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Abstract

With the design of powerful randomized algorithms the transformation of

a randomized algorithm or probabilistic existence result for combinatorial

problems into an e�cient deterministic algorithm (called derandomiza-

tion) became an important issue in algorithmic discrete mathematics. In

the last years several interesting examples of derandomization have been

published, like discrepancy in hypergraph colouring, packing integer pro-

grams and an algorithmic version of the Lov�asz-Local-Lemma. In this

paper the derandomization method of conditional probabilities of Ragha-

van/Spencer is extended using discrete martingales. As a main result pes-

simistic estimators are constructed for combinatorial approximation prob-

lems involving non-linear objective functions with bounded martingale dif-

ferences. The theory gives polynomial-time algorithms for the linear and

quadratic lattice approximation problem and a quadratic variant of the

matrix balancing problem extending results of Spencer, Beck/Fiala and

Raghavan. Finally a probabilistic existence result of Erd}os on the average

graph bisection is transformed into a deterministic algorithm.

1 Introduction

Derandomization, that is the transformation of randomized algorithms or prob-

abilistic existence results into e�cient deterministic algorithms, is considered as

an important issue in algorithmic discrete mathematics.

The use of advanced concepts from probability theory like discrete martin-

gales, rapidly mixing Marko� chains and Poisson processes in the analysis of

combinatorial problems opened a wide range of applications and led in the past

�ve years to several results which are considered as breakthroughs, for exam-

ple the sharp concentration of the chromatic number of random graphs [33],

randomized approximate counting of combinatorial structures[22] [34] or the

computation of the volume of convex bodies [15].

On the other hand a theory of derandomization, although successfully de-

veloped in some examples, is in its beginning phase.

First principles of derandomization were implicitly introduced by Erd}os and

Selfridge and explicitely developed by Spencer in his cosine-hyperbolic algorithm
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[36]. The basic idea there was the construction of weight functions based on the

computation of conditional probabilities. Therefore the e�ciency of the method

depends on the e�cient computation of certain conditional probabilities. Un-

fortunately in many examples this cannot be done.

Raghavan �rst overcame this problem by the construction of e�ciently com-

putable upper bounds for conditional probabilities, the so called \pessimistic

estimators", which mimic the role of conditional probabilities under consider-

ation and established applications to a class of 0-1 integer programs of pack-

ing type [31]. Beck [9] gave a derandomized algorithm for a special case of

the Lov�asz-Local-Lemma and interesting parallel counterparts of previously se-

quential derandomized algorithms have been exhibited by Berger/Rompel [12],

Motwani, Naor and Naor [28] and Alon [3] .

One key fact in the conditional probability method is that pessimistic esti-

mators can be constructed, because linear objective functions are involved and

therefore

�

Cernov and Hoe�ding type inequalities on the deviation of linear sums

of independent random variables from their expectation are available. Obviously

this limits the power of the method and the range of applications.

The purpose of this paper is to extend the derandomization method of

conditional probabilities to a larger class of combinatorial objective functions,

namely those with bounded martingale di�erences, naturally including linear

and quadratic functions and to construct deterministic polynomial-time approx-

imation algorithms for some interesting combinatorial problems.

The key tool in our approach to control non-linear functions are discrete mar-

tingales. The application of martingales presented here is related to the methods

of Shamir/Spencer [33] and Bollob�as [13] who investigated the chromatic num-

ber of random graphs. But in this paper we show how to use martingales in the

anlysis of a randomized algorithm and for derandomization. The application of

the general theory imply the following briey stated results.

The Linear Lattice Approximation problem has been investigated by

Spencer [35], Beck and Fiala [10] and Raghavan [31] and is formulated as follows:

Given a n� r matrix C = (c

ij

) with rational entries 0 � c

ij

� 1 for all i; j and

a rational vector p 2 [0; 1]

r

the lattice approximation problem is to construct a

lattice point q 2 f0; 1g

r

such that jjC(p�q)jj

1

is small, hence the discrepancies

�

i

= j

r

X

j=1

c

ij

(p

j

� q

j

)j

are small. When the matrix C represents the constraints and the objective of a

0�1 integer linear program and p is a solution vector of the corresponding linear

programming realaxtion, then lattice approximation is exactly the problem of

rounding the vector p such that no constraint is violated too much and the

objective function value of the rounded 0�1 vector is close to the real objective

function value.
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The same question arises in 0�1 quadratic optimization. Let c; p 2 [0; 1]

n

be

rational vectors, D a rational r� r matrix and C a rational (n� 1)� r matrix

with 0 � c

ij

� 1. By the Quadratic Lattice Approximation problem we

address the problem of �nding a lattice point q 2 f0; 1g

r

in polynomial-time

such that the following conditions hold:

(a) jc

T

(p� q) + p

T

Dp� q

T

Dqj is small

(b) jjC(p� q)jj

1

is small.

Without the quadratic term (i.e. D � 0) and taking the matrix [C; c] instead of

C this is exactly the (linear) lattice approximation problem.

In the linear case Spencer [35] showed the existence of a lattice point with

�

i

� 6

p

n for all i, while Beck and Fiala [10] gave an algorithm constructing a

lattice point with �

i

� 2

p

2n ln 2n for all i. Raghavan [31] gave a derandomized

algorithm �nding a vector q 2 f0; 1g

n

such that �

i

� s

i

D(s

i

;

1

2n

), where

s

i

=

P

r

j=1

c

ij

p

j

and D(s

i

;

1

2n

) is a function asymptotically better than the

Beck-Fiala bound. Raghavan showed in the unweighted case a polynomial-time

implementation of his algorithm in the RAM-model, whereas the same problem

in the weighted case 0 � c

ij

� 1 remained open. As far as we know no posi-

tive results have been discovered for the more di�cult quadratic version of the

problem.

Let D = (d

ij

). With d := 2max

1�i�r

P

r

j=1

jd

ij

j we give for all matrices

with not too large trace, i.e. trace(D) � �d

p

n, � � 0, an O(r

2

n logn + r

3

)-

time algorithm �nding a lattice point q 2 f0; 1g

r

such that

(a) jc

T

(p� q) + p

T

Dp� q

T

Dqj � 2

p

n ln 2n+ (3 + �)d

p

n

(b) jjC(p� q)jj

1

� 2

p

n ln 2n:

Especially in the linear weighted case this gives an O(r

2

n logn)-time algorithm

�nding a lattice point within an improved Beck-Fiala bound.

Furthermore we study an interesting discrepancy problem, which we call the

DependentlyBalancingMatrix problem. This problem is formally similar to

the matrix balancing problem posed by Moser and solved by Beck and Spencer

[11], but is mathematically di�erent. Given a n � n-matrix A = (a

ij

) with

�1 � a

ij

� 1; 1 � i; j � n; the matrix balancing problem is to �nd row shifts

x = (x

1

; : : : ; x

n

) 2 f�1;+1g

n

and column shifts y = (y

1

; : : : ; y

n

) 2 f�1;+1g

n

such that the quantity D(x; y) := j

P

n

i;j=1

a

ij

x

i

y

j

j is small. Here x and y do not

depend on each other. Beck and Spencer proved Mosers conjecture and gave a

polynomial-time algorithm �nding (x; y) with D(x; y) � 2.

The dependently balancing matrix problem is to �nd x

i

2 f�1;+1g for all i

such that the quadratic form D(x; x) = j

P

n

i;j=1

a

ij

x

i

x

j

j is minimal. If a

ii

= 0

for all i, D(x; x) may be smaller than O(n); but �nding such small discrepancies

seems to be a hard problem.
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With d = max

1�i�n

2

n

X

j=1

(ja

ij

j+ ja

ji

j) we have an O(n

3

)-time algorithm �nding

a

x 2 f�1;+1g

n

such that D(x; x) � 2d

p

n. For small d, i.e d = O(n

1

2

��

) where

0 < � �

1

2

or d = O(logn), this is asymptotically better than the greedy bound

2n.

Finally we consider a problem about average cuts in graphs: Let G = (V;E)

be a graph jV j = 2n: The objective in the Graph Bisection problem is to �nd

a partition of V into equal sized sets A;B � V (jAj = jBj = n) with minimal

cut c(A;B). By probabilistic arguments Erd}os [17] showed the existence of a

bisection A;B � V; jAj = jBj = n with cut value less than (1 + o(1))

jEj

2

.

For dense graphs (jEj = 
(n

3

2

+�

) ; 0 < � �

1

2

) derandomization transfers

this existence result into a deterministic O(n

3

)-time algorithm.

In the next section we de�ne what we mean by derandomization more for-

mally. In the third section pessimistic estimators for combinatorial functions

with bounded martingale di�erences are constructed and the main theorem is

proved. In the last section we give the applications mentioned above.

2 The Derandomization Problem

The model of computation troughout this paper is the RAM-model (see [26]).

