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ABSTRACT

This paper studies the two widely used material models for predicting the dynamic behavior of soils, the
Ramberg-Osgood and Hadrin-Drnevich models. Resonant column and torsional simple shear test re-
sults on dry sand were used to calibrate and evaluate the model built in the finite element software
Midas GTS NX. Both material models are already implemented by the software. This study estimates
the ability and efficiency of both soil models coupled with the Masing criteria to predict the behavior of
soil when subjected to irregular loading patterns, (e.g., earthquakes), and measure the two most
important dynamic properties, the dynamic shear modulus, and the damping ratio.
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1. INTRODUCTION

The response of structures to dynamic loading is directly dependent on the response of soil
beneath or around it. Therefore, many researchers in the past few decades focused on
studying the behavior of soils subjected to dynamic loads. It is agreed that the most important
parameters to define this behavior are the dynamic shear modulus and the damping ratio,
which contribute to variation in the stiffness and energy dissipation during cyclic loading.
Thus, to be able to study the soil-structure interaction numerically with adequate accuracy, it
is important to have a material model that is well representative of the soil in the field
conditions. This has been a challenge when it comes to irregular loading patterns due to the
complex nature of soils’ behavior and its dependence on many factors like the confining
stress, void ratio, density and number of cycles, etc. However, the progressive development in
computer technology accompanied with the increasing speed of processing complex calcu-
lations allowed the use of numerical modeling for easier and faster calibration of models for
further use in real and much more complicated geotechnical problems (e.g. deep foundation
[1–2] and tunnels [3] modeling). In this study, the Ramberg-Osgood and the Hardin-
Drnevich models were used to predict and simulate the soil behavior in the TOrsional Simple
Shear (TOSS) test, and the results were compared with test data for irregular loading patterns.

2. NONLINEAR DYNAMIC SHEAR MODULUS

The shear stiffness of the soil is usually represented by the shear modulus G, which is the
slope of the shear stress-shear strain curve. It can be determined by using seismic methods in
the field to obtain in situ shear wave velocity, where the strain level is very low and the soil
still behaves elastically. Other equations can be used as well based on extensive laboratory
testing programs to calculate the initial dynamic shear modulus Gmax, where it is correlated to
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the confining stress, void ratio, and uniformity coefficient
CU. The most used equations are presented by Hardin and
Richart [4], Hardin and Black [5], and most recently by
Wichtmann, Navarrete Hern�andez, and Triantafyllidis [6].

Vucetic and Dobry [7] and Ishihara [8] defined a volu-
metric cyclic threshold shearing strain gtv, which when
exceeded; permanent microstructural change of soil occurs
and soil stiffness changes permanently. Furthermore, the
shear modulus decreases as the shear strain amplitude in-
creases, and the soil’s behavior becomes nonlinear. In this
phase, the shear modulus reduction curve is usually used to
describe this property, which is important for the analysis of
different dynamic problems where the strain is of high
amplitude (e.g., strong ground motion during earthquakes).
The shear modulus degradation curve can be obtained from
the torsional simple shear test, which generates stress-strain
hysteresis loops, from which values of the secant shear
modulus Gsec are computed with the increasing strain level
(Fig. 1).

3. COMBINED RESONANT COLUMN AND
TORSIONAL SHEAR TEST

The combined Resonant Column-Torsional Simple Shear
Device (RC-TOSS device) related to this study was originally
built by Prof Richard Ray at University of Michigan in the
1980s Ray, [9], Ray and Woods, [10]. Then it was rebuilt and
calibrated in Gy}or at the Geotechnical Laboratory of the
Department of Structural and Geotechnical Engineering at
Sz�echenyi Istv�an University for the purpose of the PhD
study of Zsolt Szilv�agyi in 2013. The testing device was
described in detail by Szilv�agyi [11] in his thesis.

The tests were conducted on dry sand, a set of resonance
column tests in addition to cyclic and irregular tests were

performed up to a stress level of 60 kPa and a confining
stress of 94 kPa. For this study, only one irregular TOSS test
with a shear stress of 40 kPa was used to evaluate the ability
of the material models to predict the dynamic behavior of
the soil. An irregular load history was scaled to obtain a
maximum value of shear stress of 40 kPa for this stress-
controlled TOSS test, and the resulted shear stress-strain
curve was used for curve fitting and calibrating the model. In
Fig. 2, the maximum shear modulus obtained from RC test
is 95,500 kPa, and other RC tests were conducted at higher
strains. Shear modulus values from TOSS test were obtained
from the monotonic one-way curve, as well as the Gsec which
is the slope of the line that connects the two ends of each of
the loops. Figure 2 shows good compatibility between RC
and TOSS tests, and also similar behavior to the studies
conducted by Seed and Idriss [12] and Vucetic and
Dobry [7].

