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Abstract: The present study investigates, experimentally and numerically, the tensile behavior of 

copper-clad aluminum composite wires. Two fiber-matrix configurations, the conventional Al-

core/Cu-case and a so-called architectured wire with a continuous copper network across the cross-

section, were considered. Two different fiber arrangements with 61 or 22 aluminum fibers were 

employed for the architectured samples. Experimentally, tensile tests on the two types of composites 

show that the flow stress of architectured configurations is markedly higher than that of the linear 

rule of mixtures’ prediction. Transverse stress components and processing-induced residual stresses 

are then studied via numerical simulations to assess their potential effect on this enhanced strength. 

A set of elastic-domain and elastoplastic simulations were performed to account for the influence of 

Young’s modulus and volume fraction of each phase on the magnitude of transverse stresses and 

how theses stresses contribute to the axial stress-strain behavior. Besides, residual stress fields of 

different magnitude with literature-based distributions expected for cold-drawn wires were de-

fined. The findings suggest that the improved yield strength of architectured Cu-Al wires cannot 

be attributed to the weak transverse stresses developed during tensile testing, while there are com-

pelling implications regarding the strengthening effect originating from the residual stress profile. 

Finally, the results are discussed and concluded with a focus on the role of architecture and residual 

stresses. 

Keywords: wire drawing; Cu-Al composite wires; finite element analysis 

 

1. Introduction 

Abundant copper demand for electrical applications from various sectors has 

prompted manufacturers to reduce material costs by replacing this rather expensive and 

high-density metal partly or entirely. Lower-density and more affordable aluminum-cop-

per (Al-Cu) composite wire is an example of such efforts. The following paragraphs pro-

vide a summary of the different features of Al-Cu wires and several other similar compo-

site systems (developed by various techniques) already investigated. The missing aspects 

and the property of interest to be researched in the current work are then presented at the 

end of this section. Among those already-studied features are the investigations covering 

the mechanical behavior and finite element modelling of the manufacture processes of 

severely cold worked composite systems akin to the one under study in this work. 

Khosravifard and Ebrahimi [1] investigated the parameters affecting the interface 

strength of extruded Al/Cu clad bimetal rods along with FEM analysis of the extrusion 

process. Feng et al. [2] examined the compressive mechanical behavior of Al/Mg compo-

site rods with different types of Al sleeve. 
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Gu et al. [3] modelled the elastic behavior of architectured and nanostructured Cu–

Nb composite wires produced by accumulative drawing and bundling (a severe plastic 

deformation technique) in a multiscale manner. Priel et al. [4] did a computational study 

(validated by experiments) on co-extrusion of an Mg/Al composite billet and suggested a 

set-up named “Floating Core” as being ideal. 

Knezevic et al. [5] made a comparison between three die designs with a material-

based approach towards the extrusion of bimetallic tubes discussing the criteria that are 

to be met for proper solid-state bonding. 

Moreover, a great deal of research has been done addressing the mechanical behavior 

of metallic and non-metallic fiber-reinforced composites. Ochiai [6] performed an exten-

sive study on the effect of interface on deformation and fracture behavior of metallic ma-

trix fiber-reinforced composites. Kelly and Lilholt [7] researched stress-strain curve of a 

fiber-reinforced composite of tungsten wires embedded in a pure copper matrix. Kelly 

and Tyson [8] studied tensile properties of metallic fiber-reinforced composite systems of 

copper/tungsten and copper-molybdenum. Ebert et al. [9] analyzed the stress-strain be-

havior of concentric composite cylinders. Sapanathan et al. [10] spiral extruded an alumi-

num/copper composite to study its bond strength and interfacial characteristics. Hao et 

al. [11] developed a novel multifunctional NiTi/Ag hierarchical composite, inspired by the 

hierarchical design of the tendon, by repeated assembling and wire drawing. Tyson and 

Davies [12] investigated the shear stresses associated with stress transfer during fiber re-

inforcement with the help of photoelasticity. Superconducting materials embedded into a 

copper matrix as multifilaments [13] and aluminum-steel fiber composites [14] are the 

other systems with similarities to the Al-Cu composites under investigation in the current 

study. 

The conventional copper-clad aluminum wire (CCA or single-Al-fiber Al-Cu compo-

site wire) is currently being widely used in the electrical industry [15]. Architectured cop-

per-clad aluminum wire (ACCA or multi-Al-fiber Al-Cu composite wire), however, has 

proved to be superior in a variety of areas offering improved thermal diffusivity [16] and 

proper electrical conductivity at both low and high frequencies. Moreover, in a previous 

article, the authors have reported that ACCA samples exhibit rather complex mechanical 

behavior in both as-drawn and heat-treated states (see [17] for more details). 

