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ABSTRACT

Recycling aluminium has shown many benefits to the environment and economics.
However, there is a challenge for such recycled material to achieve the same
application as shown by the primary form material due to material degradation. The
deformation behaviour and the damage progression of the recycled aluminium alloy
are lacking in the literature and the development of an appropriate numerical analysis
of such recycled material is also missing without these information. It is very important
to understand the behaviour of the recycled aluminium under various deformation
condition before any application is applied. The numerical analysis data is also
important for the ease of future application simulation work. Based on this motivation,
a hybrid experimental-numerical approach is used in this research project. The
recycled aluminium alloy AAG6061 is produced using hot press forging recycling
approach. The recycled AA6061 is tested at different strain rates (x10° — x10* s)
and temperatures (100 — 300 °C) using Uniaxial tensile test and different impact
velocity (170 — 370 m/s) via Taylor cylinder impact test to characterise the deformation
behaviour, anisotropic behaviour, and damage behaviour of the recycled AA6061.
From the experimental work, the recycled AA6061 exhibits a strain-rate dependence
behaviour, mild-ductile-elastoplastic, and anisotropic behaviour. The mechanical
properties of the recycled AA6061 are degraded due to the damage progression under
loading deformation. Besides, three different fracture modes: mushrooming, tensile
splitting, and petalling, are observed in the Taylor Cylinder Impact test and the critical
impact velocity is found to be lower than 230 m/s. Subsequently, to model a numerical
analysis for the prediction of the deformation behaviour of recycled AA6061, finite
element analysis using LS-DYNA is performed. Referring to the experimental findings,
the material model MAT _098 of Simplified Johnson-Cook model, are adopted and the
input parameters are characterised. The simulation results are then validated against
the experimental data. A satisfactory agreement is shown by the simulation results as

compared to the experimental data in each test.



Vi

ABSTRAK

Kitar semula aluminium telah menunjukkan banyak faedah kepada alam sekitar dan
ekonomi. Walau bagaimanapun, terdapat cabaran bagi bahan kitar semula ini untuk
mencapai aplikasi yang sama seperti yang ditunjukkan oleh bahan bentuk primer
disebabkan degradasi bahan. Tingkah laku ubah bentuk dan kemajuan kerosakkan aloi
aluminium kitar semula masih kurang dalam literatur dan pengembangan analisis
berangka yang sesuai bagi bahan kitar semular tersebut juga hilang tanpa maklumat
tersebut. Memahami tingkah laku aluminium kitar semula di bawah pelbagai keadaan
ubah bentuk adalah amat penting sebelum sesuatu aplikasi digunakan. Data analisis
berangka juga penting untuk kemudahan kerja simulasi aplikasi pada masa depan.
Berdasarkan motivasi ini, pendekatan eksperimen-numerik digunakan dalam projek
penyelidikan ini. Aloi aluminium AAG6061 kitar semula dihasilkan menggunakan
pendektan penekanan tekan panas. AA6061 kitar semula diuji pada kadar regangan
yang berbeza (x10° — x10*“ s%) dan suhu (100 — 300 °C) melalui ujian tegangan
Uniaxial, dan halaju tenaman yang berbeza melalui ujian hentaman silinder Taylor
untuk mencirikan tingkahlaku ubah bentuk, anisotropik, dan kerosakan AA6061 kitar
semula. Dari hasil kerja eksperimen, AA6061 kitar semula menunjukkan tingkah laku
ketergantungan pada tahap ketegangan, daktil-elastoplastik, dan anisotropik. Sifat
mekanik AA6061 kitar semula mengalami penurunan disebabkan oleh kemajuan
kerosakan di bawah ubah bentuk pemuatan. Selain itu, tiga mod patah: cendawan,
perpecahan tegangan dan petalling, ditunjukkan dalam ujian hentaman silinder Taylor
dan halaju hentaman kritikal didapati di bawah 230 m/s. Selepas itu, analisis unsur
terhingga menggunakan LS-DYNA dilakukan untuk meramalkan sifat ubah bentuk
AA6061 kitar semula. Merujuk kepada penemuan eksperimen, model bahan
MAT_098 Simplified Johnson-Cook model, digunakan dan parameter input telah
dicirikan. Hasil simulasi kemudian disahkan terhadap data eksperimen. Hasil yang
memuaskan dalam simulasi dibandingkan dengan data eksperimen dalam setiap

tetapan ujian.
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CHAPTER 1

INTRODUCTION

This chapter discusses the introduction of this research. The chapter starts by briefly
presenting a background of aluminium alloy and then highlights the importance to
explore its recycled form. Subsequently, the problem statement is discussed before the
objectives and scopes of this research project are outlined. Finally, the structure of this

thesis is presented.

1.1  Background of Study

Aluminium alloy has been recognised as one of the best materials for various
applications in automotive, aerospace and military structures due to its excellent
mechanical properties, such as good corrosion resistance, high specific modulus, low
density and excellent formability, machinability and surface finish, including
superiority in fatigue cryogenic (Cui & Roven, 2010). The increasing demand for
aluminium-based components and further globalisation of the aluminium industry
have contributed significantly to higher consumption of aluminium alloy. The growing
consumption is expected to continue based on the economic growth in China, India,
Russia and Brazil, including 60% growth in the Asia region.

The high demand for aluminium has led to a production shortage. This is an
issue for the environment, since the production of primary aluminium requires a high
energy consumption of up to 186 MJ/kg (Gaustad, Olivetti, & Kirchain, 2012).
Specifically, the process for the production of aluminium alloy involves bauxite ore
mining, molten salt electrolyte and alumina purification, which may lead to

environmental pollution (Cui & Roven, 2010).



