
Journal of Heuristics (2021) 27:1081–1110
https://doi.org/10.1007/s10732-021-09478-w

Randomized rounding algorithms for large scale
unsplittable flow problems

François Lamothe1 · Emmanuel Rachelson1 · Alain Haït1 ·
Cedric Baudoin2 · Jean-Baptiste Dupé3

Abstract
Unsplittable flow problems cover a wide range of telecommunication and transporta-
tion problems and their efficient resolution is key to a number of applications. In
this work, we study algorithms that can scale up to large graphs and important num-
bers of commodities. We present and analyze in detail a heuristic based on the linear
relaxation of the problem and randomized rounding. We provide empirical evidence
that this approach is competitive with state-of-the-art resolution methods either by its
scaling performance or by the quality of its solutions. We provide a variation of the
heuristic which has the same approximation factor as the state-of-the-art approxima-
tion algorithm. We also derive a tighter analysis for the approximation factor of both
the variation and the state-of-the-art algorithm.We introduce a new objective function
for the unsplittable flow problem and discuss its differences with the classical con-
gestion objective function. Finally, we discuss the gap in practical performance and
theoretical guarantees between all the aforementioned algorithms.

Keywords Unsplittable flows · Randomized rounding · Heuristic · Approximation
algorithm

1 Introduction

The unsplittable flow problem is an extensively studied variant of the classical max-
imum flow problem. In this problem, one is given a directed or undirected graph,
together with capacities on its arcs. A family of commodities, each composed of an

B François Lamothe
francois.lamothe@isae-supaero.fr

1 ISAE-SUPAERO, Université de Toulouse, Toulouse, France

2 Thalès Alenia Space, Toulouse, France

3 Centre national d’études spatiales (CNES), Toulouse, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10732-021-09478-w&domain=pdf
http://orcid.org/0000-0002-1332-9206
http://orcid.org/0000-0002-8559-1617
http://orcid.org/0000-0001-5918-0753

1082 F. Lamothe et al.

origin, a destination, and a demand, is also provided. Each commodity has to route
its demand from its origin to its destination through a unique path. The routing must
ensure that capacities on the arcs are not exceeded by the flow of the commodities, or
at least minimize the violation of the capacities.

This problem is NP-hard as it contains several NP-hard problems as sub-cases.
When there are only two nodes linked by one arc, the problem is equivalent to the
knapsack problem. When all demands and capacities are 1, the problem is equivalent
to the edge-disjoint paths problem.

This problem has various applications especially in telecommunication networks
(e.g. optical networks, telecommunication satellites), and goods transportation. In
these applications, large-scale instances appear with up to 500 nodes, 2000 arcs, and
150 000 commodities. However, only a few methods in the literature can scale to
such large instances, such as the approximation algorithm of Raghavan and Tompson
(1987) and some meta-heuristics tuned to have small computing times. The algorithm
presented by Raghavan and Tompson (1987) uses randomized rounding to compute a
solution to the unsplittable flow problem. Even though this O

(lnm
ln lnm

)
-approximation

algorithm has theoretically the best approximation factor achievable, the solution it
yields are often far from optimal in terms of solution quality.

That is why, in this work, we focus on an algorithm that can scale to large instances
while giving good practical results. This algorithm is a heuristic extension of the
randomized rounding algorithm of Raghavan and Tompson (1987). As such, it also
uses randomized rounding on the linear relaxation of the unsplittable problem to create
an unsplittable solution. This algorithm alternates randomized rounding steps and
resolutions of the linear relaxation and will thus be called, in this work, the Sequential
Randomized Rounding algorithm (SRR). This heuristic is also an extension of the
algorithm proposed by Coudert and Rivano (2002) for which no complete proof of the
approximation factor was given. Compared to the algorithm of Coudert and Rivano
(2002), the SRR heuristic offers more flexibility on the number of linear relaxation
resolutions and more importantly, takes advantage of the fact that commodities might
have different demand levels. We also describe a variation of the SRR heuristic for
which we prove the same approximation guarantees as the algorithm of Raghavan and
Tompson (1987). This variationwill be called the Constrained Sequential Randomized
Rounding algorithm (CSRR).Moreover, we tighten the analysis of both approximation

algorithms and prove that they achieve a O
(

γ lnm
ln(γ lnm)

)
-approximation factor where γ

is a parameter that is small when the commodities demands are small compared to the
capacities of the arcs. Finally, we experimentally show that the SRR algorithm scales
to large instances. Furthermore, its practical results on large datasets outperform other
tested methods.

This paper is structured as follows. In Sect. 2we describe the notations used together
with severalMixed Integer Linear Programs (MILP) for the unsplittable flow problem.
Related work is presented in Sect. 3. Section 4 presents the SRR heuristic and its
complexity analysis. Section 5 describes theCSRRalgorithmand provides the analysis

leading to the O
(

γ lnm
ln(γ lnm)

)
-approximation factor. In Sect. 6, we provide experimental

results that compare the empirical quality of the various algorithms presented. In Sect.

123

Randomized rounding algorithms for large... 1083

7,wediscuss different properties of theSRRheuristic and theCSRRalgorithm.Finally,
we conclude and give perspectives in Sect. 8.

2 The unsplittable flow problem

Throughout this paper, we will use the following notations:

– G = (V , E) is a directed or undirected graph, with V the set of nodes and E the
set of arcs

– L = (ok, dk, Dk)k∈K is a set of commodities defined by their origin, destination
and demand.

– (ce)e∈E are capacities on the arcs

We also use the Kronecker notation, δyx equals 1 if x = y and 0 otherwise. The sets
of arcs incoming and outgoing of node v will be noted E−(v) and E+(v) respectively.
Finally, cmin = mine∈E ce and Dmax = maxk∈K Dk are the smallest capacity and the
largest demand.

2.1 Objective functions

Four objective functions for the unsplittable flow problems can be found in the liter-
ature: maximizing the served demand (Kolman 2003), minimizing the cost (Barnhart
et al. 2000), minimizing the congestion (Martens and Skutella 2006), minimizing the
number of necessary routing rounds (Aumann and Rabani 1995). In this work, we
focus on minimizing the congestion.

The congestion of a graph is the smallest number Δ by which it is necessary to
multiply all the capacities in order to route all the commodities (Martens and Skutella
2006). The congestion of an arc is the ratio of the flow on this arc to its capacity. This
metric emphasizes low capacity arcs. Besides, minimizing the congestion puts no
restrictions on the flow going through the arcs that do not have a maximal congestion.
In particular, it induces no incentive to minimize the congestion on those arcs. This
becomes problematic when an arc is largely more congested in every solution than any
other arc because it lifts all restrictions for the other arcs. To prevent this, we introduce
a new criterion to minimize the violation of the capacities of the arcs. We use the term
overflow to describe the quantity of flow Δe that exceeds the capacity of an arc e. The
overflow of an arc is always non-negative. Our new criterion is to minimize the sum
of the overflows

∑
e∈E Δe. Note that the congestion Δ is not the maximum overflow

over all the arcs.
In the following sections, we present two equivalent mixed integer linear programs

(MILP) for the unsplittable flow problem.

2.2 Arc-node formulation

The arc-node formulation is compact as it has a polynomial number of variables and
constraints in the number of commodities, nodes, and arcs. It can thus be solved
directly in a MILP solver for small instances. This formulation is characterized by

123

1084 F. Lamothe et al.

the flow conservation constraints which ensure the structural property of flows. The
objective function presented is the overflow sum. The meaning of the variables in this
formulation is the following:

– fek indicates whether commodity k pushes flow on arc e,
– Δe represents the overflow on arc e.

The unsplittable flow problem is then:

min
fek ,Δe

∑

e∈E
Δe (1a)

such that
∑

e∈E+(v)

fek −
∑

e∈E−(v)

fek = δokv − δdkv ∀k ∈ K , ∀v ∈ V , (1b)

∑

k∈K
fek Dk ≤ ce + Δe ∀e ∈ E, (1c)

fek ∈ {0, 1}, Δe ∈ R
+ ∀k ∈ K , ∀e ∈ E . (1d)

Equation (1b) corresponds to the flow conservation constraints. It ensures that, for
each commodity and everynode except the origin and the destinationof the commodity,
the same amount of flow of the commodity goes in and out of the node. Equation (1c)
corresponds to the capacity constraints. It ensures that the capacity of an arc is respected
or that the overflow is recorded in Δe. The fact that fek ∈ {0, 1} ensures that the flow
is unsplittable.

One can create an arc-node congestion formulation by replacing ce + Δe by ceΔ
in Equation (1c) and minimizing over Δ instead of

∑
e Δe. Note that the Δ variable

is common to all arcs while there was one variable Δe for each arc.

2.3 Path formulation

In the path formulation, the flow conservation constraints are unnecessary. The vari-
ables represent paths so these constraints are always verified. However, there is an
exponential number of variables (in the number of commodities, nodes, and arcs) so
the formulation must be solved through a particular MILP technique named branch
and price (Barnhart et al. 2000). The objective function presented is the overflow sum.
The meaning of the variables in this formulation is the following:

– xpk indicates whether commodity k uses path p to push its flow,
– Δe represents the overflow on arc e.

The unsplittable flow problem is then:

min
xpk ,Δe

∑

e∈E
Δe (2a)

such that

123

Randomized rounding algorithms for large... 1085

∑

p∈Pk

xpk = 1 ∀k ∈ K , (2b)

∑

k∈K

∑

p∈Pk |e∈p

xpk Dk ≤ ce + Δe ∀e ∈ E, (2c)

xpk ∈ {0, 1}, Δe ∈ R
+ ∀p ∈

⋃

k

Pk, ∀k ∈ K , ∀e ∈ E . (2d)

Here, Pk denotes the set of all paths usable by commodity k. Equation (2b) ensures
that exactly one path is chosen for each commodity. Equation (2c) corresponds to
the capacity constraints. It ensures that the capacity of an arc is respected or that
the overflow is recorded in Δe. The fact that xpk ∈ {0, 1} ensures that the flow is
unsplittable.