The novelty of this work is the investigation of the origin of the understudied me-

chanical behavior of the novel architectured Cu-Al composite wires and its promising im-

plications in terms of the in-service reliability. The objective of this article is then to better 

understand the mechanical behavior of Cu-Al wires with different fiber-matrix configu-

rations. Along with the conventional CCA wire, two architectured configurations (ACCA) 

with different numbers of Al fibers were investigated. A first assessment of the mechanical 

properties based on the experimental tensile curves is proposed, revealing improved flow 

stress for architectured configurations. 

Numerical simulations of CCA and ACCA configurations were then performed to 

find the impact of fiber-matrix configurations on the axial stress-strain behavior of these 

materials. Particularly, the influence of I- transverse interactions and II- processing-in-

duced residual stresses on the mechanical behavior were investigated. The use of finite 

element analysis is necessary when dealing with the mechanical behaviors that are not 

easy to understand and interpret experimentally. Crack and fracture behavior are in-

stances of such studies [18,19]. A great complexity in the current work is the experimental 

measurement of radial and circumferential stresses developing at the interface of the fine 

Al fibers (tens of micron wide) and the Cu matrix during tensile testing of Arcitectured 

and even conventional Cu-Al wires. The results show that the processing-induced resid-

ual stresses most probably explain the exceptional mechanical properties of architectured 

wires. 
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2. Material and Experimental Procedure 

Copper clad aluminum wires are produced by cold-drawing. For all wires, fully an-

nealed high purity Oxygen Free High Conductivity (OFHC) copper and 99.5% pure Al 

were employed. For the fabrication of CCA, a copper tube of an outer diameter of 12 mm 

and inner diameter of 8 mm and an approximately 8 mm-aluminum rod were simultane-

ously cold-drawn down to 3 mm. For the ACCA drawing, CCA wires were restacked in a 

copper tube and were further cold-drawn. For these specific architectured wires, two con-

figurations were manufactured, one with 61 restacked 1 mm-CCA wires (labelled 

ACCA61) and a second one with 22 restacked 1.7 mm-wires (labelled ACCA22). All wires 

were cold-drawn down to 3 mm without inter-operational heat-treatments. For the CCA 

wires, the aluminum volume fraction is about 50% whereas values of 25% and 32% are 

associated to the ACCA61 and ACCA22, respectively. Details about the manufacturing pro-

cess can be found in the two previous articles [15,17]. The corresponding cross-sections of 

the three microstructures, imaged via optical microscopy, are illustrated in Figure 1. 

 

Figure 1. Illustration of the cross-section of the the different 3 mm diameter wires considered in this 

study: (a) conventional CCA; (b) architectured wire with 61 aluminum fibers and (c) architectured 

wire with 22 aluminum fibers. 

Simulation of the CCA and ACCA behavior under tensile loading requires the stress-

strain data of each component (Al and Cu). For that reason, as-drawn samples of both 

pure Cu and Al with the aforementioned compositions (threes samples each) were pre-

pared for tensile testing to provide the FEA software with the required input. To prepare 

the above tensile test samples, an aluminum rod and a copper rod of the same initial di-

ameter of 8 mm, heat-treated for three hours at 300 °C and 500 °C respectively, were cold 

drawn down to 2 mm each. This was to have the same amount of plastic deformation 

undergone by a 3 mm-CCA composite wire (considered for simulations) stored in pure 

Al and Cu samples. 

The final diameter of the rods was obtained from the following relation for calculat-

ing the drawing strain: 

η = 2ln
D0

D
 (1) 

where D0 and D are the initial and final diameters respectively. An MTS Criterion Model 

43 10 kN-universal testing machine (MTS, Eden Prairie, MN, USA) was used to perform 

displacement-controlled tensile tests at room temperature and the strain was measured 

via a conventional 25 mm-gage length extensometer. Samples were mounted on special-

ized wire tensile testing grips to minimize stress concentration and were strained at an 

initial strain rate of 0.004 s−1 to avoid possible viscous effects. 

Engineering stress-strain curves of experimentally tensile-tested pure Al and Cu are 

plotted in Figure 2. The following curves were then converted into true stress-strain 

curves and were used as input for elastoplastic simulation of CCA and ACCA wires. 

(b) (a) (c) 
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Figure 2. Experimental engineering stress-strain curves of pure copper and aluminum (as-drawn). 

3. Numerical Procedure 

A comprehensive explanation of the simulation approach is presented in the first 

subsection. The second subsection is devoted to the simulation details. 

3.1. Parameters and Methodology 

The application of finite element method made it possible to effectively study various 

parameters involved from a behavioral perspective. Assumptions such as perfect fiber-

matrix interface and isotropic behavior were made for the sake of simplicity. As men-

tioned earlier, the two key factors I- transverse stresses and II- residual stresses (RS) were 

investigated in a set of numerical simulations. To this end, evolution of transverse (radial 

and circumferential) stress components under a tensile load was modelled in both elastic 

and elastoplastic domains for CCA samples. 