In the RAM-model an algorithm runs in polynomial-time, if the number of

elementary arithmetic operations (briey called running time) is bounded in a

polynomial in the number of numbers of the input and the sum of the encoding

lengths of numbers appearing during the execution of the algorithm (briey

called space) is polynomially bounded in the input size. Such a polynomial-time

algorithm is also a polynomial-timealgorithm in the usual Turingmachinemodel

(see [20]). Such an algorithm, where the encoding length does not a�ect the

number of arithmetic operations, is often called a strongly polynomial algorithm.

Let log denote the binary and ln the natural logarithm.

Let I denote an instance of a problem with size n; (
;P) a �nite probability

space and C(I) a rational number. For � > 0 and 0 < � < 1 let A

�;�

be a

randomized algorithm, which for every instance I outputs a (might be empty)

set S � 
; and a rational number A(I; S): Denote by

�

E(�) an event of the

following type: For C(I) 6= 0 :

jA(I; S) �C(I)j > �C(I) (1)

A(I; S) �C(I) > ��C(I) (2)

A(I; S) �C(I) < ��C(I) (3)

For C(I) = 0 :

jA(I; S)j > � (4)
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A(I; S) > �� (5)

A(I; S) < ��: (6)

Let

�

E(�) denote the complementary event, i.e. jA(I; S) �C(I)j � �C(I) etc. In

the following we will specify the type of E(�); if necessary.

De�nition 2.1 A

�;�

is called a randomized polynomial-time (resp. fully polynomial-

time) � � �� approximation algorithm for the event E(�); if the following con-

ditions are satis�ed:

(i) P

�

�

E(�)

�

� � < 1:

(ii) The running time of A

�;�

is bounded by a polynomial in n and log

1

�

(resp. n;

1

�

and log

1

�

).

If for all � > 0 and 0 < � <

1

4

the algorithmA

�;�

is a randomized polynomial-time

(resp. fully polynomial-time) � � ��approximation algorithm, then we call the

family (A

�;�

)

�;�

a polynomial-time randomized approximation scheme (PRAS)

(resp. a fully polynomial-time randomized approximation scheme (FPRAS)) for

C(I).

� is the relative error, � the con�dence parameter and 1 � � the con�dence

probability. De�nition 2.1 extends Karp's de�nition of randomized approxima-

tion algorithms for counting problems [24]. Note that for counting problems and

approximation of type (a) our de�nition di�ers from Karp's de�nition, because

we expect in the output of the algorithm besides A(I; S) also a set S � 
: But S

might be empty, so for counting problems the two de�nitions are equivalent. The

advantage of De�nition 2.1 is that sometimes one is not only interested in the

approximation value A(I; S); but also in a sample set S on which A(I; S) can be

computed, if such a set exists. More important, in combinatorial problems like

discrepancies in hypergraph colouring the probabilistic method proves the exis-

tence of a non-empty subset S of the sets of all colouring with zero discrepancy

([2], Chapter 12). But since C(I) � 0 the only algorithmic interesting problem

is to �nd S or elements of S deterministically. The deterministic counterpart of

De�nition 2.1 is

De�nition 2.2 Let I be an instance of a problem with size n; 
 a �nite set

attached to the problem, C(I) a rational number and � > 0: A determinis-

tic algorithm B

�

is called a polynomial-time (resp. fully polynomial-time) �-

approximation algorithm for the event E(�) if it outputs a set S � 
 and a

rational number A(I; S) such that

(i) E(�) holds

(ii) The running time of B

�

is bounded by a polynomial in n (resp. n and

1

�

):
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If for every � > 0 a polynomial-time (resp. fully polynomial-time) algorithm

B

�

exists, the family (B

�

)

�

is called a polynomial-time (resp. fully polynomial-

time) approximation scheme (PTAS) (resp. (FPTAS)). For optimization prob-

lems De�nition 1.2 coincides with the de�ntion of Papadimitriou and Steiglitz

([29], chap.17). Having designed a randomized �� ��approximation algorithm,

the objective of derandomization is to �nd (S;A(I; S)) in an e�cient determin-

istic way.

De�nition 2.3 (Derandomized Approximation) Let I be a problem instance

and A

�;�

a (fully) polynomial-time randomized � � ��approximation algorithm

which outputs (S;A(I; S)): The derandomization problem is to construct a (fully)

polynomial-time ��approximation algorithm B

�

�nding (S;A(I; S)):

The parameters characterising the input size of our derandomization problem

are n, a positive integer L which is the maximal encoding length of rational

numbers needed to implement a procedure for the computation of the rational

numbers C(I) and A(I; S), the encoding length of the error probability log

1

�

(and in case of fully polynomial-time approximations also

1

�

). Usually L is the

encoding length of rational matrices or vectors.

The following examples show the complexity status of Derandomized Ap-

proximation ranging from polynomial-time solvable to intractable.

Example 1 (Discrepancy of matrices; [2], Chapter 15, Theorem 1.2)

Let (a

ij

)

1�i;j�n

be a rational n� n matrix of reals, where �1 � a

ij

� 1 for all

i; j: The problem is to �nd signs x

1

; :::; x

n

2 f�1;+1g such that for every i;

j

n

X

j=1

a

ij

x

j

j �

p

2n ln 2n. With 
 = f�1;+1g

n

; P(!) = 2

�n

; � =

p

2n ln 2n and

� = P(9 i s.t. j

n

X

j=1

a

ij

x

j

j > �) Theorem 1.1, Chapter 12 of [2] shows that � < 1,

hence with C(I) = 0 the above procedure is a fully polynomial-time randomized

�� �� approximation algorithm and Theorem 1.2, Chapter 15 of [2] solves the

derandomization problem for this example.

Example 2 (Two terminal global routing, see [23], [30])

This example represents a class of randomized approximation algorithms, where

the probability distribution is not uniform over the (�nite) solution set, but

drawn from the solution of a linear program.

The problem of �nding a global routing of VLSI-circuits in gate-array designs

for two terminal nets is stated as follows: Given a rectilinear n� n grid (where

grid-nodes represent an ensemble of circuit elements and the grid-edges are

channels for wiring), a collection of two terminal nets N = fN

1

; :::; N

r

g and for

each net N

i

two possible paths P

i

1

and P

i

2

, the task is to choose for each net

exactly one path minimizing the channel width that is the maximal number of

6



paths using an grid edge over all grid edges. The problem has been studied by

Karp et al. [23] and is known to be NP-hard.

It is easily formulated as an integer linear program. Let W

R

be the minimal

fractional channel width that is the solution of the corresponding LP-relaxation.

Raghavan [30] showed that randomized rounding is for any 0 < � < 1 and

� =

q

3W

R

ln

2n(n�1)

�

a fully polynomial-time randomized ����algorithm �nd-

ing an integral channel width W such that 0 � W �W

R

� � with probability

at least 1� �; provided that W

R

� 3 ln(2n(n�1)�

�1

): Again this algorithm can

be derandomized [31].

Example 3 (Approximation of the permanent [22])

Given a graph G = (V;E) the exact calculation of its permanent is known to

be #P -complete, whereas Jerrum and Sinclair established a FPRAS for this

problem. Whether their algorithm can be derandomized or not is unknown.

Example 4 (Max-Cut)

Given a graph G = (V;E); jV j = n; the Max-Cut problem is to �nd a cut with

maximal number of edges. Let m

opt

be the values of a maximal cut, 
 be the

set of all cuts and � = 1 �

1

j
j

; C(I) = m

opt

and � =

1

1+m

opt

: When every

cut is equiprobable, picking a cut randomly builds trivially a fully polynomial-

time randomized �� ��approximation algorithm. But for this special choice of

� derandomization is equivalent to the determination of a maximal cut, which

is NP-hard [19].

Remark: Karps de�nition of a randomized approximation algorithm requires

� �

1

4

. This would exclude trivial randomized algorithms as considered in the

Max-Cut example. But for the purpose of derandomization such a restriction is

not justi�ed, because there are randomized algorithms having only exponentially

small con�dence probability, for example Becks algorithmic version of Lov�asz-

Local-Lemma [9], which can be derandomized.

The last example shows that sometimes Derandomized Approximation is

intractable.

Example 5

The problem of �nding the exact value of the volume of a convex body, given by a

membership oracle, is #P�complete. Dyer, Frieze and Kannan [15] established

a FPRAS for this problem. But the problem of Derandomized Approximation

is intractable according to results of Elekes [16] and B�ar�any and F�uredi [7].

Known problems where randomized approximation algorithms have been

derandomized are of the type of Example 1 and 2. In such problems linear

combinatorial functions are involved and therefore

�

Cernov and Hoe�ding type

estimates on the tail of the Binomial distribution are su�cient for the construc-

tion of pessimistic estimators.
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But even in the case of linear objective functions with rational coe�cients it

remained an unsolved problem how to construct e�cient computable pessimistic

estimators in the RAM model of computation ([31], p. 138).

In the next section we will extend the method of conditional probabilities

to cover derandomization problems with "computable" functions with bounded

martingale di�erences.