3 Related work

In this section, we review important solution approaches to the unsplittable flow prob-
lem present in the literature. These works are grouped into three sub-sections: exact
methods, approximation algorithms, and meta-heuristics. A fourth sub-section is ded-
icated to the linear relaxation of the unsplittable flow problem (the multi-commodity
flow problem) whose resolution is paramount to the resolution of the unsplittable flow
problem.

3.1 Exact methods

Barnhart et al. (2000) presented a Branch and Price andCut procedure applied to a path
formulation with a cost minimization objective function. Most subsequent works use
this baseline as a comparison. A major contribution of their work is their branching
strategy. Unlike straightforward branching strategies for this problem, theirs keeps
intact the structure of the pricing problem throughout the branching procedure. For a
commodity in a non-integer solution, the divergence node is the first node where the
flow of the commodity splits. The outgoing arcs of the divergence node are divided
into two disjoint subsets E1 and E2. Each set must contain at least one of the arcs
used by the commodity. The branching rule is: either forbid the use of E1 or forbid
the use of E2. In both cases, the previous non-integer solution is cut from the problem
and forbidding sets of arcs keeps the structure of the pricing problem intact. They also
included cuts to strengthen the linear relaxation. These cuts are lifted cover inequalities
of the capacity constraints.

Park et al. (2003) mixed the path formulation and a knapsack formulation (which
is not presented in this work) to derive a new linear formulation of the problem.
The linear relaxation of this formulation yields a stronger lower bound, which in
turn decreases the time needed to complete the branching procedure. They compared
different branching rules and report that the one of Barnhart et al. (2000) produces
much better results. They present computational results only for this rule.

123

1086 F. Lamothe et al.

Belaidouni and Ben-Ameur (2007) presented a cutting plane method based on
super-additive functions to get strong cuts for their Branch and Pricemethod. It appears
on small instances that the addition of their cuts derives integer solutions without using
a Branch and Bound procedure. Results are compared with those of Barnhart et al.
(2000) and large improvements are reported.

Overall, the best results can be found in the articles of Belaidouni and Ben-Ameur
(2007) and Park et al. (2003). Belaidouni and Ben-Ameur (2007) compared their
results with those of Barnhart et al. (2000) and solved all their instances (at most 30
nodes, 60 arcs, 100 commodities) in less than 10 seconds. Park et al. (2003) did not
compare their results with previous works but solved instances of the same magnitude
(at most 30 nodes, 80 arcs, 100 commodities) in less than 15 seconds. Note that results
were only given for small instances in these approaches.

Other earlier works have been reported in Parker and Ryan (1993), Alvelos and
De Carvalho (2003) and Park et al. (1996).

3.2 Approximation algorithms and heuristics

As the unsplittable flow problem is NP-hard, a lot of attention has been given to
approximation algorithms and heuristics. In particular, the maximum served demand
objective has been extensively studied. We refer to the Handbook of approximation
algorithms (Group and Gonzalez 2020) for a detailed survey on approximation algo-
rithms in the context of unsplittable flows. We recall here some works related to the
minimum congestion objective.

Approximation algorithms are given with a factor of approximation λ. Let Γ be
the objective function of the minimization problem at hand. Solutions generated by a
λ-approximation algorithm verify the following inequality:

Γ (S∗) ≤ Γ (S) ≤ λΓ (S∗),

where Γ (S) and Γ (S∗) are respectively the value of the produced solution and the
value of the optimal solution. This guarantees that the ratio between the value of the
produced solution and the value of the optimal solution is not too high. When consid-
ering approximation algorithms, more attention must be paid to the objective function
being optimized. The literature uses four different objective functions: maximizing
the served demand, minimizing the congestion, minimizing the number of rounds,
and minimizing the cost. Approximation hardness results demonstrate that none of
these objective functions admits a constant-factor approximation algorithm (Group
and Gonzalez 2020).

In the congestion minimization context, we seek the smallest number by which
it is necessary to multiply all the capacities in order to fit all the commodities.
The best-known approximation algorithm for congestion is a randomized rounding
method introduced by Raghavan and Tompson (1987) which we shall call the RR
algorithm in this work. The method proceeds in two steps. First, a solution of the
linear relaxation of the problem is computed. Each commodity is allowed to use mul-
tiple paths in this solution. The proportion of flow for each commodity on each path

123

Randomized rounding algorithms for large... 1087

is ((xpk)p∈Pk)k∈K . Then a path is selected for each commodity. Path p is selected
in Pk with probability xpk . Each commodity is then assigned to the selected path to
create an unsplittable solution. This procedure produces, with arbitrarily high prob-

ability, an unsplittable solution whose congestion is O
(

ln |E |
ln ln |E |

)
larger than the one

of the fractional solution. Their algorithm is thus a O
(

ln |E |
ln ln |E |

)
-approximation algo-

rithm that works for directed and undirected graphs. The randomized rounding process
can be derandomized using the method of conditional probabilities (Raghavan 1988).
Chuzhoy et al. (2007) showed a tight Ω(

ln |V |
ln ln |V |) bound on directed graphs, assuming

N P � BPT I ME(|V |O(ln ln |V |)). Andrews et al. (2010) showed thatminimizing con-
gestion for an unsplittable flow in an undirected graph is hard to approximate within
Ω(ln ln |V |/ ln ln ln |V |), assuming N P � Z PT I ME(|V |polylog(|V |)). A (|K | + 2)-
approximation algorithm is presented in Asano (2000). The reported results show that
in practice this algorithm gives results comparable to classical randomized rounding.

In the context of the maximum demand objective function, a parameter Dmax
cmin

is
introduced. This parameter plays an important role for this objective function. Indeed,
when this parameter is upper-bounded by a small constant, several works reported
stronger approximation results for their algorithms (Chakrabarti et al. 2007; Shepherd
and Vetta 2015; Azar and Regev 2006). However, we did not find similar results for
the congestion objective function.

A few heuristics have been proposed in previous works. They are either greedy
or Linear programming (LP) based heuristics. Coudert and Rivano (2002) introduced
an algorithm very similar to the SRR algorithm presented in Sect. 4, without proving
it is an approximation algorithm. Asano (2000) as well as Wang and Wang (1999)
proposed greedy algorithms and LP-based algorithms. Reported results show that,
except in specific cases, the greedy approaches are usually not competitive with LP-
based methods. On the other hand, LP-based heuristics yield results that are similar
to the randomized rounding algorithm of Raghavan and Tompson (1987).

3.3 Meta-heuristics

As introduced above, it is NP-hard to find an optimal solution or even to give a
constant-factor approximation to the unsplittable flow problem. Thus, the literature
investigated various randomized search procedures such as genetic algorithms (Cox
1991; Masri et al. 2019), tabu search (Anderson et al. 1993; Laguna and Glover 1993;
Xu et al. 1997), local search and GRASP (Santos et al. 2010, 2013a, b; Alvelos and
Valério de Carvalho 2007; Masri et al. 2015, 2019) or ant colony optimization (Li
et al. 2010; Masri et al. 2011). One of the major difficulties encountered when solving
the unsplittable flow problem with a meta-heuristic is to efficiently create useful paths
for the commodities.

Early approaches such as (Cox 1991; Anderson et al. 1993) encode solutions as
permutations of the commodities. The space of permutations is the one searched
by the meta-heuristic. The following function is used to create a solution from a
permutation and evaluate it. The function goes through the permutation, examining
each commodity. The commodity is then allocated to the shortest path where there is

123

1088 F. Lamothe et al.

still enough capacity to fit the commodity. Once a path is assigned to every commodity,
the objective function can be computed.

In Laguna and Glover (1993) and Masri et al. (2015) the k shortest paths are pre-
computed for each commodity using the algorithm of Yen (1971). The search space
of their meta-heuristics is restrained to the space of solutions using only those paths.

A different idea used in Santos et al. (2013b), Santos et al. (2013a), Santos et al.
(2010) and Alvelos and Valério de Carvalho (2007) is to consider paths extracted from
the linear relaxation of the problem. The linear relaxation is solved with a column
generation algorithm applied to the path formulation. During the column generation,
a set of paths P̂k is generated for each commodity. A meta-heuristic such as a multi-
start local search is then used to explore the solutions where only paths from P̂k are
used. In Santos et al. (2013b), after the first linear relaxation is solved, perturbed linear
models are solved to create new useful columns and extend the solution space of the
meta-heuristic.

Ant colony optimization is also a means to navigate the large solution space of the
possible paths and is used in Li et al. (2010) and Masri et al. (2011). In an ant colony
optimization approach, at each iteration, each commodity creates a path by taking
into account several metrics: path length, path load, and pheromones. Each arc of the
graph has a pheromone level for each commodity and the higher the pheromone level
the higher the probability of the arc to belong to the path generated. Pheromones are
updated through two means. First, the best solutions add pheromones to the arc they
use. Second, pheromones decay so that their level does not become excessive thus
facilitating the exploration of the solution space.

We refer to the work of Li et al. (2010) and Santos et al. (2013a) for the best
performing meta-heuristics. Li et al. (2010) compared their results with the solver
CPLEX and were able to solve instances with up to 60 nodes, 400 arcs, and 3500
commodities to optimality in less than 900 s. Santos et al. (2013a) show that all their
instances (26 nodes, 80 arcs, 500 commodities) are solved in less than 180 seconds
with values close to the linear relaxation lower bound.

3.4 Linear multi-commodity flow problem

The multi-commodity flow problem is the linear relaxation of the unsplittable flow
problem. The value of its optimal solution is a lower bound for the binary problem and
this linear relaxation is used in several exact and approximate methods. As a special
case of linear programming, this problem is solvable in polynomial time.

