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Résumé

En quelques décennies, l’espace a pris une importance cruciale dans notre société moderne.
Avec le déploiement imminent de méga-constellations de satellites, leur nombre va augmenter
de manière considérable. Ces futurs satellites seront principalement équipés de systèmes de
propulsion électrique, et notamment de propulseurs de Hall.

Cependant les processus gouvernant la physique des plasmas au sein des propulseurs de Hall
restent mal compris, ce qui force les industriels à réaliser de coûteuses et laborieuses campagnes
expérimentales pour certifier le produit fini.

Pour pallier cette difficulté, la simulation numérique par méthode de Particle-In-Cell (PIC),
adaptée à la physique de ce type de plasmas, est un outil précieux. En effet elle permet de
décrire des effets cinétiques spécifiques à ces plasmas et qui ne peuvent être représentés avec
précision par des méthodes fluides. Du fait du coût des simulations PIC et des phénomènes
complexes mis en jeu, les codes existants dans la littérature restent limités à des configurations
académiques discrétisées sur des maillages structurés.

Pour surmonter ces défis, le code AVIP PIC est développé au CERFACS avec l’objectif de
disposer d’un outil prédictif capable de modéliser des configurations industrielles. Pour ce faire,
AVIP PIC travaille avec des maillages non structurés, ce qu’aucun autre code de la communauté
ne peut faire actuellement. Cette innovation vient au prix d’une complexification considérable
du code et un travail substantiel d’optimisation a d’abord été réalisé dans le cadre de précédents
travaux.

Du fait de son caractère novateur, le premier objectif de cette thèse a été de systématique-
ment valider AVIP PIC. Ainsi, AVIP PIC a d’abord été utilisé pour participer avec succès à un
premier benchmark international sur une configuration 2D dans le plan axial-azimutal. Au cours
de ce travail tous les groupes ont obtenu des résultats proches avec 5% de différence au plus sur
les profiles des principaux paramètres plasma. Une instabilité plasma azimutale, l’instabilité de
dérive électronique, a été observée par tous les participants avec des caractéristiques extrême-
ment similaires. Cette instabilité due à des effets cinétiques, joue très probablement un rôle
fondamental dans le transport anormal des électrons au sein du moteur. Fort de ce premier
succès, nous avons ensuite utilisé ce cas pour explorer et paramétrer un algorithme de contrôle
actif de particules. En empêchant le nombre de particules de devenir trop élevé, cet outil per-
met de réduire le coût de calcul et sera très utile pour de futures simulations. Toujours dans
l’optique de validation du code, nous avons ensuite étudié une configuration simplifiée 2D du
plan radial-azimutal du moteur. En effet, la prise en compte de la présence des parois peut
considérablement modifier le comportement physique du moteur simulé. En particulier, nous
avons mis en évidence une instabilité radiale-azimutale, appelé aussi instabilité modifiée à deux
faisceaux, qui est couplée à l’instabilité de dérive électronique citée précédemment. Un travail
de benchmark, mené par le CERFACS avec six groupes internationaux, a confirmé ce résultat
avec un excellent accord, malgré la grande diversité des codes utilisés.

Fort de notre expérience en 2D, nous avons alors mis au point une simulation 3D reprenant
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les éléments géométriques et les conditions plasma des deux cas précédents. Lors de cette étude
la forme 3D de l’instabilité de dérive électronique a été identifiée ainsi qu’une possible signature
de l’instabilité radiale-azimutale. La comparaison avec les configurations 2D précédentes semble
montrer que les simulations 2D tendent à créer un plasma plus chaud et plus dense, ce qui affecte
les phénomènes oscillatoires. La structure générale du plasma reste néanmoins similaire. Enfin
des outils d’analyse de performances du code ont été développés et se révèleront précieux pour
la mise au point de configurations 3D plus avancées.
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Abstract

In a few decades, space has become a crucial part of our modern society. With the imminent
deployment of mega satellite constellations, their number will increase dramatically. These
future satellites will be mainly equipped with electric propulsion systems, and in particular
Hall thrusters.

However, the processes governing the plasma physics within Hall thrusters remain poorly
understood, which forces manufacturers to carry out costly and laborious experimental cam-
paigns to certify the finished product.

To overcome this difficulty, numerical simulations are essential. They can be based on a
Particle-In-Cell (PIC) method, well adapted to the physics of this type of plasma. Indeed,
these plasmas present kinetic effects that cannot be accurately described by fluid methods.
Due to the cost of PIC simulations and the complex phenomena involved, existing codes in the
literature remain limited to academic configurations based on structured meshes. In an effort
to overcome these challenges, the AVIP PIC code is developed at CERFACS as a predictive tool
capable of modeling industrial configurations. To do this, AVIP PIC works with unstructured
meshes, which no other code in the community can currently do. This innovation comes at
the cost of a considerable complexity of the code and a substantial optimization work was first
done in previous work.

Because of its innovative character, the first objective of this thesis was to systematically
validate AVIP PIC. Thus, AVIP PIC was first used to participate successfully in an international
benchmark on a 2D configuration in the axial-azimuthal plane. During this work, all groups
obtained close results with 5% difference at most on the main plasma parameters profiles. An
azimuthal plasma oscillation, the electron drift instability, was also observed by all participants
with extremely similar characteristics. This instability due to kinetic effects, most probably
plays a fundamental role in the anomalous transport of electrons within the engine. Based
on this first success, we then used this case to explore and parameterize an active particle
control algorithm. By preventing the number of particles from increasing too much, this tool
reduces the computational cost and will be very useful in future simulations. Still in the
perspective of code validation, we then studied a simplified 2D configuration in the radial-
azimuthal plane of the engine. Indeed, taking into account the presence of the walls can
considerably modify the simulated physics of the engine. In particular, we have highlighted a
radial-azimuthal instability, also called modified two-stream instability, which is coupled to the
electron drift instability mentioned above. A benchmark work, conducted by CERFACS with
six international groups, confirmed this result with an excellent agreement, despite the great
diversity of the codes involved.

Capitalizing on our experience in 2D, we then developed a 3D simulation based on the same
geometrical elements and plasma conditions than in the two previous cases. During this study
the 3D electron drift instability was identified as well as a possible signature of the radial-
azimuth instability. The comparison with the previous 2D configurations seems to show that
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the 2D simulations tend to create a hotter and denser plasma, which affects the oscillatory
phenomena. The general structure of the plasma remains nevertheless similar. Finally tools
for the analysis of the code performance have been developed which will prove to be valuable
for the development of more advanced 3D configurations.
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1.1 Space propulsion: brief history and current context
The desire of escaping Earth’s gravity was already imagined in the late modern era by artists
and writers such as Jules Verne in his novel "Voyage to the Moon" in 1865 [Jules Vernes, 1865],
in which adventurers embark on a fictional rocket. First scientific and analytical thinking on
how to build such a vehicle was laid out in Russia and in the West during the first years of the
20th century [Hill and Peterson, 1992, Chapter 1]. For rocket scientists, the goal is always the
same: accelerate the rocket by expelling at high speed a propellant as shown in Figure 1.1.
In order to understand how a rocket is propelled we shall consider the closed system made
of the rocket (payload, structural mass and remaining fuel to be utilized) and the mass of
propellant ∆m about to be expelled at time t. At time t the total momentum of the system
rocket-propellant is given by:

P(t) = (m+ ∆m)v, (1.1)
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Figure 1.1: The rocket at time t, expels at t + ∆t a mass ∆m at a speed vex to accelerate of
∆v. x designates the unitary vector of the coordinate system.

where v is the speed the system at time t. At time t + ∆t the propellant has been expelled
downwards with an exhaust velocity vex with respect to the rocket. Therefore in the laboratory
framework, its net speed is v + vex. In return, the rocket has gained a velocity ∆v. Thus, at
t+ ∆t the total momentum is:

P(t+ ∆t) = m(v + ∆v) + ∆m(v + vex). (1.2)

The change in momentum must be conserved at all time and in the absence of external forces
one can write:

0 = ∆P = P(t+ ∆t)−P(t) = m∆v + ∆mvex (1.3)
Using differential notations and the coordinate system from Figure 1.1, we end up to

mdv −∆mvex = 0, (1.4)
which is actually a first order linear differential equation:

m
dv

dt
= dm

dt
vex, (1.5)

The acceleration of the rocket is made possible by the thrust defined as:

T = ṁvex, (1.6)
where ṁ = dm

dt
is the exiting mass flow rate. Assuming the mass flow rate and the exhaust

velocity constant, the famous rocket equation, derived by Russian scientist Tsiolkovsky in 1903
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[Tsiolkovsky, 1903], can be retrieved by integrating between instants t1 and t2:

∆v =
ˆ t2

t1

T

m(t)dt = log
(
m(t1)
m(t2)

)
vex, (1.7)

where m(t1) and m(t2) are respectively the mass of the rocket at t1 and t2. In a real world, the
equation is of course modified when gravity or pressure forces are accounted for. However, the
rocket performances, i.e., the achievable ∆v, remain optimized with a maximal final mass ratio
m(t2)/m(t1) and exhaust velocity. The first rockets used chemical reactions to generate thrust
from liquid or solid ergols and served first and foremost military purposes. The most emblematic
example is perhaps the use of V2 rockets by Nazi Germany capable of virtually reaching 100
km of altitude and hitting targets in a 300 km radius within a few minutes. Considered as
unstoppable, these "flying bombs" traumatized the public opinion and left its marks on world’s
leaders at this time. Therefore, it is not surprising that rocket science constituted an intense
research interest during the Cold War, when both the US and the USSR conceived always more
powerful and destructive missiles. This race reached a tipping point on October 4, 1957, when
the Soviet Union launched into space the first artificial satellites Sputnik 1. Access to space and
space supremacy was then considered a top national priority by both superpowers. Numerous
technical achievements are reported during this period. Around the immediate neighborhood
of the Earth, the first human spaceflight was performed by the USSR in 1961 and the landing
on the Moon by Apollo 11 crew in 1969. Deep space exploration in the solar system was also
viewed as a mark of power and remarkable missions were carried out: flybys of Venus (1961),
Mars (1962), and further planets (Voyager mission from 1979).

From the end of the Cold War, the aerospace sector started to shift and commercial use of
space developed as shown in Figure 1.2. This change coincides with the advent of the Internet
and all derived economic activities that require telecommunication satellites.
As of today, there are nearly 3000 operational satellites and the space economy is estimated to
represent more than USD 350 billion in 2018 according to the [OECD, 2019, Chapter 1]. In
recent years, collections of hundreds of small satellites, designated as constellations, gained in
popularity for Low and Medium Earth Orbits (LEO-MEO) to expand broadband connectivity
and the Internet of the things. Thus, multiple projects such as OneWeb, Starlink or the
Kuiper project have announced they intend to deploy thousands of satellites in order to provide
worldwide internet access [OECD, 2019, Chapter 6]. Therefore, the number of launches per
year is expected to more than quadruple in the near future and its corresponding revenue is to
increase by 30% [Euroconsult, 2020]. Such an enthusiasm for small satellites is, at least, made
possible by the use of an increasingly popular technology: electric based propulsion system.

1.2 Electric based propulsion systems

1.2.1 Why is electric propulsion appealing?
In order to understand why electric propulsion is appealing for space activities, we shall identify
the limitations of chemical based propulsion systems. Basic space mechanics states that escap-
ing Earth’s gravity forever requires, at least, ∆v = 11.2 km s−1 starting from the ground. To
reach LEO, a ∆v of 9.4 km s−1 (250 km of altitude) is necessary. According to Equation (1.7),
these values can be reached through a high exhaust velocity or mass ratio. For chemical rockets,
the exhaust velocity is obtained by accelerating a hot gas into a nozzle which converts thermal
energy, of the combustion chamber, into kinetic energy. The initial thermal energy stems from
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Figure 1.2: Timeline of satellites launched according to their purpose from Harrison et al. [2017].
The dashed line indicates the end of the Cold War. The peak in the late 90’s corresponds to
the deployment of the Iridium constellation [Garrison et al., 1997].

chemical reactions that release the energy stored in chemical bonds forming fuel molecules. So,
the available thermal energy is directly proportional to the embarked mass of fuel. Therefore,
the chemical propulsion system cannot exceed ∼4 km s−1 at best and it is then necessary to
optimize the initial mass ratio. The initial mass m0 of a rocket can be split into two parts: the
mass of the embarked fuel mp and the final mass mf that will remain when the fuel is exhausted
(which includes the payload and the mass of the rocket structure). So, using Equation (1.7), it
can be seen the required fuel mass is exponential with the desired ∆v:

mp = mf

(
1 + exp

{(
∆v
vex

)})
(1.8)

For a typical heavy launcher such as Ariane 5 [CNES, 2020], mf ∼ 90 t and assuming ∆v
vex
∼ 3

for LEO, about 1900 t of fuel would be necessary. The use of multistage rockets, which consists
in getting rid of the unnecessary dead weight of boosters when they get exhausted, increases
performances but current launchers represent 90% of the final weight. As a result, the use of
chemical rockets remains extremely expensive as 1 kg of payload costs∼ USD 15-30K [Aerospace
Security, 2020] for LEO; which is why re-usable launchers arouse the interest of space companies
and governments nowadays. Overall, the generated thrust T = ṁvex is of the order of 103 kN
and is mostly due to the tremendous mass flow rate ṁ ∼ 10× 103 kg s−1.

However, due to low gravity, there are plenty of activities in space that do not require this
amount of thrust. Thus, satellites orbiting the Earth must control their attitude and adjust their
trajectory during their lifetime, the latter easily ranging over the 15 years. This is especially
true for LEO satellites that suffer from remnants of atmospheric drag that could add up over
time. It is possible to embark fuel and liquid oxygen and adjust the mass flow rate to achieve
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such tasks but the storage of liquid fuel and intricate pumping makes it inconvenient. Besides,
the efficiency of chemical-based propulsion systems remains limited. In order to understand
this we shall consider another metric, the specific impulse Isp that expresses how much thrust
T can be obtained from the propellant weightWp utilized over the time range [0; t] in the Earth
gravity field. It indicates how long one 1 kg of fuel can lift 1 kg on Earth. The specific impulse
is expressed as,

Isp =
´ t

0 Tdt

Wp

=
´ t

0 ṁvexdt´ t
0 ṁgdt

, (1.9)

where g is the gravitational acceleration. Under the assumptions of constant exhaust velocity
and mass flow rate used in this manuscript the equation becomes:

Isp = vex
g
, (1.10)

It is expressed in seconds and indicates how long the device can lift one kilogram given one
kilogram of propellant, and so the highest value is desirable. Yet, as previously mentioned, the
chemical rocket comes up with a limitation on the exhaust velocity, which limits their specific
impulse to 300-400 s at most.

Electric propulsion provides a solution to increase the specific impulse. Electric propulsion
consists in converting electric energy, stemming from an external source such as a solar panel,
into kinetic energy by accelerating an ionized gas, a plasma, via electromagnetic forces. Because
the available electric energy does not depend on the fuel mass anymore, the exhaust velocity
can be greatly increased. In the example of Hall Thrusters (HTs), a kind of electric propulsion
device, the exhaust velocity can reach 20 km s−1, which provides a specific impulse greater
than 2000 s. As a result, less fuel needs to be embarked, which reduces launch costs as well.
The downside of electric propulsion is that it provides a very limited amount of thrust below
1 N because of a very low mass flow rate of the order of ∼ 10 mg s−1 in the example of HTs.
The contrast between chemical based (high T , low Isp) and electrical based (low T , high Isp)
propulsion systems is exemplified by Figure 1.3.
However, this amount of thrust is sufficient for maneuvers such as altitude correction or tra-
jectory adjustment. For small satellites, that will represent the bulk of the market over the
next 10 years, it is expected that more than 50% [Commission, 2016; Space News, 2017] will
be equipped with electric thrusters as they are reliable, cheaper, and more efficient than their
chemical counterparts for long-term in-space missions. Overall, chemical propulsion remains
irreplaceable to escape Earth’s gravity but combined with electric propulsion to rise to final
orbit, it could cut costs by 40% [Holste et al., 2020].

Finally, electric propulsion has also demonstrated its capability to carry out space missions
further from home. In 2004, the European Space Agency (ESA) launched its first all-electric
SMART-I mission propelled by PPS-1350 HTs from Safran Aircraft Engines (SAE), that suc-
cessfully reached the Moon in around a year [Koppel and Estublier, 2005]. As a comparison,
the Apollo mission, using chemical propulsion, needed only four days but burned more than
30 t of fuel to transfer from LEO to the Moon vs 80 kg of fuel for SMART-I.

1.2.2 Kinds of electric propulsion devices
Pioneer concepts of electric propulsion were conceived at the same time as chemical rockets
[Choueiri, 2004] but had to wait until the 60’s to be tested for the first time in space.
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Figure 1.3: Reported thrust and specific impulse of some operational chemical based (left
side, black/ white circles) and electric based (bottom side, red/blue/gray symbols) propulsion
systems from Liang [2013].

Taking the example of Geosynchronous Earth orbit (GEO), Holste et al. [2020] exemplified
the main electric propulsion devices that have been used.
Using the classification from Mazouffre [2016], we distinguish three main categories.

First, we encounter electrothermal devices that consist in converting electric energy into
thermal energy by heating the propellant. Then, the latter enters a downstream nozzle to
accelerate and gain kinetic energy. Arcjets and resistojets are based on this principle and the
first telecom satellite, based on electric propulsion Intelsat V2, was equipped with a resistojet
thruster in 1980. However, the plasma generated by the discharge has a low density and so the
Isp < 700 s is limited by the initial thermal energy. Since they also generate a low thrust, they
will be encountered at the left bottom side of Figure 1.3.

In order to increase the specific impulse, electrostatic devices or Gridded Ion Thrusters
(GIT) can be considered. An operational GIT is shown in Figure 1.5 (a) and its working prin-
ciple is presented in Figure 1.5 (b). First, in a parabolic cavity, a plasma is created. This
is achieved by either a microwave/Radio-Frequency source (not shown here), or by injecting
electrons from an internal cathode. The latter is mostly used in the US and the plasma is
confined via a cusp-shaped magnetic field. Then, ions are extracted via a biased accelerator
grid to reach tens of km s−1. The accelerator grid is protected by a screen grid, which re-
duces erosion. Downstream, a decelerator grid decreases the velocity of the plasma beam for
improved performances. It also prevents cold ions to be backscattered toward the accelerator
grid, which could damage it. Finally, an external cathode releases the collected electrons from
the parabolic chamber into the plume, that becomes neutral again. Neutralization is essen-
tial because otherwise the spacecraft would charge negatively and the exiting beam positively,
which would cancel the thrust out. GIT have been first used in 1964 in the SERT-1 mission by
the US and has continuously been considered for LEO and even in deep-space mission such as
BebiColombo. Their lifetime usually exceeds 20,000h, until the accelerator grid is too eroded.
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Figure 1.4: From Holste et al. [2020], number of satellites in Geosynchronous Earth orbit (GEO)
using either arcjets, resistojets, Hall thrusters or ion gridded thrusters between 1981 and 2018.

The thrust remains below 1 N and the specific impulse is of the order of a couple of thousands
seconds. The maximum current that can be extracted is constrained by the dimensions of the
aperture grids. Indeed, the latter must be of the size of a Child–Langmuir sheath to enable
acceleration of ions [Goebel and Katz, 2008, Chapter 5]. As a consequence, ions are squeezed
in tiny volumes until space charge saturation is reached.

In order to allow for higher current densities, which increases the thrust density, there are
other options and we can consider electromagnetic devices. In contrast to GITs, both electric
and magnetic fields play an active role in ionizing and accelerating the plasma discharge into
vacuum. The most emblematic and used of this kind of devices is the Hall Thruster (HTs),
for which an illustration is given in Figure 1.6. It is a cylindrical cavity in which electrons are
trapped by a magnetic barrier allowing the creation of ions that are then accelerated by an
electric field. Like in GITs, electrons from the cathode neutralize the exiting beam. A more
detailed explanation of HTs’ working principles will be given in Section 1.3.1. Taking leverage of
pioneer work from Morozov [2003], the USSR launched the first satellite using a HTs in 1971 on
Meteor 1-10 [Hendrickx, 2004] and since then the technology gained maturity and has become
popular for space activities (see Figure 1.4). In comparison to GITs, HTs present a higher thrust
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Figure 1.5: Illustration of an Ion Gridded Thruster (GIT). (a) operational GIT used for the
BepiColombo mission (ESA) currently traveling to Mercury (Credit: QinetiQ). The cathode,
in the foreground, is releasing electrons. (b): schematic of a GIT ring cusp configuration. Ions
extracted through grid apertures are then neutralized downstream (dashed blue area).

density and thrust-to-power ratio meaning they are more compact and require a less complex
Power processing Unit [Holste et al., 2020]. However, they tend to have a higher divergence
beam and suffer more from wall erosion, which decreases their lifespan. The divergence beam
is undesirable because, first, it decreases the efficiency of the system, and secondly, it increases
the volume occupied by the beam, which may lead to surface contamination with other parts
of the spacecraft. As of today, HTs are more popular and are probably better suited for small
satellites constellations but GITs are definitely not out of the race since their high Isp and
lifetime make them good candidates for in-deep space missions such as Dawn [Rayman et al.,
2006], BebiColombo [Sutherland et al., 2019] and Hayabusa-2 [Tsuda et al., 2013].

For a more exhaustive presentation of existing electric propulsion devices and detailed ex-
planations of working principles, the reader can refer to [Hill and Peterson, 1992, Chapter 14]
and [Goebel and Katz, 2008].

1.2.3 Research effort and future of electric propulsion
In the distant future, the main challenge of electric propulsion probably lies in its ability to
bridge the gap between chemical propulsion (high T , low Isp) and currently available technology
(low T , high Isp). Indeed, interplanetary flights will require much shorter travel times but also
long-lasting engines to make the trip sustainable for human beings. In the case of electric
propulsion, the energy is supplied by solar panels and it is limited to a few kilowatts, which
is just enough for the thruster. Using solar panels beyond the Main Asteroid Belt, between
Mars and Jupiter, is also unrealistic because the available power would decrease dramatically.
Therefore using a nuclear reactor based on fission or fusion is probably an excellent choice
[Woodcock et al., 2002; Black and Gunn, 2003]. In this regard, the Variable Specific Impulse
Magnetoplasma Rocket (VASIMIR), an electrothermal device, is a technology being researched
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Figure 1.6: PPS-1350 HTs used for the SMART-I mission (Credits Safran Aircraft Engines).
The cathode is visible above the thruster.

that could multiply the thrust by 1000 while still ensuring high Isp with more than 100 kW
[Giambusso et al., 2020]. More mature technologies, such as HTs and GITs, are also scaling up
to operation points of high power levels [Dale et al., 2020]. This constant progress has been
made possible by the support from governments and space agencies in Europe [del Amo, 2015],
in the US [Schmidt et al., 2018], in Russia [Semenkin, 2007] and in Japan [Komurasaki and
Kuninaka, 2007].

France has a long-standing tradition in electric propulsion and can rely on a strong network
of research public institutions such as LPP, LAPLACE, CNES, ICARE and ONERA, but also
on world-leading companies (Airbus and Safran) and startups (ExoTrail, ThrustMe) [Boniface
et al., 2017]. In particular, Safran has been a pioneer in electric propulsion in Europe and is
specialized in the conception and production of HTs. It has developed a full range of products
from low power PPS X00 (< 1 kW) [Vaudolon et al., 2019], suited for LEO, to high power
with PPS 20K (20 kW) [Zurbach et al., 2011], designed for in-deep space missions. However,
because of the intricate physics of HTs, the development of new concepts and their commercial
certification take years and remain costly. Indeed, performances of new prototypes have to
be continuously monitored in vacuum chambers for tens of thousands of hours. At the end of
this process, commercial certification is obtained and the product can be sold to customers.
Unfortunately, the design is also likely to be modified during the tests and each update will
require to start over the long hours of measurements in vacuum chambers. As the small satellite
market is expected to expand dramatically and under the pressure of international competitors
(Fakel for Russia, Busek for the US), the French aerospace industry needs to overhaul his its
strategy to create innovation. Aware of the challenges ahead, the French government reinforced
its support for electric propulsion research and in particular for HTs.

Thus, France co-funded the POSEIDON [French National Research Agency, 2016] project
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(future Plasma thrusters for LOw earth orbit SatEllIte propulsiON systems) along with Safran
that partnered with both LPP in Paris and a newcomer, CERFACS laboratory in Toulouse.
LPP has a long-standing experience in cold plasmas, encountered in HTs, whereas CERFACS
has world class expertise in massively parallel calculations for Fluid Dynamics and reactive
flows. Therefore, POSEIDON gathers proficiencies from different scientific communities to
bolster the HT research effort. This is primarily achieved by numerically investigating the
system by innovative simulations to get a more precise idea of the plasma dynamics. Ultimately,
POSEIDON improves the understanding of HT and facilitates the development of 3D numerical
tools suited for industrial configurations. Thus, Safran will be able to guide and speed up
its process to develop new thrusters and it will reduce the number of laborious and costly
testing. Within this framework, this thesis was performed at CERFACS and has been funded
by POSEIDON.

1.3 Hall Thrusters

1.3.1 Working concept
As depicted in Figure 1.7 (a), a Hall Thruster has an annular geometry and performs the
following steps that are summarized in Figure 1.7 (b).

Figure 1.7: (a): Example of a Hall Thruster (Credit PEPL, University of Michigan Ann Arbror).
(b): schematic of working principle of a HTs from Liang [2013]. Cathode is at the center.
Magnetic coil are in brown. The ceramic covering the channel wall is in white.

Injection of neutral particles

First, a neutral gas is injected through a porous anode located at the back end of the annular
channel. The typical mass flow rate is about a few mg s−1. The anode is a conductive and
metallic piece whose potential is set to a constant value. The neutral gas is usually a noble gas
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as it will not react with other components of the thruster.Xenon is the heaviest non-radioactive
noble gas so it is usually used as it is safe and optimizes the thrust. Lighter noble elements
such as Krypton can also be employed, as in the Starlink constellation for instance, because
their cost is much lower.

The neutral gas diffuses in the chamber toward the plume; this zone is cold and un-reactive.

Cathode electron emissions

The cathode, centrally mounted in Figure 1.7, is also a metallic part and biased at a lower
potential than the anode. It is heated and releases electrons during this process. The potential
drop between the anode and the cathode creates an axial electric field that forces some of these
electrons, around ∼ 10-20%, to enter the discharge channel.

Magnetic barrier and ionization

At the entrance of the channel, electrons stemming from the cathode experience the effects of
an imposed magnetic field, mostly radial in this area. The magnetic field is generated by coils
located around the chamber as shown in Figure 1.7. The topology of the magnetic field is a
crucial aspect of HTs’s design [Garrigues et al., 2003] and is usually designed such that it is
maximum at the channel exit, essentially radial and symmetric with respect to the centerline
[Morozov and Savelyev, 2000, Chapter 2]. An example of topology is shown in Figure 1.8 (a).

The effect of the magnetic field on charged particles can be assessed by the means of three
parameters: the cyclotron frequency Ωce, the Larmor radius rL, and the Hall parameter ΩH .
The cyclotron frequency, defined as

Ωce = qαB

mα

, (1.11)

is the frequency of a particle spinning around magnetic field lines. qα andmα are the charge and
mass of the particle α and B is the magnitude of the magnetic field. The circular trajectory of
a charged particle around the magnetic field lines has a radius called Larmor radius expressed
as:

rL = v⊥
Ωce

, (1.12)

where v⊥ is the velocity component orthogonal to magnetic field lines. Because of their light
mass, the Larmor radius of electrons is typically around ∼ 0.1 cm [Goebel and Katz, 2008,
Chapter 7] which is way below common dimensions of HTs. This means electrons have room to
spin around magnetic field lines, i.e., they are magnetized. Under the effect of the axial electric
field, their spinning motion drifts in the E×B (i.e., azimuthal) direction. The residence time
of electrons in this area is controlled by the Hall parameter defined as:

ΩH = Ωce

νm
, (1.13)

where νm is the collision frequency of electrons and neutral particles. The Hall parameter
indicates how long the particle spins around the magnetic field lines before being scattered by
collisions. For electrons ΩH � 1, which means they are well confined in the azimuthal direction.

Since their residence time is greatly increased by the magnetic barrier, they eventually
collide more often with neutral particles leading to ionization. Ionization generates even more
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electrons which sustain or ignite the discharge. The ionization location is shown in Figure 1.8
(b).

Figure 1.8: (a): Typical magnetic field topology of a HTs [Hofer et al., 2006]. (b): Axial
position of ionization and acceleration zones [Boeuf, 2017].

Thrust generation

Once created, ions are immediately accelerated by the axial electric field toward the plume.
In contrast to the electrons, they are so much more massive they do not feel the magnetic
field. Indeed, their Larmor radius is typically greater than 1 m and ΩH � 1. Ions are therefore
accelerated at high speed up to 15-20 km s−1, which generates thrust. Since the magnetic field
does not create a highly directional beam, a plume divergence appears.

Beam neutralization

The exiting ion beam is by definition positive and is neutralized by electrons stemming from
the cathode. This step prevents the spacecraft from being negatively charged which would
eventually attract the ion beam back to it, thus canceling the thrust out. Electrons from the
cathode are supplied by the anode, that is electrically connected to the cathode. Indeed, in
spite of the magnetic field barrier, some electrons end up reaching the anode.
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1.3.2 Hot topics for HTs
The working principle of a HT is fairly simple. However, the details of the ongoing physics are
still beyond our current understanding.

A primary solution to investigate HTs consists in relying on experimental measurements.
This can be done with electrostatic-Langmuir probes [Brown and Jorns, 2019; Tichỳ et al., 2018;
Shastry et al., 2009; Raitses et al., 2005a] that measure plasma parameters such as density or
temperature. Unfortunately, this is an invasive technique that can disturb the actual working
conditions of HTs. Luckily, we have noninvasive tools to examine some aspects of the plasma.
For instance, laser-induced fluorescence (LIF) spectroscopy can assess the velocity distribution
function of particles and has been successfully applied to HTs [Dale and Jorns, 2019a; Mazouffre,
2012]. Besides, coherent Thomson scattering [Tsikata and Minea, 2015; Tsikata et al., 2009],
measuring fluctuations in the density and electric fields, coupled to a newly developed incoherent
Thomson scattering technique [Vincent et al., 2020], assessing thermal electron properties, is
hoped to expand spectral analysis of the plasma flow. Unfortunately, all these techniques are
unable to monitor the plasma inside the channel and sometimes do not offer enough time and
spatial resolution. One way to tackle this challenge, is to rely on simulations that can guide
where to perform measurements, and also provide an insight into the channel. To be reliable
and efficient, this strategy assumes that simulations are sophisticated enough to make them
realistic and comparable to experimental measurements. Therefore, numerical simulations must
be equipped with advanced models and account for potential 3D effects, which is a primary
goal of this thesis and the POSEIDON project presented in Section 1.2.3.

In the following, a quick overview of current and future challenges is presented and the
reader can refer to more exhaustive reviews for more information [Taccogna and Garrigues,
2019; Kaganovich et al., 2020].

Plasma wall interactions

In typical HTs, the walls are usually covered by a ceramic layer, usually, Boron Nitride (BN) or
Boron Nitride-Silicon Dioxide (BNSiO2), and are more rarely simply metallic [Choueiri, 2001a].
In all cases, charged particles can hit the walls, which leads to undesired effects.

When an electron hits a wall, it can be either backscattered, elastically or not, or simply
absorbed. With the exception of an elastic event, a collision with a wall represents a loss
of energy and mass for the plasma flow, which is detrimental for performances. An incident
electron with sufficient incoming energy can also tear off other electrons from the material: this
event is called Secondary Electron Emission (SEE). Secondary electrons are colder than primary
electrons and follow a different velocity distribution function. Besides, the classical plasma wall
transition [Chen, 1974, Chapter 8], [Keidar et al., 2001] can be severely modified [Raitses
et al., 2005b]. The exact mechanism of electron-collisions is difficult to model [Taccogna, 2003]
and in spite of recent progress [Villemant, 2018], simple laws [Vaughan, 1989; Gascon et al.,
2003; Sydorenko, 2006; Barral et al., 2003] remain the common way to picture this interaction.
Experimental measurements [Barral et al., 2003] showed BN and BNSiO2 minimize SEE but a
better understanding of plasma wall interactions, in general, would certainly guide us toward
improved and innovative wall material composition.

Because ions are so much more massive than electrons, their impact on the wall can damage
the ceramic layer leading to erosion [Cho et al., 2013; Schinder, 2016]. Erosion is visible after
a few hundreds of hours of operation as shown in Figure 1.9.
Figure 1.9 (b) shows regular ridges on the ceramic covering the PSS-1350 walls, whose origin
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Figure 1.9: (a): brand new PPS-1350 (Credits Safran). (b): PPS-1350 severely eroded (Credits
Safran).

is still unclear [Mazouffre et al., 2003]. This azimuthal pattern is designated as anomalous
erosion and is present in other types of HTs [Brown and Walker, 2020]. The modeling of erosion
and subsequent numerical simulations remains challenging to perform for two reasons. First,
since this is a slow phenomenon, long runtimes are necessary, which is still beyond current
capabilities without resorting to numerical artifacts to accelerate the computation. Second,
since walls boundaries are changing in time, adaptive meshes are needed. For this kind of
scenario, unstructured grids, adding a level of complexity, would be suited for this task.

Erosion first decreases performances of the HTs by chamfering the exit of the HTs, hence
enhancing the plume divergence. Finally, it is also a life-limiting factor of a HTs as when the
ceramic or metallic wall is completely eroded, the magnetic circuit is exposed to the plasma
flow until it breaks down.

Overall, plasma wall interactions remain problematic and even more for the near future.
Indeed, HTs must be miniaturized with the rise of small satellites, which increases the surface-
to-volume ratio and makes experimental measurements more challenging to conduct. In order
to reduce wall losses, a solution could be to remove the central cylinder, which leads to a
modified version of a HTs, a cylindrical Hall thruster [Smirnov et al., 2002, 2007]. Another way
to minimize plasma wall interactions could be achieved by choosing an adequate magnetic field
design.

Magnetic field design

The magnetic field is one of the most crucial aspects of the design of a HTs. One drawback
of a typical magnetic field topology shown in Figure 1.8 (a), is that it induces a strong ion
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bombardment near the exit because of non-null radial electric field in the acceleration zone.
Moreover, this situation is amplified by an important sheath potential drop due to a high
electron temperature in this area. This problem can be mitigated by shifting the magnetic
barrier slightly outside the thruster. Furthermore, the magnetic field lines are chosen so that
they are parallel to the wall as much as possible in the channel. The idea is to keep a layer of
cold electrons from the anode close to the wall. The wall is not intercepted by magnetic field
lines to complete the shield. This configuration results in bending iso-potential lines to reduce
the radial electric field, hence ion bombardment. Figure 1.10 sums up main differences between
both configurations.
Promising results were reported in the literature [Mikellides et al., 2014; Hofer et al., 2014;
Grimaud et al., 2016] and innovative designs of HTs in the 100 kW range should be equipped
with this technology [Jackson et al., 2017; Kaganovich et al., 2020] for deep-space missions.
Magnetically shielded configurations are still in development as some erosion is still reported
near magnetic poles [Sengupta and Smolyakov, 2020], but thruster performances seem more
deteriorated than expected. The latter observation was associated with a greater plume diver-
gence measured in experiments [Conversano et al., 2017]. Furthermore, magnetically shielded
HTs are likely to modify non-equilibrium effects taking place in the plasma bulk such as plasma
instabilities.

Plasma waves and instabilities

Waves and oscillatory behaviors are common in plasmas in general. In order to understand
why they are important, we shall first remind some basic concepts.

Given a scalar quantity Ψ, we can define an oscillation as periodic temporal fluctuations
affecting Ψ. Perhaps the most fundamental of them is the so-called plasma oscillation for which
a light electron oscillates around a heavy and immobile ion because of the electric field. The
corresponding pulsation ωpe can be derived as:

ωpe =
√
nee2

meε0
, (1.14)

where ne is the electron density, e the elementary charge, me the electron mass and ε0 the
vacuum permittivity. An analogous pulsation ωpi for ions can be defined with the ion mass and
ion density.

Following the definition proposed by [Chen, 1974, Chapter 4], a wave can be viewed as an
oscillation propagating in the medium. The propagation direction is given by the wave vector
k. The study of plasma waves can be started by accounting for a small perturbation Ψ1 in the
scalar quantity Ψ expressed as Ψ = Ψ0 + Ψ1, with |Ψ1| � |Ψ0|, Ψ0 being the value of Ψ in the
quiescent medium. The perturbation Ψ1 is assumed to follow an exponential law:

Ψ1(x, t) = |Ψ1| exp [i(−ωt+ k · x)]. (1.15)
With this complex notation, equations governing the plasma can be linearized and ultimately
provide the dispersion relation (DR) ω = ω(k). This approach, known as linear analysis, is
very helpful as it predicts under which conditions a wave will exist and propagate. In the DR,
ω is complex valued and so:

ω = ωR + iγ, (1.16)
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(a)

(b)

Figure 1.10: Left column: Magnetically unshielded / typical configuration. Right column:
Magnetically shielded configuration. (a): from Mikellides et al. [2014], topology of the mag-
netic field in both configurations along with qualitative evolution of the potential and electron
temperature at the wall. (b): from Garrigues et al. [2019], 2D spatial distribution of electron
temperature (top) and iso-potential lines (bottom) for both configurations.

where ωR is the angular frequency of the wave and γ the growth rate of the wave. If γ < 0
then the wave will disappear quickly. However, if γ > 0, then the wave amplitude will grow
exponentially, hence giving rise to an instability. At some point, the assumption |Ψ1| � |Ψ0| will
break down and linear theory will not suffice to describe what happens next. Some saturation
mechanisms stemming from nonlinear effects will eventually balance the exponential growth
and a new equilibrium will be established. Describing this intricate state is very challenging
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and more advanced models such as nonlinear or quasi-linear theory are needed. For more
details about linear, non-linear and quasi-linear theory the reader can refer to the rich existing
literature [Stix, 1992; Bakunin, 2018; Jones, 2012; Kadomtsev and Shafranov, 2012; Vedenov,
1963].

In the case of HTs, the system has multiple feedback loops, such as collisions between par-
ticles or transfer of energy between the electric field and particles (wave-particle interaction)
for instance. As a result, a HT is conducive for the development of a whole range of insta-
bilities that co-exist and interact with each other. Therefore, it becomes delicate to interpret
experimental and numerical results and to identify what is going on in spite of recent progress
[Smolyakov et al., 2016]. Additionally, plasma instabilities occurring in HTs are multi-scale
phenomena in space and time. As an example, we briefly describe three existing instabilities
in a HT ranging from the kHz to the MHz scale but the reader should note that many others
can take place as well [Choueiri, 2001b].

Breathing Mode
The Breathing Mode (BM) is a low frequency (∼ 10 − 20 kHz) instability characterized by
oscillations of the ionization zone. BM can be explained by a prey-predator model, initially
proposed by Fife [1998], and later improved by Hara et al. [2014]; Barral and Ahedo [2009];
Boeuf and Garrigues [1998] that unfolds in three steps. First, the ionization zone, rich in neutral
particles, undergoes a strong ionization event. Then, since neutral supplies have been depleted,
the ionization rate plummets. Finally, thanks to the constant axial neutral flow rate, the
ionization zone is refilled with neutral particles and the process can start over. Recent findings
suggest that BM could also happen in the near anode region and be coupled all together with
the oscillations from the ionization zone [Dale and Jorns, 2019b,c]. In any case, BM is not
a desirable trait as the resulting discharge current oscillations can damage the power supply
and performances deteriorate. Some feedback controls have been proposed in the literature
[Romadanov et al., 2018; Barral and Miedzik, 2011] but additional research would likely help
control more and even prevent the rise of such oscillations.

Ion Transit Time Instability
The Ion Transit Time Instability (ITTI) has a mid-range frequency∼ 100−500 kHz and features
axial oscillations of the electric field and density. The ITTI was observed experimentally by
Esipchuk et al. [1974] and more recently with Laser Induced Fluorescence measurements on the
ion velocity distribution function [Vaudolon and Mazouffre, 2015]. Periodically, a wave of axial
electric field grows near the anode and then is convected toward the plume. During the process,
some ions gain energy from the wave and accelerate, while another population of colder ions
appears. A first model was proposed by Barral et al. [2005], but its origin remains unclear .
Recent numerical studies can be found in [Charoy, 2020, Chapter 6]. Overall, potential and
current discharge oscillations are likely to deteriorate thruster performances, which justifies
additional research efforts. Finally, the ITTI seems to interact with higher frequency azimuthal
instabilities [Charoy et al., 2021] presented in the following paragraph.

Electron Cyclotron Drift Instability
Electron Cyclotron Drift Instabilities (ECDI) or Electron Drift Instabilities (EDI) refer to
azimuthal waves propagating in the MHz range with a typical wavelength of the order of
1 mm. The corresponding dispersion relation can be obtained by assuming an electrostatic
perturbation in the electron Vlasov equation coupled with the Poisson equation in the context
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of cold ions and partially magnetized plasmas This linear analysis was initially performed for
collisionless plasma shocks [Forslund et al., 1970; Lampe et al., 1971b] and it was found the
ECDI arises from the overlapping of electron Bernstein waves (Doppler shifted by the E × B
drift velocity) and ion acoustic modes [Gary and Sanderson, 1970; Gary, 1970]. In the context
of HTs, this electrostatic wave was identified in experiments with coherent Thomson scattering
measurements [Tsikata et al., 2009; Tsikata, 2009; Tsikata et al., 2013]. Because of its inherently
3D nature [Tsikata et al., 2010], the full 3D dispersion relation should ideally be solved. Ducrocq
et al. [2006] recalls this 3D dispersion relation as:

1+k2λ2
D + g

(
ω − kyVd

Ωce

,
(
k2
x + k2

y

)
r2
L, k

2
zρ

2
)

−
k2λ2

Dω
2
pi

(ω − kxvp)2 = 0,
(1.17)

where λD is the Debye length, ωpi the ion plasma frequency, Ωce the cyclotron frequency,
Vd = Ex/By, the electron drift velocity, rL the Larmor radius of electrons, vp the velocity of the
ion beam and kx, ky and kz the axial, azimuthal and radial component of the wavenumber k.
g(Ω, X, Y ) is the Gordeev function [Gordeev G. V., 1952] that can be expressed in two ways:
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(1.18)

where Im is the modified Bessel function of the first kind and Z the plasma dispersion function.
In this relation, we usually aim to find the complex number ω = ωR + iγ defined as in Equa-
tion (1.16), given the wavenumber k that is prescribed by the local geometry. Solving ω for k
can be done with a numerical method provided by Cavalier et al. [2013] for instance. However,
it is still possible to observe the ECDI in 1D [Lafleur et al., 2016a; Janhunen et al., 2018a;
Smolyakov et al., 2020] and 2D [Adam et al., 2004a; Coche and Garrigues, 2014; Taccogna
et al., 2019; Croes et al., 2017; Héron and Adam, 2013] numerical simulations. By doing so
the original wave-vector k is artificially constrained in the dispersion relation, one component
of k being 0. [Ducrocq et al., 2006] showed that in 2D, the unstable, i.e. growing, modes were
located at multiples of the cyclotron frequency:

kθ ≈ m
Ωce

Vd
, with m = 1, 2, ... (1.19)

where kθ is the azimuthal wavenumber and Vd the electron drift velocity.
2D axial-azimuthal simulations agree with this theoretical result but surprisingly showed

a transition toward an ion acoustic wave in some cases [Boeuf and Garrigues, 2018; Charoy
et al., 2019]. Indeed, a rigorous study of the full 3D dispersion relation [Cavalier et al., 2013]
showed that this transition can occur only for a non-zero wave-vector parallel to the magnetic
field (k‖ 6= 0), which is not the case in 1D azimuthal and 2D azimuthal-axial studies. The
mechanism responsible for this transition in 2D is not clear but Lampe et al. [1971a, 1972]
suggest that an anomalous wave-particle interaction called resonance broadening could "smear
out" discrete frequencies from Equation (1.19). There is however no consensus on this matter
yet. For 1D azimuthal and 2D radial-azimuthal simulations, for which the axial direction is
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not considered, another transition was reported: an inverse energy cascade [Janhunen et al.,
2018a,b; Smolyakov et al., 2020; Taccogna et al., 2019]. In this configuration, energy from
high k-modes is transferred to low k-modes over time, but this effect is probably due to the
absence of convection of the instability into the plume [Taccogna and Garrigues, 2019]. In a 2D
radial-azimuthal setup, the inverse cascade analysis can become even more delicate to interpret
as interactions with the walls can trigger another kind of instability, the Modified-Two-Stream
Instability (MTSI) [Janhunen et al., 2018b; Villafana et al., 2021] depending on the plasma
conditions [Petronio et al., 2021]. Finally, saturation following the linear stage is assumed to
be related to ion trapping [Lafleur et al., 2016b; Lampe et al., 1971a, 1972] as it was observed
in all simulations.

The ECDI is likely to be a fundamental phenomenon of the plasma dynamics of HTs as it is
suspected to play a major role in the so-called anomalous transport presented in Section 1.3.2.
In this thesis, the ECDI was studied in a 2D axial-azimuthal (Chapter 3), 2D radial-azimuthal
(Chapter 4) and 3D setup (Chapter 5).

Anomalous transport

A recurrent research topic of HTs concerns the anomalous axial transport of electrons in the
near-exhaust channel. The classical theory states that collisions are responsible for the dis-
placement of electrons across the magnetic barrier. We can convince ourselves by considering
the simplified electron momentum equation:

∂

∂t
(meneue) +∇ · (meneueue) = −ene (E + ue ×B)−∇ ·Πe −meνmneue, (1.20)

where ne is the electron density, ue the electron velocity, νm the electron-neutral collision
frequency and Πe the pressure tensor. Assuming the flow is at steady state and isothermal and
neglecting electrons inertia, the left hand-side of Equation (1.20) can be set to 0 and ∇·Πe = 0.
In such case, the axial velocity ue,z and azimuthal velocity ue,θ can be expressed as

ue,z =
e

meνm

1 + Ωce

Ez = µclassicalEz

ue,θ =
∣∣∣∣E×B

B2

∣∣∣∣.
(1.21)

(1.22)

In Equation (1.22), we recover the fact that electrons drift azimuthally, which is the Hall
current. More importantly, Equation (1.21) indicates that the electron transport in the axial
direction should be proportional to the axial electric field with a mobility factor µclassical

µclassical =
e

meνm

1 + Ω2
H

, (1.23)

where ΩH is the Hall parameter from Equation (1.13). For a HT ΩH � 1 so the mobility can
be approximated by

µclassical ≈
1

ΩHB
. (1.24)

However this expression of the mobility is unable to explain discrepancies near the channel exit.
Indeed, as shown in Figure 1.11 experimental values are several orders of magnitude above the
theoretical results.
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Figure 1.11: Comparison of inverse Hall parameter Ω−1
H between experimental measurements

(red triangles) made by Meezan et al. [2001] and classical theory (blue circles). Picture taken
from [Boeuf, 2017].

In order to account for this anomalous mobility, the common approach is to consider a Bohm
collision frequency νB [Chen, 1974, Chapter 5] that serves as a semi-empirical law:

νB = αBΩH , (1.25)
where αB is a parameter to be fitted. However, this collision frequency does not refer to
real collisions: it is only a fitted parameter to agree with experimental data. Therefore this
topic has been actively investigated over the last two decades. Plasma wall interactions via
secondary electron emissions [Sydorenko et al., 2006; Raitses et al., 2011] or sheath instabilities
[Taccogna et al., 2009] have been considered but it seems their role remains modest [Tavant
et al., 2018]. Recently Lafleur et al. [2016a,b] demonstrated that the ECDI, described in
Section 1.3.2, was more likely to be responsible for the enhanced cross-field mobility. From
kinetic theory, they showed that an ion-electron friction force could be added in the momentum
electron Equation (1.20):

Rei = 〈δEθδne〉θx, (1.26)
where the δ symbol indicates fluctuations of the azimuthal electric field and electron density
and 〈〉θ represents the average operator over the azimuthal domain. When δEθ and δne are
in phase, which is the case in the presence of ECDI, this additional force is not zero and an
effective mobility µeff can be derived:

µeff = µclassical

(
1− Ωce

νm

〈δneδEθ〉θ
n0Ez

)
, (1.27)

where n0 is the average plasma density over the computational domain. This new force, explored
in [Charoy et al., 2020], is promising and perhaps will help us to further explain the anomalous
transport.
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1.4 Plasma modeling for HTs
Numerical simulations for HTs require to model the plasma dynamics and we shall in this
section explain the different existing approaches.

As for all plasmas, the dynamics of the species α present in the discharge (electrons, ions
and neutrals) can be described by the velocity distribution function fα(x,v, t). Physically,
fαdxdv represents the number of particles α that are located at the position x, in the volume
dx and whose velocities lie in the velocity interval dv around v at time t. Its variation dfα
in the phase space (x,v) is due to collisions whose contributions are denoted by the collision
operator Qα:

dfα = Qα, (1.28)
The variation dfα can be expressed as a total derivative using the variables t,x and v:

∂fα
∂t

+ vα · ∇xfα + aα · ∇vfα = Qα, (1.29)

where aα is the acceleration of the species α. Using second Newton’s law, the so called Boltz-
mann equation is finally obtained:

∂fα
∂t

+ vα · ∇xfα + Fα

mα

· ∇vfα = Qα, (1.30)

where F symbolizes the external forces applied at x. For a plasma, it can be reduced to the
Lorentz force:

Fα = qα (E + vα ×B) , (1.31)
where E and B are respectively the electric and magnetic fields. Both must satisfy the four
Maxwell’s equations but the problem for HTs is simpler as the magnetic field is usually assumed
to be known as generated by the solely coils although a limited self-induced B was observed
in numerical [Liang et al., 2017] and experimental work [Peterson et al., 2002]. With a static
B field satisfying ∇ · B = 0, we also have ∇ × E = 0, which means the electric field E can
be derived from a potential φ such as E = −∇φ. Therefore, the final Poisson equation in the
plasma flow reads:

ε0∆φ = −e (Zni − ne) , (1.32)
where Z is the atomic number of ions. For this work, only singly-ionized particles are considered
so Z = 1. Overall, plasma dynamics are obtained by solving the coupled system formed by
Equation (1.30) and Equation (1.32). Several strategies exist to tackle this problem and the
choice of the solving method primarily depends on the kind of plasma we are dealing with.
Indeed, as shown in Figure 1.12, it exists a wide variety of plasmas in terms of temperature and
density and their description can be obtained by other ways than the brute force resolution of
the Boltzmann equation.