Tensile elastic-plastic behavior of an ACCA model, created from an actual micro-

structure, was also studied to discover the potentially distinct development of lateral 

stresses in this novel configuration. For the sake of conciseness, only the ACCA61 configu-

ration was considered for simulation. The effect of predefined fields of residual stress in 

both CCA and ACCA wires was also studied independently. The idea was to realize how 

significant the contribution of lateral and residual stresses could be to the axial stress-

strain behavior of these bimetallic composites separately. CCA simulations hold clues to 

understanding the more complex tensile behavior of the architectured samples (ACCAs). 

3.1.1. Transverse Stresses 

CCA Elastic Simulations 

There are complexities associated with the elastoplastic behavior of these materials, 

originating from the formation of yield fronts and gradual elastic-to-plastic transition [9]. 

In a first attempt to avoid those intricacies, a number of elastic-domain CCA wire simula-

tions were independently run, with the major parameters involved in the evolution of 

transverse stresses taken into consideration. Those parameters include Young’s modulus 

and Al/Cu volume fraction. 

Therefore, two 10-mm-long CCA samples of the same outer diameter of 3 mm (arbi-

trary dimensions), containing an aluminum core and a copper case were modelled. One 

of the two samples contains 75% Al (2.6 mm-Al core) and the other 25% Al (1.5 mm-Al 
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core). The volume fraction of the experimental CCA wire lies in between these two values. 

This was to account for the role of volume fraction when one of the phases prevails. 

It is known from the literature that the elastic behavior of pure copper is largely ani-

sotropic. Its Young’s modulus depends on the texture developments and can range be-

tween 60 and 200 GPa as plotted and discussed by Pal-Val et al. [20] for different crystal-

lographic directions. For that reason, three different Young’s modulus values of 60, 170 

and 200 GPa, corresponding to the dominance of [001], [011] and [111] orientations in the 

order given, were chosen to take account of Young’s modulus effect. Unlike Cu, the elastic 

behavior of Al is almost isotropic and the Young’s modulus alterations of pure aluminum 

and many aluminum alloys, following cold working and heat-treatment, vary slightly by 

10 percent at most [21]. Hereby, an average value of 70 GPa was considered for Al. The 

elastic-domain impact of Poisson’s ratio value difference between the components of bi-

metallic fiber-composites is generally trivial [9]. In summary, three Young’s modulus val-

ues for Cu and 2 volume fractions were opted for a total number of 6 simulations. The 

CCA elastic simulations are summarized in Table 1. 

Table 1. Elastic simulation parameters for investigating the development of transverse stresses in 

CCA wires. 

Volume Fractions 75%Al–25%Al 

Phase Poisson’s Ratio Young’s Modulus (GPa) 

Cu 0.31 60–170–200 

Al 0.33 70 

CCA and ACCA Elastoplastic Simulations 

It is known that radial and circumferential stresses may become more important in 

terms of contribution to the axial stress-strain behavior as one of the two phases in a bi-

metallic cylindrical composite plasticizes first and the other remains elastic within a cer-

tain strain range. This is because the already-yielded component could be assumed to 

have a Poisson’s ratio of 0.5 (due to the incompressible nature of plasticity) and the other 

would still possess the elastic-domain Poisson’s ratio value. Therefore, the difference be-

tween the values of Poisson’s ratio of the two materials would become greater for a certain 

range of strain before the elastic component begins to behave plastically as well [9]. 

Hereby, numerical tensile testing of a set of 3 mm-diameter CCA wires (actual di-

mension) of four different Al/Cu volume fractions was opted to be modelled with elastic-

plastic behavior (without accounting for the Al/Cu interface and residual stresses). Four 

volume fractions were chosen to have a statistically better approximation of the order of 

magnitude of transverse stresses. The goal was to discover the degree to which lateral 

stresses, alone, can possibly influence the tensile behavior. Table 2 lists all the CCA elas-

toplastic simulations performed. 

Table 2. Elastoplastic simulation parameters for investigating the development of transverse 

stresses in CCA wires. 

Volume Fractions 25% Al–50% Al–75% Al–90% Al 

Phase Poisson’s Ratio Young’s Modulus (GPa) 

Cu 0.31 ≈129 

Al 0.33 ≈66 

Having insights provided from the elastoplastic simulation of CCA wires, a 3-mm 

diameter ACCA61 wire was modelled from the actual microstructure of its transversal 

cross section (see Figure 3a). The wire contains 61 Al fibers (about 25 percent of the total 

volume fraction) embedded in a Cu matrix. The corresponding finite element models are 

presented in Figure 3a,b. 
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Figure 3. ≈25%Al-ACCA sample and corresponding finite element models (a) actual microstructure 

and corresponding FEA model (b) meshed ACCA wire model. 