A lot of effort has been invested in exact methods for this problem. Even if a com-
mercial solver can solve the node-arc formulation, this method may take a prohibitive
time in large instances. An alternative solution is to use a Lagrangian relaxation of the
capacity constraints to decompose the problem into easier sub-problems as in Retvdri
et al. (2004). As reported by Dai et al. (2017), Lagrangian relaxation shows lesser
performances in most instances than the competitor method, applying a column gen-
eration algorithm to the path formulation. Lagrangian relaxation seems to be the best
choice when the number of commodities is very large because its computing time

123

Randomized rounding algorithms for large... 1089

scales only linearly with this parameter. In most other cases, column generation seems
to be the best solution.

Several works contributed to increase the performance of column generation algo-
rithms for this problem. First, a primal-dual column generation is presented inGondzio
et al. (2013), Gondzio and González-Brevis (2015) and Gondzio et al. (2016). An
interior-point algorithm is used to solve the master problem and obtain sub-optimal
but well-centered solutions. These well-centered solutions are used to compute new
columns in the sub-problems which stabilizes the column generation process and
reduces the number of iterations needed to achieve convergence. Another approach,
which could be combined with the previous one is the use of aggregated variables pre-
sented by Bauguion et al. (2013) and Bauguion et al. (2015). In this method, variables
do not represent paths but aggregated paths such as trees or more complex structures.
The authors report that the sub-problems associated with aggregated variables can be
solved efficiently. Aggregated variables reduce the size of the master problem during
the algorithm but might induce a larger number of iterations, thus aggregation must
be carefully done. Another method presented in (Babonneau et al. 2006) consists of
a specialized interior-point method to solve the multi-commodity flow problem. This
method has been improved by Castro and Cuesta (2012). Other contributions to linear
programming methods can be found in Moradi et al. (2015), Dai et al. (2016a) and
Dai et al. (2016b)

For large instances, linear programming methods may take a lot of computing
time before finding the optimal solution. Thus the literature focused on combinatorial
approximation algorithms and in particular on fully polynomial-time approximation
schemes (FPTAS). The best results were obtained through the use of exponential
length functions. This idea was first introduced by Shahrokhi and Matula (1990). In
their algorithm, a length exponential in the passing flow is assigned to each arc. The
flow is iteratively augmented on the shortest path connecting any of the source-sink
pairs. Their algorithm was improved by Fleischer (2000) who showed that only the
computation of an ε-shortest path was needed. The algorithm of Fleischer (2000) is the
fastest FPTAS in practicewhile not being the onewith the smallest complexity. Indeed,
Madry (2010) presented an algorithm with a smaller complexity but Emanuelsson
(2016) showed in his work that the algorithm of Fleischer (2000) is faster for instances
having less than 100 million arcs. For a detailed survey on the multi-commodity flow
problem methods previous to 2005, see the article of Wang (2018).

4 The Sequential randomized rounding heuristic

The sequential randomized rounding algorithm (SRR) is a polynomial greedy heuristic
for the unsplittable flow problem. This algorithm is similar to the one proposed by
Coudert and Rivano (2002) for the light-path assignment problem. We add some
features that are specific to our problem such as the sorting of the commodities by
decreasing demand. The SRR algorithm also gives the possibility to compute less
often the linear relaxation of the problem to reduce the overall computing time of the
algorithm. Compared to the approximation algorithm of Raghavan (1988), the SRR
algorithm has larger running times, no performance guarantees but returns higher

123

1090 F. Lamothe et al.

quality solutions on the tested instances. As a heuristic, the SRR algorithm has a
shorter computing time than exact solutions and meta-heuristics, especially for large
instances. A variation of the SRR heuristic with approximation guarantees is presented
in Sect. 5 together with an analysis of these approximation guarantees. Finally, the
SRR algorithm is further discussed in Sect. 7 to explain its behavior on the tested
instances.

4.1 Presentation of the algorithm

The SRR algorithm, presented in Algorithm 1 alternates between two different steps:
solve the linear relaxation of the problem and fix some commodities to a unique path.
In our case, the linear relaxation is a multi-commodity flow problem. Even though
for the sake of clarity we use the notations of the path formulation in the following,
in the experimentations, an arc-node formulation paired with the commercial solver
(Gurobi Optimization 2020) is used to solve the linear relaxation. More efficient spe-
cialized solvers or approximation algorithms for the multi-commodity flow problem
can be found in the literature (see Sect. 3.4). Solving the linear relaxation provides a
distribution of flow among the paths for each commodity: ((xpk)p∈Pk)k∈K . After solv-
ing the linear relaxation, a path is selected for some commodities. These commodities
will be forced to use only these paths for the rest of the algorithm. The path selected for
each commodity is chosen through the same randomized rounding procedure intro-
duced by Raghavan and Tompson (1987): for commodity k, path p is selected with
probability xpk . The probability that commodity k uses arc e is fek = ∑

p∈Pk |e∈p xpk .
When solving the next linear relaxations, the fixed commodities will also be forced to
only use their single allowed path.

The major difference with the RR algorithm of Raghavan and Tompson (1987) is
that, in the SRR heuristic, the linear relaxation is actualized several times during the
randomized rounding process. More precisely, after deciding to fix some commodities
to a single path, the linear relaxation is solved again with the added constraints that the
fixed commodities must use their affected path. To decide when the linear relaxation
is actualized, the following procedure is used. In the solution of the linear relaxation,
some commodities use multiple paths. After θ of these commodities are fixed to a
single path, the linear relaxation is actualized. Choosing the threshold θ trades off
between computation time and solution quality. If the linear relaxation is actualized
often (low threshold), fixing decisions take into account most of the previous fixing
decisions but the computation time is high. If the linear relaxation is never actualized,
branching decisions do not take into account previous branching decisions but the
computation time is low. The threshold value is fixed to |V |

4 in our experiments. A
sensitivity analysis of this parameter is given in Sect. 6.

Another difference with the RR algorithm is that solutions are created using of the
overflow sum objective function presented in Sect. 2.1 instead of the classical con-
gestion objective function. As will be explained in Sect. 7.1, when using the overflow
sum objective function, the SRR heuristic returns solutions with a lower overflow but
also a lower congestion.

123

Randomized rounding algorithms for large... 1091

Compared to the algorithmproposed inCoudert andRivano (2002), the SRRheuris-
tic offersmore flexibility on the number of actualizations of the linear relaxation thanks
to parameter θ . Moreover, the main difference is that, because the unsplittable flow
problem in Coudert and Rivano (2002) arises from a light-path assignment problem,
all commodities have a demand of one and thus the commodities have their path chosen
in no particular order. In the SRR heuristic, paths are assigned to the commodities in
decreasing order of commodity’s demand, i.e. the commodities with larger demands
have their paths chosen first. This order is classically used in bin packing heuristics
such as the next fit decreasing heuristic (Csirik et al. 1986). The rationale behind this
ordering is to allocate commodities with a large demand first, while a large amount
of capacity is left in the arcs. Commodities with smaller demands are then used to fill
the remaining gaps. In Sect. 6, it is shown that this rounding order of the variables has
a large impact on the quality of the solution returned by the heuristic.

Algorithm 1 The SRR heuristic
Require: G = (V , E, c) a capacitated graph, L = (ok , dk , Dk)k∈K a list of commodities
1: Sort the commodities by decreasing demand
2: K f ixed = ∅ � K f ixed is the set of indices of commodities fixed to a single path
3: for each commodity k∗ in decreasing demand order do
4: if an actualization is needed then
5: ((xpk)p∈Pk)k∈K = Solve_Linear_Relaxation

(
G, L, K f ixed , (pk)k∈K f ixed

)

6: Draw a path p∗ from Pk∗ with probability xp∗k∗
7: Add index k∗ to K f ixed .
8: pk∗ = p∗
9: return (pk)k∈K

4.2 Complexity analysis

There are |K | iterations and during each of them the algorithmmight do the following:

– Solve the linear relaxation: O(LR(|V |, |E |, |K |)) operations where LR(|V |, |E |,
|K |) is the complexity of the linear relaxation resolution (line 5).

– Select p∗: as the flow of each commodity can be decomposed in at most |E | paths,
at most |E | of the variables xpk have a non-zero value (Ford Jr 1956). Choosing
one of these variables requires O(|E |) operations (line 6).
Additionally, sorting the commodities requires O(|K | log(|K |)) operations (line

1). The total time complexity is O(|K |(log |K | + |E | + LR(|V |, |E |, |K |))).

4.3 Grouping commodities by origin

Grouping commodities by origin is the process of considering a set of commodities
with the same origin as one single commodity. This new commodity has a demand
equal to the sum of the original demands. To ensure that the flow goes to the right desti-
nations, a super-destination node is created and connected to each original destination

123

1092 F. Lamothe et al.

with an arc of capacity equal to the original demand of the commodity. When solving
the linear relaxation with grouped commodities, the same solution is computed at
the condition that all commodities of a group originate from the same node. Grouping
commodities can greatly reduce the computing time of a linear solution computedwith
an LP solver when the number of different origins is much smaller than the number
of commodities. In our test cases, inspired by practical telecommunication instances,
commodities are emitted from a small number of different origins thus it is efficient
to group the commodities by origin. However, solutions produced when commodities
are grouped yield a little less information. It is necessary to compute exactly what path
each commodity uses. This can be done quickly in O(|V |(|E |+|K |)) operations with
a flow decomposition algorithm (Ford Jr 1956).

