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a b s t r a c t

Responding rapidly to customer needs is one of the main targets of industrial organizations that want to
survive in the current market competition. This objective can be attained through robust planning.
Workforce productivity is considered one of the important entities in production planning. However, it
has a dynamic nature, i.e. the productivity growths thanks to on-job training or learning phenomenon.
Considering this fact in manufacturing planning enhances the robustness of the developed plans. The pre-
sent paper presents a mathematical model for medium-range production planning that is used to find the
optimal aggregate production plan. The model aims to optimize the total production costs while respect-
ing most of the operational constraints and considering the process of organizational learning. The pre-
sented model is constructed relying on the real industrial practices; the outcome is a mixed-integer linear
program. The model was validated and checked using real data collected from an Egyptian factory that
produces electric motors for home appliances. The proposed mathematical model was optimally solved
using ‘‘ILOG-CPLEX 12.6”. By comparing the results obtained versus that of the method adopted in the
factory, a cost reduction of 6.3% is achieved for the presented data set. A set of managerial aspects are
concluded after the model analysis. Moreover, the impact of using detailed learning rates on the produc-
tion cost is discussed.

� 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams Uni-
versity. This is an open access article under the CCBY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Responding rapidly to customer needs is one of the main targets
of industrial organizations that want to survive in the current mar-
ket competition. One of the most crucial needs is to deliver the
required products at minimum lead-time and price while respect-
ing the pre-specified specifications. These strategic targets can be
attained by developing a robust production plan. A plan that accu-
rately considers the available capacities for successfully executing
the production activities. Tactical planning level or medium-term
planning is considered as one of the essential industrial planning.
For this level, the different production capacities should be
assessed for meeting the required demand. This planning level is
known as Aggregate Production Planning (APP). APP is located
between strategic planning and highly detailed operational plan-
ning. As known, there are three levels of production planning:
strategic, tactical, and operational. These three levels are interre-
lated with a hierarchical nature. This nature should be consistent,
in which the decisions of the superior level impose constraints
on the decisions of the lower level. While the lower level provides
the required feedback to regulate the decisions of the higher level,
e.g. the top management strategies of using part-time workers or
external subcontracts impose constraints on the APP models. Con-
sequently, the master production schedule and material require-
ment planning depend on the results of the APP. Regarding the
duration of the planning horizon of APP, the literature provides a
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Nomenclature

Indices
m Represents the product family/model, m = 1,2,. . .,M,

where M equals the total number of products,
t Represents the planning period, t = 1,2,. . .,T, where T is

the total number of planning periods.

Parameters
Aav. Real positive number,Aav 2 [0,1] represents the average

machine availability
CHP Integer number, represents the hiring cost of a part-

time worker,
CIm,t Real positive number, represents the average inventory-

ing cost of m, during t,
CLP Constant represents the cost of firing a part-time work-

er.
CMm,t Real positive number, represents the estimated material

cost for m, during t,
COPWh / COPWn Real positive number, represents respectively the

average overtime hourly cost during a day-off, normal
working day for a part-time worker,

CORWh / CORWn Real positive number, represents respectively the
average overtime hourly cost during a day-off, normal
working day for a permanent worker,

CRW / CPW Real positive number, represents respectively the
average salary per period for a permanent worker and
the average wages per period of a part-time worker,

CRm, t Real positive number, represents the estimated opera-
tion cost of m during t,

Csubm,t Real positive number, represents the subcontracting
cost per unit from m, during t,

Dm,t Integer positive number, represents the demand fore-
cast from model m, during t,

ht Integer positive number, represents the number of
days-off during t,

Im,0 Integer positive number, represents the initial inventory
of m just before the first period of t = 1,

KI max / KI min Fraction, represents respectively the maximum and
minimum allowable storing level as a ratio from de-
mand, KI max and KI min 2 [0,1].

MDm,t Real positive number, represents the amount of man-
days required to complete a production of 1000 units
from model m during t,

ns Integer positive number, represents the number of
working hours per shift,

nt Integer positive number, represents the number of nor-
mal working days during t,

OTh / OThmax(t) Real positive numbers, represent the amount of
overtime hours worked during a day-off from period t,
respectively the allowable and the maximum amounts,

OTn / OTnmax(t) Real positive numbers, represent the amount of
overtime hours worked during a normal working day
from period t, respectively the allowable and the maxi-
mum amounts,

Prav. Real positive number, represents the machine average
productivity,

PWmax Integer number, represents the maximum number of
part-time workers during t,

RWmax Integer number, represents the maximum number of
permanent workers during t,

RWmin Integer number, represents the minimum number of
permanent workers during t,

VRW Integer number, represents the maximum permissible
difference of workforce size for two successive periods.

Auxiliary variables
OTPht / OTPnt Real positive number, represents the total overtime

hours for part-time workers during respectively the
days-off and normal working days for t,

OTRht / OTRnt Real positive number, represents the total overtime
hours for permanent workers during respectively the
days-off and normal working days for t,

Decision variables
Ht Integer variable, represents the number of part-time

workers to be hired at t, Ht � 0,
Im,t Integer variable, represents the inventory level of pro-

duct m, at the end of t, Im,t � 0,
Lt Integer variable, represents the number of part-time

workers to be fired at the end of t, Lt � 0,
OTPhm,t / OTRhm,t Real variables, represent the overtime hours re-

quired from respectively the part-time and permanent
workers for product m during days-off of period t,
OTPhm,t � 0, OTRhm,t � 0,

OTPnm,t / OTRnm,t Real variables, represent the overtime hours re-
quired from respectively the part-time workers and per-
manent workers for product m during normal working
days of period t, OTPnm,t � 0, OTRnm,t � 0

Pm,t Integer variable, represents the production quantity of
m that will be produced during t, Pm,t � 0,

PWm,t Integer variable, represents the number of part-time
workers assigned to m during t, PWm,t � 0,

Om,t Integer variable, represents the outsourcing quantity
from model m, in period t, Om,t � 0,

RWm,t Integer variable, represents the number of permanent
workers assigned to m during t, RWm,t � 0,

Sm,t Real variable, represents the number of production
shifts required for m during t, Sm,t 2 [0,3].
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variation for this planning attribute. It is a subjective nature i.e. it
can vary from one firm to another - or more exactly from one pro-
duction kind to another. According to the literature, it can vary
from three months up to eighteen months: we can find periods
of three months [1,2], six months [3], eight periods [4], from 2 to
8 planning periods [5], thirteen planning periods [6], eighteen
months [7]. Others like [8] considered it in terms of weeks. How-
ever, the length of the planning horizon should be specified for-
merly to the execution of the production plan. During this
planning horizon, the APP is used to evaluate the relation between
the available capacities and the demand to fit the required produc-
2

tion quantities. For each period, it provides the production levels
from each product, size of the permanent workforce, number of
part-time manpower, the existence of overtime working hours,
the levels of outsourcing, and the size of inventory. The targets of
the APP model are not restricted to maximizing the company out-
comes, but they can also be used to achieve many other objectives
e.g. maximizing resource utilization, minimizing production
changes, minimizing the variation of permanent workforce size,
and minimizing outsourcing. Therefore, it is important to exactly
identify the objective function of the APP model. According to Chen
and Liao [6], multiple objectives can be used to get a more realistic
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model. Minimizing the total production cost is the common objec-
tive of the APP models that include costs include regular produc-
tion, inventory, backlogging, outsourcing, capacity holding, and
so on. The objective of the APP can be formulated as a maximiza-
tion of profit function (e.g. [9]), minimization of cost function
(e.g. [10]) or combination of multi-objective (e.g. [2,5,11–14]).

As it is well known, the number of the required workers
depends on their working productivity. Moreover, manufacturing
productivity has a dynamic nature, i.e. the manufacturing produc-
tivity growths thanks to the workforce experience gained over
time. Such experience is gained due to many reasons e.g. on-job
training of the direct workforce, mastering of production methods
and procedures, developing of jigs and fixtures, implementation
of performance improvement tools like total quality management,
lean production or six-sigma, etc. This evolution phenomenon is
known as manufacturing evolution function or learning curves.
Accordingly, the improvement of the manpower productivity
can be modeled as a function of the on-job training or the work
repetitions. As discovered by Wright [15], a percentage of 20 per-
cent can be gained as improvement each time the production
quantity is doubled. This learning curve phenomenon could have
a significant impact on the scheduling of production jobs, man-
power staffing, and minimization of overtime hours Badiru [16].
This concept is often considered using the average learning rate
that can be found in the literature. Besides, some considered
the learning rate as constant for all products in the production
plan. However, the learning rate can be varied among products.
This practice contaminates the obtained results. For example,
Zhang et al. [10] considered a learning rate of 85% in their work.
Attia et al. [17] considered a learning rate of 80% for all activities.
Tirkolaee [18] considered the slope of the learning curve as (-0.3)
corresponding to a learning rate of about 81%. For the mosquito
expellant products, Chen et al [19] used three categories of learn-
ing rates one for each production line within the interval [0.985,
0.995]. However, the values of these learning rates are very high
that indicate that the effect of learning is very small and can be
neglected.

