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ABSTRACT 

Recycling aluminium has shown many benefits to the environment and economics. 

However, there is a challenge for such recycled material to achieve the same 

application as shown by the primary form material due to material degradation. The 

deformation behaviour and the damage progression of the recycled aluminium alloy 

are lacking in the literature and the development of an appropriate numerical analysis 

of such recycled material is also missing without these information. It is very important 

to understand the behaviour of the recycled aluminium under various deformation 

condition before any application is applied. The numerical analysis data is also 

important for the ease of future application simulation work. Based on this motivation, 

a hybrid experimental-numerical approach is used in this research project. The 

recycled aluminium alloy AA6061 is produced using hot press forging recycling 

approach. The recycled AA6061 is tested at different strain rates (×10-3 – ×10-4  s-1) 

and temperatures (100 – 300 °C) using Uniaxial tensile test and different impact 

velocity (170 – 370 m/s) via Taylor cylinder impact test to characterise the deformation 

behaviour, anisotropic behaviour, and damage behaviour of the recycled AA6061. 

From the experimental work, the recycled AA6061 exhibits a strain-rate dependence 

behaviour, mild-ductile-elastoplastic, and anisotropic behaviour. The mechanical 

properties of the recycled AA6061 are degraded due to the damage progression under 

loading deformation. Besides, three different fracture modes: mushrooming, tensile 

splitting, and petalling, are observed in the Taylor Cylinder Impact test and the critical 

impact velocity is found to be lower than 230 m/s. Subsequently, to model a numerical 

analysis for the prediction of the deformation behaviour of recycled AA6061, finite 

element analysis using LS-DYNA is performed. Referring to the experimental findings, 

the material model MAT_098 of Simplified Johnson-Cook model, are adopted and the 

input parameters are characterised. The simulation results are then validated against 

the experimental data. A satisfactory agreement is shown by the simulation results as 

compared to the experimental data in each test. 
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ABSTRAK 

Kitar semula aluminium telah menunjukkan banyak faedah kepada alam sekitar dan 

ekonomi. Walau bagaimanapun, terdapat cabaran bagi bahan kitar semula ini untuk 

mencapai aplikasi yang sama seperti yang ditunjukkan oleh bahan bentuk primer 

disebabkan degradasi bahan. Tingkah laku ubah bentuk dan kemajuan kerosakkan aloi 

aluminium kitar semula masih kurang dalam literatur dan pengembangan analisis 

berangka yang sesuai bagi bahan kitar semular tersebut juga hilang tanpa maklumat 

tersebut. Memahami tingkah laku aluminium kitar semula di bawah pelbagai keadaan 

ubah bentuk adalah amat penting sebelum sesuatu aplikasi digunakan. Data analisis 

berangka juga penting untuk kemudahan kerja simulasi aplikasi pada masa depan. 

Berdasarkan motivasi ini, pendekatan eksperimen-numerik digunakan dalam projek 

penyelidikan ini. Aloi aluminium AA6061 kitar semula dihasilkan menggunakan 

pendektan penekanan tekan panas. AA6061 kitar semula diuji pada kadar regangan 

yang berbeza (×10-3 – ×10-4 s-1) dan suhu (100 – 300 °C) melalui ujian tegangan 

Uniaxial, dan halaju tenaman yang berbeza melalui ujian hentaman silinder Taylor 

untuk mencirikan tingkahlaku ubah bentuk, anisotropik, dan kerosakan AA6061 kitar 

semula. Dari hasil kerja eksperimen, AA6061 kitar semula menunjukkan tingkah laku 

ketergantungan pada tahap ketegangan, daktil-elastoplastik, dan anisotropik. Sifat 

mekanik AA6061 kitar semula mengalami penurunan disebabkan oleh kemajuan 

kerosakan di bawah ubah bentuk pemuatan. Selain itu, tiga mod patah: cendawan, 

perpecahan tegangan dan petalling, ditunjukkan dalam ujian hentaman silinder Taylor 