3.1.2. Residual Stresses 

Mechanical residual stresses built up during cold drawing of metals are known to 

come from the non-uniform nature of plastic deformation in this process. There is a qual-

itative feature from the literature based on which residual stress simulations are argued 

in this paper. This feature is the formation of a rather wide range of compressive residual 

stresses in the central part of a cold-drawn bar and a narrower range of tensile residual 

stress in its outer part, away from the center. Axial tensile residual stresses forming near 

the wire surface have detrimental effects on the tensile strength of drawn wires. Modify-

ing the residual profile through the wire cross section by reducing those stresses and 

boosting the formation of compressive residual stresses favors the yield strength [22]. Ati-

enza and Elices [23] suggest such RS distribution for cold drawn steel wires investigated 

both numerically and experimentally. Ripoll et al. [24] report a similar RS distribution 

pattern in their investigation of tungsten wires. Bullough and Hartley [25] introduce an 

analytical model for co-deformed Cu-Al rods confirming the above-mentioned RS distri-

bution. 

Consistent with the literature on the magnitude and distribution pattern of drawing-

induced residual stresses, a behavioral assessment was conducted. One objective was to 

analyze how the distinct fiber-matrix configuration of an ACCA sample can possibly af-

fect the axial stress-strain behavior of Al-Cu composite wires of the same Al/Cu volume 

fraction but different architecture. 

For the sake of simplicity, this comparison was made irrespective of the fact that 

ACCA is more strained than CCA and more compressive residual stresses are expected 

to form in architectured wires. Hereby, the aforementioned 3-mm ACCA sample contain-

ing about 25% Al and its corresponding 3-mm CCA sample with 25% Al were considered. 

Same-diameter cylinders of compressive residual stress were defined in the center of 

both wires with hollow cylinders of the same width under tensile residual stress, as illus-

trated in Figure 4a,b. Residual stress modelling and analyses were based on the values 

reported for copper-clad aluminum wires fabricated by hydrostatic extrusion [25]. The 

(a) 

(b)
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analytical model proposed in [25] is applicable for both hydrostatic extrusion and wire 

drawing processes and provides a good first approximation for this behavioral evaluation. 

Simulation details are presented in the following section. It must be noted that all the 

above simulations were merely intended to test the assumptions made earlier regarding 

the role of transverse and residual stresses and no verification of the experimental results 

was planned. Indeed, the exact development of residual stresses in the architectured com-

posite wires is not straightforward. The simulations were applied towards identifying the 

potential source of the strengthening effect observed in the architectured Cu-Al wires (re-

ported by [17]). 

 

Figure 4. Predefined fields of residual stresses in (a) CCA and (b) ACCA wires (transversal cross-

section). 

3.2. Numerical Modelling Details 

The FEA software Abaqus/CAE (ABAQUS Inc., Johnston, RI, USA) was utilized to 

perform all simulations. All CCA samples were meshed using a mixture of hexahedral 

elements of type ‘C3D8R’ and wedge elements of type “C3D6′ (both of linear geometric 

order, from the standard element library) to generate a regular symmetric mesh. How-

ever, the ACCA sample was meshed using only hexahedral elements. Independent Al and 

Cu parts were then assembled by merging the interfacial elements that satisfies the perfect 

interface assumption and allows the development of transverse stresses. All models were 

assigned a boundary condition of type “ZSYMM” (symmetry about a constant z-plane) 

on the fixed end. 

An arbitrary displacement of 0.005 mm (0.05% strain—within the reasonable range 

of elastic domain) was applied on all the CCA elastic models listed in Table 1. Engineering 

stress-strain data from tensile testing of the as-drawn pure Al and pure Cu samples were 

calibrated and converted into true stress-strain curves in Abaqus/CAE as input for elasto-

plastic simulation of the 3-mm diameter CCA samples mentioned in the previous section. 

The elastic-plastic behavior of the aforementioned ACCA sample (≈25% Al) of a 

gauge length of 25 mm was also studied by straining it up to one percent. The use of CCA 

input for simulating the tensile testing of ACCA is acceptable to a fairly good approxima-

tion due to stress saturation in both Al and Cu at high strains (see [17]). Chinh et al. [26] 

also report stress saturation in highly strained Al. 

In order to model the elastic-plastic behavior of CCA and ACCA composite wires in 

presence of residual stresses, the 25%Al-ACCA wire and its corresponding CCA sample 

(containing 25% Al) were chosen. Next, for comparison purposes, a cylindrical section of 

the same diameter of 1.5 mm was defined in the center of both ACCA and CCA samples. 

As explained in the previous section, residual stress values for simulation were taken from 

(a) (b) 
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Ref. [25]. Therefore, predefined stress fields of −90 MPa (compressive) in the central cyl-

inder and +10 MPa (tensile) in the remaining hollow cylinder were defined. 

It should be noted that the aforementioned values were considered as single uniform 

values through the cross section of the wire rather than the actual curved-shape residual 

stress distributions (see the references presented in Subsection 3.1.2. Residual Stresses). 

This analytical model-based assumption was made for the sake of simplicity and compar-

ison and does not satisfy the residuals stresses’ self-equilibrium requirement. It is how-

ever consistent with the literature in terms of the sign of expected residual stresses. Fur-

thermore, to emphasize the favorable impact of compressive residual stresses in the cen-

tral section of ACCA samples and to reveal its implication for the research problem, a 

separate simulation with −120 MPs (rather than −90 MPa) and +10 MPa was performed. 