The current paper presents an APP model that was formulated
based on real industrial practice. It considers multi-product and
multi-period aggregate production planning. It minimizes the dif-
ferent manufacturing costs while respecting most of the opera-
tional constraints. It minimizes the costs of material, machine,
workforce (permanent, part-time, overtime), inventory, and out-
sourcing. It respects many types of constraints, e.g. demand satis-
faction, levels of permanent workforce, levels of part-time workers,
overtime limits, labor capacity, levels of safety stock, and maxi-
mum levels of subcontracting, in addition to some of the social
aspects e.g. working during holidays or days-off. Backorders are
not allowed in this study for assuring high levels of customer sat-
isfaction. Moreover, the dynamic progress of the workforce pro-
ductivity was considered based on the concept of organizational
learning. The organizational learning curve of each product was
considered relying on real data. This practice is not well addressed
in the literature. Researchers often assume an average learning rate
according to the trade. Others use a learning rate of 80% regardless
of the application. The current paper proposes to estimate the evo-
lution of workforce productivity relying on the learning curve of
Wright [15]. This proposition has been validated after investigating
the most mono-variable learning curves presented in the literature
(method and results can be found in one of the current authors’
work that was presented in [20]). The proposed mathematical
model was coded and solved using ILOG-CPLEX 12.6. The result
has been validated relying on data from real case studies and
detailed analysis by planning experts. In addition, the impact of
different managerial aspects on the plan cost has been investigated
and conclusions are provided.
3

The remainder of this paper is organized in the following man-
ner. The next section presents the literature review of the related
work. Section 3 presents the problem description. The mathemat-
ical model is discussed in Section 4, while the case study is intro-
duced in Section 5. The solution methodology and results are
discussed in Section 6. The managerial aspects are discussed and
analyzed in Section 7. The conclusions and perspectives are pre-
sented at the end of the paper. In addition, there are two appen-
dices; Appendix A contains the data set for a production plan
and Appendix B contains the associated optimal results.
2. Literature review

The literature provides enormous work on the topic of APP
models and solution methodologies. The problem was formulated
as a goal programming model in [2,14,21]. Pradenas et al. [9] cre-
ated the problem with binary variables and quadratic constraints,
then solved it using a heuristic-based algorithm. Zhang et al. [10]
introduced a mixed-integer linear programming model for an
APP problem with capacity expansion. Ramezanian et al. [22] con-
sidered the setup time and the associated cost in the problem and
solved it using genetic algorithms and tabu search algorithms. In
tactical production planning, setup can be considered when the
change between families of products incorporates high system
penalties (in terms of time and/or cost), for more details about
the consideration of setup in the APP model one can see the work
of [8,22–24]. Wang and Yeh [25] solved a mixed-integer linear pro-
gramming model using a modified particle swarm algorithm.
Others considered the uncertainty in the problem parameters.
For example, Wang and Liang [26] formulated the problem as a
possibilistic linear programming model. Chakrabortty et al. [27]
considered also imprecise demand, operating costs, and capacity
parameters in their model and used a modified variant of a possi-
bilistic environment-based particle swarm optimization approach
to solve it. Baykasoglu and Gocken [11]; Wang and Liang [28] for-
mulated the problem as a multi-objective fuzzy model. Zhu et al.
[29] modeled the problem as interval-based programming consid-
ering uncertainty and solving it using Lingo software. Moreover,
Jamalnia et al. [30] evaluated the performance of the different
strategies of the APP. For more details about the mathematical for-
mulation, the work of [31] presents a survey of the different man-
ufacturing aspects considered in the mathematical formulation of
the problem. Recently, Cheraghalikhani et al. [32] reviewed the dif-
ferent characteristics and structure of the App models while [33]
studied the different considerations of the uncertainty of APP
models.

The concept of experience evolution was considered in many
applications including APP [5,34,35], implementation of ERP [36],
workforce flexibility [17], workforce assignment [37], and order
picking planning [38]. Recently, Tirkolaee [18] considered the
learning effect for the allocation and scheduling of disaster rescue
units. Besides, [39] considered the learning effect for casting oper-
ations. Wei et al. [40] studied the impact of learning on inventory
management with a stochastic learning rate. The learning curves
can be classified into three major types: individual learning, group
of individuals, and organizational learning [41]. The individual
learning curve reflects the performance development in the func-
tion of work replication of a specified worker. The main difference
between group learning and individual learning is the existence of
knowledge transfer between individuals who are working in a
group [42]. Organizational learning curves are recommended when
the productivity development of a specified product is a function of
the whole workforce rather than a specified worker(s). In the tac-
tical level of APP, the organizational learning curves are rational to
be used than individual or group learning curves for reasons of the
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aggregation of the planning data. Regarding the incorporation of
manufacturing progress function and aggregate production plan-
ning, the work of [35] investigates the impact of the learning effect
on the aggregate planning of machine requirements. They showed
the importance of integrating such human factors. The pioneer
work in this topic is the work of [34], although the drawbacks of
his model were reported in the work of [43]: they reported that
‘‘the model does not incorporate the effect of learning properly”.
They regret the use of the learning phenomenon on an average
basis. They suggested representing the productivity development
on a group-basis, relying on clusters of workers. Recently, Algu-
liyev et al. [44] developed an efficient clustering algorithm that
can be adopted for clustering workers. According to our point of
view, in the tactical level of planning all data are aggregated and
it is more convenient to consider the productivity development
on an organizational basis rather than on an individual or group
basis. In addition, the consideration of the human learning effect
in a detailed level complicates the mathematical model. This com-
plexity was highlighted in the work of [35], wherever this incorpo-
ration transforms the APP problem into a mixed non-linear
program that is hard to be solved optimally in an acceptable com-
puting time, especially for industrial problems. To the best of the
authors knowledge, there is a shortage in the literature for the con-
sideration of the learning effect in APP models relying on shop floor
data and real managerial considerations. The current research tries
to cover this shortage with an application on the manufacturing of
electric motors.
3. Problem description

One of the problems facing manufacturing firms is the irregular
demand; this irregularity leads to increase levels of inventory in
periods of low demand especially for even production capacity.
Consequently, the cost of the production plan increases that causes
lower profitability, and increases the required storage space. The
problem is to meet the required irregular demand with the optimal
mix of production resources at minimum cost. To solve this prob-
lem for medium-term planning, one can adopt the aggregated pro-
duction planning. For each planning period, the different attributes
of the production plan should be determined optimally at mini-
mum cost while respecting different operational constraints. These
attributes contain the permanent workforce, amount of part-time
workers, overtime hours, outsourcing of parts, inventory levels,
and production quantities. On the other side, the operational con-
straints contain the available capacities of the workforce, inven-
tory, maximum levels of overtime, the maximum size of part-
time workers, etc. In the current problem, the penalties of switch-
ing off between product families are very small. Therefore, setup
cost can be neglected for simplicity for this tactical level. Moreover,
this work relies on the fact that productivity is a progressive prop-
erty, i.e. the firm’s productivity is continuously developed over
time. To implement this assumption, the organizational learning
curve is considered instead of individual or group learning curves.
In organizational learning the development is gained from many
sources: relying on the work of [45], the determinates of organiza-
tional learning can be categorized into three classes: -the first is
the increased proficiency of direct production workers, engineers,
and managers; -the second group is the improvements in organiza-
tion’s technology; -the third is the improvements in firm’s struc-
ture, routines of products and methods of coordination. For
considering all of these determinates, the learning progress is con-
sidered as a function of the accumulated production period rather
than the accumulated production quantity. Argote [45] stated that
there is a debate between researchers for the consideration of the
learning curve relying on the cumulative number of units produced
4

or cumulative production time. And both of the two independents
are significant in predicting productivity advancement. Some con-
cerns may appear affecting the pattern of organizational learning
e.g. part-time workers, subcontracting, and overtime. From our
experience in the application case study, the part-time workers
can not affect the pattern of organization learning, where part-
time workers commonly work as assistant or utility workers.
Moreover, the levels of subcontracting and overtime have a negli-
gible effect in our case for a monthly average production of about
17,000 units. For individual learning curves, this number of work
replications is very large, i.e. it is sufficient to place the productiv-
ity in the plateau stage of the learning curve of any direct worker.
For this massive production, the development of organizational
learning relies mainly on the other determinates not directly to
the experience of the direct workforce. The literature provides evi-
dence for a low effect of the direct workforce on organizational
learning as was proven in continuous production e.g. refined petro-
leum [46], and chemicals [47]. Continuous development is essen-
tial for a firm’s survival. As known, one of the techniques that are
used in managing firms’ performance is the balanced Scorecard
(BSC). One of the four dimensions of BSC is the ability of the firm
to continue improving and creating value. This measure relies on
two aspects: the firm’s ability to innovate, and the improvement
of the existing processes. According to Kaplan & Norton [48], many
companies set continuous improvement targets e.g. ‘‘Milliken &
Co.” implements an improvement program that improves perfor-
mance with a specified factor periodically. Recently, Seleem,
et al. [49] presented an industrial application that succeeded to
improve productivity with 6.22% after the implementation of some
performance improvement tools e.g. workforce training, processes
standardization, applying of 5S program, applying autonomous
maintenance, balancing assembly line, applying Kaizen, etc. Rely-
ing on this discussion, continuous improvement is one of the suc-
cess factors of organizations that can be achieved through all
determinates of organizational learning. The problem was
mathematically modeled in cooperation with the industrial
experts. After that, it was coded and solved using ILOG-CPLEX
12.6 platform. Fig. 1 shows the main steps for modeling and solv-
ing the problem.

