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A B S T R A C T

Sandwich structures are widely used in many industrial applications and especially in light aviation. The local
buckling phenomenon named “wrinkling” is one of the primary causes of compressive failure of such struc-
tures. Its calculation is a difficult practical problem since this phenomenon cannot be captured by the GFEM
(Global Finite Element Model) classically used for aircraft structure sizing. Therefore, pre‐sizing involves the
use of a wrinkling model, which can be found in the literature. In practice, such models are used with high
safety factors by the industry. This paper proposes an evaluation of analytical wrinkling formulas in an indus-
trial setting. Realistic applications involve a framework (3D stress state, orthotropy, skin asymmetry) far from
the assumptions on which most of the analytical formulations are based. The case study is a sandwich compos-
ite beam subjected to uni‐axial compressive load. Limitations and assumptions of the analytical wrinkling mod-
els studied are quantified and a discussion on the relevance of using simple formulas for the design of sandwich
structured composites is developed.
1. Introduction

Sandwich structures consist of two thin, high‐strength material
skins that are separated by a thick, relatively weak, lightweight mate-
rial, the core. The high specific bending stiffness renders sandwich
structures attractive for load bearing design solutions with consistent
weight savings. They have been widely used in aviation for more than
a hundred years now [1]. However, they are mainly used for primary
structures only in low carrying and non‐pressurized structures like
helicopters, or new generation aircraft composed of carbon sandwich
primary structures, such as the “Elixir” from Elixir Aircraft (see
Fig. 1), certified by the EASA in June 2020.

Most of the time, asymmetric structures are used [2–4] and, due to
weight constraints, the skins can themselves be non‐symmetric com-
posite stacks.

Local buckling, called “wrinkling”, is one of the main causes of fail-
ure of these light structures. It is a local instability that can occur when
a real sandwich structure is subjected to compression or shear loading,
which manifests itself in the form of short wavelength wrinkles in the
skins, of the order of the thickness of the sandwich. Three wrinkling
modes may be observed [5]: antisymmetric wrinkling, symmetric
wrinkling and one‐sided wrinkling (see Fig. 2).

In an industrial approach to structural design, global finite element
models (GFEM) are used for pre‐sizing large aeronautical structures
(wings, fuselage etc.). GFEM are made with large shell elements and
cannot capture wrinkling modes because of the short wavelengths
involved and the 3D nature of the phenomenon. The engineer there-
fore needs an effective, efficient tool to prevent the occurrence of wrin-
kling. A methodology based on a local analytical approach, if possible,
providing reliable, conservative results and validated by numerical
models, needs to be developed.

Analytical wrinkling formulas have been under development since
the Second World War. The simplest model is the Winkler formulation,
in which the elastic response of the core is defined by springs in com-
pression. This excludes shear deformation of the core and only one‐
sided or symmetric modes can be represented. Reference can be made
to the books by Hetenyi [6] and Allen [5].

Then come the formulations based on an isotropic elastic founda-
tion, where two major groups are represented. For the first group,
the core is modelled as a 1‐dimensional elastic medium, i.e. the core
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Fig. 1. The Elixir, EASA certified two-seater light aircraft (https://elixir-
aircraft.com).

Fig. 2. The different wrinkling modes.
supports stresses only in the thickness direction, whence the name
“anti‐plane core stress assumption”. This is the case of Hoff and Maut-
ner’s pioneering formulation [7] where the perturbation is assumed to
decay linearly over the core thickness, unlike in Plantema’s work [8],
where the core is considered to be infinitely thick and the perturbation
to decay exponentially. For the second group, the core is modelled as a
2‐dimensional elastic medium. For Allen [5], then later Niu and Tal-
reja [9], the axial stiffness of the core is retained. In this way, an iso-
tropic core is conveniently represented, which has a mechanical
response characterized by an Airy function. These pioneering formula-
tions [7,8,5] can be expressed as:

σcrit ¼ Q Ef EcGc
� �1=3whereQisaconstant

Ec;Gc and Ef are, respectively, the core normal modulus, the core
transverse shear modulus and the skin Young’s modulus. The value
of constant Q varies from 0.4 to 0.9 depending on the authors (0.91
for Hoff and Mautner, 0.85 for Plantema and 0.78 for Allen). Hoff
and Mautner, after a test campaign, recommend a “practical” constant
Q of 0.5 [7]; in the sense that Q plays the role of a safety coefficient
and masks the complex mechanics of local instabilities.