3 Pessimistic Estimators and Martingales

Many approximation problems can be formulated as the problem of approxi-

mating the expectation of a certain combinatorial function over a discrete �nite

set. We consider such problems and work for simplicity on discrete sequence

spaces. Let m;n 2 N and 
 = f0; 1; :::;m� 1g

n

the set of all vectors of length

n with entries from f0; 1; :::;m � 1g: Take the powerset P(
) over 
 as the

��algebra and let Pbe a probability measure on 
. Denote by [n] and [m]

0

the

sets f1; : : : ; ng and f0; 1; : : : ;m � 1g: Let E � 
 be an event such that for a

0 < � < 1; P(

�

E) � �; where

�

E is the complement of E: Our task is to �nd an

! 2 E: We partition 
 into two classes calling a point ! 2 
 good, if ! 2 E

and calling it bad, if ! 62 E: Let us briey review Spencers method of condi-

tional probabilities for the construction of a good ! 2 
: Following Raghavan

[31] Spencers idea can be explained in a suggestive way as a walk on a rooted

m�ary tree T (m;n): The inner nodes on the i�th level (1 � i � n) of T (m;n)

represent the setting of !

i

to 0; :::;m�1while the leafs correspond exactly to the

points of 
: During the walk the entries of the output vector ! are choosen from

0; :::;m� 1: Let P(

�

Ej !

i

) denote the conditional probability, that a bad event

will occur when the i-th entry is choosen as !

i

: A pre-deterministic algorithm

is the following recursively de�ned procedure:

De�nition 3.1 Algorithm WALK(

�

E)

(a) Initial Step (i = 1)

Compute !

1

2 [m]

0

such that P(

�

Ej!

1

) = min

0�j�m�1

P(

�

Ejj)

(b) Induction Step (i = 2; ::; n)

Compute !

i

with P(

�

Ej!

1

; : : : ; !

i�1

; !

i

) = min

0�j�m�1

P(

�

Ej!

1

; : : : ; !

i�1

; j)

(c) Output the vector ! = (!

1

; ::; !

n

)

The straight forward proved and for all applications of the method of con-

ditional probabilites striking observation is that ! 2 E; hence ! is a good point

of 
 (see [36] or [31]).

The algorithmic interesting and essential question is whether the conditional

probabilities P(

�

Ej !

1

; : : : ; !

i�1

) can be computed in polynomial-time or not.

Unfortunately this seems not to be possible, even in simple cases.
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Raghavan suggested a method to remove this di�culty. His idea is to con-

struct upper bounds on the conditional probabilities, which play the same role

as the conditional probabilities, but are e�ciently computable, the so called

\pessimistic estimators" [31]. The following de�nition formalizes the concept of

"pessimistic estimators" and can be considered as an extension of Raghavans

de�nition from the case m = 2 to general m 2 N.

Let i 2 [n], !

1

; : : : ; !

i�1

2 [m]

0

,

C

ij

= f!

0

2 
;!

0

k

= !

k

for k = 1; : : : ; i� 1 and !

0

i

= jg

and

C

i

= f!

0

2 
;!

0

k

= !

k

for k = 1; : : : ; i� 1g:

De�ne

�

ij

(!

1

; : : : ; !

i�1

) =

P(C

ij

)

P(C

i

)

:

De�nition 3.2 Let U = fU

ij

(!

1

; : : : ; !

i�1

); i 2 [n]; j 2 [m]

0

; j !

1

; : : : ; !

i�1

2

[m]

0

g be a family of real-valued functions with the convention that U

1j

denote

the j-th function on the �rst level. The family U is called a pessimistic esti-

mator (resp. weak pessimistic estimator) for the event

�

E, if for each i 2 [n]

and !

1

; : : : ; !

i�1

2 [m]

0

, the following conditions (i) - (iv) (resp. (i) - (iii)) are

satis�ed:

(i) P(

�

Ej !

1

; : : : ; !

i�1

; !

i

= j) � U

ij

(!

1

; : : : ; !

i�1

)

(ii) U is P-convex, that means

m�1

X

j=0

�

ij

(!

1

; : : : ; !

i�1

)U

ij

(!

1

; : : : ; !

i�1

) � U

i;!

i�1

(!

1

; : : : ; !

i�2

):

(iii) min

0�j�m�1

U

1j

� � < 1

(iv) U is computable in polynomial-time, that means each function

U

ij

(!

1

; : : : ; !

i�1

)

can be computed in the RAM model of computation in time bounded by a

polynomial in n;m and log

1

�

:

Taking the pessimistic estimator instead of the conditional probabilities in

the WALK algorithm we obtain indeed a polynomial-time algorithm.

De�nition 3.3 Let E � 
 be an event with P(

�

E) � � < 1 and let U be a

pessimistic estimator for

�

E: Then let D �WALK(

�

E) the algorithm de�ned as

in De�nition 3.1, but where the conditional probabilities have been replaced by

the corresponding functions of the pessimistic estimator U .

9



Combination of pessimistic estimators of di�erent events are nothing else

than sums of the corresponding families and P-convexity implies

Proposition 3.4 Let E

i

� 
, i = 1; : : : ; l, be events with P(

�

E

i

) � �

i

< 1 and

�

1

+ : : :+ �

l

< 1. Let U

(i)

be a pessimistic estimators for

�

E

i

and let

U = U

(1)

+: : :+U

(l)

. Then U is a pessimistic estimator for the event

�

E

1

_: : :_

�

E

l

.

Our special probabilistic framework is a n-product of Bernoulli trials and

the entries of each ! 2 
 are outcomes of n independently casted dices with m-

faces, where the i-th face of the j-th dice occurs with probability p

ij

; 0 � p

ij

� 1;

i 2 [n]; j 2 [m]

0

: De�ne a probability measure on 
 by

P(f!g) =

n

Y

i=1

p

i!

i

; (! 2 
):

Then (
;P) is a probability space with the powerset P(
) of 
 as the sigma

algebra.

Let f : 
 ! Q be a function and set C(I) = E(f ): Our algorithm, which

we call DICE, casts the above de�ned n-dices independently, hence generate a

random point ! 2 
 and and outputs S = f!g along with the value A(I; S) :=

f(!):

We will study under which circumstances A(I; S) = f(!) is a good approx-

imation of C(I) = E(f):

De�nition 3.5 To shorten notation de�ne for � > 0 the events E

a

; E

b

; E

c

(i) the above event E

a

(�) as f(!) � E(f ) + �:

(ii) the below event E

b

(�) as f(!) � E(f ) � �:

(iii) the concentration event E

c

(�) as jf(!) � E(f )j � �:

Remark: If the conditional probabilities E(f j!

1

; : : : ; !

i

) can be computed ef-

�ciently, then it is easy to �nd an ! 2 
 with f(!) � E(f) or f(!) � E(f ) by

a method similar to the D-WALK algorithm in De�nition 3.3: Simply replace

P (

�

Ej!

1

; : : : ; !

i�1

) by E(f j!

1

; : : : ; !

i�1

) and this gives E(f ) � f(!) � f(!) � �

for any � > 0: So the derandomization problem for the events E

a

(�) and E

b

(�)

is immediately solved and the consideration of complicated estimates on

P (f < E(f ) � �j!

1

: : : ; !

i�1

) would be obsolet. But this simple procedure

exhibits only a vector ! with f(!) � E(f ) � � and another vector ~! with

f(~!) � E(f ) + �; but in general ! 6= ~!! Hence the algorithm cannot be applied

to a combination of above and below events, especially does not �nd concen-

trated events. Therefore we are urged to construct pessimistic estimator for the

above and below events, because then we will be able to analyse any combination

of such events.

10



For functions f with bounded martingale di�erences it will turn out that DICE

is a randomized approximation algorithm and this fact is nothing but an algo-

rithmic interpretation of the inequality of Azuma [6].

Martingales and the inequality of Azuma swepped into the analysis of combi-

natorial functions 1987 with the work of Shamir and Spencer and since then has

been widely used to discover new results in the theory of random graphs, which

yet could not be established without martingales (see Shamir, Spencer [33], Bol-

lob�as [13], McDiarmid [27], Rhee, Talagrand [32], and Frieze, Karp, Reed [18] ).

The most prominent results are probably the theorem of Shamir and Spencer

[33] on the sharp concentration of the chromatic number around its expectation

and the determination of the expected chromatic number as (1 + o(1))

n

log n

by

Bollob�as [13]. We will use martingales and Azumas inequality in a completely

di�erent way. Our purpose is to analyse the worst case behaviour of randomized

algorithms and to derandomize them via martingales.

To exhibit the combinatorial meaning of Azumas inequality in our context,

we follow Shamir and Spencer and generate a �ltration of �-algebras along

a sequence of Bernoulli trials. The most important observation, on which all

combinatorial applications of Azumas inequality are based, is that the objective

function f may change its value passing from one �-algebra in the �ltration

to the next one only by a small \local" amount. This can be interpreted as a

kind of Lipschitz continuity of f with a small constant ([2], Theorem 4.1). The

martingale is constructed as follows:

Say !; !