4. Mathematical model

Mathematical model
Minimize:

F ¼ F1 þ F2 þ F3 þ F4 þ F5 ð1Þ

F1 ¼
XT
t¼1

XM
m¼1

CMm;t � Pm;t ð2Þ

F2 ¼
XT
t¼1

XM
m¼1

CRm;t � Pm;t ð3Þ

F3 ¼ FRW þ FPT ð4Þ

FRW ¼
XT
t¼1

ðCRW � RWt þ CORWn � OTRnt þ CORWh � OTRhtÞ

FPT ¼
XT
t¼1

ðCPW � PWt þ COPWn � OTPnt þ COPWh � OTPht þ CHP � Ht

þ CLP � LtÞ



Start 

Identify the characteristics of the problem 
by interviewing the industry experts. 

Construct the 
mathematical model  

Collect the 
production data 

Coding the model 
using OPL of CPLEX 

Predict the organizational learning 
curve for each product using non-

linear regression analysis   
Collect the data of 
model parameters  

Yes

Model was 
validated? 

No 

Develop the aggregate production 
plan of the case study   

End 

Investigate results with 
company experts  

Results feasibility  

Feasible  

Unfeasible 

Extract managerial implications 

ults feasib

Fig. 1. An overall flowchart of the research methodology.
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RWt ¼
XM
m¼1

RWm;t8t

OTRnt ¼
XM
m¼1

OTRnm;t8t

OTRht ¼
XM
m¼1

OTRhm;t8t

PWt ¼
XM
m¼1

PWm;t8t

OTPnt ¼
XM
m¼1

OTPnm;t8t
5

OTPht ¼
XM
m¼1

OTPhm;t8t

F4 ¼
XT
t¼1

XM
m¼1

CIm;t � Im;t þ Im;t�1

2

� �
ð5Þ

F5 ¼
XT
t¼1

XM
m¼1

Csubm;t � Qm;t

� � ð6Þ

Subject to:

Dm;t þ Im;t ¼ Pm;t þ Om;t þ Im;t�18t;8m ð7Þ

RWmin 6 RWt 6 RWmax8t ð8Þ

jRWt � RWt�1j 6 VRW8t ð9Þ
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0 6 PWt 6 PWmax8t ð10Þ

PWt ¼ PWt�1 � Lt�1 þ Ht8t ð11Þ

OTRnt þ OTPnt 6 OTnmaxðtÞ8t ð12Þ

OTRht þ OTPht 6 OThmaxðtÞ8t ð13Þ

OTnmaxðtÞ ¼ OTn� nt � ðRWt þ PWtÞ8t ð14Þ

OThmaxðtÞ ¼ OTh� ht � ðRWt þ PWtÞ8t ð15Þ

OTRnt 6 KO:T � RWt þ PWtð Þ � ðntÞ8t ð16Þ

OTRht 6 KO:H � RWt þ PWtð Þ � ðnhÞ8t ð17Þ

OTPht 6 OTRht8t ð18Þ

MDRt 6 MDAt8t ð19Þ

MDRt ¼
XM
m¼1

Pm;t �MDm;t

1000
8t ð20Þ

MDm;t ¼ MDiniðAPT þ tÞb8t ð21Þ

MDAt ¼ ðRWt � nt þ OTRnt þ OTRht

ns
Þ þ ðPWt � nt

þ OTPnt þ OTPht

ns
Þ8t ð22Þ

Pm;t ¼ MCm;t8m ;8t ð23Þ

MCm;t ¼ Sm;t � nt þ htð Þ � ns � Prav: � Aav: � qav: ð24Þ

KI;min: � Dm;t 6 Im;t 6 KI;max: � Dm;t8t;8m ð25Þ

Om;t 6 Max Subm;t8m;8t ð26Þ
The objective function of the current APP model expresses the

sum of the different costs; therefore, it will have to be minimized.
Here, there is a difference between overtime costs of working dur-
ing weekly working days or days-off. Besides, the back-orders are
not allowed to satisfy the customer needs. The objective function
is a summation of five sub-functions as represented by equations
(1 to 6). In which F1 is the material cost, F2 is the operating cost,
F3 is the labour cost, F4 is the inventorying cost, and F5 is the out-
sourcing cost. Equation (2) signifies the material cost that is
required throughout the production horizon for manufacturing
the required product mix. For any given product, the material cost
can be calculated based on its Bill Of Materials. This cost can differ
from one period to another depending on the inflation rate or
money exchange rate between currencies. The total amount of
material costs is computed by simply aggregating all material costs
of all products produced during the planning horizon, considering
that CMm,t is constant along period t, but it can be varied from per-
iod t to t + 1. Equation (3) represents the operation costs that con-
tain all costs resulting from the use of the different production
facilities: it includes machine and utility costs, etc. This set of
expenses was supposed to be known in advance. For a given pro-
duct, it can be estimated from the manufacturing route and the
standard time for each operation. The planner can consider these
factors as constant during all periods t = 1, 2,. . ., T, or varying them
from one period to another. Regarding the labour costs (equation
set 4), two types of labour are considered here: the first is the
direct manpower or permanent workers (FRW), the second results
6

from part-time workers (FPT). The permanent workforce represents
the regular or the salaried workers. The costs associated with per-
manent manpower are computed relying on the working hours
and overtime during the normal weekly working days and days-
off. The hiring and laid-off costs are not considered for the perma-
nent workforce. It was assumed that the number of permanent
workers can be varied within a specified amount. This variation
is resulting from absenteeism, social considerations, or transfer
between factories. Besides, the hiring plan is a strategic plan that
depends on the vision and goals of the company. For part-time
workers, three main sources of cost were considered: - the cost
of normal working hours during weekly working days and days-
off, - the cost of overtime worked during weekly working days
and days-off, - the costs of hiring and laid-off a part-time labour.
These types of labour costs can be formulated as in equations (4-
a) and (4-b). These equations contain many parameters that cannot
be considered specifically for each worker, but they can be consid-
ered via average values. Since APP provides capacity planning in an
aggregated manner during a planning horizon of medium-range
(e.g. one year in this study) and does not provide work scheduling
and resources allocation in a detailed manner. Contrary, the
detailed values of such parameters for each worker should be con-
sidered in the short-range planning horizon. Regarding the
rewards of the overtime, it is often considered as one plus a frac-
tion of the standard rates. The cost of hiring can be considered as
the costs induced by administration work and training of part-
time workers. The cost of dismissal of the worker depends on the
firm’s strategy; it can be set to a specified value or zero. Equation
(5) represents the inventory cost that results from storing parts,
semi-finished or finished products. The inventorying costs are
aggregated from many attributes include space utilization, mate-
rial spoilage, insurance, capital immobilization, etc. Based on the
lean philosophy, inventory is one of the principal sources of
wastes. Consequently, the levels of inventory should be minimized.
Practically, the inventory cost can be estimated as a periodic per-
centage of the part/product value. It is assumed here that; the firm
has the inventory cost per product. Outsourcing of parts is essential
for almost all manufacturing enterprises. Equation (6) represents
the outsourcing costs. Firms use outsourcing to solve the problem
of high production demand that inducing a shortage in machine or
labour capacity. It is frequent to outsource or subcontract the non-
critical or standard parts. Without loss of generality, sub-
contracting here is assumed to be considered at the level of prod-
ucts. In order to transform this level of subcontracting from pro-
duct level to that of parts, the percentage of the subcontracted
work Om,t to the total production quantity can be computed. This
percentage can be used to compute the amount of work-content
that could be outsourced and consequently, the amount of work-
content can be outsourced at parts level.