4. Results 

4.1. Experimental Tensile Tests 

Figure 5 illustrates the mechanical behavior in tension of the earlier-mentioned CCA, 

ACCA61, and ACCA22 wires along with the pure copper and pure aluminum counterparts. 

When it comes to the CCA wire, the tensile curve lies between the pure Cu and pure Al 

ones, in good agreement with the rules of mixtures’ prediction. For a total strain of 0.01, 

the flow stresses of pure Cu and Al wires are about 450 and 250 MPa, respectively. For the 

same total strain, the CCA wire containing 50% Al exhibits a flow stress of about 360 MPa 

which is close to the rule of mixtures’ predicted value of 350 MPa. 

 

Figure 5. Illustration of the tensile curves of the different wires considered in this study: pure Al, 

pure Cu, copper clad aluminum (CCA) and architectured copper clad aluminum wire with 61 

(ACCA61) and 22 restacked wires (ACCA22). 

Compared to the CCA case, the two ACCA wires show an increased flow stress that 

is closer (ACCA22) or even larger (ACCA61) than that of the corresponding pure copper 

wire. In that case, the rule of mixture is clearly not fulfilled revealing a complex mechan-

ical behavior that can be attributed to the aforementioned transverse interactions or resid-

ual stresses. 

4.2. CCA Elastic Simulations 

In order to investigate the role played by the elastic-domain transverse interactions 

on the mechanical behavior of CCA an ACCA wires, elastic simulations were performed 

as a first attempt. When it comes to the CCA, the following graphs show the impact of the 

two parameters Young’s modulus and Al/Cu volume fraction on the development of 
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tensile testing-induced radial and circumferential stresses versus the normalized distance 

along the diameter of each wire in the elastic domain. 

Effect of the two parameters on the distribution and magnitude of transverse stresses 

are visualized in Figure 6a–d, which represent the radial and circumferential stress pro-

files of the 75% Al-CCA sample and Figure 6c,d that illustrate those of the 25% Al-CCA 

sample. For a total elastic strain of 0.05%, average axial stress values of ≈63 and ≈45 MPa 

developed along the wire axis in the 25% Al- and 75% Al-sample, respectively. The ratio 

on the graphs’ legend is the ratio of the Young’s modulus of Cu to Al. The Al core and Cu 

case areas are delineated on the curves. 

As observed in Figure 6, the magnitude of transverse stresses evolved in both 25%- 

and 75%Al-samples is utterly small (on the order of tenths of a megapascal). The magni-

tude of the corresponding axial stresses are, however, significantly higher as mentioned 

above. The magnitude of radial and circumferential stresses in both CCA samples of dif-

ferent volume fractions slightly increases as the Young’s modulus ratio becomes greater. 

It reaches its maximum for the ratio ECu/EAl = 200/70. Additionally, the higher the volume 

fraction of copper is, the greater the radial stress component in the Al core and Cu case 

would be. The circumferential stress component though increases in the Al core and de-

creases in the Cu case at higher volume fractions of Cu. 
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Figure 6. Effect of Young’s modulus and Al/Cu volume fraction on the magnitude and distribution of radial and circum-

ferential stresses (a,b) 75%Al-CCA wire (c,d) 25%Al-CCA wire. 

 

(a) 

(c) 

(b) 

(d) 

Radial Stress Circumferential Stress 

0.3

0.2

0.1

R
a
d
ia

l 
S

tr
e
ss

 (
M

P
a
)

10 Normalized Distance Along Diameter

AlCu Cu

-0.4

-0.2

0

0.2

0.4

C
ir

c
u
m

fe
re

n
ti

a
l 

S
tr

e
ss

 (
M

P
a
)

1Normalized Distance Along Diameter

Cu

Al

Cu

0.12

0.10

0.08

0.06

0.04

0.02

R
a
d

ia
l 

S
tr

e
ss

 (
M

P
a
)

10 Normalized Distance Along Diameter

Al

Cu Cu

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

C
ir

c
u
m

fe
re

n
ti

a
l 

S
tr

e
ss

 (
M

P
a
)

1Normalized Distance Along Diameter

Al

Cu Cu



Materials 2021, 14, 6305 11 of 19 
 

 

4.3. CCA and ACCA Elastoplastic Simulations 

Figure 7 shows the axial stress-strain curves of the CCA samples of the four afore-

mentioned volume fractions simulated with elastic-plastic behavior along with the exper-

imental pure Cu and Al curves. The tensile stress increases with a rise in the Cu volume 

fraction as expected. Figure 8a,b summarize how transverse stresses evolve during nu-

merical tensile testing of CCA wires with four different volume fractions. The 3D graphs 

of Figure 8 contain two horizontal and one vertical axes. One of the two horizontal axes 

represents the axial strain and the other axes show the distribution of radial/circumferen-

tial stress (at each strain level) versus the normalized distance along the diameter of each 

wire between each 0 and 1 with the corresponding volume fraction of Al determined. The 