A useful metric we can rely on is the Knudsen number Kn. The latter is defined as

Kn = lm
L
, (1.33)

where lm is the mean free path and L is the typical dimension of the plasma box. The mean
free path is defined as the typical length for which a particle undergoes a collision. At low
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Figure 1.12: Classification of plasmas according to their electron density and temperature
[Bittencourt, 2004, Chapter 1], [Lieberman and Lichtenberg, 2005, Chapter 1]. HT’s plasmas
are low pressure glowing discharges highlighted in red occurring at a rather cold temperature.

density, for Kn ' 0.01, collisions are scarce and the plasma can be treated as a collection
of particles that can be tracked by second Newton’s law. Thus, the phase space (x,v) is
discretized by numerical particles. This first approach refers to the Particle-In-Cell (PIC)
methods, usually combined with a Monte Carlo module to model collisions. When the plasma
density is higher, for Kn � 0.01, collisions occur more often and the plasma can be considered
as a continuum. For this kind of scenario a fluid model is well-suited [Chen, 1974, Chapter 3].
With such an approach, the plasma is described with quantities integrated from the velocity
distribution function f such as the density n, the Eulerian velocity u or temperature T . With
this strategy, one can recover a system close to the Navier-Stokes equations as it will be discussed
in Section 2.1.2. However, for some plasmas, there are phenomena that cannot be explained by
a fluid approach. These phenomena such as Landau damping are called kinetic effects [Chen,
1974, Chapter 7] and can only be predicted if we allow a non-Maxwellian velocity distribution
function f . In this case, directly solving the Boltzmann equation with a Direct Kinetic (DK)
method is necessary. Note that if the density remains reasonable, the PIC technique can also
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capture kinetic effects and so it is also applicable.
In the particular case of HTs, the Knudsen number Kn is rather low ∼ 0.01− 0.1, halfway

between a free molecular flow regime and a continuous medium. Therefore, all three modelings
or combinations of them, giving rise to hybrid models, can be used a priori. However, due
to their respective limitations, they serve different purposes as it will be seen in the following
sections.

1.4.1 Fluid models
A fluid model is obtained by considering integrated quantities extracted from the velocity
distribution function. First, Equation (1.30) is multiplied by a generic function Ψ(x, t) that
can be scalar- or vector-valued. Then, an integration over the velocity space leads to the
following equation:

˚
v

∂fα
∂t

Ψdv +
˚

v
vα · ∇xfαΨdv +

˚
v

Fα

mα

· ∇vfαΨdv =
˚

v
QαΨdv (1.34)

The averaged quantities
˝

v fαΨdv corresponds to the moments of the original distribution
function. The first three moments are respectively obtained for Ψ = 1, Ψ = mαv and Ψ = mα

2 v2.
The integration remains however difficult to conduct in the general case and is highly dependent
on the shape of the velocity distribution function f . Assuming the plasma flow is at thermal
equilibrium, f becomes a Gaussian function also called Maxwellian distribution,

fα = nα
(
√
πvth)3 exp

{(
−v2

vth

)}
(1.35)

where vth =
√

2kBTα
mα

is the thermal velocity of species α and nα its number density. Under this
assumption, the integration can be carried out and in the example of the zeroth moment order,
Ψ = 1, this leads to

˚
v

∂fα
∂t

dv +
˚

v
vα · ∇xfαdv +

˚
v

Fα

mα

· ∇vfαdv =
˚

v
Qαdv

=⇒∂nα
∂t

+∇x(uαnα) +0 =Sioniz,α,
(1.36)

which is the conservation of mass (or equivalently number density) with nα =
˝

v fαdv and
uα = 1

nα

˝
v fαvαdv the number density and hydrodynamic velocity of species α. Sioniz,α is

the net number of particles created by ionization and its precise expression needs additional
assumptions that were proposed by Benilov [1996]; Le and Cambier [2016]. With the same
procedure, Ψ = mαv and Ψ = mα

2 v2 respectively leads to the momentum conservation equation
and the energy conservation equation for species α. Therefore, one ends up with a multi-fluid
model in which each species α is described with a set of equations mass, momentum and
energy. These sets are coupled with collision source terms which needs to be clarified under
several additional assumptions [Benilov, 1996; Le and Cambier, 2016]. Besides, each k moment
equation involves a term with the k + 1 moment. For instance, in Equation (1.36) the mass
conservation equation requires to know the mean velocity u given by the momentum equation,
the first moment of the distribution function. Therefore, the system must be equipped with
some closure terms in the energy equation to limit the model to three equations.
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Unfortunately, this is a difficult exercise as classical closure terms such as the perfect gas law
or the Fourier law are not necessarily valid for low pressure plasmas. As of today, there is still no
consensus on which closure terms should be used and their modeling has been investigated by
the means of theoretical studies [Graille et al., 2009; Hagelaar, 2015; Ahedo and De Pablo, 2007],
[Ferziger and Kaper, 1973, Chapter 6] or using numerical measurements from PIC simulations
[Boccelli et al., 2020; Joncquieres et al., 2018]. Among the most sophisticated models for
HTs,Joncquieres et al. [2020] derived a 10-moment fluid model: one for continuity, three for
each velocity component and one for energy, for both ions and electrons [Joncquieres et al.,
2020]. Yet, this approach can be numerically costly and is highly constrained by the CFL
number in the sheath, which requires a fine discetization [Joncquieres et al., 2018]. Therefore,
it is common to consider less moments, by limiting to 2 dimensions in space, get rid of the
Poisson equation and assume a quasi neutral plasma everywhere in the simulation domain, and
neglecting electron inertia terms in the momentum equation. Under these assumptions, one
obtains a so-called Drift-diffusion fluid model, and the electric field is obtained directly by a
Navier Stokes-like set of equations [Hagelaar et al., 2002; Barral and Ahedo, 2009]. Simple 1D
models are also possible [Ahedo et al., 2001, 2003] to separately simulate the axial and radial
directions. With such approximations, the sheath, where quasi-neutrality is not satisfied, is
modeled with a dedicated add-on. Besides, all non-linear effects stemming from the electron
inertia terms are lost. On that latter point recent works proposed new numerical schemes
accounting for the inertia term and improved the transition toward the sheath model [Alvarez-
Laguna et al., 2020; Laguna et al., 2020]. With a simplified 1D or 2D fluid model, the simulations
can be fairly fast, and can provide a rough approximation of some characteristics of HTs such as
the discharge current or the thrust. Thus, this approach is useful for industry but has limited
prediction capabilities.

In addition, deriving a fluid model with the assumption that the velocity distribution func-
tion is Maxwellian eliminates most kinetic effects, which induce important deviations from a
Maxwellian. Indeed, it was shown in the literature that both electrons and ions can follow non-
Maxwellian velocity distribution functions [Morozov and Savelyev, 2000, Chapter 1], [Goebel
and Katz, 2008, Chapter 4] and [Boeuf and Garrigues, 2018]. Observed anomalous electron
transport in the axial direction [Meezan et al., 2001] could not be explained by classical theory.
Instead, fluid models had to rely on an empirical model using a Bohm collision frequency νB
[Fife, 1998; Joncquieres, 2019], [Chen, 1974, Chapter 5]. Yet, it seems that the anomalous
transport is more likely due to the ECDI creating an additional force [Charoy et al., 2020] that
can only grow when kinetic effects are present [Lafleur et al., 2016a,b].

In order to understand better and model those kinetic effects, Particle-In-Cell simulations
can be used as numerical experiments.

1.4.2 Particle-In-Cell technique
As already mentioned, the Particle-In-Cell (PIC) technique solves the Boltzmann equation
by discretizing the phase space (x,v) with numerical particles that collide with each other
following a Monte Carlo procedure. It is usually combined with a fixed mesh on which particle
charges are interpolated with a Cloud-In-Cell method in order to solve the Poisson equation
[Birdsall and Langdon, 2004]. Because no approximation is made on the Boltzmann equation,
it is accurate and thus, captures all kinetic effects missing in fluid models. Besides, it is robust
given that it satisfies conditions that will be presented in Equations (2.5) and (2.6). Finally, the
Lagrangian module of PIC codes, handling transport, collision and interpolation of charges on
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the grid is easily scalable on supercomputers. Nevertheless the same stability conditions stated
in Equations (2.5) and (2.6) along with important memory requirements in order to account
for millions of numerical particles make these simulations limited to a few tens of microseconds
in a reduced simulation domain. Therefore, they are unable to capture long range and large
scale phenomena such as spokes or breathing modes without numerical tricks.

As a result, PIC codes are mainly used in academic configurations over a short time range in
order to get physical insights and reliable numerical data to build future fluid models. A good
example of how PIC simulations are useful is plasma-wall interactions. Indeed, most boundary
conditions are usually straightforward to model in this formalism (see Section 2.5), which
allows a detailed study of sheath structures forming at the walls. Thanks to these numerical
experiments, Joncquieres et al. [2018] was able to adjust the sheath model for metallic walls
in his 10-moment fluid solver. With a similar methodology, Tavant et al. [2019] could derive
a non isothermal sheath model following a polytropic law Ten

1−γ
e , where γ is the polytropic

index. Plasma-wall interactions continue to be investigated and the simplest way to do it is to
consider 1D-radial simulations [Domínguez-Vázquez et al., 2019; Ahedo and De Pablo, 2007;
Taccogna et al., 2007]. In particular it was shown that the sheath structure was very sensitive
to the direction of local magnetic field lines [Ahedo, 1997; Chodura, 1982; Moritz et al., 2019]
and could also be the place of oscillations due to strong Secondary Electron Emissions (SEE)
[Sydorenko et al., 2009; Taccogna et al., 2005]. The latter behavior was also retrieved in a
2D radial-azimuthal configuration by Tavant et al. [2018]; Croes [2017]. Besides, a 2D radial-
azimuthal setup can capture multidimensional effects such as the ECDI [Croes et al., 2017;
Héron and Adam, 2013] and sometimes the MTSI [Janhunen et al., 2018b; Villafana et al.,
2021; Petronio et al., 2021]. This configuration will be considered in Chapter 4.

As mentioned in Section 1.4.1, the ECDI probably plays an important role in the anomalous
electron transport [Lafleur et al., 2016a,b] and so the axial direction can be accurately described
only if the azimuthal direction is considered as well. Therefore, 2D axial-azimuthal simulations
have been extremely popular over the last years [Adam et al., 2004b; Lafleur and Chabert,
2017; Boeuf and Garrigues, 2018; Charoy et al., 2019; Coche and Garrigues, 2014; Taccogna
et al., 2019], which helped to derive a new additional force for fluid models [Charoy et al.,
2020; Lafleur et al., 2016b]. A particular attention will be paid on the axial-azimuthal plane in
Chapter 3.

In a 2D radial-axial setup, the axial electron transport would then be probably underes-
timated but it can still provide grounds to develop new models for cathodes and account for
geometrical effects when the plasma flow exits the channel to go into the plume [Szabo, 2001;
Cho et al., 2016]. Furthermore, this plane has to be considered for more realistic comparisons
with experimental data [Cho et al., 2015, 2013, 2014; Yokota et al., 2006].

The ideal solution would be to consider 3D simulations that are the only ones which can
fully capture the highly coupled multidimensional physics of HTs. Unfortunately, as previously
mentioned they become extremely costly and so only a few 3D PIC simulations have been
carried out thanks to some necessary simplifications. They either relaxed time and spatial
constraints from Equations (2.5) and (2.6) by using artificial small mass ion or large permittivity
[Hirakawa and Arakawa, 1995, 1996], or they considered miniaturized HTs by using scaling
factors [Taccogna and Minelli, 2018; Minelli and Taccogna, 2017]. Recent progress on a 3D
configuration will be reported in Chapter 5.

If PIC simulations remain accurate and reliable, they nevertheless require a substantial
amount of numerical particles [Charoy et al., 2019; Villafana et al., 2021]. Even though they
do have enough numerical particles to discretize the phase space (x,v), they still suffer from
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statistical noise that is inherent from the method itself.
One way to address this drawback is to consider hybrid or Direct Kinetic simulations.

1.4.3 Hybrid and Direct Kinetic (DK) methods
Hybrid methods consist in combining both fluid and PIC modeling to get the best of them.
Because the time step is constrained by fast and light electrons, it is commonplace to model
them as a fluid following a near Maxwellian velocity distribution function while heavy species
such as ions and neutrals are tracked with the PIC technique. With the exception of [Lam et al.,
2015], this approach has been mainly used in radial-axial configurations. In particular, we can
cite HPHall, which is perhaps the closest industrial, COTS-level ( Commercial off-the-shelf)
numerical tool available today. HPHall is based and numerical and semi-empirical parameters
and was initially developed by Fife [1998] at MIT in the 90’s and later upgraded by Parra et al.
[2006]; Hofer et al. [2007] with a HPHall-2 version. Since then, it has inspired many other
codes in the literature [Vazquez, 2019; Bareilles et al., 2004; Koo, 2005; Brieda, 2012; Panelli
et al., 2021]. In the radial-axial plane, the axisymmetric assumption is usually made, i.e.,
the solution is assumed independent of the angle θ. This allows to reduce the computational
domain to 2D with the rotation axis taken as a boundary. Besides, the mesh is aligned with the
imposed magnetic field lines to simplify electron fluid equations, although it may dramatically
complicate the final mesh [Araki and Wirz, 2014]. HPHall, and other similar codes, are able
to simulate up to around a millisecond in a reasonable time and to retrieve the main outputs
of HTs that fairly agree with experimental data. Thus, it allows for quick parametric study for
the industry. However, there are some limitations with such hybrid approach. For instance,
all deviations from the electron Maxwellian distribution, that do exist at the walls, cannot be
accurately predicted. Besides, since the azimuthal direction is averaged, all phenomena such
as instabilities (ECDI, Spokes for instance), occurring in this direction cannot be accounted
for. The use of semi-empirical parameters can mitigate these effects, but can also represent a
limitation for the development of new thrusters for which they must be updated.

Finally, the last existing approach to model HTs is Direct Kinetic method. In contrast
to previous hybrid simulations, DK models get entirely rid of the persistent statistical noise
due to PIC method. Thus, Hara [2015] proposed a 2D DK code in the axial-azimuthal plane
that was able to capture kinetic effects similarly to purely PIC simulations. Later Raisanen
[2020] enriched this model by considering the radial axial direction including innovative sheath
models but with electrons considered as a fluid. One limitation from DK simulations remains
their cost as for each point of the grid, the phase space of the three velocities must be solved,
which represents three more grids to solve simultaneously. As a result, only limited results
regarding DK models are available as of today.

1.4.4 Summary
Purely fluid models remain the fastest approach, especially if quasi-neutrality is assumed be-
cause it avoids solving the costly Poisson equation. Besides the numerical cost will be strictly
proportional to the number of points in the grid. The price to pay for speedup will be the loss
of important kinetic effects.

Correction of fluid models can be achieved with the help of kinetic simulations such as PIC
or DK, that serve as numerical experiments, or by using hybrid PIC-fluid or DK-fluid models.
As of today, there is no consensus on which hybrid model is the best but they remain the most
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pragmatic approach to get fairly good predictive results to test and design HTs.
If kinetic effects must be taken into account, fully PIC or DK codes are best suited with

the price of costly numerical simulations. Besides, PIC codes need to deal with statistical noise
while DK codes are confronted with more complex boundary conditions models.

For a more comprehensive overview of Hall thruster modeling, the reader can refer to [Boeuf,
2017; Hara, 2019; Taccogna and Garrigues, 2019; Kaganovich et al., 2020].

1.5 Objective and scope of this PhD thesis
In the near future HTs will be widely used and in spite of an apparent simplicity, there are still
many challenges to overcome. In particular, the recent findings on the anomalous transport
proved that kinetic effects were absolutely crucial to have an accurate description of the plasma
physics. The study of kinetic phenomena and plasma instabilities is usually performed using
PIC approaches as they are fairly easy to implement and robust. However, because of a consid-
erable computational cost, these numerical investigations are led in 1D or 2D academic setups.
As we have seen in the literature, this approach has definitely provided many insights and has
advanced our understanding of HTs but future research needs are arising. Indeed, Cartesian
configurations cannot reproduce industrial geometries of real HTs so predictive numerical tools
are still out of reach. Furthermore, the physics of HTs is inherently 3D so 1D or 2D configu-
rations inevitably modify the plasma dynamics, which was noticed for plasma instabilities for
instance. Therefore this PhD thesis aims to start addressing these shortcomings and advance
the numerical modeling of HTs and low temperature plasmas.

Sponsored by Safran, this PhD was led at the European Center for Advanced Research and
Training in Scientific Computing ( CERFACS in French) and numerical investigations were
performed using a massively parallel PIC code, AVIP. As it will be explained in Chapter 2, the
development of AVIP was initiated in 2015 and comes in two versions: PIC and full fluid. The
first goal of the PhD was to demonstrate the capability of AVIP PIC to describe accurately
the plasma dynamics using an unstructured grid formulation. The use of unstructured grids
is innovative in our community because it dramatically complicates the code implementation.
As of today, all other existing codes rely on either Cartesian or Cylindrical meshes. In order
to eliminate possible implementation errors, AVIP-PIC was carefully verified in 2D standard
axial-azimuthal and radial-azimuthal setups with the successful participation of CERFACS
in international benchmarks. Results are shown and discussed in Chapter 3 and Chapter 4.
During this work, new features regarding cathode models and plasma-wall interactions were
implemented as well, in particular, a model for secondary electron emissions is now available.
Besides, it is now possible to model a dielectric layer in the context of an unstructured frame-
work. Additionally, a substantial effort was made on accelerating simulations by using advanced
methods for solving the Poisson equation (see Chapter 2 and Chapter 5) and by tuning an ac-
tive particle control algorithm (see Section 3.3). A final goal for this PhD has been to advance
on more realistic configurations by considering 3D setups. The main physical and numerical
aspects of these 3D simulations are discussed in Chapter 5.
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Chapter 2

AVIP PIC: code presentation and
development

Particle-In-Cell (PIC) codes are a convenient tool to study low temperature and
low pressure plasmas in Hall Thrusters (HTs). They are quite straightforward to
implement and can describe important kinetic effects present affecting the physics.
However, current codes in the literature are all based on structured grids using ei-
ther a Cartesian [Croes, 2017; Sydorenko, 2006; Minelli and Taccogna, 2017] or a
Cylindrical/axisymmetric [Vazquez, 2019] coordinate system. This choice is made
because the implementation of the code remains simple. Furthermore, because of the
important numerical cost of PIC simulations, the latter are, in their vast majority,
focused on 1D and 2D configurations. To our knowledge, only Taccogna and Minelli
[2018]; Minelli and Taccogna [2017] a few years ago and Hirakawa and Arakawa
[1995, 1996] in the 90’s attempted to perform 3D simulations. In this Chapter, an
innovative PIC solver, AVIP PIC is presented. Its main strength relies on its ca-
pability to deal with unstructured meshes in both 2D and 3D configurations. All
required modules to model collisions or plasma wall interactions have been devel-
oped in this context and open the path to handle more complex geometries than
Cartesian and Cylindrical. Numerical concepts and the subsequent implementations
are detailed in this Chapter. The performances of the solver are finally analyzed
and discussed on a more realistic 3D case.
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2.1 Overview of AVIP

2.1.1 A powerful tool derived from AVBP
Historically, AVIP was built from an AVBP fork made in 2015. AVBP is a home made code
developed at CERFACS which aims to solve the Navier-Stokes equations for multi-species
compressible reactive flows using unstructured and hybrid meshes in 3D. Since its creation in
1997, it has successfully been applied in the domain of combustion [Schonfeld and Rudgyard,
1999; Esclapez et al., 2021; Malé et al., 2021] and aerodynamics [Queguineur et al., 2019] for
both academic and industrial geometries. It is designed to be portable on a variety of hardware
architectures and has demonstrated excellent computing performances [Gicquel et al., 2011].
It is written in Fortran90 and is parallelized with the Message Passing Interface 1 (MPI-1).
Domain decomposition is achieved with the external PARMETIS library [Karypis and Kumar,
2009].

Therefore, AVIP benefits from AVBP features and aims to carry out cold plasma simulations
in 3D using unstructured meshes. The latter point is a substantial characteristic since existing
plasma codes usually rely on 1D or 2D structured meshes using either a Cartesian [Sydorenko,
2006; Charoy, 2020] or sometimes a Cylindrical/axisymmetric [Vazquez, 2019] coordinates sys-
tem. To my knowledge, only [Zakari, 2013] used unstructured grids in 2D axisymmetric con-
figurations only.

2.1.2 AVIP for plasma simulations
AVIP fluid

Since AVBP was initially developed for solving Navier-Stokes equations, a natural approach
for AVIP is to model the plasma as a fluid. As mentioned in Section 1.4.1 plasma fluid models
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are derived from the Boltzmann equation assuming the velocity distribution function is close
to a Maxwellian. Then it is possible to integrate the Boltzmann equation with the moments
corresponding to the mass, momentum and energy. At CERFACS, Joncquieres et al. [2020]
performed such work and was able to get a 10-moments system for electrons and ions, including
innovative boundary conditions [Joncquieres et al., 2018]. This is a multi-species fluid model
i.e. each species dynamics is governed by an Euler-like set of equations. For each species α (e
for electron or i for ion) the set breaks down as follow,

∂tnα +∇ · (nαuα) = S0
α

∂t (nαuα) +∇ ·
(
nαuα ⊗ uα + kBTαnαĪ

)
= qαnα (E + uα ×B) + S1

α

∂t (εα) +∇ ·
((

1
2nαu

2
α + γ

γ−1kBTαnα
)
· uα

)
= qαnαE · uα + S2

α

(2.1)

In Equation (2.1) each line respectively describes the conservation of mass, momentum
and energy of the species α. n is the density, u the hydrodynamic velocity, q the species
Coulombian charge, E the electric field, B the magnetic field, T the temperature, kB the
Boltzmann constant and γ = 5/3 the heat capacity ratio. The total energy per unit mass is
denoted by εα = nα (3/2kBTα + u2

α/2). The S0
α,S1

α, S
2
α terms represent the collisions accounted

for in this model. Further details about them can be found in [Joncquieres, 2019]. The treatment
of neutral particles is simplified as it is assumed they keep a constant energy and velocity. So
only the continuity equation is retained,

∂tnn +∇ · (u0,nnn) = S0
n (2.2)

where u0,n is a constant vector.
Because it is very challenging to solve Equations (2.1) and (2.2) at once in addition to Gauss

law Equation (1.32) for the electric field, the computation is split into three steps as shown in
Figure 2.1.

In a first step, the electric field is obtained from the Gauss law. The numerical method will be
detailed in Section 2.3.3. In a second step, an implicit solver is used to compute the collisions
terms S0

α,S1
α, S

2
α. Finally, we can use the two first steps as inputs to solve Equations (2.1)

and (2.2). The latter are extremely similar to the Euler equations, and so it is possible to
adjust existing numerical techniques in AVBP to integrate the final system.

AVIP PIC

AVIP PIC is an explicit PIC (Particle-In-Cell) code that was developed as an alternative to
AVIP fluid for performing plasma simulations. In this approach, ions, electrons and neutrals
are modeled as point particles described by their position x and velocity v. Thus, the phase
space (x,v) is discretized and we follow the motion of each individual particle α with Newton’s
second law,

mα∂t(vα) = qα (E + vα ×B) . (2.3)
Similarly to AVIP fluid, the electric field E is obtained from the Poisson’s equation (1.32)
and the magnetic field B is an input of the simulation. Note that the hydrodynamic velocity
uα is related to the particles velocities vα by nαuα =

´
(fαvαdα), where fα is the velocity
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Initialization

Compute electric field

Obtain collisional source terms
with implicit solver

Solve Euler equations

E

S0
α,S1

α, S
2
α

tn+1 = tn + ∆ttn+1 = tn + ∆t

Figure 2.1: Splitting operators for fluid resolution

distribution function. In practice, the number of point particles to follow is too high. Indeed,
in HTs, the plasma density is usually ∼ 1017 − 1018m−3 and the volume occupied by the near
plume and channel are at least > 100 cm3. So the number of physical particles to track down
over a relevant time range would be over 10 billion for one species, which greatly exceeds current
computational capabilities. As a result, physical particles for one species (electron, ion, neutral)
are packed in macroparticles. Every macroparticle has a statistical weight qf defined as

qf,α = np,αVc
Nppc

(2.4)

where np,α is the species density, Vc the volume of a cell and Nppc the number of macroparticles
in the current cell. Thus, one macroparticle contains qf physical particles. For the sake of
simplicity, a macroparticle will be named as a particle in the following. Moreover electrons,
ions and neutrals will respectively denoted by the e, i and n subscripts.

When appropriately used (see section 2.2.1), PIC simulations are precise because they cap-
ture the whole physics from the Boltzmann equation, including kinetic effects that are implic-
itly omitted in fluid models. Thus, in spite of being computationally costly, they can guide the
derivation of new fluid models. An example of using PIC measurements to develop AVIP fluid
can be found in [Joncquieres et al., 2018].

2.2 Numerical implementation

2.2.1 Concept and preliminaries
AVIP PIC follows a standard approach that is depicted in Section 2.2.1. During each iteration
of the calculation, the following modules are activated successively:

1. At the beginning of each iteration, we start by calculating binary collisions between
particles. This is done by an optimized Monte Carlo algorithm. Further details are
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provided in Section 2.2.3

2. Then charged particles are interpolated onto the meshgrid in order to compute the right
hand side of Poisson’s equation −e (ni − ne) /ε0 (see Section 2.3.2).

3. Poisson’s equation is solved by a linear solver whose implementation is detailed in Sec-
tion 2.3

4. The electric field E is interpolated back to every particle

5. Particles’ velocities and positions are updated using the equations of motion (see Sec-
tion 2.4)

6. Finally boundary conditions for particles are applied (see Section 2.5)

Following earlier recommendations [Birdsall, 1991] on accuracy and stability, the PIC sim-
ulation must meet constraints on temporal and spatial discretization (∆t, ∆x) formulated as

{
ωp,e∆t < 0.2
∆x < 0.5λD

(2.5)
(2.6)

where λD =
√

ε0kBTe
nee2

denotes the Debye length and ωp,e =
√

nee2

meε0
the plasma frequency. Here, ε0

is the vacuum permittivity, kB the Boltzmann constant, ne the electron density, e the elementary
charge and me the electron mass. The spatial resolution ∆x can be defined as ∆x = V 1/nd

c

where nd is the dimension of the mesh.
In Equation (2.5), the plasma frequency refers to oscillations of electrons around immobile

ions. Thus, the time step ∆t is chosen such that even the highest frequency phenomena are
well discretized.

Equation (2.6) indicates the spatial discretization should capture at least two Debye lengths
λD. As a reminder, the Debye length is the typical length above which screening of the electric
field occurs. For a typical HT, we obtain ∆t ∼ 0.1−1 ps and ∆x ∼ 50 µm. These are challenging
requirements for HT simulations given the typical dimensions of a thruster (a few centimeters)
and the physical times to be simulated (a few tens of microseconds)

A third condition concerns the number of macroparticles and plays a key role in the accuracy
of PIC simulations. Since they represent groups of particles they inevitably induce numerical
discretization errors of the phase space. The error becomes negligible when enough particles per
Debye sphere are present [Okuda and Birdsall, 1970] but usually the number of particles per cell
Nppc is used instead. indeed, as reported by Birdsall [1991], when the number of macroparticles
becomes too low, numerical heating arises as the Debye shielding effect is not well described.
This results in creating artificial and supplementary collisions between particles. Above a
certain Nppc threshold, using more macroparticles would not change the results significantly
and any differences would be due solely to numerical noise inherent to PIC simulations. It
is difficult to define precisely when results do not vary "significantly", but in 1D it seems a
couple of thousands of particles are necessary [Janhunen et al., 2018a] while in 2D around 200
particles is likely to be enough in axial-azimuthal configurations [Charoy et al., 2019] and in
radial-azimuthal setups (see chapter 4).

A specificity of AVIP PIC is that it can handle only 2D and 3D unstructured meshes. Cells
can be either rectangles/triangles in 2D and quadrilaterals/tetrahedrons in 3D. The mesh is
either generated by the home made package hip or the CENTAUR software [Borras et al., 1988].
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Since the physics of HTs is intrinsically 3D [Tsikata et al., 2010] and velocities are coupled by the
Lorentz force, it is necessary to account for the three velocity components even when the mesh
is 2D. In practice, all three (vx,vy,vz) velocities components are updated using the equations
of motion (see Section 2.4.1), but the actual displacement of the particle in the 2D domain only
rely on the in-plane velocities. AVIP is capable of handling such a 2D3V model: illustrations
will be provided in Chapters 3 and 4.

1©
Collisions

2©
Particles
weighting

3©
Poisson
equation

4©
Field

weighting

5©
Particles

displacement

6©
Boundary ∆t

Figure 2.2: PIC cycle executed at every iteration in AVIP PIC
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2.2.2 Initialization
AVIP PIC typically starts the simulation by setting a uniform density in the whole domain at
thermal equilibrium. Thus, particles are spread uniformly in each cell of the domain. In an
unstructured grid, this operation is not trivial because cells/elements can have different shapes.
The standard procedure consists in performing iso-parametric transformations that are widely
used in finite element methods [Auffray, 2007]. Figure 2.3 shows an example of how uniform
distribution of particles is achieved in a tetrahedron element.

ξ

ζ

η

A B

D

C

Figure 2.3: Iso-parametric coordinate system (ξ, η, ζ) in a tetrahedron

For each element, one can define a local coordinate system (ξ, η, ζ) where the locations of
vertices are summarized in Table 2.1.

Vertex ξ η ζ

A 0 0 0
B 1 0 0
C 0 1 0
D 0 0 1

Table 2.1: Local vertices coordinates in a tetrahedron. Point A is the origin.

With this choice, any particle P (xξ, xη, xζ) belonging to the cell can be obtained by a linear
combination

AP = xξAB + xηAC + xζAD, (2.7)
where xξ, xη, xζ are real numbers between 0 and 1. Since we assume particles are uniformly
distributed we can define the first coordinate,

xξ = R1 (2.8)

where R1 is a random number between 0 and 1. However, it exists constraints on xη and
xζ because the cell is tetrahedral and not cubic. Thus, for the second coordinate, we place
ourselves in the (ξ,η) plane and we notice we must be below the straight line whose equation
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is given by η = −ξ + 1. Mathematically this can be formulated as

0 ≤ xη ≤ −xξ + 1
=⇒0 ≤ xη ≤ 1−R1, from Equation (2.8)
=⇒xη = R2(1−R1)

(2.9)

where R2 is a random number between 0 and 1. Finally for the last coordinate we consider the
(BCD) plane. We observe the particle P must lie between A and this plane whose equation is
(ζ + η + ξ − 1 = 0). Thus we infer,

0 ≤ xζ ≤ 1− xη − xξ
=⇒0 ≤ xη ≤ 1−R1 −R2(1−R1) + 1, from Equation (2.9)
=⇒xη = R3 (−R1 −R2(1−R1)) + 1

(2.10)

where R3 is a random number between 0 and 1. As a final step, we must express the coordinates
of P in the canonic coordinate system of domain (O,x,y, z) using A (xA, yA, zA), B (xB, yB, zB),
C (xC , yC , zC) and D (xD, yD, zD). Thus, we are looking for OP and from linear algebra we can
write

OP = OA + AP
⇐⇒ OP = OA + xξAB + xηAC + xξAD, from Equation (2.7)
⇐⇒ OP = (1− xξ − xη − xζ)OA + xξOB + xηOC + xξOD

(2.11)

Substituting Equations (2.8) to (2.10) into Equation (2.11), we obtain the Cartesian coordinates
of P in the current cell with random numbers. In AVIP random numbers are obtained by the
built-in Fortan90 function RANDOM_NUMBER. The seed of the Random Number Generator is
hardcoded so that PIC runs are deterministic which greatly helps for debugging. The same
procedure can be implemented for any polygons in 2D and 3D.

In addition to their positions, particles are assigned velocities that are sampled from a
Maxwellian since we are at thermal equilibrium. Sampling directly the velocity components
vx, vy, vz cannot be done directly with an analytical formula. However, it is possible to generate
them thanks to the Box and Muller [1958] method. In the case of a Maxwellian presented in
Equation (1.35) this results in [Hagelaar, 2008]

vx = vth
√
− logR1 cos (2πR2)

vy = vth
√
− logR1 sin (2πR2)

vz = vth
√
− logR3 cos (2πR4)

(2.12)

where R1, R2, R3, R4 are random numbers between 0 and 1 and vth =
√

2kBTα
mα

is the thermal
velocity of species α.

2.2.3 Monte Carlo collisions
At the beginning of each iteration, AVIP PIC models collisions with the Monte Carlo technique.
Collisions are binary and only some processes involving neutral particles are considered. Indeed,
in HTs, neutral particles are much more numerous than charged particles in the discharge
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Name Threshold Collision

Electrons

Elastic scattering 0 eV e− + Xe→ e− + Xe
First excitation 8.315 eV e− + Xe→ e− + Xe∗

First ionization 12.13 eV e− + Xe→ e− + Xe+ + e−

Ions

Elastic scattering 0 eV Xe+ + Xe→ Xe+ + Xe
Charge exchange 0 eV Xe+ + Xe→ Xe + Xe+

Table 2.2: Existing collisions in AVIP PIC.

channel where the density is the highest [Goebel and Katz, 2008]. Therefore, ion-ion, electron-
electron and electron-ion collisions are less likely to happen and discarded in AVIP. Table 2.2
sums up the different collisions implemented in AVIP PIC.

The Monte Carlo method needs cross section data that are provided by the LXCat database
[2010; 2016]. With a classical Monte Carlo method, for each pair of particles that may collide,
the total collision frequency νT is computed as

νT = ntσT (Ep)vp (2.13)

where Ep is the kinetic energy of the incident particle (ion or electron), nt the local density
associated with the target particle (neutral) and vp is the relative velocity between the incident
and target particles. σT is the total cross section of all possible collisions i.e. the sum of all
cross sections. From Equation (2.13), the total probability to have a collision during the time
step ∆t for the current incident particle is then given by

PT = 1− exp{(−∆tνT )}. (2.14)

A random number R1 between 0 and 1 is then compared to PT . If R1 < PT , then a collision
occurs and another random number R2 determines which collision is chosen. This process is
unfortunately very long with a large number of particles because it requires to compute kinetic
energies of all particles and look up for the total cross section at every iteration whereas a
significant portion of incident particles will not collide at all. As a consequence, the Monte
Carlo algorithm is optimized with a variant named the null collision method from Vahedi and
Surendra [1995]. Instead of computing each time νT , we calculate beforehand the maximum
possible total collision frequency regardless of the incident energy of the particle:

νm = nt max
Ep

(σT (Ep)vp). (2.15)

Therefore, the total collision frequency is only computed once for the whole simulation and
costly look-up operations are avoided. Note that now νm only depends on the local target
(neutral) density nt, whereas Vahedi et al. recommended to also find the maximum nt across
the simulation domain. By doing so, we avoid using costly collective MPI communications.
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This modification does not affect the accuracy of the algorithm as it will be demonstrated in
Section 3.3.2. From Equation (2.15), we infer the maximum collision probability expressed as

Pm = 1− exp{(−νm∆t)} (2.16)

Thus, the number Nm of particles that have a chance to collide is Nm = PmNp where Np is the
number of incident particles. Therefore only a fraction of incident particles has to be tested.
Following Mertmann et al. [2011], this is achieved by drawing a random number R3 and if
R3 < Pm then a collision may happen. A second random number R4 then decides which kind
of collision is selected with the following process:

if R4 <
ν1

νm
, then collision 1 is selected

if ν1

νm
< R4 <

ν1 + ν2

νm
, then collision 2 is selected

...

if
N−1∑
j=1

νj
νm

< R4 <
N∑
j=1

νj
νm
, then collision N is selected

if
N∑
j=1

νj
νm

< R4, then the null collision is selected

(2.17)

where νj is the collision frequency associated with the jth kind of collision. As shown in Fig-
ure 2.4, Equation (2.16) implicitly introduces a fictive collision of frequency ν0 for which nothing
happens: the null collision that originally gave the name of the method. In Equation (2.17),
the null collision corresponds to the (N + 1)-th collision.

νm

Ec =
1

2
mv

2

ν1

ν1 + ν2

νT =ν1 + ν2 + . . .

· · ·+ νN

ν0

}





























ν2

Ep

ν

Figure 2.4: Null collision method
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2.3 Poisson’s equation

2.3.1 Finite volume method
Poisson’s equation is treated with a finite volume method, i.e. Equation (1.32) is integrated
over a control volume VFV as shown belowˆ

VFV

ε0∆φdV =
ˆ
VFV

−e (ni − ne) dV (2.18)

Then, with the Green-Ostrogradski theorem, we obtain the fluxes exiting the control volume,˛
∂VFV

ε0∇φ · dS =
ˆ
VFV

−e (ni − ne) dV (2.19)

where dS is an orthogonal vector to the surface of the control volume. The goal is to express
fluxes on the left hand side and to discretize them. A final linear system is obtained as shown
in Equation (2.20).

˛
∂VFV

ε0∇φ · dS =
ˆ
VFV

−e (ni − ne) dV ⇐⇒ AX = B (2.20)

where A contains the discretization of the Laplacian operator while B contains the net charge
deposition onto the grid. X is the vector containing the potential and it is accessed by inverting
the system with specialized solvers such as PETSc or MAPHYS (see Section 2.3.5).

It exists several choices for the control volume VFV as shown in Figure 2.5.

Control volume VFV Interpolated data

Cell centered Node centered

Figure 2.5: Different possible finite volume implementations

• Cell centered: the control volumes are the cells of the mesh and interpolated data such
as density and potential are at the center of the cells. This is a natural formulation for
finite volume methods in the domain of CFD [Crumpton, 1995] and low temperature
plasma modeling [Tavant, 2019; Sydorenko, 2006]. However, this strategy has two draw-
backs for AVIP. First, the computation of fluxes exiting the control volume can be difficult
because the current domain partitioning relies on the cell nodes. Therefore, fluxes may
require the knowledge of data in neighboring CPU domains, which is inconvenient. Sec-
ond, unstructured grids have either the same amount or more cell centers than vertices.
Typically a 3D mesh with tetrahedrons has on average six times more cells than vertices,
which significantly increases the computational cost.
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• Node centered: the control volumes are centered on the vertices where data are also
stored. Thus, boundary conditions are easier to handle because data are directly available
on the edge of the simulation domain and do not require additional interpolations. With a
cell centered formulation, an additional interpolation between the cell center and the edge
would be needed. Moreover, the node centered approach solves the two aforementioned
issues but it complexifies the numerical implementation. Indeed, in addition to work with
the cell volume, called primal volume, one also needs to define the nodal/dual volume.
As a result, two metrics must be defined which is performed only once at the beginning
of the simulation. Nevertheless, switching from one metric to another tends to slow down
the computation time and increases memory consumption and so optimization of the code
is crucial.

AVIP retains the node-centered formulation, more suited for our application. The control
volume VFV will be then renamed VN for nodal volume. It exists several methods to construct
it [Mishev, 1998; Viozat et al., 2001; Bar, 1992]. The first one is to use Voronoi cells whose
vertices are equally distanced from the vertices of the primal cells as shown in Figure 2.6 (a).
Unfortunately, for stretched meshes with obtuse angles like in Figure 2.6 (b), the control volume
can become twisted which leads to numerical errors [Zakari, 2013].

N NN NN

> 90◦ > 90◦

Voronoi control volume Twisted Voronoi
control volume

Robust Dual Median
control volume

(a) (b) (c)

Figure 2.6: Possible control volume for a node centered approach with in (a-b) the Voronoi
technique on two meshes and (c) the Median Dual control volume. (b) shows issues with
obtuse angles while (c) remains convex

Therefore, we retain the other solution which is to use Median-Dual control volumes. As
shown in Figure 2.6 (c), vertices are located at the centroid of the primal volume and the control
volume remains convex. Specific use of the nodal volume will be detailed in Section 2.3.3.

2.3.2 Interpolation scheme
In order to solve Equation (2.19), we first need to to discretize the right hand side. At each
node N we integrate the density interpolated at the node which gives

ˆ
VN

−e (ni − ne) dV = e (Ni,N −Ne,N) , (2.21)
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where Ni,N and Ne,N are the physical number of charged particles interpolated at node N . Each
charged particle is located in a primal cell and it is split with geometrical weighting factors as
shown in Figure 2.7.
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P

A B
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dB

WA = d
−2

A

(

d
−2

A
+ d

−2

B
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−2

C
+ d
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−1
WA = SA (SA + SB + SC)

−1

Figure 2.7: 2D example of charge deposition in a triangular (ABC) and quadrilateral (ABCD)
cell. P represents the position of the particle. The weighting factor WA for node A is expressed
in both cases

In AVIP, for a triangle or tetrahedron, the charge interpolated on a mesh node depends
on the opposite area/volume. For quadrilateral elements in 2D or 3D, the inverse distance
weighting interpolation [Shepard, 1968] is used. In order to avoid possible division by 0, we
multiply both the numerator and denominator by the product of all squared distances. So at
node A we get

WA = d2
Bd

2
Cd

2
D

d2
Ad

2
Bd

2
C + d2

Ad
2
Bd

2
D + d2

Ad
2
Cd

2
D + d2

Bd
2
Cd

2
D

(2.22)

For historical reasons, triangles and tetrahedrons are treated differently than quadrilaterals
but the inverse distance weighting interpolation could be used as well. Moreover, this technique
is applicable to all element shapes such as pyramids or prisms. The geometrical weighting factor
W is used not only to project the charge onto the nodes but also to interpolate a vector field F
such as E and B from the nodes onto the particle. In the case of a triangle, this is expressed
by  NA = WAqf,P

Fp = WAFA +WBFB +WCFC
(2.23)

where Fp is the interpolated field vector at P and NA the interpolated number of particles at
A using qf,P , the statistical weight of P .

2.3.3 Discretization of the Laplacian operator
The left hand side of Equation (2.19) is handled by considering each nodal volume as in Fig-
ure 2.8. For now, we assume we are far from dielectrics and ε0 is the vacuum permittivity.

The original integral can be split in two,
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∂Ω
Vi

i

∂Vi

V
τ

Sf

Figure 2.8: Nodal volumes in the example of a triangular mesh. Borders of the nodal volume
can coincide with the boundary of the domain Ω. Nodal volume Vi and primal volume Vτ are
highlighted with colored areas. One face external face Sf with its area vector is also indicated
in orange.

˛
∂VFV

ε0∇φ · dS =
ˆ
∂Vi∩Ω̊

ε0∇φ · dS︸ ︷︷ ︸
I1

+
ˆ
∂Vi∩∂Ω

ε0∇φ · dS︸ ︷︷ ︸
I2

(2.24)

where ∂Vi is the surface of the nodal volume Vi, Ω̊ the interior of the domain Ω without the
border ∂Ω. For most of the nodes i, the flux of the potential across ∂Vi corresponds to I1. For
nodes located at the boundary, part of the flux exits at the domain boundary and I2 is not
identically equal to zero. We know shall detail the calculation of both integrals I1 and I2 in the
following paragraphs.

Treatment of I1

We can decompose I1 into elementary fluxes as

I1 =
ˆ
∂Vi∩Ω̊

ε0∇φ · dS =
∑
τ3i

ˆ
∂Vi∩τ

ε0∇φ · dS (2.25)

where we sum over all the cells containing the node i. In each cell τ we assume ε0∇φ to be
constant so we can write:

I1 =
∑
τ3i

ε0∇φτ ·
ˆ
∂Vi∩τ

dS (2.26)
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The gradient ∇φτ is computed with the Green-Gauss formulation,

∇φτ = 1
Vτ

ˆ
Vτ

∇φdV

= 1
Vτ

˛
∂Vτ

φdS

= 1
Vτ

∑
f∈τ

φfSf

(2.27)

where Vτ is the primal volume of cell τ and Sf is the normal vector weighted by the surface
area of face f (see Figure 2.8). The value of the potential at each face φf is assumed to be the
average of the potential at the neighboring vertices so Equation (2.27) becomes

1
Vτ

∑
f∈τ

φfSf = 1
Vτ

∑
f∈τ

 1
nfv

∑
k∈f

φk

Sf (2.28)

where nfv is the number of vertices per face. The goal then is to express the normal vector Sf
with vertices instead. To do so, we define nodal vectors as a linear combination of neighboring
face normal vectors,

Sk =
∑
f3k
−nd
nfv

Sf (2.29)

where nd is the dimension of the domain (two or three) and nfv the number of vertices per
face (two in 2D, three for tetrahedrons, four for quadrangles). The situation is depicted in
Figure 2.9.

τ

SjkSki

Sij

Si

i j

k

G

Figure 2.9: Local face normals of the primal volume Vτ and local nodal vector at vertex i. A
normal face vector Sf is named with the face vertices. G is the centroid of the triangle

Equation (2.29) gives nodal vectors as a function of face vectors. Since we seek the contrary
we must explicit Equation (2.29) for each element type. For the sake of brevity, the work will
only be performed in 2D for triangles. This leads to the following linear systemSi

Sj
Sk

 = nd

nfv

 0 −1 −1
−1 0 −1
−1 −1 0


Sjk
Ski
Sij

 (2.30)

The system can be inverted which gives
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Sjk
Ski
Sij

 = 1
2
nfv
nd

 1 −1 −1
−1 1 −1
−1 −1 1


Si
Sj
Sk

 (2.31)

As recalled by Lamarque [2007], the sum of nodal vectors is zero:

Si + Sj + Sk = 0 (2.32)
As a result, face vectors can be expressed by the final system:Sjk

Ski
Sij

 = nfv
nd

Si
Sj
Sk

 (2.33)

Following notation of Figure 2.9, Equation (2.28) can be reorganized and rewritten as follows

1
Vτn

f
v

∑
f∈τ

φfSf = 1
Vτ

[(φi + φk) Ski + (φk + φj) Sjk + (φj + φi) Sij]

= nfv
nd

1
Vτn

f
v

[(φi + φk) Sj + (φk + φj) Si + (φj + φi) Sk] from Equation (2.33)

= 1
nd

1
Vτ

[φi (Sj + Sk) + φj (Si + Sk) + φk (Si + Sj)]

= − 1
nd

1
Vτ

[φiSi + φjSj + φkSk] from Equation (2.32)

(2.34)

The general expression valid for 2D polygons and tetrahedrons is finally given by
1
Vτ

∑
f∈τ

φfSf = − 1
nd

1
Vτ

∑
k∈τ

φkSk (2.35)

Thus, we have expressed this primal volume gradient with the potential values stored at the
vertices k. Going back to Equation (2.26), we shall now express the last integral. We can start
discretizing:

ˆ
∂Vi∩τ

dS =
∑
∂Vi∩τ

dS = nik + nij (2.36)

where nik and nik are normals weighted by the area as shown in Figure 2.10.
From [Auffray, 2007, p.39-43], it exists a simple relation between normals at the dual volume

and the nodal vector Si for a triangle,

nik + nij = Si
2 (2.37)

and in the general case, the equation is actually:ˆ
∂Vi∩τ

dS = Si
nd

(2.38)

Finally, injecting Equations (2.35) and (2.38) into Equation (2.26) allows to discretize the
integral I1 for node i as
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τ

i j

k

Si

nik

nij

G

M

∂Vi

Figure 2.10: Local face normals nik and nij of the dual volume ∂Vi and local nodal vector at
vertex i. G is the centroid of the triangle.

I1 = −
∑
τ3i

∑
k∈τ

ε0φk
Sk · Si,τ
Vτn2

d

(2.39)

where Si,τ is the nodal vector defined by Equation (2.29) for node i in the cell τ . Thus, one
needs to look at each cell containing i and perform the appropriate scalar products.

Treatment of I2 and boundary conditions

The strategy to compute I2 is similar to I1. We discretize I2 with the local normal vectors of
the problem depicted in Figure 2.11

I2 =
∑
f3i
f∈∂Ω

ε0∇φf ·
ˆ
f

dS =
∑
f3i
f∈∂Ω

ε0∇φf ·
1
nfv

Sf (2.40)
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Figure 2.11: Local face normals nik and nij of the dual volume ∂Vi at the boundary domain

On each face f of ∂Ω containing i, we need to evaluate the scalar product of the potential
gradient at face f with the face local normal 1

nfv
Sf . The local normal around i is a fraction of

the total area. In 2D, we take half of the segment ij while in 3D with tetrahedrons we would
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take one-third for instance. Three possible cases exist depending on which boundary condition
is applied.

Case 1: Periodic boundary condition With a periodic boundary condition, a shadow
point i′ corresponding to node i exists somewhere on the other side of the domain. In this
case, it can therefore be treated as an internal node (I2 = 0) and the full contour of the nodal
volume can be calculated as previously.

Case 2: Dirichlet boundary condition A Dirichlet boundary condition sets the potential
at node i to a prescribed value: φi = φ0. As a result, the I2 integral is never computed and so
we implicitly set ∇φf = 0. A necessary modification to the matrix A of Equation (2.20) will
be detailed in Section 2.3.5.

Case 3: Neumann boundary condition For a Neumann boundary condition we know
beforehand the value of ∇φf = ∇φ0. So, it is unnecessary to discretize the gradient and we
just need to compute the scalar product.

2.3.4 Dielectric interface
In Section 2.3.3, the calculation assumed the permittivity in each cell to be constant and equal
to its value in vacuum: ε = ε0. Inside a dielectric layer, it can be easily adjusted by substituting
ε0 by ε0εr, where εr > 1 is the relative permittivity depending on the material. Commonly, the
channel of a HT is covered by a Boron Nitride (BN) layer [Goebel and Katz, 2008, p 325]. The
relative permittivity actually depends on the temperature and local oscillations of the electric
field but taking the constant value εr = 4 is reasonable [Laturia et al., 2018]. The dielectric
is not conductive but its surface can accumulate over time the electric charge, giving rise to
a local charge per surface area σ. At the interface between the dielectric and the vacuum,
Maxwell-Gauss equations predict a discontinuity of the normal component of the electric field
as,

εrEdiel − Evac = σ

ε0
uvac→diel (2.41)

where Evac and Ediel are respectively the electric field in the vacuum and the dielectric in a
neighborhood of the interface. uvac→diel is the local normal to the interface when going from
the vacuum layer to the dielectric as shown in Figure 2.12 (a).

The discretization of the Laplacian operator at the dielectric interface needs a special treat-
ment. The dielectric interface is defined at the nodes as shown in Figure 2.12 (c). This
configuration is achieved by building separate meshes with a mesh generator software such as
Centaur or hip at CERFACS. These meshes must be compatible, i.e. nodes and cell faces at
the interface can be merged without ambiguity as shown in Figure 2.12 (b).