A set of operational constraints should be respected. Here, these
constraints can be clustered into five major categories. Which are
demand satisfaction, labour capacity, production facilities, inven-
tory capacities, and decisions that govern inventory levels or out-
sourcing quantities. Equation (7) represents the demand
satisfaction constraints. For each time period t, the demand can
be fulfilled by both the production (Pm,t) and the stored products
(Im,(t-1)). The constraint ensures that at the end of each planning
period t, the end period safety stock (Im,t) plus the required demand
should be equal to the production level plus the start period safety
stock (Im(t-1)), in addition to subcontracting, if any. Normally,
industrial organizations rely on permanent workers to satisfy their
production demand. It may be a point of interest for organizations
to know their optimal number of permanent workers while mini-
mizing the total plan cost. Actually, the size of the permanent
direct employees can fluctuate on a daily basis in reasons of holi-
days, absenteeism, social factors, sick leaves, etc. However, in some
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ways, it should remain between maximum and minimum limits.
Consequently, the planner should develop a production plan that
is capable to accommodate this variation. Here, these maximum
and minimum thresholds are respectively (RWmax, RWmin), as
expressed by equation (8). This proposal is different from the past
research works that permit the repeatedly hiring and dismissal of
permanent workers. There are three reasons for adopting the idea
of using minimum and maximum limits for the permanent work-
force instead of hiring and firing workers continuously. The first
reason is the variability nature of the permeant workers in reasons
of absence due to social factors, sick leaves, entertainment vaca-
tions, etc. The second reason is the enterprises’ capability to trans-
fer employees between their production sectors according to the
production plans. The third reason is the strategic nature of the hir-
ing and firing decision, it could not be applied on monthly basis. It
is assumed that, the values of RWmax and RWmin can be estimated
based on the real shop floor data. The fluctuation of the permanent
workforce from one period to another should be held as smooth as
possible. For that reason, the absolute difference between the
numbers of permanent workers for two successive working peri-
ods should be kept at a given maximum level of variation (VRW)
that should be assessed by the management committee, as repre-
sented by constraints (9). On the other side, the maximum number
of part-time should be specified. As it is well known, the main skills
of the firm should be trusted to permanent workers, for preserving
performance and developing a continuous improvement. As equa-
tion (10), the number of part-time workers for each period t should
have a pre-defined bound. This bound can be specified according to
the management strategies – usually, it can be considered as a frac-
tion of the permanent workers. Over the production periods, the
continuity of the amounts of part-time workforce constraints
should be satisfied, as modelled by equation (11). The overtime
is adopted here to overcome the shortage in production capacity
to satisfy the demand. The overtime hours can be worked during
normal weekly working days or days-off. Of course, compensations
for working during days-off are greater than that of weekly days.
The overtime is allowed for all workers with specified limits during
weekly days (equation (12)) and days-off (equation (13)). These
limits are computed as represented by equation (14) for weekly
days and equation (15) for days-off. According to the industrial
common practice, the total number of overtime hours worked
per a given period (e.g. month) during normal working days should
be fewer than a pre-specified fraction (KO.T) of the standard hours
that were worked in that period – to our experience, this percent-
age may be estimated around 15%. This industrial restriction was
also considered in the model as equation (16). The same concept
is also considered for working during days-off with a pre-
specified proportion (KO.H), as equation (17). Restrictions also exist
on the number of part-time manpower during days-off, expressing
that it is not comfortable to depend overly on part-time workers,
for assuring safety or quality issues. Equation (18) expresses this
restriction by ensuring that, the overtime hours of permanent
workers are superior or equal to that of part-time.

For presenting the constraints associated with the workforce
capacity, the term ‘‘man-day” should be clarified. A ‘‘man-day” rep-
resents the number of labours required to produce a set of 1,000
units from a given product or item during only one standard pro-
duction shift. Equation (19) makes sure that for each period t, the
number of man-days required to manufacture the production plan
(MDRt) is lower than or equal to the number of the available man-
days (MDAt). Equation (20) is used to compute the required num-
ber of man-days for all products. MDm,t can be predicted relying
on the organizational learning curve. Consequently, the number
of the required man-days for each product is developed over time.
Relying on the investigation study of Attia et al. [20], the learning
curve of Wright [15] can be used competently for representing
7

organizational learning (equation (21)). In which, the variable
APT represents the number of the actually worked production peri-
ods, b represents a constant that can be computed in the function
of the average learning rate (LR) for productm as (b = Ln(LR)/Ln(2)).
The learning rate = 1- Progress ratio. The Progress ratio is the ratio
between the effort reduction due to work replication and the initial
effort required at the first execution. The effort is often represented
in terms of time, cost, man-hour, or man-day (in the current
research). While MDini is the initial man-day found in the first pro-
duction period. The two factors MDini and b can be predicted based
on the real production data. In this model, the learning phe-
nomenon is represented as a function of the cumulated production
periods rather than the cumulated units produced. This concept is
adopted to overcome the complexity raised from incorporating the
learning effect: i.e. integrating the learning effect as a function of
the cumulated production changes the mathematical model to a
nonlinear one. This non-linearity complicates the possibility of get-
ting an optimal solution to the problem, especially for problems of
the real industrial size. On the other side, the presented formula-
tion of equation (21) is proven to be relevant rather than most of
the mono-variable learning curves [20]. Concerning the available
number of man-days, it can be determined relying on all direct
workforce and all working hours, as represented by equation (22).

Machines have limited capacities. Therefore, the available
machines have to fulfil the capacity required by the production
plan. By adopting the working on a shift basis, the machine capac-
ity can be doubled or tripled depending on the production volume
required. These types of constraints are modelled by Equation (23).
Equation (24) is used for determining the capacity of machines per
period t (MCm,t) relying on the productivity per hour (Prav), the
average availability (Aav), the average quality index (qav), and the
maximum allowable working hours (number of shifts (Sm,t)� num-
ber of permissible working days per period (n

t
+ ht) � working

hours per shift (ns)). The multiplication of the three terms (produc-
tivity, availability, and quality index: (Prav. � Aav. � qav) formulates
the average overall equipment effectiveness (OEE) of the machines
used in the production for product m. Finally, the inventory also
imposes another set of constraints as demonstrated by equation
(25). It limits the storage level to be within a pre-specified range
that is located between Min. (Im,t) and Max. (Im,t). The safety stock
is very important it works as a hedge against uncertainty. These
limits are considered as a proportion (KI) from Dm,t. As a result of
common industrial practice, the proportion of the minimum level
of safety stock can be regulated at 20%, and that for the maximum
level can reach 40%. These fractions can vary from one firm to
another according to many variables including management
strategies, machines’ reliability, resources’ availability, unantici-
pated fluctuations in demand, etc. Firms should minimize the
number of outsourced items and limit it to standard or auxiliary
parts, yet subcontract offers solutions when there is a shortage in
machine or labour capacity. As mentioned earlier, subcontracting
at the product level is considered in this research. But, the subcon-
tracted quantity is restricted by a maximum permissible limit, as
equation (26). Besides, the model considers the non-negativity
constraints for all decision variables.
5. Case study

The real case study was conducted at an Egyptian manufactur-
ing firm that specializes in the production of electric home appli-
ances and named ‘‘El-Araby Group”. This firm is a joint-stock
family company established in 1964 and dedicated to producing
high-quality products that integrate high technology in order to
meet customer needs or expectations. It produces about 890 differ-
ent products through 21 factories. Moreover, it relies on more than
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20,000 employees. This study considers one factory only that pro-
duces electric motors. The production of electric motors has
started to grow up in this firm since 1992. The factory under con-
sideration manufactures 29 different products supplied to the
other factories of the organization, plus some other references sup-
plied to other external customers. The firm has a good market
share and faces very high demand for some kinds of products:
the production of ceiling fan motors is 1,800,000 units/year,
table-fan motors 800,000 units/year and ventilation fan motors is
750,000 units/year. The manufacturing of these different families
of products involve 110 production processes that must be per-
formed to shape the required parts. These processes can be classi-
fied into six main groups. The first group of processes is the
blanking and piercing operations of the steel strips that produce
the steel laminations that shape the stator part of the electric
motors. The second cluster is the die casting operations, producing
some different parts such as the front and rear covers of the
motors, and the cover of transmission gears for some other models.
Following the die casting processes, there is a need for metal cut-
ting processes e.g. turning, drilling, reaming, and tapping opera-
tions that structure the third category. The fourth group gathers
the wiring operations that incorporate the stator with the required
electric coils, and then insulation and treatment of coils should
take place. There are some other processes such as pressing, grind-
ing, knurling, shaft threading, etc. These processes, known in this
company as ‘‘finishing”, characterize the fifth category. Finally,
the sixth category is the assembly process that gathers all parts
together so as to form the final product. Following the production
steps, we find the inspection and testing operations. Fig. 2 shows
an illustration of two products: a table-fan motor and the stator
of a ceiling fan motor.
6. Computational results