5 A variation of the heuristic with approximation guarantees

In this section, we present the Constrained Sequential Randomized Rounding algo-
rithm (CSRR). It is a variation of the SRR heuristic for which we prove approximation
guarantees similar to the one of the RR algorithm of Raghavan and Tompson (1987).
Approximation results are obtained considering the classical congestion objective
function. Indeed, for the overflow sum objective, the value of the optimal solution
may be zero. This happens when all commodities fit in the capacities. In this case,
any approximation algorithm must find the optimal solution. Thus the overflow sum
objective function is not suited for approximation proofs.

The RR algorithm is able to yield a solution satisfying a O
(

ln(|E |ε−1)

ln(ln(|E |ε−1))

)
-

approximation factor with probability 1 − ε. We extend and tighten the analysis of

randomized rounding algorithms by giving a new O
(

γ ln(|E |ε−1)

ln(γ ln(|E |ε−1))

)
factor for the

CSRR algorithm and for the RR algorithm of Raghavan and Tompson (1987). In this
new factor, γ is the granularity parameter of the instance which is equal to Dmax

cminΔ
∗

where Δ∗ is the optimal congestion of the linear relaxation. This parameter is small
when the commodities are smaller compared to cminΔ

∗. The parameter γ can be
related to the parameter Dmax

cmin
introduced by Chakrabarti et al. (2007), Shepherd and

Vetta (2015) and Azar and Regev (2006) to tighten their approximation analysis in
the case of the maximum demand objective. The number γ is a decisive parameter
of unsplittable flow instances. Indeed, it remains constant when the capacities or the
demands are scaled uniformly.

To prove an approximation factor for a randomized rounding where the linear
relaxation is actualized (as in the line 5 of Algorithm 1), it appeared necessary to add
a constraint to the linear relaxation. Thus the CSRR algorithm is the same as the SRR
algorithm with the following additional constraint in the linear relaxation:

∑

k∈K\K f ixed

fek Dk ≤ ceΔ
∗ −

∑

k∈K f ixed

f̂ek Dk, ∀e ∈ E, (3)

where Δ∗ is the optimal congestion of the first linear relaxation; K f ixed is the set of
commodities that were fixed to their respective single paths before the current linear

123

Randomized rounding algorithms for large... 1093

relaxation resolution; fek are the variables used to optimize the flow of the unfixed
variables. The commodities in K f ixed sent their flow on several paths in the linear
relaxation before they were fixed to one path; f̂ek is the corresponding fractional flow
on each arc for these commodities. Note that for the first computation of the linear
relaxation, this constraint has no impact on the final solution and can be removed.
Thus, this constraint disappears in the algorithm of Raghavan and Tompson (1987),
since there is only one resolution of the linear relaxation.

For the sake of clarity, we derive the present proof in the case where the CSRR
algorithm makes only a single actualization of the linear relaxation’s solution which
occurs just after the first rounding step. Extension to the case of several actualizations
performed at any time can be done by induction.

In the following, let the discrete random variables Fek indicate the flow of com-
modity k on arc e in the solution returned by the CSRR algorithm. The variables
Fek take the value Dk with probability fek = ∑

p∈Pk |e∈p xpk and 0 otherwise. Thus,
their expectation E[Fek] = fek Dk = Dk

∑
p∈Pk |e∈p xpk is also the flow of com-

modity k on arc e in the solution of the linear relaxation. Let k1 be the index of the
commodity of largest demand (thus the first one to be fixed in Algorithm 1) and let
Fe = ∑

k∈K\{k1} Fek . Once conditioned by Fek1 , the random variables Fek (k �= k1)
are independent of each other because the linear relaxation is not actualized between
their rounding step. However, the random variables Fek (k �= k1) are not independent
of Fek1 ; in particular, we have E[Fek |Fek1] �= E[Fek]. Indeed the realization of Fek1 in
the unique rounding step conditions the resolution of the subsequent linear relaxation.
Thus, it conditions the values fek which parametrize the distribution of the random
variables Fek . To recall this dependency, we write fek(Fek1) the fractional flow of
commodity k on arc e. Note that constraint (3) added in the CSRR algorithm can be
re-written in terms of random variables:

E[Fe|Fek1] ≤ ceΔ
∗ − E[Fek1].

Recall that in the congestion formulation, the objective function aims at minimizing
the minimum multiplicative factor on all arc capacities needed to fit the commodities.
We note C∗ the optimal congestion for the considered unsplittable flow instance. As
introduced above, Fek1 + Fe is the flow on arc e in the solution returned by the CSRR
algorithm. Thus, proving a probabilistic (1 + α)-approximation for this algorithm
bound boils down to proving that for all arcs, Fek1 + Fe remains below (1 + α)ceC∗
with high probability. Formally, for a small ε:

P
(∀e ∈ E, Fek1 + Fe ≤ (1 + α)ceC

∗) ≥ 1 − ε.

Conversely, this is equivalent to proving that, with at most probability ε, there exists
an arc e where the congestion exceeds (1 + α)C∗:

P
(∃e ∈ E, Fek1 + Fe ≥ (1 + α)ceC

∗) ≤ ε.

123

1094 F. Lamothe et al.

To that end, we prove in Theorem 1 that for every arc e:

P
(
Fek1 + Fe ≥ (1 + α)ceΔ

∗) ≤ ε

|E | .

Indeed, in this case, as Δ∗ is a lower bound on C∗, we have:

P
(∃e ∈ E, Fek1 + Fe ≥ (1 + α)ceC

∗) = P

(
∨

e∈E
Fek1 + Fe ≥ (1 + α)ceC

∗
)

≤ P

(
∨

e∈E
Fek1 + Fe ≥ (1 + α)ceΔ

∗
)

≤
∑

e∈E
P

(
Fek1 + Fe ≥ (1 + α)ceΔ

∗)

≤
∑

e∈E

ε

|E |
= ε

To ensure that P
(
Fek1 + Fe ≥ (1 + α)ceΔ∗) ≤ ε

|E | , we first prove through Lemma

2 that the probability P
(
Fek1 + Fe ≥ (1 + α)ceΔ∗) is upper bounded by a quantity

ge(α). Lemma 2 is proved by using the Markov inequality and the probabilistic trans-
lation of constraint (3). Proving Lemma 2 requires a preliminary result introduced in
Lemma 1. Finally, the proof is completed by showing that there exists a value for α

satisfying 1 + α = O
(

γ ln(|E |ε−1)

ln(γ ln(|E |ε−1))

)
and for every arc ge(α) ≤ ε

|E |
Without loss of generality and to remove Dmax from the proof, we assume the

considered instances are scaled so that Dmax = 1 and thus γ = (cminΔ
∗)−1. We now

present the two Lemmas together with their proof.

Lemma 1 For any positive scalar α, E
[
(1 + α)Fe |Fek1

] ≤ eαE[Fe|Fek1].

Proof

E

[
(1 + α)Fe |Fek1

]
= E

⎡

⎣
∏

k∈K\{k1}
(1 + α)Fek |Fek1

⎤

⎦

=
∏

k∈K\{k1}
E

[
(1 + α)Fek |Fek1

]
because the Fek |Fek1 are independent

=
∏

k∈K\{k1}
(fek(Fek1)(1 + α)Dk + 1 − fek(Fek1))

≤
∏

k∈K\{k1}
(fek(Fek1)(1 + αDk) + 1 − fek(Fek1)) because Dk ≤ 1

=
∏

k∈K\{k1}
(1 + α fek(Fek1)Dk)

123

Randomized rounding algorithms for large... 1095

≤
∏

k∈K\{k1}
eα fek (Fek1)Dk

= eα
∑

k∈K\{k1} fek (Fek1)Dk

= eαE[Fe|Fek1]

�
Lemma 2 For any positive scalar α and any instance of the unsplittable flow problem,
the flow Fek1 + Fe returned by the CSRR algorithm on arc e satisfies:

P(Fek1 + Fe ≥ (1 + α)ceΔ
∗) ≤

[
eα

(1 + α)1+α

]ceΔ∗

Proof We note δ = (1 + α)(1+α)ceΔ∗

P(Fek1 + Fe ≥ (1 + α)ceΔ
∗)

= P

(
(1 + α)Fek1+Fe ≥ δ

)

≤ δ−1
E

[
(1 + α)Fek1+Fe

]
Markov inequality

= δ−1
E

[
E[(1 + α)Fek1+Fe |Fek1]

]

= δ−1
E

[
(1 + α)Fek1 E[(1 + α)Fe |Fek1]

]

≤ δ−1
E

[
(1 + α)Fek1 eαE[Fe|Fek1]] Lemma 1

≤ δ−1
E

[
(1 + α)Fek1 eα(ceΔ∗−E[Fek1])] because of constraint (3)

= δ−1eα(ceΔ∗−E[Fek1])
E

[
(1 + α)Fek1

]

= δ−1eα(ceΔ∗−E[Fek1])(fek1(1 + α)Dk1 + 1 − fek1)

≤ δ−1eα(ceΔ∗−E[Fek1])(fek1(1 + αDk1) + 1 − fek1) because Dk1 ≤ Dmax ≤ 1

≤ δ−1eα(ceΔ∗−E[Fek1])eα fek1Dk1

= δ−1eα(ceΔ∗−E[Fek1]+E[Fek1])

= δ−1eαceΔ∗

=
[

eα

(1 + α)1+α

]ceΔ∗

�
We now present the main theoremwhich upper-bounds for every arc the probability

of high congestion in the solution returned by the CSRR algorithm.

123

1096 F. Lamothe et al.

Theorem 1 For any ε > 0, there exists an approximation factor 1 + α which is

O
(

γ ln(|E |ε−1)

ln(γ ln(|E |ε−1))

)
such that, for any instance of the unsplittable flow problem, the

flow Fek1 + Fe returned by the CSRR algorithm on arc e satisfies:

P
(
Fek1 + Fe ≥ (1 + α)ceΔ

∗) ≤ ε

|E | .