These formulations have been enriched by adding orthotropy: in
the skins with Fagerberg and Zenkert [10] and in the core with Vonach
and Rammerstorfer [11]. The possibility of a multiaxial loading is pro-
posed by Sullin [12], Birman et al. [13] and summarized in Kassa-
poglou’s book [14].

Following a different path, many authors have tried to achieve uni-
fied models capable of describing global and local modes (both sym-
metric and antisymmetric) to investigate the possible interactions
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between these different behaviours. The first work in this sense was
done by Benson and Mayers [15] and taken up by Hunt [16] then
by Léotoing et al. [17] with an investigation of the non‐linear post‐
buckling behaviour [18]. Finally, Douville and le Grognec propose
an analytical model that, to the authors' knowledge, is the most com-
plete and the most recent [19]. It is also noteworthy that these
approaches are based on a beam assumption although real structures
are almost shells.

Other authors have chosen to be as rigorous as possible at the cost
of numerical resolution. This is the case of Ji and Waas [20]. In this
framework, a standardization of kinematic theories for multi‐layered
plates has been performed by Carrera [21]. The Carrera Unified For-
mulation (C.U.F.) is a compact index notation, where different kine-
matic models are formulated with the corresponding governing
equations implemented in a single computer program. This framework
has been used by D'Ottavio and Polit to provide a numerical wrinkling
model [22] based on a “Layer‐wise” theory, whose principle is to dis-
cretize the sandwich in several numerical layers in order to refine the
model if necessary. C.U.F. has since been formally generalized to a
“sublaminate” approach referred to as S.G.U.F., which allows dedi-
cated models to be introduced for skins and the core, thus reducing
the computational cost of the wrinkling model without affecting the
accuracy [23,24].

These models are validated by referring to benchmark problems for
which exact analytical solutions are available or Finite Element (FE)
results have been obtained [19,23–25]. However, while this demon-
strates a rigorous and scientific approach to performing model valida-
tion, these numerical models have not been challenged by a realistic
approach. The industrial vision, i.e. the practical use of these models
for pre‐sizing sandwich structures against wrinkling, is not very pre-
sent in the literature.

The ideal, from the design engineer's point of view, would be to
define the local buckling phenomenon by an analytical formulation
with as few parameters as possible. The objective of the designer is
not absolute precision but the coherence of the model in various, real-
istic configurations. In this sense, Zenkert’s sandwich construction
handbook [26] and NASA’s technical documents of the 19600s [12]
recommend the historical formula (1) with the “practical” constant
Q of 0.5, which gives the formula still massively used by manufactur-
ers for the design of local instabilities in sandwich structures. Gener-
ally speaking, manufacturers are using Hoff and Mautner formulae
with high security coefficients–up to 3, for example.

Therefore, the purpose of this paper is to provide a benchmark that
can demonstrate the limits/relevance of these analytical models in an
actual industrial application.

The work presented here is a comparison of the critical wrinkling
loads between a realistic configuration modelled by a 3D FEM, the cor-
responding solutions of different analytical models in the literature,
and the numerical S.G.U.F. model of D’Ottavio and Polit [23]. This
numerical model is found to be situated between the analytical formu-
lations and the FEM. In fact, the numerical model uses the same 2D
stress/strain state and boundary conditions as the analytical formula-
tions. However, its very rich, quasi‐3D formulation relaxes many of
the kinematic hypotheses upon which the analytical models are formu-
lated and is hence close to the FE model. The comparison of the
numerical model with the analytical formulas highlights the approxi-
mations of the kinematic assumptions, and the comparison with the
3D FEM shows the influence of the 3D stress state, as well as the
boundary conditions inherent in the FEM (see Fig. 3).

