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Abstract
Let G be a digraph where every node has preferences over its incoming edges. The
preferences of a node extend naturally to preferences over branchings, i.e., directed
forests; a branching B is popular if B does not lose a head-to-head election (where
nodes cast votes) against any branching. Such popular branchings have a natural appli-
cation in liquid democracy. The popular branching problem is to decide if G admits a
popular branching or not. We give a characterization of popular branchings in terms
of dual certificates and use this characterization to design an efficient combinatorial
algorithm for the popular branching problem. When preferences are weak rankings,
we use our characterization to formulate the popular branching polytope in the orig-
inal space and also show that our algorithm can be modified to compute a branching
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with least unpopularity margin. When preferences are strict rankings, we show that
“approximately popular” branchings always exist.

Mathematics Subject Classification 90C27 · 90C46 · 68W01

1 Introduction

Let G be a directed graph where every node has preferences (in partial order) over its
incoming edges. We assume that G can have parallel edges but no self-loops. In case
G is simple, the preferences can equivalently be defined on in-neighbors. We define a
branching to be a subgraph ofG that is a directed forest where each node has in-degree
at most 1; a node with in-degree 0 is a root. The size of a branching is the number of
edges in it. The problem we consider is to find a branching that is popular.

Given any pair of branchings, we say a node u prefers the branching where it has a
more preferred incoming edge (being a root is u’s worst choice). If neither incoming
edge is preferred to the other, then u is indifferent between the two branchings. So
any pair of branchings, say B and B ′, can be compared by asking for the majority
opinion, i.e., every node opts for the branching that it prefers, and it abstains if it is
indifferent between them. Let φ(B, B ′) (resp., φ(B ′, B)) be the number of nodes that
prefer B (resp., B ′) in the B-vs-B ′ comparison. If φ(B ′, B) > φ(B, B ′), then we say
B ′ is more popular than B.

Definition 1.1 A branching B is popular in G, if no branching in G is more popular
than B. That is, φ(B, B ′) ≥ φ(B ′, B) for all branchings B ′ in G.

An application in computational social choice. We see the main application of popu-
lar branchings within liquid democracy. Suppose there is an election where a specific
issue should be decided upon, and there are several proposed alternatives. Every indi-
vidual voter has an opinion on these alternatives, but might also consider certain other
voters as being better informed than her. Liquid democracy is a novel voting scheme
that provides a middle ground between the feasibility of representative democracy and
the idealistic appeal of direct democracy [4]: Voters can choose whether they delegate
their vote to another, well-informed voter or cast their vote themselves. As the name
suggests, voting power flows through the underlying network, or in other words, del-
egations are transitive. During the last decade, this idea has been implemented within
several online decision platforms such as Sovereign and LiquidFeedback1 and was
used for internal decision making at Google [23] and political parties, such as the
German Pirate Party or the Swedish party Demoex.

In order to circumvent delegation cycles, e.g., a situation in which voter x delegates
to voter y and vice versa, and to enhance the expressiveness of delegation preferences,
several authors proposed to let voters declare a set of acceptable representatives [20]
together with a preference relation among them [5,23,31]. A mechanism selects an
approved representative for each voter, avoiding delegation cycles. Similarly as sug-
gested in [6],we additionally assumevoters to accept themselves as their least preferred
approved representative.

1 See www.democracy.earth and www.interaktive-demokratie.org, respectively.
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This reveals the connection to branchings in simple graphs where nodes correspond
to voters and the edge (x, y) indicates that voter x is an approved delegate of voter y.2

Every root in the branching casts a weighted vote on behalf of all her descendants. We
assume that voters rate branchings only based on their predecessors. This is justified
when approved delegates are considered to be more competent both in deciding on the
issue as well as in assessing the competence of others. What is a good mechanism to
select representatives for voters? A crucial aspect in liquid democracy is the stability
of the delegation process [3,14]. For the model described above, we propose popular
branchings as a new concept of stability.

