further

work the search for a fast strongly polynomial-time LP algorithm for the hypergraph matching

problem.

The model of computation throughout this paper is the RAM-model (see [16]). It can be briey

described as follows. By the size of an input we mean the number of data entries in the description

of the input, while the encoding length of the input is the maximal binary encoding length of

numbers in the input. In the RAM-model an algorithm runs in polynomial-time (resp. strongly

polynomial-time), if the number of elementary arithmetic operations (briey called running time)

is polynomially bounded in the size and the encoding length of the input (resp. only in the size of

the input) and the maximal binary encoding length of a number appearing during the execution of

the algorithm (briey called space) is polynomially bounded in the size and encoding length of the

input. In the following let L denote the encoding length of the edge weights, let log be the binary

and ln the natural logarithm.

1 Randomized Approximation

The basic randomized algorithm for k�matching was introduced by Raghavan and Thompson [19]

and consists of essentially two steps: randomized rounding and scaling down the probability of

setting the variable x

i

to 1 by a factor of 1�

�

2

for all i = 1; : : : ;m.

Algorithm P�HYPERMATCH

Input:

Hypergraph H = (V;E) with jV j = n; jEj = m; edge weights w : E ! [0; 1]\Q

+

0

; the vertex-edge

incidence matrix A of H and a positive integer k:

Algorithm:

1) (LP-Relaxation)

Solve the linear program

max f

m

X

i=1

w

i

x

i

;Ax � k;x 2 [0;1]

m

g

with rational solution vector ~x 2 [0; 1]

m

:

2) (Scaling)

Choose � 2 [0; 1] and replace ~x by (1�

�

2

)~x

3 (Randomized Rounding)

For i = 1; : : : ;m set independently x

i

= 1 with probability (1�

�

2

)~x

i

and x

i

= 0 with probability

1� (1 �

�

2

)~x

i

4) Output the vector x = (x

1

; : : : ; x

m

) 2 f0; 1g

m

2

Let us denote by M

opt

the optimal value of the weighted k�matching problem, M

R

the optimal

value of its LP-Relaxation and by M (x) :=

P

m

i=1

w

i

x

i

(x 2 [0; 1]

m

) the objective function. Linear

Programming gives a rational solution vector ~x 2 [0; 1] whose encoding length is a polynomial in

L; n and m, so the encoding length of M

R

is also polynomially bounded. Let L

0

be the maximum

of L and the encoding length of M

R

. Since L

0

will appear only in the encoding length of numbers

we have to compute in our algorithms, but has no inuence on the running time, we neglect the

exact degree of the polynomial bounding L

0

.

Raghavan and Thompson [19] analysed the algorithm P-HYPERMATCH in the unweighted

case (w � 1) and showed that for a certain scaling factor 0 < � < 1 the algorithm �nds a
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k�matching M with M � (1 �

�

2

)M

opt

� O(

p

(1�

�

2

)M

R

); provided that k � 6 lnn: It is easy

to check that their proof is also valid in the weighted case, so we obtain the same result. But

given an � 2 (0; 1) we are interested in an approximation M � (1 � �)M

opt

; because such a

statement explicitly shows instances of the problem, where an arbitrary or at least in � measurable

approximation is possible. This can be proved when k is at least

24 ln n

�

2

:

Lemma 1.1 (Angluin/Valiant[4]. For a proof see [15] ) Let  

1

; : : : ;  

m

be independent ran-

dom variables, with 0 �  

j

� 1 and E( 

j

) = p

j

for all j = 1; : : : ;m: Let  =

1

m

P

m

j=1

 

j

; p =

1

m

P

m

j=1

p

j

and 0 < � � 1: Then

(i) Prob( > (1 + �)mp) � exp(�

�

2

mp

3

)

(ii) Prob( < (1� �)mp) � exp(�

�

2

mp

2

):

Theorem 1.2 Let � 2 (0; 1); k �

24 ln n

�

2

and M

R

�

18

�

2

: Then P�HYPERMATCH �nds a weighted

k�matching M such that M � (1� �)M

opt

with probability at least 0:73:

Proof. Let n � 8 (otherwise solve the problem by enumeration) and run P�HYPERMATCH

with output vector x 2 f0; 1g

m

. We �rst show the following two inequalities:

(a) Prob(

P

m

j=1

a

ij

x

j

> k) �

1

8n

for all i = 1; : : : ; n:

(b) Prob(M (x) < (1 �

�

2

)M

opt

� 2

p

(1�

�

2

)M

R

) � e

�2

:

With n � 8 and the assumption on k we have

ln 8n �

k�

2

12(1�

�

2

)

: (1)

Choose � :=

�

2��

: Trivially 0 < � < 1 and the Angluin-Valiant inequality (Lemma 1.1 (i)) and (1)

prove (a):

Prob(

m

X

j=1

a

ij

x

j

> k) = Prob(

n

X

j=1

a

ij

x

j

> (1 + �)(1 �

�

2

)k) �

1

8n

:

With �

0

:=

q

4

(1�

�

2

)M

R

we may assume that 0 < �

0

� 1, because if �

0

> 1, we have the zero

probability event "M < 0". FinallyM

R

�

18

�

2

implies (1�

�

2

)M

R

�

p

4(1�

�

2

)M

R

� (1 � �)M

R

.

2

Corollary 1.3 Let w � 1; � 2 (0; 1) and k �

24 lnn

�

2

: Then P�HYPERMATCH �nds a k�matching

M such that M � (1� �)M

opt

with probability at least 0:73:

Proof. We may assume that n � 4. This implies

18

�

2

�

24 lnn

�

2

� k: But in the unweighted case we

always have M

R

�M

opt

� k; hence Theorem 1.2 proves Corollary 1.3.

2

Remark We assumed that k is at least

24 lnn

�

2

which di�ers by the 4�

�2

factor from Raghavan

and Thompson's assumption on k. Note that Theorem 1.2 can be proved under less restrictive

assumptions on k, if we accept an only exponentially small success probability for the algorithm P-

HYPERMATCH. But even in that case the probabilistic analysis requires k = 
(lnn). Furthermore

we assumed in the weighted case M

R

�

18

�

2

. We saw in the unweighted case that this condition is

automatically satis�ed (Corollary 1.3). Again if we allow small success probabilities, we obtain less

restrictive assumptions, but even then M

R

must be greater than 4. This is due to the probabilistic

analysis, in particular to the Angluin-Valiant inequality: The probabilistic algorithm guarantees

M � (1�

�

2

)M

R

� 2

p

(1�

�

2

)M

R

. The right hand side must be positive, otherwise the algorithm

does not give any guarantee. In the best case � is zero and the lower bound for M is positive if

M

R

> 4. Let us proceed to the main problem, the derandomization of the results above.
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2 Derandomized Algorithms

We briey sketch the derandomization idea of Spencer [2]. Let � 2 (0; 1) and let k �

24 lnn

�

2

. Denote

by E

c

�

the event

\9i (Ax)

i

> k or M (x) < (1� �)M

opt

":

If M

R

�

18

�

2

Theorem 1.2 gives Prob(E

c

�

) � 0:27. The method of conditional probabilities seeks for

a vector for which the event E

�

holds, sequentially selecting the values of the x

i

's from f0; 1g by

minimizing the conditional probability that E

c

�

will occur, if x

i

is chosen to be 0 (resp. 1):

Algorithm WALK(E

c

�

)

(a) Initial Step (l = 1)

Set x

1

= z

1

; where z

1

minimizes the function

z ! Prob(E

c

�

jz); z 2 f0; 1g:

(b) Induction step (l + 1)

If x

1

: : : ; x

l

have been selected, set x

l+1

= z

l+1

; where z

l+1

minimizes the function

z ! Prob(E

c

�

jx

1

: : : ; x

l

; z); z 2 f0; 1g:

(c) Stop, when l = m

2

The striking observation is that the output vector x satis�es the event E

�

, because the inequalities

1 > Prob(E

c

�

) � Prob(E

c

�

jx

1

) � : : : � Prob(E

c

�

jx

1

: : : ; x

m

) and the fact that Prob(E

c

�

jx

1

; : : : ; x

m

)

is either zero or one imply Prob(E

c

�

jx

1

; : : : ; x

m

) = 0. The WALK procedure is a deterministic algo-

rithm, but to run the algorithm on the usual �nite machine models of computation, like the RAM

model or the Turing machine model, we must be able to compute the conditional probabilities

Prob(E

c

�

jx

1

; : : : ; x

l

): The complexity of the computation of these conditional probabilities deter-

mines the time complexity of the algorithm. Unfortunately, there is no general way of computing

the conditional probabilities. Raghavan circumvented this obstacle in some examples construct-

ing easier computable upper bounds for the conditional probabilities, the so called pessimistic

estimators, which mimic the role of the conditional probabilities.

