
i 
 

 

A RELATIVE TOLERANCE RELATION OF ROUGH SET WITH REDUCT AND 

CORE APPROACH, AND  APPLICATION TO INCOMPLETE INFORMATION 

SYSTEMS 

 

 

 

 

RD. ROHMAT SAEDUDIN 

 

 

 

 

A thesis is submitted in  

fulfillment of the requirements for the award of the  

Doctor of Philosophy 

 

 

 

 

 

 

 

Faculty of Computer Science and Information Technology  

Universiti Tun Hussein Onn Malaysia  

 

 

 

 

 

 

 

OCTOBER 2020

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



v 
 

ACKNOWLEDGEMENT 
 

 

 

In the name of Allah, The Most Beneficent, The Most Merciful 

 

All praises be to Allah, the Lord of the universe. May Allah bestow His mercy and 

grace upon His most beloved prophet Muhammad PBUH, his family, and his friends. 

My deepest gratitude to the grace of Allah SWT as with his bounty and mercy, then I 

can complete this Ph.D. thesis. I would like to take this opportunity to acknowledge 

the guidance and cooperation of my supervisors, examiners, colleagues, friends, and 

family members during this study period.  

Primarily, I would express my sincere gratitude to my supervisor Prof. Dr. 

Mustafa Bin Mat Deris, for his continuous support, patience, encouragement and 

motivation, enthusiasm, and knowledge. Also the highest appreciation goes to my 

discussion partner, Iwan Tri Riyadi Yanto, Assoc. Professor Dr. Shahreen binti Kasim, 

Assoc. Professor Dr. Hairulnizam Mahdin, and Assoc. Professor Dr. Farhan md 

Fudzee for reminding me through his meticulousness, accuracy, dedication to work 

and insistence on perfection, and by his questions and comments. May Allah repay all 

of your kindness, Insyaa Allah.  

I also would like to thanks to my parents Entin Martini and R Asikin, Encum 

Sumiati and Edi Sunardi, my lovely wife Siti Hajar Komariah, my sweet children 

Raden Daffa Muhammad Zahran, Raden Dafina Nur Azkiya Az-Zahra, and Raden 

Danish Muhammad Zahwan for their prayers, love, and encouragement. Thanks to 

everybody who contributed to this achievement directly or indirectly.  

  

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



vi 
 

ABSTRACT 

 

 

Data mining concepts and methods can be applied in various fields. Many methods 

have been proposed and one of those methods is the classical 'rough set theory' which 

is used to analyze the complete data. However, the Rough Set classical theory cannot 

overcome the incomplete data. The simplest method for operating an incomplete data 

is removing unknown objects. Besides, the continuation of Rough Set theory is called 

tolerance relation which is less convincing decision in terms of approximation. As a 

result, a similarity relation is proposed to improve the results obtained through a 

tolerance relation technique. However, when applying the similarity relation, little 

information will be lost. Therefore, a limited tolerance relation has been introduced. 

However, little information will also be lost as limited tolerance relation does not take 

into account the accuracy of the similarity between the two objects. Hence, this study 

proposed a new method called Relative Tolerance Relation of Rough Set with Reduct 

and Core (RTRS) which is based on limited tolerance relation that takes into account 

relative similarity precision between two objects. Several incomplete datasets have 

been used for data classification and comparison of our approach with existing baseline 

approaches, such as the Tolerance Relation, Limited Tolerance Relation, and Non-

Symmetric Similarity Relations approaches are made based on two different scenarios. 

In the first scenario, the datasets are given the same weighting for all attributes. In the 

second scenario, each attribute is given a different weighting. Once the classification 

process is complete, the proposed approach will eliminate redundant attributes to 

develop an efficient reduce set and formulate the basic attribute specified in the 

incomplete information system. Several datasets have been tested and the rules 

generated from the proposes approach give better accuracy. Generally, the findings 

show that the RTRS method is better compared to the other methods as discussed in 

this study. 
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ABSTRAK 

 

 

 

Konsep and kaedah perlombongan data boleh diaplikasikan dalam pelbagai bidang. 