0

2 
 are k-equivalent, i.e. !

�

=

k

!

0

if !

j

= !

0

j

for all

1 � j � k: k�equivalency de�nes an equivalence relation on 
 and induces for

each k a partition P

k

of 
 where P

n

= ff!g;! 2 
g and P

0

= f
g: Denote by

F

k

the ��algebra generated by P

k

: Then f;;
g = F

o

� F

1

� : : :� F

n

= P(
)

and (F

k

)

n

k=0

is a �nite �ltering of ��algebras.

For f : 
 ! R denote by E(f j F

k

) the conditional expectation of f with

respect to F

k

: The sequence (f

k

)

n

k=0

is a Doob's martingale process with f

0

=

E(f ) and f

n

= f: Denote by �

k

the martingale di�erences �

k

= f

k

� f

k�1

and

suppose that there are d

k

� 0 with jj�

k

jj

1

� d

k

for all k: Let � :=

n

X

k=1

d

2

k

;

0 < � < 1 and �

i

:=

q

2� ln

i

�

for i = 1; 2:

Proposition 3.6 (Azuma Inequality [6]) Let (
;�;P) be a probability space,

(�

k

)

n

k=1

a �ltering of ��algebras with �

k

� � for all k: Let (f

k

)

n

k=1

be a mar-

tingale with bounded di�erences k�

k

k

1

� d

k

; for all k: Then we have

(i) P(f

n

� f

0

� ��

1

(�)) � exp(�

�

2

1

2�

) = �

(ii) P(f

n

� f

0

� �

1

(�)) � exp(�

�

2

1

2�

) = �

(iii) P(jf

n

� f

0

j � �

2

(�)) � 2 exp(�

�

2

2

2�

) = �

11



Taking �

k

:= F

k

and (F

k

) as the �ltering de�ned above Proposition 3.6

proves

Proposition 3.7 DICE is a randomized fully polynomial-time �

1

���approximation

algorithm for the events E

a

(�

1

); E

b

(�

1

) and a randomized fully polynomial-time

�

2

� ��approximation algorithm for the concentration event E

c

(�

2

):

Remark: If m = 2 and f is the weighted sum of independent Bernoulli trials,

i.e. f(!) =

n

X

i=1

a

i

!

i

; 0 � a

i

� 1; then

�

Cernov and Hoe�ding type inequalities

[27] gives better �

i

(�) values than the Azuma inequality. In the forthcoming we

will use Azumas inequality having in mind that especially for linear functions all

approximation results we will establish can also be proved with slightly better

constants. In order to derandomize the algorithm DICE or in other words to

�nd an ! 2 
 deterministically such that the events E

a

(�); E

b

(�) or E

c

(�) holds,

we de�ne the functions from which the pessimistic estimators are derived.

De�nition 3.8 Let 
 = f0; 1; : : : ;m� 1g

n

and (F

k

) the ��algebras generated

by the equivalence relation =

k

as de�ned before. Let f : 
 ! Q be a function

with bounded martingale di�erences, kE(f j F

k

)� E(f j F

k�1

)k

1

� d

k

for each

k; d

k

� 0: For i 2 [n]; j 2 [m]

0

; !

1

; : : : ; !

i�1

2 [m]

0

and parameters �; t > 0

de�ne the families of functions U

(a)

, U

(b)

and U

(c)

by

(i) U

(a)

ij

(!

1

; : : : ; !

i�1

) := e

�t(�+E(f))

e

1

2

t

2

(d

2

i+1

+:::+d

2

n

)

e

tE(f j!

1

;:::;!

i�1

;j)

:

(ii) U

(b)

ij

(!

1

; : : : ; !

i�1

) := e

�t(��E(f))

e

1

2

t

2

(d

2

i+1

+:::+d

2

n

)

e

�tE(f j!

1

;:::;!

i�1

;j)

:

(iii) U

(c)

ij

(!

1

; : : : ; !

i�1

) = (U

(a)

ij

+ U

(b)

ij

)(!

1

; : : : ; !

i�1

):

In order to derandomize the algorithm DICE we must show that the families

U

(a)

(resp. U

(b)

, resp. U

(c)

) are pessimistic estimators for the events

�

E

a

(�),

resp.

�

E

b

(�), resp.

�

E

c

(�), when the events

�

E

a

(�);

�

E

b

(�);

�

E

c

(�) are f � E(f ) > �;

f � E(f ) < �� and jf � E(f )j > �:

We �rst prove for an appropriate choice of the parameters � and t the weak

pessimistic estimator property. This will be used to construct pessimistic esti-

mators also in the RAM-model of computation.

Theorem 3.9 Let 0 < � < 1, �

i

=

q

2� ln

i

�

and t

i

= �

i

�

�1

, (i = 1; 2).

The families U

(a)

, U

(b)

and U

(c)

are weak pessimistic estimators for the events

�

E

a

(�

1

),

�

E

b

(�

1

) and

�

E

c

(�

2

).

In the proof of Theorem 3.9 we need two lemmata.

Lemma 3.10 For all t > 0 and k 2 f1; : : : ; ng we have

E(e

t(f

k

�f

k�1

)

j F

k�1

) � exp(

td

2

k

2

):

12



Lemma 3.10 is an immediate consequence of [33], Lemma 4.

Lemma 3.11 For k 2 f1; : : : ; ng let C 2 P

k

be a partition set. Then we have

for all t > 0

E(e

tf

k

jC) = e

tE(f jC)

:

Proof. Let P

k

= fC

1

; : : : ; C

l

g and let 1

C

i

the characteristic function of the set

C

i

. Then f

k

=

l

X

i=1

1

C

i

E(f jC

i

):

Hence for ! 2 C

f

k

(!) = E(f jF

k

)(!) = E(f jC);

and we have

E(e

tf

k

jC) =

1

P(C)

X

!2C

e

tf

k

(!)

P(!)

=

1

P(C)

X

!2C

e

tE(f jC)

P(!)

= e

tE(f jC)

:

2

Proof of Theorem 3.9:

We �rst consider the event

�

E

a

(�

1

) which represents \f�E(f) > �

1

": The proofs

for the other events are similar.

(i) Let � > 0 be arbitrary. For the upper bound condition we must show for

all i and j :

P(

�

E

a

(�)j!

1

; : : : ; !

i�1

; j) � U

(a)

ij

(!

1

; : : : ; !

i�1

):

Let

C

i

= f!

0

2 
; !

0

k

= !

k

for k = 1; : : : ; i� 1g:

and

C

ij

= f!

0

2 
; !

0

k

= !

k

for k = 1; : : : ; i� 1 and !

0

i

= jg:

Then using Lemma 3.10, induction on k and Lemma 3.11 we have for any t > 0

P(

�

E

a

(�)jC

ij

) = P(f � E(f) > �jC

ij

)

� exp(�t�)E

�

e

t(f�E(f))

jC

ij

�

= exp(�t�)E

h

E(1

C

ij

e

t(f�E(f))

jF

n�1

)

i

�P(C

ij

)

�1

= exp(�t�)E

h

1

C

ij

e

t(f

n�1

�E(f))

E(e

t(f

n

�f

n�1

)

jF

n�1

)

i

�P(C

ij

)

�1

13



� exp(�t�) exp(

1

2

t

2

d

2

n

) �E

�

1

C

ij

e

t(f

n�1

�E(f))

�

�P(C

ij

)

�1

= exp(�t�) exp(

1

2

t

2

d

2

n

) �E

�

e

t(f

n�1

�E(f)

jC

ij

�

� exp(�t�) exp(

1

2

t

2

n

X

k=i+1

d

2

k

) �E

�

1

C

ij

e

t(f

i

�E(f))

�

P(C

ij

)

�1

= exp(�t�) exp(

t

2

2

n

X

k=i+1

d

2

k

) exp(tE(f jC

ij

)) exp(�tE(f))

= U

(a)

ij

(!

1

; : : : ; !

i�1

) :

(ii) P-convexity of U

(a)

is proved as follows. Again the special choice � = �

1

is not needed, so let be � > 0 arbitrary and let �

ij

:= �

ij

(!

1

; : : : ; !

i�1

) as in

De�nition 3.2 (ii). Then

P

m�1

j=0

U

(a)

ij

(!

1

; : : : ; !

i�1

)�

ij

= exp(�t�) exp(

1

2

t

2

P

n

k=i+1

d

2

k

)

P

m�1

j=0

�

ij

exp(t[E(f jC

ij

)� E(f )])

= (1):

With Lemma 3.11 we have

exp(tE(f jC

ij

)) = E

�

e

tf

i

jC

ij

�

:

With this and Lemma 3.10 we have the estimates

(1) = exp(�t�) exp(

1

2

t

2

n

X

k=i+1

d

2

k

)E

�

e

tf

i

jC

i

�

� exp(�tE(f ))

� exp(�t�) exp(

1

2

t

2

n

X

k=i

d

2

k

)E

�

e

tf

i�1

jC

i

�

exp(�tE(f ))

= exp(�t�) exp(

1

2

t

2

n

X

k=i

d

2

k

)e

t[E(f jC

i

)�E(f)]

= U

(a)

i�1;!

i�1

(!