De�nition 2.1 (Pessimistic Estimator, [20] ) Let U (E

c

�

) denote a sequence of functions

U

1

(x

1

); U

2

(x

1

; x

2

); : : : ; U

m

(x

1

; : : : ; x

m

) satisfying the following properties:

(i) Prob(E

c

�

jx

1

; : : : ; x

l

) � U

l

(x

1

; : : : ; x

l

) for all x

1

; : : : ; x

l

2 f0; 1g; l � m:

(ii) U

l+1

(x

1

; : : : ; x

l

; x

l+1

) � U

l

(l

1

; : : : ; x

l

) given any x

1

; : : : ; x

l

2 f0; 1g for some x

l+1

2 f0; 1g.

(iii) U

1

(x

1

) < 1 for some x

1

2 f0; 1g.

(iv) U

l

(x

1

; : : : ; x

l

) can be computed on the RAM model of computation in time bounded by a

polynomial in n;m and log

1

�

for each l:

Then U (E

c

�

) is called a pessimistic estimator for the event E

c

�

:

If we replace the conditional probabilities in the WALK procedure by the functions of the pes-

simistic estimator, we get indeed a polynomial-time algorithm �nding the desired vector x.

Remark: Raghavan [20] constructed for unweighted k�matching a family of functions, which

satis�es the conditions (i){(iii) of De�nition 2.1. But his approach raises two computational prob-

lems: The computation of the pessimistic estimator requires the computation of exponential terms

of the form s

w

j

; where s is a real number, s � 1:

5



(a) In case of rational edge weights w

j

the term s

w

j

cannot be computed on the RAM model in

polynomial-time.

(b) In the unweighted case w

j

2 f0; 1g is an integer and s

w

j

is computable i� s is computable. In

[20] (see Theorem 7) s was de�ned to be s := D((1�

�

2

)M

R

;

1

n

)� 1; where D((1�

�

2

)M

R

;

1

n

)

is a positive root of the equation

z � (1� z) ln(1 + z) +

lnn

(1�

�

2

)M

R

= 0:

But it is not known, how to �nd a root of this analytic equation in polynomial-time.

While the second problem is only a minor technical obstacle, as we will show using parameters

de�ned in McDiarmid's proof of the Angluin-Valiant inequality, the presence of rational edge

weights w

j

cause the more serious problem, which requires some work. We follow the proof of

the Angluin-Valiant inequality of McDiarmid [15] and derive upper bounds on the conditional

probabilities. Then we show that these upper bounds can be replaced by O(m

2

logm)-degree

polynomials evaluated at a rational number depending on the edge weights.

The following \conditional probability" formulation of the Angluin-Valiant inequality can be

extracted from the proof of corollary 5.1 and 5.2 in [15].

Lemma 2.2 Let a

1

; : : : ; a

m

be real numbers with 0 � a

j

� 1 for each j and let  

1

; : : : ;  

m

be

independent 0� 1 valued random variables. Let ~p

j

= E( 

j

);

~q

j

= 1� ~p

j

;  =

P

m

j=1

a

j

 

j

; p =

1

m

E( ); q = 1� p and 0 < � < 1:

De�ne s

+

=

q(1+�)

q�p�

, s

�

=

q+p�

q(1��)

and for 1 � l � m let x

1

; : : : ; x

l

2 f0; 1g:

Then we have

(i) Prob( > (1 + �)mpj 

1

= x

1

; : : : ;  

l

= x

l

)

� e

�(1+�)pm ln s

+

e

P

l

j=1

a

j

x

j

ln s

+

m

Y

j=l+1

[~p

j

e

a

j

ln s

+

+ 1� ~p

j

]

(ii) Prob( < (1� �)mpj 

1

= x

1

; : : : ;  

l

= x

l

)

� e

(1��)pm ln s

�

e

�

P

l

j=1

a

j

x

j

ln s

�

m

Y

j=l+1

[~p

j

e

�a

j

ln s

�

+ 1� ~p

j

]:

2

Lemma 2.2 motivates the de�nition of the basic functions for the construction of the pessimistic

estimator U (E

c

�

): In the following let y

1

; : : : ; y

m

denote the scaled variables y

j

:= (1�

�

2

)~x

j

: ( Recall

that (~x

j

) was the solution of the LP-Relaxation (see Algorithm P�HYPERMATCH)). Before we

de�ne the events of interest, we choose the deviation factors � so that s always will be a rational

number. With binary search in the interval [0;

q

8

(2��)M

R

] we can �nd a rational number �

0

with

0 � �

0

�

q

8

(2��)M

R

�

2

m

in O(logm) steps. Since M

R

� m � m

2

, we get

s

8

(2� �)M

R

� �

0

�

s

9

(2 � �)M

R

: (2)

(a) The event \M < (1� �

0

)(1�

�

2

)M

R

"

Let �

0

be as in (2), p

0

=

(1�

�

2

)M

R

m

; q

0

= 1� p

0

and s

0

=

q

0

+p

0

�

0

q

0

(1��

0

)

:

6



For l = 0 de�ne

V

(0)

0

= e

(1��

0

)p

0

m ln s

0

m

Y

j=1

[y

j

e

�w

j

ln s

0

+ 1� y

j

] (3)

For l � 1 and z

1

; : : : ; z

l

2 f0; 1g de�ne

V

(0)

l

= e

(1��

0

)p

0

m ln s

0

e

�

P

l

j=1

w

j

z

j

ln s

0

m

Y

j=l+1

[y

j

e

�w

j

ln s

0

+ 1� y

j

] (4)

(b) The event \9i (Ax)

i

> k"

Let 1 � i � n be arbitrary. Let p =

(1�

�

2

)k

m

; q = 1� p; � =

�

2��

and s =

q(1+�)

q�p�

:

For l = 0 de�ne

V

(i)

0

= e

�(1+�)pm ln s

m

Y

j=1

[y

j

e

a

ij

ln s

+ 1� y

j

] (5)

For l � 1 and z

1

; : : : ; z

l

2 f0; 1g de�ne

V

(i)

l

(z

1

; : : : ; z

l

) = e

�(1+�)pm ln s

e

P

l

j=1

a

ij

z

j

ln s

m

Y

j=l+1

[y

j

e

a

ij

ln s

+ 1� y

j

]: (6)

(c) The event \M < (1� �

0

)(1�

�

2

)M

R

or 9i (Ax)

i

> k"

Let us denote by E

c

�

the event de�ned in (c). Let for l � 1

V

l

(z

1

; : : : ; z

l

) :=

n

X

i=0

V

(i)

l

(z

1

; : : : ; z

l

) (7)

and for l = 0

V

0

:= V

(0)

0

+

n

X

i=1

V

(i)

0

: (8)

We �rst show that the functions V

l

satisfy the condition (i){(iii) of De�nition 2.1.

Lemma 2.3 We have for each integer l, 1 � l � m

(i) Prob(E

c

�

jx

1

; : : : ; x

l

) � V

l

(x

1

; : : : ; x

l

) for all x

1

; : : : ; x

l

2 f0; 1g.

(ii) V

l+1

(x

1

; : : : ; x

l

; x

l+1

) � V

l

(x

1

; : : : ; x

l

) given any x

1

; : : : ; x

l

for some x

l+1

2 f0; 1g.

(iii) V

1

(x

1

) � 0:27 for some x

1

2 f0; 1g.

Proof.

(i) The inequality Prob(E

c

�

jx

1

; : : : ; x

l

) � V

l

(x

1

; : : : ; x

l

) follows from Lemma 2.2.