dan halaju hentaman kritikal didapati di bawah 230 m/s. Selepas itu, analisis unsur 

terhingga menggunakan LS-DYNA dilakukan untuk meramalkan sifat ubah bentuk 

AA6061 kitar semula. Merujuk kepada penemuan eksperimen, model bahan 

MAT_098 Simplified Johnson-Cook model, digunakan dan parameter input telah 

dicirikan. Hasil simulasi kemudian disahkan terhadap data eksperimen. Hasil yang 

memuaskan dalam simulasi dibandingkan dengan data eksperimen dalam setiap 

tetapan ujian.
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CHAPTER 1 

INTRODUCTION 

This chapter discusses the introduction of this research. The chapter starts by briefly 

presenting a background of aluminium alloy and then highlights the importance to 

explore its recycled form. Subsequently, the problem statement is discussed before the 

objectives and scopes of this research project are outlined. Finally, the structure of this 

thesis is presented. 

1.1 Background of Study 

Aluminium alloy has been recognised as one of the best materials for various 

applications in automotive, aerospace and military structures due to its excellent 

mechanical properties, such as good corrosion resistance, high specific modulus, low 

density and excellent formability, machinability and surface finish, including 

superiority in fatigue cryogenic (Cui & Roven, 2010). The increasing demand for 

aluminium-based components and further globalisation of the aluminium industry 

have contributed significantly to higher consumption of aluminium alloy. The growing 

consumption is expected to continue based on the economic growth in China, India, 

Russia and Brazil, including 60% growth in the Asia region. 

 The high demand for aluminium has led to a production shortage. This is an 

issue for the environment, since the production of primary aluminium requires a high 

energy consumption of up to 186 MJ/kg (Gaustad, Olivetti, & Kirchain, 2012). 

Specifically, the process for the production of aluminium alloy involves bauxite ore 

mining, molten salt electrolyte and alumina purification, which may lead to 

environmental pollution (Cui & Roven, 2010). 
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 Luckily, aluminium alloy exhibits recyclability potential. As emphasised by 

Rahim, Lajis, & Ariffin (2015), aluminium alloy is the only material that can be fully 

and continuously recycled. This is a better option to support the increasing demand for 

aluminium and is also significant from an ecological standpoint (Rahim et al., 2015). 

The re-melting of recycled aluminium saves almost 95% of the energy required to 

manufacture pure aluminium from bauxite ore (Ahmad, Lajis, Yusuf, et al., 2017; Ho 

et al., 2019; Kume et al., 2009). Instead of consuming more than five tonnes of bauxite 

to produce one tonne of primary aluminium metal, the recycling of aluminium can 

reduce more than 95% of greenhouse gas (GHG) emissions compared with the primary 

processes (Boin & Bertram, 2005). Due to numerous advantages towards 

environmental safety, low energy consumption and the closed-loop recycling of 

industrial waste, many manufacturers and users of metal structures are trying to 

explore and establish the application of recycled aluminium alloy. 

 One of the main challenges for recycled aluminium alloy is to provide the same 

characteristics as the primary form. Even though many aluminium solid-state recycling 

methods have been studied and introduced to define the optimum setting of the 

recycling process, it is generally agreed that there are still numerous concerns yet to 

be answered related to the damage behaviour of such recycled material. This topic is 

significant specifically for the chips-based recycled process but still has not been 

addressed so far in this particular field. 