Al core and Cu case areas are depicted on the distribution profiles. The three stages indi-

cated in three different colors correspond to the strain ranges of the three common regions 

on the axial stress-strain curve of concentric composite cylinders (CCA wires in this study) 

arising from the varying Poisson’s ratio of each phase during tensile testing [9]. The main 

purpose of the 3D diagrams is to demonstrate the order of magnitude of transverse 

stresses that develop during numerical tensile testing of CCA wires and therefore a fur-

ther explanation about those three regions is avoided. The maximum magnitude of radial 

and circumferential stresses in samples of all volume fractions is reached at the onset of 

the second stage as the first component (Cu) begins yielding. A comparison between the 

magnitude of the various stress tensor components from Figures 7 and 8. underpins the 

fact that the axial stress remains by far the predominant component in both elastic and 

plastic domains of CCA wires during tensile-testing. 

 

Figure 7. Simulation stress-strain curves of CCA samples of four different volume fractions. 
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(a) 

 
(b) 

Figure 8. Development of (a) radial and (b) circumferential stresses in numerically tensile-tested CCA wires with vari-

ous volume fractions. 

Figure 9 shows the simulation axial-stress-strain curve of the ACCA wire containing 

25% Al. Radial and circumferential stress fields at a total strain of ≈0.2% are illustrated in 

Figure 10a,b, respectively. This is the strain level at which the maximum magnitude of 

transverse stresses was reached during numerical tensile-testing of the architectured 
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sample. Similar to CCA wires, the above strain level corresponds to the onset of stage II 

at which one of the components begins yielding first in the ACCA sample. The radial and 

circumferential stress distribution patterns across the ACCA wire cross-section is though 

distinctively different from those of the CCA wires throughout tensile testing. The most 

prominent feature is the channels of negative and positive transverse stresses evolving in 

the inter-fiber space of the copper matrix, pairs of which are depicted in Figure 10a,b 

(white circles). Figure 10c,d show the distribution of radial and circumferential stresses at 

the end of the numerical tensile test (at ≈1% strain). The magnitude of transverse stresses 

nears zero and their distribution becomes homogeneous at this stage. Note that a coarser 

mesh than that of Figure 3b was used to reduce the computational cost since the numerical 

solution was well converged with even coarser mesh. 

 

Figure 9. Simulation stress-strain curve of ≈25%Al-ACCA sample. 
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(c) (d) 

Figure 10. (a) Radial and (b) circumferential stress distribution and magnitude of ≈25%Al-ACCA sample (at ≈0.2% strain) 

(c) radial and (d) circumferential stress distributino at the end of the numerical tensile test (at 1% strain). 

4.4. Residual Stresses 

Stress-strain curves of numerically tensile-tested ≈25%Al-ACCA and 25%Al-CCA 

wires, with and without predefined residual stress fields, are plotted in Figure 11. The 

stress-strain curves of residual stress-free ACCA and CCA lie over one another as shown 

in this graph. Figure 11 allows comparisons to be made between CCA and ACCA samples. 

It reveals the role of architecture. It is implicative of the consequential impact of  the resid-

ual stress profile and particularly compressive residual stresses built up in the inner sec-

tion of cold-drawn samples. According to Figure 11, −90 MPa of compressive and 10 MPa 

of tensile residual stress with the earlier-mentioned configuration put the yield strength 

of CCA and ACCA by about 10 and 15 MPa above the stress-free curves respectively. A 

higher-magnitude compressive residual stress of −120 MPa (i.e., −120 MPa/10 MPa) in-

creases the yield strength by about 20 MPa. Please note that these positive deviations are 

not meant to imply that the presence of residual stresses improve the yield strength. Near-

surface tensile residual stresses could actually have deleterious effects on the tensile 

strength as referred to earlier. It is merely because of the way the residual stress fields are 

defined based on the analytical model in [25]. Residual stress-free curves are simply pre-

sented as a baseline for comparison. The red curves with residual stress fields are to be 

compared. 

 

Figure 11. Numerical stress-strain curves of ≈25%Al-ACCA and 25%Al-CCA wires (with and with-

out residual stress fields). 
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5. Discussion and Outlook 

The experimental results revealed a slightly increase in the tensile flow stress of the 

two architectured Cu-Al wires compared to the rule of mixtures’ prediction. The two key 

parameters I- transverse stresses and II- processing-induced residual stresses were inves-

tigated via finite element analysis as the potential sources of this behavior. The two dif-

ferent features and their implications on the mechanical behavior are discussed in the fol-

lowing section. 