Banyak kaedah telah dicadangkan dan satu daripadanya adalah 'rough set theory' yang 

digunakan untuk menganalisis sistem maklumat lengkap. Namun, teori klasikal Rough 

Set tidak dapat mengatasi sistem maklumat tidak lengkap. Kaedah paling mudah untuk 

mengendalikan sistem maklumat tidak lengkap adalah untuk mengeluarkan objek-

objek yang tidak diketahui. Selain itu, lanjutan kepada teori Rough Set yang 

dinamakan hubungan toleransi (tolerance relation) menghasilkan keputusan yang 

kurang menyakinkan dari segi penghampiran (approximation). Kemudian hubungan 

kesamaan (similarity relation) dicadangkan untuk memperbaiki keputusan yang 

diperolehi melalui teknik hubungan toleransi (tolerance relation technique). 

Walaubagaimanapun, apabila mengaplikasikan hubungan kesamaan (similarity 

relation) ini, sedikit maklumat akan hilang. Oleh itu, hubungan toleransi terhad 

(limited tolerance relation) telah diperkenalkan. Namun, sedikit maklumat juga turut 

akan hilang memandangkan hubungan toleransi terhad (limited tolerance relation) 

tidak mengambil kira ketepatan kesamaan antara dua objek.  Justeru, kajian ini telah 

mencadangkan satu kaedah baru yang dinamakan Hubungan Tolerensi Relatif pada 

Rough Set yang berdasarkan hubungan tolerensi terhad (limited tolerance relation) 

yang mengambil kira kesamaan relatif ketepatan (relative similarity precision) di 

antara dua objek. Beberapa dataset tidak lengkap digunakan untuk pengkelasan dan 

perbandingan antara kaedah yang dicadangkan dengan kaedah-kaedah lain dilakukan 

berasaskan dua senario. Pendekatan ini memberi  tumpuan kepada penghapusan atribut 

yang bertindan untuk menghasilkan set reduktif yang berkesan dan merumuskan set 

atribut utama bagi sistem maklumat yang tidak lengkap. Beberapa dataset telah diuji 

dan didapati bahawa, kaedah yang dihasilkan dari pendekatan ini dapat menghasilkan 

ketepatan yang lebih baik. Umumnya, penemuan menunjukkan bahawa kaedah RTRS 

lebih baik berbanding dengan kaedah-kaedah lain yang dibincang dalam kajian ini. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

1.1  Background 

 

Data mining is a field that deals with traditional data processing application software. 

Treats large, complex data sets to analyse matters, extract information systematically, 

or otherwise. Data with numerous cases (rows) offer more comprehensive statistical 

dynamism, while data with more extraordinary complexity (more characteristics or 

columns) may lead to a higher corrupt identification rate [1-3]. The challenges of data 

handling are capturing data, data storage, data summary, exploration, sharing, transfer, 

visualization, querying, updating, information privacy, and data source. Data is 

associated with three key concepts: volume, variety, and velocity. 

 Data mining is necessary for exploring knowledge or information derived 

from raw data, in which raw data is processed using software or selected methods to 

obtain information from the data. There are several processes involved in data mining, 

namely: selecting data, cleaning and pre-processing of data, reduction of data, data 

mining, and interpretation/evaluation. 

In the fourth step in the knowledge discovery process or data mining is the 

process of extracting patterns from data. One of the methods of data mining is data 

clustering. Clustering in data mining is portioning a categorical data set into the 

homogenous class in a fundamental operation.  