(ii) Let l � 0 and let z 2 f0; 1g: For i = 0 de�ne

f

(0)

l

(z) := V

(0)

l

(x

1

; : : : ; x

l

)[y

l+1

e

�w

l+1

ln s

0

+ 1� y

l+1

]

�1

e

�zw

l+1

ln s

0

and for i � 1

f

(i)

l

(z) := V

(i)

l

(x

1

; : : : ; x

l

)[y

l+1

e

a

i;l+1

ln s

+ 1� y

l+1

]

�1

e

za

i;l+1

ln s

:

7



Let

f

l

(z) :=

n

X

i=0

f

(i)

l

(z):

Then we have with x

l+1

being the minimizer of z 7! f

l

(z)

V

l

(x

1

; : : : ; x

l

) = y

l+1

f

l

(1) + (1� y

l+1

)f

l

(0)

� f

l

(x

l+1

)

= V

l+1

(x

1

; : : : ; x

l+1

)

(iii)

V

1

(x

1

) = y

1

f

0

(1) + (1� y

1

)f

0

(0) =

n

X

i=0

V

(i)

0

:

From Theorem 1.2 and

q

8

(2��)M

R

� �

0

(see (2)) it follows that

V

(0)

0

� exp(�

1

2

�

2

0

p

0

m) � e

�2

:

For i � 1 we observe

y

j

e

a

ij

ln s

+ 1� y

j

= 1 + y

j

(e

a

ij

ln s

� 1)

� 1 + y

j

a

ij

(e

ln s

� 1):

Since

P

m

j=1

a

ij

y

j

� (1�

�

2

)k = mp we have

V

(i)

0

� exp(�

1

3

�

2

pm) �

1

8n

:

The last inequality follows from our assumption k �

24 ln n

�

2

: Hence for some x

1

2 f0; 1g

V

1

(x

1

) =

n

X

i=0

V

(i)

0

�

1

8

+ e

�2

� 0:27:

2

Let us consider the l-th step (l � 1) of the algorithm WALK(E

c

�

). We wish to compute the

function V

l

(x

1

; : : : ; x

l

). Now V

l

(x

1

; : : : ; x

l

) =

P

n

i=0

V

l

(i)

(x

1

; : : : ; x

l

). If i � 1, then

V

(i)

l

(x

1

; : : : ; x

l

) = s

k+

P

l

j=1

a

ij

x

j

m

Y

j=l+1

[y

j

s

a

ij

+ 1� y

j

] :

Since x

j

; a

ij

2 f0; 1g and s =

q(1+�)

q�p�

is a rational number by de�nition of p and �, V

(i)

l

(x

1

; : : : ; x

l

) is

e�ciently computable on the RAM model of computation. So the only problem is the computation

of V

(0)

l

(x

1

; : : : ; x

l

), in particular the handling of the terms s

w

j

0

for rational edge weights w

j

. We show

how to approximate V

(0)

l

(x

1

; : : : ; x

l

) by a polynomial of degree O(m

2

logm) We need a technical

lemma which is a special case of Lemma 2.9 in [23].

Lemma 2.4 Let A

1

; : : : ; A

m

; B;  be rational numbers with encoding length at most L, B � 1 and

0 <  � 1. Let 0 < � � 1 and suppose that

P

m

i=1

jA

i

j � �

1

m and b �

�

2

n

�

for some non-negative

constants �

1

; �

2

. Let N = 18d�

1

medlog�

2

me + 2m + dlog

3

m+1



e and let T

N

be the N -th degree

Taylor polynomial of the exponential function.

8



(i) Then a rational number b approximating lnB and for each i = 1; : : : ;m the number T

N

(A

i

b)

can be computed in O(m log(

m

�

))-time such that

j

m

Y

i=1

e

A

i

lnB

�

m

Y

i=1

T

N

(A

i

b)j � 

uniformly for all A

i

as above.

(ii) The encoding length of T

N

(A

i

b) is O(L[m log(

m

�

)]

2

).

We are ready to prove the main results.

Theorem 2.5 Let � 2 (0; 1), k �

24 lnn

�

2

and M

R

�

18

�

2

. Given the optimal LP solution ~x 2 [0; 1]

m

,

derandomization �nds a k-matching M such that M � (1 � �)M

R

in O(m

2

logm+mn)-time.

Proof. We approximate the function V

(0)

l

(x

1

; : : : ; x

l

) in order to de�ne the pessimistic estimator.