For a mesh node at the interface, the Green-Ostrogradski theorem cannot be applied directly
to the whole nodal volume as in Equation (2.19) because of the discontinuity of the electric field
induced by Equation (2.41). Thus, the nodal volume is split in two as shown in Figure 2.13.
The Green-Ostrogradski theorem is applied on each volume and the Poisson equation becomes:
˛
∂Vvac

ε0∇φ · dS +
˛
∂Vdiel

ε0εr∇φ · dS =
ˆ
Vvac

−e (ni − ne) dV +
ˆ
Vdiel

−e (ni − ne) dV (2.42)
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ǫ0
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Interface nodes with charge QS

Dielectric interface

ǫ0

ǫ0ǫr

ǫ0

ǫ0ǫr

(a) (b)

(c)

QS = σdl

nvac→diel

Figure 2.12: Procedure to define a dielectric border in AVIP. (a): continuous problem; a local
surface charge density σ over an infinitesimal length dl provides the local charge QS. (b):
separate discretization of two compatible computational domains for both the dielectric layer
and the vacuum. (c): final computational domain after "glueing" both domains; the local
surface charge QS is concentrated at the interface nodes

The right hand side of the equation can be simplified further by recalling there is no electric
charge in the dielectric layer. Thus, it reduces to

˛
∂Vvac

ε0∇φ · dS +
˛
∂Vdiel

ε0εr∇φ · dS = QV (2.43)

where QV = e (Ni,N −Ne,N) represent the electric charge present in the vacuum nodal volume
considered. It is computed from Equation (2.21). The fluxes in the vacuum across ∂Vvac can
be decomposed as ˛

∂Vvac

ε0∇φ · dS =
ˆ
∂Vvac∩Ω̊

ε0∇φ · dS

+
ˆ
∂Vvac∩∂Ω

ε0∇φ · dS

+
ˆ
∂Vvac∩Sdiel

ε0∇φ · dSvac→diel.

(2.44)

The two first integrals on the right hand side are the fluxes already encountered in Equa-
tion (2.24). The third integral refers to the flux across the dielectric interface whose surface is
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ǫ0ǫr

ǫ0

Vvac

Vdielj ki

Sdiel

dSvac→diel

∂Vdiel

∂Vvac

Figure 2.13: The nodal volume of a node i at the vacuum-dielectric interface can be split into
Vvac and Vdiel. Their respective boundaries ∂Vvac and ∂Vdiel overlap with the dielectric surface
Sdiel (black-yellow dashed line).

named Sdiel as shown in Figure 2.13. In the dielectric layer, the fluxes similarly read:˛
∂Vdiel

ε0εr∇φ · dS =
ˆ
∂Vdiel∩Ω̊

ε0εr∇φ · dS

+
ˆ
∂Vdiel∩∂Ω

ε0εr∇φ · dS

+
ˆ
∂Vdiel∩Sdiel

ε0εr∇φ · dSdiel→vac

(2.45)

By symmetry ∂Vdiel ∩ Sdiel = ∂Vvac ∩ Sdiel, and since dSvac→diel = −dSdiel→vac, substituting
Equations (2.44) and (2.45) into Equation (2.43) leads to

I1 + I2 +
ˆ
∂Vvac∩Sdiel

(ε0(∇φ)vac − (ε0εr(∇φ)diel) · dSvac→diel = QV (2.46)

where (∇φ)vac = Evac and (∇φ)diel = Ediel. As a reminder, I1 and I2 respectively represent the
integrated fluxes inside the domain, far from the dielectric surface, and at the computational
domain boundaries. Using the jump condition from Equation (2.41), one can get:

I1 + I2 +
ˆ
∂Vvac∩Sdiel

(−σuvac→diel) · dSvac→diel = QV (2.47)

By definition dSvac→diel = dSvac→dielnvac→diel which gives

I1 + I2 −
ˆ
∂Vvac∩Sdiel

σ dSvac→diel = QV (2.48)

And finally, we integrate the surface density over the interface to get

I1 + I2 = QV +QS (2.49)
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where QS is the total charge accumulated at the surface by the dielectric. Overall, the numerical
implementation is extremely similar to what was described in Section 2.3.3 with an additional
contribution on the right hand side of the equation. The surface charge QS, initially zero, is
easily computed by distributing the charge of each particle exiting the domain at the dielectric
interface as shown in Figure 2.14. A unit test case is presented in Appendix A.

ǫ0ǫr

ǫ0

Sdiel

A B

C

SA−B

q

ǫ0ǫr

ǫ0

A B

C

q

ǫ0ǫr

ǫ0

A B

C

Sq−BSq−A

Q

Figure 2.14: Procedure to calculate the surface charge QS at each node at the dielectric interface
Sdiel (black dashed line). (a): for any exiting charged particle q crossing the dielectric interface
Sdiel, the face area SA−B is identified. (b): from the intersection point of q and SA−B, the
surfaces to face vertices (here Sq−A and Sq−B) are computed. (c): charge q is split linearly
between the face vertices and deleted.

2.3.5 Solving the linear system
From the previous section it appears the most general expression of the discretized Poisson
equation is given by Equation (2.49). It can be also formulated as a linear system given by:

AX = B (2.50)

where A is a M ×M matrix which contains the discretization of the Laplacian operator from
I1 and I2 with N the number of nodes. The unknown potential at the mesh nodes is stored in
Xᵀ =

[
φ1 φ2 · · ·φM

]
while the net charge deposition is represented by the B vector. This

linear system is challenging to solve because the number of nodes N can be around a few
million. Fortunately, matrix A is sparse and linear solvers can take leverage of that property
[Saad, 2003]. The matrix A is made symmetric for improved numerical properties and we
accordingly modify the B vector. Currently, two external libraries are used in AVIP to solve
the linear system: MAPHYS and PETSc.

MAPHYS

MAPHYS stands for MAssively Parallel HYbrid Solver. It is developed by the Hiepacs team
[Agullo et al., 2019; Poirel, 2018] in INRIA Bordeaux, France. MAPHYS is open source and
uses two numerical methods to invert the sparse matrix A:

• Direct methods: direct methods aim to invert exactly A with Gaussian eliminations
or LU decompositions. If accuracy is ensured, the computation cost is estimated to be
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O(N2) in 3D, which quickly becomes prohibitive. Besides, parallelization is difficult to
implement.

• Iterative methods: iterative methods provide an approximate solution of the inverted
matrix depending on the tolerance defined beforehand by the user. It is more cost-efficient
with roughly O(N7/6 log (N)) operations for a 3D domain and less memory demanding.
Yet, it might slowly converge to a solution or even diverge depending on the original
matrix and its preconditioning.

MAPHYS combines the benefits of both approaches to ensure accuracy at a reasonable com-
putation cost. In each sub-domain a direct method is used while an iterative method computes
the system for nodes located on the interface between sub-domains. Subsequently, the X vector
is decomposed in two to differentiate nodes belonging to only one sub-domain (interior nodes I
regrouped in XI), from nodes on the interface Γ between sub-domains, gathered in XΓ. Using
the subscript notation Γ and I, Equation (2.50) can be split into the following linear system:[

AII AIΓ
AΓI AΓΓ

] [
XI

XΓ

]
=
[
BI

BΓ

]
(2.51)

Similarly to X, the B vector distinguishes interior nodes from interface nodes. The A ma-
trix is decomposed accordingly and AII has a block-diagonal structure, where each diagonal
block corresponds to one sub-domain. We first solve for unknowns located at the interface by
eliminating XI :

S︸︷︷︸
,AΓΓ−AΓIA−1

II AIΓ

XΓ = f︸︷︷︸
,BΓ−AΓIA−1

II BI

(2.52)

S matrix is the Schur complement matrix. Equation (2.52) is solved with an iterative method.
Since the S is symmetric definite positive we can use the Conjugate Gradient ??. We use an ad-
ditive Schwartz preconditioner to improve performances following Spillane [2014]. Convergence
is achieved whenever the residual is below a certain relative threshold δrel,

‖SXΓ − f‖L2

‖f‖L2
≤ δrel ⇐⇒

‖AX−B‖L2

‖B‖L2
≤ δrel (2.53)

Typically, δrel = 10−12 for this work. Then, XΓ is substituted in Equation (2.51) to obtain
XI with a direct method based on the external solvers MUMPS [Amestoy et al., 2000] and
PASTIX [Hénon et al., 2002]. As of today MAPHYS still requires a separate installation and
interface [HiePaCS team, 2020] but it should be included in the generalist PETSc package in
the near future.

PETSC

PETSc is an open source package containing a wide variety of numerical tools for scientific
applications based on partial differential equations [Balay et al., 2019]. In particular, plenty of
linear solvers designed for sparse matrix systems are available [Balay et al., 2020]. The Poisson
equation is solved with an iterative method, Conjugate Gradient, as the A is symmetric definite
positive. With an unstructured grid, the preconditioner Algebraic Multi-Grid (AMG), is well
suited and used. Multi-grid methods consist in successively defining coarser grids on which
the error is minimizing with a relaxation technique. High frequencies of the error are gradually
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eliminated until the coarsest grid has been reached. The coarsest grid level depends on the mesh
and tolerance input by the user. Then the error is reconstructed successively on the previous
refined grids. When the original grid is retrieved the error is compared to the tolerance and the
"V-shape" procedure is repeated if necessary. Multi-grid methods were originally designed for
structured grids and the definition of coarser grids was natural by "skipping" mesh nodes. The
algorithm was then generalized to unstructured grids using algebraic structures hence the name
Algebraic Multi-Grid methods. For a more comprehensive description of AMG methods, the
reader can refer to the rich existing bibliography [Hackbusch, 1985; Trottenberg et al., 2001;
Balay et al., 2019]. The Conjugate Gradient is used as a preconditioner as with MAPHYS and
the same relative tolerance of 10−12 from Equation (2.53) is imposed. Although both PETSc
and MAPHYS can be used, MAPHYS tends to scale better at a high number of processors,
which is desirable in PIC simulations (see Section 2.6.1).

2.3.6 Electric field
Once the potential is obtained, the electric field E = −∇φ is calculated. A first solution is
to use the inverse distance least-squares gradients technique as in Zakari [2013]. With this
approach, the goal is to minimize an error function between the gradient and infinitesimal
displacements around the considered node. Yet, according to Mavriplis [2003], it seems the
common Green-Gauss approximation presented in Equation (2.27) is a safe choice for most
configurations and mesh topologies. Thus, the Green-Gauss formulation is retained for AVIP.
With a 2D3V model, the off-plane component of the electric field is directly set by the user and
is constant and uniform.

2.4 Particles displacement

2.4.1 Solving the equations of motion
With the newly calculated electric field, AVIP integrates the equation of motions for charged
particles with explicit schemes with a constant time step. For unmagnetized particles such as
ions a Leap-Frog scheme [Birdsall, 1991] is considered:vn+1/2 = vn−1/2 + ∆t q

m
E(xn)

xn+1 = xn + ∆tvn+1/2 (2.54)

Velocity and position are asynchronous and shifted by half a time step as shown in Figure 2.15.
The scheme is second order accurate and is stable with the time constraint given in Equa-
tion (2.5).

In the presence of magnetic field, electrons are magnetized and the Boris [Boris, 1970]
scheme is used. The position is still updated in a similar fashion as in Equation (2.54) but the
velocity is computed as follows:

v− = vn−1/2 + q
m

∆t
2 E

v′ = v− + q
m

∆t
2 (v− ×B)

v+ = v− + 2 q
m

∆t
2

1+( q
m

∆t
2 )2 (v′ ×B)

vn+1/2 = v+ + q
m

∆t
2 E

(2.55)
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Figure 2.15: The Leap-Frog and Boris schemes de-synchronizes position and velocity. The F
function depends on the local position via the electric field and is expressed in Equations (2.54)
and (2.55). MCC are the Monte Carlo collisions using data from position xn and velocity vn−1/2

Intermediate velocities v′, v+ and v− are introduced to account for the rotation due to the
magnetic field. Again, this scheme is second order accurate. The initial temporal shift is
introduced at the first iteration for which only half a time step is considered for the pusher
while particles are actually displaced with ∆t. For both Leap-Frog and Boris schemes, veloc-
ity and position must be re-synchronized if diagnostics are needed. Thus, the pusher updates
the freshly computed vn+1/2 vector by applying either the Leap-Frog Equation (2.54) or the
Boris Equation (2.55) scheme with ∆t substituted by ∆t/2. The obtained vector is stored in
vpost-proc = vn. Such correction is crucial for diagnostics involving the velocity such as tem-
perature and current. Schemes with a non constant time step could be considered to run the
simulation faster when time steps as low as ∼ 1× 10−12 s would not be necessary. Thus, the
time step could be updated to satisfy the temporal stability condition of Equation (2.5) during
transients when the plasma density is low for instance. Unfortunately, the Leap-Frog/Boris
schemes cannot adapt to the time step because the temporal shift needs to be constant. How-
ever, the Verlet scheme [Sun et al., 2016; Becker et al., 2017; Swope et al., 1982] does not suffer
any temporal shift as shown in Figure 2.16. Although it is promising, it can only account for
the electric field. So far, no synchronous temporal scheme for magnetized electrons seems to
be available in the literature in spite of recent improvements made on the Boris algorithm.

2.4.2 Transport of particles across the grid
Once the velocity of particles is updated they are displaced in the simulation domain. In
contrast to structured grids, with unstructured meshes such as those used in AVIP, we cannot
deduce easily in which cell the particle will move into. To solve this problem, AVIP relies
on the Haselbacher algorithm [Haselbacher et al., 2007], which is schematized in Figure 2.17.
Starting from position x, we know the total remaining distance dr,0 to travel by the particle i.e.
dr,0 = ‖v‖∆t. Here, the velocity v is the actual velocity for a 3D case while it is the in-plane
velocity with a 2D3V model. Then the particle is displaced along the v direction from one cell
face to the next one. This process is repeated until the total distance dr,0 has been traveled.
Figure 2.18 shows the example of a particle crossing four cell faces. During its journey, the
particle can cross several CPU domains and the algorithm is designed to take care of these
cases as well.
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Figure 2.16: The Verlet scheme has a synchronous position and velocity. It consists of three
steps and displacement of particles is performed in two times. MCC are the Monte Carlo
collisions using data from position xn and velocity vn

Initialization

Compute distance df,i to next face of the cell

Compute remaining distance dr,i+1 to travel

dr,i+1 > 0?Particle is in the correct cell
Move to final position
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Particle is not the correct cell
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Figure 2.17: Working principle of Haselbacher algorithm [Haselbacher et al., 2007] starting
from current position xn to obtain final position xn+1. Intermediate calculations are denoted
with the i subscript and ′ superscript.
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Figure 2.18: Haselbacher algorithm example using notations of Figure 2.17. Crosses indicate
intersections of the particle trajectory with cell faces.

2.5 Boundary conditions for particles
In AVIP, boundary conditions are imposed on cells faces that are flagged as such during the
pre-processing. They are usually located at the edge of the simulation domain but can also
be internal in the presence of a dielectric layer. Thus, each time a cell face is crossed, the
Haselbacher algorithm verifies if a boundary condition must be applied in Figure 2.17.

2.5.1 Classical boundaries
"Exit" condition

The first implemented boundary condition is the "exit". If a particle crosses a cell face flagged
as "exit", the particle is deleted and removed from the simulation. This is the natural bound-
ary condition for particles lost in the plume downstream of the HT channel. Its use is also
appropriate for metallic walls for charged particles: in this case, particles are assumed to be
instantaneously absorbed by the conductive wall and they never go back. The "exit condition"
gives rise to the sheath.

Periodic condition

The simulation of a full HT with a PIC solver involves a computation cost that is generally
prohibitive. Therefore, the azimuthal direction is usually not fully modeled, but only a fraction
is considered. Thus, we assume this fraction is representative of the full geometry and periodic
boundary conditions are considered. Any particle crossing the boundary will be relocated to
the shadow boundary at the correct location, possibly in another CPU domain. In AVIP,
every periodic cell face has a mirror at the shadow boundary that is constructed during the
mesh generation. Connectivity is stored during the calculation. The velocity of the particle
is also adjusted accordingly. In 2D, no velocity correction is necessary. In 3D, in an annular
configuration, a particle crossing a periodic boundary θ = θ0 will see its velocity v undergo a
rotation of angle −θ0.
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Specular reflexion

Specular reflexion can be useful to model the interaction of neutral particles. The working
principle is extremely simple and depicted in Figure 2.19.

v = v‖ + v⊥ v = v‖ − v⊥

Figure 2.19: The particle orthogonal velocity is reversed at impact. Energy is conserved.

Inelastic collisions

A more realistic modeling of neutral-wall interactions is to account for energy losses to the wall
on impact. The model from Song and Yovanovich [1987] was implemented in AVIP but not
used for this thesis.

2.5.2 Cathode models
The cathode is a central element of a HT. As stated in Section 1.3, it emits electrons which
have two purposes:

1. Some electrons enter the channel to sustain the discharge. Their current is noted Icd

2. The other fraction of electrons go into the plume and neutralize the ion beam, which
prevents the thrust to be canceled out. Its current is noted Icp

The total cathodic current is given by

Ic = Icd + Icp (2.56)

In order to evaluate the total cathodic current Ic to be injected the conservation of current
principle must be used. Figure 2.20 lists the different current involved in a HT. Ions and
electrons are preliminary created by ionization. Walls can be metallic or covered by a dielectric
layer and they absorb charged particles. The exiting electron flux at the walls Iwe accounts
for possible secondary electron emission. The discharge current Id is the net electron current
at the anode: ions, stemming from Iai, neutralize part of the electron flux Iae and subsequent
neutral particles are assumed to remain at the anode. The Icp current neutralizes the ion beam
current Ibi with the help of exiting electrons at the plume Ibe:

Ibi = Icp + Ibe (2.57)

Using the notations of Figure 2.20, the current conservation at steady state reads: Ie,ioniz + Icd = Iwe + Iae + Ibe

Ii,ioniz = Iwi + Iai + Ibi
(2.58)
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Figure 2.20: Global electron (blue) and ion (red) currents in a HT, respectively denoted with
the e and i subscripts. The anode and the cathode are electrically connected. By convention,
all currents are positive.

Since Ii,ioniz = Ie,ioniz, we can substract the electron equation with the ion one in Equation (2.58)
which leads to

Icd = Iwe − Iwi + Iae − Iai︸ ︷︷ ︸
Id

+ Ibe − Ibi︸ ︷︷ ︸
−Icp

(2.59)

In a HT, at steady state, dielectric walls ensure Iwe = Iwi, and we get

Ic = Id (2.60)

In order to limit the size of the simulation domain, the far plume, downstream the cathode,
can be discarded [Szabo, 2001; Charoy, 2020]. Thus, the right side of the domain is simply a
plane from which the Icd current is injected. Icp cannot be accessed but can still be accounted
for when calculating the current to be injected Icd. Going back to Equation (2.59) we get,

Icd = Iwe − Iwi + Id + Ibe − Ibi (2.61)

Here, currents toward the walls are voluntarily left out because in the case of metallic walls
they might not cancel each other out. This equation must be satisfied at steady state. As
presented in [Szabo, 2001], there are two methods to satisfy this equality: the current equality
or the quasi neutrality.

Current equality (CE)

The first solution is simply to compute the currents on the right hand side of Equation (2.61)
at each time step ∆t. Thus we obtain Icd. Then the number of electrons to inject at the current
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iteration is given by
Ne,inj = ∆tIcd

e
(2.62)

This method was the first one implemented in AVIP and has already been used in the literature
[Boeuf and Garrigues, 2018; Cho et al., 2015]. However, Charoy [2020]; Szabo [2001] pointed
out this approach was flawed during the transient and in presence of oscillations because Equa-
tion (2.60) is strictly true at steady state only. In practice, the plasma starves for electrons
and the system is unbalanced. They also noted the system becomes very sensitive to changes
in the numerical setup.

Quasi neutrality (QN)

Another way to inject the correct number of electrons at the cathode is to ensure the quasi-
neutrality is verified at the cathode plane. Thus, we must count the number of electrons
and ions at the cathode plane and balance the charge. In AVIP, cells in contact with the
cathode plane are identified during the pre-processing as shown in Figure 2.21. Both ions and

Cathode

x

y

z

x
′

y
′

z
′

Figure 2.21: Cells at the cathode plane are shaded and have a contact node (in red dots) with
the cathode boundary (thick line on the right). The local coordinate system at the cathodic
boundary is (x′,y′, z′) with x′ normal to the boundary directed to the interior of the domain.
It is linked to the global coordinate system (x,y, z) by successive eulerian rotations.

electrons located in these cells are counted during the displacement of the particles to minimize
computational cost. The total net number of electrons to inject at the cathode is given by
Ne,inj, expressed as: if ∑Ncell

j Ne −Ni > 0, thenNe,inj = ∑Ncell
j Ne −Ni

elseNe,inj = 0
(2.63)
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where Ncell is the number of cells in contact with the cathode and Ne and Ni are respectively the
number of electrons and ions in each cell. In other words, we inject electrons only if some are
missing to ensure quasi-neutrality from the cathode. More importantly, numerical simulations
from Charoy [2020]; Szabo [2001] showed Equation (2.61) was satisfied and much less sensitive to
changes in the numerical setup in contrast to the current equality (CE) approach. Simulations
of Chapter 5 will be based on the quasi-neutral method.

Position and velocity

For both the current equality or the quasi-neutrality method, the procedure to define the
location and velocity of cathodic electrons is the same. Particles are injected uniformly along the
cathode boundary. It is possible to shift the injection location by a short distance of the order
of ∼ 1 mm [Boeuf and Garrigues, 2018; Charoy, 2020] to prevent newly introduced particles to
exit immediately. With the CE method, the risk of such a situation is to have electrons unable
to leave the vicinity of the cathode boundary, while new ones are constantly supplied. Cho
et al. [2016] showed a potential barrier could eventually forms, which disconnects the cathode
from the discharge. The QN approach seems more robust because if too many electrons are
already counted in cathode cells, less particles will be injected. Besides, with a sufficiently
high injection temperature, cathodic electrons can escape the boundary more easily [Cho et al.,
2016]. With an unstructured grid, it is difficult to shift an injected particle by a pre-defined
length because it can change cell. Thus, AVIP relies on an injection temperature high enough
to prevent cathodic electrons to agglutinate. Numerical results are available in Chapter 5.
Assigning the velocity of new particles is straightforward. First, we assume electrons emitted
by the cathode are at thermal equilibrium with a temperature Tinj. Then, using the local
coordinate system (x′,y′, z′), the tangential components of the velocity v′y and v′z are sampled
from a Maxwellian distribution (Equation (2.12)). The normal component v′x is sampled from
a half Maxwellian distribution as explained by Hagelaar [2008]. In practice we get:

v′x = vth
√
− logR1

v′y = vth
√
− logR2 sin (2πR3)

v′z = vth
√
− logR2 cos (2πR3)

(2.64)

where R1, R2, R3 are random numbers between 0 and 1 and vth =
√

2kBTinj
me

is the ther-
mal velocity of electrons. Finally, we apply eulerian rotations to get the actual velocity v:
(v′x,v′y,v′z)→ (vx,vy,vz).

2.5.3 Secondary electron emission
In a HT, electrons hitting the dielectric layer covering the walls can exhibit a more complex
behavior than being simply absorbed (see "exit" condition Section 2.5.1) or specularly reflected
(Section 2.5.1). Villemant [2018] identified three other possible interactions with the walls:

1. Elastic collisions: the incident electron, whose energy is E0, is elastically back-scattered.
This means its energy after impact is conserved. In contrast to specular reflections from
Section 2.5.1, the outgoing direction of the electron is not necessarily (v‖,−v⊥) and is
anisotropic in space. A significant proportion can be even reflected back in the incident
direction [Villemant et al., 2017].
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2. Inelastic collisions: the incident electron loses part of its energy on impact.

3. True secondary electron emission (SEE): when an incident electron hits the wall
with enough energy, it can rip electrons from the dielectric layer that are then released
into the plasma flow. This is a "true secondary electron emission" in contrast to elastic
and inelastic collisions because there is an actual production of particles.

Although it would be ideal to model these three interactions, it is in practice challenging
to achieve because of its computational cost. Indeed, the accurate way to do so is to rely
on probabilistic and Monte Carlo calculations [Furman and Pivi, 2002; Pierron et al., 2017;
De Lara et al., 2006]. However, these calculations rely on empirical parameters that require
a careful study for each wall material [Taccogna, 2003]. Once the model is set up, it provides
interesting insights on sheath mechanisms [Ahedo and De Pablo, 2007; Domínguez-Vázquez
et al., 2019] but since Monte Carlo calculations are extremely costly, it is unrealistic to use this
approach in 2D or 3D.

Analytical models can circumvent this limitation. Among the most ambitious ones, we can
cite Sydorenko [2006], who attempted to account for three kind of interactions [Sydorenko,
2006]. However, the lack of experimental data for elastic and inelastic collisions makes his
results uncertain. For the sake of simplicity, we can discard inelastic collisions and focus on
SEE and elastic collisions only. That was performed by Villemant [2018] in his thesis who
sought to implement a fast and more accurate method to take both elastic collisions and SEE
into account. That was achieved by tabulating spatial velocity distributions after impact with
the help of the Single Large-Angle Backscattering (SLAB) model [Jablonski, 2013; Salvat et al.,
2021].

As a first implementation effort into AVIP, we did not seek to distinguish the three kinds
of interactions but rather in having qualitative results first. In this context, we can focus
on analytical models that assume elastic and inelastic collisions are negligible and only SEE
are present. Vaughan [1989] proposed such a model from experimental data with only two
parameters: the energy and incidence angle of primary (or incident) electrons. The model
provides the total yield of secondary electrons that is assumed to be equal to the SEE yield.
Croes [2017] suggested the effects of the incidence angle were moderate on HTs simulations,
so an even simpler model [Gascon et al., 2003; Barral et al., 2003], also based on experimental
data, could be sufficient. This model has been implemented into AVIP and will be described
below.

Like the Vaughan model, the Barral model does not distinguish elastic, inelastic and SEE.
It is a linear-saturated law that provides the SEE yield σSEE after impact:

σSEE =
σSEE,0 + (1− σSEE,0) ε

ε?
if ε ≤ εmax

σSEE,max if ε ≥ εmax
(2.65)

where ε = 1/2me‖ve‖2 is the kinetic energy of the primary electron, ε? the crossover energy,
σSEE,0 the asymptotic yield at zero energy, σSEE,max the saturated emission yield starting from a
certain threshold ε = εmax. The parameters ε?, σSEE,0 and σSEE,max depend on the wall material.
They were measured for boron nitride [Barral et al., 2003; Dawson, 1966] and their respective
values are presented in Table 2.3. The εmax threshold can be deduced by solving the equation
σSEE = σSEE,max.

The numerical implementation of the model is detailed in Figure 2.22. Depending on the
value of σSEE, one or more secondary electrons can be emitted and three outcomes are possible.
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Parameter Value Unit

ε? 53 eV
σSEE,0 0.45 -
σSEE,max 2.9 -

Table 2.3: Parameters for BN-SiO2 for Barral’s law

Given the values from Table 2.3, we notice σSEE = σSEE,max = 2.9 for ε = εmax = 236 eV, an
energy hardly reached for a primary electron. Thus, most of the time only one or no secondary
electron is emitted.

Compute σSEE

Draw a random number R between 0 and 1

R > σSEE?

Ne,inj = 0

Determine how many
secondary electrons must be emitted

R > σSEE − bσSEEc?

Ne,inj = bσSEEc Ne,inj = bσSEEc+ 1

yes no

yes no

Figure 2.22: Numerical implementation of Barral’s law. bσSEEc designates the floor function
applied to σSEE.

True secondary electrons are emitted near thermal equilibrium according to experiments
[Villemant, 2018]. So, once the number of electrons to be emitted has been computed, their
velocity is assigned by sampling from a half Maxwellian distribution. Thus Equation (2.64) is
applied here at the wall boundaries. Typically the wall temperature is of the order of a few
thousand Ks and is assumed constant during the simulation.
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2.6 AVIP PIC performances
Since AVIP aims to simulate 3D realistic geometries of HT, optimizing computing time is
crucial. For a PIC code, the computational cost can be split into two main categories: solving
the Poisson equation and managing the particles (Lagrangian solver).

2.6.1 Code optimization
Poisson solver’s optimization

As mentioned in Section 2.3.5, the computational time to solve the Poisson equation depends on
the number of nodes. Thus, domain decomposition is based on the external library PARMETIS
[Karypis and Kumar, 2009] velocities up the code as long as MPI communications remain
moderate. For each configuration, there is an optimal number of sub-domains (and therefore
of processors) to be used to minimize the total cost of solving the Poisson equation. This
question should be investigated before running the simulation. Besides, MAPHYS offers the
option to activate a coarse grid correction [Poirel, 2018] following the Generalized Eigenvalue
in the Overlap (GENEO) procedure [Spillane, 2014; Spillane et al., 2014].

When this option is ON, MAPHYS will first define a coarse space depending on the matrix
preconditioning that is imposed by the user. This coarse space is not a coarser grid as in AMG
and the original linear system is transformed to another one whose size is smaller. Then, a des-
ignated sub-communicator solves the coarse system, transforms the subsequent solution back
to the original space and communicates it to all other sub-communicators. This intermediate
solution helps the Conjugate Gradient (CG) to converge to the final solution. The efficiency of
the coarse grid correction depends on the matrix preconditioning. Indeed, a small precondition-
ing value speeds up the CG convergence but increases the size of the coarse grid to solve by the
designated sub-communicator. Besides, Poirel [2018] noticed that the this trade-off depended
on the geometry of the simulation domain. Finally, one drawback of the coarse grid correction
is that it tends to overburden the designated sub-communicator memory because the coarse
linear system to solve is proportional to the number of sub-domains. Therefore, the available
memory to the sub-communicator should be taken into account as well. As a conclusion, the
use of the coarse grid correction is case and hardware dependent and it should be investigated
for each setup.

Lagrangian solver

The Lagrangian solver refers to the computation of Monte Carlo collisions, charge interpolation
onto the grid, interpolation of the Eulerian electric field on the particles, displacement of
particles and management of particles at boundary conditions. In a typical 3D configuration,
billions of electrons, ions and neutral macroparticles are required and stored in memory for
each sub-domain. Different ways of organized the data exist and are presented below and
schematized in Figure 2.23.

A natural solution of data management consists in using an array of structures (AoS): a
dedicated structure "particle" contains all information such as the position x, or statistical
weight qf . Although intuitive, this data management becomes inefficient for PIC simulations
because data might be not contiguously stored in the RAM. Since cache memory is limited,
the machine needs to constantly look up for particles in the RAM-memory, load them in the
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cache memory and repeat this process unnecessarily numerous times before having all the data
of the same type it needs to continue the computation.

Thus, a structure of arrays (SoA) could be another solution: for each sub-domain all particles
characteristics are stored in common arrays. Yet, those arrays are very long and take time to
be read and loaded. Besides, this approach has the disadvantage of being less intuitive and
readable.

As a result, AVIP relies on an array of structures of arrays (AoSoA): each sub-domain is
split into cell groups as a second level domain decomposition. For each cell group, a structure
contains all the information of particles belonging to the cell group. Therefore, arrays to
read remain short, which speeds up the code. In order to ensure a contiguous data storage
in memory, after each particle displacement or injection, particles are sorted out according
to the Quicksort dual-pivot algorithm [Bowers, 2001]. This greatly helps AVIP during the
interpolation operations and it accelerates the calculations of Monte Carlo collisions.

,v, nc...

,v, nc...

,v, nc...

...

x v nc · · ·

Array of Structures
(AoS)

Structure of Arrays
(SoA)

Array of Structures of Arrays
(AoSoA)

x v nc · · ·

x v nc · · ·

Figure 2.23: Different ways of organizing PIC data in each sub-domain taking the example of 8
particles, characterized by their position x, their velocity v, cell number nc etc. AVIP retains
the (AoSoA) strategy where each sub-domain is split in cell groups G1, G2..., each containing
structures of particles informations.

Another aspect affecting the performances of the code is the presence of transients. During
transients such as ignition of the HT, the number of particles can locally increase significantly,
which can eventually overflow the processor memory in a specific sub-domain. AVIP can
restore load balancing at the restart by taking into account the spatial distribution of particles.
Besides, AVIP can also take leverage of the different characteristic time scales inherent for each
species α. Thus a subcycling technique [Adam et al., 1982] has also been implemented to avoid
unnecessary calculations for heavy particles such as ions and neutrals. Briefly, the subcycling
technique consists in updating the position and velocity of heavy particles every fs iterations,
where fs is an integer chosen beforehand. The idea is that during a time step, heavy particles
do not really move as the time step is primarily constrained by the plasma frequency to capture
the dynamics of electrons. Therefore, updating x and v every fs iterations can be sufficient
and speed up the code. Typically a value of fs = 5 was found to be a correct choice for AVIP
[Charoy et al., 2019].
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A final optimization has been investigated during this PhD thesis. AVIP has the possibility
to actively control the number of particles in each cell of the domain. For a given cell, if the
number of particles is below or above a threshold prescribed by the user, an attempt will be
made to respectively split or merge them. Merging unnecessary small particles can greatly
speed up the code. Splitting particles reduces numerical noise by repopulating regions where
the plasma expands, especially in the plume. The merging-spiltting algorithm is based on the
work of Luu et al. [2016]; Martin and Cambier [2012]. For each species α (ion, electron, neutral),
three parameters must be defined by the user at the beginning of the simulation:

1. The target number of macroparticles per cell Nt

2. The tolerance in position Tx

3. The tolerance in velocity Tv

The two tolerances Tx and Tv are dimensionless and used to identify groups of particles within
the current cells that are similar in terms of position xi and velocity vi as shown in Figure 2.24.
The particles are considered to be sufficiently similar if they meet all of the following conditions:

(a) (b)

Figure 2.24: Active control of number of particles per cells. In (a) clusters of similar particles
are identified and in (b) they are either merged into a bigger particle (left cell) or split into two
additional particles (crosses in right cell).

for i = 1, ..., nd

σxi/V 1/nd
c < Tx

σvi/v̄i < Tv
(2.66)

where nd is the dimension of the domain, σxi the standard deviation for the positions xi of
the considered particles and σvi the standard deviation for the velocities vi. These standard
deviations are respectively compared to the typical size V 1/nd

c of the cell for the positions xi,
and to the mean velocity v̄i for the vi component of the velocity. When particles are merged,
the final particle is assigned the following statistical weight qf,m, position xm and velocity vm:

qf,m = ∑n
j qf,j

xm = 1
n

∑n
j xj

vm = 1
n

∑n
j vj,

(2.67)

where n is the local number of macroparticles in the current cluster. Thus, during this process,
the mass m, momentum mv of the cluster are conserved, but not the energy 1/2m‖v‖2. How-
ever, according to Luu et al. [2016], the error should remain negligible as long as Tx and Tv are
chosen wisely.
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For splitting, two particles are systematically generated and they are assigned the following
statistical weight qf,s, position xs and velocity vs:

qf,s = 1
2

2
n+2

∑n
j qf,j

xs = 1
n

∑n
j xj + σx

vs = 1
n

∑n
j vj + σv,

(2.68)

where σx and σv are the standard deviations whose components for each spatial dimension
i = 1, 2, ..nd are σxi and σvi from Equation (2.66). In order to conserve the mass during the
splitting process, a portion of weight qj,f is taken out from the original particles j:

qj,f ←
n

n+ 2qj,f . (2.69)

In contrast to the merging process, both the momentum and energy are conserved.
The target number of particles Nt will determine the frequency at which the merging-

splitting algorithm will be applied but there is no guarantee that the number of particles will
be reduced or increased: if Tx and Tv are set too low, for example, the algorithm will not find
any cluster to merge or divide and will have no effect. Therefore, it is important to choose with
great care Tx and Tv as they determine which particles can be considered as similar enough to
be merged or split. A parametric study will be conducted in Section 3.3 regarding this matter.

Merging particles can be essential in regions where Monte Carlo collisions occur at a high
rate because numerous macroparticles can be introduced. Obviously, in the ionization zone,
the number of numerical particles increases because matter is created. However, this increase
is also due to the other collisions from Table 2.2. Indeed, in contrast to other PIC codes, the
statistical weight of the incident particle and the neutral Xe particle are not necessarily the
same. For instance, let’s assume an electron with a statistical weight qe,f elastically collide with
a Xe particle whose weight is qn,f > qe,f . Equation (2.70) describes the ongoing process and
also indicates a new Xe macroparticle with a weight qn,f − qe,f must be introduced:

e−︸︷︷︸
qe,f

+ Xe︸︷︷︸
qn,f

→ e−︸︷︷︸
qe,f

+ Xe︸︷︷︸
qe,f

+ Xe︸︷︷︸
qn,f−qe,f

(2.70)

In simplified 2D geometries, the creation of additional particles by collisions might be support-
able, but can seriously deteriorate performances in 3D.

2.6.2 Strong scaling results
AVIP’s performances have recently been evaluated [Agullo et al., 2021] in a 3D setup repre-
sentative of a SPT-100 HT [Morozov and Savelyev, 2000] (15 mm high and 34 mm long). The
simulation domain is depicted in Figure 2.25. The mesh is made of 27 million tetrahedral
elements (around 5 million nodes). The cell size is relatively homogeneous with a minimum
of 50µm near the ceramic walls and around 80µm elsewhere. Since we are interested in to
profiling here, boundary conditions are simplified to simple exit conditions (see Section 2.5.1)
except in the θ direction where periodic boundary conditions are used. The anode and cathode
are respectively set to 200 V and 0 V. The plasma is initialized with a Maxwellian cloud of ions
Xe+, electrons e− and neutral Xe.

The first 50 iterations are simulated for different numbers of processors ranging from 360 to
7200 on the Occigen supercomputer hosted by CINES in Montpellier (France). The number of
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Figure 2.25: 3D simulation domain inspired from the 2D geometry from Joncquieres et al.
[2020]; (a) r − z view and (b) r − θ view.

initial particles per cell Npcc for each species α is also varied (Npcc = 30, 60 and 120). Therefore
the total number of particles in the domain ranged from 2.43× 109 (Npcc = 30) to 9.72 (Npcc =
120). Each run was repeated three times to discard any outliers. Finally, both MAPHYS and
PETSc were tested as a Poisson solver. MAPHYS is used with grid coarse correction mentioned
in Section 2.3.5 and is denoted as DDM for Domain Decompostion Method. PETSc equipped
with the Algebraic Multi-Grid method is designated by AMG. Figure 2.26 sums up all results.
In Figure 2.26 (a), it can be observed that subroutines from the Lagrangian solver scale very
well with an increased number of CPUs. At a low number of CPUs, both MAPHYS and PETSc
benefit from using more CPUs but they eventually slow down the computation. Indeed, the
MPI communication costs eventually outweigh the size reduction of the matrix system to be
solved by each CPU. The optimum regime for MAPHYS (DDM) is located at around 3,000
nodes/CPU while the efficiency of PETSc (AMG) is reduced much earlier at around 10,000
nodes/CPU. It can be noticed that PETSc is faster with a low number of CPUs, but since most
of the time is consumed in Lagrangian numerical kernels (transport, interpolation and MCC),
benefits are minimal in comparison with MAPHYS. Finally, in Figure 2.26 (a), it appears that
using more than 2,500 CPUs does not really speed up the code.

When the number of numerical particles is increased in Figure 2.26 (b-c), the computational
time due to Lagrangian numerical kernels is logically increased. Poisson’s solvers are not affected
because their cost depends on the mesh size and not on the number of particles. It also shows
that with a significant number of particles, it might be interesting to use more CPUs than in
case (a).

These observations highlight trends but do not constitute general rules. The optimum
spot for AVIP is not always located at around 3,000 nodes/CPUs because the geometry of
the simulation domain and the hardware architecture will also affect performances of the MPI
communications and of the Poisson solvers. For instance, Poirel [2018] remarked that MAPHYS
was overall slower in geometries with an aspect ratio near one such as cuboids. For all the
simulations carried out in this work, it appeared that MAPHYS was the most efficient solver
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Figure 2.26: Time spent per iteration for the different numerical kernels of AVIP, starting with
(a) Npcc = 30, (b) Npcc = 60 and (c) Npcc = 120. The average number of nodes per CPU is
indicated at the top x axis. In (b) and (c), a minimum of 720 and 1080 processors are required
respectively to meet memory requirements.

and it was therefore systematically used.
A final interesting metric to consider is the speed-up. Given a fixed problem size, the speed-

up S is an estimate of how much a code can accelerate when more processors are used. Its
definition is:

S(P ) = t1
tP

(2.71)

where t1 is the best elapsed time when the code is serial while tP is the elapsed time when
P processors are used. The theoretical speed-up can be assessed with Amdhal’s law [Amdahl,
1967] which reads:

Sth(P ) = 1
1− β + β

P

(2.72)

where β is the fraction of code that benefits from the parallelization of the code. When β = 1,
the code is perfectly parallel and Sth(P ) = P , which means the code is P times faster with
P cores. However, as pointed by Moreland and Oldfield [2015], this formula seems unfit for
large codes such as AVIP because above ∼ 100 processors, the predicted speed up is approx-
imately constant as Sth tends to the limit Sth → (1 − β)−1 whereas AVIP clearly still gains
from employing more processors from Figure 2.26. Another difficulty for large parallel code
is to accurately compute the speed-up because it requires to know the serial time t1, which is
impossible to obtain in practice because of memory constraints for instance.

Several solutions are proposed in [Moreland and Oldfield, 2015] to properly evaluate the
strong scalability. Yet, they require to evaluate minimal cost per mesh node, which consists in
minimizing the quantity C/u = PtPN

−1 by testing different meshes of size N . For the purpose
of our discussion, we did not test several meshes but instead we computed a modified speed-up
S? as follows:
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S?(P ) = tP0

tP
(2.73)

where tP0 is the elapsed time when P0 processors are used, which becomes the new reference
instead of the serial time. This time tP0 can be split in two: tP0 = (1 − β)tP0 + βtP0 where
(1 − β)tP0 is the fraction of time that will not be reduced when using more processors than
P0 in contrast to βtP0 . Therefore, if we assume the scaling of the parallelizable component is
linear, it can be expected the elapsed time with P > P0 processors will be:

TP = (1− β)TP0 + βTP0
P
P0

(2.74)

Thus, a very similar law to Amdhal’s one can be derived:

S?th(P ) = tP0

tP
= (1− β)tP0 + βtP0

(1− β)tP0 + βtP0
P
P0

= 1
(1− β) + β

P
P0

(2.75)

Although it is not as rigorous as what proposed Moreland and Oldfield [2015], interesting
conclusions can be drawn as depicted in Figure 2.27. If AVIP was perfectly parallel starting

1 10 20
P/P0

1

10

20

S
?

β = 0.9

β = 0.95

β
=

1

S?th

AVIP

Lagrange

DDM

Figure 2.27: Assessment of modified speed-up S? for AVIP using data from Figure 2.26 (a).
Solid lines represent AVIP calculations of modified speed-up S? distinguishing the Poisson
solver (DDM) from the Lagrangian kernel (transport, MCC, sorting, interpolation). Dashed
lines represent the theoretical modified speed-up S?th for different fractions β benefiting from
using more processors than P0 = 360.

from P0 = 360 processors, then using P > P0 processors would speed up the code by a factor
S?th = P/P0, which is represented by the blue dashed line. The Lagrangian kernel exhibits
an excellent strong scalability. More than 95% of the workload of the reference point P0
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benefits from additional parallelization and better performances are difficult to obtain. AVIP
also shows excellent performances whit a fraction β > 90%. AVIP is less scalable than the
Lagrangian kernel essentially because of the Poisson solver (DDM here). Indeed, for P > 3P0,
the Poisson solver becomes slower with an increased number of CPUs because of prohibitive
collective communications, which echoes previous observations on Figure 2.26. What is revealed
by Figure 2.27 is that the Poisson solver actually outperforms a perfectly parallel AVIP in the
for P values in the [P0,∼ P0] interval. The supralinear behavior of the Poisson solver can be
actually explained by two factors. First, although each sub-domain is shrunk by a factor P/P0,
the factorization of matrix A of the linear system is sped up by a factor greater than P/P0.
Besides, the Conjugate Gradient (CG) used to solve the potential between the sub-domains has
also a cost that is inherently supralinear with the domain size. Those benefits are nevertheless
overthrown by the cost of collective communications when sub-domains become too numerous.

2.7 Conclusion
AVIP is a plasma solver that offers the possibility to either use a fluid model or follow a
Lagrangian approach by the means of PIC simulations.

In this Chapter the numerical implementation of the PIC version, AVIP PIC, was presented.
AVIP PIC has all the tools to perform accurate simulations including kinetic effects. Both
neutrals and charged particles (electrons and ions) can be included altogether. Note that ions
can be doubly charged or more if necessary. Furthermore, collisions are self consistently modeled
with a Monte Carlo module while the electric field is obtained from the Poisson equation. The
main strength of AVIP is its capability to work with unstructured grids, which dramatically
complicates the coding with respect to all other existing PIC codes in the community. For
instance, the displacement of particles is achieved by calculating the successive intersections of
the particle with cell faces along the velocity vector. In contrast, in a structured grid based PIC
code, the final cell can be immediately deduced as the cell spacing is regular. In spite of being
more complicated, AVIP has been highly optimized. An innovative Poisson solver, MAPHYS,
has been coupled with the code and a coarse grid correction method has been tested with success
on AVIP PIC to improve the speed-up. Regarding the numerical cost of the Lagrangian solver
(particles transport, interpolation, collisions), the code shows an excellent strong scaling, which
paves the way for more ambitious simulations in 3D (see Chapter 5. In particular, an active
particle control algorithm has been implemented and is very promising to overcome important
variations of the number of particles. For instance, in the case of strong oscillatory events, that
exist in instabilities such as the breathing mode, the sudden surge of macroparticles and the
associated memory footprint can be greatly mitigated.

In the two next chapters, AVIP PIC and its features will be tested in international bench-
marks to verify its implementation.
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Chapter 3

Validation in a 2D z − θ setup

In order to validate AVIP PIC, it is important to verify its results. As a first ap-
proach, this can be done by making a comparison with academic setups, which
leads to analytical results. However, in advanced cases, no analytical formulas are
available and so we can confront the numerical results with either experiments or
other PIC codes. Unfortunately, in spite of the use of noninvasive techniques, such
as collective Thomson scattering measurements [Tsikata et al., 2009; Tsikata, 2009;
Tsikata et al., 2013], experimental data remain challenging to obtain for HTs, and
so benchmarking with other codes constitutes a more pragmatic solution. With this
in mind, we first used the 1D benchmark from Turner et al. [2013] to test and verify
key AVIP PIC’s modules such as the Poisson solver implementation or the calcu-
lations of Monte Carlo collisions (see Section 3.3.2). This benchmark is extremely
helpful because it is quick to set up and run. However, it remains limited because
it does not reproduce all the characteristics and specificities of a HT: first of all,
no magnetic field is present unlike an HT; secondly, it is inherently 1D whereas
many multidimensional phenomena can occur in HTs [Tsikata et al., 2010]. Thus,
within the framework of the LANDMARK project [2018], a 2D axial-azimuthal setup
inspired from Boeuf and Garrigues [2018] was also used as a benchmark. Seven in-
dependent PIC codes were thus compared. Published results [Charoy et al., 2019]
demonstrated AVIP PIC could successfully retrieve the Electron Cyclotron Drift
Instability (ECDI), a crucial plasma instability responsible for electron anomalous
transport across the magnetic barrier (see Section 1.3.2). This test case also pro-
vides a basis to develop and test new numerical methods. Thus, we used the 2D
axial azimuthal simulation to investigate to the behavior of the merging-splitting
algorithm. A careful parametric study on the algorithm parameters was carried out
in order to evaluate their respective effects on the simulation and in particular with
regard to the development of instabilities.

In this chapter, the axial-azimuthal setup is first presented in Section 3.1. Bench-
mark results are detailed in Section 3.2. Finally the parametric study on the
merging-splitting algorithm is performed in Section 3.3.
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3.1 Description of the model
By considering the axial-azimuthal direction we can study the impact of the ECDI on anomalous
transport. Since this phenomena is rather complex, the present 2D model makes simplifying
assumptions that are described in the following subsections.

3.1.1 Simulation domain
The axial-azimuthal domain is modeled as a rectangle and no curvature effects are taken into
account. As shown in Figure 3.1, the axial and azimuthal directions are respectively denoted by
x and y and their lengths are Lx and Ly. Mesh cells are isosceles right angle triangles made of
squares cut in half along the diagonal. This cell shape was found to lead to no distinguishable
differences in comparison with regular square cells. The typical cell size is ∆x = ∆y = 50 µm.
A 2D3V model is used so unmagnetized ions are pushed with the Leap-Frog scheme from
Equation (2.54) while electrons rely on the Boris algorithm from Equation (2.55) with a time
step ∆t = 5× 10−12 s. Both ∆x and ∆t satisfy accuracy conditions given by Equations (2.5)
and (2.6). In order to speed up the simulations, the subcycling technique [Adam et al., 1982]
is used. In the present case, it was found updating positions and speeds of ions every fsub = 5
iterations accelerated the code by 40% without noticeable impact on the accuracy.

The top and bottom boundaries are periodic while the anode boundary uses the "exit"
condition presented in Section 2.5.1 and is set at a constant potential φ0 = 200 V. At the
right boundary, x = Lx, particles leaving the domain are also deleted and removed from the
simulation ("exit" condition). A special treatment regarding the Poisson’s equation and the
modeling of the cathode is detailed hereafter in Section 3.1.3. The simulation starts with
uniform density n0 = 5× 10−16 m−3 of electrons and ions, assumed at thermal equilibrium at
temperatures Te,0 and Ti,0, respectively. Thus, positions and speeds are determined as explained
in Section 2.2.2. For the benchmark, the initial number of macroparticles Nppc,ini per square
cell was varied to assess the statistical convergence. The simulation is run until 20 µs and
diagnostics are averaged over 5000 iterations before being output. Global parameters used for
this chapter are summed up in Table 3.1.
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Figure 3.1: z − θ model implemented in AVIP. A local zoom at the top shows the triangular
cells forming the mesh. xBmax denotes the position of maximum magnetic field. Top and
bottom boundaries are periodic. Left boundary is the anode while the cathode is modeled as
an emission plane at x = xc (blue dashed line). Main fluxes of particles are integrated over
the azimuthal direction and denoted by the Γ symbol (red for ions, blue for electrons). The
ionization zone is displayed with a blue-cyan color gradient.

3.1.2 Prescribed axial profiles
Radial magnetic field

The magnetic field is constant directed along the off plane, radial direction. It is uniform in
the azimuthal direction but its axial profile is a piecewise gaussian function given by:

B(x) =
[
ak exp

(
−(x− xBmax)2

2σ2
k

)
+ bk

]
uz (3.1)

where k = 1 for x ≤ xBmax and k = 2 for x > xBmax . We set σ1 = σ2 = 0.625 cm. The
four coefficients ak and bk are chosen such that B(x = 0) = 6 mT, B(x = Lx) = 1 mT,
B(x = xBmax) = 10 mT and by satisfying the continuity at x = xBmax .