5.1. Elastic-Domain Transverse Stresses in CCA Samples 

The features of interest in the elastic-domain simulations of CCA wires were the or-

der of magnitude of radial and circumferential stresses and the ways this magnitude 

changes influenced by the parameters involved. Figure 6a–d illustrate how the two pa-

rameters Young’s modulus and volume fraction of each phase affect the evolution of 

transverse stresses as explained in the results section. It is evident from those figures that 

the maximum magnitude of both radial and circumferential stress components is on the 

order of tenths of a megapascal in all cases. This is while the axial stress component de-

veloped in the CCA samples for a corresponding elastic strain of 0.05% (from the linear 

rule of mixtures) is on the order of about 63 MPa for the 25%Al-ACCA and 45 MPa for the 

75%Al-ACCA sample. This implies the quite weak contribution of transverse stresses 

evolved in the elastic domain of axially strained CCA wires, consistent with the analytical 

model developed by Ebert et al. [9] for concentric cylindrical composites. 

5.2. Transverse Stresses in CCA and ACCA Samples with Elastic-Plastic Behavior 

It was pointed out earlier that there is a strain range between the onset of plasticity 

in the first and second components of a bimetallic cylindrical composite during which a 

greater Poisson’s ratio difference and consequently higher-magnitude transverse stresses 

may be expected. However, two other major factors also determine the significance of the 

developed radial and circumferential stresses contributing to the axial stress-strain behav-

ior. The two other factors are 1- volume fraction of each phase, 2- the ratio of their elastic 

moduli [9]. The Young’s moduli of experimentally tensile-tested as-drawn pure copper 

and pure aluminum are 129 and 66 GPa, respectively (Figure 2). Figure 8a,b with four 

different volume fractions of numerically tensile-tested CCA wires provide a good ap-

proximation of the order of magnitude of radial and circumferential stresses. It can easily 

be seen from these figures that the maximum magnitude of transverse stresses would not 

exceed a few megapascals for different Al/Cu volume fractions. This is because of the rel-

atively small ratio of the Young’s modulus of Cu to that of Al (calculated from the exper-

imental stress-strain curves) and again implies the negligible contribution of transverse 

stresses to the axial stress-stain behavior of CCA wires whose axial stress-strain curves 

are plotted in Figure 7. Furthermore, it can be deduced from Figure 8b that the greater the 

volume fraction of one component is, the smaller the magnitude of circumferential stress 

would be in that component. 

Evolution of the maximum radial and circumferential stress values during numerical 

tensile-testing of a ≈25%Al-ACCA wire modelled from its actual transverse cross-section 

(see Figure 3a,b) is shown in Figure 10a,b. The maximum magnitude of transverse stresses 

(about ±2 MPa) developed in the ACCA sample is of almost the same order of magnitude 

of maximum transverse stresses in its CCA counterpart (25%Al–75%Cu). This indicates 

the fact that architecture does not change the magnitude of transverse stress components 

and the magnitude is merely a function of volume fraction. The distribution of radial and 

circumferential stresses, however, interestingly changes due to the novel fiber-matrix con-

figuration of ACCA compared to CCA. It can be observed in Figure 8a that the sign of the 

radial stress component in both Al core and copper case of CCA wires remains positive 

throughout the tensile test. Figure 8b also indicates that the sign of the circumferential 
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component in CCA wires is positive in the Al core and negative in the Cu case all along 

the test. 

Nevertheless, there are channels of both negative and positive radial and circumfer-

ential stresses in the inter-fiber space of the Cu matrix of ACCA wires throughout the 

tensile test, as shown in Figure 10a,b. This feature may have important implications in 

terms of interfacial damage initiation and propagation. 

However, the feature of interest in this study is the magnitude of transverse stresses 

developed during tensile testing of CCA and ACCA wires. To conclude sections 5.1 and 

5.2, it can be inferred that the magnitude of radial and circumferential stresses evolved in 

CCA and ACCA wires is quite small that transverse stresses cannot be considered as the 

underlying reason behind the improved yield strength of ACCA wires. 

5.3. Mechanical Bonding at the Al-Cu Interface 

The mechanical bonding at the Al-Cu interface of both cold-drawn CCA and ACCA 

wires is one of the key aspects to be studied when it comes to the axial stress-strain be-

havior of these bimetallic composites. The focus of this numerical study is, however, to 

discover the origin of the enhanced strength of ACCA. There are studies attributing the 

positive deviation from the rule of mixtures (RoM) and improved strength of similar bi-

metallic composite systems, such as Cu-Nb, to the interface. Those observed strengthen-

ing effects have been justified by models such as Hall-Petch Barrier and Geometrically 

Necessary Dislocations (GND). However, both models are valid where there is a size ef-

fect involved and interface (fiber) spacing is on the order of nanometer [27]. Whilst there 

are nearly 200 grains, as large as 500 nm each, situated in the space between every two Al 

fibers in the 25%Al-ACCA sample investigated in this study and therefore no size effect 

is expected. Perfect interface was one of the assumptions made in this work given that any 

sort of imperfection can potentially bring about loci of stress concentration and be detri-

mental to the yield strength. Although, all the interface-related discussions are relevant as 

long as the fiber-matrix bonding is in place. Possible sources of strengthening are the focal 

points of the current investigation and therefore the Al-Cu interface was not considered 

since it is not expected to bring about any strengthening effect as argued above. Although, 

it is intended to conduct a separate study into understanding the bond strength and inter-

facial behavior of Al-Cu composite wires in both as-drawn and heat-treated conditions in 

prospect. 