With the above mentioned purpose in mind, the paper is organized
as follows. Firstly, the case study is described, with the analytical,
numerical, and FE models used; subsequently, the benchmark is dis-
cussed, by comparing the models with the 3D FEM and looking into
correlations. Finally, some conclusions are drawn and perspectives
envisaged.

https://elixir-aircraft.com
https://elixir-aircraft.com


Fig. 3. Comparison scheme of the different models.
2. Case study

The case study concerns a range of sandwich composite beams sub-
jected to uni‐axial compressive loading. The sandwich structures are
consistent with those used by Elixir Aircraft with orthotropic balanced
carbon skins and honeycomb or foam core. The dimensions of the
beam are 200 × 60 × 50 mm (see Fig. 4). Sandwich structures gener-
ally used in lightweight aircraft have thicknesses that do not exceed
10 mm, which is not respected here (thickness = 50 mm). This signif-
icant thickness is preferred to make local wrinkling modes dominant
over global buckling modes.

2.1. 3D FEM reference model

The 3D framework allows reality to be approached in the sense that
a 3D FEM could be used by an engineer in a test/simulation dialogue,
or in a local dimensioning approach. Abaqus software is used. The
mesh size is fine enough to take account of the least influence on
the critical buckling load [18]. The average element size is 1 mm
and at least 4 elements per half wavelength are observed in the most
critical case (see Fig. 4). The types of elements used are also noted
in Fig. 4.

Boundary conditions are not totally in conformity with analytical
models. The analytical formulations and the numerical S.G.U.F. model
are based on a periodic response over the length of the sandwich
Fig. 4. 3D FEM with its b

3

beam. This can be interpreted as an infinite medium: no boundary con-
dition other than that formed by the trigonometric functions that
define the solution is considered. In FEM, the boundary conditions
always have an effect but it can be reduced if the length of the beam
is sufficiently greater than the half wavelength [18]. Linear perturba-
tion buckle computation (eigenvalue prediction) is used to define the
reference buckling load.

2.2. Analytical wrinkling formulas used for the benchmark

In general, wrinkling analytical models are taken to be infinitely
long skins attached to an elastic foundation (see Fig. 5). The skins
and the foundation are of width b, and a plane stress/strain assump-
tion is used in the ZX plane. A plane stress assumption can be used
if b is small, or a plane strain assumption can be used if b is considered
infinite. The cross‐section is symmetric, i.e., ttot = tc + 2ts, where tc
and ts denote the core and skin thicknesses, respectively.

The buckling differential equation of the face supported by an elas-
tic foundation can be written as [9]:

Ds
d4ws

dx4 þ d
dx

Ps
dws

dx

� �
� bσ þ dm

dx
¼ 0

where Ds is the flexural rigidity of the skin, Ps is the axial compres-
sion load carried by the skin, ws is the vertical deflection of the skins
andσ is the corresponding normal stress between the face and the elas-
oundary conditions.



Fig. 5. Geometry of analytical models.
tic foundation. The distributed bending moment mis often neglected as
a second order effect because of the thin face assumption [5]. Due to
the huge difference of axial stiffness between the two materials, the
uniaxial stresses in the precritical state are far larger in the skins than
in the core. The initial stress is considered to be in the skins only. Then
the skins are assumed to buckle into a trigonometric function with a
half wavelength l:The main difference from the analytical model is
the translation of normal stress σ and the propagation of the perturba-
tion along the core thickness.

Analytical formulas are chosen in the literature in order to cover a
broad panel of kinematics hypotheses. Also, attention is paid to the
“usability” of the formulation from a designer’s point of view. The for-
mulation must be easily usable on an excel sheet, with few material
parameters (engineering constants). A minimization with 1 variable
is accepted.

A brief reminder of the main particular assumptions used in the
models is given below. More details and formulas can be found in
the references.

Assumptions of the models:

The Winkler formulation [27]

• Core: elastic springs of stiffness k ¼ Ec
tc=2

.