1

; : : : ; !

i�2

)

(iii) Now we choose special values for � and t. Let � := �

1

and t := t

1

= �

1

�

�1

:

We show the initial condition

minU

(a)

1j

� �:

14



Let C

1j

= f! 2 
; !

1

= jg and p

1j

= P(C

1j

):

Then

U

(a)

1

(!

1

) = min

0�j�m�1

U

(a)

1j

�

m�1

X

j=0

p

1j

U

(a)

1j

= exp(�t�) exp(�tE(f )) exp(

t

2

2

n

X

k=2

d

2

k

)

m�1

X

j=0

p

1j

exp(�tE(f jC

1j

))

= exp(�t�) exp(

t

2

2

n

X

k=2

d

2

k

)

m�1

X

j=0

p

1j

exp(t[E(f jC

1j

)� E(f)])

= exp(�t�) exp(

t

2

2

n

X

k=2

d

2

k

)

m�1

X

j=0

E

�

e

t[E(f jF

1

)�E(f)]

jC

1j

�

(Lemma 3.11)

= exp(�t�) exp(

t

2

2

n

X

k=2

d

2

k

)E

�

e

t[E(f jF

1

)�E(f)]

jF

0

�

� exp(�t(� �

t

2

n

X

k=1

d

2

k

)) (Lemma 3.10)

= � < 1 :

2

In the next step we construct pessimistic estimators. The idea is the fol-

lowing: Suppose a family U

(a)

is a weak pessimistic estimator. Suppose fur-

thermore that the U

(a)

ij

can be approximated by polynomial-time computable

functions up to a speci�ed precision  � 0. Let q(n;m) � 1 be a polynomial with

� +

�

q(n;m)

< 1. Then with  =

�

(4n�1)q(n;m)

we approximate U

(a)

ij

by functions

V

(a)

ij

up to the absolute error  and a family of the form (V

(a)

+ (4n � 1)) is

the desired pessimistic estimator in the RAM model.

In case of functions with bounded martingale di�erences it will be su�cient

to approximate the U

(a)

ij

; which are compositions of square roots, logarithms

and exponential functions, by their Taylor polynomials. But we state the result

for the general case.

De�nition 3.12 (Approximate Pessimistic Estimators) Let � > 0, � 2

(0; 1) and q(n;m) a polynomial with q(n;m) � 1. Let U

(a)

; U

(b)

; U

(c)

be weak

pessimistic estimators for the events E

a

(�); E

b

(�) and E

c

(�). Let V

(a)

; V

(b)

and

V

(c)

be families of functions computable in the RAM model in time bounded by

a polynomial in n;m and ln

1

�

having the properties
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(a) jU

(a)

ij

(!

1

; : : : ; !

i�1

)� V

(a)

ij

(!

1

; : : : ; !

i�1

)j �

�

(4n�1)q(n;m)

(b) jU

(b)

ij

(!

1

; : : : ; !

i�1

) � V

(b)

ij

(!

1

; : : : ; !

i�1

)j �

�

(4n�1)q(n;m)

(c) jU

(c)

ij

(!

1

; : : : ; !

i�1

) � V

(c)

ij

(!

1

; : : : ; !

i�1

)j �

�

2(4n�1)q(n)

;

and de�ne the families W

(a)

;W

(b)

;W

(c)

as follows:

(d) W

(a)

ij

(!

1

; : : : ; !

i�1

) = V

(a)

ij

(!

1

; : : : ; !

i�1

) +

2(2n�i)

4n�1

�

q(n;m)

(e) W

(b)

ij

(!

1

; : : : ; !

i�1

) = V

(b)

ij

(!

1

; : : : ; !

i�1

) +

2(2n�i)

4n�1

�

q(n;m)

(f) W

(c)

ij

(!

1

; : : : ; !

i�1

) = V

(c)

ij

(!

1

; : : : ; !

i�1

) +

2n�i

4n�1

�

q(n)

:

Proposition 3.13 The familiesW

(a)

;W

(b)

;W

(c)

are pessimistic estimators for

the events

�

E

a

(�) ;

�

E

b

(�) and

�

E

c

(�):

By Proposition 3.13 D-WALK is a deterministic polynomial-time algorithm

�nding an ! 2 
 such that f(!) � E(f) + � etc.

Proof of Proposition 3.13: Let us consider W

(a)

; the arguments for the other

cases are the same:

(i) The upper bound condition is an immediate consequence of De�nition 3.2

(i):

De�ne  :=

�

(4n�1)q(n;m)

: Then

P(

�

E

a

(�))j!

1

; : : : ; !

i�1

; j) � U

(a)

ij

(!

1

; : : : ; !

i�1

)

� V

(a)

ij

(!

1

; : : : ; !

i�1

) + 

� V

(a)

ij

(!

1

; : : : ; !

i�1

) +  + (4n� 2i� 1)

= W

(a)

ij

(!

1

; : : : ; !

i�1

):

(ii) P-convexity follows with De�nition 3.2(ii):

Let �

ij

:= �

ij

(!

1

; : : : ; !

i�1

) as in De�nition 3.2 (ii).

m�1

X

j=0

�

ij

W

(a)

ij

(!

1

; : : : ; !

i�1

) =

m�1

X

j=0

�

ij

V

(a)

ij

(!

1

; : : : ; !

i�1

) + 2(2n� i)

�

m�1

X

j=0

�

ij

U

(a)

ij

(!

1

; : : : ; !

i�1

) +  + 2(2n� i)

� U

(a)

i�1;!

i�1

(!

1

; :::; !

i�2

) + (4n� 2i+ 1)

� V

(a)

i�1;!

i�1

(!

1

; :::; !

i�2

) + (4n� 2i+ 2)

= W

(a)

i�1;!

i�1

(!

1

; :::; !

i�2

)
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(iii) The initialization follows from the assumption on U

(a)

1j

:

min

0�j�m�1

W

(a)

1j

= min

0�j�m�1

V

(a)

1j

+ 2(2n� 1)

� min

0�j�m�1

U

(a)

1j

+  + 2(2n� 1)

� � +

�

q(n;m)

< 1:

2

In the next step we approximate the weak pessimistic estimators of De�nition

3.8 by Taylor polynomials and construct the W

ij

: We need the following techni-

cal lemma, which assures that in our case approximation by Taylor polynomials

is easy. We recall that we de�ned running time as the number of arithmetic

operations.

Lemma 3.14 (i) Let y be a rational number with encoding length L and



1

2 (0; 1) a positive real number. Let N be a positive integer with

N � 7djyje+ blog

3

1



1

c: Then the N -th degree Taylor polynomial

T

N

(y) =

P

N

k=0

y

k

k!

of exp(y) has encoding length O(LN ), can be computed

in O(N )�time such that j exp(y) � T

N

(y)j � 

1

.

(ii) Let x � 1 be a rational number with encoding length L and 

2

2 (0; 1)

a positive real number. Let N be a positive integer with N � 2dlog

4



2

e.

Then a rational number y with encoding length O(LN ) can be computed

in O(N )�time such that j ln x� yj � 

2

:

(iii) Let x be a rational number with encoding length L, 

3

2 (0; 1) a positive

real number. If x � 1 let N be a positive integer with N � dlog

x



3

e and

if 0 < x < 1 let N � dlog

1



3

e: Then a rational number y with encoding

length O(L+N ) can be computed in O(N )�time such that j

p

x� yj � 

3

:

(iv) Let x �

4

3

be a rational number with encoding length L and 

4

2 (0; 1)

a real number. Let N be a positive integer with N � 2dlog

8x



4

e. Then a

rational number y with encoding length O(LN ) can be computed in time

O(N ) such that j

p

ln x� yj � 

4

:

Proof.

For a proof of (i) { (iii) see ([38], Lemma 2.4).

(iv) By (ii) we can �nd a rational y

0

� ln x such that y

0

� ln x �



4

2

in time

O(N ): Since 0 < y

0

� lnx +



4

2

� 2x we can �nd by (iii) a rational y with

jy �

p

y

0

j �



4

2

in O(N )�time. For y we have the estimates

j

p

ln x� yj �

p

y

0

�

p

ln x+ jy �

p

y

0

j

17



�



4

2

+

y

0

� ln x

p

y

0

+

p

ln x

�



4

2

(1 +

1

2

p

ln x

)

� 

4

(Using x �

4

3

):

Furthermore by (ii) and (iii) the encoding length of y is O(LN ):

2

Remark In Lemma 3.14 the computation of the integer N involves the calcula-

tion of logarithmic terms log

1



i

with real 

i

: In the RAM model this cannot be

carried out. But in our applications of Lemma 3.14 the terms log

1



i

are bounded

by polynomials p



in n;m;L and log

1

�

: So we evaluate p



and then choose a

positive integer N , N = O(p



), such that N is su�ciently large as required by

Lemma 3.14.