4. MATERIAL MODELS

4.1. Ramberg-Osgood

Ramberg and Osgood [13] first proposed a model with three
parameters that would describe the stress-strain curves of
aluminum-alloy stainless-steel and carbon-steel sheets. This
model was first used in soil modeling by Faccioli et al. [14] to
predict the shear modulus degradation curve of sands. The
formulation to be used in practical calculations for soils (1)
describes the nonlinear stress-strain behavior, and with
simple manipulation of the equation, the shear modulus
reduction curve (2) and the damping ratio can be obtained
as well,

Fig. 1. Estimation of shear modulus during cyclic loading Fig. 2. Shear modulus degradation curves comparison
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where g is the shear strain, τ is the shear stress. Gmax is the
small strain shear modulus, τmax is the maximum shear
stress, usually obtained from triaxial test results, and it is a
function of the confining stress, angle of friction, and
cohesion. a, C and R are curve-fitting constants.

The model was modified to follow the original Masing
criteria [15], as the shear modulus for the unloading-
reloading curves is equal to Gmax, and the shape of these
curves is equal to the one-way curve except that it is enlarged
by a factor of 2. Two extra rules have been suggested by Pyke
[16] to predict the path of the curves. These rules indicate
that the unloading and reloading curves should follow the
initial curve in case the previous maximum shear strain is
exceeded, and if the current loading or unloading curve
intersects a previous one, it should follow the previous curve.
The extended rules can be programmed easily to determine
the path that the stress-strain curve will follow for compli-
cated load histories. And the original rules can be imple-
mented by modifying the one-way equation, as it is shown in
Eq. (3),
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where τi and gi are the shear stress and the shear strain at
the turning point respectively.

The modified Ramberg-Osgood model was implemented
in Midas GTS code to be used for solid soil layers. However,
the equation in Midas shown in Eq. (4) is slightly different
than the conventional one,

G0g ¼ τð1þ ajτjbÞ; (4)

where G0 ¼ Gmax and a and b are given by

a ¼
�

2
grG0

�b

; b ¼ 2phmax

2� phmax
; (5)

where hmax is the maximum damping constant and gr is the
reference shear strain.

Extended Masing criteria were also used for the hyster-
esis curve

G0

�g7g1

2

�
¼
�
τ7τ1

2

��
1þ a

�
τ

τ7τ1

2

�b�
: (6)

4.2. Hardin-Drnevich

Hardin and Drnevich [17] proposed a modified hyperbolic
relationship to predict the shear stress-strain behavior of
soil. In their study, they found that the stress-strain behavior
is not exactly described by a hyperbola. As a result, the
hyperbolic equation was modified by distorting the strain

scale to make the real stress-strain curve have a hyperbolic
shape. Midas uses the same equation introduced by Hardin
and Drnevich given by

τ ¼ G0g

1þ
����ggr

����
; (7)

where G0 is the initial shear modulus and gr is the reference
strain, which can be modified to get the best fit with the
testing data. Hysteresis curves are formulated on the basis of
the Masing’s rule as well

τ ¼ G0ðg� g1Þ
1þ

����ðg�g1Þ
2gr

����
þ τ1: (8)

5. FINITE ELEMENT MODEL IN MIDAS GTS

The model built on Midas for this study is based on the work
of Szilv�agyi and Ray [18]. However, their paper focused on
studying the small strain stiffness of soils, and it verified the
capability of the software to model the TOSS test in a more
of static manner. Moreover, some modeling difficulties were
faced in their analysis, which were fixed in the model
developed in this study. This research concentrated mainly
on predicting the dynamic behavior of soils under irregular
and more complicated loading patterns, which was not
captured by the previous study.

Modeling was performed using the cylindrical element
coordinate system. The model simulates the TOSS test;
consequently, it consists of a 1 cm thick hollow cylinder with
the same dimensions as the tested soil specimen. The mesh
elements used in the model are hexahedral of high order;
each element has 20 nodes with the dimensions shown in
Fig. 3b in meters.

2017 elements comprise this model, it is pinned at the
bottom surface, and all the top nodes are connected with
rigid links to a central node which is allowed to move along
and rotate around the vertical axis. The prescribed rotation
or moment is imposed on this central node, which will
simulate the torsional load applied in the TOSS test. No

Fig. 3. Finite element mesh of soil sample, a) elements and nodes,
b) dimensions of the middle element
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stress irregularities were noticed at the base of the model
after the confining stress stage.

The analysis is performed in construction stages in order
to simulate the test conditions, where it starts with applying
a confining stress of 94 kPa on the free surface of the ele-
ments, afterwards, the dynamic material model (R–O or H–
D) is set for all the elements, and the torsional loading stage
begins. The prescribed rotation around the vertical axis was
assigned a time-varying function that is similar to the load
history in the TOSS test with a maximum rotation of
0.00338 radians, which will cause an average shear strain in
the q-Z direction of 0.00067 mm/mm. Manual load stepping
was not needed before and after turning points, unlike the
previous study, and the analysis was stable and converged
without problems or high number of iterations.

The method of least squares was used with the help of
the solver tool in excel to find the curvature constants values
that fit the Ramberg-Osgood (1) and Hardin-Drnevich
equations curves with the test data (Table 1), by minimizing
the sum of the squares of the strain residuals (the difference
between an observed value, and the fitted value provided by
a model). The same technique was used subsequently to find
the reference strain that Midas uses in the R–O equation
Fig. 4.