Proof Lemma 2 gives us P(Fek1 + Fe ≥ (1 + α)ceΔ∗) ≤
[

eα

(1+α)1+α

]ceΔ∗
. To ensure

the veracity of the theorem we need to show that there exists a scalar 1 + α which is

O
(

γ ln(|E |ε−1)

ln(γ ln(|E |ε−1))

)
and for every arc satisfies:

[
eα

(1+α)1+α

]ceΔ∗
≤ ε

|E |
⇐⇒

(1 + α) ln(1 + α) − α ≥ ln(|E |ε−1)
ceΔ∗

For the arc of capacity cmin which gives the highest bound, the lower bound is
B = γ ln(|E |ε−1) (recall that Dmax = 1). Thus we study the solution of the equation

(1+α) ln(1+α)−α = B and show that it satisfies 1+α = O
(

B
ln(B)

)
. By replacing

ln(1 + x) with the classical bounds 2 x−1
x+1 ≤ ln(1 + x) ≤ x , we have:

α2 ≥ (1 + α) ln(1 + α) − α ≥ α − 2

⇐⇒ α2 ≥ B ≥ α − 2

⇐⇒ √
B ≤ α ≤ B + 2

Which implies:

B = (1 + α) ln(1 + α) − α ≥ (1 + α) ln(1 + √
B) − B − 2

and finally,

1 + α ≤ 2B + 2

ln(1 + √
B)

∼ 4B

ln(B)
= O

(
B

ln(B)

)

Thus, the solution of the equation (1 + α) ln(1 + α) − α = γ ln(|E |ε−1) satisfies

1 + α = O
(

γ ln(|E |ε−1)

ln(γ ln(|E |ε−1))

)
and for this value of α, we have

P
(
Fek1 + Fe ≥ (1 + α)ceΔ

∗) ≤ ε

|E |
.
�

123

Randomized rounding algorithms for large... 1097

Using Theorem 1, we showed that, for any instance of the unsplittable flow
problem, the CSRR algorithm returns a solution whose congestion is less than

O
(

γ ln(|E |ε−1)

ln(γ ln(|E |ε−1))
Δ∗

)
with probability 1−ε. As for the RR algorithm of Raghavan and

Tompson (1987), Lemma 2 and Theorem 1 still apply even though the demonstration
of Lemma 2 is simpler because commodity k1 does not need to be treated separately.
We thus have the same approximation results for the RR algorithm.

During the resolutions of the linear relaxation of the CSRR algorithm, the constraint
(3) is very restrictive. It almost does not leave any flexibility to the variables to move
away from the previous optimum.

Example: We call here first linear relaxation the linear program solved before any
commodity is fixed to a single path and second linear relaxation the linear program
solved after the first set of commodities is fixed to a single path. For the first and second
linear relaxation respectively, we note F1

e and F2
e the total flow of all the commodities

that are not fixed in the first rounding step. Let us suppose that the first linear relaxation
has a unique optimal solution in which every arc has the same congestion Δ∗. Then,
in the second linear relaxation, constraint (3) ensures that, ∀e ∈ E, F1

e ≥ F2
e . In this

case, we must have ∀e ∈ E, F1
e = F2

e .Otherwise, the flow of the unfixed commodities
in the first linear relaxation could be replaced by the same flow from the second linear
relaxation thus creating a new optimal solution of the first linear relaxation. This
would contradict the assumption that the first linear relaxation has a unique optimal
solution. Thus, in this example, the variables of the second linear relaxation cannot
move away from the previous optimum at all.

This example highlights that the second linear relaxation can only move away from
the solution of the first linear relaxation by using the slack left between the congestion
of each arc and Δ∗. Thus, when constraint (3) is used, the actualization step only has
a small impact on the linear relaxation’s solution and the CSRR algorithm does not
plainly benefit from the actualization step. We conjecture that it is why the CSRR
algorithm does not yield experimentally good results compared to the SRR heuristic
(see experimental results of theCSRR algorithm in Sect. 6). To overcome this problem,
we replace constraint (3) by the following constraint:

∑

k∈K f ree

fek Dk ≤ βceΔ
∗ −

∑

k∈K f ixed

f̂ek Dk, ∀e ∈ E . (4)

By replacing Δ∗ by βΔ∗ and γ by β−1γ for some β ≥ 1 in the proof, one can prove
that using constraint (4) the approximation factor of the CSRR algorithm becomes

O
(

γ ln(|E |ε−1)

ln(β−1γ ln(|E |ε−1))

)
which is still equal to O

(
γ ln(|E |ε−1)

ln(γ ln(|E |ε−1))

)
for any fixedβ. Unlike

constraint (3), in most practical cases, constraint (4) is not active in the optimal solu-
tions of the linear relaxations even for β = 1.1. Thus, constraint (4) has no impact
on the practical computations and enables the CSRR algorithm to yield the same
experimental results as the SRR heuristic.

To summarize, in this section, we added a constraint to the SRR heuristic and
switched back to the congestion formulation to create an algorithm that has the same
approximation guarantees as the RR algorithm of Raghavan and Tompson (1987).
We also tightened the approximation analysis of both algorithms by introducing a

123

1098 F. Lamothe et al.

granularity parameter γ . This parameter has the property of remaining constant when
commodities and arc capacities are uniformly scaled. Finally, we slightly modified
the added constraint to alleviate its impact in practice. This modification increased the
approximation factor by a negligible value.

6 Experimental results

In this section, we present experiments that support our claims: the SRR heuristic has
a lower computing time on large instances than exact methods and yields solutions
with a better overflow than the algorithm of Raghavan and Tompson (1987) and meta-
heuristics. The impact of sorting the commodities in decreasing order of demand in
the randomized rounding algorithms is also investigated. Moreover, the SRR heuristic
is compared to the CSRR approximation algorithm. The datasets and the code used
in the experimental section of this work are accessible at https://github.com/SuReLI/
randomized_rounding_paper_code. All the code for this work was written in Python
3. The experiments were made on a server with 48 CPU Intel Xeon E5-2670 2.30GHz,
60 Gbit of RAM, and CentOS Linux 7.

In this section, each figure presents the results for a dataset of instances. Each
dataset features ten groups of a hundred instanceswith each group containing instances
created using the same parameters. An exception is made in Fig. 2 in which each group
contains only ten instances. Each point in a figure reports, for an algorithm, the average
result of one group of instances. The 95% confidence intervals are also represented as
semi-transparent boxes around the main curve.

6.1 Instance datasets

As stated in Masri et al. (2019), no standard benchmark of instances is present in
the literature for the unsplittable flow problem, especially for large instances. Indeed,
most works use small graphs (less than 50 nodes) on which they manually generate
a set of commodities. The largest instances (100 nodes) can be found in the work of
Masri et al. (2015) and Li et al. (2010). Masri et al. (2015) use a grid graph while Li
et al. (2010) create their graphs with an adaptation of the graph generator NETGEN.
To compensate for this absence of benchmark, we give a detailed explanation of our
instance generation procedure. Moreover, all our instances are given in our GitHub
repository together with the code used for their generation.

In our tests, we consider two types of graphs: strongly connected random graphs
and grid graphs. For strongly connected random graphs, we use the following method
to construct a random very sparse strongly connected graph: select a random node u,
select a random v such that there is no path from u to v, add an arc (u, v) to the graph,
repeat until the graph is strongly connected. Afterward, random edges are added to
control the average degree of the graph (it cannot be less than 2). In our tests, the
average degree is fixed to 5 and the probability of a node being an origin is 1/10. A
grid graph is an n × m toric grid with p additional nodes. Each additional node is
randomly connected to q nodes on the grid and serves as an origin of the flow. In our

123

https://github.com/SuReLI/randomized_rounding_paper_code
https://github.com/SuReLI/randomized_rounding_paper_code

Randomized rounding algorithms for large... 1099

tests, we use m = n = p = q
2 . Unless mentioned otherwise, the arc capacities are

104.
For both types of graphs the demand is created as follows until no more commodity

can be added without breaking the capacity constraints:

– choose a destination node d;
– choose an origin o which can access d within the remaining capacities;
– compute a random simple path p from o to d using a depth-first search where the
visit order of newly discovered nodes is random;

– choose a demand level D uniformly between1 and D̂max where D̂max is a parameter
defining the maximum possible demand of a commodity; if the chosen demand
level is larger than the remaining capacity on p then truncate it to the remaining
capacity;

– decrease the capacities on the path p by D;
– add (o, d, D) to the list of created commodities;

Note that demands created this way can always be routed within the arc capacities
and the optimal congestion is one. Thus, we knowoptimal solutions have zero overflow
and a congestion of one. Hence, these optimal values do not need to be computed
with exact optimization methods. Moreover, the parameter D̂max used to parametrize
the size of the commodities and thus the number of commodities. Unless mentioned
otherwise the value of D̂max is fixed to 1500 in our tests.

6.2 Benchmarkingmeta-heuristics

In this section,wepresent a benchmarkofACO-MC,oneof the ant colonyoptimization
algorithms presented in Li et al. (2010), and the variable neighborhood search ofMasri
et al. (2015).Both algorithmswere reproduced and the code used is given in ourGitHub
repository. We compare these algorithms with a handcrafted simulated annealing. The
goal is to use only the best one as a comparison for the SRR algorithm in the next
sections. The algorithm of Li et al. (2010) was coded exactly as presented in their
paper.