Ionization

In this model, neither neutral particles nor collisions are taken into account. Instead, an
artificial and constant source term mimics the ionization process. It is uniform in the azimuthal
direction and its axial profile is:

S(x) =
S0 cos

(
π x−xm
x2−x1

)
for x1 6 x 6 x2

0 for x < x1 or x > x2
(3.2)

where x1 = 0.25 cm, x2 = 1 cm and xm = (x1 + x2)/2. Its 2D profile is shown in Figure 3.1.
The strength of the source term S0 is set such that the current density is Jm = e

´ Ly
0 S(y)dy =
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Parameters Symbol Value Unit

Computational domain and grid

Cell size ∆x = ∆y 50 µm
Axial length Lx 2.50 cm
Azimuthal length Ly 1.28 cm
Number of square cells Ncell 500× 256

Initial conditions

Plasma density n0 5× 1016 m−3

Ion temperature Ti,0 0.5 eV
Electron temperature Te,0 10 eV
Number of particles/square cell Nppc,ini 75/150/300

Computational/Physical parameters

Discharge voltage φ0 200 V
Location of maximum magnetic field xBmax 0.75 cm
Time step ∆t 5× 10−12 s
Subcycling frequency fsub 5 iterations
Average time range Na 5000∆t s
Final time tmax 20 µs

Table 3.1: PIC simulations parameters for the z − θ setup.

400 A ·m−2, which gives S0 = 5.23× 1023 m−3 · s−1. As detailed in [Boeuf and Garrigues, 2018;
Charoy et al., 2019], for each iteration the number of (X+

e , e−) pairs to be injected is given by
∆tLy

´ Ly
0 S(y)dy. Particle positions are picked according to the profile from Equation (3.2) i.e.xi = arcsin (2R1 − 1) x2−x1

π
+ xM

yi = R2Ly,
(3.3)

where R1 and R2 are random numbers between 0 and 1. Finally, velocities are sampled from a
Maxwellian distribution using Equation (2.12).

3.1.3 Cathode model
For the benchmark

The right hand side boundary is used to define the cathode. For the benchmark [Charoy et al.,
2019], the cathode is modeled as an emission line located inside the domain at xc = 2.4 cm < Lx,
1 mm before the right side of the domain x = Lx. When the Poisson equation is solved, a
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Dirichlet boundary condition φ = 0 V is set at x = Lx. In order to keep consistency with the
actual location of the cathode, the calculated potential U(x, y) is shifted as,

φ(x, y) = U(x, y)− x

xc
U c (3.4)

where U c = 1
Ly

´ Ly
0 U (xc, y) dy is the azimuthal average of the calculated potential at x = xc,

the cathode position. By doing so the resulting potential φ has a y average of 0 V at the cathode
location.

The cathode model is based on an adapted version of the current equality condition described
in Section 2.5.2. Because the cathode is inside the domain there is no need to evaluate Icd =
eΓcd as in Equation (2.61). Instead, Equation (2.60) is directly used and at each time step,
the discharge and cathodic currents are strictly equal. Injected electrons are sampled from a
Maxwellian distribution and uniformly distributed along the emission line.

Other possibility

The previous cathode model was originally designed to avoid any artificial sheath that would
form if the emission line was strictly located at x = Lx. By doing so, the model also implicitly
assumes that Icd = Icb, which is not necessarily true. As it was already mentioned in Sec-
tion 2.5.2, a cathode using a quasi-neutrality model is more realistic and can be defined at the
domain boundary. This cathode model will be applied in the 2D simulations of Chapter 5.

3.2 Benchmarking

3.2.1 Strategy and codes details
For this benchmark, seven different groups from international institutions worked together
for over a year to converge on the aforementioned numerical setup, plasma diagnostics and
results analysis. A detailed description of each code can be found in [Charoy et al., 2019]
and in Appendix B and they greatly differ in key features as shown in Table 3.2. Indeed, the
different codes use various solutions and strategies to complete the PIC loop from Section 2.2.1.
For instance, in contrast to the other codes, RUB uses an implicit pusher along with a GPU
architecture to conduct their calculations. Thus, such a choice radically changes how the code is
parallelized and the way the speed of particles is updated, which could definitely lead to distinct
results from the other explicit, CPU-based codes. Another difference, that is of paramount
importance for CERFACS, is the nature of the considered grid for the computational domain.
Indeed, all present codes, except AVIP PIC, rely on a Cartesian, structured grid. This choice
greatly simplifies how the metric and connectivity of the cells is defined since neighbors of a
given cell are naturally known. For instance, right next to cell (i, j), there is cell (i+1, j). In the
present unstructured grid by AVIP PIC, the cells are not square (see Figure 3.1) and neightbors
are not known a priori, which drastically complicate the metric. As a result, the parallelization
and data management must be carefully designed beforehand (see Figure 2.23) to overcome
this challenge. Overall, the implementation of AVIP PIC greatly differs from the other codes,
assuming a structured grid, and this can be source of differences in results. Finally, we shall also
realize that these runs were conducted with different supercomputers, with different compilers,
different precision points and all of them represent multiple reasons to get different outcomes
in the end.
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LPP LAPLACE CERFACS RUB USASK TAMU PPPL

Algorithms

Pusher solver (?) Explicit Explicit Explicit Implicit Explicit Explicit Explicit
Poisson solver (??) Hypre Pardiso Maphys FFT

Thomas
FFT Hypre Hypre

Floating-point
precision Double Single?

Double?? Double Single?

Double?? Double Double Double

Code acceleration

Architecture CPU CPU CPU GPU CPU CPU CPU
Parallelization MPI MPI

OpenMP
MPI CUDA MPI MPI MPI

OpenMP
Decomposition Domain Particle Domain Both Domain Particle Particle
Language Fortran Fortran Fortran C+

Cuda C
Fortran C++ C

Simulation times in days (elapsed time)

Case 1 (Nppc,ini = 150)
(No. CPU/GPU)

8
(360)

5
(108)

7
(360)

14
(1)

21
(32)

15
(300)

2.5
(224)

Case 2 (Nppc,ini = 75)
(No. CPU/GPU)

5
(360)

3
(108)

4
(360)

9
(1)

11
(32)

11
(200)

2.5
(112)

Case 3 (Nppc,ini = 300)
(No. CPU/GPU)

14
(360)

6
(180)

13
(360)

14
(2)

20
(64)

22
(400)

2.5
(448)

Table 3.2: Main codes specificities from [Charoy et al., 2019]. ? and ?? symbols respectively refer
to the pusher and Poisson solvers. Nppc,ini corresponds to the initial number of macroparticles
per square cells.

The simulation takes around ∼ 16 µs to reach a steady state. During the transient the
mean density increases from n0 to ∼ 3.6n0 = 1.8× 1017 m−3 before stabilizing. In Charoy
et al. [2019], we showed that for this benchmark statistical convergence was achieved from
Nppc,ini = 75 (Case 2) with a final number of particle per cell Nppc,fin ≈ 275. Thus, we will
focus in the following on the results of Case 2.

3.2.2 Main plasma parameters
At steady state, the main plasma parameters for Case 2 are presented in Figure 3.2.

On the left hand side, 2D maps for the CERFACS simulation at 20 µs provide an overview
of the ongoing physics. First, Figure 3.2 (a) shows that the plasma density is mainly localized
at the position of the ionization profile, its peak being upstream of the position of the maximum
magnetic field xBmax . Electrons are convected in the azimuthal direction under the effect of
the E × B drift but with short-wavelength oscillations that are clearly visible in the zone (I)
in Figure 3.2 (c). Downstream x = xBmax , the oscillations seem to transition toward longer
wavelengths. Around x = xBmax , the axial electronic current exhibits the long-wavelength
azimuthal pattern with a strong magnitude ‖Je,x‖ in Figure 3.2 (e). Oscillations of regions (I)
and (II) will be further discussed in Section 3.2.3. In Figure 3.2 (e), one can also notice the
effects the cathode at x = xc. Indeed, if we approach the emission line from the left, we see
that Je,x and once we cross x = xc, Je,x abruptly goes from positive to negative. This means
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Figure 3.2: Main plasma parameters at steady state for Case 2 at Nppc = 75. (a-c-e): 2D
maps for CERFACS at 20 µs of ion density ni, azimuthal electric field Ey and electron axial
current Je,x. Two zones (I) and (II) can be distinguished when looking at the oscillations in
the domain. (b-d-f): mean azimuthally averaged axial profile over 16-20 µs of ion density ni,
axial electric field Ex and total electron temperature Te. The dashed black line indicates the
position of maximum magnetic field xBmax .

electrons go toward the anode at the left of the emission line while they go toward the cathode
at the right of x = xc. Thus, the directions of electron fluxes depicted in Figure 3.1 are coherent
with the numerical results.

On the right hand side of Figure 3.2, azimuthally averaged axial profiles of the last 4 µs
compare results between the codes presented in Table 3.1. The average over the azimuthal
direction removes the oscillation effects while the time average over 16-20 µs mitigates the
influence of numerical noise. Thus, it is much easier to quantitatively compare numerical results
generated by the independent codes. Overall, it appears that all 1D profiles are extremely close
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within a 5% difference interval. Figure 3.2 (b) confirms that the plasma density is mainly
located upstream of x = xBmax . Figure 3.2 (d) shows the axial electric field reaches a maximum
value right downstream of x = xBmax . Finally, from Figure 3.2 (f), we see that the electrons
reach a maximum temperature Te,max also around the transition region between zone (I) and
(II). Besides, Te,max occurs where the current Je,x is most intense according to Figure 3.2 (e),
which suggests Joule heating J · E is important in this area.

3.2.3 Spectral analysis
Observed oscillations in Figure 3.2 (a-c-e) can be further explored by a spectral analysis. In
2D, coherently to earlier theoretical works [Lashmore-Davies and Martin, 1973; Lampe et al.,
1971b], Ducrocq et al. [2006] found that the ECDI grows at discrete azimuthal wavenumbers
ky ≈ mΩce/v0, with m = 1, 2, ..., where Ωce is the electron cyclotron frequency and v0 the
electron drift velocity. According to linear theory, the ECDI can transition to an ion acoustic
like instability [Gary and Sanderson, 1970; Cavalier et al., 2013]. From quasi-linear theory,
Lafleur et al. [2016a,b] derived a good approximation of the dispersion relation of the ion
acoustic mode, expressed as:

ωR ≈ k · ui ±
kcs√

1 + k2λ2
d

, (3.5)

where vi is the ion beam velocity and cs = (γTe/mi)1/2 is the ion sound with the heat capacity
ratio γ. According to Lafleur et al. [2016b], this expression remains a good approximation
as long as k‖λD is not too small, where k‖ is the wave vector component parallel to B (kz
in the current notation). Yet, in 2D simulations neglecting k‖ [Charoy et al., 2019; Boeuf
and Garrigues, 2018], the transition to the ion acoustic mode has also been observed. In earlier
theoretical studies, Lampe et al. [1971a, 1972] found that anomalous wave-particle interactions,
called resonance broadening, could smooth cyclotron resonances out, which may be responsible
for the ion acoustic transition.

For the present work, the numerical dispersion relation has been obtained at two axial
locations. In Figure 3.3 (a), the normalized 2D Fast Fourier Transform (FFT) computed
over 16-20 µs characterizes the azimuthal instability in zone (I) at x = 0.12Lx. The analytical
dispersion relation from Equation (3.5) has also been included assuming k·vi ≈= kyuy ·viux = 0
i.e. assuming that the instability essentially propagates in a perpendicular direction to the ion
beam. The numerical dispersion relation exhibits a continuous feature and fits well with the
theoretical result, which suggests the transition to the ion acoustic mode has been achieved in
the upstream region of the simulation domain.

In Figure 3.3 (c), the same analysis performed in region (II) leads to different conclusions.
The numerical dispersion relation seems more discrete and the instability does not correspond
to a modified ion acoustic mode. Its nature is still the subject of active research [Hara and
Tsikata, 2020]. Convection of the ion acoustic mode from zone (I) to zone (II), where the
magnetic field is weaker, probably participates in modifying the original ion acoustic mode.

Figure 3.3 (b) and (d) respectively show the evolution of the main azimuthal wavenumber
and pulsation over the axial location for all codes. Transition from zone (I) to zone (II) is
clear and the azimuthal wavenumber is approximately divided by more half. This means the
wavelength is multiplied by roughly two which is consistent with what was observed in Figure 3.2
(c). Besides, most of the groups, with the exception of LAPLACE, sees a sharp increase of
kyλD before dramatically decreasing from x = xBmax .
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Figure 3.3: Spectral analysis of azimuthal instabilities. (a-c): numerical dispersion relations
computed over 16-20 µs at respectively x = 0.12Lx (zone I) and x = 0.6Lx (zone II). White
solid lines represent the theoretical dispersion relation from Equation (3.5). (b-d): normalized
main azimuthal wavenumber kyλD and pulsation ω/ωpi over the axial location x/Lx for the
seven independent codes. The black dashed line represents the location of maximum magnetic
field xBmax .

In Figure 3.3 (d), the frequency starts decreasing at first and reaches a minimum value.
Then, in zone (II), it increases again before stabilizing at a lower level than in zone (I) for
USASK, TAMU, LAPLACE and RUB. For CERFACS, LPP and PPPL, the pulsation continues
to rise around the plume and cathode locations. This behavior could not be explained during
this study.

Finally, from Figure 3.3 (b) and (d), we can roughly estimate the phase velocity from vϕ ≈
ky/ω. From zone (I) to zone (II) ω/ωpi is divided by∼ 2 and kyλD by a lesser factor. Thus, in ad-
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dition to exhibit a lower wavelength, the waves are traveling faster in zone (II) than in zone (I).

As a conclusion, all the codes describes a similar physics, characterized by the presence of two
zones. We first distinguish zone (I), in the channel, that presents a short azimuthal wavelength.
The latter transitions into zone (II) where the wavelength increases in the plume. In all codes,
the numerical dispersion relation closely fits a modified ion acoustic wave dispersion relation,.
The latter is believed to be the asymptotic behavior of a previous instability, the ECDI, that is
likely to play an important role in the anomalous transport [Lafleur et al., 2016b]. The plasma
structure is also very similar to axial profiles that are close with a 5% interval. Although
all groups considered the same setup and initial conditions, all codes differed greatly in their
implementation and used different supercomputers and compilers. These differences could have
prevented such a good agreement between the groups. Nevertheless, a high enough spatial and
temporal resolution (following Equation (2.5) and equation (2.6)) combined with a statically
converged phase space (with Nppc,ini ≥ 150) were sufficient to make these differences negligible
with respect to the present physics here.

3.3 Application: merging-splitting algorithm

3.3.1 Context and objectives
The merging-splitting algorithm presented in Section 2.6.1 can be very useful in large simula-
tions but is delicate to manipulate. Indeed, there are four parameters to set: the target number
of particles per cell Nt, the tolerances in position and speed Tx and Tv and finally, the frequency
ft at which the merging-splitting algorithm will be applied.

In order to decide which parameters can be acceptable for a HT configuration, the previous
2D axial-azimuthal configuration is a good test case to perform a parametric study. Indeed, it
is fairly quick to run, well understood without the merging splitting algorithm and it captures
typical features, such as the ECDI, that exist in a HT. The present parametric study will serve
as a basis for future runs that will need the use of the merging-splitting algorithm. As stated in
Section 2.6.1, this will be the case for real situations where the number of macroparticles can
greatly vary. For instance, during ignition of the thruster, the number of particles can greatly
increase locally. With a domain decomposition approach such as in AVIP PIC, this can be
problematic because processors taking care of the ionization zone can dramatically slow down
the simulation or even exhaust the available CPU memory. Another example of application
of the merging splitting concerns large spatial instabilities such as the breathing mode (BM).
As explained in Section 1.3.2, the BM is characterized by significant temporal oscillations of
the plasma and neutral density. Capturing each of these peaks can be very challenging as the
number of macroparticles can rapidly increase, hence slowing down the computation or causing
out-of-memory errors.

In order to have a good guess for the four (Nt, Tx, Tv, ft) parameters we can first guide our
thinking upon the literature and experience.

The Nt parameter should be chosen such that the described physics is the same as if the
algorithm has not been used, but at a lesser cost. Ideally, the statistical convergence should still
be ensured but one can also make a compromise between accuracy and simulation time. From
2D HTs benchmarks [Charoy et al., 2019; Villafana et al., 2021], it seems statistical convergence
is achieved from ∼ 200 particles per square cell at steady state, so this threshold should be
kept in mind when performing merging-splitting in 2D. In 3D, this value should probably be
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updated as it will be demonstrated in Chapter 5.
As a reminder, the tolerances Tx and Tv are chosen by the user and serve as a dimensionless

threshold in Equation (2.66) to decide if particles are similar in terms of position and speed.
Tx and Tv can be difficult to relate to a measurable physical quantity in the general case but
we can give an example to grasp a more intuitive sense of them. We can clarify their meaning
by considering a hypothetical simple 1D case. In this scenario, nd = 1 and V 1/nd

c reduces to
the spatial step, i.e., V 1/nd

c = ∆x inEquation (2.66). Therefore, if we choose a space threshold
Tx = 1, this would indicate we require particles to satisfy σxi < ∆x, which means we want
particles being scattered over a typical length of ∆x at most. In the general case, we can view
Tx = 1 as a constraint to only consider particles that are located in a volume of size Vc. For
the speed threshold Tv, a similar interpretation can be done with the local mean speed. In the
literature, Luu et al. [2016] suggests that using Tx ∼ 1 and Tv ∼ 0.02 are a good first guess to
capture an accurate physics while reducing the number of particles. However, these values are
case-dependent and should be checked every time.

The final parameter ft, expressed a number of iterations, describes how often the algorithm
will be applied. This parameter is also important as it dictates that the algorithm will be
triggered every ft, which might affect performances if ft is too low.

Determining adequate values for all four parameters is challenging because a four dimen-
sional space parameters must be explored. Thus, for a given setup we need to do two things.
First we should test as many sets (Nt, Tx, Tv, ft) as possible. Then, the collected results can be
compared to the same simulation for which the merging-splitting algorithm is turned off. It is
then expected to obtain a series of sets (Nt, Tx, Tv, ft) for which numerical results are deemed
unchanged in spite of the use the algorithm. A priori, this laborious effort would need to carry
out for each new configurations, which is inconvenient. However, one can reasonably assume
that for a system exhibiting the same kind of physics, as a HT, a common set (Nt, Tx, Tv, ft)
must exist. Therefore, in this section, we propose to identify reasonable values of the four
parameters (Nt, Tx, Tv, ft) and to assess the effects of the merging-splitting algorithm on a HT
simulation setup. Before diving straight into the previous axial-azimuthal configuration we can
first start with a simplified 1D setup to have a quick good sense of acceptable choices.

3.3.2 Preliminary study on a 1D benchmark discharge
Description of the simulation

In order to have a quick overview of the algorithm behavior, we can start the investigation with
a simple 1D discharge that was benchmarked by Turner et al. [2013]. As already mentioned in
Section 2.2.1, AVIP cannot handle 1D meshes but since the physics essentially occurs in one
direction, we can still consider a thin 2D mesh as shown in Figure 3.4. As in Section 3.1.1,
the simulation domain is made of square cell sliced into two isosceles right angle triangles.
The domain is initially filled with a uniform density of electrons e− and ions He+ at thermal
equilibrium. Neutral particles of helium are not present but instead a constant density nn at
temperature Tn is imposed during the whole simulation. For this pseudo 2D case, ions and
electrons particles can exit at the left and right boundaries and are specularly reflected at top
and bottom boundaries as described in Section 2.5.1. Since no magnetic field is present, the
Leap-Frog algorithm is used to update the velocities of particles.

The left boundary is set to a potential φ = 0 V while the right one oscillates between ±φ1
at the frequency f1. During the simulation, the plasma is excited by the varying right potential
and ionization (modeled self-consistently by the Monte Carlo module from Section 2.2.3) occurs
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Figure 3.4: 1D discharge setup from [Turner et al., 2013] using a 2D mesh with a width of
∆y. The potential is set at the left boundary while the right one oscillates between ±φ1 at
the frequency f1. Particles exit at the left and right boundaries, while the top and bottom
boundaries are walls where specular reflections occur.

in the center of the domain. In Turner et al. [2013], four simulations were run and, each of them
tested different initial densities, spatial resolution and voltage frequency at the right side of the
domain. In this benchmark, the main physical quantity that was compared between the different
participants was final ion density profile at steady state. Overall, this meticulous work on the
four configurations represent a standard benchmark for the low temperature plasma community.
AVIP PIC was validated on the four cases and as an example, we present in Figure 3.5 the
comparison on Case 1 of AVIP PIC and published results.Parameters for Case 1 are given in
Table 3.3. We can see that AVIP PIC closely fits results from [Turner et al., 2013].
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Figure 3.5: Mean steady state ion density profile over the last 10 µs of AVIP compared to Case
1 from [Turner et al., 2013].
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Parameters Symbol Value Unit

Computational domain and grid

Cell size ∆x = ∆y 523 µm
Width ∆y 523 µm
Length Lx 6.7 cm
Number of cells Ncell 128× 2

Initial conditions

Plasma density n0 2.56× 1014 m−3

Ion temperature Ti,0 300 K
Electron temperature Te,0 30000 K
Number of particles/ triangular cell Nppc,ini 256

Physical parameters

Left potential φ0 0 V
Right potential amplitude φ1 450 V
Right potential frequency f1 13.56 MHz

Computational parameters

Time step ∆t 1.8436× 10−10 s
Average time range Na 12800∆t s
Final time tmax 94.40 µs

Table 3.3: Simulation parameters for Case 1 from [Turner et al., 2013].

Parametrical study

Since the pseudo 1D simulation takes around 30 min to complete with AVIP, multiple sets of
(Tx, Tv) have been tested while keeping a target number of particles Nt = 100, which is enough
here to ensure a statistical convergence, and a testing frequency ft = 10. In this study the goal
is to quickly identify good candidates of (Tx, Tv) that can be used in a HT simulation.

In Figure 3.6 (a), twenty sets of (Tx, Tv) have been tested and are represented by dots.
For each of these sets, the simulation is run using parameters specified in Table 3.3. Their
respective final ion profiles are averaged over the last 10 µs of the simulation. For all cases, the
final ni profile had the same shape as the reference case but possibly shifted to higher values.
In order to easily compare them with the reference case shown in Figure 3.5, their error with
respect to the reference case is measured using a L2 norm. From Figure 3.6 (a), several trends
appear. First, when Tv increases, the simulation will eventually accumulate errors and diverge
from the correct solution. The point from which divergence occurs depends on the value of Tx:
the higher it is, the lower the tipping point Tv will be. Besides, it is remarkable to observe
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that divergence can occur rather quickly. For instance, using Tx = 0.1 and Tv = 10−1 leads
to a correct solution whereas setting Tx = 0.1 and Tv = 1.5 × 10−1 ends up to a completely
erroneous solution. Overall, two zones (1 and 3) provide accurate results.

It is interesting to assess the effects of the algorithm on the statistics at steady state and the
elapsed time for each simulation. In Figure 3.6 (b), the reference case takes approximately 30
min to complete and ends up with about 35,000 particles in the computational domain. In the
center of the domain, there are ∼ 140 ion particles per cell and less than 40 at the extremities.
For successful sets of (Tx, Tv), the effects of the merging splitting algorithm are spectacular.
Particles have been aggressively merged at the beginning of the simulation and their numbers
have been divided by around 100 at final time. Obviously, the criteria Nt = 100 particles per
cell is not satisfied in any cell of the domain, but it did not prevent the ni profile from being
correct. At steady state, the algorithm attempts to split particles to comply with the Nt = 100
requirement but it fails to do so because particles are too different given the constraints Tx
and Tv. More importantly, the elapsed time has dramatically reduced by a factor ∼ 2.7. On
the other hand, for zones 2 and 4, the final number of particles is either close or higher than
the reference case. Therefore their respective simulation time is around 30 min as well. The
criteria Nt is satisfied but since their final ni profiles are off, it suggests particles with too many
differences in position and speed have been merged and split.

Overall, thanks to this quick study, it seems recommendations from [Luu et al., 2016] are
reasonable for plasma simulations. The 1D discharge benchmark have a rather simple physics
comparing to 2D or 3D simulations of HT that involve the magnetic field. In the present case,
only the final ion profiles could be compared. However, in a HT simulation, other features such
as plasma instability must be preserved in spite of using the algorithm. With so few particles
at the final time, the velocity distribution function (VDF) may be not well discretized. As a
consequence, small variations in the VDF, that would give rise to kinetic effects and micro-
structures, could be severely modified or even lost. In HT, the ECDI characteristics could
then be erroneous. Therefore, it is necessary to conduct a similar parametric study using a
HT simulation and verify if and how it can describe a more complex physics. From what was
learned in this section, Tx = 0.1 and Tv ∼ 10−2 are probably good candidates to start with in
the next parametric study.
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Figure 3.6: Parametric study of (Tx, Tv) using the 1D discharge benchmark from [Turner et al.,
2013] over the last 10 µs of the simulation. (a): measured discrepancy of final ion density profile
with respect to the reference solution as a function of Tx and Tv. (b): averaged final number
of ions and electrons in steady state and elapsed time for each simulation.

3.3.3 Parametric study on the z − θ benchmark
Going back to the axial-azimuthal configuration, a parametric study has been conducted on
the tolerances Tx and Tv and on the target number of particles Nt per triangular cell. Without
the merging splitting algorithm, Case 2, presented in Section 3.2, takes more than four days
(∼ 102 h) to reach 20 µs on 360 CPUs. Therefore, we must limit our study to a few sets
(Tx, Tv, Nt) to keep the computational time reasonable. Table 3.4 presents the tested sets
(Tx, Tv, Nt). The cases are sorted in the ascending order according to how the merging-splitting
algorithm is able to actually merge and split the macroparticles under the constraints Tx, Tv, Nt.
For instance, in Case A, the merging splitting is less active than in Case B and so on.
From Case A to Case E, tolerances on Tx, Tv are gradually loosened to assess their effects
on the simulation. As it will be demonstrated below, the target number Nt turns out to be
important as well. Case F represents a simulation where the merging-splitting algorithm is
quite aggressive. Indeed, since it uses the same Nppc,ini = 300 as Case 3, the ionization source
term from Section 3.1.2 injects four times more macroparticles than Case 1. It should be
compared to Case C as they have identical Nt, Tx and Tv but Case F has more macroparticles
to merge and split. All simulations are run up to 20 µs and the same diagnostics of Section 3.2
are generated.

3.3.4 Results and discussion
Effects on the statistics

In Figure 3.7, the statistical effects of the merging-splitting algorithm, on both the electrons
and ions, are presented.

In Figure 3.7 (a), the final number of macroparticles per triangular cell Nppc,fin as a function
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Name case Nt Tx Tv

Reference - 0 0
Case A 50 5× 10−2 5× 10−3

Case B 75 1× 10−1 1× 10−2

Case C 75 1× 10−1 5× 10−2

Case D 50 1× 10−1 5× 10−2

Case E 50 1× 10−1 1× 10−1

Case F (Nppc,ini = 300) 75 1× 10−1 5× 10−2

Table 3.4: Tested sets (Nt, Tx, Tv) of the merging splitting algorithm. For simplicity, ft = 10
for all cases. The reference case is Case 2 from Table 3.1. Cases A to E starts with the same
initial conditions as Case 2 while Case F uses the same number of macroparticles as Case 3.

of x indicates that the number of electron macroparticles has been greatly reduced overall. The
decrease of Nppc,fin is the lowest for Case A and the highest for Cases D and E which have very
similar profiles. Cases B to F display a Nppc,fin that belongs to the interval [−Nt/2; 2Nt] for
all axial positions, except at the plume where the density must tend to zero. This means the
algorithm, under the constraints Tx and Tv, could actually merge the excess of electrons to reach
the target, which is the desired behavior. Conversely, Case A did not meet the [−Nt/2; 2Nt]
target interval for all axial positions, as Nppc,fin has a maximum value of virtually 200. This
suggests the constraints Tx = 5× 10−2 and Tv = 5× 10−3 were too strict and the algorithm
was unable to identify clusters of similar particles. Finally, Case F displays a higher Nppc,fin

than the reference case in the near plume in the ∼ 0.7Lx − 0.9Lx range. Yet, this does not
mean that particles were split in this area because one needs to recall Case F started with four
times more particles than the reference case, which is Case 2 from Table 3.1.

In fact, Figure 3.7 (c) shows that, for Case F, electron macroparticles have a mean statis-
tical weight qf always above the weight of Case 3, represented by a black dashed line. As a
reminder,qf is set at the beginning of the simulation by qf = (n0Vc)N−1

ppc,ini, (see Equation (2.4)),
but will change over time when the merging-splitting algorithm is activated. Like Case 3, the
reference case in blue exhibits a constant statistical weight qf . Cases A to E have all a statis-
tical weight qf above the reference in the whole domain except near the anode at x = 0, which
indicates particles are probably split there.

In the right column, the effect of the algorithm on ions is quite different. In Figure 3.7 (b),
we can see the decrease of Nppc,fin is still visible but not as spectacular as in Figure 3.7 (a).
For instance, Case A has a profile extremely close to the reference case, which means only a
few particles have been merged. Overall, only Case E, which has the most loosened tolerances
Tx and Tv, can reach the target interval [−Nt/2; 2Nt]. Case F is spectacular because it can
have four times more ions than electrons in the ionization region while Nppc,fin are similar for
both e− and Xe+ downstream. Thus, it again means the algorithm could not find similar Xe+

particles given the Tx and Tv constraints.
Since the plasma is quasi-neutral, the statistical weight qf is logically lower in Figure 3.7

(d) for ions than it is for electrons in Figure 3.7 (c). For Case A, the profile is only slightly
higher than the reference case except in the ionization zone, where it is superimposed.
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Figure 3.7: Statistical effects of the merging-splitting algorithm for e− (left column) and Xe+

(right column). (a-b): mean number of macroparticles per triangular cell Nppc,fin along the
axial direction in the range 16-20 µs. (c-d): mean statistical weight qf along the axial direction
in the range 16-20 µs. In (c-d), the dashed black line represents the statistical weight of Case
3 from Table 3.1 that must be compared to Case F.

Overall, the algorithm has reduced the number of macroparticles through merging but also
split some particles near the anode, where the density drops. Besides, in the present setup,
electrons were more likely to be merged than ions. This latter observation is quite surprising
since the electron velocity distribution function (EVDF) is likely to be more spread out than
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that of ions. So it should be more difficult to identify similar electrons under the constraints
Tx, Tv, Nt than ions. As of today, we do not have an explanation for this result.

Effects on the physics

The effects on the physics can be explored by studying the axial profiles of ion density ni, axial
electric field Ex and total electron temperature Te. Figure 3.8 (a) shows the ion density profiles
are quite close for all cases except Case F which displays a significantly higher peak in the
ionization region. The reference case is virtually superimposed to Case A. In Figure 3.8 (b),
the conclusions are similar, Case F shows the most approximate profile and cases with strict
Tx and Tv constraints fit well the benchmark result. The situation is more insightful when
looking at the total electron temperature Te in Figure 3.8 (c). Again, Case F is quite far from
the expected result: its peak is similar but shifted downstream. For Cases A to D the profiles
are in good agreement in the ionization zone but higher near the anode and downstream of the
acceleration zone (zone II in Figure 3.2). Case A, which experiences the fewer merging and
splitting processes, has the lowest temperature discrepancy while Case F with a more aggressive
strategy displays a temperature increase of ∼ 50%. Therefore, it seems the merging splitting
algorithm tends to introduce some numerical heating. The numerical heating can be controlled
with reasonable values of Tx = 10−1 and Tv ∼ 1−5× 10−2 which correspond to Case B-C even
with a quite low target number Nt = 50 (Case D).
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Figure 3.8: Comparison of main plasma parameters averaged over the 16-20 µs range obtained
with different parameters of the merging-splitting algorithm: (a) ion density ni, (b) axial electric
field Ex and (c) total electron temperature Te.

In addition to the main plasma parameters, it is crucial to ensure that the final instabilities
are well recovered. To do so, we can look at the main normalized pulsation ω/ωpi and azimuthal
wavenumber kyλD. Thus, in Figure 3.9, we report their values along the axial direction from a
FFT analysis based on the last four microseconds of the simulation as in Figure 3.3.

In Figure 3.9 (a), the azimuthal wavenumber is supposed to transient from high values (zone
I) to low values (zone II). When tolerances Tx and Tv are too relaxed as in Case E, this transition
does not exist and kyλD actually increases. Although Case D showed a satisfactory agreement
when comparing the main plasma parameters, it poorly captures the expected final instability.

109



3.3. APPLICATION: MERGING-SPLITTING ALGORITHM

For this particular case, it seems that the lack of particles is detrimental since it uses the same
tolerances Tx and Tv as Case C but its target number Nt was set to 50 instead of 75. Case C is
the first case using the merging splitting algorithm that actually predicts the correct transition
from zone I to zone II. Values of kyλD are also closer to the reference case. Yet, results remain
below in zone (I). The latter can be greatly improved by adjusting the tolerance on speed Tv,
which results in Case B, which fits well in both zones I and II. Surprisingly, Case A exhibits a
lower accuracy in spite of performing the less merging and splitting of particles. However, as
it was observed in Figure 3.7, its number of electrons (a) was still reduced, especially in the
ionization zone. Thus, Case A is probably too far from statistical convergence to accurately
describe the modified acoustic instability. Finally, Case F, which was already off regarding axial
profiles of main plasma parameters, completely fails to describe the same instabilities as the
reference case. The difference in results is striking considering that fact that it uses the same
Nt, Tx and Tv as Case B. However, since Case F has more particles to merge and split than Case
B, it seems the merging-splitting algorithm leads to an accumulation of error in the description
of the velocity distribution function. Such deviation was already noticed by Luu et al. [2016],
but it is supposed to remain limited as long as the Tx and Tv tolerances are reasonable. In the
present case, a pragmatic solution would probably consist in limiting the application frequency
ft of the algorithm. Checking every 10 iterations if Nppc lies in the [−Nt/2; 2Nt] interval may
be unnecessary and susceptible to cause errors.

The analysis conducted on the azimuthal wavenumber is similar for the normalized pulsation
ω/ωpi in Figure 3.9 (b). Cases D-E-F are off whereas Case A-B-C display a reasonably good
agreement with the benchmark case. Yet, while Case B was closely related to the reference
case in Figure 3.9 (a), the sharp decrease of ω/ωpi at the transition from zone I to zone II is
not very clear. Probably a better statistical convergence would improve accuracy here.

Effects on transients

So far the discussion has focused on the steady state. However, some significant differences with
the benchmark case arise during the transient of the simulation. For this study, we compare
the reference case with Case B, which describes relatively well the expected physics according
to the previous subsections.

In Figure 3.10, the total exiting current, normalized by the azimuthal length Ly of the
domain is shown for both cases. Both reach the steady state value of Jm = 400 A ·m−2, that
is imposed by the ionization source term S(x) from Section 3.1.2. For the reference case, there
is initially an accumulation of charged particles in the ionization zone, but they are eventually
convected away. Thus, a sharp peak of exiting current is measured at around 3 µs. Then,
the current abruptly decreases before it slowly increases again. The current oscillates around
Jm = 400 A ·m−2 until an equilibrium is reached between sources (ionization) and losses (exit).
The dynamics is more disturbed when the merging-splitting algorithm is activated. The initial
burst of particles flux occurs at a later time around 8 µs and is much higher.

In fact, the merging-splitting algorithm forces an artificial accumulation of charged particles.
Thus, prior to the first current peak, the axial profile of electron density at t = 5 µs of Figure 3.10
(c) shows that electrons are piling up in the ionization zone. Most electrons originate from
merging processes between other electrons created by ionization and injected at the cathode line.
Only a small fraction of electrons have been split near the anode. This accumulation suggests
that merging-splitting processes delay the convection of charged particles by the Lorentz force.
As a result, when convection does occur, the measured exiting current is higher than in the
reference case as noticed in Figure 3.10 (a). When no merging-splitting algorithm is used, the
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Figure 3.9: Comparison of spectral analysis over the 16-20 µs range obtained with different
parameters of the merging-splitting algorithm: (a) normalized azimuthal wavenumber number
kyλD and (b) normalized frequency ω/ωpi

axial density profile at t = 5 µs shown in Figure 3.10 (b) has a lower maximum. In fact, a
similar accumulation of particles takes place but earlier, starting around 1 µs and in smaller
proportions. Note that the present decomposition of density profile according to the electron
origins (ionization and cathode injection) is similar at steady state. Thus, Figure 3.10 (b) shows
how cathode electrons travel upstream and get mixed with electrons generated by ionization
near the anode.

Overall, it appears that transients are severely affected when the merging-splitting algo-
rithm is activated, including in cases that retrieve reasonably well the steady state. A possible
explanation lies in the fact that the algorithm can modify the velocity distribution function. In
Figure 3.10 (d-e) are presented the axial velocity distributions of electrons along the axial direc-
tion after 50,000 iterations. The core of the distributions is visually the same but Figure 3.10
(e) indicates merging-splitting processes have artificially spread the distribution towards higher
vx values. Thus, Case B is initialized as if the electron temperature, measuring the spread of
the distribution, was higher. At steady state, both distributions eventually look similar but
numerical heating was nevertheless introduced, which was noticed in the axial temperature
profiles in Figure 3.8 (c).

As an intermediate conclusion, Case B, which reached a similar steady state as the reference
case, was nevertheless quite different during the transient because the merging-splitting algo-
rithm introduced numerical errors, that can be seen in the velocity distribution function. In
this parametric study, the algorithm controls the number of particles every ft = 10 iterations,
during the whole simulation. Thus, in the first 50,000 iterations, the algorithm was applied
5,000 times, which represents as many opportunities to introduce numerical errors. Besides,
using so intensively the algorithm from the beginning of the simulation is probably excessive.
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Figure 3.10: Comparison of transients between the reference case and case B. (a): temporal
evolution of exiting current density Jm. (b-c): axial profile of electron density ni for the
reference case and case B respectively at t = 5 µs. The composition of the total density in blue
is detailed according to whether electrons stem from ionization, cathode, merging or splitting.
(d-f): axial velocity distribution of electrons along the axial direction at t = 0.25 µs for the
reference case and case B, respectively.

Indeed, the algorithm is primarily intended to control a sudden increase of numerical particles.
In the reference case, the number of numerical particles starts increasing around 1 µs. So, using
the algorithm in first moments of the simulation is probably useless or it can even introduce
error in the distribution function as in Figure 3.10 (e). As a result, we should not only tune
the usage frequency ft, but also activate the algorithm only when it is necessary.
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3.3.5 Toward a better use of the merging-splitting algorithm
Building upon the parametric study, an attempt was made to correct the discrepancies observed
during the transient. To do so, a final set of parameters has been tested on the axial-azimuthal
setup. For this case we use Tx = 10−1 and Tv = 10−2 as for the Case B, which seems good
values for the physics of HTs.

In order to mitigate numerical errors, the usage frequency ft is increased so that the algo-
rithm will be applied only a few times during one average time range Na. For this example we
set ft = 1000 iterations. Besides, the algorithm is activated from t = 1 µs, which corresponds
to the moment when the reference case experiences a strong increase of particles density in the
ionization zone. By doing so we ensure the same initial conditions are used as in the reference
case.

During the parametric study, it also appeared that the statistical convergence could be
an issue. In order to keep a number of particles high enough while still performing merging
processes we decided to use the same initial number of particles as in Case 1 from Table 3.1.
Therefore, the simulation starts with twice the number of particles as the reference case, which
is Case 2, and the ionization source term injects twice as many particles. With such a choice
we place ourselves in a concrete application of the merging-splitting algorithm: keeping the
minimal number of numerical particles with the correct physics. In order to choose the target
number Nt accordingly, we can use Figure 3.7 (a-b). For the reference case, that is statistically
converged, Nppc,fin varies between ∼ 100 and 270 in most of the domain. Therefore Nt = 150
seems to be a good choice since the algorithm will attempt to split or merge particles if Nppc falls
in the [−Nt/2; 2Nt] interval. The algorithm will still actively reduce the number of particles
since Nppc,fin lies within ∼ 200 and 540 for Case 2.

In Figure 3.11 we present a comparison between the reference case and the improved
merging-splitting case.

In Figure 3.11 (a), it can be seen that in spite of using the merging-splitting algorithm,
both transients are extremely similar throughout the simulation. This indicates the artificial
density increase in the ionization zone observed in Case B has been eliminated.

In Figure 3.11 (b), we assess how well the instability is captured with the improved MS case.
Downstream, in zone (II), both cases exhibit an excellent agreement, that is better than with
Case B. Upstream, in zone (I) the fit is not as good but remains satisfactory. The transition
between zone (I) and zone (II) is well recovered.

The main plasma parameters such as density and temperature are also very similar but
we present only one macroscopic quantity in Figure 3.11 (c-d): the azimuthal electric field
Ey. Both 2D maps look very similar overall. As it was already hinted by Figure 3.11 (b), the
instability in zone (I) does not look as neat with the merging-splitting algorithm and it even
seems more grainy. This observation might suggest that small structures like in zone (I) are
more difficult to resolve with the algorithm, in spite of being less intrusive.

Overall, the steady state and transients are well retrieved by the merging-splitting algorithm.
Small discrepancies remain in the zone (I) but one should also note that the number of numerical
particles has been reduced by 30% with respect to Case 1. Furthermore, the elapsed time to run
the simulation up to 20 µs has been cut by ∼ 20%. For this particular case, the gain remains
modest but it could be more important if collisions were taken into account.
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Figure 3.11: Comparison of the reference case and the improved splitting-merging case, denoted
by MS. (a): transients of exiting current density Jm. The dashed black line indicates when
the merging-splitting algorithm is activated. (b): normalized axial profiles of main azimuthal
wavenumber ky and man pulsation ω. (c-d): final azimuthal electric field Ey for the reference
case and improved MS case, respectively.

3.4 Conclusion
In this chapter, we have presented the implementation of a 2D axial-azimuthal model in AVIP.
The axial-azimuthal plane is ideal to study the electron transport across the magnetic bar-
rier. Indeed, it was found that classical theory was unable to explain the actual axial electron
transport which turned out to be much higher [Meezan et al., 2001]. Among possible explana-
tions, one stands out and proposes that an azimuthal instability, the ECDI, could enhance the
electron transport [Lafleur and Chabert, 2017; Charoy, 2020].

The implemented 2D axial-azimuthal model makes several simplifications such as ignoring
collisions or imposing an ionization source term but it is sufficient to retrieve the ECDI as
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predicted by the theory Lafleur et al. [2016a,b]. Within the framework of an international
benchmark, AVIP could successfully retrieve the same averaged plasma quantities and the
same azimuthal instability as seven other independent PIC codes [Charoy et al., 2019].

Another advantage of the current 2D axial-azimuthal model is that it provides a configura-
tion for which new numerical methods can be developed and tested. Thus, the particle control
algorithm through merging and splitting, presented in Section 2.6.1 can use this 2D setup as
a suitable test case in order to estimate the appropriate values for its four input parameters
Tx, Tv, Nt and ft. These four parameters are case dependent but one can expect they remain
similar for simulations capturing the representative physics of HTs. Because running the 2D
axial-azimuthal simulation is nevertheless costly and needs at least several days to complete,
the tolerances Tx, Tv were first explored with the simpler 1D benchmark for plasma discharges
from Turner et al. [2013]. This preliminary study indicated Tx, Tv of the order of 10−1 and
10−2 respectively were good candidates. It also hinted that the algorithm was quite sensitive
to the speed tolerance in particular. From this quick overview, a reduced number of sets of
Tx, Tv and Nt was tested in the 2D axial-azimuthal setup to confront the algorithm capability
to capture the multidimensional and complex physics of HTs. When studying the statistics, it
appeared the algorithm was able to reduce the number of particles in all cases but not always
able to reach the target interval [−Nt/2; 2Nt]. Interestingly ions and electrons did not react
the same way to the algorithm which suggests using different tolerances for charged particles
could be considered. The analysis of the main plasma parameters (ni, Ex, Te) and the ECDI
features (ω/ωpi, kyλD) confirmed that Tx, Tv of the order of 10−1 and 10−2 were good picks for
the simulation but also revealed the choice of the target parameter Nt was important. However,
the transients were found to be significantly different because the velocity distribution function
was severely modified. Such an effect could eventually be mitigated by adjusting the algorithm
frequency ft and by activating the algorithm only when the number of particles increases.

Overall it seems using Tx = 10−1, Tv = 10−2, ft = 1000 leads to quite accurate results while
reducing the number of particles. The Nt parameter should be set such that the statistical
convergence is ensured. For 2D simulations, this number is probably around 200 per square
cell [Charoy et al., 2019; Villafana et al., 2021]. A statistical convergence study will be pre-
sented in Chapter 5 for a 3D case. The parametric study has revealed the merging splitting
algorithm should be used with great care. Therefore we recommend to activate it only when
the Lagrangian kernel dramatically slows down the calculation. One inherent difficulty with
the algorithm is that the current position and speed tolerances cannot be easily conceptualized
and related to a degree of accuracy. For instance, it would be much more convenient to have a
parameter representing the loss of accuracy accepted by the user with respect to the unmodified
velocity distribution function. A final remark concerns the effect of the splitting processes. In
the current setup, they did take place but at lower levels in comparison to merging processes.
Indeed, no plasma expansion occurs here and therefore a better insight of their impact would
be seen in a 2D radial-axial or in a 3D setup including the plume.
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Chapter 4

Validation in a 2D r − θ setup

In the previous Chapter, a rigorous verification was given to a 2D axial azimuthal
setup and useful insights on the ECDI and the plasma dynamics could be obtained.
However, plasma wall interactions were therefore discarded whereas they can have an
important impact on the physics and trigger the Modified-Two-Stream-Instability
(MTSI) that can be coupled with the ECDI Janhunen et al. [2018b]; Héron and
Adam [2013]. Therefore, as a continuation of the LANDMARK project, we propose
a representative simulation test-case of E × B discharges accounting for plasma
wall interactions with the presence of both the Electron Cyclotron Drift Instability
(ECDI) and the Modified-Two-Stream-Instability (MTSI). Seven independently de-
veloped Particle-In-Cell (PIC) codes have simulated this benchmark case, with the
same specified conditions. The characteristics of the different codes and computing
times are given. Results show that both instabilities were captured in a similar fash-
ion and good agreement between the different PIC codes is reported as main plasma
parameters were closely related within a 5% interval. The number of macroparticles
per cell was also varied and statistical convergence was reached. Detailed outputs
are given in the supplementary data, to be used by other similar groups in the
perspective of code verification.

This Chapter is a slight adaptation of published work [Villafana et al., 2021]
and starts by a literature review on this topic in Section 4.1. In Section 4.2, the
numerical setup is defined. In Section 4.3, AVIP PIC will detail what happens
during the simulation and confirm the presence of both the MTSI and ECDI thanks
to theoretical results stemming from linear theory of instabilities. In Section 4.4, the
seven independent PIC codes participating in this benchmark are presented along
with a cross comparison of all groups. A particular attention is also given to the
statistical convergence and shows similar results as in the previous Chapter.
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4.1 Literature review on plasma wall interactions and
the MTSI

Many devices, such as HTs [Goebel and Katz, 2008; Smirnov et al., 2006; Boniface et al., 2006]
and magnetron discharges [Tsikata and Minea, 2015; Boeuf and Chaudhury, 2013] operate in
the regime of partially magnetized E × B plasmas. Though it is generally understood that
plasma fluctuations are responsible for the enhanced electron transport, typically larger than
what would be expected from the classical collisional theory [Meezan et al., 2001], the exact
nature of the instabilities resulting in anomalous electron current is not fully understood. A
recent overview of different mechanisms of the instabilities and their interactions can be found
in [Kaganovich et al., 2020].

One such mechanism is the Electron Cyclotron Drift Instability (ECDI) or Electron Drift
Instability (EDI) driven by the E ×B electron drift, as mentioned in Section 1.3.2. Over the
past decade, this instability has attracted an intense interest as an important source of the
anomalous transport in Hall thruster [Adam et al., 2004b; Héron and Adam, 2013; Lafleur
et al., 2016a,b; Boeuf and Garrigues, 2018]. As a reminder, the instability occurs for the wave
propagating in the E ×B direction, perpendicular to the magnetic field. When the wave can
also propagate along the magnetic field lines, it may trigger another kind of instability: the
Modified Two-Streams Instability (MTSI). Finite value of the electric field perturbation along
the magnetic field results in significant electron heating in this direction [Krall and Liewer,
1971; Hastings and Niewood, 1989]. Overall, it may result in comparable electron and ion
heating [McBride et al., 1972], but in different directions. The unmagnetized ions are primarily
heated up in the E ×B direction, whereas electron heating occurs along B. Such anisotropic
heating may have important consequences for E × B discharges. For instance, in the case
of magnetically shielded HETs, ion heating might increase the erosion near magnetic poles
because of local magnetic field lines parallel to the walls [Mikellides and Ortega, 2020]. In a
non-magnetically shielded HET, the magnetic field lines are essentially radial at the channel
exit and so the electron heating along B tends to enhance the flux toward the walls [Sengupta
and Smolyakov, 2020]. As a consequence, secondary electron emission (SEE) might increase
[Taccogna et al., 2019]. Although SEE has a modest impact on electron transport [Garrigues
et al., 2006], it might lead to other sheath instabilities [Sydorenko et al., 2008; Tavant et al.,
2018].

The nonlinear coupling of ECDI and MTSI in the presence of plasma-wall interaction poses
significant challenges to correctly evaluating the transport properties. The analytical treatment
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of the kinetic equations provides useful insights but remains difficult to conduct [Lafleur et al.,
2016b; Krall and Liewer, 1971]. Thus, it is common to study them numerically with PIC
simulations. These instabilities are intrinsically multidimensional, so 2D or 3D simulations
are required [Tsikata et al., 2010]. Unfortunately, most of the time, 3D simulations remain
computationally too costly. For instance, only Taccogna and Minelli [2018] have captured
both the ECDI and the MTSI in 3D PIC simulation using geometrical scaling factors. Recent
progress on 3D PIC simulations are also reported in Chapter 5. As of today, most of the PIC
simulations of E×B discharges are performed in 2D. In particular, radial azimuthal simulations
are appropriate to study the effects of the plasma-wall interaction in HETs. Geometrical effects
play a key role in this configuration since the curvature at the walls was found to greatly affect
SEE yields, that can be coupled with the ECDI [Héron and Adam, 2013]. The setup can be
further simplified by neglecting curvature effects while still providing relevant physics insights.
By using a Cartesian grid, Croes et al. [2017] could verify that the ECDI was one important
factor explaining electron anomalous transport. Besides, even with no curvature, Tavant et al.
[2018] observed a coupling between the ECDI and SEE. Different regimes of sheath saturation
were found possible depending on the choice of the wall material.