6.1. Basic data

After identifying the required parameters, the complete factory
data sets were collected for three successive years, known here as
yearly Plan-I, yearly Plan-II, and yearly Plan-III. These three plans
were dedicated to producing a total of twenty-nine products. The
complete data set for Plan-I is presented in appendix A. The learn-
ing curves expressing the evolution of the required effort in man-
days are also provided. Regarding the prediction of these learning
curves: For the same factory, the management committee was
motivated to know the most appropriate learning curve that can
be used to estimate the workforce productivity evolution over
time. Responding to this incentive, an investigation study was per-
Fig. 2. Illustration of (a) table-fan motor (b) winde
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formed. That uses a real production dataset of 42 months, with an
average monthly production rate of about 17,000 units. The dataset
used refers to 110 manufacturing processes and the different styles
of final products. After conducting the non-linear regression anal-
ysis using ten formulas for mono-variable learning curves, the
quality of each learning curve used to fit the data was evaluated.
Five criteria were adopted for this quality evaluation: regression
coefficient R2, the stability of the learning model to fit the data,
sum of squares of the errors (SSE), the variation of R2, and variation
of SSE. To prioritize these learning curves relying on the previous
five criteria, the analytical hierarchy procedure (AHP) was adopted
with the goal of finding the most appropriate learning curve for the
current case study and the alternatives are the ten mono-variable
learning curves. The analysis shows that the learning curve of
Wright [15] is the most relevant curve to be used. The learning
curve for each product is listed in table A-3 of appendix A, in the
last column. For each product, the learning rate can be computed
using the slope of the curve. As example, for Product-1, the slope
of the learning curve (-0.05632). Knowing that: Slope = ln(learning
rate)/ln(2), one can compute the learning rate = e(-0.05632�ln

(2) = 0.9617. As a percentage, the learning rate = 96.17% for
Product-1. The detailed description of this investigation study is
presented in the current authors work of [20].
6.2. Solution methodology

The presented APP model was solved optimally using ILOG-
CPLEX-12.6. First, the model was coded via the OPL language.
The data sets of the production plans were entered into the model.
After running the model, the following average statistics of the
three plans were obtained: total variables = 1,545, integer vari-
ables = 1,124, real variables = 421, constraints = 3,017, and non-
zero coefficients = 5,769. In order to validate the model, the
authors organized some workshops with the planning experts of
the factory to investigate the quality and the applicability of the
obtained results. First, the same real practice of the factory was
considered: the part-time workers were not considered for Plan-
I. Moreover, the evolution of workforce productivity is updated
biannually with the actual values. The model is run to get results
for each plan with an average computing time of about 31 sec
using a machine with a Core i3 processor. The results of each run
are extremely investigated, all constraints are satisfied, and all
variables got the expected values. In addition, the costs of the
obtained plans are lower than those of the actual plans as listed
in Table 1. Relying on the experts’ examinations, the results of
the model were validated and its applicability was guaranteed.
After the adoption of the learning effect on a monthly basis relying
d stator of ceiling fan motor under processing.
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on the learning curve of Wright [15], the optimal results were
obtained for the three plans. The objective function obtained for
each plan is shown in Table 1.

By comparing the total costs of the optimal plans obtained and
those already executed, the significance of applying the proposed
model was concluded. Table 1 presents the comparison between
optimal plans resulting from the model and the corresponding val-
ues of the firm. Relying on Table 1 the model gives hope to a cost
reduction of about 7% for a computing time lower than one minute.
Moreover, the impact of considering the effect of organizational
learning on a monthly basis and that of a biannual basis is very
small about 0.2% on average, but it can contribute to the total pro-
duction cost saving.

The complete results of ‘‘Plan-1” are presented in Appendix B.
By investigating table B-1, one can discover that the production
of a specified product Pm,t takes place to satisfy the customer fore-
casted demand Dm,t presented in table A-1. Consequently, there is a
discontinuity in the production of some products. As shown, the
production quantity Pm,t = 0 for some specific periods e.g. for prod-
ucts 1, 16, 17, 18, and 24. The question that can be raised here:
Does this discontinuance in the production have an effect on the
learning rate for a specific product? For answering this question,
we should consider two situations. The first situation is the pro-
duction of all products requires the same processes with specific
skills. In the current factory, the production of all products requires
processes like blanking and piercing, die casting, turning, drilling,
reaming, tapping, pressing, grinding, knurling, shaft threading, wir-
ing, insulation, treatment of coils, and assembly. In such a working
environment the effect of production discontinuance on the learn-
ing rate is very small and the justification of using the forgetting
curve is very weak. The second case is found when the production
of products requires different processes or different skills. In this
case, the forgetting curve should be considered to represent the
dynamic nature of the experience acquisition during working peri-
ods and losing it by forgetting during the non-production periods.
The inventory levels are presented in table B-2. As obtained, the
maximum quantities are given to products 3, 6, 8, 11, and 13. This
trend is matched with the maximum quantities listed in table B-1.
Besides, it is consistent with the forecasted demand presented in
table A-1.

By reviewing table B-4, one can notice the high variation of Sm,t

over the interval [0, 3]. This variability is highly correlated to the
production quantity Pm,t of table B-1. As the production quantity
Pm,t increases the required machine capacity is increasing that
can be doubled or tripled by working on shift bases. This high cor-
relation between Sm,t, and Pm,t can be discovered relying on equa-
tions (23) and (24). Besides, this correlation can be graphically
noticed by comparing the plot of production plan Pm,t with the
graphical plot Sm,t. The variation in the number of shifts for each
Table 1
Comparison between the optimal cost and that obtained by firm methodology.

Plan I Plan II Plan III

Optimal total cost (MU) with
monthly evolution of
workforce productivity.

202,129,291 218,142,308 230,584,606

Optimal total cost (MU) with
biannually evolution of
workforce productivity.

202,601,094 218,689,809 230,899,933

Actual cost (MU) obtained by
the methodology of the
factory.

215,630,247 236,522,013 250,716,198

Difference between actual and
optimal cost (MU)

13,500,956 18,379,705 20,131,592

Reduction percentage (%) 6.261 7.771 8.030
Running time (sec) 31 44 47

9

product does not effect on the learning process because for each
workstation each worker is continually working on the same
machines but only the initial machine setting can be changed for
producing the second product. On the other side, the learning phe-
nomenon has an indirect effect on the required machine capacity.
This indirect effect comes from the reduction of machine idle time,
preparation processes, using suitable working speeds, etc. In other
words, the learning impact comes from the experience gained by
the workers.

Table B-5 shows the distribution of the number of part-time
workers used by the model over the planning horizon. One can
notice that the model always uses the maximum number of part-
time workers when part-time is allowed and the minimum num-
ber of permanent workers are not sufficient to produce the produc-
tion plan. For each production period t, the required labors
(permanent or part-time) depends on the production quantity Pm,

t. In the case of high demand, the model favors the options that
are decreasing the total cost. By comparing the monthly wage of
one part-time worker to the average monthly salary of one of the
permanent workers, one can notice that the model should favor
the part-time because it has the minimum cost. Consequently, as
shown in table B-5, the model always uses the maximum permis-
sible number of part-time workers to reduce costs. This trend can
be noticed over the production horizon except the last quarter of
the year (Sep., Oct., Nov., and Dec.). As a working strategy in the
company, part-time workers are not allowed during the 4th quar-
ter of the year. They adopted this strategy in reasons of the demand
seasonality in the other factories of the enterprise thus they prefer
to redistribute permanent workers instead of using part-time
workers. As previously discussed, part-time workers are often
working as utility workers or used for the easiest tasks that can
be performed by anyone with minimum orientation and guidance.
7. Managerial aspects

In order to conclude some managerial aspects, a set of model
parameters were investigated using the data-set of Plan-I. The
results of Plan-I are kept as a reference (Table 1). First, the decision
of having a smooth staff of permanent workers (VRW) is examined.
Adopting this factor instead of PWmax and PWmin forces the model
to smooth the workforce relying on the available initial manpower
at t0. Fig. 3 shows the effect of the maximum limit of permanent
workforce variation between two successive working periods on
the total cost. It appears that the relation between the total cost
and VRW is a nonlinear reverse correlation. As this variation grows
up, the total cost is reduced until it reaches a fixed value at
VRW = 328 workers. The cost of having a constant permanent work-
force represents 1,260,930 MU, or 0.62% of the reference plan cost
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Fig. 3. The effect of smoothing levels of permanent workforce on total plan cost.
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Fig. 5. The effect of KO.H on the plan total cost.
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Fig. 6. The Effect of varying part-time workers on the plan total cost.
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(Table 1). To reduce this impact, organizations should find a com-
promise between having fixed permanent workers and allowing
variation in total workforce staff by using part-time workers, trans-
fer workers between factories, or by adopting the strategies of flex-
ible working hours in case of variable demand over periods.

The second decision is the overtime levels used during normal
working days. By keeping VRW = 0, discussed above, and by chang-
ing the percentage of the allowable overtime used (by varying KO.

T); the resulting cost can be reduced. As shown by Fig. 4, the total
plan cost decreases with an increased allowance of overtime. The
reduction in the total cost is also non-linear and inversely corre-
lated to the overtime and shows little change after a given percent-
age of (KO.T) that can be considered as KO.T = 45%. By adopting the
overtime strategy at KO.T = 45%, the effect of using a constant per-
manent workforce can be reduced by 66.2%.