Pawlak was successful in proposing the rough set theory [4-6] in the study of 

intelligent systems characterized by uncertain or inconsistent data, especially in rule 

extraction [7-9], uncertainty reasoning [10-12], granular computing [13-16], data 
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clustering [17-19], and data classification [20-22]. It has been proven an efficient 

mathematical tool compared to methods like principal component analysis (PCA), 

support vector machine, and neural networks [23-26]. In some methods, the Rough Set 

Theory counts the knowledge discovering process automatically based on the data 

without depending on prior Problem Statement knowledge [27-29]. The data used in 

all measurement by those methods were sample data. 

Data sample is a set of objects collected or selected from a statistical population 

by a defined procedure. Sampling can be particularly useful with data sets that are too 

large to  analyse in full -- for example, in data analytics applications or surveys. 

Identifying and analysing a representative sample is more efficient and cost-effective 

than surveying the entirety of the data or population. Many methods can be used to 

obtain or collect data.  They are closed survey, open survey, interview, focus group 

discussion, and direct observation. 

Surveys are particularly effective in collecting data, depending on structure and 

quality of survey questions. A survey is one of the common that data acquisition 

methods for data mining. In data, first mining can unusually find a study data set that 

contains total entries of each observation for all of the variables. Regularly, surveys 

and applications are often only somewhat completed by respondents. The reasonable 

analyses for incomplete data could be numerous, including indifference, deliberate 

avoidance of privacy, the ambiguity of the survey question, and aversion. Other causes 

that can make incomplete data are data integration, the data sampling technique used, 

and the fact of data is incomplete data. 

In mining, a database with incomplete data, patterns of the missing data as the 

potential impacts of these missing data on the mining results constitute valuable 

information. There are two main approaches used to handle incomplete information 

systems. One is the second approach, which transforms the incomplete information 

system into a complete information system by replacing the missing attribute values 

with probable known characteristic values [30-33]. The other is the direct approach, 

which reaches the classical Rough Set Theory based on tolerance relations [34-37], 

similarity relations [38-41], and limited tolerance relations [42-45]. 

However, the tolerance relationship approach leads to poor results in terms of 

the approach. This bad result is caused by the absence of rules or conditions that 

require the similarity of the attribute entry values of the two objects being compared. 

Consequently, Stefanowski and Tsoukias [35, 36, 46, 47] introduced a similarity 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



3 

 

 
 

relationship to perfect the results obtained using a tolerance relationship approach. 

However, Wang et al., [37, 48-50] and Yang et al., [38, 51-53] showed that similarity 

relations would lose some information and so they proposed the relative tolerance 

relations. Nevertheless, some information might also be lost because of the limited 

tolerance relation does not consider the similarity precision between two objects. 

Nguyen et al., [39, 54-56] improved the tolerance relation by considering the 

probability of matching two objects. However, the probability distribution of data 

should be determined in advance.  

However, the tolerance relation approach leads to poor results in terms of 

accuracy. In this research, the Relative Tolerance Relation based on Rough Set (RTRS) 

with core and reduct is proposed in order to get high accuracy with good response 

time.   

  

1.2  Problem Statement 

 

Nowadays, the increase in data is very huge in a digital era of more than 280 hexabytes. 

The huge data is only data without knowledge or information if it is not managed. 

Many researchers have analysed data to get knowledge and information, but they only 

took the complete data. Problems in the real world are statistics or empty attributes, 

incomplete statistics. The researcher knows that incomplete data would be difficult to 

process if the data still has some empty sections; hence, some data processing methods 

were used to fill the empty data groups. Some researchers proposed several methods 

to handle incomplete data i.e. tolerance relation, limited tolerance relation, and non-

symmetric relation. To solve incomplete data in the existing method, the researchers 

used an imputation or removal of the incomplete data. The imputation methods used 

in those research are imputing missing data with mixed continuous and categorical 

variables, mean impute, and local least square. When the researcher imitates 

incomplete data, the data does not remain the same as the original data and the 

accuracy of the results becomes unsatisfactory.  Moreover, by removing the 

incomplete data, the size of sample data will be smaller than before. What if the 

researcher has only limited data? He must collect data again to get more data, and if 

the researcher only analyses complete data, the accuracy of the result will be low too 

because of the small data sample. 
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In this study, the determination of the attribute weight value used a 

mathematical programming model for the incomplete data group. In this case, every 

missing value entry of an attribute will affect the weight value of an attribute. The 

distribution of weight values is resulted by the mathematical programming model. 