Given x

1

; : : : ; x

l

2 f0; 1g set Z

j

= �w

j

X

j

for j � l + 1 and Z

l

= (1� �

0

)p

0

m �

P

l

i=1

x

i

w

i

. Then

V

(0)

l

(x

1

; : : : ; x

l

) =

m

Y

j=l

IE(e

Z

j

ln s

0

):

We will use Lemma 2.4. Since M

R

�

18

�

2

, we have �

0

�

m�1

m

, which implies s

0

�

4m

�

. Set �

1

= 2,

�

2

= 4 and  =

1

8(4m�1)

and let N be as in Lemma 2.4. Let T

N

be the Taylor polynomial of the

exp-function with degree N . By Lemma 2.4 the approximation of ln s

0

by a rational number b as

well as the approximation of

Q

m

j=l

e

Z

j

ln s

0

can be done uniformly for all x

1

; : : : ; x

l

, hence we have

jj

m

Y

j=l

e

Z

j

ln s

0

�

m

Y

j=l

T

N

(Z

j

b)jj

1

� :

This implies taking expectation and using the independence of the random variables Z

j

for j � l+1

jV

(0)

l

(x

1

; : : : ; x

l

)�

m

Y

j=l

IE(T

N

(Z

j

b))j � :

Set

T

(0)

l

(x

1

; : : : ; x

l

) :=

m

Y

j=l

IE(T

N

(Z

j

b))

and let U

l

(x

1

; : : : ; x

l

) be the functions de�ned by

U

l

(x

1

; : : : ; x

l

) := T

(0)

l

(x

1

; : : : ; x

l

) +

n

X

i=1

V

(i)

l

(x

1

; : : : ; x

l

) + 2(2m� l): (9)

We show that this family of functions de�nes a pessimistic estimator for the event E

c

�

.

Condition (i): With Lemma 2.3 (i)

Prob(E

c

�

jx

1

; : : : ; x

l

) �

n

X

i=1

V

(i)

l

(x

1

; : : : ; x

l

) + V

(0)

l

(x

1

; : : : ; x

l

):

But

V

(0)

l

(x

1

; : : : ; x

l

) � T

(0)

l

(x

1

; : : : ; x

l

) + :

9



Hence Prob(E

c

�

jx

1

; : : : ; x

l

) � U

l

(x

1

; : : : ; x

l

) for all x

1

; : : : ; x

l

.

Condition (ii): With Lemma 2.3(ii) and the fact

jV

(0)

l

(x

1

; : : : ; x

l

)� T

(0)

l

(x

1

; : : : ; x

l

)j � ;

it is straight forward to prove the inequality

U

l+1

(x

1

; : : : ; x

l+1

) � U

l

(x

1

; : : : ; x

l

)

for some x

l+1

given any x

1

; : : : ; x

l

.

Condition (iii): We show U

1

(x

1

) �

1

2

for some x

1

2 f0; 1g. Using Lemma 2.3 (ii) we have for some

x

1

equals either 0 or 1

U

1

(x

1

) =

n

X

i=1

V

(i)

1

(x

1

) + T

(0)

1

(x

1

) + 2(2m� 1)

�

n

X

i=0

V

(i)

1

(x

1

) +

1

8(4m� 1)

+  + 2(2m� 1)

�

1

2

:

The computation of the running time goes as follows:

Let us �rst consider the approximation of V

(0)

l

(x

1

; : : : ; x

l

). Note that

V

(0)

l

(x

1

; : : : ; x

l

) = V

(0)

l�1

(x

1

; : : : ; x

l�1

)

1

IE(e

Z

l

ln s

0

)

e

�w

l

x

l

ln s

0

: (10)

By Lemma 2.4 we can compute each IE(T

N

(Z

j

b)) in O(m log(

m

�

))-time. In the �rst step of the

WALK procedure (l = 1) we have to approximate IE(

Q

m

j=1

e

Z

j

ln s

0

) for some x

1

2 f0; 1g, and

this requires the computation of m polynomials, therefore O(m

2

log(

m

�

))-time. But according to

the recursion (10), in the forthcoming steps (l � 2) we have to do only one update comput-

ing two polynomials, which can be done in O(m log(

m

�

))-time per step, hence summing up over

all the m steps we need O(m

2

log

m

�

)-time. Now for each i � 1 the total computation time of

V

(i)

l

(x

1

; : : : ; x

l

) over all m steps is O(m), using a recursion argument as above and the fact that

we can do exact computations. As i runs from 1 to n we have for the computation of all the nm

numbers V

(i)

l

(x

1

; : : : ; x

l

) a total time of O(nm), hence the total time of the rounding algorithm is

O(m

2

log(

m

�

) + nm): We can assume that � �

1

m

. Otherwise we would get k � 24m

2

lnm, and the

hypergraph k-matching problem would become trivial. This gives us together with  =

1

8(4m�1)

the total time of O(m

2

logm + nm).