In 2D PIC simulations, in addition to the ECDI, the MTSI was identified by Janhunen et al.
[2018b] and observed in Petronio et al. [2021]. Similarly, Hara [2019] have found the typical
radial patterns resembling the MTSI. It was found in [Janhunen et al., 2018b] that the ECDI and
MTSI had the expected two dimensional structure and that both instabilities seemed coupled
demonstrating an inverse cascade towards the long wavelengths azimuthally and showing radial
structures in the axial current. However, this study was limited to the first microseconds of
simulation due to strong electron heating, partially amplified by the absence of the heating
saturation mechanism in the simulations. Indeed, in order to capture the appropriate physics,
a 2D3V radial-azimuthal simulation setup uses an off-plane axial electric field to maintain
a E × B cross-drift current in the azimuthal direction. Therefore, with periodic boundary
conditions in the azimuthal direction, the energy of particles keeps increasing in time due to
the imposed axial electric field. This is not the case in a real HET with a finite length between
the anode and cathode. One way to circumvent this difficulty and mimic the finite axial length
of the discharge is to use a virtual axial length model in the axial/off-plane direction [Boeuf,
2017; Lafleur et al., 2016b]. In this model, the axial displacement of particles is tracked and
particles are replaced with cold ones after having traveled the distance corresponding to the
effective length of the discharge.

The re-injection of particles however has to be handled carefully. For example, Tavant
[2019] showed that the use of a virtual axial model with random position re-injection effectively
results in large numerical instabilities, which can dramatically impact the simulation results.
This drawback has already been observed in 1D-azimuthal simulations [Lafleur et al., 2016a;
Asadi et al., 2019; Smolyakov et al., 2020].

Therefore, PIC simulations in the radial-azimuthal plane remain intricate and require a
careful analysis of the physics mechanisms of the instabilities as well as a careful treatment of
numerical issues. We note here that, in spite of constant progress, the current time and spatial
resolution of experimental measurements in E×B discharges in HET conditions do not allow
a detailed validation of the different instabilities observed in simulations [Kaganovich et al.,
2020].

At this stage, the verification of the physics and numerical implementations are important
to provide confidence in the numerical results via code benchmarking, i.e. performing a code-
to-code comparison. As a result, as part of the LANDMARK project, and similarly to what
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was done in Section 3.2 and [Charoy et al., 2019], we propose a 2D PIC benchmark for the
radial-azimuthal plane of a HET. Our goal is, with a relatively simple configuration, to include
both the MTSI and the ECDI physics, compare the predictions of seven independent codes, and
characterize the nonlinear features of fluctuations and structures arising in simulations. These
simulations have been performed by seven independent research groups to provide a reference
benchmark for the community.

4.2 Methodology and numerical setup

4.2.1 Numerical setup
For the radial-azimuthal PIC simulations presented in this work, we consider a square 2D
Cartesian grid, with square cells, as shown in Figure 4.1. The azimuthal direction y is periodic
and the curvature is neglected. In a real HET, a dielectric layer would cover the walls in the
radial z direction, but for this benchmark, the simulation domain is instead bounded by two
grounded walls with an imposed potential φ0 = 0 V. The time step ∆t and cell size ∆y = ∆z
are chosen to comply to the PIC stability conditions [Birdsall, 1991] from Equations (2.5)
and (2.6), that are reminded below, ∆y < λD

2 ,

∆t < 0.2
ωpe
,

(4.1)

With ne = n0 = 5× 1016 m−3 and Te = Te,0 = 10 eV, we find λD = 100 µm, ωpe = 1.26× 1010 rad · s−1

and we set ∆y = 50 µm and ∆t = 1.5× 10−11 s.

Figure 4.1: 2D radial-azimuthal (z, y) setup.

We consider only electrons and singly charged xenon ions, Xe+, in a collisionless plasma.
Collisions were not accounted for in this work because both the ECDI and MTSI can occur
without them [Janhunen et al., 2018b]. Besides, the collisionless assumption makes the sim-
ulations running faster, which is advantageous for benchmarking. Initially, the particles are
distributed uniformly in the domain with a density n0 = 5× 1016 m−3 and a velocity sampled
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from a Maxwellian distribution at temperature Te,0 and Ti,0, for electrons and ions, respectively.
The simulation is initialized with Nppc,ini = 100 macroparticles per cells (for each species) which
gives approximately Nppc,fin = 212 macroparticles per cell at steady-state. We use a constant
and uniform radial magnetic field Bz in the radial z direction in addition to an off-plane axial
electric field Ex perpendicular to the simulation domain, which produces an E × B current
along the azimuthal y direction. The particles reaching the walls are removed from the simu-
lation. The electrons are magnetized, while the ions are not. The diagnostic data are averaged
during the computation over Na = 1000 time steps and the output files are generated every
Na. Numerical and physical parameters are summarized in Table 4.1.

Parameters Symbol Value Unit

Simulation domain

Cell size ∆y = ∆z 50 µm
Azimuthal length Ly 1.28 cm
Radial length Lz 1.28 cm
Number of cells Ncell 256× 256

Initial conditions

Plasma density n0 5× 1016 m−3

Ion temperature Ti,0 0.5 eV
Electron temperature Te,0 10 eV
Number of particles/cell Nppc,ini 100

Physical parameters

Potential at walls φ0 0 V
Radial magnetic field Bz 200 G
Axial electric field Ex 10 kV m−1

Virtual axial length Lx 1 cm

Computational parameters

Time step ∆t 1.5× 10−11 s
Average time range Na 1000∆t s
Final time tmax 30 µs

Table 4.1: PIC simulations parameters.
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4.2.2 Virtual axial model
Although we perform a 2D simulation of the radial-azimuthal (z, y) plane, in order to retrieve
the behavior of an HET, a constant electric field Ex is set in the axial x direction. Note that
the Poisson equation is solved only in the (y, z) plane at x = 0. As it is, the modeled system
would not reach a steady state due to a constant input of energy, as observed in previous PIC
studies [Janhunen et al., 2018b; Héron and Adam, 2013]. To reach a steady state, a virtual axial
model inspired from 1D azimuthal [Lafleur et al., 2016a; Hara, 2019; Asadi et al., 2019] and
2D radial-azimuthal [Tavant et al., 2018; Croes et al., 2017; Taccogna et al., 2019] simulations
is used and shown in Figure 4.2.

Figure 4.2: Virtual axial model used for the 2D radial-azimuthal simulation. The plasma
dynamics take place in the y − z plane.

All particles are initialized in the plane located at x = 0. The x location of each particle
is updated and monitored whether it reaches the virtual axial boundaries situated at x =
±Lx. The imposed axial electric field accelerates the ions towards the +Lx boundary while the
magnetized electrons drift in the azimuthal direction. Although electrons tends to be located
in the x < 0 space, they gyrate around the magnetic field lines and some may be energetic
enough to reach the +Lx boundary.

Any particle crossing the x > |Lx| boundaries is reinjected in the plane at x = 0, with the
same y and z. The injection velocity is sampled from a Maxwellian distribution at the initial
temperatures, Te,0 and Ti,0 for electrons and ions, respectively. In this work, Lx is set to 1 cm.
We chose this value to obtain a typical steady state that can take place in a HET. Too small
values of Lx refresh velocities too often, which prevents any relevant physical phenomena to
develop as the system is constantly reset to its initial state. Too high values of Lx can end up
in large electron temperatures (> 50− 100 eV), which is consistent with 1D simulation results
[Lafleur et al., 2016a]. As an example, going from Lx = 1 cm to Lx = 2 cm, increases both the
total energy of ions and electrons of ∼ 15− 20 eV at steady state.
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4.2.3 Ionization
Particle losses at the walls also need to be compensated to reach a steady state. In this work,
we consider a collisionless case generating new particles with a constant source term mimicking
ionization, as in previous investigations [Hara and Tsikata, 2020; Charoy et al., 2019; Boeuf
and Garrigues, 2018]. Similarly to a real HET, the ionization profile is higher in the center of
the channel than at the walls. We have assumed the ionization is uniform in the azimuthal
direction and that its radial profile is given byS(z) = S0 cos

(
π z−zM
z2−z1

)
for z1 ≤ z ≤ z2,

S(z) = 0 for z > z2 or z < z1,
(4.2)

with S0 the maximum value of the source term and z2−z1 the width of the ionization zone. The
coordinates z1 and z2 are symmetric with respect to zM = Lz/2. The width of the ionization
zone is chosen to be 1.1 cm (∼ 86%Lz). The maximum of the ionization profile is chosen
to be symmetric with respect to the centerline and its width is chosen considering the typical
sheaths’ dimensions in HET [Chabert, 2014]. Using the simulation parameters described above,
z1 = 0.09 cm and z2 = 1.19 cm. At steady state, the total current exiting at the walls must
be equal to the current injected into the system by the ionization term. We can calculate the
injected current density Jm as

Jm = e

ˆ Lz

0
S(z)dz = 2

π
(z2 − z1)eS0. (4.3)

From Equation 4.3, we enforce the exiting density current to be 100 A ·m−2 by setting the
maximum value of the source term: S0 = 8.9× 1022 m−3 · s−1. For a practical numerical im-
plementation, one should first compute the number NXe+/e− of physical pairs of X+

e /e− to be
injected in the domain at each iteration given by

NX+
e /e− = Ly∆t

ˆ Lz

0
S(z)dz. (4.4)

The new particles are injected in the plane x = 0. The in-plane location (yi, zi) of each NXe+/e−

pair is randomly chosen according to the ionization profile given in Equation (4.2). Explicitly,
we used two random numbers R1 and R2 between 0 and 1, as yi = R2Ly,

zi = arcsin (2R1 − 1) z2−z1
π

+ zM .
(4.5)

Finally, the velocity of each particle is sampled from a Maxwellian distribution at Te,0 and Ti,0,
for electrons and ions, respectively.

4.3 Results for the reference case with the code by CER-
FACS

In this section, we present in detail the dynamics of the discharge and of ECDI and MTSI
instabilities using the code by CERFACS (detailed in section Section 4.4.1).
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Figure 4.3: CERFACS code: Temporal profiles of ion density ni and total ion energy Ei (a)
and radial Te,z and azimuthal Te,y electron temperatures (b). In (a), the left y axis in blue
corresponds to ni and the right one in orange refers to Ei. Blue arrows in (b) indicate local
extrema of Te,z at 11.7 µs (max) and 17.5 µs (min).

4.3.1 Simulation timeline
We show in Figure 4.3 the temporal profiles of ion density ni, total ion energy Ei and elec-
tron radial and azimuthal temperatures (Te,z and Te,y, respectively). At the beginning of the
simulation, for ∼ 1 µs, the ion density increases linearly, because of the imposed ionization
source term. Ions gain energy under the effect of the axial electric field for ∼ 1.5 µs. Then,
most of the ions have reached the virtual boundary Lx = 1 cm, which brutally dissipates their
mean energy. The electron azimuthal temperature Te,y remains at its initial value for 0.5 µs but
then it increases by a factor of 3 between 0.5 µs and 1.7 µs. The radial electron temperature
Te,z first decreases because the most energetic electrons leave the computational domain. Yet,
it eventually sharply rises in 0.2 µs. After t = 2 µs, ni, Ei, Te,z and Te,y reach an oscillatory
plateau and only at t = 17 µs the oscillations get damped. This situation results in a radial
electron temperature drop and in a small increase of ion density. In contrast, Ei and Te,y seem
unaffected by the underlying physics and do not experience any clear drop or increase. Finally,
after t = 20 µs, the oscillations seem to be mostly damped and a steady state is reached. These
results show that the constant ionization source term successfully compensates particles losses
at the walls and that the virtual axial model prevents an accumulation of energy in the system.

In order to understand more precisely the discharge behavior, we focus on specific times of
interest. 2D snapshots of relevant parameters are displayed in Figure 4.4. First, at t = 0.53 µs,
the azimuthal electric field exhibits a purely azimuthal instability with a wavelength of the
order of 800-900 µm. Another instability, with both radial and azimuthal components has a
lower growth rate and develops ∼ 0.2 µs later, as noticeable at t = 0.75 µs, and also revealed in
the axial electron current. Janhunen et al. [2018b] identified these instabilities as the ECDI and
the MTSI, respectively. The numerical evidence of two instability mode coexistence and their
characteristics will be discussed in detail later. Interestingly, the radial electron current only
contains the azimuthal component of the MTSI. The growth of the MTSI actually coincides
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Figure 4.4: CERFACS code: 2D snapshots of azimuthal electric field Ey, radial electron
temperature Te,z, axial electron current Je,x and radial electron current Je,z at times t = 0.53 µs,
t = 0.75 µs, t = 11.70 µs and t = 17.50 µs. Local extrema of Te,z shown in Figure 4.3 correspond
to times t = 11.70 µs and t = 17.50 µs.

with the significant increase of the radial electron temperature Te,z observed in Figure 4.3. The
2D snapshots show that the electrons first heat up in the near-wall sheath at periodic locations
in the azimuthal direction, which was also clearly observed in [Janhunen et al., 2018b]. In the
present simulation, the azimuthal wavelength is around 4 mm while only a half-wavelength fits in
the radial direction with a radial wavenumber kz = π/Lz. The fast radial electron temperature
increase enhances the loss of particles, which explains why the density stops growing linearly, as
already noticed in temporal profiles in Figure 4.3. Moreover, these 2D snapshots can be related
to the oscillations observed in the temporal profiles. Indeed, the system oscillates between
two distinct states: the first one is seen at t = 11.7 µs when the MTSI is strong with well
defined radial-azimuthal patterns. As a consequence, electrons heat up, which generates a
local maximum of the radial electron temperature. Thus, particles leave the domain and the
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density starts decreasing. The second state is seen at t = 17.5 µs with a local minimum of the
temperature related to a mitigated MTSI. Thus particles tend to fill the domain, leading to a
density increase.

4.3.2 Spectral characteristics of the instabilities
In this section, we provide more information on the spectral characteristics of the instabilities
described in the previous section which clearly identify them as ECDI and MTSI. The ECDI is
driven by the overlapping beam mode and cyclotron resonances [Lashmore-Davies and Martin,
1973; Lampe et al., 1971b] so the resonant condition in 2D is

ky ≈ m
Ωce

v0
, with m = 1, 2, ... (4.6)

where v0 = Ex/Bz is the electron drift velocity in the azimuthal direction and Ωce is the
electron cyclotron frequency. Its discrete character as harmonics of the fundamental mode k0 =
Ωce/v0 has been observed in a number of simulations [Muschietti and Lembege, 2013; Janhunen
et al., 2018b,a]. The MTSI is a long wavelength 2D instability typically with a characteristic
wavenumber ky � k0 [Lashmore-Davies and Martin, 1973; Janhunen et al., 2018b]. We note
also that its growth rate is smaller than that of the ECDI. Despite its lower growth rate, it
becomes very pronounced in simulations at later stages [Janhunen et al., 2018b].

In the present work, we perform a spectral analysis using the Fast Fourier Transform (FFT)
function from the Python package Numpy. In Figure 4.5, we present a spectral analysis of the
results obtained in the previous section. In Figure 4.5 (a), the 2D FFT on the azimuthal electric
field at t = 0.4 µs shows that the simulation starts with three discrete modes. Two of them have
no radial component and only have an azimuthal wavenumber multiple of k0. They correspond
the first two ECDI resonances according to Equation (4.6). The last one has a wavenumber
ky ∼ 0.2k0 below the first ECDI resonance and a non-zero radial wavenumber. This mode
was identified theoretically consistent with MTSI, as described by Janhunen et al. [2018b]. As
noted in previous investigations [Barrett et al., 1972; Chen, 1965], plasma sheath effects make
possible the existence of shorter wavenumbers below the geometrical constraint kz = 2π/Lz.
In the present work, the radial wavenumber of the MTSI kz ≈ π/Lz (kzλD ∼ 2.19× 10−2)
corresponds to a half wavelength between the walls, which agrees with results obtained by
Janhunen et al. [2018b].

In Figure 4.5 (b-c), we show temporal profiles for the MTSI and the first ECDI resonance.
These profiles have been obtained by performing first a 1D FFT in the azimuthal direction at
each radial location, then inferring a mean FFT profile in the azimuthal direction and then
finally repeating this process for every output file, distinguishing each FFT coefficient.

From Figure 4.5 (b), we identify the linear stage for both instabilities, that is ∼ 0.3-0.73 µs
for MTSI and 0.3-0.50 µs for the first resonance of ECDI. During this period, the growth is
driven by the exponential factor exp{(2γt)} and the growth rate γ can be obtained from a least
square method. As noted by Janhunen et al. [2018b], the ECDI has a faster growth rate than
the MTSI, except that here, the MTSI does not start growing after the ECDI saturation. In
order to get further confidence in the numerical results, we can compare PIC measurements
with theoretical results given by the linear dispersion relation ω(k), assuming cold ions [Cavalier
et al., 2013],

1 + k2λ2
D + ω − k ·Vd√

2kzρωce
e−b

∞∑
m=−∞

Z

(
ω − k ·Vd −mωce√

2kzρωce

)
Im(b)−

k2λ2
Dω

2
pi

(ω − kxvp)2 = 0, (4.7)
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Figure 4.5: CERFACS code: Spectral analysis of the azimuthal electric field Ey. (a) 2D FFT
at linear stage when both ECDI and MTSI start developing. (b) and (c) temporal evolution
of the amplitude of the MTSI and ECDI modes in the Ey spectrum. The amplitude has been
integrated over kz components. In (b) the dotted lines mark the linear growth of the modes
obtained from a least-square method.

where kx, ky, kz are the components of the wavevector k, b = k2
⊥ρ

2
e, k2

⊥ = k2
x+k2

y, ρ2
e = v2

the/ω
2
ce,

v2
the = kBTe/me, λ2

D = kBε0Te/n0q
2
e , vp is the ion beam velocity, Vd is the electron drift velocity

relative to the ions, ωce is the electron cyclotron frequency, ωpi is the ion plasma frequency, Z(ξ)
is the plasma dispersion function, and Im(x) is the modified Bessel function of the 1st kind.
For this 2D case, kx = 0 and the numerical solution of this relation was achieved through the
algorithm developed by Cavalier et al. [2013] via a fixed point iteration. The theoretical solver
was employed using simulation data from 0.4 µs, the time just before the linear growth stage
of the instabilities, for which ne = 6.37× 1016 m−1 and Te = 9.19 eV. The theoretical growth
rates are compared with PIC measurements in Figure 4.6.
From the theoretical dispersion relation, at kzλD = 2.19× 10−2, MTSI should feature a reso-
nance at kyλD = 0.127, and ECDI should feature a first resonance at kyλD = 0.714. Overall,
both azimuthal wavenumbers and maximum growth rates are in excellent agreement with the
instabilities seen in the simulation during the linear stage of growth. This suggests that the
initial diffusion toward the radial walls sets up a finite-kz mode, and the MTSI seen in this
study is initiated by this plasma-wall interaction.

At the end of its linear stage, Figure 4.5 (b) shows that the MTSI is briefly stronger than
the ECDI around t = 0.75 µs, which is coherent with radial-azimuthal patterns appearing in the
2D snapshots at the same time on Figure 4.4. From Figure 4.5 (c), it is interesting to notice
that the ECDI seems to get weaker when the MTSI strengthens, suggesting that both are
coupled. Moreover, we count ten clear peaks in the MTSI FFT temporal profile that precede
the same number of radial temperature peaks in Figure 4.3 (b). Thus, it seems the MTSI
drives Te,z, which is consistent with observations made on the 2D snapshots in the previous
section. Between t = 15 − 20 µs, the MTSI is significantly damped, which coincides with the
observed increase of density in Figure 4.3 (a). At steady state, between t = 25 − 30 µs, the
MTSI stabilizes at a lower level than in the first 10 µs of the simulation. It is not clear why
the level is lower and what caused the initial damping in the 15− 20 µs time range. Necessary
investigations will be left for a future work.
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Figure 4.6: Theoretical growth rates, obtained from Stanford and USASK, using simulation
values at the beginning of the linear stage when both ECDI and MTSI start developing for
kzλD = 2.19× 10−2, set up by the plasma diffusion toward the walls. Symbols represent PIC
measurements for MTSI (diamond) and first ECDI resonance (circle) from Figure 4.5.

4.4 Benchmark results

4.4.1 Code presentations
Seven independent research groups have participated to this benchmark. No code is open source
and a detailed description of each of them is provided below.

CERFACS

The PIC variant of AVIP was used for this work. AVIP [Joncquieres et al., 2018; Joncquieres,
2019] is a 3D unstructured-grid plasma solver aimed to handle massively parallel computations.
It was developed from AVBP, a well-known fluid solver for reactive gases in industrial geome-
tries [Gicquel et al., 2011; Schonfeld and Rudgyard, 1999]. Written in Fortran 90, the code
features parallelization with MPI and demonstrates excellent computational performances at
high number of processors [Gourdain et al., 2009]. For the present simulations, the computa-
tional domain consists of square cells sliced into two isosceles right-angled triangles. Therefore
the mesh has twice as many cells as the other groups. Displacement of particles is performed by
the Haselbacher algorithm [Haselbacher et al., 2007] and no subcycling is used. Random num-
bers are generated with the built-in function of Fortran 90 with a hard-coded seed to make runs
deterministic. Electrons and ions speeds are respectively updated by the standard Boris and
leap-frog schemes. Domain decomposition relies on the external library PARMETIS [Karypis
and Kumar, 2009] and it is updated if excessive load unbalance is detected among the proces-
sors. The in-plane potential is self-consistently calculated with the Poisson solver MAPHYS
developed by INRIA [Agullo et al., 2017; Poirel, 2018] that will soon be available in the PETSc
library.MAPHYS returns the potential with an accuracy of the second order and the electric
field is computed with a second order accurate Green-Gauss formulation. Double floating point
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precision is used in the code. AVIP-PIC was verified with the 1D discharge benchmark of
Turner et al. [2013] and the 2D axial-azimuthal benchmark of Charoy et al. [2019].

LPP

The 2D3V particle-in-cell code used in the present work is LPPic. This Fortran90 code uses
a structured Cartesian mesh and is parallelized using MPI domain decomposition. The initial
distribution of particles is obtained using a random number generator seed provided by the
internal clock of every CPU. All numerical variables are double precision floating points. The
Poisson equation is solved using the PFMG solver of the open-source Falgout and Yang [2002]
library. The potential is obtained with a second order accuracy, while the electric field is calcu-
lated from the plasma potential by a centered difference scheme with first order accuracy. The
classical leap-frog and Boris schemes are used to move the particles. The code has been verified
using the 1D He benchmark by Turner et al. [2013] and the 2D axial-azimuthal benchmark by
Charoy et al. [2019].

USASK

The code is a 2D3V PIC based on the explicit leap-frog algorithm. The code uses the Boris
scheme to solve particle motion equations. To reduce numerical cost, subcycling of electrons
relative to ions is applied [Adam et al., 1982]. The random number generator is the Maximally
Equidistributed implementation [Harase, 2009] of Well Equidistributed Long-period Linear gen-
erator WELL19937a [F. Panneton et al., 2006]. The 2D Poisson’s equation in a rectangular
domain periodic in one direction is solved using FFT transformation along the periodical di-
rection, with the FFT procedure based on [Press et al., 2007]. The code is written in Fortran
90 and is parallelized with MPI. The particle processing algorithm of the code combines both
domain and particle decomposition. The whole simulation domain is split into subdomains of
the same size, the number of the subdomains is several times smaller than the total number
of MPI processes. Particles belonging to the same subdomain may be shared between several
processes. The balance of particle load between all MPI processes is achieved by changing the
numbers of processes advancing particles in the subdomains. Double floating-point precision is
used for all calculations in the code.

Stanford

The PIC code is written in C++ using MPI as the means of parallelization. Particle decompo-
sition is used to split the number of macroparticles as evenly as possible between the different
processors. Domain decomposition is used by the Poisson solver, Falgout and Yang [2002], with
a symmetric SMG method as the preconditioner and a GMRES solver. A structured, rectan-
gular grid is used. Double precision is used for all numerical variables. Random numbers are
generated using the C Standard General Utilities Library by initializing different seed values
for each individual processor. This benchmarking effort motivated the implementation of code
acceleration techniques to speed up data management. This code has been benchmarked with
other codes through the 2D axial-azimuthal benchmark by Charoy et al. [2019] and tested for
other instability cases [Hara and Tsikata, 2020; DesJardin et al., 2019]
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ISTP

The 2D PIC code [Taccogna et al., 2019] developed at ISTP is a combination of previous
1D-radial [Taccogna et al., 2008; Domínguez-Vázquez et al., 2018; Domínguez-Vázquez et al.,
2019] and 1D-azimuthal [Asadi et al., 2019] PIC codes. The code is written in Fortran90 and
it uses a structured, uniform, rectangular grid. The version used for the present benchmark
is serial and performances reported in Table 4.2 refer to double precision option. The long
period (> 2× 1018) random number generator RAN2 of Numerical Recipes [Press et al., 2007]
is implemented. Linear functions are used to interpolate particles onto the grid and the Poisson
equation is solved by the cyclic reduction algorithm implemented in the routine PWSCRT of
the open-source FISHPACK90 library [Adams et al., 2016]. The leap-frog with Buneman-Boris
scheme is used as solver of particle equation of motion.

RUB

The PIC code used in the present benchmark differs from our group’s implicit energy-conserving
code utilized in the axial-azimuthal benchmark [Charoy et al., 2019]. It was now based on the
standard explicit leapfrog time integration scheme. By employing the same approach as for the
other codes but a different parallelization means, the intention was to demonstrate the latter’s
benefits. Except for the field solver, the code was parallelized on a graphics processing unit
using the CUDA extension of the C programming language and a two-dimensional analog of
the fine-sorting algorithm described in [Mertmann et al., 2011]. The field solver was imple-
mented on a CPU using a combination of the FFT algorithm in the azimuthal direction and a
tridiagonal solver in the radial direction for each of the azimuthal harmonics. The latter was
based on the Thomas algorithm. Only one thread on CPU was utilized for the field solver.
Such an implementation was balanced as the CPU and the GPU parts demonstrated compara-
ble execution time for the typical parameters. The long-period xorshift128 algorithm proposed
in [Marsaglia, 2003] has been used as a random number generator, with each thread starting
initially with a randomly chosen seed.

LAPLACE

The 2D3V particle-in-cell code used in the present work is written in Fortran90 and uses
a structured Cartesian mesh. To exploit the modern architecture of processors, an hybrid
technique that combines distributed memory (MPI libraries) between cores and shared memory
with Open Multi-Processing (OpenMP) between threads is considered [Garrigues et al., 2016;
Boeuf and Garrigues, 2018]. A particle decomposition is employed, the initial particles being
equally distributed between MPI cores and OpenMP threads. To reduce computational time
during array accessibility due to random positions of particles with respect to the meshes of the
simulation domain, a sorting algorithm has been implemented [Bowers, 2001]. The Poisson’s
equation is solved with the parallel sparse direct linear solver (PARDISO) subroutine included
in the Intel®Math kernel Library (Intel®MKL) [Schenk and Gartner, 2004]. The classical leap-
frog and Boris schemes are used to move the particles. The code has been verified using the
2D axial-azimuthal benchmark by Charoy et al. [2019].

4.4.2 Code comparisons
The seven groups have simulated the test-case presented in Section 4.3. In Table 4.2, this
reference case is referred as Case A. Four groups have also simulated two supplementary cases

129



4.4. BENCHMARK RESULTS

C
E
R
FA

C
S

L
P
P

U
SA

SK
St
an

fo
rd

IS
T
P

R
U
B

L
A
P
L
A
C
E

C
od

e
im

pl
em

en
ta
ti
on

La
ng

ua
ge

Fo
rt
ra
n

Fo
rt
ra
n

Fo
rt
ra
n

C
+
+

Fo
rt
ra
n

C
U
D
A

C
+

C
Fo

rt
ra
n

Pa
re
lli
za
tio

n
M
PI

M
PI

M
PI

M
PI

N
o

C
U
D
A

M
PI

/O
pe

nM
P

D
ec
om

po
sit

io
n

D
om

ai
n

D
om

ai
n

D
om

ai
n

Pa
rt
ic
le

N
o

Pa
rt
ic
le

Pa
rt
ic
le

G
rid

ty
pe

U
ns
tr
uc

tu
re
d

St
ru
ct
ur
ed

St
ru
ct
ur
ed

St
ru
ct
ur
ed

St
ru
ct
ur
ed

St
ru
ct
ur
ed

St
ru
ct
ur
ed

C
PU

/G
PU

ty
pe

In
te
lS

ky
la
ke

In
te
lH

as
we

ll
In
te
lS

ky
la
ke

In
te
lS

an
dy

Br
id
ge

In
te
lI
vy

-B
rid

ge
N
V
ID

IA
Vo

lta
(G

PU
)
+

In
te
lS

ky
la
ke

(C
PU

)
In
te
lS

ky
la
ke

2x
18

co
re
s/
no

de
2x

12
co
re
s/
no

de
2x

20
co
re
s/
no

de
32

co
re
s/
no

de
2x

12
co
re
s/
no

de
51

20
co
re
s
(G

PU
)
+

10
co
re
s
(C

PU
)

2
x
18

co
re
s/
no

de
@

2.
3G

H
z
-9

6
G
B

@
2.
6G

H
z
-6

4
G
B

@
2.
4G

H
z
-2

02
G
B

@
2.
6G

H
z
-3

2
G
B

@
2.
4G

H
z
-2

56
G
B

@
1.
5G

H
z
-3

2
G
B

(G
PU

)
+

@
2.
2G

H
z
-9

6
G
B

(C
PU

)
@

2.
30

G
H
z
-6

4
G
B

C
od

e
m
od

ul
e

Pu
sh
er

Ex
pl
ic
it

Ex
pl
ic
it

Ex
pl
ic
it

Ex
pl
ic
it

Ex
pl
ic
it

Ex
pl
ic
it

Ex
pl
ic
it

Po
iss

on
so
lv
er

M
A
PH

Y
S

H
Y
PR

E
FF

T
H
Y
PR

E
Fi
sh
pa

ck
FF

T
+
T
ho

m
as

PA
R
D
IS
O

O
rd
er

of
ac
cu

ra
cy

Po
te
nt
ia
l

2
2

2
2

2
2

2
El
ec
tr
ic

fie
ld

2
1

2
2

1
1

1
Fl
oa

tin
g-
po

in
t

pr
ec
isi
on

D
ou

bl
e

D
ou

bl
e

D
ou

bl
e

D
ou

bl
e

D
ou

bl
e

Si
ng

le
?

D
ou

bl
e?
?

Si
ng

le
?

D
ou

bl
e?
?

Si
m
ul
at
io
n
ti
m
e
fo
r

30
µs

(e
la
ps
ed

tim
e)

C
as
e
A

N
p
p
c,
f
in
≈

21
2

35
h

(2
88

C
PU

)
64

h
(1
44

C
PU

)
51

h
(2
56

C
PU

)
16

8h
(6
4
C
PU

)
30

6h
(1

C
PU

)
11

h
(1

G
PU

+
1
C
PU

)
12

h
(1
80

C
PU

)
C
as
e
B

N
p
p
c,
f
in
≈

42
4

50
h

(5
40

-9
00

C
PU

)
20

5h
(7
2
C
PU

)
98

h
(2
56

C
PU

)
N
A

N
A

14
h

(1
G
PU

+
1
C
PU

)
17

h
(1
80

C
PU

)
C
as
e
C

N
p
p
c,
f
in
≈

84
8

77
h

(5
40

-9
00

C
PU

)
15

2h
(2
16

C
PU

)
12

2h
(2
56

C
PU

)
N
A

N
A

29
h

(1
G
PU

+
1
C
PU

)
27

h
(1
80

C
PU

)

Ta
bl
e
4.
2:

C
od

e
ch
ar
ac
te
ris

tic
s.

Ex
pl
ic
it
pu

sh
er

re
fe
rs

to
th
e
st
an

da
rd

Le
ap

-fr
og
/B

or
is

al
go
rit

hm
.
?
an

d
??

sy
m
bo

ls
re
sp
ec
tiv

el
y
re
fe
r

to
th
e
pa

rt
ic
le
s
(s
pe

ed
,p

os
iti
on

an
d
we

ig
ht
)
an

d
to

th
e
fie
ld
s
(p
ot
en
tia

la
nd

el
ec
tr
ic

fie
ld
).

130



4.4. BENCHMARK RESULTS

with a higher initial number of particles per cell (Nppc,ini = 200 or 400, which correspond
respectively to Case B and Case C) to study the statistical convergence which will be analyzed
in details in Section 4.4.5. The main code characteristics are also given in Table 4.2, along with
the corresponding simulation times.

The average computing times show that results for all codes were rather obtained quickly,
which is greatly beneficial for benchmarking. Moreover, the comparison of elapsed times on
the cases A, B and C highlights the importance of parallel scalability for each particular code.
For this particular benchmark, using a particle decomposition along with GPU seems especially
effective. The presented runtimes cannot be directly compared between codes as each team used
different machines and compilers; besides, GPU and purely CPU based codes remain difficult to
compare in terms of computing performances. Yet, the present diversity of the codes provides
a reference point for other codes similar to one used in the benchmark.

4.4.3 Comparison of main plasma parameters
First, we study the reference case (case A) simulated by all the groups. We see in Figure 4.7
(a-c) that all temporal profiles of density and radial electron temperature are in very good
agreement during the first 3 µs. The linear increase of density displays the same slope while
the sharp rise of radial electron temperature occurs around the same instant and experiences
a similar growth. Therefore, all groups seem to describe the same discharge dynamics at early
times, including the MTSI onset and growth.

After the first 3 µs, we see in Figure 4.7 (b-d) that the electron density and temperature
exhibit a complex oscillatory behavior and discrepancies between the results of the different
codes are observed. One of the major factors explaining these discrepancies is the use of
different Random Number Generators (RNG) at initialization. Indeed, in a supplementary test
(not presented here) each group tried to use the same initial locations for macroparticles to
mitigate the effect of RNG. The obtained transients for both temperature and density were then
extremely close and discrepancies were within statistical uncertainties. For t > 20 µs, Figure 4.7
(b-d) shows that both temperature and density reach an oscillatory quasi-steady-state.

In order to compare more precisely the results, the ion density and electron temperature
are averaged both azimuthally and in time. These radial profiles are shown in Figure 4.8. The
time interval for averaging is set to be 25-30 µs to average over several small oscillations. Both
ion density and total electron temperature profiles exhibit an excellent agreement between all
codes. The most significant differences appear in the centerline but they remain in a ±2.5%
interval around the mean profile. Thus, in spite of the oscillations observed on Figure 4.7 (b-d),
we show here that similar plasma parameters are obtained for all the codes using different RNG.

4.4.4 ECDI-MTSI coupling
We have seen in Section 4.3.2 that the observed oscillations are related to a coupling between
ECDI and MTSI. The presence of both instabilities for all the codes is confirmed in Figure 4.9,
with 1D FFT performed in the azimuthal direction. The azimuthal component of the MTSI is
retrieved with a wavenumber ky ≈ 0.07k0, while we observe the first two ECDI resonances at
ky ≈ k0 and ky ≈ 2k0.

Although both the ECDI and the MTSI appear distinctly, Figure 4.9 (a) points out that
the MTSI is more important at the beginning of the simulation (between 5-10 µs) and then
becomes weaker with time, which echoes with the previous observation on temporal profiles
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Figure 4.7: Case A: Temporal profiles of plasma density (a) up to 3 µs and (b) for the whole
simulation time. (c) and (d) Temporal profiles of radial electron temperature on the same time
ranges.

in Section 4.4.3: at some point, the radial electron temperature is decreasing for all codes,
which leads to a density increase. Besides, we can notice some intermediate peaks between the
MTSI wavenumber and the first ECDI resonance, especially at the beginning of the simulation.
Their nature was not clearly identified and is left for further work. Finally, after the first ECDI
resonance, the k-spectra decrease exponentially. The second resonance is still observable with
a much lower amplitude and is surrounded by what seems to be numerical noise. At high
frequencies, LPP, ISTP, LAPLACE and USASK seem to have lower noise levels that might be
related to the use of different Poisson solvers and subsequent implementations.
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Figure 4.8: Mean radial profiles of ion density (a) and total electron temperature (b), averaged
over 25-30 µs. A zoom on the centerline highlights the discrepancies between the codes. On (b)
several profiles are superimposed. The shaded gray area indicates the range ±2.5% around the
averaged radial profiles of all the groups.

Figure 4.9: 1D azimuthal FFT of the azimuthal electric field Ey, averaged over all radial
positions and over three temporal intervals: (a) 5-10 µs, (b) 15-20 µs, (c) 25-30 µs. MTSI and
ECDI resonances are indicated by arrows.

Overall, we have found that the 1D FFT profiles are also very similar in the different codes,
throughout the whole simulation.
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4.4.5 Statistical convergence
In PIC simulations, the use of macroparticles can generate numerical noise. Okuda and Birdsall
[1970] have shown that this noise can be viewed as numerical collisions with a frequency given
by

νnum = πωp,e
16NDe

, (4.8)

with NDe the number of macroparticles in a Debye sphere. These numerical collisions can
have a significant impact on the discharge behavior, which may lead to misinterpretation of
the simulation results. At steady state, the Debye length is around 125 µm in most of the
domain. For the reference Case A, the mean number of numerical particles per squared cell at
steady state being 212, we can roughly estimate the ratio νnum/ωp,e ≈ 4.72× 10−5. According
to Turner [2006], this ratio must be below 10−4 to ensure negligible numerical collisions, which
is the case here for all groups.

However, to further confirm that numerical collisions are truly negligible and that statistical
convergence is reached, tests with different numbers of particles per cell have been performed
by five groups. The initial number of macroparticles Nppc,ini per cell was varied from 6, 12, 25,
50, 100, 200, 400 up to 800 particles. Then, the mean density at steady state was computed
by taking the averaged density between 25 and 30 µs and shown in Figure 4.10 (a) depending
on the final number of particles per cell.

Figure 4.10: Assessment of statistical convergence between 25-30 µs: (a) mean value of ion
density for five groups and (b) averaged radial profiles of density for CERFACS’s code for
various final number of macroparticles per square cells. In (a) error bars for CERFACS indicate
the standard deviation around the mean value. The baseline case has around 212 particles per
squared cell at steady state. In (b) radial profiles converge from light/green colors towards
dark/blue colors.

We see that when a too low number of macroparticles per cell is used, the density can
increase by more than 10% if Nppc,fin is multiplied by two, which means that the statistical
convergence has not been reached. From 100-200 macroparticles per cell, the mean ion density
becomes much less sensitive to Nppc,fin and a plateau at approximately ni ≈ 2.17n0 is reached.
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The curves fluctuate around this value because of the natural variability around the mean ion
density. In Figure 4.10 (b), radial profiles of the ion density is displayed for the CERFACS’s
code and we can see that convergence also appears for a number of macroparticles around
Nppc,fin = 100-200. We note that the reference case presented in the previous sections is well
converged with more than 200 macroparticles per cell. The criteria of 100-200 particles per cell
to reach statistical convergence agrees with previous conclusions from Charoy et al. [2019].

4.5 Conclusion and prospective
In this paper, a 2D radial-azimuthal benchmark for E×B discharges was presented. For this
benchmark, collisionless 2D3V-PIC models were used with a virtual axial re-injection model and
a fixed ionization source term. The virtual axial model limits the energy growth by removing
the high energy tail of the energy distribution functions. Besides, particle losses at the walls
are compensated by imposing an ionization source term, similarly to Refs. [Charoy et al., 2019;
Boeuf and Garrigues, 2018]. These two features provide a framework for benchmarking by
allowing the discharge to reach a steady-state. Despite its apparent simplicity, this test-case
was chosen as it captures two important instabilities: the ECDI and the MTSI. Both exhibit
characteristics that are in agreement with the linear theory and, moreover, they are found to
be coupled, which was also noticed by Janhunen et al. [2018b].

Seven independent PIC codes have simulated the same test-case. In spite of their differences,
all the codes retrieved the ECDI and the MTSI at wavenumbers predicted by the theory. They
also converged within a 5% interval on relevant plasma parameters. Transients are important
in this configuration because they directly give an assessment of the ECDI and the MTSI
growth and coupling. From temporal profiles and 1D FFTs, all the codes captured a similar
development and interaction between both instabilities. Because of the use of different RNG,
the transients can be shifted but the main steps of the simulation were eventually retrieved.
Finally, the statistical convergence of the results was assessed. It appeared that at least 100-200
macroparticles per cell are needed. A similar conclusion was found in [Charoy et al., 2019] and
this criteria could be used for future 2D PIC simulations.

The main goal of this work was to provide confidence on radial-azimuthal simulations, in
which the results can be difficult to analyze due to the coupling between ECDI and MTSI
or the use of artificial models to deal with the axial direction. Thanks to the benchmark
presented in this paper, every radial-azimuthal code can be verified, which paves the way to
further investigations accounting for wall and sheath effects. Moreover, even if we made some
simplifying assumptions, such as neglecting the presence of neutrals or not accounting for self-
consistent ionization, this case can also be used for insightful parametric studies. For instance,
by varying the ionization source term, we can define the plasma density at steady-state, a
parameter which plays a role in the instability dispersion relations. Hence, the role of this
parameter on the ECDI or MTSI onset could be more easily studied.
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Chapter 5

3D PIC simulation

Up to now, numerical simulations have been focused on 2D configurations. In Chap-
ter 3, an axial-azimuthal setup was considered and brought to light the existence of
the ECDI. As mentioned in Section 1.3.2, this azimuthal instability probably plays
an important role in the axial electron transport and it is, therefore, a crucial feature
to capture. In a radial-azimuthal configuration, Chapter 4 showed that the ECDI
could be coupled with plasma-wall interactions and giving rise to another kind of
instability: the MTSI. Although these simulations provided useful insights on the
plasma dynamics, they are artificially constrained by their 2D nature.

Indeed, as demonstrated by experimental observations [Tsikata et al., 2010], in-
stabilities are inherently three dimensional and so are HT’s plasma physics. There-
fore, in this Chapter we propose a simple 3D setup based on the geometry and
features used in Chapter 3 and Chapter 4. Two main objectives are considered.
First, we will investigate how the plasma behaves in the 3D geometry. In this ef-
fort, our 2D experience is highly valuable and will guide our analysis. A second
lesson that we learned during this study is about numerical challenges related to the
running of such 3D PIC simulation. Indeed, running AVIP PIC on a top supercom-
puter on a large configuration makes it imperative to precisely know computational
performances and implies to deal with different hardware architectures than the one
present at CERFACS. Thus, guidelines on future 3D runs will be also laid out in
this regard.
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5.1 Context

5.1.1 Literature review
As mentioned in Section 1.4.2, 3D PIC simulations are extremely rare.

In the 90’s, the University of Tokyo developed a 3D PIC model of a Stationary Plasma
Thruster, the SPT50, for which they had a prototype [Hirakawa and Arakawa, 1995, 1996].
They focused their work on the channel and the near plume region. This study was quite
comprehensive as the main features affecting the plasma in a HT were modeled: collisions of
neutral with charged particles, dielectric layer, self consistent electric field, electrodes, realistic
magnetic field topology, curvature effects. Early on, they noticed azimuthal instabilities, which
resemble to the ECDI, but no formal identification was made at that time. In order to carry out
their work, they had to artificially lower the actual ion to electron mass ratiomi/me and increase
the vacuum permittivity ε0. Reducing mi/me (with a factor ∼ 40 in this case), implies either
faster ions, which reduces the convection time, or slower electrons, which allows to increase
the time step ∆t constrained by Equation (2.5). In both cases, the steady state is reached
more quickly and the computational time is dramatically mitigated. Increasing the vacuum
permittivity ε0 results in relaxing the constraint on space step ∆x by increasing the Debye
length. Thus, a larger simulation domain can be considered. Although this is a pragmatic
solution given limited computation resources, it inevitably alters the plasma dynamics. For
instance, the dispersion relation of plasma instabilities involves the mass of charged particles
and Debye length in a nonlinear way, so modifying any of these parameters will irremediably
change their corresponding growth rate or phase velocity.

More recently, Minelli and Taccogna [2017]; Taccogna and Minelli [2018] attempted to ad-
dress these issues and proposed a methodology to build a 3D PIC model for a miniaturized ver-
sion of a SPT100 [Boeuf, 2017]. Their strategy consists in reducing the three space dimensions
by a factor f , set to 10 in their work. In an effort to properly "scale down" the problem, some
physical parameters must be adjusted. For instance, magnetic poles being f times closer, the
magnetic field amplitude is multiplied by f while its topology remains unchanged. Eventually,
the neutral density must be also multiplied by f to keep important dimensionless parameters
such as the Knudsen number (ratio of the electron mean free path to domain size) or Hall
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parameter (ratio of gyrofrequency to collision frequency) constant. The setup was focused on
the channel region of the thruster to reduce further computational costs. Results showed that
rescaled values of main parameters fairly agreed with data that Taccogna and Minelli could
gather in the literature. They also assessed the impact of plasma wall interactions, secondary
electron emission (SEE) in particular, and of the ECDI on the anomalous transport. Coherently
with other work [Tavant et al., 2018], their results suggest that the SEE role remained modest in
comparison to the ECDI, but that both phenomena were interacting with each other. Overall,
Taccogna and Minelli paved the way for insightful and more accessible 3D PIC simulations, but
they also recognize limitations to their approach. First of all, scaling down the geometry by a
factor f unavoidably increases the area to volume ratio, which may enhance the effects of the
walls on the plasma dynamics. Moreover, other important physical parameters such as the ion
convection time or the cyclotron frequency Ωce are respectively multiplied by a factor f−1 and
f 1. Increasing Ωce leads to an overestimation of the growth rate of the ECDI [Cavalier et al.,
2013] while reducing the convection time is likely to modify the saturation mechanism of the
instability. Finally, because the study focused on the sole channel region, the cathode cannot
be accounted for. Therefore, an injection mechanism is implemented to mimic the dynamics
of electrons entering into the channel and the velocity distribution function is assumed to be
a half Maxwellian following [Hagelaar, 2008]. Besides, the potential value at the channel exit
must be reasonably guessed from experimental measurements [Smith and Cappelli, 2009]

5.1.2 Contribution of our new 3D PIC simulation
Taking into account the different challenges encountered by these two attempts of 3D PIC
simulations, we propose our own 3D setup that will serve as a starting point for more realistic
simulations. A detailed description of the model is given in Section 5.2 but we can lay out its
main characteristics.

First, Hirakawa and Arakawa [1995, 1996] and in contrast to Minelli and Taccogna [2017];
Taccogna and Minelli [2018], we consider both the channel region and the near plume region.
Indeed, the electron velocity components entering the channel do not necessarily follow a half-
Maxwellian distribution as the magnetic field is quite strong at the exit which is likely to lead
to anisotropy. Besides, the modeling of the cathode and its subsequent injection mechanism
is known to be crucial [Charoy, 2020; Cho et al., 2016, 2015]. Moreover, modeling the near
plume region prepares for future 3D runs as we do not need to guess the potential profile
at the exit and we can simply set the cathode potential φ = 0 V. In contrast to Hirakawa
and Arakawa, we choose to not rely on modified ion-to-electron mass ratio mi/me and vacuum
permittivity in order to preserve the actual growth and development of plasma instabilities such
as the ECDI. Besides, another difference with Taccogna and Minelli’s work is that we consider
a larger simulation domain as the axial and radial directions are ∼ 10 times longer while the
azimuthal direction is around the same size. By doing so, the area to volume ratio is, perhaps,
more preserved with our new setup. Finally, another important difference with both previous
attempts is that, here, we use an unstructured grid to carry out our 3D simulation. To our
knowledge, such effort is unparalleled in the HT community. Unstructured meshing eliminates
the burden of re-implementing key modules, such as the Poisson solver or the particle pusher,
if a cylindrical geometry is considered. In fact, any geometry can be discretized with no
supplementary effort.

Of course, as this work is the continuation of the 2D cases from Chapter 3 and Chapter 4, we
acknowledge some limitations of the model, i.e., no neutral particles (collisionless plasma), no
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dielectric layer, no sophisticated magnetic field topology and no curvature effects are present.
However, all these features are already available in AVIP PIC and we do intend to add them
in a near future. The present 3D PIC simulation does not aim to reproduce experimental data
but the objective is first to demonstrate the feasibility of performing 3D configurations using an
unstructured grid. Second, this work is also an opportunity to explore in detail the contribution
of 3D effects on the plasma physics.

5.2 Numerical setup
This section describes the numerical setup used for this work. The main simulation parameters
are summarized in Table 5.1.

5.2.1 Computational domain and grid
The computational domain is based on the geometry used in Chapter 3 and Chapter 4. There-
fore, similar dimensions are considered. The domain has a "T shape" that is extruded in the
azimuthal direction. A view in the radial-axial direction is given in Figure 5.1 (a). Therefore,
no curvature is accounted for in this configuration. The axial length Lx is set to 2.5 cm like in
Chapter 3 while the azimuthal length Ly is slightly shorter at 1 cm. In the channel, the radial
gap Lz is 1 cm and in the plume region the total height is 2Lz.
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y
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Figure 5.1: (a): 3D computational domain from the radial-axial view. The azimuthal direction
has a length Ly and is periodic. (b): whole 3D domain

The channel has a length Lch = 0.85 cm. At its exit, rounded edges avoid an unrealistically high
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electric field that would exit at sharp tips. There, the local curvature has a radius LR = 0.1 cm.
The final 3D domain is shown in Figure 5.1 (b).

Because of these rounded edges, a regular and homogeneous mesh such as those described in
Chapter 3 and Chapter 4 cannot be used here. A fully unstructured mesh made of tetrahedral
cells is therefore necessary and was generated with the Centaur software. The software param-
eters are tuned so that cells have a typical size ∆l that complies with the accuracy condition
given by Equation (2.6). Although Equation (2.6) was initially derived for structured grids, we
assume that they still apply for unstructured and irregular grids as well. A grid convergence
study could help verify this assumption but this will be left for future work. For this work, the
cell size is defined as

∆l = V
1
3
c , (5.1)

where Vc is the cell volume. It was chosen to discard any mesh refinement as it may lead to
spurious results for PIC simulations [Colella and Norgaard, 2010]. Indeed, a severe change of
cell size in a refined zone can create a discontinuity during the charge interpolation process
described in Section 2.3.2. As a consequence, self-forces, artificially created, arise and are
a source of numerical errors. It may be possible to reduce these errors by adopting a more
progressive mesh refinement than the one chosen by Colella and Norgaard but no study is
available, as of today, in this regard.

In Figure 5.2 (a), a cut of the unstructured grid is shown with a zoom to the center of the
domain. Qualitatively, the cells are similar in size and shape throughout the computational
domain. This observation can be confirmed by plotting the cell size distribution as a function
of the radial coordinate as shown in Figure 5.2 (b). It can be observed that the cell size ∆l
is below 100 µm with a mean value around 67 µm, which is similar to the cell size used in
Chapter 3 and Chapter 4. The number of cells suddenly drops outside the channel, which is
expected as this part of the domain is smaller.
Overall, the mesh contains 2.36 million nodes and 13.5 million tetrahedral cells.

5.2.2 Charged particles
Initialization and pusher

In order to facilitate comparisons with previous 2D simulations, the plasma is made of singly
charged ions X+

e and electrons e−. The simulation starts with a uniform plasma density n0
at thermal equilibrium with an electron and ion temperature Te,0 = 10 eV and Ti,0 = 0.5 eV.
Nppc,ini = 120 macroparticles are initialized in each cell for each type of particle. The initial
density n0 is set to 1× 1017 m−3, twice the value used in Chapter 3 and Chapter 4 to reduce
the transient time and consequently the computational cost. The same initial conditions were
used in the 2D-3D comparison in Section 5.5. As the cells have slightly different shapes and
volumes, the statistical weight qf is automatically adjusted in each cell to ensure a density n0.