• Skins: isotropic Euler‐Bernoulli beams in pure bending.
• Solution method: direct solution of Partial Differential Equation
(PDE).

Hoff & Mautner, 1945 [7]

• Core: isotropic continuum under anti‐plane core stress assumption.
• Skins: isotropic Euler‐Bernoulli beams in pure bending.
• Solution method: potential energy minimization.

Léotoing et al., 2002 [17]

• Core: isotropic continuum with finite thickness, the interactions
between faces are retained. Transverse shear stress is linear other
the core thickness.

• Skins: isotropic Euler‐Bernoulli beams in pure bending.
• Solution method: linearization of PDE constructed by the Principle
of Virtual Work.

Niu & Talreja, 1999 [9]

• Core: isotropic continuum with finite thickness. Stress field is
expressed by Airy function in the form of a Fourier series.

• Skins: isotropic Euler‐Bernoulli beams under pure bending.
• Ritz Method

Douville & Le Grognec, 2013 [19]
4

• Core: isotropic continuum with finite thickness.
• Skins: isotropic Euler‐Bernoulli beams in pure bending.
• Solution method: Differential equations obtained from a general
bifurcation in a 3D framework then restrained in a 2 dimensional
framework to obtain an analytical formula.

3. Plane strain assumption

The plane strain assumption is more coherent for the comparison
with a 3D FEM. Because the width b is not negligible, the plane strain
assumption is thus taken for the analysis. To pass from plane stress
assumption to plane strain assumption, the Young’s modulus and Pois-
son’s ratio are modified such that:

E ! E
1� v2ð Þ andv !

v
1� vð Þ
4. Composite laminated skins

Composite laminated skins are studied, and the use of the flexural
rigidity Df in the direction of the compressive load is recommended
instead of the membrane rigidity Ef :

The flexural rigidity of the laminate is defined as:

Df ¼ 12
D�

11t
3
f

The flexural orthotropic Poisson’s ratios are defined as:

vfxy ¼ �D�
12

D�
11
andtheinversevfyx ¼ �D�

12

D�
22

where the Matrix D� is the inverse of the bending stiffness matrix
of the laminate. If the coupling terms between curvature and in‐plane
strains (matrix) is not zero, which is the case for asymmetric laminates,
the bending stiffness calculated, Df , do not consider this coupling and
will be erroneous (see discussions on stacking with asymmetric skins).

4.1. Quasi-3D SGUF model

The bifurcation buckling problem is stated in weak form expressing
the stability of a linear elastic body in the x‐z plane subjected to an
axial initial stress σ0xx [35]:R

L

R
ttot

δɛxx C11ɛxx þ C13ɛzz
� �

þ δɛzz C13ɛxx þ C33ɛzz
� �

þ δγxzC55γxz

h
þδux;x λσ0xxux;x

� �þ δuz;x λσ0
xxuz;x

� ��dzdx ¼ 0
ð1Þ

where the critical buckling load is defined by the scalar parameter λ
that multiplies the initial stress characterizing the initial equilibrium
condition. The perturbation strains are defined by the usual linearized
geometric relations εxx = ux,x , εzz = uz,z , γxz = ux,z + uz,x .

The initial stress σ0xx is defined in terms of a uniform axial strain ɛ0xx
produced by an end shortening of the whole sandwich strut. Therefore,



the initial stress is constant across each ply but is non‐uniform across
the sandwich cross‐section as it depends on the stiffness of the ply
(p), see also [24]:

σ0 pð Þ
xx ¼ Q pð Þ

11 ɛ
0
xxwithQ

pð Þ
11 ¼ C

pð Þ
11 � C

pð Þ
13 C

pð Þ
31

C
pð Þ
33

ð2Þ

The total axial load per unit width is obtained as the sum of all ply‐
wise stresses:

P ¼
Z
htot

σ0 pð Þ
xx dz ¼ ε0xx

Z
htot

Q pð Þ
11 dz ¼ A11ε

0
xx ð3Þ

The stiffness coefficients Cpq with p; q ∈ {1; 3; 5} in Eqs. (1) and
(2) are kept constant during the perturbation from the initially stressed
state. In a plane strain setting (εyy = 0), these coefficients are the usual
stiffnesses defining the 3D generalized Hooke law (Cpq ¼ Cpq), whereas

they are the reduced stiffnesses Cpq ¼ Cpq � Cp2C2p
C22

if a plane stress set-
ting is employed (σyy = 0). The weak form Eq. (1) allows the a priori
assumptions to be introduced for the displacement field that describes
the perturbed (buckled) shape across the thickness ttot of the sandwich
strut. These are formulated according to the S.G.U.F. approach as a
Layer‐Wise (LW) assembly of NL = 3 sublaminates representing the
2 skins and the core, where an arbitrary model expressed in Unified
Formulation is adopted for each sublaminate, see [36] for more
details. The resulting approximation is thus expressed as

ux x; zð Þ ¼
[3
k¼1

∑
Nk
ux

τ¼0
Fk
τ zkð Þbuτ xð Þ; uz x; zð Þ ¼

[3
k¼1

∑
Nk
uz

τ¼0
Fk
τ zkð Þbwτ xð Þ ð4Þ

where Fk
τ are the thickness functions used in the kth sublaminate

and expressed in function of its local coordinate zk. The present
Quasi‐3D (Q3D) model adopts a higher‐order Layer‐Wise (LW) descrip-
tion for providing reference results:

• LD3;2 for the skin laminates: the axial displacement ux(z) is cubic
and the out‐of‐plane displacement, uz(z), quadratic in each ply.

• ED12;12 for the core: the axial and out‐of‐plane displacements ux(z)
and uz(z) are represented by a 12th order polynomial.

The thickness functions are introduced into Eq. (1); the derivatives
and integration along z are carried out explicitly and the following
arrays are computed upon cycling over all indices τ,ρ ∈ [0,Nk] and
assembling all ply‐wise (superscript (p)) contributions for all sublami-
nates (superscript k):

Zτρ
uu11;Z

τρ;z
uw13; Z

τ;zρ;z
ww33f g ¼

[3
k¼1

Z
hk

C pð Þ
11 F

k
uτF

k
uρ ;C

pð Þ
13 F

k
uτF

k
wρ ;z

;C pð Þ
33 F

k
wτ ;z

Fk
wρ ;z

n o
dzk

ð5aÞ

Zτ;zρ;z
uu55 ;Z

τ;zρ
uw55; Z

τρ
ww55f g ¼

[3
k¼1

Z
hk

C pð Þ
55 Fk

uτ ;z
Fk
uρ ;z

; Fk
uτ ;z

Fk
wρ
; Fk

wτ
Fk
wρ

n o
dzk ð5bÞ

ZG
τρ
uu;ZG

τρ
ww

� 	 ¼
[3
k¼1

Z
hk

Q pð Þ
11 Fk

uτF
k
uρ ; F

k
wτ
Fk
wρ

n o
dzk ð5cÞ

These arrays correspond to the model adopted for the sandwich
stack and include the linear stiffness contributions, Z, and the “geo-
metric” stiffness contributions, ZG. Contrary to the FEM and in analogy
to the analytical models presented in Section 2.2, this model adopts a
strong‐form solution along the coordinate x; the local stability equa-
tions in the domain × ∈ [0, L] and the required boundary conditions
are hence obtained upon applying the divergence theorem to the terms
whose virtual variations are derived with respect to x. The solution is
defined in terms of trigonometric functions as
5

buτ xð Þ ¼ Uτ cos
πx
Lx

� �
; bwτ xð Þ ¼ W τsin

πx
Lx

� �
ð6Þ

where Lx = L/m is the half‐wavelength of the periodic response.
This Navier type solution exactly verifies the essential boundary condi-
tions u3(x = 0, L) = 0 as well as the natural condition σpxx(x = 0; L)
= 0, stating that the external initial load σ0(p) remains constant
throughout the perturbation. The linearized stability equation is even-
tually cast in the conventional eigenvalue problem for a given half‐
wavelength Lx(m):