Every attribute contributes to weight value in the data analysis. In the baseline 

method, data is processed  by assuming that all attributes have the same contribution 

weight value in determining decisions. The problem arises in the real world when each 

attribute often has a different contribution weight value to the decision. It will be unfair 

if the attributes have the same weight value. The weight value process is important to 

understand each attribute weight value, so the researcher will know which are the 

lowest and the biggest weight value, so the lowest weight value attribute can be 

reduced. 

The existing methods have handled the incomplete data in-group of data. 

However, the results of the existing method with data imputation or removing still 

show unsatisfactory  result inaccuracy. The problem of accuracy will affect the 

knowledge of the result. The inaccurate knowledge or information can be a problem 

in making the decision.    

 

1.3  Objectives  

 

The main objective of this research is: 

To propose a new method based on indiscernibility relation in handling incomplete 

data for better results of data classification. 

This study has two sub objectives to achieve of the main objective, namely: 

1. To propose an approach in handling incomplete data using improved limited 

tolerance relation based on indiscernibility relation for better accuracy. 

2. To propose the improvement of weight value for improving processing time by 

reducing the attribute using reduct and core. 

 

1.4 Scope and Limitation 

The scope and limitation of this study falls within categorical data clustering 

using proposed methods based on the Rough Set Theory for incomplete data. 
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1.5  Contributions to the Study 

 

The contributions of this study are: 

1. A modified limited tolerance relation approach for categorical data clustering 

based on indiscernibility relation. 

2. A related algorithm and proof of correctness of the proposed approaches  

3. Comparative analysis and experiment results between clustering purity and the 

proposed approach with other baseline approach in terms of accuracy 

 

1.6  Organization of this Study 

 

This thesis is organized into seven chapters. A brief description of the contents for 

each chapter is given as follows:  

1. Chapter 1 describes the challenges, problems, current methods, objectives, scopes, 

and significance of the study. 

2. Chapter 2 describes the fundamental concept of the Rough Set Theory. The notion 

of an information system and its relation with a relational database, the concept of 

an indiscernibility relation induced by a subset of the whole set of attributes, the 

concept of an approximation space (Pawlak), the notion of set approximations and 

its quality of approximations are also described in this chapter. This chapter also 

explains the concept of a rough set in incomplete information systems i.e. 

tolerance relation, non-symmetric similarity relation, and limited tolerance 

relation. 

3. Chapter 3 describes more about research methodology consists of conduct a 

literature review, collecting a real dataset related, propose a RTRS method to 

classify incomplete information systems, after that develop a program in 

MATLAB, apply the program to the data obtained, conduct results analysis, and 

results from validation. 

4. Chapter 4 describes the proposed new approach of limited tolerance relation based 

on relative precision between two objects, namely relative tolerance relation of a 

rough set. This includes analysis, instrumentation, and data sources. Empirical 

studies based on seven benchmark datasets and real-world datasets demonstrate 

how the proposed method performs better compared to the rough set-based 
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methods. Furthermore, the application of the proposed method for clustering 

student data sets and marine data sets is presented. Discussion and analysis of the 

results of the proposed method are mentioned in detail here.  

5. Chapter 5 describes enhanced RTRS using Variable Precision Rough Set (VPRS), 

reduct, and core to improve processing time in real data set.                                                                                                                                                                                                                                                                                                                                                                     

6. Chapter 6 draws the general conclusions of the achieved results and presents the 

contributions together with a discussion of suggested topics for future studies. 
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 

2.1 Introduction 

 

This chapter strives to give a better understanding of the basic concepts of information 

systems and the rough set theory, before the extension of this theory in incomplete 

information systems i.e. tolerance relation, non-symmetric similarity relation,  limited 

tolerance relation, and new limited tolerance relation [4-6,12]. The current research 

trends and directions are outlined before presenting the summary of the chapter.  