Not every directed graph admits a popular branching. Consider the following simple
graph on four nodes a, b, c, d where a, b (similarly, c, d) are each other’s top choices,
while a, c (similarly, b, d) are each other’s second choices. There is no edge between
a, d (similarly, b, c). Consider the branching B = {(a, b), (a, c), (c, d)}. A more
popular branching is B ′ = {(d, c), (c, a), (a, b)}. Observe that a and c prefer B ′ to
B, while d prefers B to B ′ and b is indifferent between B and B ′. We can similarly
obtain a branching B ′′ = {(b, a), (b, d), (d, c)} that is more popular than B ′. It is easy
to check that this instance has no popular branching.

1.1 Our problem and results

The popular branching problem is to decide if a given digraph G admits a popular
branching or not, and if so, to find one. We show that determining whether a given
branching B is popular is equivalent to solving a min-cost arborescence problem in an
extension of G with appropriately defined edge costs (these edge costs are a function
of the branching). The dual LP to this arborescence problem gives rise to a laminar
set system that serves as a certificate for the popularity of B, if it is popular. This
dual certificate is crucial in devising an algorithm for efficiently solving the popular
branching problem.

Theorem 1.2 Given a directed graph G where every node has preferences in arbitrary
partial order over its incoming edges, there is a polynomial-time algorithm to decide
if G admits a popular branching, and if so, to find one.

The proof of Theorem 1.2 is presented in Sect. 3; it is based on a characterization of
popular branchings that we develop in Sect. 2. In applications like liquid democracy,
it is natural to assume that the preference order of every node is a weak ranking, i.e., a
ranking of its incoming edges with possible ties. In this case, the proof of correctness
of our popular branching algorithm leads to a formulation of the popular branching
polytope BG , i.e., the convex hull of incidence vectors of popular branchings in G.

Theorem 1.3 Let G be a digraph on n nodes and m edges where every node has a
weak ranking over its incoming edges. The popular branching polytope of G admits
a formulation of size O(2n) in R

m, and has Ω(2n) facets.

2 Typically, such a delegation is represented by an edge (y, x); for the sake of consistency with downward
edges in a branching, we use (x, y).

123



T. Kavitha et al.

Though the above formulation has an exponential number of constraints, it admits an
efficient separation oracle. As a consequence, when G has edge costs and node pref-
erences are weak rankings, the min-cost popular branching problem can be efficiently
solved. Thus we can efficiently solve extensions of the popular branching problem
where we minimize the largest rank used or allow constraints for forced/forbidden
edges when node preferences are weak rankings. In contrast, we show that the min-
cost popular branching problem is NP-hard when node preferences are in arbitrary
partial order in Section 6.
Relaxing popularity. Since popular branchings need not always exist in G, this
motivates relaxing popularity to approximate popularity—do approximately popular
branchings always exist in any instance G? An approximately popular branching B
may lose an election against another branching, however the extent of this defeat will
be bounded. There are two measures of unpopularity: unpopularity factor u(·) and
unpopularity margin μ(·), defined as follows:

u(B) = max
φ(B′,B)>0

φ(B ′, B)

φ(B, B ′)
and μ(B) = max

B′ φ(B ′, B) − φ(B, B ′).

A branching B is popular if and only if u(B) ≤ 1 orμ(B) = 0.We show the following
results.

Theorem 1.4 A branching with minimum unpopularity margin in a digraph where
every node has a weak ranking over its incoming edges can be efficiently computed. In
contrast, when node preferences are in arbitrary partial order, the minimum unpopu-
larity margin problem is NP-hard.

Theorem 1.5 Let G be a digraph where every node has a strict ranking over its incom-
ing edges. Then there always exists a branching B inG with u(B) ≤ �log n�.Moreover,
for every n, we can show an instance Gn on n nodes with strict rankings such that
u(B) ≥ �log n� for every branching B in Gn.

Hardness results for restricted popular branching problems. A natural optimization
problem here is to compute a popular branching where no tree is large. In liquid
democracy, a large-sized tree shows a high concentration of power in the hands of a
single voter, and this is harmful for social welfare [20]. When there is a fixed subset
of root nodes in a directed graph, it was shown in [20] that it is NP-hard to find a
branching that minimizes the size of the largest tree. To translate this result to popular
branchings, we need to allow ties, whereas Theorem 1.6 below holds even for strict
rankings. Another natural restriction is to limit the out-degree of nodes; Theorem 1.6
also shows that this variant is computationally hard. The proof of Theorem 1.6 can be
found in the online supplement or in the full version [28] of our paper.