U
W


 �
m

⊺ KUU KUW

K⊺
UW KWW


 �
m

þ λm
KGUU 0
0 KGWW


 �
m

� �
U
W


 �
m
¼ 0

0


 �
ð7Þ

whose solution provides the through‐thickness modes [U;W]T cor-
responding to the half‐wavelength Lx = L/m and the associated scalar
parameters λm that define the critical loads Pcr(m) = λmP according to
Eq. (3). The buckling/wrinkling load is then found as the lowest crit-
ical load among all possible wavelengths:

P ¼ min
m

Pcr mð Þð Þatm ¼ m�; L�x ¼ Lx m�ð Þ ¼ L
m� ð8Þ
4.2. Cases studied

4.2.1. Materials used:
The properties of the materials used are industrial standards and

are proposed in Table 1.Table 2.

4.2.2. Stacking used:
Asymmetry is one of the characteristics of the sandwich skins used

in light aviation. An asymmetry parameter φ is defined from the posi-
tion of the skin’s neutral fibre (see Fig. 6):

φ ¼ c
a
withc ¼ � B�

11

D�
11

The position of neutral fibre in the skin is defined by
Mx zð Þ¼ ɛx zð Þ ¼ 0; where Mx zð Þ and ɛx zð Þ are respectively the bending
moment and the axial deformation along the skin thickness. A negative
value of φ means that the neutral fiber is moved inwards, i.e. in the
direction of the core of the sandwich.

Six sandwich stacking sequences are studied.
The ST‐0 stacking acts as a control configuration with symmetrical

skins and a homogeneous core. Then comes the more “technological”
stacking that can be found in a lightweight aircraft structure, with
asymmetric skins (ST‐1; ST‐3) and an orthotropic Honeycomb core
(ST‐2). Then a stacking sequence is defined with a large proportion
of UniDirectional plies that can take up a large part of the longitudinal
force (ST‐4) and, finally, a stacking with a single ply (ST‐5) is used.

5. Results and discussion

5.1. Wrinkling modes computed by the FEM

Niu & Talreja, Léotoing et al., and Douville & Le Grognec demon-
strate that the critical stress for asymmetric wrinkling is always the
lowest when the core is isotropic. However, when the skins are thin
with respect to the core thickness, the loads leading to asymmetric
and symmetric modes are almost equal, which is the case for this study
case (see Fig. 7).

It can be noticed that, for the stacking with orthotropic honeycomb
core (ST‐2), the symmetrical mode is preponderant. This phenomenon
has been reported by several authors [28,11,22]. D'Ottavio and Polit
explain that “in case of high orthotropy as honeycomb core, when
axial modulus is nearly equal to zero, the contribution of the trans-
verse shear energy gets negligible for the symmetric mode which



Table 1
Material properties used for the case study.

Table 2
Definition of the 6 sandwich stacking sequences.

Fig. 6. Definition of the asymmetry parameter φ.

Fig. 7. 3D FEM critical local buckling load for antisymmetric and symmetric modes.
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becomes preponderant whereas antisymmetric wrinkling mode is
indeed always associated with a transverse shear deformation of the
core.” As the symmetric mode shows a lower buckling load, only this
mode will be compared with the results of the analytical models.

5.2. “Radar” type comparison graphs

“Radar“ type comparison graphs were chosen to illustrate compar-
isons between the models. The different models are listed and pre-
sented in relation to the relative percentage gap between the
buckling loads of the models and that of the FEM. The dotted line seen
in the different graphs indicates perfect correlation with the FEM.

5.2.1. Homogeneous foam core
For the ST‐0 sandwich stacking (see Fig. 8), the Winkler formula-

tion does not match the FEM because it totally neglects shear stress
in the core, unlike the FEM, which models a continuum of quasi‐
isotropic medium.

Léotoing et al.’s model shows poor correlation. According to the
authors, the difference between analytical and numerical results can
be partly explained by the simplistic analytical shear stress distribution
(linear through the core thickness), which does not estimate the actual
energy contribution of the shear stress accurately [29].