5.4. Residual Stresses 

A comparison-based approach was adopted towards realizing the impact of residual 

stresses on the axial stress-strain behavior of CCA and ACCA wires. One should note that 

residual stresses already contribute to the tensile stress-strain curve of the cold-drawn 

pure Cu and Al rod samples used as simulation input. However, co-deformation and ar-

chitecture are expected to form more compressive residual stresses consistent with the 

following analysis. As illustrated in Figure 11, the simulation curves of the residual stress-

free 25%Al-ACCA and 25%Al-CCA samples (dark blue curves) almost entirely overlap 

because of their similar Al volume fraction as discussed in the Section 5.2. In a first attempt 

to discover the net effect of architecture in presence of predefined residual stress fields, 

CCA and ACCA samples were compared irrespective of the different amount of plastic 

deformation they actually experience. 

A comparison between the numerical stress-strain curves of the 25%Al-ACCA and 

25%Al-CCA wires in Figure 11 shows that the ACCA curve (red with horizontal diamond 

markers) lies well above the CCA curve (dashed red curve). This clearly demonstrates that 

the architecture can improve the yield strength under entirely similar conditions (identical 

residual stress field configurations—see Figure 4) in presence of drawing-induced resid-

ual stresses. This can be ascribed to the fact that the novel fiber-matrix configuration of 

ACCA compared to that of CCA of the same volume fraction, brings more of the stronger 

phase (that is the copper matrix) into the central part of the composite wire where there is 
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a region of processing-induced compressive residual stresses. This mechanism is con-

sistent with the smaller deviation of the ACCA22 wire from the rule of mixtures’ prediction 

when compared with the ACCA61 since the volume fraction of copper in the compressive 

stress area is lower in ACCA22. 

Moreover, a second comparison with the purpose to provide insights into discover-

ing the origin of the improved strength of ACCA can be made between the two similar 

ACCA61 simulations with compressive residual stress fields of different magnitude (solid 

red curves with markers—see Figure 9). The stress-strain curve of the ACCA sample with 

a greater compressive residual stress field obviously deviates upwards and shows greater 

yield strength by lying above. To determine the implications, as mentioned in the Residual 

Stresses subsection of the Numerical Procedure section, drawing-induced residual 

stresses come from the non-uniform plastic deformation evolved during the process ac-

cording to the literature. Bringing some portion of the copper to the center of the wire in 

the architectured samples could be expected to bring about deformation that is more ho-

mogeneous. This can reduce the undesirable tensile residual stresses near the surface of 

the wire that in turn leads to the prevalence of compressive residual stresses built up in 

the central region of ACCA wires. Hence, the stress-strain curve of an ACCA sample can 

exhibit significantly high yield strength in the exact same fashion that the ACCA sample 

with a larger compressive residual stress field behaves in Figure 11. 

This strong implication necessitates further simulations and experimental work to 

model the manufacture process and drawing-induced residual stresses along with exper-

imental measurements of these stresses. A sound comprehension of the tensile behavior 

of Al-Cu composite wires lays the groundwork for developing a deeper understanding of 

the mechanical properties of both conventional and novel configurations with different 

heat-treatment conditions, which in turn leads to optimum production of theses wires. 

6. Conclusions 

The tensile behavior of as-drawn conventional copper clad aluminum and architec-

tured Al-Cu composite wires reveals an improvement in the strength of the architectured 

fiber-matrix configuration. The influence of the two key parameters 1-transverse and 2-

residual stresses as the potential sources of the above behavior were examined using finite 

element analysis. The tensile response of axially strained conventional (CCA) and archi-

tectured (ACCA) copper-clad aluminum wires were then simulated under the influence 

of those two parameters. The findings suggest the following conclusions: 

• The effect of the various possible Al-Cu Young’s modulus ratios and volume frac-

tions on the evolution and magnitude of transverse stresses was found to be trivial 

(a few tenths of a megapascal) in Al-Cu composite wires. 

• Contribution of transverse stresses to the axial stress-strain behavior of both CCA 

and ACCA wires is insignificant (3 MPa on average at most). 

• Distribution of transverse stresses in architectured Al-Cu wires is interestingly dif-

ferent from that of conventional CCA wires showing channels of both negative and 

positive radial and circumferential stress components throughout the tensile test. 

• Drawing-induced residual stresses with magnitudes on the order of tens/hundreds 

of megapascals have strong implications in terms of the observed strengthening ef-

fect of architecture 

• ACCA wires show improved strength compared to CCA wires in presence of identi-

cal compressive and tensile residual stress fields because of the novel fiber-matrix 

configuration of the architectured samples. 

• More uniform plastic deformation in ACCA wires and the formation of compressive 

residual stresses in the central portion of the Cu matrix are highly likely the reasons 

behind the enhanced yield strength observed in ACCA composite wires. 
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