6. RESULTS

After the first stage, the whole specimen is subjected to a
confinement stress of 94 kPa, as a result, the normal solid
stresses in the three directions will be the same for all the
elements, with no noticeable irregularities even with the
pinned bottom surface.

The load history duration is 0.801 seconds, with time
increments of 0.001 seconds, which results in 801 total time
steps for each analysis. Figure 5 shows the distribution of
shear stresses and strains along the radius of the specimen at
the final increment. As expected, similar observations will be
made for both the R–O and H–D soil models, as the dis-
tribution is uniform along the height of the specimen and it
increases with the distance from the center, which shows the
benefit of using a hollow cylindrical specimen for more even
distribution of stress and strain along the radius of the
sample.

Table 1. Material model parameters used in this study

Parameter Conventional Ramberg-Osgood Midas Ramberg-Osgood Hardin-Drnevich Unit

Initial dynamic shear modulus G0 95,500 95,500 95,500 kPa
Max. shear stress τmax 44.17 – – kPa
Reference shear strain gr 0.000462 0.00148 0.0011 mm/mm
Curve fitting constants a 1 0.0267 – –

C 1.55 – – –
R 1.9 – – –
b – 0.8508 – –

Max. damping constant hmax – 0.19 – %
Dry density gd 17 17 17 kN/m3

Poisson ratio y 0.3 0.3 0.3 –

Fig. 4. Curve fitting for the soil models with the TOSS test data

Fig. 5. Shear stresses and strains distribution along the radius (R–O
model), a) q-Z shear stress, b) q-Z shear strain
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The average solid stresses and strains in the q-Z direction
(S-YZ, E-YZ) for three elements (inner, middle, and outer
elements) in the model were compared to the shear stress-
strain curves from the TOSS test for both material models.
Moreover, the dynamic shear modulus was calculated from
these curves and compared as well with the shear modulus
degradation curves obtained from RC-TOSS tests.

Figure 6 shows a very good fit between the test data and
the curves obtained from FEM calculations on Midas using
the Ramberg-Osgood model. On the other hand, the fit was
not as good when using the Hardin-Drnevich model with
the parameters in Table 1 as it can be seen in Fig. 7, and the
calculated values would drift even further from the test data
at higher stress levels when using the conventional hyper-
bolic Hardin-Drnevich formula (7).

Figure 2 shows how both models predict the shear
modulus in the Finite Element Method (FEM) calculations
on Midas. The Ramberg-Osgood shear modulus degradation
curve was calculated from Eq. (2), which matches perfectly
with the FEM R–O calculations in Midas and shows a very
good agreement with the RC and TOSS tests. While the
modulus reduction curve for the Hardin-Drnevich model,
which was obtained from the one-way monotonic curve
resulted from analyzing the model on Midas, gives a curve
that is higher than the real values until it reaches a strain
value of 0.057%, where it drops below the TOSS test curve.

Darendeli [19] suggested modifying the hyperbolic
model in order to reach a better representation of the
normalized modulus reduction curve by integrating a cur-
vature coefficient a into the equation. This modification can
be applied to the hyperbolic equation by Hardin and
Drnevich for better prediction of the hysteresis behavior of
soils. The modified equation is given as follows:

τ ¼ G0g

1þ
����ggr

����
a : (9)

By using the same method as before (the least square
method), the values of the reference strain: gr ¼ 0:00132
mm/mm, and the curvature coefficient: a ¼ 0:7129, give
a much better fit with the testing data for both the
stress-strain curve (Fig. 8) and the modulus degradation

Fig. 6. Shear stress-strain curve from Midas using Ramberg-
Osgood model

Fig. 7. Shear stress-strain curve from Midas using Hardin-Drnevich
model

Fig. 8. Modified Hardin-Drnevich model by Darendeli
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curve (Fig. 2) than the conventional Hardin-Drnevich
model.

7. CONCLUSION

This study concentrates on the dynamic behavior of soils
when subjected to irregular loading patterns. Resonant col-
umn and TOSS tests were analyzed, and their results were
used as a reference to evaluate the ability of the Ramberg-
Osgood and Hardin-Drnevich soil models to predict the
shear stress-strain curves under such types of loads. The
model built on Midas was developed, and some modeling
difficulties in the previous model were solved in order for
the model to be able to produce accurately more complex
hysteretic curves for earthquake load histories. It was
confirmed that this model has the capability to imitate the
TOSS test conditions, as it shows good agreement with
modulus degradation and hysteretic behavior of the soil in
the test, especially for the Ramberg-Osgood model, while it
was clear that the Hardin-Drnevich model struggled to
accurately match the nonlinearity of the shear stress-strain
curve. As a result, the curvature coefficient introduced to the
equation is suggested to be used by the FEM software for
better results. This model can be a useful and convenient
tool to simulate the TOSS test for irregular load histories
based on a simple cyclic or even one-way test, and then use
the parameter for more complex geotechnical problems.
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