Implementation of Masri et al. (2015): due to differences in the considered unsplit-
table flow problem, the local search part of their algorithm had to be modified. Their
local search creates a new path for a commodity by starting from its destination and
adding arcs to the path until the origin is reached. At each step, the next arc is chosen
by considering the following heuristic information for each out-going arc of the last
node of the current path:

Ie = 1

le
+

(
1 − 1

ĉe

)

where le is the lead time of arc e (i.e. its length) and ĉe is the remaining capacity
on arc e. As we do not have lead times for each arc in our problem, le was set to 1
for each arc. Moreover, in the problem studied in Masri et al. (2015), the remaining
capacity ĉe is positive because no overflow is allowed. Because we can have negative
remaining capacities, we replace the function f : x → 1 − 1

x applied to ĉe by

123

1100 F. Lamothe et al.

g : x → 1
2

(
1 + x

1+|x |
)
. Function g was chosen to have similar properties to the

function f .

∀x ∈ (1,+∞), 0 < f (x) < 1

∀x ∈ (−∞,+∞), 0 < g(x) < 1

f (x) − 1 ∼+∞ g(x) − 1 ∼+∞
−1

x

g(x) ∼−∞
−1

x

In our tests, we also present the results obtained with a version of the algorithm of
Masri et al. (2015) where the local search part is disabled.

Our simulated annealing at each iteration, a solution is created in the neighborhood
of the current solution; this modification is accepted with a probability depending on
the improvement/deterioration of the solution and a temperature parameter. At each
iteration, the temperature parameter is multiplied by 1−ε for some small ε depending
on the number of iterations. At the beginning of the simulated annealing procedure and
similarly to the algorithm of Masri et al. (2015), a list of k-shortest paths of length 10
is computed for each commodity using the algorithm of Jiménez and Marzal (1999).
To initialize the solution, each commodity takes a random path in its list of k-shortest
paths. At each iteration, a neighborhood solution is created by replacing the path
of a commodity with a path randomly chosen in the list of k-shortest paths of the
commodity. The stopping criterion is the total number of iterations.

Hyper-parameter setting we benchmarked different hyper-parameters values for
ACO-MC but finally settled to use the same values as in Li et al. (2010). Except for
the size of the largest neighborhood which is not mentioned, both versions of the
variable neighborhood search use the hyper-parameter values given in Masri et al.
(2015). After testing different values, the size of the largest neighborhood was set to 3.
The hyper-parameters of the simulated annealing are the initial and final temperature
chosen to be respectively 200 and 1. The simulated annealing (SA) is given 2|K |1.5
iterations so that it takes a time comparable to the SRR algorithm in the next sections.
ACO-MC and the VNS of Masri et al. (2015) were given respectively 50 and 100
iterations. Although these numbers seem very low, one must consider that for each of
their iterations, the algorithms of Li et al. (2010) and Masri et al. (2015) respectively
generate |K | and |K |

2 new paths. With these numbers of iterations, they already require
a longer computing time than the simulated annealing procedure. Finally, the variation
of the variable neighborhood search where the local search part is disabled (VNS2)
was given |K |1.5 iterations.

Results Figure 1 presents the results of each algorithm on a dataset composed of
grid graphs of varying sizes. The simulated annealing procedure clearly outperforms
the other algorithms on this dataset. We obtained similar results on all other datasets.
That is why the simulated annealing algorithm has been chosen in the next sections
to be the comparison point for the SRR algorithm.

Discussion we now try to explain why the meta-heuristics from the literature are
outperformed.At each iteration, the ant colony procedure spendsmost of its computing

123

Randomized rounding algorithms for large... 1101

Fig. 1 Performance and computing time versus the number of nodes of various meta-heuristics

time creating an entirely new solution. Indeed, a new path is created for each com-
modity for a total of |K | paths generated. Conversely, at each iteration, the simulated
annealing procedure chooses only one path in a list (choosing a path is much faster
than creating one). This leads to a much larger number of iterations for the simulated
annealing procedure and thus a lot more solutions evaluated. As for the algorithm of
Masri et al. (2015), it seems that the local search part performs poorly in our tests. This
is partly because the path generation procedure does not know where its target node is
until it is encountered. Indeed, the heuristic information used to choose the next arc of
the path considers the length le of the arcs and not the length of the shortest path to the
target node. Thus, when choosing the next arc, the procedure does not know if it goes
toward or away from its goal. We tried to replace le by the length of the shortest path
to the target node in the local search but disabling it completely still yielded better
solutions. Finally, it appears that variable neighborhood search is not a good choice
of meta-heuristic for our version of the unsplittable flow problem (especially when
the number of commodities is more than a thousand). Indeed, by changing the size
kmax of the largest neighborhood considered we obtained that the best value for this
parameter is kmax = 1 which is the case where only the smallest neighborhood is
considered.

6.3 Results

We compare the following algorithms in our tests :

– RR: the randomized rounding algorithm of Raghavan and Tompson (1987);
– RR sorted: a version of the RR algorithm where the commodities are rounded in
order of decreasing demand;

– SRR: the Sequential Randomized Rounding heuristic described in Sect. 4;
– SRR unsorted: a version of the SRR heuristic where the commodities are not
rounded in order of decreasing demand but in random order;

– CSRR: the version of the SRR algorithm with approximation properties presented
in Sect. 5;

123

1102 F. Lamothe et al.

Fig. 2 Performance and computing time versus the number of nodes on small instances

– SA and SA2: a handcrafted simulated annealing procedure presented in Sect. 6.2;
SA is given 2|K |1.5 iterations to have a similar computing time to SRR on grid
graphs while SA2 is given 6|K |1.5 iterations;

– MILP solver: arc-node formulation solved with Gurobi 8.11.

All the randomized rounding algorithms in this list use the overflow-sum objective
in the linear relaxation to create their solutions.

An important characteristic of the SRR heuristic is its capacity to scale to large
instances. Thus we first illustrate how the algorithm outperforms a MILP method.
In Fig. 2, a MILP method based on the arc-node formulation is compared with the
RR and the SRR algorithms on small grid graphs with very few commodities. The
MILP algorithm solves optimally all the small instances but gives poor results on
large instances within a 20 min. time limit. In comparison, the other methods retain
a reasonable performance on large instances. For these instances, the capacity of the
arcs is 3 and the maximum demand of a commodity is 2 to keep the number of
commodities and variables of the MILP formulation low. Due to the large amount of
memory required, the MILP algorithm could not be tested on the other larger datasets.

Figure 3 compares different randomized rounding algorithms and the simulated
annealing algorithm on grid graphs and random connected graphs. In both cases, the
SRR algorithm requires a larger computing time than pure randomized rounding but
returns solutions of much higher quality. For small instances of grid graphs, the best
results are given by the simulated annealing procedure. However, as the number of
nodes increases the SRR heuristics outperforms the simulated annealing procedure
with the same computing time (SA). Furthermore, on the largest instances, the sim-
ulated annealing procedure is outperformed by the SRR heuristics even when given
three times more computing time (SA2). As for strongly connected random graphs,
with the described settings, the SRR heuristic returns the highest quality solutions but
requires a larger computing time than the simulated annealing. It appears that solving
the linear relaxation takes a longer time on random graphs than on grid graphs. The
CSRR algorithm returns worse solutions than the SRR heuristic in a similar comput-
ing time. As explained at the end of Sect. 5, this is due to constraint (3) added in
the resolution of the linear relaxation. One can relax this constraint into constraint (4)

123

Randomized rounding algorithms for large... 1103

Fig. 3 Performance and computing time versus the number of nodes on large instances

while keeping a similar approximation factor. In practice, constraint (4) is never active
in the optimal solution of the linear relaxation. Thus, with this adaptation, the CSRR
algorithm returns exactly the same solutions as the SRR heuristic.

Figure 4 reports the solution performance and the computing time for grid graphs
with a constant number of nodes and arcs but a various number of commodities. This
variation is obtained by changing the ratio of the arc capacities over the maximum
demand of a commodity. Table 1 reports the parameters used to create the instances.
As can be seen in Fig. 4a, all algorithms produce higher quality solutions when there
is a large number of commodities (i.e. commodities have small demand compared to
the arc capacities). As explained in Sect. 5, for randomized rounding algorithms, this
practical result can be related to the presence of the granularity parameter γ in the
approximation factor of the RR and CSRR algorithms. Figure 4b shows that our use
of an aggregated arc-node formulation enables the randomized rounding algorithms
to have a computing time that scales very well with the number of commodities.
However, this is not the case for simulated annealing which requires a large increase
in its number of iterations to obtain the solution reported in Fig. 4a.

We now analyze the impact of rounding the commodities in order of decreasing
demand, based on the results presented in Fig. 5. Both pure randomized rounding and
the SRR heuristic yield solutions of higher quality when the commodities are sorted.

123

1104 F. Lamothe et al.

Fig. 4 Performance and computing time versus the number of commodities

Fig. 5 Influence of commodity sorting on performance and computing time

The impact is significantly higher on the SRR algorithm than on pure randomized
rounding. A possible explanation for such a strong impact is given in Sect. 7.2. At first
glance, a rounding order should have no impact on pure randomized rounding since the
commodities are rounded independently. However, results clearly indicate otherwise
and this is due to how the linear relaxation is computed in our experiments. Indeed
when using the arc-node formulation of Sect. 2.2 and the commodity aggregation
presented in Sect. 4.3, the linear program does not directly yield a flow distribution for
each commodity. The flow distribution returned is for the aggregated commodities.
To get the flow of each commodity, a flow decomposition algorithm is used. This
algorithm tends to split less the commodities that are decomposed first. Thus when
the commodities with the largest demands are rounded first, they are also decomposed
first. This means the biggest commodities have a lower chance of being split and thus
a lower chance that their rounding creates a large overflow.