Niu & Talreja, like Douville & Le Grognec, use an isotropic core for-
mation. In the FEM, the foam is slightly non‐isotropic in the sense that
the modulus E, the shear modulus G and the Poisson coefficient v are
not linked with the Lamé formulation: G ¼ E

2 1þvð Þ. In their models, only

the core modulus with Poisson coefficient is expressed; the core shear
modulus comes from Lamé’s formulation and should be 19.7 MPa
instead of the 30 MPa introduced in the FEM. Thus, in this case, the
models are conservative, which is interesting from an engineering
point of view. Unlike Hoff’s model with the theoretical coefficient.
The model with “practical” coefficient Q ¼ 0:5, is very conservative
compared to the FEM. This “abatement” comes from test observations
with their inherent aspects, boundary conditions, and defects [7],
whereas the FEM is a perfect framework.
Fig. 8. Radar type comparison graph for ST-0 sandwich stack
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5.2.2. Orthotropic honeycomb core
For the ST‐2 sandwich stacking (see Fig. 9), all the analytical mod-

els give poor results, which is quite understandable for Hoff and Maut-
ner, Niu & Talreja, Léotoing et al., and Douville & le Grognec, because
these models are constructed around a continuum isotropic core.

The Winkler model, neglecting the transverse shear of the core,
should be more coherent for sandwich with honeycomb, because the
axial honeycomb modulus is very low, so the contribution of the trans-
verse shear energy becomes smaller. That is why it is suitable for the
design of sandwich structures with honeycomb core according to a
recent NASA technical memorandum [30]. However, in the present
case, it shows bad correlation. D'Ottavio and Polit had shown the influ-
ence of the out‐of‐plane core orthotropy ratio X ¼ Ex=Ezon the wrin-
kling buckling load [22]. It appears that the contribution of the
transverse shear energy becomes negligible when the ratio is of the
order of X ¼ 10�4, as the Winkler formulation correlates well for this
type of ratio. However, in the case of the properties of the materials
studied here (see Table 1), its value is close to X ¼ 7 � 10�3 and the
transverse shear stress becomes non‐negligible. The in‐plane proper-
ties of honeycomb are not given by the suppliers, nor by the data bases
(MIL‐HDBK‐23 [31] or NCAMP). A value of 1 MPa is often used by the
engineers as the honeycomb axial stiffness. That said, it is understand-
able why this model is always used in an industrial setting: neglecting
the transverse shear limits the critical buckling load and it is
conservative.

5.2.3. Asymmetric skins
In Fig. 10, the results of the ST‐0, ST‐1 and ST‐3 sandwich stacking

are summed up. We recall that the coupling terms of a laminated skin
rigidity matrix are non‐zero in cases of asymmetric skin, and are not
considered in the flexural rigidity of the laminated skin. Surprisingly,
the stacking sequences with asymmetric skins (ST‐1; ST‐3) demon-
strate a similar level of correlation compared to the symmetric skin
stacking (ST‐0), which shows that, for asymmetric skins, up to 28%
offset of the neutral fibre from the mean plane geometry, the flexu-
ral/membrane coupling is not prevalent in the critical buckling load.
ing: symmetric balanced orthotropic skin with foam core.



Fig. 9. Radar type comparison graph for ST-2 sandwich stacking: Symmetric balanced orthotropic skin with honeycomb core.

Fig. 10. Radar type comparison graph for symmetric skins (ST-0) and asymmetric skin (ST-1; ST-3).
5.2.4. UD dominated stacking in skin
The stacking sequence ST‐4, with a high proportion of UD 0° ply,

shows correlation similar to that of the ST‐0 stacking sequence (see
Fig. 11). The improvement of Léotoing et al.’s model can be explained
by a longer buckling wavelength with the increase of the skin thick-
ness and modulus. The influence of transverse shear, which is the lim-
itation of this model, is less marked than for the case with short
wavelength [9].
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5.2.5. A single ply in skin
In the analytical models studied, the core does not take up any axial

load and the critical buckling load is computed as
Pcrit ¼ σcrit � 2 � b � tf . In the ST‐5 stacking sequence, the core takes
up about 9% of the total load applied to the sandwich beam. This
explains why the correlation of the analytical models, for a stacking
sequence with a very small skin thickness, is less, in absolute value,
than for a configuration with a thicker skin (see Fig. 12). The hypoth-



Fig. 11. Radar type comparison graph for ST-0 and ST-4 with a large proportion of UniDirectional ply.