The third decision is about the opportunity of working during
days-off. The strategies of having VRW = 0 and KO.T = 15% are kept.
The effect of working during days-off can be investigated by vary-
ing the allowable work during days-off (i.e. by varying KO.H). This
factor has a similar effect on the total plan cost as the previously
discussed factors as shown by Fig. 5. It was observed that no signif-
icant betterment is noticeable for KO.T greater than 30%. Adopting
this strategy leads to reduce the cost of having constant permanent
workforce by about 30%. It is obvious that, allowing overtime dur-
ing normal working days brings better results than working during
days-off, since the hourly rate is smaller. Working during days-off
can be appreciated in case of unavailability of working with over-
time during normal working days, e.g. as in case of 3 shifts work in
a given facility.

The fourth decision is about the number of part-time workers.
Here also, the strategies of using VRW = 0, KO.T = 15%, and KO.

H = 15% are kept during the study of this decision. In that view,
the constraint of having zero part-time workers during the 4th

quarter is relaxed. Fig. 6 displays this effect of part-time workers
on the total cost: this cost is reduced with the increasing number
of part-time until it reaches a given value above which this effect
seems insignificant (� 140 workers) or null (�160 workers). This
strategy of increasing part-time workers up to 140 workers leads
to saving the cost of having a completely constant permanent
workforce. Moreover, it reduces the total cost by about 0.26% from
the reference cost. The influence of hiring part-time workers comes
from two aspects: the first is the hourly wages compared to over-
time or working during days-off. The second is the effect of the
part-time workers that palliates the variations in the total work-
force needed to match demand fluctuations.

Regarding the minimum permissible levels of inventory (KI min),
it is obvious that zero inventory is suicidal. It may appear optimal
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Fig. 4. The effect of KO.T on the total plan cost.
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but not practical. On the other side, maximizing inventory (KI max)
is preferred for operational reasons but it increases the associated
cost. To investigate this factor, the strategies of using VRW = 0, KO.

T = 15%, KO.H = 15% and number of part-time workers PW = 80
are kept during the investigation. As shown by Fig. 7 the reduction
of cost is highly correlated with the maximum limit of inventory
levels. As an optimal practice, this limitation could be relaxed.
The relaxation of this practical constraint allows the model to
make a trade-off between periods. However, most organizations
have inventory limits.
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Fig. 7. The effect of KI max on the plan total cost.
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The last parameter to be investigated is the learning rate. It is
interested in the area of operation management to measure the
impact of learning-by-doing on the overall production cost (equa-
tion (21)). The following scenarios are used in this investigation,
and keeping the model parameters as listed in Appendix A:

- Using the actual value of learning rate for each model as
obtained from the application of regression analysis to real data
(the result is the same as presented in Section 6.2 and known here
as ‘‘Reference”).

- Using an average learning rate for all models (learning
rate = 95.45%).

- Using some other values around the average (No learning, 98,
96, 95, 94, 92. . .80%).

After solving the problem using all previous scenarios, Fig. 8 can
be developed. It represents the relation between the learning rate
and the total plan cost. As shown, the increase in the learning rate
is accompanied by an increase in the plan’s, total cost. This trend is
normal, as the learning rate increases, the opportunity for reduc-
tion of the required working capacity vanishes. Relying on the rela-
tion of (learning rate = 1 – Progress ratio), a high learning rate
means a small progress ratio. Therefore, for higher learning rate,
the opportunity for enhancement in the workforce productivity
will be very minuscule that tends to increase the plan cost. Besides,
the plateau shape of the learning curve is reached faster than the
case with a low learning rate. In other words, for a learning rate
of 100% there is no improvement over time. The impact of consid-
ering the learning phenomenon in APP is significant – here, savings
represent 7.26 Million (MU) or 3.59% of the total cost. The reduc-
tion of the plan cost comes from the development of the workforce
productivity thanks to the experience gained from period to per-
iod. In the current model, the required man-day for producing a
specified product is reduced from one period to the next thanks
to the learning effect. In other words, the number of labors
required to produce a number of 1,000 units of a given product
is reduced over time. This reduction is remarkably noticed by com-
paring the reference cost with the case of no-learning shown by
Fig. 8. According to this dataset, considering an average learning
rate for the whole workshop rather than specific values for each
product induces an underestimation of the cost: 0.3 Million
(MU), or 0.15% of the total cost. We can retain from this investiga-
tion that the impact of the learning effect is significant on the cost
of industrial operation. In that view, it makes sense to use an aver-
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age value, easier to handle, instead of accurate measurements per-
formed for every kind of operation or product family.
Consequently, Firms should estimate the corresponding parame-
ters of their products, and for simplicity of computation, they can
use an average value instead of the detailed ones. On the other
side, using values from literature for the learning rate is misleading
especially if the applications are different.
8. Conclusion

The current paper presents a mathematical model for the prob-
lem of Aggregate Production Planning (APP). This model considers
a wide range of cost sources: machines, manpower, inventory, sub-
contracting. Moreover, it considers the organizational learning
concept to forecast the workforce productivity rates in terms of
workload (‘‘man-days”, where a man-day is the number of labours
required to produce a number of 1,000 units of a given product or
part during one day”). Moreover, the different working constraints
or restrictions were considered: demand, storing, manpower
capacity, overtime hours of permanent or part-time workforce,
etc. then the model was solved using ILOG-CPLEX software after
it was coded with OPL language. A real case study was used to val-
idate the model. The data were taken from a factory for electric
motors. This factory is one of ‘‘El-Araby Group” for home appliance
manufacturing. The results were analysed and validated by the
excessive investigations of the company planning experts. By com-
paring the outcomes of the study against the adopted planning
methodology of the firm, an average percentage of 6.3% of a cost
reduction was achieved. This proportion can be transformed to
about 17.3 million of Egyptian pounds. Moreover, the economic
impact induced from the following managerial decisions are inves-
tigated: having a smooth permanent workforce, overtime levels,
working during holidays/days-off, levels of part-time workers,
and learning rates. The main limitations of the proposed model
are the assumption of the deterministic nature of the model
parameters. These parameters include forecasted demand, mate-
rial costs, operating costs, etc. Moreover, it does not consider the
changeover cost between models. As the perspectives of this work,
the uncertainty of the different parameters can be considered to
reflect the real aspects of the problem. Uncertainty can be consid-
ered using stochastic or fuzzy models.
92 94 95 Average
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96 98 N
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total production cost of APP plan.
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Table A1
Demand forecast for production Plan-I.

# Product Jan. Feb. Mar. Apr. May. Jun.

1 Product 1 2200 0 0 0 2200 0
2 Product 2 4400 11,000 9900 6600 6600 9900
3 Product 3 55,000 53,000 64,000 64,000 62,000 64,000
4 Product 4 2200 2200 2200 2200 2200 2200
5 Product 5 4400 3300 4400 4400 4400 4400
6 Product 6 37,000 31,000 37,000 40,000 40,000 40,000
7 Product 7 13,000 13,000 13,000 11,500 11,500 11,500
8 Product 8 100,500 100,500 105,500 105,500 105,500 100,500
9 Product 9 5100 5100 5100 10,200 10,200 10,200
10 Product 10 5100 5100 10,200 10,200 10,200 10,200
11 Product 11 100,500 100,500 105,500 105,500 105,500 100,500
12 Product 12 10,200 10,200 15,300 20,400 20,400 20,400
13 Product 13 65,000 65,000 75,000 70,000 70,000 75,000
14 Product 14 17,000 16,000 19,000 19,000 19,000 19,000
15 Product 15 2200 2200 4400 4400 2200 4400
16 Product 16 0 2200 0 0 2200 0
17 Product 17 0 8500 0 0 8500 0
18 Product 18 0 2000 0 0 2000 0
19 Product 20 2200 2200 2200 2200 2200 2200
20 Product 21 2200 2200 2200 2200 2200 2200
21 Product 22 11,000 14,000 13,000 11,000 12,000 13,000
22 Product 24 0 0 0 0 0 0
Normal workdays 25 24 26 24 25 26
Days-off 6 4 5 6 6 4

Table A2
Material cost (in monetary units) per unit for the products of production Plan-I.