Before we proceed to the main theorem of this section, recall that the input

size of our derandomization problem is given by n, m, log

1

�

and L (the max-

imal encoding length of rational numbers, which are needed to implement an

algorithm for the pointwise evaluation of f).

Theorem 3.15 Let f : 
 �! Q be a function with bounded martingale di�er-

ences, jjE(f jF

k

) � E(f jF

k�1

)jj

1

� d

k

for each k 2 f1; : : : ; ng, where d

k

� 0

are rational numbers. Let c > 0 be a constant and let p

1

; p

2

; p

4

be rational-

valued polynomials in n and m with c � p

1

; p

2

; p

4

. Let p

3

be a rational-valued

polynomial in L, n and m. Suppose that the following conditions are satis�ed.

(i) jjf jj

1

� p

1

(n;m):

(ii) For each ! 2 
 and k 2 f1; : : : ; ng the conditional expectation E(f jF

k

)(!)

can be computed in time bounded by p

2

(n;m):

(iii) For all k 2 [n] and ! 2 
; the maximal encoding length of a number

appearing in the computation of E(f jF

k

)(!) is p

3

(L; n;m):

(iv)

n

X

k=1

d

2

k

�

1

p

4

(n;m)

Then we have for every 0 < � < 1 and �

i

=

v

u

u

t

2

n

X

k=1

d

2

k

ln

2i

�

; (i = 1; 2)

(a) Pessimistic estimators for the events

�

E

a

(�

1

),

�

E

b

(�

1

) and

�

E

c

(�

2

) can be

computed in O( log

1

�

[p

1

p

4

+ logn] + p

2

)-time and with

O( (log

1

�

)

3

p

3

[p

1

p

4

+ n]

2

)-space.

18



(b) The algorithm D-WALK �nds an ! 2 
 such that f(!) � E(f ) + �

1

(resp. f(!) � E(f ) � �

1

; resp. jf(!) � E(f )j � �

2

) in

O( nm(log

1

�

[p

1

p

4

+ logn] + p

2

) )-time.

Remark

(a) As the running time in Theorem 3.15 does not contain the encoding length

we have indeed a strongly polynomial algorithm.

(b) Note that the di�erence between the approximation parameter �

i

in The-

orem 3.15 and the probabilistic statement (Proposition 3.7) is the term ln

2i

�

instead of ln

i

�

. So the approximation is less tight, but this fact will enable us

to approximate the weak pessimistic estimators by Taylor polynomials and to

apply Proposition 3.13.

Proof. We consider the event E

a

(�

1

): The argumentation for the other two

events is similar. By De�nition 3.8

U

(a)

ij

(!

1

; :::; !

i�1

) = exp(�t

1

[�

1

�

t

1

2

(d

2

i+1

+:::+d

2

n

)+E(f )�E(f j !

1

; :::; !

i�1

; j)]):

With � :=

n

X

k=1

d

2

k

; � := �

�1

n

X

k=i+1

d

2

k

� 2;

� :=

r

2

�

(E(f j !

1

; :::; !

i�1

; j)� E(f ))

and

x := � ln

2

�

+ �

r

ln

2

�

the function U

(a)

ij

is rewritten in the simple form

U

(a)

ij

(!

1

; :::; !

i�1

) = exp(x):

We will approximate exp(x) by suitable Taylor polynomials. >From the assump-

tions (i)-(iv) it follows with

p(jxj) := 13dp

1

p

4

edlog

1

�

e

that

jxj � 1 + jxj � p(jxj):

Let  :=

�

2(4n�1)

and E := E(f j !

1

; :::; !

i�1

; j)� E(f ): Then

p(jxj) = O(p

1

p

4

log

1

�

); jEj = O(p

1

):

log

1



= O(logn+ log

1

�

) and j�j = O(1):
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In the sequel we will use Lemma 3.14. In case the given approximation error 

is bigger than 1, we avoid negative ln

1



terms in Lemma 3.14 replacing  by 0.5.

Step 1: Approximation of �

q

ln

2

�

Computation of E: Let !

0

:= (!

1

; :::; !

i�1

; j; !

0

i+1

; :::; !

0

n

); and !

0

k

arbitrary

for k � i+1: The conditional expectation E(f j F

i

) is constant on each partition

class of P

i

; hence E(f j !

1

; :::; !

i�1

; j) = E(f j F

i

)(!

0

) and by condition (iii) E

can be computed in time

O(p

2

): (7)

Approximation of

q

2

�

:

We wish to �nd a rational y

1

with

j

r

2

�

� y

1

j �

1

16

�jEj

�1

e

�p(jxj)

: (8)

Let N = 2p(jxj) + dlog

32jEj

��

e:

Since jEj = O(p

1

) and p(jxj) = O(p

1

p

4

log

1

�

) we have

dlog(

32jEj

��

e

p(jxj)

)e � N = O(p

1

p

4

log

1

�

+ logn):

Hence with Lemma 3.14 (iii) we can compute a y

1

such that (8) holds in

O(p

1

p

4

log

1

�

+ logn) (9)

time. De�ne �

1

:= y

1

E: With (2)

j�

1

j = jy

1

jjEj

� jEj

 

r

2

�

+

�

16jEj

e

�p(jxj)

!

� jEj

r

2

�

+ 1

� 2jEjmax(1;

2

�

)

= O(p

1

p

4

);

and

ln j�

1

j = O(log p

1

+ logp

4

) (10)
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Approximation of

q

ln

2

�

:

Let 

3

:= min(1;

1

8

j�

1

j

�1

e

�p(jxj)

): We want to compute a rational y

2

with

j

r

ln

2

�

� y

2

j � 

3

With (10) we have

2dlog(

2

�

8



3

)e = O

�

[p

1

p

4

+ logn] log

1

�

�

:

Using this and Lemma 3.14 (iv) we can compute y

2

in

O

�

[p

1

p

4

+ logn] log

1

�

�

(11)

time.

Approximization of �

q

ln

2

�

:

The time for the computation of �

1

y

2

is by (7), (9) and (11)

O

�

log

1

�

[p

1

p

4

+ logn] + p

2

�

(12)

Finally we get the desired estimate:

j�

r

ln

2

�

� �

1

y

2

j � j� � �

1

j

r

ln

2

�

+ j

r

ln

2

�

� y

2

j � j�

1

j

�

 



8

�

2

r

ln

2

�

+



8

!

e

�p(jxj)

�



4

e

�p(jxj)

:

Encoding length of �

1

y

2

:

Since E(f j!

1

; : : : ; !

i�1

; j) = E(f jF

i

)(!

0

) with !

0

= (!

1

; : : : ; !

i�1

; j; !

0

i+1

; : : : ; !

0

n

);

the encoding length of E is by condition (iii) the theorem O(p

3

): By the proof of

Lemma3.14 (iii) y

1

is computed through halving the interval [0;

2

�

] O(p

1

p

4

log

1

�

)

times. By condition (ii) of the theorem we may assume that the encoding length

of the d

k

's is O(p

3

); hence of

2

�

it is O(p

3

+n) and �nally y

1

has encoding length

O(p

3

+ n+ p

1

p

4

log

1

�

): Therefore �

1

= y

1

E has encoding length

O(p

3

+ n + p

1

p

4

log

1

�

): (13)

According to Lemma 3.14 (iv) the encoding length of y

2

is

O

�

log

1

�

log

1



3

�

= O

�

(log

1

�

)

2

[p

1

p

4

+ logn]

�

: (14)
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By (13) and (14) the encoding length of �

1

y

2

then is

O

�

(log

1

�

)

2

[p

1

p

4

+ logn] + p

3

+ n

�

: (15)

Step 2: Approximation of � ln

2

�

We wish to approximate ln

2

�

by a rational y

3

with

j ln

2

�

� y

3

j �



4j�j

e

�p(jxj)

:

Let N = 4p(jxj) + 2dlog(

4j�j



)e: Then

2dlog

4j�je

p(jxj)



e � N = O

�

log

1

�

[p

1

p

4

+ logn]

�

:

According to Lemma 3.14 (ii) we can �nd y

3

in

O

�

log

1

�

[p

1

p

4

+ logn]

�

(16)

time.