As usual, only electrons are sensitive to the magnetic field and rely on the Boris algorithm for
particle displacement whereas ions are only affected by the electric field and use the Leap-Frog
scheme. For this work, the ion position and speed are updated every fsub = 5∆t, where ∆t is the
fixed time step. Following the stability condition from Equation (2.5), we set ∆t = 5× 10−12 s.
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Figure 5.2: (a): Mesh cut from the radial-axial view. Cells are in yellow and their edges are
in black. A local zoom in provides details of the unstructured grid. (b): Radial distribution
of the cell size. The dashed-dotted and dotted lines respectively represent the inner and outer
channel radial location.

Ionization

Since no neutrals are present, the plasma is collisionless. Ionization is indirectly accounted
for by using a similar source term as in the previous 2D configurations. The 2D radial-axial
ionization profile is given by: if (x, z) ∈ [x1, x2]× [z1, z2] S(x, z) = S0 cos

(
x−xm
x2−x1

)
cos

(
z−zm
z2−z1

)
else S(x, z) = 0,

(5.2)

where S0 is the strength of the source term. (x1, x2) and (z1, z2) are respectively the axial
are radial limits of the ionization zone. Their values are taken from the 2D configurations:
x2 − x1 = 0.75 cm like in Chapter 3 while z2 − z1 = 86%Lz = 0.86 cm as in Chapter 4. Finally,
xm = (x2 + x1)/2 and zm = (z2 + z1)/2 are respectively the mean axial and radial values. An
overview of the ionization layer is provided in Figure 5.3. The total extracted current can be
computed with:

Itot =
ˆ x2

x1

ˆ z2

z1

ˆ Ly

0
S(x, z) dx dy dz

⇐⇒ Itot = e
4
π2S0(x2 − x1)(z2 − z1)Ly,

(5.3)

hence, the corresponding total current density through the surface channel LyLz can be calcu-
lated as:

Jm = Itot
LyLz

= e
4
π2S0(x2 − x1)(z2 − z1)

Lz
. (5.4)
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For this work, the current density Jm is set to 400 A m2, coherently with what was done in
Chapter 3. Although typical values for HTs are around 1000 A m−2 [Boeuf, 2017], we set
Jm = 400 A m−2, as we did in Chapter 3, and it will be enough to capture oscillatory phenomena
and the expected working conditions of a HT (see Section 5.4). As usual, pairs of X+

e /e− are
injected in the ionization zone delimited by the (x1, x2) and (z1, z2) coordinates following the
profile S(x, z). From a practical implementation point of view, the (xP , yP , zP ) coordinates of
each pair are given by random numbers (R1, R2, R3):

xP = arcsin (2R1 − 1)x2−x1
π

+ xm

yP = R2Ly

zP = arcsin (2R3 − 1) z2−z1
π

+ zm.

(5.5)

Furthermore, the velocity components are sampled from a Maxwellian distribution and Equa-
tion (2.12) is used with an injection temperature Te,0 and Ti,0 for the electrons and ions, re-
spectively. Finally, the particle weight of injected particles must be chosen by the user. To do
so, we use the mean particle weight defined as:

q̄f = n0∆l3
Nppc,ini

, (5.6)

with n0 the initial plasma density, Nppc,ini, the initial number of particles per cell and ∆l, the
mean cell size from Section 5.2.1. This gives q̄f ≈ 256.

Using this ionization model inevitably modifies the actual HT physics but makes it easier to
compare with the previous 2D simulations, thus allowing code verification. The analysis of the
physics is also easier as we have already had experience with such a source term. Besides, we
do not have to deal with challenges related to ignition. Indeed, ignition is achieved by injecting
electrons that are energetic enough to spark the emergence of first ions and new electrons by
ionizing neutral particles. In previous tests we had performed, we learned such starting process
was not trivial to achieve and will be the focus of future work.

Boundary conditions

All particles leaving the domain are removed from the simulation except at the periodic bound-
ary conditions at y = 0 and y = Ly. In particular, this means no dielectric layers are accounted
for in this work, for now, to keep consistency with Chapter 4. At the top, bottom and right
boundaries (see Figure 5.3), the quasi-neutral (QN) cathode model described in Section 2.5.2
is used following recommendations from [Charoy, 2020; Szabo, 2001; Cho et al., 2016]. The
injection electron temperature is set to Te,0

5.2.3 Electromagnetic fields
Electric field

The Poisson equation is self consistently solved with the external linear solver MAPHYS. The
coarse grid correction described in Section 2.6.1 was used and performances were evaluated in
Section 5.7. Boundary conditions are Dirichlet and the imposed constant φ values are presented
in Figure 5.3. In particular, in addition to the right side of the domain, the cathode also includes
the top and bottom boundaries where the potential is zero. Neumann conditions were tested
at the top and bottom boundaries as they seemed more realistic but they led to the creation
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of an important potential bulk (several thousands of Volts) in the plume that was nonphysical.
Furthermore, the choice of not accounting for a dielectric layer at the walls implies that we
need to ensure continuity of the potential manually. The downstream section of wall, in yellow
on Figure 5.3, is in contact with the cathode, and thus is set to φW,2 = 0 V. Between the
anode and the wall, the potential must be continuous to avoid electric arcs. This is achieved
by assuming that the potential decreases linearly from φa = 200 V to 0 V over a distance LW .
In this region, the potential is expressed as

φW,1 = − φa
LW

x+ φa, (5.7)

where LW is set to 0.375 cm. Other values for LW and shapes for φW,1 are possible but is
acceptable as a first guess to reproduce HT operating conditions as shown by Joncquieres et al.
[2020].

x

z
Wall

y

Anode Cathode (QN)

φW,2 = 0

φW,1(x) = −

φa

LW

x+ φa

φa = 200 φc = 0

Figure 5.3: Boundary conditions and ionization layer for the 3D PIC simulation (radial-axial
view). The ionization source term profile is given by Equation (5.2) is represented with a blue
gradient. The anode is in red and set at the potential φa = 200 V. The cathode is in blue and
uses a quasi-neutral (QN) model. Its potential is φx = 0 V. The walls are absorbent and the
potential is split into two parts. In the upstream channel, in orange, the potential φW,1 is an
affine function that decreases from the anode potential φa down to 0 V. The other part of the
walls, in yellow, has a zero potential φW,2.

Magnetic field

The choice of the magnetic field is less trivial than in the 2D cases as in reality, magnetic poles
around the channel generate a 3D magnetic field topology. In order to calculate such magnetic
field, the ∇ ·B = 0 equation has to be solved with appropriate boundary conditions. However,
even for apparently basic configurations such as permanent ring cusp magnets [Ravaud et al.,
2008], analytical formulas are incredibly complicated. One solution is to use experimental
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measurements as in Taccogna and Minelli [2018] but in this case the numerical setup must be
as close as possible to the real thruster. Besides, experimental data can be difficult to obtain
as they can be classified by manufacturers such as Safran. If no data are available, one can
turn to other open source solutions. On the Internet, the Finite Element Method Magnetics
(FEMM) software proposed by Meecker, D. [2000] can generate a 2D magnetic field topology
for a variety of configurations. The latter requires the knowledge of the electronic circuit of
magnetic coils, which goes beyond the scope of this thesis. This solution is however possible for
HT’s simulations as it was performed by Garrigues et al. [2003]. Finally, another interesting
open source approach consists of a recently developed Python package capable of calculating the
magnetic field of simple permanent magnets [Ortner and Bandeira, 2020]. The total magnetic
field stemming from several magnets is obtained by the superposition principle.

As of today, all these solutions seemed however premature as it is important to understand
and verify the behavior of the 3D plasma dynamics in a simplified configuration first. Therefore,
it was chosen to remain as close as possible to the previous 2D cases and the present magnetic
field will keep the profile from Section 3.1.2. Therefore, we assume a purely radial magnetic
field, varying in the axial direction with a Gaussian shape:

B(x) =
[
ak exp

(
−(x− xBmax)2

2σ2
k

)
+ bk

]
uz, (5.8)

where k = 1 for x ≤ xBmax and k = 2 for x > xBmax . We set σ1 = σ2 = 0.625 cm. The
four coefficients ak and bk are chosen such that B(x = 0) = 6 mT, B(x = Lx) = 1 mT,
B(x = xBmax) = 10 mT and by satisfying the continuity at x = xBmax . The profile is show in
Figure 5.4.

Figure 5.4: Magnetic field profile in 2D radial-axial view. The profile is uniform in the azimuthal
y direction and the magnetic field is only radial
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Parameters Symbol Value Unit

Computational domain and grid

Cell size ∆l 67 µm
Domain size Lx × Ly × Lz 2.5× 1× 1 cm3

Number of tetrahedral cells Ncell 13.50× 106

Number of nodes Nnodes 2.36× 106

Channel length Lch 0.85 cm
Rounded edge radius LR 0.1 cm

Initial conditions

Plasma density n0 1× 1017 m−3

Ion temperature Ti,0 0.5 eV
Electron temperature Te,0 10 eV
Number of particles/cell Nppc,ini 120

Ionization parameters

Axial limits (x1, x2) (0.25,1.00) cm
Radial limits (z1, z2) (0.57,1.43) cm
Particle weight q̄f 256

Electromagnetic fields

Anode potential φa 200 V
Cathode potential φc 0 V
Length of linear wall potential LW 0.375 cm
Wall potential φW,2 0 V
Maximum magnetic field Bmax 100 G
Position of maximum magnetic field xBmax 0.75 cm
Magnetic field at anode Ba 60 G
Magnetic field at cathode Bc 10 G

Computational parameters

Time step ∆t 5 ps
Average time range Na 5000∆t s
Subcycling frequency fsub 5 iterations

Table 5.1: 3D PIC simulation parameters.
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5.3 Transient state

5.3.1 1D temporal profiles
The first thing that can be observed is the temporal evolution of the simulation. 1D tem-
poral profiles of the main variables of interest are thus presented in Figure 5.5. Overall, the
simulation reaches a steady state in around 10 µs. During this period, we first verify that the
implemented quasi-neutral cathode model injects the correct electron current Icd into the do-
main. As a reminder the expected Icd was derived in Equation (2.61). The numerical proof is
given Figure 5.5 (b) for which one can see that Icd is equal to Id + Ibe − Ibi + Iwe − Iwi during
the whole simulation. On the other figures, three main periods can be discerned.

In the first moments, called phase I, of the simulation, the global density increases linearly
thanks to the ionization source term because the losses remain limited. This situation goes on
until ions traveling from the ionization zone reach the cathode boundary. At around 1.2 µs, the
density is maximum as shown in Figure 5.5 (a). At this point, the total number of electron and
ion macroparticles is around 4.26 billion. In the mean time, the electrons heat up, moderately
at first, and then sharply from 0.2 up to 0.9 s (see Figure 5.5 (c)). In contrast to Chapter 4,
the heating seems to occur at approximately the same rate and at the same time for the three
directions. This behavior is probably related to different oscillatory phenomena that will be
detailed in Section 5.4.2. On the other hand, ions present a strong anisotropy in Figure 5.5 (d).
While the radial and azimuthal temperatures Ti,z and Ti,y barely rise, the axial ion temperature
Ti,x dramatically increases and is multiplied by more than 20. This sharp increase is due to the
initial acceleration of ions toward the plume. At around 1.2 µs, Ti,x slightly drops because the
fastest ions have exited the domain.

During the second stage of the transient, phase II, from 1.2 to ∼ 5 µs, axial losses largely
overtake the creation of particles. At first, up to 2.1 µs, losses remain moderate as shown in
Figure 5.5 (a). This results in a drop in the three components of the electron temperature.
Interestingly, while Ti,z and Ti,y decrease as well in Figure 5.5 (d), the axial temperature Ti,x
continues to rise. This apparent paradox will be further explained in Section 5.3.2. Around
2.1 µs, losses accelerate and a peak of injected current Icd at the cathode is noted in Figure 5.5
(b). Electron temperatures decrease again as well as Ti,x.

Finally, in phase III, from 5 µs, most of the wall losses start to be balanced out and the
simulation stabilizes. This process takes some time and the ion axial temperature continues to
decrease until the steady state is reached from 8 µs.
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Figure 5.5: Temporal evolution of space-averaged quantities in the whole domain. (a): ion
density ni. (b): actual cathode electron current Icd and expected cathode electron current
Id + Ibe + Ibi + Iwe + Iwi. (c): electron temperature components Te,x, Te,y and Te,z. (d): ion
temperature components Ti,x, Ti,y and Ti,z. The three different phases (I,II,II) are delimited in
(a) and (b) with black dashed lines.

5.3.2 2D maps
More details on the transient state can be provided by looking at the main planes of interest
of the simulation, starting with the axial-radial view x − y. Figure 5.6 presents the centered
x− y plane for four variables of interest at selected times.
During phase I, the plasma density is increasing near the ionization zone. At around 0.50 µs,
under the effect of the axial electric field, a portion of the ionization zone detaches and acceler-
ates in the axial direction. In the area of separation, the axial electric field is slightly negative,
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Figure 5.6: Timeline of variables of interest in the centered axial-radial x − z plane at y =
Ly/2. From the first to the fourth row are successively presented the ion density ni, the ion
temperature Ti, the axial electric field Ex and the azimuthal electric field Ey. Each column
corresponds to a specific time: t = 0.50, 1.20, 2.10 and 7.50 µs.

hence highlighting a clear delimitation. In the meantime, the ions start heating up on the right
side of the cubic ionization zone while no specific features can be observed in the azimuthal
electric field Ey.

At the start of phase II, at 1.20 µs, the transient wave continues to travel downstream and
most of the ions have not yet reached the cathode, which is consistent with the maximum
plasma density observed in Figure 5.5 (a). Interestingly, the bulk of the wave remains at a
moderate ion temperature whereas the heading and trailing edges are much hotter. It seems
that this is mostly due to an inertial effect as the fastest ions get ahead, thus tending to distort
and extend the local velocity distribution function (VDF). Similarly, the initially slowest ions,
that eventually fall behind in time, also increase the dispersion of local VDFs. As soon as the
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fastest ions start to leave the domain, the ion temperature coherently drops (Figure 5.5 (d)).
At t = 2.10 µs, Ti is nevertheless maximum as lagging ions continue to locally increase the
temperature before they begin to be convected away.

In phase III, at t = 7.50 µs for instance, most of the transient plasma wave has exited the
domain and the ion temperature continues to decrease. The axial electric field stabilizes as well
with a maximum localized at the channel exit. In spite of smoothed edges, the local curvature
is sufficient to rise the local electric field. The azimuthal electric field Ey exhibits an interesting
oscillatory behavior propagating in the axial direction. In the channel, Ey varies mainly axially
with a wavelength of the order of 1 mm. In the plume, the oscillations seem to propagate in
both the radial and axial directions, as a spherical wave, with a wavelength increasing up to
∼ 7 mm. As will be discussed in Section 5.4.2, this wave is likely to be related to the already
encountered ECDI.

The understanding of the instability affecting Ey can be further explored by studying the
axial-azimuthal x − y plane located at z = Lz. This is done in Figure 5.7 for which a similar
timeline is presented for the axial electron current Je,x, the radial electron current Je,z and the
azimuthal electric field Ey.

Figure 5.7: Timeline of variables of interest in the centered axial-azimuthal x − y plane at
z = Lz. From the first to the last row are successively presented the axial electron current Je,x,
the radial electron current Je,z and the azimuthal electric field Ey. Each column corresponds
to a specific time: t = 0.20, 1.20, 5.00 and 7.50 µs. The dashed black line represents the channel
exit at x = 0.34Lx = 0.85 cm.

During the linear-like phase, at t = 0.20 µs for instance, we can see on the 2D map of the
azimuthal electric field Ey the ECDI starting to develop upstream. Then, the ECDI is convected
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away towards the plume by the transient ion wave. Finally, from around 5 µs, the ECDI seems
to be established in almost the entire domain. In the channel, the wave vectors seem to have
both axial and radial components while it is mostly axial in the plume. This was also observed in
a pure 2D axial-azimuthal configuration (see Figure 3.2). For the 3D configuration we measure
an azimuthal wavelength λy,ch ≈ 628 µm in the channel while its is around λy,pl ≈ 913 µm in the
plume. The radial electron current Je,z is also very interesting. Similarly to Ey, Je,z presents
short-wavelength azimuthal oscillations at the beginning of the simulation. During the travel
of the transient ion wave, no organized structures seem to appear (t = 1.20 µs). However from
5 µs another subtle pattern arises in the azimuthal direction at x ∼ 3− 4 mm (0.12− 0.16Lx).
At 7.5 µs, this wave emerges more clearly in the axial electron current Je,x with a wavelength
of the order of 1 mm. The wave is located in the same area as for Je,z.

In order to deepen the analysis one can examine the radial-azimuthal z − y plane in this
area. This is done in Figure 5.8 for which the same quantities are presented in the channel
plane located at x = 0.12Lx = 3 mm.

Figure 5.8: Timeline of variables of interest in the radial-azimuthal z−y plane at x = 0.12Lx =
3 mm. From the first to the last row are successively presented the axial electron current Je,x,
the radial electron current Je,z and the azimuthal electric field Ey. Each column corresponds
to a specific time: t = 0.20, 1.20, 5.00 and 7.50 µs.

As in Figure 5.7, a pure azimuthal wave, due to the ECDI, develops in the first moments of
the simulation (t = 0.20 µs). From t = 1.20 µs, the short-wavelength (λECDI ∼ Ly/10) is still
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clearly visible for the azimuthal electric field Ey but a radial pattern seems to emerge in the
electron radial current Je,z. This radial wavelength is around Lz. This larger oscillation also has
an azimuthal component that distinctly appears at t = 7.50 µs. The corresponding azimuthal
wavelength is approximately Ly. Moreover, the pure azimuthal wave in the Ey 2D map sees
its wavelength roughly divided by two when approaching the steady state. Overall, this large
radial-azimuthal wave resembles the MTSI encountered in Chapter 4. This point will be further
detailed in Section 5.4.2.

5.4 Steady state

5.4.1 Main plasma variables
The steady state is reached in about 10 µs. We can verify the proper functioning of the thruster
by analyzing Figure 5.9.

Figure 5.9: Radial-azimuthal view at steady state. (a): axial ion speed vi,x with iso-contour
of Mach number M . (b): potential φ with streamlines of electric field E in the plane. (c):
electron azimuthal current density Je,y. (d): axial electron current density Je,x with streamlines
of electron velocity ve in the plane. (e): total electron temperature Te with iso-contour of
potential φ. (f): azimuthal electric field Ey.

In Figure 5.9 (a), we can see that the ions are greatly accelerated at the channel exit as the
plasma flow becomes supersonic. We adopt here a classical definition of the Mach number M ,
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M = ‖ui‖
cs

, (5.9)

where ‖ui‖ denotes the magnitude of the ion hydrodynamic velocity and cs, the ion speed of
sound defined as

cs =
√
kBTe
mi

, (5.10)

for which kB, Te and mi are respectively the Boltzmann constant, the electron temperature and
the ion mass. Additionally, we also note thatM ≥ 1 at the inner and outer walls of the channel
and also at the vicinity of the anode at left, which marks the beginning of their respective
sheath. For instance, we roughly measure a width of 1 mm at the inner/outer wall.

The acceleration is caused by an important potential drop seen in Figure 5.9 (b). The
subsequent electric field lines are mostly directed toward the plume and have both a radial
and axial components, suggesting that the divergence beam is important. This is coherent
with the choice of using Dirichlet boundary conditions for Poisson’s equation at the top and
bottom boundaries in the plume. An important radial gradient of potential is also present in
the downstream section of the channel, also highlighted by the iso-φ lines in Figure 5.9 (e),
which means that a strong radial electric field takes place there. In the upstream section of
the channel, we can see the effect of choosing a linearly decreasing potential from 200 (anode)
to 0 V (channel exit) as a Dirichlet boundary condition. Besides, in the channel, a strong
electron drift current is observed in the azimuthal direction under the effect of the E and B
fields (Figure 5.9 (c)).

The global electron transport is shown in Figure 5.9 (d) with the help of the axial electron
current Je,x = −eneue,x. With this definition, Je,x > 0 means that ue,x < 0. From the
streamlines, we can see that electrons effectively enter into the channel despite the presence
of recirculation zones near the walls. In the channel, the presence of these recirculation zones
might be related to the radial azimuthal wave seen in Figure 5.8. In the plume, another
recirculation zone is also visible. The situation is unclear here: the streamlines seem to follow
the curvature of the azimuthal instability carried by Ey (see Figure 5.6 (f)). At this point, we
cannot provide a satisfying explanation for these recirculation areas.

Another insight from Figure 5.9 (d) concerns the cathode. First, we notice some streamlines
from the right boundary going to the top and bottom plume boundaries, which means that
electrons are lost and will be re-injected by the cathode. This behavior is even more evident
if we look closely at the right plume boundary where we note the current being alternatively
positive and negative. Actually, a significant portion of newly injected cathode electrons leaves
the domain after a few iterations, which is not a desirable trait as it artificially disturbs the local
charge distribution. Cho et al. [2016] also noted a similar problem with their cathode model.
Perhaps it would help to shift the injection surface slightly into the domain to help electrons
stay inside the domain as it was done in [Charoy, 2020]. But as explained in Section 2.5.2, this
is difficult to do in the context of unstructured grids. Another option would be to replace the
random injection of electrons by a targeted injection consisting in injecting electrons where the
charge difference between ions and electrons is the highest as in [Szabo, 2001].

Going back to the physical insights, Figure 5.9 (e) shows the space distribution of the elec-
tron temperature Te. With a maximum of approximately 50 eV, it has a bell shape that is
probably prescribed by the iso-potential lines topology. Where the iso-lines are the closest, the
electric field is the highest and Joule heating J · E is the most intense. The plume is largely
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cold with a weak electric field.

To get a more quantitative insight of the physics we can look at 1D profiles in different
sections of the domain. This is done in Figure 5.10.
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Figure 5.10: Inside the channel at centerline. (a) and (b): azimuthally averaged 1D radial
profiles at x = 0.25Lx = 0.625 cm of plasma density ni, ne in (a) and potential φ and electron
temperature Te in (b). (c) and (d): azimuthally averaged 1D axial profiles at z = Lz = 1 cm
(centerline) of plasma density ni, ne and electron axial current density Je,x in (c) and axial
electric field Ex and electron temperature Te in (d). The black dashed line in (c) and (d)
corresponds to the axial cut position of (a) and (b), i.e, x = 0.25Lx.

In Figure 5.10 (a) and (b) we present the averaged radial profiles of the plasma density, the
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potential and electron total temperature at x = 0.25Lx = 0.625 cm, where the ionization source
term is maximum. At this position, the plasma density has a usual bell shape from the wall
up to the centerline of the domain at z = Lz where ni = ne ≈ 7× 1017 m−3. Near the inner
wall (z = Lz/2) and outer wall (z = 3/2Lz), the sheath starts whenever ni 6= ne with a width
of ∼ 0.1Lz = 1 mm, which is consistent with the iso-Mach lines from Figure 5.9 (a). Thus, in
Figure 5.9 (b), the potential sharply decreases toward the Dirichlet condition φ = 0 V, while
at the center we note a maximum value of φ = 210 V. The radial profile of the temperature
is very interesting. From the wall, the temperature rises from 0 to 40 eV at z = 0.63Lz, and
then decreases until it reaches a minimum at the centerline of 27 eV. This profile was already
anticipated in Figure 5.9 (e) and is probably the result of a bent iso-potential line in the radial
axial plane.

In Figure 5.10 (c) and (d), the azimuthally averaged profiles at the centerline are shown.
From Figure 5.10 (c), we observe the plasma is mainly located in the channel with a maximum
value of ≈ 7× 1017 m−3, as in the previous radial profile. The electrons massively enter into
the channel with a maximum value of Je,x ≈ 9.8× 103 A m−2 > 0. In contrast, the recirculation
zone in the plume seen in Figure 5.9 (d) appears from x = 0.4Lx = 1 cm and ends at approx-
imately x = 0.88Lx = 2.2 cm. In Figure 5.10 (d) the acceleration of the ions can be observed
at about x = 0.4Lx = 1 cm with a maximum electric field Ex ∼ 48× 104 V m−1. At the same
location the temperature of electrons is also maximum with Te = 55 eV.

The plasma structure looks different if we consider other axial and radial cut locations in
the domain. As an example, we can investigate what happens in the plume at x = 0.45Lx =
1.12 cm > Lch in Figure 5.11 (a) and (b). Downstream of the channel exit, the iso-potential lines
are less bent and more parallel to the radial direction. As a result, the electron temperature
radial profile Te retrieves a bell shape. Additionally, the sheath has collapsed. This can be
seen in the plasma density and potential profiles (Figure 5.11 (a) and (b), respectively) where
ni = ne is always maintained and the potential falls to zero before the radial positions z = 0 and
z = 2Lz. This behavior is expected since the positions z = 0 and z = 2Lz do not correspond
to physical walls but to the delimitations of the plume. This result also indicates that the
quasi-neutral cathode model, presented in Section 2.5.2, effectively plays its role and prevents
the formation of artificial sheath.

In Figure 5.11 (c) and (d) we consider the azimuthally averaged axial profile at z = 1.3Lz =
1.3 cm, above the centerline z = Lz and near the outer wall of the thruster. In Figure 5.11
(c), the density profile is, as expected, lower than at the centerline but the shape is similar.
At this radial location, the axial profile of Je,x is negative from x = 0.2Lx = 0.5 cm to x =
0.36Lx = 0.9 cm. This corresponds to the recirculation zone in the channel already observed in
Figure 5.9 (d). Finally the electron temperature and axial electric profiles in Figure 5.11 (d)
are very similar to those in the centerline.
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Figure 5.11: Outside the channel and near the outer wall. (a) and (b): azimuthally
averaged 1D radial profiles at x = 0.45Lx = 1.12 cm of plasma density ni, ne in (a) and potential
φ and electron temperature Te in (b). (c) and (d): azimuthally averaged 1D axial profiles at
z = 1.3Lz = 1.3 cm (near the channel outer wall) of plasma density ni, ne and electron axial
current density Je,x in (c) and axial electric field Ex and electron temperature Te in (d). The
black dashed line in (c) and (d) corresponds to the axial cut position of (a) and (b), i.e,
x = 0.45Lx.
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5.4.2 Spectral analysis
Overview with a Dynamic Mode Decomposition approach

In Section 5.4.1, the discussion focused on the radial and axial directions of the HT but the
azimuthal direction is crucial as well and is best explored through spectral analysis. During
the transient phase, detailed in Section 5.3, several instabilities arise with different wavelengths
in different directions. In order to highlight the modes present in the system, we use the
Python library Anatres [Antares Development Team, 2020] and we perform a Dynamic Mode
Decomposition (DMD) from Schmid [2010]. In Figure 5.12, we show the spectrum of the radial
electron current density Je,z, the axial electron current density Je,x and the azimuthal electric
field Ey, as these three quantities present the most interesting oscillatory features according to
Figure 5.8.
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Figure 5.12: DMD spectrum obtained over the last microsecond for the azimuthal electric field
Ey, the electron axial current density Je,x and the electron radial current density Je,z. Two
resonances at ω0 and ω1 can be observed.

For the azimuthal electric field Ey, we recognize a main peak at ω1 ≈ 3.3× 107 rad s−1, which
corresponds to the main short-wavelength azimuthal instability of Figure 5.8. This dominant
mode can be interpreted as the presence of the ECDI-ion acoustic instability. We shall provide
more theoretical argument for this in the next paragraph.We can begin to be convinced of this
by looking at the reconstructed mode of the azimuthal electric field Ey corresponding to ω = ω0
in Figure 5.13.
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Figure 5.13: 3D clip view of the reconstructed mode ω = ω0 of the azimuthal electric field Ey.
Shaded grey areas correspond to the part of the domain that is not plotted here, i.e. satisfying
both conditions x > 0.12Lx = 3 mm and z > Lz = 1 cm.

In this 3D view we observe an azimuthal instability in the axial-azimuthal plane and in the
radial-azimuthal plane, which is very similar to Figure 5.7 and Figure 5.8. Furthermore, we can
see that this main mode is also responsible for the Ey pattern, resembling spherical-like waves,
observed in the axial-radial plane in the plume region (see Figure 5.9 (f)). These first results
show how useful the DMD is to identify and decouple multiple modes in this simulation.

This main mode is also present in the electron current densities Je,x and Je,z, but with a
much lower amplitude as seen in Figure 5.12. Another resonance, we call ω0 ∼ 2× 106 rad s−1,
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Figure 5.14: 2D views of the reconstructed mode ω0 = 2× 106 rad s−1. (a): axial electron
current density Je,x in the axial-azimuthal plane at z = Lz (centerline). (b): axial electron
current density Je,x in the radial-azimuthal plane at x = 0.12Lx (inner channel). (c): radial
electron current density Je,z in the radial-azimuthal plane at x = 0.12Lx. (d): azimuthal electric
Ey in the radial-azimuthal plane at x = 0.12Lx.
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shows up at low frequency, and is clearly visible for both the electron current densities Je,x
and Je,z. If we look at the corresponding reconstructed mode for Je,x, Je,z and Ey, we obtain a
radial-azimuthal pattern as shown in Figure 5.14. For Je,x, the main features are visible in the
axial-azimuthal and radial-azimuthal planes, depicted in Figure 5.14 (a) and (b) respectively.
We observe that the instability is mainly azimuthal, with a wavenumber ky = 2π/Ly, although a
small radial component is also present in the radial-azimuthal plane. In Figure 5.14 (c), we show
Je,z in the radial-azimuthal plane as well: a clear radial pattern is present with a wavenumber
kz = π/Lz. Again, the features observed on the raw data in Figure 5.8 are retrieved and a clear
radial-azimuthal instability is captured. The azimuthal electric field, shown in Figure 5.14 (d),
has a similar azimuthal wavenumber ky = 2π/Ly but note that the magnitude is around 15
times lower than the main mode presented in Figure 5.13. Although azimuthal radial instability
is therefore present, it is very weak in comparison to what was observed in the pure 2D radial-
azimuthal configuration presented in Chapter 4. Besides, as a reminder, the patterns were
reversed in Chapter 4, meaning that Je,z showed a pure long wavelength azimuthal component
whereas Je,x displayed a radial-azimuthal instability. At this point, there is no clear explanation
for this inversion of patterns between 2D and 3D configurations.

Comparison with theoretical results: ECDI-ion acoustic wave

In order to consolidate our analysis we shall compare our numerical experiments with theoretical
results.

First, we focus on the dominant mode labeled "ECDI-ion acoustic" in Figure 5.12. Thanks
to the transient analysis and Figure 5.7 (last row, first column) in particular we know that this
azimuthal mode grows inside the channel first. Therefore, we first apply a spectral analysis in
the radial-azimuthal plane at the axial location x = 0.12Lx for the azimuthal electric field Ey.
In Figure 5.15 we present the temporal evolution of azimuthal wavenumbers. This is done by

Figure 5.15: Temporal evolution of azimuthal wavenumbers ky in the radial azimuthal plane
located at x = 0.12Lx. Spectrum components have been normalized to the maximum value for
each time.

performing a 1D FFT at each radial location at each time. We can can see that at the beginning
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of the simulation a single mode appears dominant with a wavenumber ky ≈ 6283 rad m−1. This
situation goes on until around 5 µs, from which ky increases meaning the azimuthal wavelength
is reduced, which was exactly observed in Figure 5.7 and Figure 5.8.

Nonlinear effects play an important role in the evolution of plasma instabilities [Lampe
et al., 1971a, 1972; Lafleur et al., 2016b] and dramatically complicate their analysis. Therefore
we can start by focusing our efforts on the beginning of the simulation, when the linear theory
of instabilities still applies. For this work, we can use the 3D dispersion relation (DR) derived
by Ducrocq et al. [2006], that is recalled in Equation (5.11) and was already presented in
Section 1.3.2:

1+k2λ2
D + g

(
ω − kyVd

Ωce

,
(
k2
x + k2

y

)
r2
L, k

2
zρ

2
)

−
k2λ2

Dω
2
pi

(ω − kxvp)2 = 0,
(5.11)

where λD is the Debye length, ωpi the ion plasma frequency, Ωce the cyclotron frequency,
Vd = Ex/By the electron drift velocity, rL the Larmor radius of electrons, vp the velocity of the
ion beam and kx, ky and kz the axial, azimuthal and radial components of the wavenumber k.
g(Ω, X, Y ) is the Gordeev function [Gordeev G. V., 1952] that can be expressed in two ways:

g(Ω, X, Y ) = iΩ
ˆ +∞

0
e−X[1−cos(ϕ)]− 1

2Y ϕ
2+iΩϕdϕ,

= Ω√
2Y

e−X
+∞∑

m=−∞
Z
(

Ω−m√
2Y

)
Im(X),

(5.12)

where Im is the modified Bessel function of the first kind and Z the plasma dispersion function.
In contrast to earlier 2D PIC studies [Petronio et al., 2021; Janhunen et al., 2018a; Lafleur

et al., 2016b; Boeuf and Garrigues, 2018; Hara and Tsikata, 2020], the DR does not need to
be approximated and can fully take leverage of the present 3D PIC simulation. There is no
analytical solution of Equation (5.11), but it can be numerically solved using a fixed point
scheme described by Cavalier et al. [2013]. We implemented the DR solver using Python,
well suited for this task [Oliphant, 2007], and the built-in Fadeeva function from Scipy. The
Plasmpy package [Community et al., 2021] can directly provide the plasma function Z as well.
For given plasma parameters and wavenumbers kx, ky and kz, the scheme converges to a complex
number Ω = ω+ iγ where ω and γ are the theoretical angular frequency and growth rate of the
plasma wave. Input parameters are normalized with the ion plasma frequency ωpi, the Debye
length λD and the ion sound speed cs = (kBTe/mi)−1/2 depending on whether they express
a temporal frequency, spatial length or speed. Therefore, we start by rescaling the temporal
evolution of the spectrum presented in Figure 5.15 and we obtain Figure 5.16 (a). First, we
note that the previously observed increase of azimuthal wavenumber ky is not reflected in the
dimensionless quantity kyλD, suggesting kyλD remains fairly constant over time except at the
beginning of the simulation where kyλD ≈ 0.5. λD is calculated at each time as an average
in the selected 2D plane at x = 0.12Lx without the sheaths that were measured to be around
1 mm (see Section 5.4.1). In the first moments of the simulation, we can observe how the single
mode ky ≈ 6283 rad m−1 develops as shown in Figure 5.16 (b) in the dark green solid line. We
can see that this component frequency quickly undergoes an exponential growth, that indicates
we are in the linear stage of the plasma instability, i.e. ∂tE2

y ≈ 2γE2
y , where γ is the growth

rate of the instability carried out by the azimuthal electric field. Note that this short period of
time corresponds to the strong electron temperature increase observed in Figure 5.5 (c). With
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least-square interpolation, we measure the exponential factor 2γ and we can compare it with
the expected growth rate for this radial-azimuthal plane. The input parameters used by the
DR solver at the beginning of the exponential growth are reported in Table 5.2.

Parameters Symbol Value Unit

Plasma parameters

Ion density ni 1.05× 1017 m−3

Electron temperature Te 12.5 eV
Ion beam velocity vp 0 m s−1

Axial electric field Ex 25.6× 103 V m−1

Radial magnetic field Bz 82.2 G

Wavenumbers

Axial wavenumber kx 0 rad m−1

Azimuthal wavenumber ky 0− 5/λD rad m−1

Radial wavenumber kz π/Lz = 3.14× 102 rad m−1

Table 5.2: Input parameters for the DR solver measured in the radial-azimuthal plane at
x = 0.12Lx at 0.5 µs without sheaths.

In Table 5.2, plasma parameters are averaged in the x = 0.12Lx radial-azimuthal plane without
the sheath. The azimuthal wavenumber spans the range 0− 5/λD, where λD is computed from
the aforementioned plasma parameters. kx is set to 0, meaning we assume the instability do
not propagate in the axial direction, in the linear stage at least. Looking back at Figure 5.7
(last row, first column), it seems the instability is indeed purely azimuthal, which supports our
choice. Furthermore, the effect of kx turns out to be neutral on the growth rate γ because kx
is only involved in the kxvp term in Equation (5.11). The same holds true for vp. As shown by
Cavalier et al. [2013], the final complex angular frequency ω can be written as ω = kxvp + κ
where κ is some complex number with a non-negative imaginary part whereas kxvp ∈ R is a pure
real number. Therefore assuming kx = 0 or even vp = 0 does not matter if we are only interested
in the growth rate of the instability. Finally, the radial wavenumber kz is set to π/Lz, similarly
to what was done in Chapter 4, because plasma sheath effects make possible the existence of
shorter wavenumbers below the geometrical constraint kz = 2π/Lz [Barrett et al., 1972; Chen,
1965]. For this particular case, the corresponding theoretical curve, shown in Figure 5.16 (c),
was found to be relatively insensitive to setting either kz = π/Łz or kz = 2πŁz anyway. On
this plot, we also report the numerical growth rate γ, labeled as "exp", previously computed
in Figure 5.16 (b) and we can see there is an excellent agreement with the linear theory, with
a maximum growth rate achieved for kyλD = 0.5. We also note that the DR curve is not
smooth but presents oscillations around a mean value. This effect was predicted by Cavalier
et al. [2013]’s parametric study as the DR can transition from a discrete set of resonances, the
growth rate being close to zero between each cyclotron resonances, to a continuous function
that can be treated as an ion acoustic DR. The corresponding continuous ion acoustic DR for
the growth rate, derived by [Lafleur et al., 2016b], is also shown on Figure 5.16 (c) and its
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analytical expression, for the given conditions, is reminded in Equation (5.13).

γ =
√
πme

8mi

kyVd

(1 + (kyλD)2)3/2 (5.13)

We note that the ion acoustic DR (orange curve) is separate from the actual DR (blue curve),
which indicates the transition to an ion acoustic mode is not achieved yet. However, since the
actual DR exhibits a single resonance with small remaining oscillations, it suggests that we are
already halfway between a pure discrete nature of the DR and a fully continuous ion acoustic
DR. Besides, looking back at Figure 5.16 (a), we note that the main azimuthal wavenumber
quickly increases from kyλD = 0.5 to higher values. This result seems in agreement with a
complete transition toward the ion acoustic DR as the maximum growth rate for Equation (5.13)
is obtained for ky,maxλD =

√
2−1. This value is highlighted in Figure 5.16 (a) (red line) and

we can see that it corresponds reasonably well to the maximum values extracted from the
simulation after the linear stage.

The previous analysis can be extended to other radial azimuthal planes in the channel to
verify how well the numerical results agree with linear theory. To do so, we select the most
dominant mode in the first instants of the simulation for each considered axial position and
we compute the corresponding growth rate with a least-square interpolation in Figure 5.16
(b). In the meantime, we also compute the theoretical DR using local plasma parameters and
we extract the maximum growth rate. In all cases, the maximum growth rate was achieved
approximately at the same dimensionless kyλD wavenumber. The final axial profile of the
growth rate is shown in Figure 5.16 (d). Overall, we can see that numerical measurements are
in excellent agreement with the linear theory, confirming that the dominant azimuthal mode is
the ECDI. Yet, we also observe that the first growth rate obtained by the PIC simulation at
x = 0.04Lx is about two times lower than expected. This might be due to a too low temporal
resolution, which makes the linear regression difficult to conduct as we only have a handful
of points to work with this axial position. Besides, the position x = 0.04Lx corresponds to
x = 1 mm, i.e. very close to the anode sheath, which is likely to create plasma conditions
violating the assumptions used to derive the DR from linear theory. The other axial positions
show that the dimensional γ growth rate decreases with x, which suggests the ECDI truly
starts growing in the upstream section of the channel and is not an artifact of the axial profile
of the Debye length λD. This result is consistent with what was observed in the 2D maps of
azimuthal electric field Ey during the transient phase (Figure 5.7). However, since a convective
wave appears during the transient (see Section 5.3) and the final azimuthal electric field also
shows an axial periodic pattern, the initial ECDI wave probably acquires an axial wavenumber
kx at some point. In order to fully understand how and why this happens non-linear theory of
plasma wave is necessary.
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Figure 5.16: Growth and temporal evolution of the ECDI-ion acoustic instability. (a): temporal
evolution of the dimensionless azimuthal wavenumber kyλD in the radial-azimuthal plane at
x = 0.12Lx. The solid red line corresponds to the kyλD for which maximum growth rate
is achieved for the ion acoustic wave [Lafleur et al., 2016b]. (b): temporal evolution of the
dominant azimuthal wavenumber ky = 6283 rad m−1 at different axial locations expressed as
a fraction of the axial length Lx. The exit channel is located at x = 0.34Lx. The dotted
lines indicate the linear regression obtained with a least square method during the exponential
growth of the instability. (c): comparison of the dimensionless growth rate γ/ωpi (labeled as
"exp") measured in the x = 0.12Lx plane with linear theory (blue DR from Cavalier et al.
[2013]) and asymptotic ion acoustic DR from Lafleur et al. [2016b] (orange solid line). (d)
Axial profile of measured growth rates in its dimensionless and dimensional form γ/ωpi (left y
axis) and γ (right y axis). Results are compared with predicted dimensionless values stemming
from linear theory by [Cavalier et al., 2013] (dashed line).
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Discussion on the radial azimuthal mode

So far we focused our investigation on the dominant mode that is likely to be the ECDI as shown
by the linear theory of instabilities. Besides, Figure 5.16 (c) suggests that a single Bernstein
mode is actually excited in the channel. Overall, this result is consistent with the DMD
spectrum presented in Figure 5.12 as a single mode dominates the whole domain. Indeed, the
radial azimuthal mode, shown in Figure 5.14 (d) remains quite modest for the azimuthal electric
field Ey given the amplitude is around 200 V m−1 vs 30 kV m−1 for the main ECDI mode (see
Figure 5.13). At this point of our investigations, it is unclear why the radial azimuthal pattern
is more visible in the current density fields Je,x and Je,z. As a reminder, in the previous purely
2D radial-azimuthal case, two modes were excited: the MTSI and the ECDI (see Figure 4.6).
Although it seems premature to confidently claim that the observed radial-azimuthal mode is
the MTSI, Figure 5.17 suggests that the resemblance with the MTSI is nevertheless important.
In this figure we select the radial azimuthal mode from the 3D simulation and also the identified
MTSI from Chapter 4 in the dimensionless (kyλD, kzλD) plane. In 2D, the set of couples
(kyλD, kzλD) leading to a maximum growth rate γmax for the MTSI can be approximated by a
simple parabola equation derived by Petronio et al. [2021] whose dimensionless form reads:

kzλD = meEx
eB2

zλD
(kyλD)2. (5.14)

For both the 2D and 3D simulations, the corresponding parabolas were computed based on
local plasma conditions. For the 2D simulation, the couple (kyλD, kzλD) is coherently found to
be close to the maximal growth rate of the MTSI. For the 3D simulation, the radial-azimuthal
mode is also very close to the 2D maximum growth rate, which invites us to consider that the
MTSI is also present in this configuration. Obviously, since the parabola equation was derived
for a 2D configuration, no formal proof can be inferred at this point. However, this finding
encourages us to explore other initial plasma conditions to assess whether or not it is possible
to trigger a clear MTSI in 3D.

164



5.4. STEADY STATE

0.0 0.2 0.4 0.6 0.8
kyλD

0

0.05

0.1

0.15

0.2

k
z
λ
D

2D PIC
Villafana [2021]

3D PIC

γmax

Petronio [2021]

Figure 5.17: Comparison of 2D and 3D PIC results with the theoretical maximum growth rate
for the MTSI in 2D [Petronio et al., 2021]. The 2D result is taken from Chapter 4 that was
published in [Villafana et al., 2021]. The 3D result is obtained from the radial azimutal mode,
i.e. ky = 2π/Ly and kz = π/Lz, at x = 0.12Lx.
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5.5 Comparison with 2D simulation

5.5.1 Context and numerical setup
As mentioned in Section 1.4.2, most PIC simulations are performed in 1D-2D academic con-
figurations mainly because of the tremendous numerical cost of 3D runs. This constraint can
affect the 3D nature of the HT physics. Therefore, in this Section, we propose to explore and
assess the differences that might arise between the present 3D simulation and an analogous
pure 2D-3V setup.

For this effort we decided to consider a 2D axial-azimuthal domain and to use the same
parameters as in the 3D simulation. We could also have considered a 2D radial-azimuthal
domain as in Chapter 4, but two concerns emerged. First, the axial electric field is imposed
and so it is uniform in the domain whereas it clearly varies in time and space in the 3D
simulation. In fact the axial electric field will self adjust to the existing plasma conditions.
Second, a steady state can only be obtained by assuming an axial virtual model, that gets rid
of the most energetic particles. The chosen axial length and the way of re-injecting particles will
inevitably affect the evolution of instabilities and the overall plasma dynamics. Such an effect
was already reported by Tavant [2019]; Lafleur et al. [2016a]; Asadi et al. [2019]; Smolyakov
et al. [2020]. As a result, it seemed complicated to design a 2D simulation as close as possible
to its 3D counterpart.

Going back to the axial azimuthal configuration, we consider a rectangular domain that is
similar to the centered 2D plane obtained with a cut at z = Lz in the 3D case. The simulation
domain is shown in Figure 5.18. Most parameters defining the original 3D domain in Table 5.1
can be immediately used for the 2D simulations and are reported in Table 5.3. In particular the
axial and azimuthal lengths, Lx and Ly respectively, are the same. The boundary conditions
in the axial and azimuthal directions are also identical: periodicity at y = 0 with y = Ly
and "exit" conditions for particles at x = 0 and x = Lx. The potential is set to 200 V at the
anode and 0 V at the cathode, where the quasi-neutral (QN) model is used. The magnetic field
strictly follows Equation (5.8) as in the 3D case. The 2D mesh also has a similar cell size with
∆x = ∆y = 50 µm, whereas it was ∆l = 67 µm in the 3D case. Computational parameters and
initialization conditions are the same. Finally, the 2D ionization source term profile S2D is the
same as in Chapter 3, given by ifx ∈ [x1, x2] S2D(x) = S0 cos

(
x−xm
x2−x1

)
else S2D(x) = 0.

(5.15)

Note that this profile exactly corresponds to the 3D profile S3D in the centered axial-azimuthal
plane. Mathematically this results in writing: S2D(x) = S3D(x, z = zM). One consequence of
this choice is that the current densities Jm,2D and Jm,3D cannot be equal for both simulations
and from Equation (5.4) we can infer:

Jm,2D = Itot
Ly

= e 2
π
S0(x2 − x1)

Jm,3D = Itot
LyLz

= e 4
π2S0(x2 − x1) (z2−z1)

Lz

⇒ Jm,2D
Jm,3D

= π

2
Lz

z2 − z1
> 1. (5.16)

Therefore, this geometrical effect results in actually setting Jm,2D ≈ 730.5 A m−2 vs Jm,3D ≈
400 A m−2. In order to check that we have chosen the closest ionization profile for our 2D case,
we also performed a simulation with Jm,2D ≈ 400 A m−2. It appeared that the final density
level was much lower than in the 3D case and therefore this case was discarded.
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Figure 5.18: 2D axial azimuthal simulation domain compared to 3D results measured at z = Lz.
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Parameters Symbol Value Unit

Simulation domain

Cell size ∆x = ∆y 50 µm
Domain size Lx × Ly 2.5× 1 cm3

Number of triangular cells Ncell 500× 200× 2
Number of nodes Nnodes 100.701

Initial conditions

Plasma density n0 1× 1017 m−3

Ion temperature Ti,0 0.5 eV
Electron temperature Te,0 10 eV
Number of particles/cell Nppc,ini 75

Ionization module

Axial limits (x1, x2) (0.25,1.00) cm

Electromagnetic fields

Anode potential φa 200 V
Cathode potential φc 0 V
Maximum magnetic field Bmax 100 G
Position of maximum magnetic field xBmax 0.75 cm
Magnetic field at anode Ba 60 G
Magnetic field at cathode Bc 10 G

Computational parameters

Time step ∆t 5 ps
Average time range Na 5000∆t s
Subcylcing frequency fsub 5 iterations

Table 5.3: Simulations parameters for the 2D axial-azimuthal simulation domain that is com-
pared to 3D results measured at z = Lz. As a reminder, the 3D case parameters are defined in
Table 5.1
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5.5.2 Main plasma variables
As usual, we can start looking at the temporal evolutions of profiles of interest.

In Figure 5.19 (a), the mean ion density profile ni is shown for both configurations. In the
first instants, the density linearly increases with the same slope, which indicates our choice for
the ionization source term create similar plasma conditions for both the 2D and 3D simulations.
Nevertheless, from around 1 µs, ni continues to rise for the 2D case whereas it starts to saturate
in the 3D simulation. This difference may be due to the presence of the walls in 3D, which
probably limits the maximal possible density. In 2D, losses are mitigated. In the 2D case, the
density reaches a maximum value ni = 4× 1017 m−3 at 2.5 µs. It then drops until 5 µs before
slowly increasing again to stabilize at around 3× 1017 m−3 at 15 µs. These strong variations are
due to the initial plasma wave leaving the domain at the cathode. Therefore, this phenomenon
is similar to what was described in the 3D case in Figure 5.6. However, ni does not vary with
the same magnitude compared to the 3D simulation. In this regard, wall losses probably avoid
the strong initial overshoot, which helps the simulation to reach a steady state more quickly.
As a result, the 3D case only need 10 µs to stabilize vs 15 µs in 2D.

0 5 10 15
0

2

4

n
i

[m
−

3
]

×1017

(a)

0 5 10 15
0

20

40

60

T
e

[e
V

]

(b) Te,x

Te,y

Te,z

0 2
8

40

t [µs]

3D 2D

Figure 5.19: Comparison of temporal evolutions of (a) mean ion density ni and electron tem-
perature components Te,x (axial), Te,y (azimuthal) and Te,z (radial) for the pure 2D simulation
(orange lines) and the corresponding axial azimuthal domain at z = Lz from the 3D simulation
(blue lines).

In Figure 5.19 (b), we compare the electron temperature components in 2D and 3D. In both
cases, the axial and azimuthal temperature Te,x and Te,y increase in the first moments of the
simulation. However, we note that the slope is stiffer in 3D than in 2D, but the heating is also
less durable. In approximately 0.5 µs the temperature reaches a maximum of 30 eV in 3D. In
contrast, the 2D case shows a long lasting heating and the temperature continues to rise up to
1.5 µs with a maximum of 40 eV. At this point, it is not clear why the slope of temperature
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increase is higher in 2D but the short duration of the heating could again be related to the
presence of walls. Another noteworthy difference lies in the radial electron temperature profile
Te,z. It is constant in the 2D case as it is parallel to the imposed magnetic field, whereas it
varies in a similar manner as the azimuthal electron temperature profile Te,y in 3D. After the
first microseconds, the temperature slightly decreases in 3D before stabilizing at its final value
around 20 eV. In 2D, the situation is quite different. Indeed, Te,x and Te,y sharply increase
again at 2.5 µs and reach a maximum of ∼ 65 eV. Then, both Te,x and Te,y drop at around
35 eV before stabilizing at 45 eV.