# Product Jan. Feb. Mar. Apr. May.

1 Product 1 45.02 46.88 46.88 51.32 51.32
2 Product 2 44.66 46.47 46.47 50.91 50.91
3 Product 3 41.75 43.29 43.29 45.03 45.03
4 Product 4 96.95 67.15 67.15 74.86 74.86
5 Product 5 36.25 36.91 36.91 36.69 36.69
6 Product 6 31.60 33.00 33.00 32.78 32.78
7 Product 7 31.87 33.19 33.19 33.01 33.01
8 Product 8 60.81 58.25 58.25 64.43 64.43
9 Product 9 51.50 45.98 45.98 56.21 56.21
10 Product 10 53.25 44.21 44.21 58.94 58.94
11 Product 11 12.75 12.75 12.75 12.75 12.75
12 Product 12 10.90 10.90 10.90 10.90 10.90
13 Product 13 0.15 0.15 0.15 0.15 0.15
14 Product 14 0.17 0.17 0.17 0.17 0.16
15 Product 15 0.16 0.16 0.17 0.16 0.15
16 Product 16 0.13 0.13 0.13 0.13 0.12
17 Product 17 0.08 0.10 0.10 0.10 0.10
18 Product 18 0.00 3.40 3.40 3.40 3.40
19 Product 20 8.20 8.10 8.10 7.90 8.00
20 Product 21 4.00 3.98 4.00 3.95 4.00
21 Product 22 0.59 0.59 0.59 0.59 0.54
22 Product 24 8.00 7.90 8.00 8.38 8.38
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Appendix A:. Data set of Plan-I

The data relating to Plan-I is presented in tables A1-A4.
Table A1 represents the demand for a total of 22 products (num-
bered from product-1 to 24, with zero demand for products 19
and 23) over a yearly production horizon of 12 months. In addi-
tion, it presents the number of working days per period.
Table A2 represents the material cost per product for each period.
Table A3 shows the different costs per product: machine, inven-
tory, and subcontracting. Column 4 provides the initial inventory
at the beginning of the plan. Column 5 presents the machine pro-
ductivity for each product. The learning curves expressing the
evolution of the required effort in man-days are provided in the
last column.
Jul. Aug. Sep. Oct. Nov. Dec. TOTAL

0 0 0 0 0 0 4400
9900 6600 6600 5500 7700 4400 89,100
64,000 62,000 60,000 55,000 55,000 45,000 703,000
2200 2200 2200 2200 2200 2200 26,400
4400 4400 4400 4400 4400 4400 51,700
40,000 47,000 47,000 47,000 47,000 31,000 484,000
11,500 13,000 13,000 13,000 13,000 9500 146,500
100,500 105,500 105,500 105,500 105,500 105,500 1,246,000
10,200 10,200 10,200 10,200 5100 5100 96,900
10,200 5100 5100 5100 5100 5100 86,700
100,500 105,500 105,500 105,500 105,500 105,500 1,246,000
20,400 15,300 15,300 15,300 10,200 10,200 183,600
75,000 70,000 70,000 65,000 65,000 50,000 815,000
19,000 18,000 18,000 18,000 16,000 13,000 211,000
4400 3300 4400 4400 4400 1100 41,800
0 2200 0 0 1100 0 7700
0 8500 0 0 4200 0 29,700
0 2000 0 0 1000 0 7000
2200 2200 2200 2200 2200 2200 26,400
2200 2200 2200 2200 2200 2200 26,400
13,000 11,000 11,000 10,000 11,000 8000 138,000
50,000 60,000 70,000 70,000 80,000 80,000 410,000
26 24 26 22 24 27 299
5 7 4 9 6 4 66

Jun. Jul. Aug. Sep. Oct. Nov. Dec.

51.32 51.99 50.94 51.80 52.97 53.30 52.51
50.91 51.58 50.53 51.39 52.56 52.89 52.10
45.03 47.91 45.89 46.47 48.68 48.86 47.73
74.86 74.77 55.75 56.76 57.82 57.82 56.83
36.69 39.77 38.04 39.08 40.88 40.98 39.80
32.78 35.32 32.16 33.38 34.58 34.81 36.62
33.01 35.85 32.41 33.62 34.81 35.04 36.84
64.43 54.26 51.23 51.82 61.36 57.93 60.84
56.21 50.73 48.65 48.45 52.85 54.07 48.45
58.94 51.45 49.61 48.98 53.39 52.42 48.98
12.75 12.75 12.75 12.75 12.75 12.75 12.75
10.90 10.90 10.90 10.90 10.90 10.90 10.90
0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.16 0.17 0.17 0.17 0.17 0.17 0.17
0.15 0.16 0.16 0.16 0.16 0.16 0.16
0.12 0.13 0.13 0.13 0.13 0.13 0.13
0.10 0.10 0.10 0.10 0.10 0.10 0.10
3.40 3.40 3.40 3.40 3.40 3.40 3.40
8.05 7.90 7.90 7.90 8.00 8.10 8.10
4.00 3.95 3.95 3.95 4.00 4.00 4.00
0.54 0.59 0.59 0.59 0.59 0.59 0.59
8.45 7.90 8.61 8.62 8.53 8.61 8.62



Table A3
Other data per unit of production Plan-I.

# Product Costs (monetary units: MU) Initial Inventory Machine productivity
(Units /hr)

Regressed learning curve from historical
data for each product

Machine Inventory Subcontracting

1 Product 1 7.80 2.60 138.56 2050 57 MD1,t = 198.279((12 + t)-0.05632)
2 Product 2 7.90 2.60 138.56 8053 57 MD2,t = 198.276((12 + t)-0.05632)
3 Product 3 2.50 1.98 105.82 30,539 114 MD3,t = 154.368((12 + t)-0.08659)
4 Product 4 39.80 2.70 144.00 4258 29 MD4,t = 344.260((12 + t)-7.356E-02)
5 Product 5 1.50 1.98 105.82 8104 114 MD5,t = 122.607((12 + t)-0.05243)
6 Product 6 1.50 1.60 85.40 21,410 191 MD6,t = 111.873((12 + t)-5.906E-2)
7 Product 7 1.50 1.60 85.59 18,313 191 MD7,t = 111.846((12 + t)-5.904E-2)
8 Product 8 0.30 2.15 114.40 70,549 295 MD8,t = 55.513((12 + t)-9.283E-02)
9 Product 9 1.30 1.47 78.40 9051 114 MD9,t = 57.253((12 + t)-8.082E-02)
10 Product 10 1.30 1.40 74.80 10,213 114 MD10,t = 57.277((12 + t)-8.093E-02)
11 Product 11 0.30 0.56 30.00 36,588 214 MD11,t = 11.561((12 + t)-6.866E02)
12 Product 12 0.30 0.41 22.00 10,970 43 MD12,t = 12.323((12 + t)-9.790E-02)
13 Product 13 0.10 0.01 0.66 32,550 95 MD13,t = 2.492((12 + t)-6.425E-02)
14 Product 14 0.20 0.03 1.46 4500 38 MD14,t = 6.836((12 + t)-5.339E-02)
15 Product 15 0.20 0.03 1.46 25,500 38 MD15,t = 6.836((12 + t)-5.339E-02)
16 Product 16 0.20 0.01 0.24 7000 38 MD16,t = 6.836((12 + t)-5.339E-02)
17 Product 17 0.30 0.04 2.00 355 38 MD17,t = 5.014((12 + t)-0.147)
18 Product 18 0.50 0.20 4.00 0 24 MD18,t = 4.854((12 + t)-8.355E-03)
19 Product 20 20.10 0.68 36.00 3020 19 MD20,t = 61.343((12 + t)-4.200E-02)
20 Product 21 13.20 0.30 16.00 833 33 MD21,t = 31.876((12 + t)-5.991E-02)
21 Product 22 4.10 0.02 6.00 23,763 95 MD22,t = 9.013((12 + t)-5.887E-02)
22 Product 24 0.30 0.39 20.77 1659 191 MD24,t = 28.636((12 + t)-7.302E-02)

Table A4
Data of permanent and part-time workers.

Salary/Wages per
month (MU)

Overtime rates (MU) per hour Hiring cost
(MU)

laying off
cost (MU)

Initial number of
workers

Minimum level of
workforce

Maximum level of
workforce

Normal
working days

Days-off/
holydays

Permanent
workers

3283 21.1 31.6 – – 800 600 977

Part-time
workers

1600 10.3 15.23 500 0 0 0 80

Table B1
The optimal production Plan-I.

# Product Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec. TOTAL

1 Product 1 1030 0 0 0 1760 0 0 0 0 0 0 0 2790
2 Product 2 0 13,640 9460 3960 6600 10,560 11,880 5280 6600 5060 7040 3740 83,820
3 Product 3 46,461 52,200 59,103 60,497 61,600 65,892 72,737 60,740 62,231 42,000 55,000 43,000 681,461
4 Product 4 0 2200 2200 1386 1826 1826 1826 2640 2200 1826 1386 2200 21,516
5 Product 5 0 2200 4620 4400 4400 5280 4400 4400 4400 3520 4400 4400 46,420
6 Product 6 30,390 28,600 32,000 40,600 40,000 45,819 34,181 57,800 47,000 47,000 37,600 27,800 468,790
7 Product 7 0 13,000 10,400 11,200 11,500 13,800 9200 15,900 13,000 12,393 11,007 8800 130,200
8 Product 8 62,316 88,235 127,600 84,400 105,500 99,500 100,500 106,500 126,600 84,400 105,500 105,500 1,196,551
9 Product 9 0 4080 6120 10,200 10,200 10,200 10,200 10,200 12,240 10,200 2040 5100 90,780
10 Product 10 0 4080 13,260 8160 10,200 10,200 10,200 4080 6120 4080 5100 5100 80,580
11 Product 11 104,112 80,400 106,500 105,500 105,500 99,500 100,500 106,500 105,500 105,500 105,500 105,500 1,230,512
12 Product 12 3310 8160 16,320 21,420 20,400 20,400 20,400 14,280 15,300 15,300 9180 10,200 174,670
13 Product 13 58,450 54,748 60,614 58,658 60,614 58,658 60,614 60,614 58,658 60,614 58,658 47,000 697,900
14 Product 14 19,300 15,600 16,400 22,800 15,200 19,000 22,800 17,600 18,000 18,000 9280 12,400 206,380
15 Product 15 0 2200 4400 5280 880 4840 5280 2860 4840 4400 2772 440 38,192
16 Product 16 0 0 0 0 1826 0 0 1826 0 0 253 0 3905
17 Product 17 0 9845 0 0 8500 0 0 10,200 0 0 1640 0 30,185
18 Product 18 0 2060 0 0 1660 0 0 1660 0 0 630 0 6010
19 Product 20 60 2200 1760 2200 2200 2200 2640 1386 2266 1826 1386 2200 22,324
20 Product 21 1873 1826 1386 1826 1826 1826 2266 1826 1826 1826 1386 1826 21,519
21 Product 22 0 15,200 10,000 11,944 10,856 13,200 15,600 10,200 11,000 7900 7330 7400 120,630
22 Product 24 0 0 0 0 0 0 68,341 52,000 72,000 84,000 68,000 80,000 424,341
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Appendix B:. Detailed results of Plan-I