Finally, we describe howwe chose the value |V |
4 for the actualization parameter θ of

the SRR algorithm presented in Sect. 4. Setting this value implies making a trade-off
between solution quality and computing time. Figure 6 compares the performance
of SRR for different values of this parameter, on a grid graph with 110 nodes. The
computing time of the SRRheuristic affinely decreaseswith the θ parameter. However,

123

Randomized rounding algorithms for large... 1105

Fig. 6 Performance and computing time versus the value of the θ parameter of SRR

Table 1 Parameters of the instances of the commodity scaling dataset : the graphs have 110 nodes and 580
arcs

Arc capacities 1 2 5 10 20

Maximum demand of a commodity 1 1 2 3 4

Average number of commodities 182 362 685 1038 1615

Arc capacities 50 100 200 500 1000

Maximum demand of a commodity 7 10 14 22 31

Average number of commodities 2462 3512 5048 8138 11644

the overflow of the returned solution decreases less and less when θ decreases. We
decided to choose θ such that the returned solution is close to the best obtainable
solution while a lot of computing time is saved compared to choosing θ close to zero.
When repeating this experiment on graphs of different sizes and types, it appeared that
the chosen trade-off value was close to |V |

4 . This value is represented with a dashed
line in Fig. 6.

7 Discussion

In this section, we discuss different properties of the randomized rounding algorithms.
We first show that using the overflow sum objective function presented in Sect. 2.1
instead of the classical congestion objective function has a positive impact on practical
results. Then we highlight a positive interplay between sorting the commodities and
actualizing the linear relaxation.

7.1 Impact of the objective function

Two types of objective function coexist in the SRR heuristic. The first one is the
objective function of the unsplittable flow problem which will be called evaluation
metric in this section. The second one is the objective function used in the resolutions of

123

1106 F. Lamothe et al.

Table 2 Comparison of the congestion of the solutions returned by the SRR heuristic using different
generation objectives

Overflow sum Congestion Mixed

Mean 1.025 1.049 1.027

Standard Deviation 0.016 0.019 0.012

the linear relaxation inside the SRR heuristic which we will call generation objective.
For both of the previous types, we study the two functions presented in Sect. 2.1:
the sum of the overflow and the congestion. Usually, the generation objective and
the evaluation metric are chosen to be the same. However, the overflow sum and the
congestion are very close metrics and we want to study the impact of using one for
creating solutions for the other. We will show below that using the overflow sum
instead of the congestion as generation objective yields solutions of higher quality for
both evaluation metrics.

When the evaluation metric is the overflow sum, in our tests, solutions generated
using the overflow sum as generation objective have a ten times better solution quality
than the one created using the congestion. More surprisingly, the overflow sum used
as generation objective also yields the best solutions when the evaluation metric is the
congestion. To test this, the SRR heuristic has been applied with the two generation
objectives on 100 grid graphs with 120 nodes, 700 arcs, and 4500 commodities. The
mean congestion of the returned solutions is reported in the first two columns of Table
2 together with the standard deviation of the results. The mean congestions for the
two generation objectives are separated by more than one standard deviation in favor
of the overflow sum. Using the values given in the first two columns of Table 2, an
unpaired two-sample Student t-test was made. The test showed that the overflow sum
used as generation objective performs significantly better than the congestion. The
p-value associated with the test is 10−18.

We conjecture that the difference observed above between the two generation objec-
tives is explained by the following reasoning. In the linear relaxation, the congestion
objective function does not differentiate solutions having one arc with high congestion
from solutions with several arcs with high congestion. However, a larger number of
highly congested arcs in the linear relaxation implies, on average, a larger conges-
tion in the solution returned by the randomized rounding process. Furthermore, if the
randomized rounding process creates arcs with a larger congestion than the optimal
congestion of the linear relaxation, then, in subsequent actualizations of the linear
relaxation, the capacity constraints are lifted for all the other arcs. This might lead to
even more congested unsplittable solutions.

With this conjecture in mind, we created an algorithm that uses the congestion as its
main generation objective but performs aswell as the algorithmusing the overflow sum
as generation objective. To that end, a two-level objective is set in the linear relaxation:
find the solution of least overflow sum among the solutions with minimal congestion.
The results obtainedwith this alternative generation objective are presented in the third
column of Table 2 under the name “Mixed” objective. These results are comparable
to those obtained with the overflow sum objective. Indeed, an unpaired two-sample

123

Randomized rounding algorithms for large... 1107

Student t-test made on the values given in the first and third columns of Table 2 does
not show that the difference is statistically significant. The p-value associated with
the test is 0.32.

7.2 Interaction between sorting and actualization

In this section, we discuss the positive interplay observed in Sect. 6 between sorting
the commodities by decreasing demand and actualizing the linear relaxation. To that
end, we study a toy example where the graph is composed of two nodes linked by
two parallels arcs. We also assume the sum of the demands is equal to the sum of the
capacities. We compare the solutions with the overflow sum objective and assume that
no binary solution has an overflow of zero.

When computing the linear relaxation, optimal extrema of the polyhedron are of
the following form: every commodity is assigned to one arc except for one commodity
which is split between the two arcs. We assume that each commodity has the same
probability of being the split commodity. After applying randomized rounding to a
linear solution of this type, the binary solution obtained has an overflow between zero
and the demand of the split commodity.

On the other hand, if we actualize the linear relaxation after fixing the split commod-
ity we should often get a better solution. Indeed, after actualizing the linear solution,
three situations can occur. Firstly, the remaining free commodities cannot switch arc
to compensate any of the overflow generated by rounding the split commodity. In
this case, no commodity changes its flow, the new linear solution is a binary solution
and this solution is the same with and without actualization. Secondly, the remaining
free commodities compensate only a part of the overflow created. In this case, even
though some commodities change their flow, the new linear solution is a binary solu-
tion whose overflow is lower than the one before the actualization step. Lastly, the
remaining free commodities compensate completely the overflow created and a new
split commodity is created. Applying randomized rounding from there yields a solu-
tionwhose overflow is between zero and the demand of the new split commodity. Since
the commodities are fixed in order of decreasing demand, the new split commodity
has a smaller demand than the old split commodity. The range in which the overflow
of the final solution can vary is thus smaller which should on average lead to a better
solution. Furthermore, new split commodities are created until the free commodities
cannot completely compensate for the rounding of the last split commodity. Most of
the time, this happens when only a few commodities remain and thus when only small
commodities remain. In this case, the last split commodity has a small demand, and
the algorithm yields a small final overflow.

Finally, we can see that in this toy example, actualizing the linear solution and
sorting the commodities by decreasing demands yields, on average, solutions with a
smaller overflow than pure randomized rounding.We conjecture that this phenomenon
generalizes to any graph. Indeed, the fact that the split commodities get smaller and
smaller as the algorithm progresses should lead to smaller and smaller final overflows.

123

1108 F. Lamothe et al.

8 Conclusion

In this paper, we have presented a heuristic based on randomized rounding for
large-scale instances of the unsplittable flow problem which extends the algorithm
of Raghavan and Tompson (1987). We experimentally showed that on large-scale
instances this heuristic produces solutions of smaller overflow than any other method
used for comparison.

We also derived an approximation algorithm from the heuristic by restraining the
possible actualization of the linear relaxation. The approximation factor of both this
algorithm and the algorithm of Raghavan and Tompson (1987) was then tightened to

O
(

γ ln(|E |ε−1)

ln(γ ln(|E |ε−1))

)
. This new approximation factor depends on the granularity param-

eter γ and enables to understand the behavior of randomized rounding when the
commodities are small compared to the capacities (i.e.γ � 1).

Furthermore, the behavior of the presented heuristic has been analyzed to highlight
two of its key particularities. First, the new objective function used in the algorithm for
practical computations yielded solutions of higher quality. Secondly, the actualization
of the solution of the linear relaxation enhanced the performances of the heuristic
when the commodities are sorted in order of decreasing demand.

Finally, even though the techniques discussed in this paper were presented in the
context of unsplittable flows, they apply to other contextswhere the randomized round-
ing method of Raghavan and Tompson (1987) is used (packing problems, covering
problems...). Their performances and variations in these contexts could be investi-
gated. Moreover, the impact of backtracking of the decisions made during randomized
rounding algorithms seems a promising research direction.

Declarations

Conflict of interest This work was partially funded by Thales Alenia Space and made in collabo-
ration with several of its members. This work was partially funded by the CNES. Several authors
are academically related to ISAE-SUPAERO. The authors declare that they have no conflict of inter-
est. The datasets and the code used in the experimental section of this work are accessible at
https://github.com/SuReLI/randomized_rounding_paper_code.

References

Alvelos, F., Valério deCarvalho, J.: A local search heuristic based on column generation applied to the binary
multicommodity flow problem. In: Proceedings of International Network Optimization Conference,
INOC, Citeseer, p. 6 (2007)

Alvelos, F., DeCarvalho, J.V.: Comparing branch-and-price algorithms for the unsplittablemulticommodity
flow problem. In: International Network Optimization Conference, pp. 7–12 (2003)

Anderson, C.A., Fraughnaugh, K., Parker, M., Ryan, J.: Path assignment for call routing: an application of
Tabu search. Ann. Oper. Res. 41(4), 299–312 (1993)

Andrews, M., Chuzhoy, J., Guruswami, V., Khanna, S., Talwar, K., Zhang, L.: Inapproximability of edge-
disjoint paths and low congestion routing on undirected graphs. Combinatorica 30(5), 485–520 (2010)

Asano, Y.: Experimental evaluation of approximation algorithms for the minimum cost multiple-source
unsplittable flow problem. In: ICALP Satellite Workshops, pp. 111–122 (2000)

123

https://github.com/SuReLI/randomized_rounding_paper_code

Randomized rounding algorithms for large... 1109

Aumann, Y., Rabani, Y.: Improved bounds for all optical routing. In: Proceedings of the Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, Citeseer, pp. 567–576 (1995)

Azar, Y., Regev, O.: Combinatorial algorithms for the unsplittable flow problem. Algorithmica 44(1), 49–66
(2006)

Babonneau, F., Du Merle, O., Vial, J.P.: Solving large-scale linear multicommodity flow problems with an
active set strategy and proximal-ACCPM. Oper. Res. 54(1), 184–197 (2006)