Luckily, aluminium alloy exhibits recyclability potential. As emphasised by
Rahim, Lajis, & Ariffin (2015), aluminium alloy is the only material that can be fully
and continuously recycled. This is a better option to support the increasing demand for
aluminium and is also significant from an ecological standpoint (Rahim et al., 2015).
The re-melting of recycled aluminium saves almost 95% of the energy required to
manufacture pure aluminium from bauxite ore (Ahmad, Lajis, Yusuf, et al., 2017; Ho
etal., 2019; Kume et al., 2009). Instead of consuming more than five tonnes of bauxite
to produce one tonne of primary aluminium metal, the recycling of aluminium can
reduce more than 95% of greenhouse gas (GHG) emissions compared with the primary
processes (Boin & Bertram, 2005). Due to numerous advantages towards
environmental safety, low energy consumption and the closed-loop recycling of
industrial waste, many manufacturers and users of metal structures are trying to
explore and establish the application of recycled aluminium alloy.

One of the main challenges for recycled aluminium alloy is to provide the same
characteristics as the primary form. Even though many aluminium solid-state recycling
methods have been studied and introduced to define the optimum setting of the
recycling process, it is generally agreed that there are still numerous concerns yet to
be answered related to the damage behaviour of such recycled material. This topic is
significant specifically for the chips-based recycled process but still has not been
addressed so far in this particular field.

Furthermore, it is impossible to ignore the realm of the damage aspect. The
lack of knowledge and understanding can impose a limitation on potential applications
and failures of a proposed design (Wan et al., 2017). Therefore, it is utterly vital to
understand the elastoplastic deformation behaviour related to damage in such recycled
material undergoing finite strain deformation. A good understanding of the complex
elastoplastic response also allows for the identification of the appropriate numerical
modelling. The development of reliable prediction simulation tools can support the
introduction of this material in real engineering applications. Yet, there has been no
attempt to develop a detailed numerical analysis of recycled aluminium alloy. The
technological demands placed upon this recycled material has increased the need for a

better prediction of its deformation behaviour under different loading conditions.



1.2 Problem Statement

Damage is the apparent defect due to the degradation of a material’s mechanical
properties. Damage “agents”, such as micro-cracks and micro-voids, can be easily
spotted and they evolve during the application of loading, leading to rupture and total
failure (Tillova, Chalupovd, & Hurtalova, 2012). The deformation of ductile fracture
involving damage can be observed in numerous metals and alloys, even in their
primary solid form (Voyiadjis & Kattan, 2005). Moreover, the adopted manufacturing
processes to produce recycled materials may cause the onset of cracks in the materials
(Castagne, Habraken, & Cescotto, 2003).

Looking at the importance and advantages of aluminium alloy, it is extremely
crucial to consider the recycled form as an alternative to replace the primary resources.
Even though there has been significant progress in the optimisation of recycling
process for the recycled aluminium alloy, the material deformation behaviour of the
recycled aluminium alloy undergoing finite strain deformation is still an open and
exciting area of study to be explored. There are still various concerns yet to be solved
concerning the complexity of damage initiation and damage evolution in recycled
aluminium alloy exhibiting natural anisotropic behaviour in elastic and plastic regions.
The characterisation can be established in the material undergoing finite strain
deformation at various strain rates and temperatures. These issues are essential to be
answered before potential applications in engineering structures can be identified.

Furthermore, an appropriate finite element model and parameters allow the
behaviour simulation of a prototype or design under given condition to reduce the need
for physical prototypes. The significance of the finite element analysis also provides a
platform for future simulation of complex model. While many computer codes are
available for metal structures and many researchers typically use finite element models
for primary aluminium alloy, there have been no attempts to model frameworks
specifically for recycled aluminium alloy.

Based on this motivation, a hybrid experiment-numerical approach was
adopted in this research project. Deformation behaviour and damage progression of
recycled aluminium alloy were characterised via experiment work. Furthermore, the
input parameters for numerical analysis were evaluated from experiment data to
predict the deformation behaviour of recycled aluminium alloy. Validation of

simulation data was performed by comparing with a series of experiment data.



1.3

Objectives of Research

The objectives of this research are:

1.4

To characterise the deformation behaviour of recycled aluminium alloy
AA6061 undergoing finite strain deformation.

To examine the damage progression and anisotropic characteristics,
including fracture modes, of recycled aluminium alloy subjected to high-
velocity impact.

i.  To model a numerical analysis and evaluate the material constants for the

prediction of the deformation behaviour of recycled aluminium alloy.

Scope of Research

The scope of this research project is as follows:

Vi.

Vil.

viii.

The material under consideration was commercial aluminium alloy AA6061,
which is widely adopted in automotive applications.

A direct recycling technique—solid-state recycling method via hot press
forging—was adopted to produce the recycled specimen.

The optimum process setting of the adopted direct recycling technique was
referred from the optimum setting defined in the literature.

The characterisation of deformation behaviour was investigated at different
strain rates and temperatures using uniaxial tensile test.

Uniaxial tensile test was also adopted to analyse damage progression.

Taylor cylinder impact test was conducted to examine damage progression and
anisotropic characteristic, including fracture modes, of recycled aluminium
alloy subjected to high-velocity impact.

An appropriate numerical analysis method was defined after the deformation
behaviour of the recycled aluminium alloy under consideration was
successfully analysed and concluded.

Numerical analysis was only performed for uniaxial tensile test in this work.
The input parameters of the chosen constitutive model for the recycled material
were characterised based on experiment data of the uniaxial tensile test

obtained in this work.
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