 Furthermore, it is impossible to ignore the realm of the damage aspect. The 

lack of knowledge and understanding can impose a limitation on potential applications 

and failures of a proposed design (Wan et al., 2017). Therefore, it is utterly vital to 

understand the elastoplastic deformation behaviour related to damage in such recycled 

material undergoing finite strain deformation. A good understanding of the complex 

elastoplastic response also allows for the identification of the appropriate numerical 

modelling. The development of reliable prediction simulation tools can support the 

introduction of this material in real engineering applications. Yet, there has been no 

attempt to develop a detailed numerical analysis of recycled aluminium alloy. The 

technological demands placed upon this recycled material has increased the need for a 

better prediction of its deformation behaviour under different loading conditions. 
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1.2 Problem Statement 

Damage is the apparent defect due to the degradation of a material’s mechanical 

properties. Damage “agents”, such as micro-cracks and micro-voids, can be easily 

spotted and they evolve during the application of loading, leading to rupture and total 

failure (Tillová, Chalupová, & Hurtalová, 2012). The deformation of ductile fracture 

involving damage can be observed in numerous metals and alloys, even in their 

primary solid form (Voyiadjis & Kattan, 2005). Moreover, the adopted manufacturing 

processes to produce recycled materials may cause the onset of cracks in the materials 

(Castagne, Habraken, & Cescotto, 2003). 

 Looking at the importance and advantages of aluminium alloy, it is extremely 

crucial to consider the recycled form as an alternative to replace the primary resources. 

Even though there has been significant progress in the optimisation of recycling 

process for the recycled aluminium alloy, the material deformation behaviour of the 

recycled aluminium alloy undergoing finite strain deformation is still an open and 

exciting area of study to be explored. There are still various concerns yet to be solved 

concerning the complexity of damage initiation and damage evolution in recycled 

aluminium alloy exhibiting natural anisotropic behaviour in elastic and plastic regions. 

The characterisation can be established in the material undergoing finite strain 

deformation at various strain rates and temperatures. These issues are essential to be 

answered before potential applications in engineering structures can be identified. 

Furthermore, an appropriate finite element model and parameters allow the 

behaviour simulation of a prototype or design under given condition to reduce the need 

for physical prototypes. The significance of the finite element analysis also provides a 

platform for future simulation of complex model. While many computer codes are 

available for metal structures and many researchers typically use finite element models 

for primary aluminium alloy, there have been no attempts to model frameworks 

specifically for recycled aluminium alloy.  

 Based on this motivation, a hybrid experiment-numerical approach was 

adopted in this research project. Deformation behaviour and damage progression of 

recycled aluminium alloy were characterised via experiment work. Furthermore, the 

input parameters for numerical analysis were evaluated from experiment data to 

predict the deformation behaviour of recycled aluminium alloy. Validation of 

simulation data was performed by comparing with a series of experiment data. 
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1.3 Objectives of Research 

The objectives of this research are: 

i. To characterise the deformation behaviour of recycled aluminium alloy 

AA6061 undergoing finite strain deformation. 

ii. To examine the damage progression and anisotropic characteristics, 

including fracture modes, of recycled aluminium alloy subjected to high-

velocity impact. 

iii. To model a numerical analysis and evaluate the material constants for the 

prediction of the deformation behaviour of recycled aluminium alloy. 

1.4 Scope of Research 

The scope of this research project is as follows: 

i. The material under consideration was commercial aluminium alloy AA6061, 

which is widely adopted in automotive applications. 

ii. A direct recycling technique—solid-state recycling method via hot press 

forging—was adopted to produce the recycled specimen. 

iii. The optimum process setting of the adopted direct recycling technique was 

referred from the optimum setting defined in the literature. 

iv. The characterisation of deformation behaviour was investigated at different 

strain rates and temperatures using uniaxial tensile test. 

v. Uniaxial tensile test was also adopted to analyse damage progression. 

vi. Taylor cylinder impact test was conducted to examine damage progression and 

anisotropic characteristic, including fracture modes, of recycled aluminium 

alloy subjected to high-velocity impact. 

vii. An appropriate numerical analysis method was defined after the deformation 

behaviour of the recycled aluminium alloy under consideration was 

successfully analysed and concluded. 

viii. Numerical analysis was only performed for uniaxial tensile test in this work. 

ix. The input parameters of the chosen constitutive model for the recycled material 

were characterised based on experiment data of the uniaxial tensile test 

obtained in this work. 
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