Encoding length of �y

3

:

By Lemma 3.14 (ii) the encoding length of y

3

is

O

�

N log

1

�

�

= O

�

(log

1

�

)

2

[p

1

p

4

+ logn]

�

: (17)

The encoding length of � is O(p

3

+ n); hence with (17) the encoding length of

�y

3

is

O

�

(log

1

�

)

2

[p

1

p

4

+ logn] + p

3

+ n

�

: (18)

Step 3: Approximation of exp(x)

Now with y := �y

3

+ �

1

y

2

we have

jx� yj �



2

e

�p(jxj)

: (19)

By the mean value theorem there is a z in [x; y] (or in [y; x]) with je

x

� e

y

j =

e

z

jx� yj: Using (19) and jxj+ 1 � p(jxj) we have

je

x

� e

y

j = jx� yje

z

� jx� yj exp(jxj+



2

)

�



2

e

�p(jxj)

e

p(jxj)

=



2

:
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We need an estimate on jyj: Observe that j�j � 3; jy

3

j � log(

4

�

) and as showed

in Step 1 �

1

� 2jEjmax(1;

2

�

): Furthermore jy

2

j � log

4

�

and all this together

imply

jyj � log

4

�

(3 + 2jEjmax(1;

2

�

)):

De�ne N = 7dlog

4

�

e(3 + 2jEjmax(1;

2

�

)) + blog

3

2



c: Then

7djyje + blog

3

2



c � N = O(log(

1

�

)[p

1

p

4

+ logn]): (20)

We apply Lemma 3.14 (i) in order to compute the Taylor polynomial T

N

(y)

such that

je

y

� T

N

(y)j �



2

:

The total time for the computation of y is by (12) and (16)

O(log

1

�

[p

1

p

4

+ logn] + p

2

): And this together with (20) gives by Lemma 3.14

(i) for the computation of T

N

(y) the total time of

O(log

1

�

[p

1

p

4

+ logn] + p

2

): (21)

Encoding length of y and T

N

(y) :

With (15) and (18) the encoding length of y is bounded by

O((log

1

�

)

2

p

3

[n+ p

1

p

4

]): (22)

With Lemma 3.14 (i), (20) and (22) the encoding length of T

N

(y) then is

O(N (log

1

�

)

2

p

3

[n+ p

1

p

4

]) = O((log

1

�

)

3

p

3

[n+ p

1

p

4

]

2

): (23)

(21) together with (23) proves the assertion (a) of the theorem.

By the assumption of the theorem �

1

=

q

2� ln

2

�

: Now take in De�nition

3.12 q(n;m) = 1 and de�ne the familyW

(a)

by

W

(a)

ij

(!

1

; :::; !

i�1

) = T

N

(y) +

(2n� i)�

(4n� 1)

;

where T

N

(y) is the Taylor polynomial of U

(a)

ij

(!

1

; :::; !

i�1

) as constructed above.

Theorem 3.9 and Proposition 3.13 imply that the familyW

(a)

is a pessimistic

estimators for the event

�

E

a

(�

1

).

We have to compute on each level i; m � 1 functions W

(a)

ij

; hence by (20)

the running time of the D-WALK procedure is

O( nm(log

1

�

[p

1

p

4

+ logn] + p

2

) );
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and assertion (b) of the theorem is proved.

2

The term for the running time collapses immediately considering special cases,

especially when f is a quadratic or a linear function. The following corollary is

the basic result for the applications in the next section.

Let m = 2; 
 = f0; 1g

n

; Q = (q

ij

) a n � n-matrix and c = (c

1

; : : : ; c

n

) a

vector with jc

i

j; jq

ij

j � 1 and let L be the encoding length of Q and c. Let f be

the quadratic function

f(x) = c

T

x+ x

T

Qx;

x 2 [0; 1]

n

. We assume that the numbers d

k

; k = 1; : : : ; n are positive rationals

with a constant lower bound and satisfying the property

jf(x)� f(x

0

)j � d

k

;

if x

i

= x

0

i

for all i 6= k.

With � :=

P

n

k=1

d

2

k

; 0 < � < 1; �

i

:=

q

2� ln

2i

�

we have

Corollary 3.16

(i) Pessimistic estimators for the events

�

E

a

(�

1

);

�

E

b

(�

1

);

�

E

c

(�

2

) can be com-

puted in O(n

2

log

1

�

)-time and requiring O(Ln

4

(log

1

�

)

3

) space.

(ii) The procedures D � WALK(

�

E

a

(�

1

)); resp. D � WALK(

�

E

b

(�

1

)); resp.

D �WALK(

�

E

c

(�

2

)) �nd in O(n

3

log

1

�

) time a x 2 
 such that f(x) �

E(f ) + �

1

,

resp. f(x) � E(f) � �

1

, resp. jf(x) � E(f )j � �

2

.

(iii) In the linear case (Q = 0) the time for the computation of the pessimistic

estimator is O(n log

1

�

), the running time for the D-WALK procedure is

O(n

2

log

1

�

) and the space needed is O(Ln

2

(log

1

�

)

3

).

Proof. (i) By a slight modi�cation of the proof of theorem 4.1 of [2], f possesses

martingale di�erences jjE(f jF

k

)� E(f jF

k�1

)jj

1

� d

k

for all k = 1; : : : ; n. Now

apply Theorem 3.15 with p

1

= O(n

2

); p

2

= O(n

2

); p

3

= L and p

4

= const::

(ii) In the linear case take p

1

= p

2

= O(n).

2

4 Applications

Lattice Approximation

An instance of the Quadratic Lattice Approximization problem (QLA) is a sym-

metric r� r matrix D; a (n� 1)� r matrix C; rational vectors c; p 2 [0; 1]

r

and
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an objective function x! c

T

x+ x

T

Dx (x 2 [0; 1]

r

): The problem is to �nd a

lattice point q 2 f0; 1g

r

in polynomial-time such that

(a) jc

T

(p� q) + p

T

Dp� q

T

Dqj is small

(b) jjC(p� q)jj

1

is small.

We assume that the entries of D;C are rational numbers and 0 � c

ij

� 1: Let

L be the encoding length of (D;C; c; p): As discussed in the introduction, the

quadratic lattice approximization problem has an interesting interpretation in

0 � 1 quadratic optimization. When D � 0 the problem simpli�es to the well

known lattice approximization problem (LA). Let d := 2max

1�i�r

P

r

j=1

jd

ij

j.

Derandomization gives the following result

Theorem 4.1 Let � � 0 and trace(D) � �d

p

n. Then the procedure D-WALK

�nds in O( r

2

n logn + r

3

)-time and requiring O(Lr

2

(r

2

+ (logn)

3

) + n) space

a vector q 2 f0; 1g

r

such that

(i) jc

T

(p� q) + p

T

Dp� q

T

Dqj � 2

p

n ln 2n+ (3 + �)d

p

n

(ii) jjC(p� q)jj

1

� 2

p

n ln 2n

Proof. De�ne �

1

= 2

p

n lnn and �

2

= 3d

p

n.

Let f be the function f(x) = x

T

Dx; x 2 [0; 1]

r

. Denote by

�

E

0

the event

"jc

T

(p� q)j > �

1

";

by

�

E

i

, i = 1; : : : ; n� 1 the events

"j

r

X

j=1

c

ij

(p

j

� q

j

)j > �

1

";

and by

�

E

n

the event

"jq

T

Dq � E(f )j > �

2

":

In order to apply Corollary 3.16 note that

jf(x)� f(x

0

)j � d;

if x

i

= x

0

i

for all i 6= k. By Corollary 3.16 (i) we can compute a pessimistic

estimator W

(n)

for the event

�

E

n

in O(r

2

)-time and with O(Lr

4

) space. By

Corollary 3.16 (iii) pessimistic estimators W

(i)

for the events

�

E

i

, i = 0; : : : ; n�

1 can be computed in O(r logn)-time and with O(Lr

2

(logn)

3

) space. Then

by Proposition 3.4 W :=

P

n

i=0

W

(i)

is a pessimistic estimator for the event

�

E

0

_ : : : _

�

E

n�1

_

�

E

n

and can be computed in O( rn log+r

2

)-time and with

at most O(Lr

2

(r

2

+ (log)

3

) + n) space.

Hence D �WALK(

�

E

0

_ : : : _

�

E

n�1

_

�

E

n

) �nds in O( r

2

n logn+ r

3

)-time

a vector q 2 f0; 1g

r

such that
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(a) jq

T

Dq � E(f )j � 3d

p

n

(b) jj[C; c](p� q)jj

1

� 2

p

n ln 2n:

Let (�

i

) be the Bernoulli trials under considerations de�ned trough P(�

i

=

1) = p

i

and P(�

i

= 0) = 1� p

i

. Then the expectation E(f ) is:

E(f) = E(

r

X

i;j=1

d

ij

�

i

�

j

) =

X

i 6=j

d

ij

p

i

p

j

+

r

X

i=1

d

ii

p

i

:

But this together with

jp

T

Dp � E(f )j �

r

X

j=1

d

jj

(p

j

� p

2

j

) � �d

p

n;

implies the theorem.

2

Remark Theorem 4.1 shows the similarity between the linear and quadratic

discrepancy bounds. In the quadratic case we have a O(d

p

n) bound, while in

the linear case the algorithmic reachable bound is O(

p

n lnn) and the exis-

tence bound of Spencer is O(

p

n). It is known that Spencers bound is sharp for

Hadamard matrices. The interesting question arising here is whether the gap

factor d reects the quadratic behaviour and so is best possible or not. For small

d, i.e.

d = O(n

1

2

��

), 0 < � �

1

2

, and if the trace of D is not too large trace our bound

is good compared with the greedy bound O(n), which is also the worst case dis-

crepancy (attained forD = (d

ij

); d

ij

= 1 for all i; j and p = (

1

2

; : : : ;

1

2

)): It would

be interesting to exhibit more classes of matrices where lattice approximations

beating the O(n) greedy bound are possible.