After solving the data set of Plan-I optimally, the following
results were obtained. Table B1 shows the production plan for each
13
product during each production period. Table B2 shows the inven-
tory levels at the end of each period. Table B3 shows the subcon-
tracting levels for each product, the other non-listed products
have zero levels. Table B4 shows the number of shifts required



Table B2
The optimal inventory levels for Plan-I.

# Product Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec.

1 Product 1 2050 880 880 880 880 440 440 440 440 440 440 440
2 Product 2 8053 1760 4400 3960 1320 1320 1980 3960 2640 2640 2200 1540
3 Product 3 30,539 22,000 21,200 16,303 12,800 12,400 14,292 23,029 21,769 24,000 11,000 11,000
4 Product 4 4258 880 880 880 440 440 440 440 880 880 880 440
5 Product 5 8104 1760 660 880 880 880 1760 1760 1760 1760 880 880
6 Product 6 21,410 14,800 12,400 7400 8000 8000 13,819 8000 18,800 18,800 18,800 9400
7 Product 7 18,313 5200 5200 2600 2300 2300 4600 2300 5200 5200 4593 2600
8 Product 8 70,549 32,365 20,100 42,200 21,100 21,100 20,100 20,100 21,100 42,200 21,100 21,100
9 Product 9 9051 2040 1020 2040 2040 2040 2040 2040 2040 4080 4080 1020
10 Product 10 10,213 2040 1020 4080 2040 2040 2040 2040 1020 2040 1020 1020
11 Product 11 36,588 40,200 20,100 21,100 21,100 21,100 20,100 20,100 21,100 21,100 21,100 21,100
12 Product 12 10,970 4080 2040 3060 4080 4080 4080 4080 3060 3060 3060 2040
13 Product 13 32,550 26,000 18,792 17,156 17,714 20,228 16,636 15,000 14,000 14,000 13,000 13,000
14 Product 14 4500 6800 6400 3800 7600 3800 3800 7600 7200 7200 7200 3200
15 Product 15 25,500 880 880 880 1760 440 880 1760 1320 1760 1760 880
16 Product 16 7000 7000 880 880 880 880 880 880 880 880 880 220
17 Product 17 355 355 1700 1700 1700 1700 1700 1700 3400 3400 3400 840
18 Product 18 0 0 400 400 400 400 400 400 400 400 400 200
19 Product 20 3020 880 880 440 440 440 440 880 440 880 880 440
20 Product 21 833 880 880 440 440 440 440 880 880 880 880 440
21 Product 22 23,763 4400 5600 2600 3544 2400 2600 5200 4400 4400 4000 2200
22 Product 24 1659 1659 1659 1659 1659 1659 1659 20,000 12,000 14,000 28,000 16,000

Table B3
The obtained subcontract levels for Plan-I.

Product Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Product 4 0 0 0 374 374 374 374 0 0 374 374 0
Product 13 0 3044 12,750 11,900 11,900 12,750 12,750 8386 11,342 3386 6342 0
Product 14 0 0 0 0 0 0 0 0 0 0 2720 0
Product 15 0 0 0 0 0 0 0 0 0 0 748 0
Product 16 0 0 0 0 374 0 0 374 0 0 187 0
Product 18 0 340 0 0 340 0 0 340 0 0 170 0
Product 20 0 0 0 0 0 0 0 374 374 374 374 0
Product 21 374 374 374 374 374 374 374 374 374 374 374 374
Product 22 0 0 0 0 0 0 0 0 0 1700 1870 0

Table B4
Number of shifts to be worked for Plan-I.

# Product Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec.

1 Product 1 0.085 0.000 0.000 0.000 0.145 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 Product 2 0.000 1.246 0.780 0.338 0.544 0.900 0.980 0.436 0.563 0.417 0.600 0.309
3 Product 3 1.916 2.384 2.438 2.578 2.541 2.808 3.000 2.505 2.652 1.732 2.344 1.774
4 Product 4 0.000 0.395 0.357 0.232 0.296 0.306 0.296 0.428 0.369 0.296 0.232 0.357
5 Product 5 0.000 0.100 0.191 0.188 0.181 0.225 0.181 0.181 0.188 0.145 0.188 0.181
6 Product 6 0.748 0.779 0.788 1.033 0.985 1.166 0.841 1.423 1.196 1.157 0.956 0.684
7 Product 7 0.000 0.354 0.256 0.285 0.283 0.351 0.226 0.391 0.331 0.305 0.280 0.217
8 Product 8 0.993 1.557 2.034 1.390 1.682 1.639 1.602 1.698 2.085 1.345 1.738 1.682
9 Product 9 0.000 0.186 0.252 0.435 0.421 0.435 0.421 0.421 0.522 0.421 0.087 0.210
10 Product 10 0.000 0.186 0.547 0.348 0.421 0.435 0.421 0.168 0.261 0.168 0.217 0.210
11 Product 11 2.288 1.956 2.340 2.395 2.318 2.259 2.208 2.340 2.395 2.318 2.395 2.318
12 Product 12 0.362 0.988 1.785 2.420 2.231 2.305 2.231 1.562 1.729 1.673 1.037 1.115
13 Product 13 2.893 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 2.326
14 Product 14 2.388 2.137 2.029 2.915 1.881 2.429 2.821 2.178 2.301 2.227 1.187 1.534
15 Product 15 0.000 0.301 0.544 0.675 0.109 0.619 0.653 0.354 0.619 0.544 0.354 0.054
16 Product 16 0.000 0.000 0.000 0.000 0.226 0.000 0.000 0.226 0.000 0.000 0.032 0.000
17 Product 17 0.000 1.349 0.000 0.000 1.052 0.000 0.000 1.262 0.000 0.000 0.210 0.000
18 Product 18 0.000 0.447 0.000 0.000 0.325 0.000 0.000 0.325 0.000 0.000 0.128 0.000
19 Product 20 0.015 0.603 0.436 0.563 0.544 0.563 0.653 0.343 0.579 0.452 0.354 0.544
20 Product 21 0.267 0.288 0.197 0.269 0.260 0.269 0.323 0.260 0.269 0.260 0.204 0.260
21 Product 22 0.000 0.833 0.495 0.611 0.537 0.675 0.772 0.505 0.563 0.391 0.375 0.366
22 Product 24 0.000 0.000 0.000 0.000 0.000 0.000 1.682 1.280 1.832 2.068 1.730 1.969
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for the production of each product during each period t. This num-
ber of shifts is real to be used in computing the total product-
machine loading for the corresponding period. By comparing
14
Tables B3 and B4 especially for product 13, one can conclude that
this product has the maximum levels of subcontracting in reasons
of machine capacity shortage. As listed, the number of worked



Table B5
Results of workforce for Plan-I.

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Permanent workers 760 720 760 747 787 805 845 885 906 866 826 786
Overtime hours of permanent workers worked at normal working

days
0.0 0.0 623.9 586.3 610.5 689.0 689.0 6372.0 7047.9 5699.9 5929.7 0.0

Overtime hours of permanent workers worked at days-off 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.4 0.0 0.0 0.0 0.0
Part-time workers 0 80 80 80 80 80 80 80 0 0 0 0
Hiring of part-time workers 0 80 0 0 0 0 0 0 0 0 0 0
Firing of part-time workers 0 0 0 0 0 0 0 80 0 0 0 0
Overtime hours of part-time workers worked at normal working

days
0.0 0.0 623.9 576.0 600.0 624.0 624.0 576.0 0.0 0.0 0.0 0.0

Overtime hours of part-time workers worked at days-off 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.4 0.0 0.0 0.0 0.0
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shifts is the maximum (3 shifts). Table B5 shows the data associ-
ated with permanent and non-permanent workforce.
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