In conclusion, the plasma is overall hotter and denser in 2D than in 3D. We shall now
investigate what are the subsequent implications for the steady state shown in Figure 5.20.

Figure 5.20 (a) and (b) provide more details about the distribution of the plasma density
in the domain. The 3D case presents higher levels of ni in the channel but the 2D case shows
a denser plasma in the plume. In the channel, a similar short-wavelength azimuthal wave,
characteristic of the ECDI propagates in the E × B direction. In the plume however, the 2D
case shows a long-wavelength azimuthal instability as it was observed in Figure 3.2. In 3D no
such structure can be seen at this point. The dynamics of electrons are also very different in
both cases. In 2D, electrons are shifted toward the +y direction during their travel from the
cathode to the anode. Their trajectory is also perturbed when they cross the longer wavelengths
in the plume. In 3D, the situation differs greatly. First, some electrons from the cathode go back
toward the cathode, which is again a side effect of the quasi-neutral (QN) model noticed earlier
and that seems to be amplified in 3D. Furthermore, the electrons preferentially move in the
−y direction in the plume, which is surprising. Although this means that the ve,y component
is important, it does not prevent electrons to actually enter the 3D channel. In fact, if we
remember Figure 5.9 (d), the electrons do enter the channel from the top and bottom exit.

In Figure 5.20 (c) and (d), the ECDI waves propagating in the E×B direction are clearly
visible but with some differences. In the channel, both the 3D and 2D have similar wavelengths
but the 3D case show a slightly greater kx contribution, resulting in a more inclined pattern.
In the plume, the wave is perpendicular to the y direction for both cases, but we note a stark
difference as well. In 3D, the wavelength in 3D looks very similar as in the channel, whereas,
in 2D the wavelength is twice the wavelength in the channel. Overall, we also note that the
magnitude of oscillations is three times bigger in 2D than in 3D. The difference in magnitude
could be related to local plasma conditions (ni, Te) that reach greater levels in 2D as seen in
Figure 5.19.

In Figure 5.20 (e) and (f) we continue our investigation with the electron axial current
density Je,x. Again the 2D maps are quite different. In 3D, Je,x presents the ECDI wavelength
in the channel along with the large azimuthal wavelength whose size is ∼ Ły as detailed in
Section 5.4.2. In the plume, no pattern can be detected. Side effects are visible near the
cathode on the right where part of the electrons enter and leave the domain several times. In
2D, the cathode effect is not visible and no ECDI pattern can be seen in the channel. However,
the long azimuthal wavelengths of the plume are well described once again. In 3D, it seems
that the transition from short-wavelengths (channel) to long ones (plume) happens whenever
the Mach number Me > 0.5. We can also note that Je,x is in average ten times lower in 3D
than in 2D.

Finally, in Figure 5.20 (g) and (h), we highlight another difference between 2D and 3D
simulations. In 2D, in Figure 5.20 (h), the 2D maps seems mostly uniform. In contrast, the 3D
case in Figure 5.20 (g) highlights the presence of the long azimuthal wavelength of size ∼ Ly,

170



5.5. COMPARISON WITH 2D SIMULATION

which suggests wall effects are visible even in the centerline of the channel.

Figure 5.20: Comparison of steady states between the 3D (left column) and 2D (right column)
simulations. (a-b): ion density ni with electron streamlines ve = ve,xx+ve,yy. (c-d): azimuthal
electric field Ey. In (c), Ey values have been multiplied by 3 to fit on the same scale as (d).
(e-f): electron axial current Je,x with iso-Mach lines. In (e), Je,x values have been multiplied
by 10 to fit on the same scale as (f). (g-h): electron radial current Je,z. Dashed line indicates
maximum of magnetic field. In (g), Je,z values have been multiplied by 2 to fit on the same
scale as (h).

In order to get more quantitative information on the steady state, we can compare different
axial profiles at steady state as shown in Figure 5.21. Figure 5.21 (a) confirms the observation
made in Figure 5.20 (a) and (b) concerning the ion density ni. In 3D, ni reaches a higher
maximum value of 7.5 m−3 vs 5.8 m−3 in 2D. Because of the plasma expansion, the density
dramatically drops in the plume in 3D while it stabilizes at ≈ 2.5 m−3 in 2D. Overall the
averaged density in the whole domain is higher in 2D. In Figure 5.21 (b), we can see that
the plasma is hotter in 2D with a maximum of 73 eV vs 53 eV in 3D. We also note that the
maximum happens at x = 0.25Lx in 2D whereas it occurs at x ≈ 0.38Lx, which is outside the
channel exit located at x = 0.34Lx. Another interesting feature to look at is the axial profile of
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the mobility. As a reminder from Equation (1.21), the mobility µPIC can be calculated as the
ratio of the axial electron speed ue,x to the axial electric field Ex:

µPIC =
∣∣∣∣ue,xEx

∣∣∣∣ . (5.17)
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Figure 5.21: Comparison of averaged axial profiles at the steady state between the 2D (orange)
and 3D case (blue). (a): ion density ni. (b): total electron temperature Te. (c): measured
mobility µPIC. (d): axial electric field Ex.

For the results presented in Figure 5.21 (c), we can see that in both 2D and 3D the mobility
drops around the channel exit by several orders of magnitude, which is expected. However,
while in 2D µPIC is divided by 10, it is decreased by a factor of 20 in 3D. Overall, the mobility
is much lower in 3D than in 2D which results from a lower axial electron velocity in 3D. Indeed,
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Figure 5.21 (d) shows similar levels of axial electric field Ex, but with a shift of maximum
values similar to that of Figure 5.21 (b). As detailed in Section 1.3.2, this observation is
coherent with the predicted mobility in a collisionless plasma for which µ is proportional to
coherent azimuthal fluctuations of the azimuthal electric field Ey with the electron density ne.
Yet, as seen in Figure 5.20, azimuthal fluctuations have overall a much lower magnitude in 3D
than in 2D, which is coherent with a lower mobility. Therefore, a further understanding of the
instabilities taking place in the domain is required. This will be the subject of the next section.

5.5.3 Spectral analysis
We can start our investigation by looking at the linear stage, when the ECDI grows exponen-
tially. This is done in Figure 5.22. We can see that while the ECDI develops near the anode
in 3D, the azimuthal instability appears in the near plume region first at x ∼ 0.5Lx in 2D at a
later time (0.4 µs vs 0.2 µs). Azimuthal fluctuations also grow near the anode but with a slight
delay.

Figure 5.22: Comparison of azimuthal electric field Ey in the first moments of the simulation
in 3D (left) and 2D (right). The same scale is used for both the 2D and 3D configurations.

In order to understand why the ECDI first appears in the near plume region in 2D we would
need to use the linear theory of instabilities as it was done in Section 5.4.2. Unfortunately,
Equation (5.11) cannot be used because the Gordeev function detailed in Equation (5.12) does
not converge for kz = 0, which is the condition imposed in 2D. A more specific theory would
have to be developed in this case.

However, we can still analyze the azimuthal instabilities at steady state. Indeed, as explained
by Lafleur et al. [2016a,b], the initial ECDI in 2D and 3D can transition toward an ion acoustic-
like instability. In this case the dispersion relation (DR) ωR(k) is given by Equation (3.5) at
two axial positions: in the channel at x = 0.12Lx and in the plume at x = 0.6Lx. In the
channel (Figure 5.23 (a) and (b)), we can see that the main modes in both the 2D and 3D
simulations are well predicted by the modified ion acoustic DR. In 2D, the results seem to be
more continuous as the dominant modes closely follow the theoretical DR whereas in 3D a
single mode appears to prevail. We can also note that in both simulations, the transition to
the ion acoustic wave led to a different main mode: (ky,maxλD = 0.4, ωmax/ωpi = 0.4) for the
3D case vs (ky,maxλD = 1.02, ωmax/ωpi = 0.71) in 2D.

In the plume (Figure 5.23 (c) and (d)), both the 3D and 2D differ. In 3D (Figure 5.23 (c)),
the azimuthal wave now has a higher (ky,maxλD = 0.8, ωmax/ωpi = 0.63) than in the channel.
In contrast, in 2D we observe the inverse phenomenon: both the angular frequency and the
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Figure 5.23: Numerical dispersion relation in 3D (left column) and 2D (right column) at two
different axial locations at steady state: in the channel at x = 0.12Lx (first row) and in the
plume at x = 0.6Lx. The modified ion acoustic dispersion relation ωR(k) is indicated by the
white solid line. In (c-d), the white dashed line corresponds to ωR(k) from the channel at
x = 0.12Lx normalized with local plasma conditions at x = 0.6Lx. In all plots, red dots
correspond to the dominant resonance.

azimuthal wavenumber have decreased with respect to the channel: (ky,maxλD = 0.3, ωmax/ωpi =
0.57). Besides, in the 2D case, the main mode is not well predicted by the theoretical DR ωR(k).
The discrepancy might be resolved by assuming that in 2D, the ion acoustic wave first grows
in the channel before being convected away in the plume where it does not grow anymore.
In such a case, the initial DR from the channel at x = 0.12Lx would remain approximately
unchanged in the plume. Using local plasma conditions λD, ωpi at x = 0.6Lx to normalize
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the DR, we obtain the white dashed line in Figure 5.23 (d). We can see that this convected
DR would match 2D numerical results better. This observation is consistent with previous 2D
axial-azimuthal investigations [Charoy, 2020, Chapter 6] and [Tavant, 2019, Chapter 7]. In 3D,
a similar situation seems to happen as well, but is not as clear as in 2D because the "local" DR
is not too different from the "convected" DR.

The transition from the channel to the plume is clearly visible in both 2D and 3D cases
in Figure 5.24. In the channel, the 2D simulation present a higher (kyλD, ω/ωpi) than the
3D case, before the situation is reversed in the plume from approximately x = 0.34Lx, which
corresponds to the channel exit (see Figure 5.24 (a)). In 3D, both kyλD and ω/ωpi show greater
values in the plume partly due to the respective increase and decrease of λD and ωpi, as shown
in Figure 5.24 (b). In 2D, the reverse occurs.
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Figure 5.24: Axial evolution of (a) main dimensionless azimuthal wavenumber kyλD (solid line)
and angular frequency ω/ωpi (dashed line) and (b) Debye length λD (solid line) and ion plasma
frequency ωpi (dashed line) in 2D and 3D.

A final difference can be noted regarding the ion trapping phenomenon. According to the
theory of beam-cyclotron instabilities [Lampe et al., 1972, 1971a; Dewar, 1973] and recent work
[Lafleur et al., 2016b], ion trapping is expected to play a role in the saturation of the azimuthal
instability and thus limit its initial exponential development. In 1D [Lafleur et al., 2016a] and
2D [Boeuf and Garrigues, 2018] simulations, ion trapping therefore appears systematically dur-
ing the saturation of the instability. In Figure 5.25 we represent the ion phase space along the
azimuthal y direction to assess ion trapping in 2D and 3D. In Figure 5.25 (a) (3D case), we can
see typical loops of ion trapping of a rather small amplitude, the average minimum speed being
∼ −4× 104 m s−1. The number of loops is imposed by the azimuthal wavelength of the electric
field Ey. In 2D, ion trapping is also present but the loops have much higher amplitude with an
average minimum speed of ∼ −12× 104 m s−1. The discrepancy in magnitude can be related
to the difference of amplitude oscillations observed in Figure 5.20 (c-d) where the azimuthal
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electric field Ey in 2D was approximately three times greater than in 3D.

Overall, it appears that a pure 2D case presents similarities with a more physics compre-
hensive 3D simulation. An azimuthal instability quickly appears in the first moments of the
simulation and ends up being a modified ion acoustic instability in the channel. In the plume,
the ion acoustic instability does not grow but is likely to be the result of an azimuthal wave
in the channel that was convected away. The saturation mechanism is in both cases probably
due to the ion trapping but the latter is more important in 2D. Because no radial direction
is present in the pure 2D case, plasma wall interactions do not exist. The long wavelengths
observed in the 3D channel, associated with the radial patterns, are therefore absent. Finally,
the lower wall losses and the plasma expansion in the plume are likely to greatly modify the
local plasma conditions such as the Debye length and the plasma frequency, which inevitably
affects the evolution of instabilities in the system.

Figure 5.25: y − vi,y phase space of the ions in the near exit region for (a) the 3D simulation
and (b) the 2D simulation. Every colored dot represents a particle (warm-yellow colors indicate
maximum concentration whereas the black color represents the opposite).

5.6 Preliminary study on a cylindrical geometry
Up to now, we have only considered a cartesian geometry, i.e. the initial "T shape" from
Figure 5.1 was simply extruded in the azimuthal direction and no asymmetry is assumed.
However, in a real-world HT, the geometry is curved, which results in key differences. Among
them, the outer wall has a greater surface area than the inner one. Thus, we could expect greater
plasma-wall interactions such as heat losses or SEE, if any. Moreover, some new electron current
density gradients might arise as well in regions of high electric and magnetic fields. Indeed,
for a similar drift velocity E × B/B2, electrons near the outer wall have to travel a further
distance than at the inner wall. Finally, the curvature imposes to change the external magnetic
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field to comply with the null divergence condition. We can convince ourselves by recalling the
divergence formulation in cartesian and cylindrical coordinates in Equation (5.18).

∇ ·B =


∂Bx
∂x

+ ∂By
∂y

+ ∂Bz
∂z

(cartesian)
1
r
∂
∂r

(rBr) + 1
r
∂Bθ
∂θ

+ ∂Bx
∂x

(cylindrical)
(5.18)

In a cartesian geometry we can easily set the radial magnetic field component Bz to a Gaussian
shape varying axially. Yet, in a cylindrical geometry this cannot be done because of the factor
r in ∂

∂r
(rBr). In fact, the problem can be solved by adjusting an axial component Bx that is

not zero anymore. In this more realistic B topology, the angle of intersection of the magnetic
field with the walls may significantly modify the sheath structure [Moritz et al., 2019; Chodura,
1982; Ahedo, 1997]. Around the magnetic poles, where magnetic field lines narrow, electrons
can also be reflected back as if a magnetic mirror, well described by [Chen, 1974, Chapter 3],
was in present. Such a phenomenon was already observed for Hall thruster [Keidar and Boyd,
2005].

For these different reasons, we decided to perform some preliminary work on a cylindrical
geometry and we considered the simulation domain shown in Figure 5.26. The strategy used
to discretize the domain and the main geometrical parameters are the same as those described
in Section 5.2.1. Instead of being extruded, the initial "T shape" in Figure 5.1 is rotated by an
angle θ0 = 5 rad and the domain starts at a radius Rmin = Lz. The maximal radius is given
by Rmax = Rmin + 2Lz = 3Lz. This radius Rmin and the angle θ0 were chosen such that the
axial azimuthal plane at the centerline, located at the radius r̄ = Rmin +Lz = 2Lz, has an axial
length similar to the previous 2D case, i.e., Lθ = θ0r̄ = Lz = Ly. Besides, the total number
of nodes and cells in the mesh remains the same as previously. As a result, it is possible to
simulate a sector of HT with the same performances as in the extruded geometry.

As explained above, the magnetic field must be modified to ensure the null divergence
condition. Unfortunately, finding adequate Bx Bz is actually challenging (see Section 5.2.3) and
we would require more time to do it. Nevertheless, a first approximation consists in assuming a
purely radial magnetic field, whose magnitude varies in both the radial and axial directions (it
is uniform in the azimuthal direction), i.e. B = Br(r, x)ur. We can also assume that the axial
profile has a Gaussian shape B(x) as in the 3D Cartesian setup (see Equation (5.8)). Thus,
we get Br(r, x) = f(r)B(z), where f(r) is a function to specify and B(z) the Gaussian profile
from Equation (3.1). Using the expression of the divergence in cylindrical coordinates, we get:

∂

∂r
(rBr(r, x)) = 0

⇐⇒ d

dr
(rf(r)) = 0.

(5.19)

Therefore, the null divergence requirement can be obtained by the trivial solution f(r) = r0/r,
where r0 is a constant. Therefore, the final magnetic field for the cylindrical geometry is given
by:

B = r0

r
B(x)ur, (5.20)

for which the constant r0 is conveniently chosen such that the centerline axial-azimuthal plane,
at r̄, has the same magnetic field as in the previous 3D case. Thus, we set r0 = r̄. In the radial
axial plane, the chosen magnetic field gives the topology shown in Figure 5.27. Although the
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Figure 5.26: 3D view of cylindrical domain investigated.

magnetic field is appropriate for a cylindrical geometry, it is far from what is found in a real HT
as it should be symmetric with respect to the centerline r = r̄ [Morozov and Savelyev, 2000].
As of today, a few 3D simulations using this cylindrical geometry were performed using the
same initial conditions as in Table 5.1 with the exception of the initial number of particles
Nppc,ini, which was set to 30 to speed up the calculations. Thus, the results are not fully
converged statistically (see Section 5.7.2) but give an overview of what to expect. As shown
in Figure 5.28 (a-b), the electron temperature topology remains unchanged, i.e., with a "bell
shape", suggesting the potential field lines are also similar in both cases. The plasma structure
is therefore globally the same, and ions from the ionization zone are in both cases extracted
and accelerated into the plume. Among differences, the ECDI, visible in the 2D map of the
azimuthal electric field in Figure 5.28 (c-d), seems to be distorted by the magnetic field gradient
in the radial direction. The symmetric structure in the cartesian case is lost and the radial
waves in the plume no longer propagate downwards. Nevertheless, a long azimuthal wavelength
is still retrieved (see Figure 5.28 (e-f), suggesting this might be a robust feature in 3D. Finally,
changing the magnetic field substantially modified the electron dynamics as the recirculation
zones were lost in the cylindrical setup (see Figure 5.28 (a-b)). Besides, electrons acquire an
important radial speed and seem less inclined to enter into the channel.

Although these results are interesting and could be the starting point of future theoretical
studies on the curvature and gradient effects of the magnetic field, it would be wise to consider a
more realistic B topology. This could be done via experimental measurements or by numerically
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Figure 5.27: Magnetic field profile in 2D radial-axial view for the 3D cylindrical geometry. The
profile is uniform in the azimuthal θ direction and the magnetic field is only radial.

solving the ∇ ·B = 0 equation and we encourage future research work in this direction.

Figure 5.28: Comparison of first 3D results of the previous cartesian geometry (top row) with
the cylindrical geometry (bottom row). (a-b): total electron temperature Te in the radial axial
plane. (c-d): azimuthal electric field Ey,θ in the centered radial axial plane. (e-f): axial electron
current density Je,x in the radial azimuthal plane at x = 0.12Lx = 3 mm.
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5.7 Scalability analysis and convergence study

5.7.1 Scalability analysis
The different 3D simulations that were performed for this Chapter required a good assessment
of the computing performances of AVIP. Although preliminary results were presented in Sec-
tion 2.6.2, it is crucial to repeat a scalability study for each new simulation. This work was
performed on the Irene cluster located at the French Alternative Energies and Atomic Energy
Commission (CEA in French), near Paris. On Irene, two kinds of nodes were used for the runs
and their main characteristics are reported in Table 5.4.

Characteristics Skylake Rome AMD

CPU architecture 2x24-cores Intel Skylake
@2.7 GHz (AVX512)

2x64 AMD Rome
@2.6 GHz (AVX2)

Cores/Node 48 128
Nodes 1656 2292
RAM/Core 3.75 GB 2 GB
RAM/Node 180 GB 256 GB

Table 5.4: Nodes used on Irene cluster at CEA for 3D PIC simulations. This work used the
HPC resources of IDRIS/TGCC/CINES under the allocation A0102A06074 made by GENCI.

Running on these two nodes was made possible by the versatility of AVIP, intrinsically
designed to be operational on as many architectures as possible. However, Rome AMD nodes
were mostly used as they turned out to be more efficient. This result was not too surprising
as a single Rome AMD node contains more cores than a Skylake one, which reduces inter-node
communications for a prescribed number of cores. Even though, the scalability study did not
measure I/O performances, the latter were optimized following advice from Wauteleta and
Kestenera [2011].

The scalability analysis presented here was performed on the Cartesian geometry. To do
so, we have run three times the first 50 iterations for each number of processors to discard
any outliers. We also considered three values for Nppc,ini, the initial number of particles per
cell, to assess the statistical convergence. In Figure 5.29 (a) we assess the performances for
the least converged case, i.e. Nppc,ini = 30. For this case, the MAPHYS grid coarse correction
detailed in Section 2.6.1 was turned off. Because the number of particles is fairly low, solving
the Poisson equation is by far the most expensive module, AVIP easily spending more than 80%
of the CPU time in it. Lagrangian modules such as particle interpolation and their respective
transport scale very well, which was expected. Surprisingly, the modules handling the injection
of particles generated by ionization or at the cathode showed poor scalability. Further analysis
revealed that ionization was primarily responsible for that deteriorated performance. Indeed,
at every iteration, all processors will check if the pairs X+

x /e− to be injected are located in their
respective CPU domain. This lookup process is not expected to be faster when using more
processors and can even become less effective when the CPU domain gets smaller. Note that
the lookup algorithm was improved for this work and is probably the best solution we could find
at this point.The cathode injection has also a limited scalability because the total number of new
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electrons is computed using a collective communication. Interestingly, the sorting algorithm
showed a poor scalability as well in contrast to what was observed in Figure 2.26. Additional
tests have shown that the way in which the injection is carried out, especially for ionization,
was responsible for this deterioration of performances. As of today, no explanation on that
matter could be found. However, in a self-consistent simulation, injection issues related to our
imposed ionization source term are likely to disappear because the ionization module will be
replaced by the Monte Carlo Module, which has been designed to be highly scalable. Overall,
we see that the optimum point for this run is obtained for 3840 processors. Assuming those
performances remain constant during the whole computation, Figure 5.29 (d) indicates that
the total CPU cost for this optimal simulation will be around 800.000 h. For this cost, the
simulation (10 µs of physical time) could be theoretically completed in about a week according
to Figure 5.29 (e). This assumes the simulation never stops, which of course is not true as run
times are for instance limited to 24 uninterrupted hours.

We can now focus on the other simulations with Nppc,ini = 60 and Nppc,ini = 120. For
these runs, we tested the grid correction option of MAPHYS in an attempt to reduce the
computational cost. As a reminder (see Section 2.6.1), the CG correction aims to speed up
the convergence of the Poisson solver at the CPU boundaries by reducing the size of the linear
system to solve.
Indeed, the cost of Lagrangian and injection modules is proportional to the number of particles
as shown on Figure 5.29 (a-b-c). As a result, colored dashed lines on Figure 5.29 (d) show
that without the coarse grid correction the total cost is estimated at 1.2 and 2 million CPU
hours for the Nppc,ini = 60 and Nppc,ini = 120 cases respectively. A cost-saving alternative
consists in using fewer CPUs for a moderate return time. This can be achieved thanks to the
coarse grid correction. As shown on Figure 5.29 (b-c), this option has two consequences on the
Poisson solver scalability profile. First, the optimum point for MAPHYS is shifted to a lower
regime of CPUs (around 2000) and the time spent per iteration in the module is increased
by approximately 30%. This increase can be surprising at first because the grid correction is
designed to optimize the Poisson solver. However, we draw the reader’s attention to the fact
that the CG correction’s effects depend on each geometry [Poirel, 2018]. We can still take
advantage of this CG correction here by noticing the Poisson solver profile is mostly flat from
approximately 1000 to 3000 CPUs in Figure 5.29 (b-c). Indeed, this meaning we can reduce
the number of CPUs for similar performances. Thus, as shown in Figure 5.29 (d), a similar
CPU cost can be overall obtained in the 1000-2000 CPUs range.For the Nppc,ini = 60 case, the
minimum CPU cost, of 800.000 h, is obtained with 1280 processors. On Figure 5.29 (e) we read
that this value leads to an acceptable return time of 20 days so we retain 1280 processors. For
the Nppc,ini = 120 case, we notice on Figure 5.29 (e) that the return time is already high so we
prefer using more processors and we finally picked 1920 of them to target a return time of 28
days. The CPU cost is then 1.4 million hours.
We can finally compare what would have been the results if we did not have used the CG
correction. In this scenario, for bothNppc,ini = 60 andNppc,ini = 120 cases, using 3840 processors
is the optimum point, i.e, the return time stops decreasing and is about 15 days and 20 days
respectively. The corresponding CPU costs are then 1.2 million hours and 2 million hours
respectively. Therefore, by turning the CG correction option ON, we can approximately save
30-35% of CPU cost by accepting the return time to increase by the same factor, which was
deemed acceptable. Note that simply reducing the number of CPUs without the CG option
would have lead to a poorer trade-off: the CPU cost would have been cut by ∼25% with a
return time increasing of ∼75-100%.
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Figure 5.29: Strong scalability analysis for the first 50 iterations using an increasing number
of initial particles per cell Nppc,ini (30, 60 and 120). (a-b-c): performances of AVIP PIC mod-
ules for the different Nppc,ini values (30, 60 and 120 respectively). (a): the computation with
Nppc,ini = 30 does not use a coarse grid correction for the Poisson solver MAPHYS as described
in Section 2.6.1. (b-c): the computation with Nppc,ini = 60− 120 uses a coarse grid correction.
(d): Total CPU cost. The dashed lines represent the CPU cost in the case the coarse grid (CG)
correction is turned off. Note that, for now, the CG option was not tested for the Nppc,ini = 30
case. (e): Estimated physical time to simulate 10 µs. The dashed lines represent the return
time in the case the coarse grid (CG) correction is turned off.

As a result, the CG correction offers flexibility for the present simulations and we either
choose a "fast" option, for which the return time is minimal, or we can consider an "economical"
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option, for which we can wait a bit more to optimize CPU hours.

5.7.2 Statistical convergence
A final recommendation can be made on the number of numerical particles to use in future
3D simulations. Indeed, as mentioned in Section 1.4.2, PIC simulations need to have enough
numerical particles in order to accurately describe the distribution functions in the Boltzmann
equation. Therefore it is crucial to perform a convergence study on the number of particles.
To do so, we performed several simulations of the 3D cylindrical and cartesian geometries
using different initial number of particles per tetrahedral cells: Nppc,ini = 5, 10, 20, 30 for the
cylindrical geometry and Nppc,ini = 30, 60, 120 for the cartesian geometry. For lack of time,
we, unfortunately, could test the same Nppc,ini for both geometries but wan can still assess the
convergence of the respective simulations.
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Figure 5.30: Statistical convergence of 3D PIC simulations using the current ratio Icd/IM . (a)
Temporal evolution of current ratio Icd/IM with different Nppc,ini for the cartesian geometry.
(b) Final current Icd/IM level at steady state vs the final number of particles per tetrahedral
cell for both the cartesian and cylindrical geometries.

In Figure 5.30 (a), we present the temporal evolution of the current ratio Icd/IM in the 3D
cartesian case for Nppc,ini = 30, 60 and 120. As a reminder Icd is the electron current injected
at the cathode following our convention in Figure 2.20, while IM is the imposed current due to
ionization. After a transient phase during which many electrons are injected into the domain,
all profiles stabilize at a steady state value of Icd/IM = 0.83. As mentioned in previous work
[Boeuf and Garrigues, 2018], in a real HT this ratio should rather be around 30%, but this
quantity can, however, be used to study the statistical convergence of the simulation. In this
plot, no clear difference appears when using more particles. This observation is confirmed in
Figure 5.30 (b), in which we present the steady state value of Icd/IM as a function of the final
number of particle per cell Nppc,fin: for the cartesian case (blue solid line), the least resolved case
seems to be already converged. Note that Nppc,fin < Nppc,ini because of wall and plume losses.
Here additional tests would be necessary with fewer particles in order to properly establish the
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lower limit of convergence. Nevertheless, we have some available data, with a fewer number of
particles, for the cylindrical case detailed in Section 5.6. On Figure 5.30 (b), we can see that
the ratio Icd/IM decreases with a higher Nppc,fin but has not reached the statistical convergence
yet. It is not certain how much we can guess what would be the trend on the low Nppc,fin

range for the cartesian case, but we can reasonably assume the statistical convergence would
not be obtained either. Overall, for globally averaged data, such as the current ratio Icd/IM ,
it appears statistical convergence is virtually obtained with Nppc,ini = 30 − 60. Nevertheless,
we would like to draw the reader’s attention to the fact that other quantities might actually
need more particles per cell as they converge more slowly to an asymptotic value. For instance,
we noticed that the spectrum of the azimuthal electric field Ey, that was calculated with the
DMD in Figure 5.12 can significantly vary with the value of Nppc,fin as shown in Figure 5.31.
In this figure, we can see that the main ECDI mode is recovered in all three cases, but some
higher resonances are present with Nppc,ini = 30 and 60. These resonances do not seem to have
any physical meaning because their respective magnitude is reduced as we increase the number
of particles per cell. In our most converged case, i.e., Nppc,ini = 120, they have completely
disappeared.

106 107 108

ω [rad · s−1]

102

103

M
ag

n
it

u
d

e
[-

]

ECDI-ion acoustic
mode at ω = ω1

Artifical
modes

Artifical
modes

ECDI-ion acoustic
mode at ω = ω1

Artifical
modes

Artifical
modes

ECDI-ion acoustic
mode at ω = ω1

Artifical
modes

Artifical
modes

Nppc,ini = 30

Nppc,ini = 60

Nppc,ini = 120

Figure 5.31: Spectrum of azimuthal electric field Ey obtained the DMD at steady state. The
red rectangle highlights higher frequency resonances that disappear as we increase the number
of particles per cell.

As a conclusion, it seems that for "low order" quantities, such as globally averaged data
(the current ratio Icd/IM for instance), initializing the simulation with, at least, between 30 to
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60 particles per tetrahedral cells is enough. However, for "higher order" quantities, related to
a detailed spectral analysis, more particles are required. In this case, we recommend to use,
at least, between 60-120 particles per tetrahedral cells whose size satisfies the accuracy criteria
given by Equation (2.6).

5.8 Conclusion
In this chapter, we focused our attention on a 3D configuration, whose geometrical features are
inspired from the previous 2D axial-azimuthal (Chapter 3) and radial-azimuthal (Chapter 4)
simulations. The simulation domain includes a shortened channel and the near plume region. In
order to highlight the solely 3D effects, a similar imposed ionization source term and magnetic
field topology have been considered. No curvature effects were taken into account at first.
The simulations use an unstructured grid of 2.36 millions tetrahedral cells that complies with
classical stability and accuracy PIC criteria.

During the transient phase, numerical results show that multidimensional plasma instabil-
ities appear. With the help of Python tools dedicated to spectral analysis, such as FFT and
DMD, the main mode could be isolated. Thanks to theoretical calculations from linear theory
[Cavalier et al., 2013], this main mode, carried by the azimuthal electric field, was identified to
be the ECDI. The latter was already observed in the previous chapters and in numerous other
academic PIC simulations in the literature. The ECDI starts appearing near the anode and de-
velops in other axial locations in the channel as well, the growth rate being lower downstream.
In the plume the plasma expansion seems to greatly affect the initial azimuthal wave which
then develops in a radial and axial pattern. Another resonance, clearly visible in the axial and
radial electron currents, was also detected. It showed a long azimuthal wavelength but also a
radial component in the channel that is similar to the MTSI of Chapter 4. In the azimuthal
electric field, this radial-azimuthal resonance is extremely low and therefore never visible with
the raw data. Such results are not surprising since according to our theoretical calculations, the
MTSI is not excited under the plasma conditions of the simulations. Yet, recent work on the
MTSI performed by Petronio et al. [2021] suggests that this radial-azimuthal instability could
be the signature of the MTSI. Testing other 3D plasma conditions would probably confirm this
hypothesis.

At steady state, the plasma structure presents the usual characteristics of a working Hall
thruster. Highest density levels are located in the channel and the plasma enters into a su-
personic regime thanks to a drop of potential in the axial direction. The subsequent axial
electric field combined with the magnetic field create a Hall current in the azimuthal direction.
Iso-potential lines determine the electron temperature distribution, that presented a bell shape
near the channel exit. The presence of recirculation zones in the channel and in the plume was
also observed and is likely to be related to the presence of the instabilities in the system. The
quasi-neutral cathode model was used in this work and injected the correct amount of electrons
in the system while effectively ensuring a quasi-neutral plasma in the plume. Electrons from
the cathode made their way to the channel but a non negligible portion of them ends up going
back to the cathode. This point could be improved in the future. The cathode consisted of the
bottom, top and right sides of the plume boundary. Indeed, since the simulated plume domain
remain small and close to the channel exit, it was found that not imposing a constant potential
value there failed to contain the plasma in the channel and led to the creation of a nonphysical
potential bulk in the plume. With a larger plume area, thus with farther domain boundaries,
other choices could be possible.
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This work also made it possible to highlight the contribution of multidimensional effects
in the physics of HT by comparing 2D and 3D simulations The comparison was made with
the centered axial-azimuthal plane of the 3D case. It appears that the 2D simulation leads
to a globally higher plasma density and temperature. In 2D the plasma is virtually hotter in
the wall domain with a maximum temperature 50% higher than in 3D. The plasma density
is higher in the channel region in 3D but much lower in the plume, suggesting that plasma
expansion plays an important role in the physics, that is challenging to account for in a pure
2D setup. In both cases azimuthal instabilities take place in the system. In 2D, what seems
to be the ECDI appears at two separate axial locations: near the anode, as in 3D, and in the
plume region. As of today, it is not clear why azimuthal instabilities start growing at different
positions as theoretical calculations cannot apply to a pure 2D case. Nevertheless, the system
ends up with a modified ion acoustic instability that closely follows the analytic predictions from
Lafleur et al. [2016b]. Two behaviors have been identified. In the channel, the 3D case excites a
single mode while the numerical dispersion relation seems more continuous in 2D. In the plume
region, results suggest that, in both cases, the instability is the result of an ion acoustic wave
being convected away from the channel into the plume. The transition from the channel to
the plume, that seems to occur at a Mach number Me = 0.5, follows opposite trends in 2D
and 3D: the azimuthal wavenumber and angular frequency increase in 3D while the reversed
evolution happens in 2D. Besides, the ion acoustic instability saturates at a different level,
with an azimuthal electric field three times larger in 2D than in 3D. This results in a larger ion
trapping in the near exit region in comparison to the 3D case. The mobility µPIC, related to the
ECDI and ion acoustic wave [Lafleur et al., 2016b], was also measured. It is in average several
orders of magnitude lower in 3D compared to 2D. This result is not too surprising as µPIC is
expected to be proportional to coherent fluctuations of the density and azimuthal electric field,
that are weaker in 3D than in 2D. Finally, the mark of the radial-azimuthal instability, with a
large wavelength of size ∼ Ly is clearly visible in the 3D simulation but totally absent in the
2D counterpart, showing another limitation of pure 2D simulations.

We also discussed the performances of AVIP PIC and the potential of performing future 3D
runs. A strong scalability analysis allowed us to optimize the available resources on national
supercomputers and to handle up to more than four billions particles with 13.6 millions cells
and reach a steady state within ∼ 1-1.5 months. The CPU cost can be roughly estimated of
the order of 1-2 millions CPU hours. We also found that the statistical convergence depended
on what quantities we were interested into. For globally averaged data, such as a current ratio,
between 30-60 particles per cell at initialization seemed enough. However, for higher order
quantities, related to spectral data for instance, a higher resolution is needed and we should at
least use between 60-120 particles per cell at initialization. With the current performances of
AVIP, we can envision to use a sector of a Hall thruster. We performed some preliminary work
on this regard and we defined a 5 rad sector for which the mesh size remained unchanged with
respect to our initial cartesian case. During our study, we found it was necessary to adapt our
current magnetic field topology to still ensure a null divergence. A simple analytic formulation
with a symmetric magnetic field at the centerline, which is usually used in real HT [Morozov
and Savelyev, 2000], is impossible to obtain for such an annular geometry. Nevertheless, with a
simplified asymmetric magnetic field we could still perform our simulation. It resulted that the
global plasma structure remained similar with the presence of both the ECDI and the radial-
azimuthal pattern resembling to the MTSI. However, their respective 2D maps were distorted
due to the magnetic field gradient in the radial direction. To go further, experimental data or
fields previously calculated by dedicated a magnetic numerical solver are necessary.
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Overall, this 3D PIC simulation is among the very few that exists in the literature, with
the exception of Hirakawa and Arakawa [1995, 1996] and [Taccogna and Minelli, 2018; Minelli
and Taccogna, 2017]. But in contrast to these previous works, no numerical artifacts such as
increasing the vacuum permittivity or equaling the mass of ions and electrons were used. In
addition we did take into account the plume region in our 3D simulation. Besides, this 3D PIC
work is perhaps the first example of a Hall thruster simulation using an unstructured grid. We
believe it offers a framework to understand more precisely the plasma physics and instabilities
existing in a Hall thruster and ultimately paves the way for more predictive tools to help the
industry and the low-temperature plasma community.
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Chapter 6

Conclusion

6.1 Summary of this thesis
During this PhD, performed at CERFACS and sponsored by Safran, a major French aerospace
company, we continued the development of an explicit Particle-In-Cell code, AVIP PIC, to
improve the modeling of Hall thrusters. AVIP PIC is a massively parallel code built upon
the AVBP solver, a world standard tool in the domain of combustion and reactive flows. One
innovative aspect of AVIP PIC is its capability to handle unstructured grids, which provides
the freedom to consider any kinds of geometry. This represents a considerable progress for the
HT community because, to our knowledge, all existing codes still consider structured grids,
thus most often restricting their range of applications to simplified academic configurations.
However, the use of structured grids is not without advantages. First, the plasma physics in
HTs is incredibly complex and simplified configurations still provide useful insights. Secondly,
PIC simulations remain extremely costly and it is obviously easier to work with structured
grids to get an efficient and fast code than dealing with unstructured meshes. In spite of the
inherent difficulty to handle unstructured grids, AVIP PIC showed excellent performances com-
pared to the major existing codes in the HT community in axial-azimuthal (Chapter 3) and
radial-azimuthal configurations (Chapter 4).

This achievement was made possible by a careful design of AVIP PIC as presented in Chap-
ter 2. At each iteration, the classical loop of an explicit PIC code is completed: integration of
the equations of motions, modeling of collisions, interactions with the boundaries of the com-
putational domain.The Poisson equation can be solved with either the standard PETSc library
or by a cutting-edge external module, MAPHYS, that is specifically designed for unstructured
meshes. MAPHYS offers the possibility to speed up the calculation in the case of large meshes
(several millions of nodes) thanks to a "coarse grid" option. Particles management is optimized
by using an advanced Array of Structures of Array (AoSoA) to find a compromise between
cache/RAM memory limitations, data loading speed and readability of the code. During this
PhD, an additional tool to lower the cost inherent to particles continued to be implemented.
It consists of an active particle control algorithm that allows the user to adjust the number of
particles in the simulation according to tolerances on their position and speed. The number
of particles is reduced or increased through merging-splitting processes according to four pa-
rameters: the target number of particles par cell Nt, the tolerances on position and speed Tx
and Tv that serve to identify clusters of similar particles, and the frequency of use of the algo-
rithm ft. A particular attention was also paid to the development of new boundary conditions.
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In particular, dielectric boundary conditions can now be modeled along with the subsequent
electric field jump, in the framework of unstructured grids. Secondary electron emissions were
also implemented from standard models available in the literature. Moreover, two cathode
models based on the current equality or on the quasi neutrality conditions are now available.
Overall, the Lagrangian aspects of AVIP PIC, encompassing modules related to particles only
(transport, collisions, interpolation), can be parallelized beyond 95%. This PhD also revealed
that solving the Poisson equation was in fact the limiting factor for large simulations.

Because the implementation of AVIP PIC is highly sophisticated, it is crucial to validate
it and to confront its results with other PIC codes from the community. That is first done
in Chapter 3, where we used the AVIP PIC in an academic 2D axial-azimuthal benchmark
jointly performed with six other international institutions [Charoy et al., 2019]. For this case,
ionization was replaced by an imposed source term that was implemented in AVIP PIC as well.
Although simplification assumptions were made, AVIP PIC, along with the other groups, were
able to retrieve the overall functioning of a HT, i.e, ions are extracted and accelerated from the
ionization zone into the plume and electrons from the cathode are trapped into a Hall current
at the magnetic field barrier. Besides, we were able to retrieve fundamental azimuthal plasma
instabilities. The latter are identified to be the ECDI that transitioned into a modified ion
acoustic instability. The ECDI is an important feature of HTs because it is likely to actively
participate in the axial anomalous transport of electrons, a hot topic in the community (see
Section 1.3.2). In spite of the highly coupled displayed physics, all groups, with codes that
greatly differ in terms of implementation (structured-unstructured grids, floating-point preci-
sion, parallelization strategy) and running conditions (different machines and compilers), could
retrieve these instabilities and their characteristics. AVIP PIC being validated on this configu-
ration, we were able to use this benchmark as a starting point to test the aforementioned active
particle control algorithm. During our investigation it was found that the target number of par-
ticles Nt needed to satisfy the statistical convergence was around 200 particles per square cells.
Concerning the tolerances Tx and Tv, optimal values of the order of 10−1 and 10−2 respectively
have been highlighted. These values even make it possible to retrieve thin structures regarding
the azimuthal instabilities. It appeared that the choice regarding the tolerance on speed Tv was
quite sensitive, small variations being able to lead to significantly different steady state results.
Finally, the algorithm should be applied parsimoniously to make the method as less intrusive
as possible (ft ∼ 1000 was found to be a good pick in our tests). Overall, we recommend to
use the algorithm only when necessary, i.e. when Lagrangian cost becomes prohibitive, which
can typically occur during transients or strong oscillatory phenomena such as breathing mode
events.

In Chapter 4, we continued our careful verification of AVIP PIC with another benchmark,
simulating the radial-azimuthal plane of a HT. This configuration was considered because
plasma-wall interactions can greatly influence the plasma physics. In particular, in addition to
the ECDI, previous work reported the presence of a radial-azimuthal instability, the so-called
MTSI. Unfortunately, these investigations were limited to the transitory regime of the simula-
tion and never reached a steady state. Besides, other studies in the literature did not observe the
MTSI, which puzzled the community. Therefore, we led an international collaboration, made of
six other groups, to clarify and bring agreement on the presence of the MTSI in HT simulations
[Villafana et al., 2021]. To do so, we set up a simplified collisionless test case, equipped with an
ionization source term similar to that in Chapter 3. We also implemented a virtual axial model
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to mimic the presence of the off plane cathode in this direction. This new feature is important
as it now offers the possibility to consider pure 2D cases in the radial-azimuthal direction and
to reach a steady state. During this study, thanks to theoretical calculations from the linear
theory of plasma instabilities, we confirmed the presence of the MTSI that appeared to be
coupled with the ECDI. Our findings were backed up by our six partners that observed the
same transients and instabilities. At steady state, the main profiles of interest closely fit within
a 5% interval. Such a close agreement was quite outstanding considering the multiple sources
of differences between the codes, in terms of parallelization strategy, interpolation scheme accu-
racy or hardware architectures for instance. As in Chapter 3, it is believed that the statistical
convergence, found around 200 particles per square cells, was crucial to achieve this result.

Based on our experience on pure 2D configurations, in the axial azimuthal and radial az-
imuthal planes, we went forward to demonstrate the capability of AVIP to perform 3D simula-
tions in Chapter 5. The objective was also to prepare future research on 3D configurations as
the plasma physics is inherently multidimensional [Tsikata et al., 2010]. Besides the industry
needs to go beyond 2D academic geometries and ramp up its modeling capability to speed up
the development of new thrusters for a rapidly expanding market. There are only a few studies
on 3D configurations, some focusing on the channel region only for a miniaturized HT [Tac-
cogna and Minelli, 2018; Minelli and Taccogna, 2017] and others [Hirakawa and Arakawa, 1995,
1996] using permittivity and mass scaling ratios. Those choices made possible 3D simulations
with limited computational resources but they also inevitably modified the plasma physics. For
instance, the vacuum permittivity being present in every plasma dispersion relation, any change
of its value artificially can affect the actual growth and development of waves or, perhaps, even
trigger waves that would not have existed in reality. Therefore, we decided not to use any
geometrical or physical scaling. The simulation domain is based on the geometrical dimensions
of the two previous 2D cases developed in Chapter 3 and Chapter 4 in order to isolate as much
as possible 3D effects only. During this study, we followed our systematic methodology and
first assessed the computational performances of AVIP PIC in this case. We distinguished two
regimes: one with a high number of processors that completes 10 µs in a fast timeline, and
another more economical that cuts CPU cost by 50% by accepting a return time increased
by around 30%. Again the Poisson solver was found to be the main limiting factor for larger
simulations. In the end, we considered a Cartesian 3D geometry that models the near channel
region and also the plume expansion domain. Numerical results showed that the overall func-
tioning of HT was retrieved. Electrons from the cathode effectively entered into the channel
and ions are accelerated before the plasma expanded into the plume. The acceleration region
was located in the area of maximum magnetic field. Multidimensional instabilities, primarily
carried by the azimuthal electric field, quickly appeared during the first instants of the simu-
lations. A detailed spectral analysis, based on the linear theory of plasma instabilities [Lampe
et al., 1972, 1971a; Dewar, 1973] and using a dispersion relation solver [Cavalier et al., 2013]
showed that the dominant mode was the ECDI. The latter starts appearing in the channel
before being convected out into the plume where the instability acquires a radial component
as well. At this time it is believed that this is due to the plasma expansion in the plume. In
addition to the ECDI, we detected a radial azimuthal mode that is well visible on the radial
and axial electron currents but weak in the azimuthal electric field spectrum. We suspect the
latter to be the signature of the MTSI observed in Chapter 4, which could be more important
under other initial conditions.

We also compared 3D results with their 2D counterparts. It revealed that in 2D, the plasma
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has a structure similar to that in 3D but with different orders of magnitude. Thus, in 2D, the
plasma was overall hotter and much denser. We noted that the main discrepancy with the
3D case is due to the plume region, which does not undergo a similar plasma expansion in
2D. We also observed notable differences in the propagation of instabilities in the simulation
domain. First, while the ECDI grows in the channel from the near anode region in 2D and
3D, it also simultaneously develops in 2D at the channel exit for unknown reasons as of today.
In both cases, the ECDI has transitioned into a modified ion acoustic wave as described by
[Lafleur et al., 2016b]. Because the plasma is in general hotter and denser in 2D, it seems
that saturation, due to ion trapping in the azimuthal direction, is three times more significant
in 2D than in 3D. As a result, because the electron mobility is expected, in this case, to be
proportional to azimuthal fluctuations of density and azimuthal electric field [Lafleur et al.,
2016b], it was overall found much lower in 3D than in 2D. This observation leads to believe
that accounting for wall losses and the plume expansion, are important aspects of the simulation
domain to consider when studying plasma instabilities.

6.2 Perspectives

6.2.1 Short-term goals
As of today, AVIP PIC possesses all the necessary tools to simulate, in a realistic manner, any
2D or 3D configurations of a Hall thruster. In particular, we can model the walls, the cathode
and collisions between neutral and charged particles. Besides, by making the effort to solve
the Poisson equation, the sheath can be naturally and accurately described. In addition to the
work presented in this manuscript, we could easily investigate other phenomena.

First, we could certainly study the effects of dielectric walls and secondary electron emissions
(SEE) on the physics. [Tavant, 2019, Chapter 4] led investigations on this matter but did not
notice significant differences in comparison to metallic walls. However, in contrast to Chapter 4,
MTSI was not present in Tavant’s case and we could expect an important interaction between
the MTSI and SEE [Janhunen et al., 2018b]. Indeed, the MTSI will tend to increase electron
temperature at the walls, which could enhance SEE accordingly. Such work could be quite
easily carried out in the near future with AVIP PIC.

Another fairly accessible analysis concerns a detailed study of the MTSI in 3D. As observed
in Chapter 5, a similar radial-azimuthal mode was indeed detected but at a much weaker level
than the main ECDI mode. Such a result is in agreement with the plasma linear theory but
we could reasonably create the appropriate plasma conditions for it to appear and grow more
vigorously. All parameters dictating the MTSI growth rate and its initial developments can be
wisely and easily chosen with the exception of the axial electric field. We do not necessarily need
to reach a steady state for all cases as the MTSI grows in the first instants of the simulation,
which makes such a work realistic even with a moderate amount of CPU hours.

Finally, at the end of this PhD thesis, we have now at our disposal 2D and 3D PIC configu-
rations that have been validated and verified. This database can already be used to guide our
current development of AVIP fluid, based on a full fluid modeling, and of AVIP hybrid. For
instance, the heat flux, currently set to 0 in our fluid formulation, could be improved with new
laws we could deduce from our PIC numerical experiments. Thus, a systematic validation of
AVIP fluid is now possible using the same configurations presented in this thesis. Our simplifi-
cations, such as a collisionless plasma and an imposed ionization source term are in this regard
an advantage as they facilitate the comparison of fluid and PIC results.
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6.2.2 Improvement of code performances and efficiency
During this PhD, a great care was given to the assessment and improvement of the code.
Indeed, the main limitation of PIC simulations remains its computational cost and especially
in 3D. We can propose potential solutions in this regard.

First, we could adjust the mesh spatial resolution in the plume and increase the average
cell size. Indeed, the cell size is constrained by the Debye length that tends to increase in the
plume due to the significant rarefaction of the plasma flow. It would be important to assess
the impact of the potential self-forces, that can arise if the cell size changes too rapidly [Colella
and Norgaard, 2010]. Such an effort could however be rewarded by either reducing the number
of nodes and cells in the domain, or by expanding the plume further away from the channel
exit. Mesh refinement and related techniques are a common procedure in CFD and we could
certainly take leverage of the existing expertise at CERFACS.

Besides, as mentioned in Section 6.1, solving the Poisson equation as our current main
limiting factor as the Poisson solver does not scale very well, which makes the CPU cost for
long simulations, i.e., beyond a few tens of microseconds, unbearable. Moreover, since we need
very high precision to capture thin structures that are crucial for plasma instabilities, it is
difficult to go beyond a few tens of microseconds of physical time without relying on additional
numerical artifacts. An interesting solution could be provided by a Deep Learning approach
based on neural networks. Indeed, the Poisson equation is a well-known problem for which we
could build a database suited for the Hall thruster physics. The database would be obtained
by using classic linear solvers such as MAPHYS or PETSc and the neural network could train
on it. CERFACS is already performing ongoing investigations on this matter [Cheng et al.,
2021]. The advantage of such an approach is that it tremendously mitigates the computational
cost to obtain the potential and electric field. However, as of today, it seems unlikely a deep
learning approach could entirely replace usual linear solvers because of the required accuracy.
For instance, thin structures arising in the linear stage growth of instabilities necessitate a very
good knowledge of the local potential field and thus an extremely low error level in the Poisson
equation.