Barnhart, C., Hane, C.A., Vance, P.H.: Using branch-and-price-and-cut to solve origin-destination integer
multicommodity flow problems. Oper. Res. 48(2), 318–326 (2000)

Bauguion, P.O., Ben-Ameur, W., Gourdin, E.: A new model for multicommodity flow problems, and a
strongly polynomial algorithm for single-source maximum concurrent flow. Electron. Notes Discrete
Math. 41, 311–318 (2013)

Bauguion, P.O., Ben-Ameur, W., Gourdin, E.: Efficient algorithms for the maximum concurrent flow prob-
lem. Networks 65(1), 56–67 (2015)

Belaidouni, M., Ben-Ameur, W.: On the minimum cost multiple-source unsplittable flow problem. RAIRO-
Oper. Res. 41(3), 253–273 (2007)

Castro, J., Cuesta, J.: Improving an interior-point algorithm for multicommodity flows by quadratic regu-
larizations. Networks 59(1), 117–131 (2012)

Chakrabarti, A., Chekuri, C., Gupta, A., Kumar, A.: Approximation algorithms for the unsplittable flow
problem. Algorithmica 47(1), 53–78 (2007)

Chuzhoy, J., Guruswami, V., Khanna, S., Talwar, K.: Hardness of routingwith congestion in directed graphs.
In: Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing, ACM, pp.
165–178 (2007)

Coudert, D., Rivano, H.: Lightpath assignment for multifibers wdm networks with wavelength translators.
In: Global Telecommunications Conference, 2002. GLOBECOM ’02. IEEE, vol. 3, pp. 2686–2690
(2002)

Cox, L.A.: Dynamic anticipatory routing of circuit-switched telecommunications networks. Hand-book of
Genetic Algorithms (1991)

Csirik, J., Galambos, G., Frenk, H.J., Frieze, A., Kan, R., Alexander, A.: A probabilistic analysis of the next
fit decreasing bin packing heuristic. Oper. Res. Lett. 5(5), 233–236 (1986)

Dai, W., Sun, X., Wandelt, S.: Finding feasible solutions for multi-commodity flow problems. In: 2016 35th
Chinese Control Conference (CCC), IEEE, pp. 2878–2883 (2016a)

Dai, W., Zhang, J., Sun, X., Wandelt, S.: Node dependency in multi-commodity flow problem with appli-
cations to transportation networks. CICTP 2016, 1989–2001 (2016b)

Dai, W., Zhang, J., Sun, X.: On solving multi-commodity flow problems: an experimental evaluation. Chin.
J. Aeronaut. 30(4), 1481–1492 (2017)

Emanuelsson, K.: Approximating multi-commodity max-flow in practice (2016)
Fleischer, L.K.: Approximating fractionalmulticommodity flow independent of the number of commodities.

SIAM J. Discrete Math. 13(4), 505–520 (2000)
Ford, L.R., Jr.: Network flow theory. Tech. rep, Rand Corp Santa Monica Ca (1956)
Gondzio, J., González-Brevis, P.: A new warmstarting strategy for the primal-dual column generation

method. Math. Program. 152(1–2), 113–146 (2015)
Gondzio, J., González-Brevis, P., Munari, P.: New developments in the primal-dual column generation

technique. Eur. J. Oper. Res. 224(1), 41–51 (2013)
Gondzio, J., González-Brevis, P., Munari, P.: Large-scale optimization with the primal-dual column gener-

ation method. Math. Progr. Comput. 8(1), 47–82 (2016)
Group, T.F., Gonzalez, T.: Handbook of Approximation Algorithms and Metaheuristics, Sec-

ond Edition: Two-Volume Set. Taylor & Francis Group (2020). https://books.google.fr/books?
id=iD2UzQEACAAJ

Gurobi Optimization, L.: Gurobi optimizer reference manual (2020). http://www.gurobi.com
Jiménez, V.M., Marzal, A.: Computing the k shortest paths: a new algorithm and an experimental compar-

ison. In: International Workshop on Algorithm Engineering, Springer, pp. 15–29 (1999)
Kolman, P.: A note on the greedy algorithm for the unsplittable flow problem. Inf. Process. Lett. 88(3),

101–105 (2003)
Laguna, M., Glover, F.: Bandwidth packing: a Tabu search approach. Manag. Sci. 39(4), 492–500 (1993)
Li, X., Aneja, Y.P., Baki, F.: An ant colony optimization metaheuristic for single-path multicommodity

network flow problems. J. Oper. Res. Soc. 61(9), 1340–1355 (2010)

123

https://books.google.fr/books?id=iD2UzQEACAAJ
https://books.google.fr/books?id=iD2UzQEACAAJ
http://www.gurobi.com

1110 F. Lamothe et al.

Madry, A.: Faster approximation schemes for fractional multicommodity flow problems via dynamic graph
algorithms. In: Proceedings of the Forty-second ACM Symposium on Theory of computing, ACM,
pp 121–130 (2010)

Martens, M., Skutella, M.: Flows on few paths: algorithms and lower bounds. Netw. Int. J. 48(2), 68–76
(2006)

Masri, H., Krichen, S., Guitouni, A.: An ant colony optimization metaheuristic for solving bi-objective
multi-sources multicommodity communication flow problem. In: 2011 4th Joint IFIP Wireless and
Mobile Networking Conference (WMNC 2011). IEEE, pp. 1–8 (2011)

Masri, H., Krichen, S., Guitouni, A.: A multi-start variable neighborhood search for solving the single path
multicommodity flow problem. Appl. Math. Comput. 251, 132–142 (2015)

Masri, H., Krichen, S., Guitouni, A.: Metaheuristics for solving the biobjective single-path multicommodity
communication flow problem. Int. Trans. Oper. Res. 26(2), 589–614 (2019)

Moradi, S., Raith, A., Ehrgott, M.: A bi-objective column generation algorithm for the multi-commodity
minimum cost flow problem. Eur. J. Oper. Res. 244(2), 369–378 (2015)

Park, K., Kang, S., Park, S.: An integer programming approach to the bandwidth packing problem. Manag.
Sci. 42(9), 1277–1291 (1996)

Park, S., Kim,D., Lee, K.: An integer programming approach to the path selection problems. In: Proceedings
of the International Network Optimization Conference INOC, Evry-Paris, France, pp. 448–453 (2003)

Parker, M., Ryan, J.: A column generation algorithm for bandwidth packing. Telecommun. Syst. 2(1),
185–195 (1993)

Raghavan, P.: Probabilistic construction of deterministic algorithms: approximating packing integer pro-
grams. J. Comput. Syst. Sci. 37(2), 130–143 (1988)

Raghavan, P., Tompson, C.D.: Randomized rounding: a technique for provably good algorithms and algo-
rithmic proofs. Combinatorica 7(4), 365–374 (1987)

Retvdri, G., Bíró, J.J., Cinkler, T.: A novel lagrangian-relaxation to the minimum cost multicommodity flow
problem and its application to ospf traffic engineering. In: Proceedings. ISCC2004.Ninth International
Symposium on Computers And Communications (IEEE Cat. No. 04TH8769), IEEE, vol. 2, pp. 957–
962 (2004)

Santos, D., de Sousa, A., Alvelos, F., Pioro, M.: Link load balancing optimization of telecommunication
networks: A column generation based heuristic approach. In: 2010 14th International Telecommuni-
cations Network Strategy and Planning Symposium (NETWORKS). IEEE, pp. 1–6 (2010)

Santos, D., De Sousa, A., Alvelos, F.: A hybrid column generation with grasp and path relinking for the
network load balancing problem. Comput. Oper. Res. 40(12), 3147–3158 (2013a)

Santos, D., de Sousa, A., Alvelos, F., Pióro, M.: Optimizing network load balancing: an hybridization
approach of metaheuristics with column generation. Telecommun. Syst. 52(2), 959–968 (2013b)

Shahrokhi, F., Matula, D.W.: The maximum concurrent flow problem. J. ACM 37(2), 318–334 (1990)
Shepherd, F.B.,Vetta,A.: The inapproximability ofmaximumsingle-sink unsplittable, priority and confluent

flow problems (2015). arXiv preprint arXiv:1504.00627
Wang, I.L.: Multicommodity network flows: a survey, part II: solution methods. Int. J. Oper. Res. 15(4),

155–173 (2018)
Wang, Y., Wang, Z.: Explicit routing algorithms for internet traffic engineering. In: Proceedings Eight

International Conference on Computer Communications and Networks (Cat. No. 99EX370). IEEE,
pp. 582–588 (1999)

Xu, J., Chiu, S.Y., Glover, F.: Tabu search for dynamic routing communications network design. Telecom-
mun. Syst. 8(1), 55–77 (1997)

Yen, J.Y.: Finding the k shortest loopless paths in a network. Manag. Sci. 17(11), 712–716 (1971)

123

http://arxiv.org/abs/1504.00627

	Randomized rounding algorithms for large scale unsplittable flow problems
	Abstract
	1 Introduction
	2 The unsplittable flow problem
	2.1 Objective functions
	2.2 Arc-node formulation
	2.3 Path formulation

	3 Related work
	3.1 Exact methods
	3.2 Approximation algorithms and heuristics
	3.3 Meta-heuristics
	3.4 Linear multi-commodity flow problem

	4 The Sequential randomized rounding heuristic
	4.1 Presentation of the algorithm
	4.2 Complexity analysis
	4.3 Grouping commodities by origin

	5 A variation of the heuristic with approximation guarantees
	6 Experimental results
	6.1 Instance datasets
	6.2 Benchmarking meta-heuristics
	6.3 Results

	7 Discussion
	7.1 Impact of the objective function
	7.2 Interaction between sorting and actualization

	8 Conclusion
	References