 

 

 

Figure 2.1: The content structure of chapter 2 
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2.2 Information System 

 

The information system provides a convenient tool to represent the objects in terms of 

their attribute values. It is the 4-tuple (quadruple) S = (U, A,V, f ) , where U = u1 , u2 

, … , u|U|  is a non-empty finite set of objects, A = a1 , a2 ,… , a|A|  is a non-empty 

finite set of attributes,  Aa aVV


= , Va is the domain (value set) of attribute a, f :U  

A →V is an information function such that ( )
a

Vauf , , for every (u, a)U  A , called 

information (knowledge) function [4, 12, 57-60].  An information system is also called 

a knowledge representation system or an attribute-valued system and can be intuitively 

expressed in terms of an information table (refer to Table 2.1). 

 

Table 2.1: An information system 

 

U a1 a2 … Ak … A|A| 

u1 f (u1, a1 ) f (u1 , a2 ) … f (u1 , a k ) … f (u1 , a|A| ) 
u2 f (u 2 , a1 ) f (u 2 , a2 ) … f (u 2 , ak ) … f (u 2 , a|A| ) 
u3 f (u3 , a1 ) f (u3 , a2 ) … f (u3 , ak ) … f (u3 , a|A| ) 

. . . . 
. 
.
 . .

. 
.
 . 

u 
U f (u U , a1 ) f (u U , a2 ) … f (u U , ak ) … f (u U , a|A| ) 

       

 

 

In many applications, there is a classification outcome. One (or more) 

distinguished attribute expressed this a posteriori knowledge called decision attribute.  

This process is known as supervised learning. A decision system is an information 

system of form D = (U, A = C U D, V, f  ) where D is the set of decision attributes and 

𝐶 ∩ 𝐷 = ∅. The elements of C are called condition attributes. A simple example of a 

decision system is given in Table 2.2. 

A relational database is considered as an information system in which rows are 

labelled by the objects (entities), columns are labelled by attributes, and the entry in 

row u and column a has the value f(u, a).  It is noted that each map f(u, a): U x A → V 
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is a tuple ti = ( f (ui, a1),  f (ui, a2),   f (ui, a3), …, f (ui, a|A|)), for 1 ≤ i ≤ |U|, where |X| is 

the cardinality of X. Note that the tuplet is not necessarily associated with entity 

uniquely (refers to students 2  and 5 in Table 2.2). In an information table, two distinct 

entities could have the same tuple representation (duplicated/redundant tuple), which 

is not permissible in relational databases. Thus, the concepts in information systems 

are a generalization of the same concepts in relational databases. 

 

Example 2.1 Data concerning 6 students, as shown in Table 2.2 

 

Table 2.2: A student’s decision system 

Student Analysis Algebra Statistics Decision 

1 Bad Good medium accept 

2 Good Bad medium accept 

3 Good Good Good accept 

4 Bad Good Bad reject 

5 Good Bad medium reject 

6 Bad good Good accept 

 

 

The following values were obtained from Table 2.2, 

U = 1,2,3,4,5,6, 

A = Analysis, Algebra, Statistics, Decision , where 

C = {Analysis, Algebra, Statistics}, 

D = Decision 
 

VAnalysis = bad, good. 

 

2.3  Indiscernibility Relation 

 

Table 2.2 showed that students 2, 3, and 5 are indiscernible (or similar or 

indistinguishable) concerning the attribute analysis. Meanwhile, students 3 and 6 are 

indiscernible concerning attributes algebra and statistics. Students 2 and 5 are indistinct 

for attributes analysis, algebra, and statistics. The starting point of the rough set theory 
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