2

Corollary 2.6 Let � 2 (0; 1) and k �

24 lnn

�

2

. Let w

1

� : : : � w

m

be the edge weights with

w

1

+ : : :+w

k

�

18

�

2

. Then with linear programming and derandomization we can �nd in polynomial-

time a k-matching M with M � (1 � �)M

opt

.

Proof. w

1

+ : : :+w

k

�

18

�

2

impliesM

R

�

18

�

2

and Theorem 2.5 gives M � (1� �)M

opt

.

2

In the unweighted case we have

Corollary 2.7 Let w � 1, � 2 (0; 1) and k �

24 lnn

�

2

. Then with linear programming and deran-

domized rounding we can �nd in polynomial-time a k-matching with M � (1� �)M

opt

:

10



Proof. k �

24 lnn

�

2

impliesM

R

�

18

�

2

and Theorem 2.5 proves Corollary 2.7.

2

For arbitrary weighted k�matching Theorem 2.5 implies

Corollary 2.8 Let � 2 (0; 1) and k �

24 lnn

�

2

. Let w

1

� : : : � w

m

be the edge weights with w

1

> 1

with w

1

+ : : : + w

k

�

18w

1

�

2

. Then with linear programming and derandomization we can �nd in

polynomial-time a k-matching M with M � (1 � �)M

opt

.

Remark In [1] Aharoni, Erd}os, Linial proved for unweighted 1�matching in hypergraphs that

M

opt

�

M

2

R

n

: An examination of their proof shows that a similar inequality holds for k-matching:

M

opt

�

M

2

R

k

2

n

: (11)

This can be seen as follows. Let d := min fje

i

j; i = 1; : : : ;m; e

i

2 Eg be the minimal edge

cardinality. The proof of Theorem 2 in [1] shows for every vector x 2 IR

m

, x � 0,

x

T

A

T

Ax � (

m

X

i=1

x

i

)

2

"

(d� 1)

m

+

1

M

(1)

opt

#

; (12)

where M

(1)

opt

is the maximal unweighted 1-matching number. Taking the fractional unweighted

k-matching vector associated to M

R

, inequality (12) implies M

opt

�

M

2

R

k

2

n

: A comparison of the

"randomized" lower bound for

M

opt

M

R

and the bound in (11) shows that the randomized result is

much better. By the proof of Theorem 2.1 we have

M

opt

� (1 �

�

2

)M

R

�

r

4(1�

�

2

)M

R

: (13)

Let R

c

:=

M

R

nk

2

and R

p

:= (1 �

�

2

) � 2

q

(1�

�

2

)

M

R

: Using the trivial estimate M

R

� kn and the

assumption M

R

� k �

24 lnn

�

2

, it is straightforward to show that

R

p

R

c

�

k

4

. In other words, the

bound in (11) is

k

4

-times worse than the randomized bound. This is not very much surprising,

since in (11) we divide M

R

by k

2

.

A major improvement on the inequality (11) would be the proof of an inequality of the form

M

opt

�

M

2

R

ckn

with some positive constant c not depending on k or n;m.

3 Concluding Remarks

(a) In section 2 we assumed k �

24 ln n

�

2

. We saw in the discussion at the end of section 1 that our

type of probabilistic analysis always requires k = 
(lnn): It would be interesting to exhibit the

best approximation factor, when k is small, i.e. k = O(lnn):

(b) Is it true that for k-matching in hypergraphs the inequality

M

opt

�

M

2

R

ckn

holds with a positive constant c independent of k; n;m ?

11



(c) A challenging problem in the context of derandomization is the problem of �nding parallel

derandomized algorithms (see Berger and Rompel [7], Motwani, Naor and Naor [17] and Alon [3]).

For the hypergraph matching problem such an algorithm is not known.

(d) The probabilistic analysis presented in this paper is based on the fact that the objective

function is linear. But many combinatorial optimization problems can be formulated in a direct

and natural way as 0-1 quadratic optimization problems. In [22] it is shown that a theory of

randomized rounding and derandomization can be developed for the graph partitioning problem.

More examples of derandomization in integer programming can be found in [23] and [24].
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