But hybrid solutions can be imagined where we could regularly calculate the potential with
a linear solver, for accuracy, and rely on our neural network otherwise.

As a final recommendation, our experience in 3D taught us that it is essential to keep the
code up to date with new hardware architectures and library/compiler versions. Indeed, the
careful optimization of AVIP PIC requires an excellent knowledge of the supercomputer to
use to ensure and maintain the compatibility of the code with the machine. Sometimes, as it
was the case for Chapter 5, it is even necessary to manually adjust collective communication
options, which can be significantly time-consuming. Help from IT engineers and support from
the supercomputer team might be necessary. Besides, new hardware architectures, based on
GPU, that seem promising in terms of performance, should also be kept in mind for the long-
term development of the code.

6.2.3 Toward more realistic cases
For more realistic cases, we could first consider adding the dielectric layer along with secondary
electron emissions in our 3D geometry. Indeed, even if their contribution to the electron anoma-
lous transport seems modest, plasma wall interactions, via SEE, may be coupled with the elec-
tron drift instability as suggested by Taccogna and Minelli [2018]. This possible coupling could
play a greater role than previously thought, especially if the MTSI, which enhances SEE, could
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effectively be reproduced in the 3D geometry.
Another step forward in our 2D and 3D cases could be to re-introduce neutral particles in

the simulations. Indeed, for the sake of simplicity and with the exception of Turner et al. [2013]
benchmark presented in Section 3.3.2, no neutral Xenon particles have been considered. Before
going into 3D, we could start modeling neutral particles again in our 2D cases first. In order to
sustain the discharge, we would need to make sure we understand how to properly ignite the
thruster. Ignition would be achieved by electrons from the cathode ionizing neutral particles,
the neutral density profile being obtained by constant injection of Xe at the anode. We could
thus address one of the limits of our current 3D model. This will also be the opportunity to
test the merging splitting algorithm in case the number of particles becomes too high during
the transient.

For 3D cases, it also appeared in Chapter 5 that in order to simulate a sector of HT, we
needed more realistic data from actual Hall thrusters. For instance, it is obvious that we should
use a more realistic magnetic field that must be symmetric with respect to the center plane.
To do so, inputs from our industrial partner, which has a great expertise with magnetic fields,
could be absolutely valuable.

2D and 3D cases could also benefit from improvements regarding the modeling of the cath-
ode. Indeed, so far the cathode is modeled as a straight line (2D case) or as a plane (3D case),
that is usually placed at one extremity of the domain.However, in reality, the cathode has a
more sophisticated shape, such as a cylinder, and does not necessarily occupy one side of the
domain. In Hall thrusters, the cathode is located at the axis of rotation of the annular geometry
or around the external radius of the thruster. Accounting for simple shapes representing the
cathode in the domain with various locations could be another goal in the long term. Such ad-
ditional modeling could also pave the way for future comparisons with new experimental data.
Indeed, as mega constellations of small satellites are about to be deployed, micro HTs, such as
the PPS-X00 [Vaudolon et al., 2019], are being developed to meet the market demand. One
advantage of microthrusters is that PIC simulations become more easily to carry out because
the domain is much smaller. Therefore, little or no compromises would be necessary, which
would increase the reliability of the simulation. Even if measurements in the channel are more
challenging to perform, the plume could still be probed by invasive and noninvasive techniques,
which could allow for direct comparisons with the 3D PIC simulation. Besides, since the plasma
rarefies in the plume a PIC model would be a particularly suitable solution for such a situation.

Finally, future simulations would be greatly accelerated and guided with a better under-
standing of plasma waves and related oscillatory behavior that can occur in a Hall thruster.
During this PhD thesis, all simulations could be verified by arguments stemming from linear
theory and that was very helpful. In general, the few theoretical studies that exist in the
community, for instance [Ducrocq et al., 2006; Cavalier et al., 2013; Lafleur et al., 2016b], are
extremely popular in the community. Unfortunately, the non linear evolution of plasma waves
and their interactions remain obscure and more theoretical support is needed. A greater inter-
action between the plasma theory community and the Hall thruster community would definitely
help to fill our knowledge gaps.
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Appendix A

Unit test case for the dielectric
implementation

In this appendix, we present a simple test case of our implementation in Section 2.3.4. We
consider a square domain as shown in Figure A.1. In the central blue area, a charge difference
ni − ne is imposed and follows a cosine law:

(ni − ne)e = ρ0 cos
(
π

3

(
x

h
+ 1

2

))
, (A.1)

where h is the width of the two dielectric layers at the left and right sides of the domain.
Our goal is to find the potential φ, and the electric fields Ex and Ey obtained with AVIP and
to compare them with analytic formulations. At x = 0 and x = Lx, we respectively impose
Dirichlet boundary conditions with φ1 = 0 V andφ2 = 0 V. At y = 0 and y = Ly, we impose
periodic boundary conditions.
This problem can be solved analytically and we find the following coefficients that will be used:
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(A.2)

where σ(h) and σ(Lx − h) are the local charge surface area at x = h and x = Lx − h,
respectively. These coefficients appear in the analytical expressions of the potential φ and of
the electric fields Ex and Ey:

∀x < h, φ(x) = a1x+ b1

∀x > Lx − h, φ(x) = a2x+ b2

∀x ∈ [h;Lx − h], φ(x) = ρ0(3.0h
π
)2 cos(π3 ( x

h
+ 1

2 ))
ε0

+ a3x+ b3

(A.3)
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Figure A.1: Schematic of unit test case for the dielectric. The dielectric layers are highlighted
in green and delimited by the plasma flow (blue) by the dielectric interface shown in purple.


∀x < h, Ex(x) = −a1

∀x > Lx − h, Ex(x) = −a2

∀x ∈ [h;Lx − h], Ex(x) = ρ0(3.0h
π
) sin(π3 ( x

h
+ 1

2 ))
ε0

− a3

(A.4)

∀x, Ey(x) = 0. (A.5)
Therefore, we can compare the analytical solution with results from AVIP. The numerical
parameters are summed up in Table A.1. Numerical results are presented and verified in
Figure A.2. In the first row are shown the 2D maps of the potential and electric fields. In the
second row, we present their corresponding profiles in the x direction along with the analytical
expression derived in Equations (A.3) to (A.5). We can see there is an excellent agreement of the
1D profiles in all cases. In particular the potential remains continuous and the discontinuity
of the orthogonal component of the electric field, i.e., Ex is well captured. The tangential
component, i.e., Ey remains continuous and has a very small magnitude due to numerical
noise.
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Symbol Value

Simulation domain
y space step dy 2 cm
x space step dx 1 cm
Domain size Lx × Ly 1× 1 m2

Poisson equation
parameters

Wall potential (left) φ1 0 V
Wall potential (right) φ2 200 V
Relative dielectric permittivity εr 5
Dielectric layer width εr 20 cm

Imposed charge
distribution e(ni − ne)

Strength of source term ρ0 −8.01× 10−8 C m3

Surface distribution
at x = h

σ(h) 0 C m2

Surface distribution
at x = Lx − h

σ(Lx − h) 0 C m2

Table A.1: Parameters of unit test case
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Figure A.2: Comparison of numerical results with analytical ones for the unit test case. (a):
2D map of potential φ. (b): 1D profile of φ in the x direction. (c): 2D map of electric field Ex.
(d): 1D profile of Ex in the x direction. (e): 2D map of electric field Ey. (f): 1D profile of Ey
in the x direction. Black dashed and dotted lines at the first row indicate the dielectric layer
interface with the plasma flow.
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benchmark
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Abstract. The increasing need to demonstrate the correctness of computer
simulations has highlighted the importance of benchmarks. We define in this paper a
representative simulation case to study low-temperature partially-magnetized plasmas.
Seven independently developed Particle-In-Cell codes have simulated this benchmark
case, with the same specified conditions. The characteristics of the codes used, such as
implementation details or computing times and resources, are given. First, we compare
at steady-state the time-averaged axial profiles of three main discharge parameters
(axial electric field, ion density and electron temperature). We show that the results
obtained exhibit a very good agreement within 5% between all the codes. As E×B
discharges are known to cause instabilities propagating in the direction of electron
drift, an analysis of these instabilities is then performed and a similar behaviour is
retrieved between all the codes. A particular attention has been paid to the numerical
convergence by varying the number of macroparticles per cell and we show that the
chosen benchmark case displays a good convergence. Detailed outputs are given in
the supplementary data, to be used by other similar codes in the perspective of code
verification.
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1. Introduction

In different applications of low-temperature plasmas, such as Hall Thrusters for electric
propulsion [1, 2] or magnetron discharges for plasma processing [3, 4], the gas pressure
is relatively low (typically between 0.1 and 10 mTorr) and the plasma is confined by
a magnetic field to enhance ionization. This external static magnetic field is imposed
in the direction perpendicular to the electric field from the cathode to the anode, and
hence a cross-field drift is induced in the E×B direction (E is the electric field and B
the imposed magnetic field). For an efficient plasma confinement, the E×B direction
is closed, corresponding to the azimuthal direction in a cylindrical geometry. The main
difference with fusion plasmas is that the electrons are strongly magnetized, while the
ions are not (the ion Larmor radius is much bigger than the plasma dimensions), which
is the reason why these plasmas are often called "partially magnetized plasmas".

The presence of the magnetic field can trigger many fluctuations in ExB discharges
thus increasing significantly the physics complexity, and, in particular, resulting in
electron cross-field mobility several orders of magnitude higher than the expected
classical collisional mobility. Combinations of gradients of plasma density, temperature
and magnetic field, electron ExB drift, ionization and collisions can all be sources of
fluctuations in various regions of the discharges [5, 6]. Recently, the kinetic instability
due to strong electron drift, often called Electron Cyclotron Drift Instability (ECDI) [7]
has attracted much attention as a possible source of the anomalous electron transport
in Hall thrusters [8, 9, 10]. This instability does not require any gradients nor collisions
and may be active in the region of large electric field. It has been further studied for
conditions of Hall trusters [11, 12, 13] and magnetron discharges [14, 15]. This instability
is kinetic in nature but the Boltzmann equation is so complex in these systems that no
good analytical solution can be derived. Hence, Particle-In-Cell (PIC) simulations are
required to better understand its origins and effects on the electron transport.

However, one of the challenges in these devices is that the collisionless instabilities
and collisional phenomena (e.g. ionization) occur simultaneously [16]. Due to the
relatively high plasma density (typically n ≈ 1018 m−3), small cells (typically ∆x ≈ 20

µm) and time steps (typically ∆t ≈ 1 ps) are required to simulate device scale
phenomena on the order of a few cm and 10 kHz. In addition, the multi-dimensional
nature (axial convection, azimuthal E×B drift, radial wall effects) of the plasma flow
makes PIC simulations of E×B discharges computationally expensive.

In the last decade, the growing performances of computer facilities have stimulated
the development of simulation codes, that have become indispensable tools in plasma
studies. However, as the numerical models have become more and more complex, the
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validity of the results must be investigated. They could be affected by various numerical
errors and uncertainties (such as numerical noise), algorithms and models used, or
even by the configuration of input parameters. Therefore, there is an increasing need
for verification and validation (V&V) of simulation codes. While validation implies
comparison with real experiments, verification could be done in many ways such as
unit and mezzanine tests for specific parts of a code [17], or benchmarking, i.e. code-
to-code verification. The early work of Surendra [18], in which the results of twelve
different codes (kinetic, hybrid and fluid) on a 1D low-pressure (30, 100 and 300 mTorr)
radio-frequency discharge in helium were compared, is considered as a pioneer for the
benchmarking of simulation codes in the low-temperature plasma community. Later, a
similar 1D case in helium was benchmarked by Turner et al. [19] with five independently
developed PIC codes, and they demonstrated that the results obtained for 4 pressures
(30, 100, 300 and 1000 mTorr) were statistically indistinguishable. It paved the way to an
increased benchmarking activity for different types of plasma discharges. In particular,
in [20], two 1D PIC codes have been compared on a parallel plate glow discharge in
helium at 3.5 Torr. In [21], six 2D fluid codes have been compared on the simulation of
axisymmetric positive streamers in dry air at atmospheric pressure on three test cases of
increasing complexity, and the authors stated that "the results agree reasonably well".

Even though a 1D helium benchmark is an efficient tool to verify the main
algorithms of a PIC code (such as the Poisson solver and equations of motion) along
with the Monte Carlo Collision (MCC) module, this case is only one dimensional with
no magnetic field and hence, it would be beneficial for the low-temperature plasma
community to benchmark simulation codes using a more complex model, such as E×B
discharges. Moreover, it has been observed recently by Janhunen et al. [22, 23] that
numerical noise may influence the results of PIC simulations by imitating the effect of
collisions and hence, it is important to better understand the influence of the numerical
parameters. The chosen simulation model should exhibit the relevant physics of an E×B
discharge (high peak value of axial electric field, azimuthal instabilities, etc.) and in the
meantime, it should be simple enough to be simulated in a reasonable computational
time. In this paper, a 2D simulation model close to the one proposed by Boeuf and
Garrigues [24] is adopted, with a longer azimuthal length and a higher number of
macroparticles per cell to assess numerical convergence. The advantage of this test
case is that a steady state is reached quickly, which facilitates comparison of the results.
Moreover, the computational cost of PIC simulations has increased the need for quicker
algorithms and made code parallelization compulsory. Hence, the seven independent
codes considered here exhibit different features to decrease computational times and
it makes this benchmarking activity even more relevant. An agreement on insightful
parameters of the discharge will strengthen the confidence in our codes and legitimize
them for further analysis of E×B discharges. This test case is not only intended to study
the physics of a Hall thruster, but also could be used in a general way to benchmark all
E×B discharge codes.

In this paper, we first describe in section 2 the simulation model chosen, along
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with the detailed algorithms used. Then, the specificities of each independent PIC code
are given in section 3 along with the computational times and resources. Section 4 is
dedicated to the comparison of the results. Azimuthally and time averaged (at steady
state) axial profiles of main discharge parameters (axial electric field, ion density and
electron temperature) are first compared and then, we look at the characteristics of the
azimuthal instabilities. The sensitivity of the benchmark and the numerical convergence
according to the number of macroparticles per cell is then discussed in section 5, prior
to conclude on the agreement obtained between all the codes.

2. Description of the model

To study the azimuthal E×B electron drift instability and the associated axial electron
transport, a 2D axial-azimuthal Particle-In-Cell benchmark case is considered with con-
ditions close to those of a typical E×B discharge. Some simplifying assumptions have
been made to make the case reproducible in a reasonable computational time. Indeed,
the intermolecular collisions and neutral transport are neglected while a given ionization
source term is imposed [24] and hence, we are able to obtain a steady state result in a
short time (i.e. 10 µs).

2.1. Simulation domain

As illustrated in figure 1, the computational domain corresponds to a 2D structured
Cartesian mesh, which models the axial (x ) and azimuthal (y) directions of an E×B
discharge. Hence, the curvature of the (x,y) plane is neglected. The left-hand side
boundary of the domain represents the anode plane, with a fixed potential of 200V, while
the right-hand side corresponds to the cathode plane, where electrons are emitted. The
distance between the anode and the cathode corresponds to the axial length of Lx=2.5
cm, with the position of radial magnetic field maximum at x=0.75 cm. To reduce
computational times, a small region (Ly=1.28 cm) in the azimuthal direction is taken
into account and periodic boundary conditions are imposed.
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Figure 1: Simulation domain. x is the axial direction, y the (periodic) azimuthal
direction. Black pointed dashed line (xBmax=0.75 cm): position of maximum radial
magnetic field. Green dashed line (xe=2.4 cm): plane from which electrons are
emitted uniformly along the azimuthal direction. The azimuthally averaged fluxes are
represented. Γea and Γia: respectively electron and ion fluxes through the left boundary.
Γec1: electron flux from the cathode going into the discharge. Γec2 and Γic: respectively
electron and ion fluxes through the right boundary.

As most of the codes used are explicit, the cell size ∆x and time step ∆t needed to
satisfy the PIC stability conditions :





∆t ≤ 0.2

ωp

∆x ≤ λd

(1)

with wp =
√

nee2

mε0
and λd =

√
ε0kBTe
nee2

being respectively the angular plasma frequency
and the electron Debye length, with ne the electron density, e the electron charge, m
the electron mass, Te the electron temperature and ε0 the vacuum permittivity. In our
case, the current density is fixed at 400 A.m−2, which gives a maximum plasma density
of around 5 ×1017 m−3 and electron temperatures of about 50 eV. Hence, the minimum
values for ∆t and ∆x will respectively be 6 × 10−12 s and 70 µm. For the benchmark
case, a time step of ∆t = 5 × 10−12 s and a grid spacing of ∆x=50 µm with a grid of
500 × 256 cells are used. 4 × 106 time steps are simulated, i.e. 20 µs of the discharge,
and the diagnostics are averaged every 5000 time steps.

Electrons and ions are initially loaded with a density of 5×1016 m−3 uniformly
throughout the simulation domain, with velocities chosen from a Maxwellian distribution
with a temperature Te=10 eV and Ti=0.5 eV, respectively. To reduce numerical heating
due to statistical noise, the number of macroparticles per cell at initialisation for the
nominal case is fixed at Nppc,ini = 150 (case 1), i.e. 150 electrons and 150 ions per cell.
Then, approximately Nppc,fin ≈ 550 macroparticles per cell are obtained at stationary
state. As mentioned before, this parameter could have an influence on the numerical
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results and hence, an extensive study of code convergence has also been conducted by
simulating two other cases with Nppc,ini = 75 (case 2) and Nppc,ini = 300 (case 3).

All the simulation parameters are summarized in Table 1.

Table 1: Input parameters.

Parameter Symbol Value Unit
Computational parameters

Time step ∆t 5 × 10−12 s
Cell size ∆x = ∆y 5 × 10−5 m
Final time Tfinal 20 × 10−6 s

Cells in axial direction Nx 500
Cells in azimuthal direction Ny 256

Axial length Lx 2.5 cm
Azimuthal length Ly 1.28 cm

Initial state
Macroparticles per cell Nppc,ini 75/150/300

Plasma density np,ini 5 × 1016 m−3

Physical parameters
Discharge voltage U0 200 V

Electron initial temperature Te,ini 10 eV
Ion initial temperature Ti,ini 0.5 eV

2.2. Imposed axial profiles

Radial magnetic field The axial profile of the radial magnetic field is imposed with a
Gaussian shape, as shown in figure 2:

B(x) = ak exp(−
(x− xBmax)2

2σ2
k

) + bk (2)

with k = 1 for x < xBmax and k = 2 for x > xBmax . The values of the ak and bk
coefficients can be easily calculated from the given parameters: B0=B(x=0)=6 mT,
BLx = B(x = Lx)=1 mT, Bmax=10 mT, xBmax = 0.3Lx=0.75 cm and σ1 = σ2 =

0.25Lx=0.625 cm. Their formula are given in Appendix A.

Ionization profile For this benchmark case, no collisions are considered. However,
ionization events are taken into account as a source term for the plasma to sustain
the discharge. To do so, electron-ion pairs are injected at each time step according to
the profile of a given ionization rate S(x), dependent on x only (uniform in azimuthal
direction). S(x) has a cosine shape, as shown on figure 2:




S(x) = S0 cos(π

x− xm
x2 − x1

) for x1 ≤ x ≤ x2

S(x) = 0 for x < x1 or x > x2

(3)

with x1 = 0.25 cm, x2 = 1 cm and xm = x1+x2
2

= 0.625 cm.
The maximum ion current density JM can be extracted from the steady-state continuity
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equation, accounting for the ionization profile in equation 3 by:

JM = e

∫ Lx

0

S(x)dx =
2

π
(x2 − x1)eS0 (4)

Hence, we impose J
M = 400 A.m−2 by fixing the maximum value of the ionization profile

to S0 = 5.23 × 1023 m−3.s−1.
The number of electron-ion pairs to inject at each time step ∆t is given by
Ly∆t

∫ Lx

0
S(x)dx and the positions (xi,yi) are chosen randomly such as:




xi = xm + sin−1(2r1 − 1)

(x2 − x1)

π

yi = r2Ly

(5)

with r1 and r2 two random numbers uniformly distributed over the interval [0,1]. For one
pair, the electron and the ion are injected at the exact same position. Their velocities
are chosen from a Maxwellian distribution with the same temperature as initialisation
(Te=10 eV and Ti=0.5 eV).
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Figure 2: Axial profiles of the imposed radial magnetic field and ionization rate. Dashed
line corresponds to the position of maximum magnetic field.

2.3. Boundary conditions

Electrons and ions which cross the left or right boundary plane of the domain are
removed from the simulation. However, to ensure current continuity and neutralization
of the extracted ion beam, electrons are injected from the cathode plane. The emission
line is set on the downstream of the simulation domain, at 1 mm from the right domain
boundary. The number of electrons injected at each time step is calculated using
the current conservation through the discharge to obtain Γec, the absolute value of
azimuthally averaged emitted electron flux:

Γec = Γa = Γea − Γia (6)
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with Γea and Γia being respectively the absolute values of azimuthally averaged electron
and ion fluxes to the anode side, displayed on figure 1. Hence, by counting the number of
electrons and ions that cross the anode boundary at each time step (respectively ∆Nea

and ∆Nia), the corresponding number of electrons emitted from the emission plane can
be calculated as:

∆Ne,emi = ∆Nea − ∆Nia (7)

These electrons are injected uniformly in the azimuthal direction, with a Maxwellian
velocity distribution with a temperature Te,emi=10 eV.

However, this method for calculating the number of emitted electrons does not
prevent an artificial cathode sheath to form. To suppress artificially this sheath, the
emission plane is shifted by 1 mm from the right boundary plane (i.e. to the position
xe=2.4 cm) and its potential is adjusted at each time step by imposing a zero azimuthally
averaged potential at this location. Hence, the azimuthally averaged potential drop
between the anode and the emission plane is maintained constant and equal to the
applied voltage (200V). To do so, we solve the Poisson equation for U :

∆U = − e

ε0
(ni − ne) (8)

with boundary conditions U(0, y) = U0 and U(Lx, y) = 0. Then, we obtain the electric
potential φ by subtracting the azimuthally averaged potential at the emission plane Ue
from the solution U(x, y) of Poisson equation:

φ(x, y) = U(x, y) − x

xe
Ue (9)

with:

Ue =
1

Ly

∫ Ly

0

U(xe, y)dy (10)

The right boundary plane will have a varying negative potential but this drop in
potential between the emission plane and the right boundary plane does not have any
useful physical meaning and does not affect the main discharge physics.

3. Code specificities

Seven groups participated in this study, each group using its own independently
developed simulation code. While the codes are all Particle-In-Cell (PIC) codes, they
mainly differ in the way the equation of motion and the Poisson equation are solved.
All the codes are using a bilinear interpolation scheme (Cloud-In-Cell) and ions are
considered unmagnetized, due to their large Larmor radius compared to the domain
dimensions. The exact physical charge-to-mass ratio for ions (here Xenon ions are
considered) is used by all the codes. As described in the previous section, periodic
boundary conditions are imposed in the azimuthal direction, whereas the plasma
potential is fixed at 200V at the left boundary (anode) and 0V at the right boundary
(cathode).
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As the benchmark cases are quite computationally expensive, the code performances
are obtained through parallelization. This could be done via MPI (Message Passing
Interface), combined or not with OpenMP (Open Multi-Processing), or using GPU
instead of CPU. Each processor can consider one portion of the computational grid
(domain decomposition) or one portion of the particles in the domain (particle
decomposition) in order to speed-up the computation. Another way of decreasing
significantly the computational time is to move the ions every Nsub electron time steps,
as they are way slower than the electrons and barely move during one time step [25].

A summary of the codes specificities is provided in table 2, along with the simulation
times for the 3 benchmark cases.

3.1. Group LPP: T. Charoy, A. Tavant, A. Bourdon, P. Chabert

The 2D-3V PIC-MCC simulation code LPPic was used. The code features a structured
Cartesian mesh fixed in time, the Poisson equation is solved using an iterative parallel
multigrid solver (PFMG from the open source HYPRE library [26]) and the particles
are advanced via a classic leapfrog scheme, along with a Boris scheme [27]. The code
is parallelized via MPI through a domain decomposition. It has been verified with the
1D helium benchmark of Turner et al [19] (further details in [28, 29]) and extensively
used to simulate the radial-azimuthal plane of a Hall Thruster [28, 30, 31]. For this
benchmark, the code was adapted to the axial-azimuthal plane and accelerated via a
load-balancing algorithm (adjusting periodically the size of each processor domain to
have approximately the same number of particles inside each processor). Ions are moved
every 11 electron time steps to decrease computational time [25]. It was checked that
it has a negligible influence on the obtained results. The Random Number Generator
(RNG) used is the Fortran 2003 RNG, seeded by the internal clock of every CPU.

3.2. Group LAPLACE: L. Garrigues, J.P. Boeuf

Explicit electrostatic PIC-MCC models developed at Laplace resolve the space
in two-dimensions [32, 33, 34, 35, 36, 37, 38] and three-dimensions [39, 40]
(Cartesian coordinates with structured meshes) and three dimensions in velocity phase.
Trajectories of charged particles are integrated according to a standard leap-frog scheme
with a Boris algorithm [27]. Poisson’s equation is solved using the direct PARDISO
solver included in the MKL library of INTEL. A particle decomposition method is used
and an hybrid approach coupling MPI and OpenMP techniques is used to accelerate
parallelization. Typically, a MPI thread per socket is attached and a number of OpenMP
threads is taken identical to the number of cores per socket. No subcycling technique
is used (ions are moved every time step). The RANDU function is used to generate
pseudo-random numbers between 0 and 1 [41].
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3.3. Group CERFACS: W. Villafana, B. Cuenot, O. Vermorel

The PIC version of the AVIP code was used. AVIP is a massively parallel code
able to model the plasma dynamics of Hall thrusters in complex 2D/3D geometries
using unstructured grids. AVIP has been built upon the AVBP combustion code
structure [42], which has been extensively validated and specifically designed for efficient
calculations with a high number of processors [43]. Both PIC and fluid modelings are
available [44, 45]. For the present PIC simulations, ions and electrons velocities are
respectively updated with standard Leap-Frog and Boris schemes [27]. Poisson equation
is solved thanks to the open-source solver MAPHYS currently developed by INRIA.
It combines both direct and iterative methods for fast and accurate results [46, 47].
Domain decomposition is performed using the external library PARMETIS [48]. Domain
partitioning is regularly updated to ensure a correct load balancing between processors.
In order to speed up the simulation, subcycling is used for the ion motion and their
position and speed are updated every 5 electron time steps. The standard RNG of
Fortran 95 is used with the same seed for each run in order to ensure reproducibility of
the results.

3.4. Group RUB: D. Eremin

The 2D-3V PIC code used in the present work is adopted from the implicit energy-
and charge-conserving scheme suggested in [49]. The approach iteratively utilizes
the Crank-Nicolson method to calculate the electrostatic field on the new time level,
simultaneously with the particle orbit integration. Note that this approach employs the
same shape function for the electric field and the current density (as opposed to the
same shape function for the electric field and the charge density in the conventional
explicit leapfrog scheme-based PIC variant implemented in all the other codes used in
this benchmark), which makes the linear momentum conservation inexact. However, as
the results demonstrate, this does not seem to hamper the model.

In order to reduce the computational cost, the Poisson equation rather than
Ampere’s formulation was adopted for the electrostatic field. In case of a charge-
conserving scheme, both approaches are equivalent, but the Poisson equation requires
calculating the charge density only at the end of a time step, instead of having to
add contribution to the current density each time a particle crosses a grid cell if the
divergence of Ampere’s law is used. The charge density was calculated using the
quadratic spline shape function, whereas the linear shape function was used for the
electric field. Since the original work [49] did not contain treatment of boundaries at the
electrode surfaces, the modifications necessary to include such effects were introduced.
In order to account for the periodicity in the azimuthal direction, the field solver used
the discrete Fourier transformation in this direction, after which the axial profile for
each of the azimuthal field harmonics was obtained by solving the corresponding one-
dimensional Poisson equation with the Thomas algorithm.

It should be emphasized that the implicit iterative scheme employed for the RUB
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code is quite different from and is much more computationally expensive compared to
the commonly used explicit algorithm. In contrast to the latter, the implicit scheme is
predominantly aimed at self-consistent modelling of plasmas with high densities, where
the need to resolve the Debye length to avoid the finite-grid instability makes the explicit
approach prohibitively expensive. However, the energy-conserving implicit algorithm
being relatively new, it is important to establish equivalence of its’ results to the ones
provided by the explicit scheme whenever possible. This dictated our choice of the
algorithm for this particular benchmark. Because of the high computational cost of
the scheme, everything except the field solver (which was implemented on CPU) was
parallelized on GPU (NVIDIA V100 32GB) using CUDA C. Due to the limited amount
of GPU memory, the case 3 was parallelized on two GPUs using an additional domain
decomposition in the azimuthal direction to ensure even load balance. For the RNG,
the xorshift128 method suggested in [50] has been used.

3.5. Group USask: D. Sydorenko, A. Smolyakov

The code is an explicit electrostatic particle-in-cell 2D-3V resolving 2 coordinates (x
and y) and 3 velocity components for each particle. It was used in [23] and the
earlier 1D version [51] was used in [22]. A leap-frog numerical scheme is used and the
velocity is advanced using the Boris scheme [27]. The Poisson equation solver involves
discrete Fourier transformation along the periodic direction to reduce dimensionality
of the problem. The code is parallelized with MPI and domain decomposition is used.
Subcycling of electrons relative to ions is used (ions moved every 11 electron time steps)
to reduce numerical cost [25]. The RNG is the maximally equidistributed version of
Mersenne Twister 19937 [52, 53].

3.6. Group TAMU: K. Hara

The explicit PIC code is written in C++ using Message Passing Interface (MPI).
Particle decomposition is used to make the number of particles per processors to be
approximately equal. Domain decomposition is used to calculate the potential via
the Poisson equation using HYPRE [26], in which a multigrid method is used as a
preconditioner to the GMRES solver. Double precision is used for all numerical variables
and no electron subcycling is used, i.e., the ions and electrons are updated at the same
time step. For the results shown, ion and electron densities as well as the potential
are calculated on cell centers while similar results are obtained in calculations based on
storing information on nodes. Random numbers are generated using the C Standard
General Utilities Library by initializing different seed values in the individual processors.

3.7. Group PPPL: A.T. Powis, J.A. Carlsson, I.D. Kaganovich

This new electrostatic Particle-in-Cell code was developed at the Princeton Plasma
Physics Laboratory and Princeton University. It was designed from the ground up for
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scalability and performance on modern super-computing facilities. The code features
parallelism via MPI, OpenMP, and algorithms are designed to take advantage of modern
vector registers. Poisson’s equation is solved over the grid using domain decomposition
and via the HYPRE [26] package, which has demonstrated excellent scalability on up
to 100,000 cores [54]. Particle’s are distributed and shared as a list, rather than via
domain decomposition. The software is capable of modeling a two-dimensional box, with
arbitrary boundary conditions (conducting, periodic, mirror) and allows particle sources
and losses through the walls. Particles are evolved explicitly with double precision in
2D-3V via the Boris algorithm [27]. Random numbers are generated using the double
precision SIMD oriented Fast Mersenne Twister (dSFMT) package [55].

Table 2: Main codes specificities.

LPP LAPLACE CERFACS RUB USask TAMU PPPL
Algorithms

Pusher solver Explicit Explicit Explicit Implicit Explicit Explicit Explicit

Poisson solver Hypre Pardiso Maphys FFT
Thomas FFT Hypre Hypre

Floating-
point

precision

Double Single(pusher)
Double (Poisson)

Double Single(pusher)
Double (Poisson)

Double Double Double

Code acceleration
Architecture CPU CPU CPU GPU CPU CPU CPU
Parallelization MPI MPI/OpenMP MPI CUDA MPI MPI MPI/OpenMP

Decomposition Domain Particle Domain Both Domain Particle Particle
Language Fortran Fortran Fortran C+Cuda C Fortran C++ C

Simulation times (days)
Case 1

(Nppc,ini = 150) 8
(360 CPU)

5
(108 CPU)

7
(360 CPU)

14
(1 GPU)

21
(32 CPU)

15
(300 CPU)

2.5
(224 CPU)

Case 2
(Nppc,ini = 75) 5

(360 CPU)
3

(108 CPU)
4

(360 CPU)
9

(1 GPU)
11

(32 CPU)
11

(200 CPU)
2.5

(112 CPU)

Case 3
(Nppc,ini = 300) 14

(360 CPU)
6

(180 CPU)
13

(360 CPU)
14

(2 GPU)
20

(64 CPU)
22

(400 CPU)
2.5

(448 CPU)

Before converging to the final benchmark results presented in the next section, many
small implementation mistakes were found. To guide the next users of this benchmark,
some general guidelines are given in Appendix A.

4. Results

Prior to performing any detailed benchmarking, it was important to make sure that
all codes converge to a steady state. To do so, the time evolution of the electron
axial current is compared. The electron current density injected at the emission plane
Jec is split in two parts : Jec = Jec1 + Jec2, where Jec1 corresponds to the electron
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current density entering the channel and Jec2 is used to neutralize the extracted ion
beam Jec2 = Jic, fixed by the imposed ion current density. Hence, Jec1 could be used to
characterize the anomalous cross-field transport in the discharge. For the comparison
of results, Jec1 is normalized by the imposed total ion current JM = Jia + Jic, which is
set to 400 A.m−2 at steady state.

The time evolution of Jec1
JM

is shown in figure 3(a) for all simulation codes. It can be
seen that all simulation codes reach a steady state after around 10 µs. However, it can
be noticed that a small oscillation appears at steady state, with a frequency of the order
of hundreds of kHz, as shown on figures 3(b) and 3(c) for code LPP. As this phenomena
is retrieved for all the codes, we decided to average our results in time to smooth out
these oscillations, which could be physical or numerical, focusing on benchmarking of
time-averaged phenomena. The period has been chosen as a compromise between the
need to capture enough oscillation periods at steady state and keeping a reasonable
computational time, i.e. 4 µs between 16 and 20 µs.
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Figure 3: (a) : Time evolution of Jec1
JM

for Case 1 for all the codes. Brown dashed line:
beginning of time averaging interval (until 20 µs). (b): Time evolution of Jec1

JM
for Case

1 with code LPP. (c): Corresponding Fast-Fourier-Transform taken from data between
12 and 20 µs.

Moreover, as mentioned before, some high-frequency instabilities propagate in the
azimuthal E×B direction, as seen on figure 4 for the azimuthal electric field and the
ion density, obtained with code LPP at t = 20 µs. To make the benchmarking of large-
scale phenomena, it was decided to average in this direction. It can also be noticed
that two distinct zones for the oscillations of the azimuthal electric field exist: a short
wavelength zone between the anode and the location where the radial magnetic field is
at maximum, called zone (I), and a long wavelength zone downstream, called zone (II).
Such transition of the plasma waves is discussed more in detail in section 4.2.

One can notice on Table 2 that the computational times and resources needed
to reach this steady state are quite high, with around 10 days in average for the
nominal case (which corresponds to around 60000 CPU hours). Compared with the
computational time of the 1D helium benchmark of Turner et al [19] that was around a
couple of hours, parallelization of computational codes is needed to increase drastically
the code performances. Moreover, it can be seen that the 7 codes simulate the cases with
a broad range of computational times (between 2.5 and 21 days for the nominal case)
and it shows that this benchmark is also a powerful tool to characterize the performance
of a simulation code.

Below in section 4.1, the azimuthally and time averaged axial profiles of the main
discharge parameters (axial electric field, ion density and electron temperature) are first
analysed. Due to the interest towards understanding the effects of azimuthal plasma
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Figure 4: 2D axial-azimuthal maps of the azimuthal electric field (top) and ion density
(bottom) obtained with code LPP at t = 20 µs. Dashed line corresponds to the position of
maximum magnetic field that separates zone (I) and zone (II).

waves on the electron anomalous transport, the azimuthal instabilities are compared
in section 4.2, investigating their dominant mode characteristics (wavelength and
frequency). These comparisons are done for the 3 cases considered in this benchmark,
that differ only by their number of macroparticles per cell, given in Table 3.

Table 3: Three benchmark cases. Nppc is the number of macroparticles per cell. The
nominal case is Case 1.

Case Nppc,ini at initialisation Nppc,fin at steady state
1 150 550
2 75 275
3 300 1100

4.1. Main plasma parameters

For benchmarking purposes, three parameters are chosen to be shown in this paper: the
axial electric field, the ion density and the electron temperature. Since the low-frequency
oscillations on the order of hundreds of kHz are not the focus of the benchmarking, the
results are averaged in the azimuthal direction and in time (between 16 and 20 µs) to
obtain a steady state result.

The axial profiles for the nominal case are shown on figure 5. We can see that the
7 codes display a good agreement for all the parameters. The differences are mainly on
the peak value and the profile in zone (II) but the overall mean relative error is less than
5%. This difference is measured by using the mean value between all the curves and
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calculating the mean relative error for every curve, that has a maximum below 5 %. It is
also important to notice that all results from different codes capture the characteristics
of an E×B discharge: a high axial electric field peaks near the maximum of radial
magnetic field while the ion density is high on the anode side, just before the magnetic
field peak. In particular, the results display an important feature of Hall thrusters,
namely the overlapping between the ion density peak (ionization zone) and the axial
electric field peak (acceleration zone). One can notice the sharp increase of the axial
electric field near the right boundary that is due to the artificial sheath created outside of
the region of interest (between the emission plane (xe = 2.4 cm) and the right boundary).
It has been shown that this region does not affect the main discharge results [24].
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Figure 5: Case 1 : Azimuthally and time (between 16 and 20 µs) averaged axial profiles of
axial electric field (a), ion density (b) and electron temperature (c). Dashed line corresponds
to the position of maximum magnetic field.

The same comparison is done for the two other cases and the results are displayed on
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figures 6 and 7 respectively. They both exhibit a similar behaviour than the nominal case
shown in figure 5, with an overall mean relative error between the codes less than 5%.
The main reason for the slight discrepancies comes from the low-frequency oscillation
behaviour, as can be seen from figure 3.
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Figure 6: Case 2 : Azimuthally and time (between 16 and 20 µs) averaged axial profiles of
axial electric field (a), ion density (b) and electron temperature (c). Dashed line corresponds
to the position of maximum magnetic field.
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Figure 7: Case 3 : Azimuthally and time (between 16 and 20 µs) averaged axial profiles of
axial electric field (a), ion density (b) and electron temperature (c). Dashed line corresponds
to the position of maximum magnetic field.
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4.2. Azimuthal instabilities

In addition to the time-averaged plasma properties, the instabilities propagating in
the azimuthal direction, shown on figure 4, also serve as a useful phenomenon for
benchmarking of different simulation codes. Usually in 2D, when the direction parallel
to the magnetic field is neglected, the ECDI exhibits a discrete behaviour around the
cyclotron resonances kyVE = mωce, n = 1, 2, .. [10]. When the wave propagation along
the magnetic field is included, one can show from the linear theory that the ECDI
can transition to an ion-acoustic instability [7, 9, 56, 57]. Nonlinear effects can also
potentially result in transition to the ion-acoustic instability [58, 22]. The quasilinear
theory of the anomalous transport based on the modified ion-acoustic instability in the
conditions of Hall thruster has been proposed [56, 57]. The dispersion relation for the
ion-acoustic instability in plasmas with moving ions has the form:

ωR ≈ k.vi ±
kcs√

1 + k2λ2d
(11)

A 2D Fast-Fourier-Transform (FFT) is applied to the azimuthal electric field at fixed
axial positions (between 16 and 20 µs) to get the corresponding spectrum. The results
for two different axial positions are displayed on figure 8 for code LPP. It is shown
that in zone (I) (at x = 0.3 cm) a continuous dispersion relation is well fitted to the
analytical expression of equation 11. This continuous behaviour was already observed
in experiments [59] and in other 2D PIC codes that are self-consistent with the plasma
generation [13]. However, closer to the cathode in zone (II) (at x = 1.5 cm), the
dispersion relation exhibits a different behaviour, which seems more discrete.
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Figure 8: 2D FFT of the azimuthal electric field at x=0.3 cm (a) and x=1.5 cm (b),
obtained with code LPP. Solid white line: ion acoustic dispersion relation. Green
dashed lines: wavelength and frequency of the dominant mode.

As this paper is focused on the benchmarking of different simulation codes, detailed
study of the dispersion relations of the plasma waves is out of scope. Instead, to be able
to compare the results of the different codes, it was decided to extract the dominant
mode at each axial position. Hence, the wave characteristics (wavelength and frequency)
are compared as function of the axial position.

This axial dependence of the dominant mode characteristics for all the codes is
shown on figure 9 for the nominal case. It can be seen that, in all simulation results,
the wavelength and the frequency change abruptly at the position of maximum radial
magnetic field. In zone (I) near the anode, the oscillations have a small wavelength (λ
≈ 0.5 mm) and a high frequency (f ≈ 5 MHz) while near the cathode in zone (II),
the frequency drops to f ≈ 3 MHz with almost a wavelength 4 times bigger (λ ≈ 2
mm). The Debye length and ion plasma frequency are displayed on the bottom row for
comparison. The same behaviour is retrieved for the two other cases, as seen on figures
B1 and B2 that have been placed in appendix for clarity purpose. Considering the
complexity of the phenomena involved, the agreement between the codes is satisfactory.

The maximum wavelength for the dominant mode is around 2 mm which is
well-resolved by the length in the azimuthal direction of 1.28 cm. However, further
development of long-wavelength structures may be limited either by this limited
azimuthal length or by the axial convection of the modes (due to the ion flow) from
the most unstable region. As this work is focused on a benchmark comparison with a
simplified domain, this question will require further studies with a larger domain.
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Figure 9: Case 1: Axial evolution of dominant mode characteristics for azimuthal electric
field (azimuthal instabilities). (a) Wavelength. (b) Frequency. (c) Debye length. (d) Ion
plasma frequency. Dashed line corresponds to the position of maximum magnetic field.

5. Discussion

5.1. Numerical convergence

In a PIC simulation, we consider finite-sized particles and hence, numerical collisions
play a role. They can lead to fluctuations induced by thermal noise and this noise could
have an impact on the study of the azimuthal instabilities and the related anomalous
electron transport.

Okuda and Birdsall [60] defined a frequency for these numerical collisions in 2D
simulations:

νnum ≈ πωpe
16ND

(12)

with ND the number of macroparticles in a Debye sphere. For our nominal case (Case
1, Nppc,ini=150), we will have around Nppc,fin ≈ 550 macroparticles per cell at steady
state, in average. Looking at figure 9, we can see that the minimum Debye length is
around 70 µm and hence, we have around 2π cells in a Debye sphere (worst case). It
corresponds to a numerical collision frequency of νnum ≈ 5.6× 10−5ωpe. Turner [61] has
shown that the numerical collisions can be neglected if νnum

ωpe
≤ 10−4 and hence our case

complies with this criterion.
It is also important to assess the numerical convergence of this benchmark case

more rigorously, by varying the number of macroparticles per cell. The mean value at
steady state of the ratio Jec1

JM
of electron current entering the channel to the total ion
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current was used as a convergence criterion. Indeed, as mentioned earlier, this ratio is
related to the electron axial transport in the discharge. This transport can be enhanced
by numerical collisions and hence, decreasing Nppc will increase the transport and Jec1

JM

will be higher. We can retrieve this behaviour by looking at how the averaged profiles
of ion density and axial electric field evolve when the number of macroparticles per cell
is decreased. We observe on figure 10 for code LPP that if Nppc is decreased, the axial
electric field is increased and the ion density is decreased which is characteristic of a
higher axial transport.
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Figure 10: Azimuthally and time (between 16 and 20 µs) averaged axial profiles of
axial electric field and ion density for different number of macroparticles per cell at
initialisation Nppc,ini. Results obtained with code LPP.

Figure 11 shows the mean value of Jec1
JM

at steady state for all seven codes, as function
of the number of macroparticles per cell at steady state. We can see that we obtain
a good convergence: when Nppc is increased, Jec1

JM
is decreased and reaches a plateau.

This plateau corresponds to the three benchmark cases that we have chosen (Case 1
with Nppc,final=550, Case 2 with Nppc,final=275 and Case 3 with Nppc,final=1100). It is
interesting to notice that the curve has a knee at around 250 macroparticles per cell
which gives a numerical collision frequency close to the criterion of [61]. Furthermore,
this benchmark case shows that the number of macroparticles per cell commonly used
in 2D PIC simulations (i.e. Nppc,final=100) is not enough to reach convergence. This
need to increase the number of macroparticles per cell to prevent numerical collisions
was also reported in [8] and more recently in [13], in which 800 macroparticles per cell
were used on average at the end of the simulation.
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One can also notice that the differences between the codes are this time bigger than
5%. The origin of this discrepancy still remains unclear and its analysis is let as future
work.
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Figure 11: Mean value (between 12 and 20 µs) of Jec1JM
depending on Nppc,final in normal scale

(a) and semi-log scale (b). The three benchmark cases correspond to Nppc,final = 550 (Case
1), Nppc,final = 275 (Case 2) and Nppc,final = 1100 (Case 3).

5.2. Case sensitivity

The agreement obtained between the seven codes in section 4 is good, but it is worth
noting that the results obtained are not "statistically indistinguishable" (corresponding
to less than 1% difference) as in the 1D helium benchmark [19]. As the present
benchmarking test case is more challenging and more complex (two dimensions,
magnetic field, emitting cathode, etc.) with the presence of turbulent phenomena, it is
expected to obtain bigger differences.

To better characterize the sensitivity of this benchmark case, one code (code LPP)
is used and the same simulation (same input parameters, corresponding to Case 2) is
repeated 3 times. Figure 12(a) shows the different time evolutions of the Jec1

JM
ratio for

these 3 simulations. It can be seen that while the beginning of the transient state (first
4 µs) is quite similar, some differences appear quickly and the oscillations at steady
state become quite different. In fact, when time averaging is done between 11 and 15
µs, different axial profiles are retrieved for the ion density and axial electric field (the
electron temperature is not shown here but displays a similar behaviour), as seen on
figure 12(b). These differences are of the order of 5% and could be considered as the
closest agreement we would get between the seven codes.
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Figure 12: Comparison of 3 simulations with the same code (LPP) for the same input
parameters (Case 2). (a): Time evolution Jec1

JM
. (b): Azimuthally and time (between 11 and 15

µs as shown on (a)) averaged axial profiles of ion density (blue) and axial electric field (red).

There is a reason why identical results are not obtained with the same code. In fact,
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as described in section 2, a Random Number Generator (RNG) is frequently used for
routines that are crucial for the discharge behaviour (ionization and electron emission).
Hence, as this RNG is seeded randomly depending on the processors used, differences
are expected on the random numbers that will propagate due to the inherent chaotic
behaviour of the discharge.

Indeed, it was confirmed that when the seed number of this RNG is fixed in the
LPP code (and the same procedure as before is repeated), a perfect overlap is obtained
for the time evolution of the current (and hence for the averaged parameters). The
result is not shown here for clarity purpose but this study has shown clearly that the
intrinsic turbulent nature of the discharge makes this case very sensitive and it made us
more confident on the quality of the agreement obtained for this benchmark.

6. Conclusion

A 2D axial-azimuthal benchmark model for low-temperature partially magnetized
plasmas has been presented here. Seven independently developed Particle-In-Cell (PIC)
codes have been used to simulate this case and their results are compared.

Despite the relative complexity of this benchmark, a good agreement was obtained
on the averaged axial profiles of the main discharge parameters (axial electric field, ion
density and electron temperature). All codes show the presence of a very strong kinetic
instability propagating in the E×B azimuthal direction that plays a significant role on
the cross-field electron transport. The characteristics of the dominant mode of these
instabilities have been compared and exhibit a good agreement between all the codes.
The remaining differences of around 5% are explained by the inherent unstable nature
of the discharge in this case, correlated with the fact that different Random Number
Generators (RNG) were used between the codes. The issue of numerical noise due
to a too-low number of macroparticles was also assessed. It appears that around 250
macroparticles per cell were needed to get convergence in this 2D benchmark, which is
however much less than the 10000 macroparticles per cell used in the 1D case studied
in [22].

The seven participants converged on the main purpose of this 2D benchmark that
was to increase confidence in our codes by verifying that the results produced were
consistent with other implementations. Moreover, as mentioned earlier, these codes are
often used to simulate cases that are very computationally expensive. With this in
mind, this work also gave insights on the computational efficiency of different solvers,
with computational times that could vary from 2.5 to 21 days for the nominal case. It is
important to highlight that for simulations of E×B discharges, the required computing
resources are quite large (around 60000 CPU hours in average for the nominal case of
this benchmark) and it makes the need for benchmarking even more important.

Even though the case chosen here enabled to test different aspects of a 2D axial-
azimuthal electrostatic PIC code, some simplifying assumptions have still been made,
particularly concerning the absence of collisions. The earlier work of Turner et al. [19]
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could be used to verify the Monte Carlo Collision (MCC) module of PIC codes, or
another benchmark case could be defined with a self-consistent treatment of ionization
with the addition of neutrals and collisions. Hence, the work presented here should
be considered as a step towards the benchmarking of PIC codes of low-temperature
partially magnetized plasmas.
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Appendix A. Supplementary implementation details

Radial magnetic field

The parameters for the radial magnetic field have the following formulas:
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(A.1)

Benchmark guidelines

We listed here some general advices to perform this benchmark:

• Temperature of emitted electrons: it needs to be full 3D-Maxwellian electrons
with a temperature of 10 eV. It was found that the discharge behaviour was very
sensitive to the temperature of these electrons.

• Velocity and temperature diagnostics: if the leapfrog scheme is used to solve
the equations of motion, the velocity needs to be adjusted by half a time step before
using it for the diagnostics. It can lead to important differences on the electron
velocities and temperatures.

• Total axial current: at steady state, as a current equality is imposed in the
system, the total axial current (ion+electron) should be constant axially. One can
also check that the divergence of the total current is null, with the divergence of
the ion current being the imposed ionization source term.

Appendix B. Supplementary comparison figures

For the azimuthal instabilities (section 4.2), we also obtained a good agreement for the
cases 2 and 3, as seen on figures B1 and B2 respectively.
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Figure B1: Case 2: Axial evolution of dominant mode characteristics for azimuthal electric
field (azimuthal instabilities). (a) Wavelength. (b) Frequency. (c) Debye length. (d) Ion
plasma frequency. Dashed line corresponds to the position of maximum magnetic field.
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Figure B2: Case 3: Axial evolution of dominant mode characteristics for azimuthal electric
field (azimuthal instabilities). (a) Wavelength. (b) Frequency. (c) Debye length. (d) Ion
plasma frequency. Dashed line corresponds to the position of maximum magnetic field.
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Appendix C. Supplementary data files

The averaged axial profiles of axial electric field, ion density and electron temperatures
for the 3 benchmark cases displayed in section 4.1 can be found in an output file,
along with the wavelength and frequency of the instabilities dominant mode displayed
in section 4.2 and Appendix B, for the 3 benchmark cases. The authors would like to
make this data available on the journal website.
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