Fig. 12. Radar type comparison graph for ST-0 and ST-5 with a single ply.
esis that the skins take up the totality of the pre‐critical axial load is
conservative and thus interesting from the engineering point of view.

6. Conclusions

This paper presents a benchmark of analytical wrinkling formulas
compared to a 3D finite Elements Model. The study case is a sandwich
composite beam subjected to uniaxial compressive loading with stack-
9

ing sequences and material properties (orthotropic balanced carbon
skins and honeycomb or foam cores) in accordance with an industrial
application in light aviation. These analytical models are challenged
under a framework (3D stress state; orthotropy; skin asymmetry) far
from the assumptions on which the analytical formulations were
based. The paper shows how the analytical solutions behave compared
to a realistic 3D FEM, and the conclusions can be summarized as
follows:



• The symmetrical mode is the predominant wrinkling mode for hon-
eycomb core stacking, as already observed in the literature
[28,11,22].

• Hoff and Mautner’s formula with the practical constant Q ¼ 0:5 is
conservative for all sandwich stacking sequences, sometimes up
to −50%, and an interesting conservative correlation is observed
for honeycomb core stacking (around −20%)

• The models by Niu & Talreja and Douville & Le Grognec show an
interesting conservative correlation for foam core configurations
(between−10% and−20%). On the other hand, they are unusable
(too optimistic) for sandwich beams with honeycomb core. The iso-
tropic continuum core hypothesis is too far from the honeycomb
mechanical characteristic.

• The Winkler formulation, which is used for the design of sandwich
structures with honeycomb core [30], is too conservative for the
honeycomb core stacking studied, because the out‐of‐plane ortho-
tropy ratio (X ¼ Ex=EzÞ chosen is too high to allow the transverse
shear energy to be neglected.

For foam core stacks, the formulation is unusable because the com-
pressive spring foundation is too far from the foam continuum
medium.

• The asymmetric skins studied had little influence on the wrinkling
load.

• In the case of very thin skins with high core thickness, the core
takes up a non‐negligible part of the total load applied to the sand-
wich beam, which is not considered in the analytical buckling load
computations. Nevertheless, this assumption remains conservative.

• This study shows that classical analytical formulations are not suit-
able for recent advanced sandwich structures and generate over‐
conservative or unreliable results.

• The Q3D SGUF numerical model shows a quasi‐perfect correlation
with the FEM for all sandwich stacking sequences studied. The
plane strain assumption used in this model is good enough to rep-
resent the 3D sandwich beam subjected to compressive uniaxial
load that was considered. This most advanced formulation, of the
C.U.F. formulation class, is the only one that should be imple-
mented in a python routine in a GFEM and can be considered for
the design of actual lightweight aeronautical structures. Its reliabil-
ity can permit the currently used security coefficient to be
diminished.

This study has some limitations, which bring perspectives. First, the
case study imposes a considerable core thickness (50 mm), which
means that the skins’ interaction mechanisms are ignored. This is
not the case for a sandwich structure used in light aviation, where
the core thickness is around 10 mm. Secondly, the analytical model
is evaluated in a perfect framework. However, it is known that the
wrinkling phenomenon is sensitive to boundary conditions and
defects–hence the great difficulty of correlation between experiments
and analytical models [32–34]–and few wrinkling test campaigns are
available in the literature. For a full evaluation, an experimental test/-
analytical models dialogue needs to be completed. Finally, uniaxial
compressive load is a particular loading case and sandwich structures
are often subject to multiaxial load. The stability problem of sandwich
structures under combined loads arises. Several authors have been
worked on this subject [12–14] bringing analytical solutions and a
benchmark of the same philosophy that proposed in this paper, should
interesting to be done.
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