In the weighted linear case Theorem 4.1 gives an O( r

2

n logn )-time algo-

rithm achieving discrepancies within 2

p

n ln 2n:

Corollary 4.2 The procedure D-WALK �nds in O( r

2

n logn )-time and requir-

ing O(Lr

2

(logn)

3

+ n) space a vector q 2 f0; 1g

r

such that

jj[C; c](p� q)jj

1

� 2

p

n ln 2n:

2

Remark Raghavan improved the Beck-Fiala bound using Angluin-Valiant type

inequalities. He showed a derandomized algorithm which achieves

jjC(p�q)jj

1

� max

1�i�n

s

i

D(s

i

;

1

2n

); where s

i

=

r

X

j=1

c

ij

p

j

:Unfortunately in the

weighted case the algorithm has no polynomial-time implementation, because
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the numbers D(s

i

;

1

2n

) and e

c

ij

cannot be computed e�ciently in the RAM

model. But using the upper bounds of Raghavan on D(s

i

;

1

2n

) (see [31], 1.13

and 1.14) and Taylor approximations the following result can be proved in a

similar way as Corollary 4.2:

Theorem 4.3 Let �

i

= ([C; c]p)

i

. Derandomization gives an O( r

2

n logn )-

time and O(Lr

2

(logn)

3

+ n) space algorithm, which �nds a vector q 2 f0; 1g

r

such that

(i) �

i

� 3

p

s

i

ln 2n, if s

i

> ln 4n for all i.

(ii) �

i

� 6 ln2n, if s

i

� ln 4n for all i.

2

Balancing matrices

Let A = (a

ij

) be a n� n matrix with a

ij

= �1 for all i. Beck and Spencer [11]

gave a polynomial-time algorithm �nding row shifts x

i

= �1 and column shifts

y

i

= �1; 1 � i � n, such that j

P

n

i;j=1

a

ij

x

i

y

i

j � 2: In this problem the crucial

point is that the row shifts and the column shifts do not depend on each other.

A formally similar, but mathematical di�erent problem is stated, when the row

and column shifts must be the same.

De�nition 4.4 (Dependently Matrix Balancing Problem) Let A be as above.

(a) What is the minimal number K(n) such that there exist x

i

= �1; 1 � i �

n with j

P

n

i;j=1

a

ij

x

i

x

j

j � K(n)?

(b) If the answer in (a) for a certain K(n) is a�rmative, can one �nd the

x

1

; : : : ; x

n

in polynomial time?

With a greedy algorithm the problem in 4.4 can be solved for K(n) = 2n:

But if a

ii

= 0 for all i, by chance K(n) may be much smaller than O(n). The

only yet known result is the following, using martingales and derandomization.

Theorem 4.5 Let A = (a

ij

) be a n � n matrix with a

ij

= �1 and a

ii

= 0 for

all i; j. Let d

k

:= 2

P

n

j=1

(ja

kj

j+ ja

jk

j) and � :=

P

n

k=1

d

2

k

:

Then a vector x 2 f�1;+1g

n

can be found in O(n

3

)-time such that

j

n

X

i;j=1

a

ij

x

i

x

j

j � 2

p

�:
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Remark: With d := max

k

d

k

, then the bound is 4d

p

n and for "small" d,

i.e. d = O(n

1

2

��

) where 0 < � �

1

2

, this is asymptotically much better than the

greedy bound 2n.

Proof of Theorem 4.2.:

De�ne f(x) :=

P

n

i;j=1

a

ij

x

i

x

j

; x 2 f�1;+1g

n

.

If two vectors x; x

0

2 f�1; 1g

n

di�ers only in the k-th position, i.e. x

k

6= x

0

k

,

then jf(x) � f(x

0

)j � d

k

.

Let (�

i

) be random variables with P (�

i

= �1) = P (�

i

= 1) =

1

2

: Then the

expectation E(f ) is zero:

E(f ) = E(

n

X

i;j=1

a

ij

�

i

�

j

) =

n

X

i;j=1

a

ij

E(�

i

)E(�

j

) = 0;

and each conditional expectation E(f j!

1

; : : : ; !

i

) can be computed in O(n

2

)-

time.

Taking � =

1

2

and observing that L = 1, Corollary 3.16 (ii) concludes the proof.

2

Average Graph Bisection

Given a graph G = (V;E); V = f1; : : : ; 2ng, the Graph Bisection problem is to

�nd a partition of V in two disjoint sets A;B � V such that jAj = jBj = n, called

a bisection (A;B), such that the cut c(A;B), that is the number of edges between

A and B, is minimal. The problem is known to be NP -hard [19] . Erd}os [17]

showed with simple probabilistic arguments the existence of a bisection (A;B)

with cut value c such that c �

jEj

2

(1 + o(1)):

Theorem 4.6 Let G = (V;E) be a graph with jV j = 2n.

(i) Derandomization �nds a bisection ! 2 
 with c(!) �

jEj

2

+ 8d

p

n

in O(n

3

) time.

(ii) For dense graphs ( jEj = 
(n

3

2

+�

), 0 < � �

1

2

) we have

c(!) �

jEj

2

(1 + o(1)):

Proof. : (ii) follows directly from (i) so let us prove (i). Let 
 = f0; 1g

n

and

A = (a

ij

) the adjacency matrix of G. Each ! 2 
 de�nes via

A := fi;!

i

= 0g; B = fi;!

i

= 1g a partition of V . For ! 2 
 de�ne the cut

function c and the counting function b by

c(!) :=

2n

X

i;j=1

a

ij

x

i

(1� x

j

)
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and

b(!) :=

2n

X

i=1

!

i

:

Let d := max

1�i�2n

P

2n

j=1

a

ij

, the maximal vertex degree.

Our randomized algorithm is simply to ip a fair coin 2n-times independently

in order to determine for each !

i

its value from f0; 1g and make the sets

A = fi;!

i

= 1g; B = fi;!

i

= 0g equal sized, if they are not, in a linear time

greedy way by shifting vertices from the bigger set to the smaller one.

Let !; !

0

2 ! with !

i

= !

0

i

for all i 6= k, but !

k

6= !

0

k

.

If d

k

is the degree of the vertex k, then we have

jc(!) � c(!

0

)j � d

k

� d;

and

jb(!)� b(!

0

)j � 1:

Furthermore E(c) =

jEj

2

and E(b) = n.

Let �

1

:= d

p

n ln 12; �

2

:= 2

p

n ln 16 and let

�

E

(1)

;

�

E

(2)

be the events

�

E

(1)

: \c >

jEj

2

+ �

1

"

and

�

E

(2)

(�

2

) : \jb� nj > �

2

":

By Corollary 3.16 (i) (resp. (iii)) pessimistic estimators for the events

�

E

(1)

(resp.

�

E

(2)

) can be computed in O(n

2

) (resp. O(n)) time. The sum of these

two pessimistic estimators is according to Proposition 3.4 a pessimistic estima-

tor for the event

�

E

(1)

_

�

E

(2)

and the procedure D-WALK(

�

E

(1)

_

�

E

(2)

) �nds

in O(n

3

) time an ! 2 
 such that

c(!) �

jEj

2

+ �

2

�

jEj

2

+ 4d

p

n

and

jb(!)� nj � �

1

� 4

p

n:

After applying the linear time greedy procedure we make the sets A := fi; !

i

=

0g and B := fi; !

i

= 1g equal sized. Then at most 4d

p

n edges can augment

the cut, hence we �nd in O(n

3

) time a bisection !; with

c(!) �

jEj

2

+ 8d

p

n:

The space needed is by Corollary 3.16 (i) O(n

4

).

2
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5 Concluding Remarks

(a) Further applications of this type include the maximal weighted k-matching

problem in hypergraphs. In [38] previous results of Lov�asz [25], Aharoni, Erd}os

and Linial [1] and Raghavan [31] are extended from the unweighted to the

weighted case.

(b) In the average bisection problem we used the uniform distribution P (!) =

2

�2n

and the consequence was an approximation of

jEj

2

; which might be far

away from the minimum bisection. Furthermore only partitioning into two sets

was considered. But with the help of convex quadratic optimization a similar

approach based on martingales gives good approximations of the optimal (bi-

section) partition size [37] .

It would be interesting to �nd other examples, where martingale based deran-

domization works.

(c) Can one derive in the quadratic lattice approximation problem an

O(

p

n lnn+ d

p

n) (or even better) discrepancy bound for arbitrary matrices D

?

(d) Our algorithms are sequential. The interesting question here is, whether one

can parallelize them as Berger/Rompel [12] and Motwani/Naor and Naor [28]

showed for some linear problems. This might be possible using estimates on the

variation of functions with small martingale di�erences.

AcknowledgementWe would like to thank Joel Spencer for helpfull comments

and discussions.
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