Theorem 1.6 Given a digraph G where each node has a strict ranking over its incom-
ing edges, it is NP-hard to decide if there exists

(a) a popular branching in G where each node has at most 9 descendants;
(b) a popular branching in G with maximum out-degree at most 2.
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We also consider popular mixed branchings in the online supplement and in the
full version [28]. A mixed branching P is a probability distribution (or lottery) over
branchings in G, i.e., P = {(B1, p1) . . . , (Bk, pk)}, where Bi is a branching in G for
each i and

∑k
i=1 pi = 1, pi ≥ 0 for all i . The notion of popularity extends naturally

to mixed branchings and we show that popular mixed branchings always exist in G;
moreover, a popular mixed branching can be computed in polynomial time.
Background andRelatedWork.The notion of popularitywas introduced byGärdenfors
[19] in 1975 in the domain of bipartite matchings. Algorithmic questions in popular
matchings have been well-studied for the last 10-15 years [1,2,8,9,15,16,22,24–27,29,
32]. Algorithms for popular matchings were first studied in the one-sided preferences
model where vertices on only one side of the bipartite graph have preferences over
their neighbors. Popular matchings need not always exist here and there is an efficient
algorithm to solve the popular matching problem [1]. The functions unpopularity
factor/margin were introduced in [32] to measure the unpopularity of a matching; it
was shown in [32] that it is NP-hard to compute a matching that minimizes either of
these quantities. In the domain of bipartitematchingswith two-sided strict preferences,
popular matchings always exist since stable matchings always exist [18] and every
stable matching is popular [19].

The concept of popularity has previously been applied to (undirected) spanning
trees [10–12]. In contrast to our setting, voters have rankings over the entire edge set.
This allows for a number of different ways to derive preferences over trees, most of
which lead to hardness results.
Techniques. Starting from an LP formulation for determining the unpopularity margin
of a given branching, we use LP duality to characterize popular branchings in terms
of dual certificates. A dual certificate for a given branching is a family of subsets
of the node set V exhibiting a certain combinatorial structure. A certificate of size k
implies that the unpopularity margin of the branching is at most n − k, and thus a
certificate of size n constitutes a proof that the branching is popular. This is analogous
to characterizing popular matchings in bipartite graphs in terms of witnesses (see
[15,25,27]). However, such witnesses are points in R

n rather than set families and
their structure is far simpler than that of dual certificates for popular branchings.

Our algorithm constructs a partition X ′ of V such that if G admits popular branch-
ings, then there has to be some popular branching in G with a dual certificate of size
n supported by X ′ (see Sect. 3). Moreover, when nodes have weak rankings, X ′ sup-
ports some dual certificate of size n to every popular branching in G: this leads to the
formulation of the popular branching polytope BG (see Sect. 6). Our positive results
on low unpopularity branchings are extensions of our algorithm (these results are in
Sect. 4 and Sect. 5).
Notation. The preferences of node v on its incoming edges are given by a strict partial
order ≺v , so e ≺v f means that v prefers edge f to edge e. We use e ∼v f to denote
that v is indifferent between e and f , that is, neither e ≺v f nor e 	v f holds. The
relation ≺v is a weak ranking if ∼v is transitive. In this case, ∼v is an equivalence
relation and there is a strict order on the equivalence classes. When each equivalence
class has size 1, we call it a strict ranking.
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2 Dual certificates

We add a dummy node r to G = (VG , EG) as the root and make (r , v) the least
preferred incoming edge of any node v in G. Let D = (V ∪ {r}, E) be the resulting
graph where V = VG and E = EG ∪ {(r , u) : u ∈ V }. An r-arborescence in D is an
out-tree with root r (throughout the paper, all arborescences are assumed to be rooted
at r and to span V , unless otherwise stated).

Note that there is a one-to-one correspondence between branchings in G and
arborescences in D (simply make r the parent of all roots of the branching). A branch-
ing is popular in G if and only if the corresponding arborescence is popular among
all arborescences in D.3 We will therefore prove our results for arborescences in D.
The corresponding results for branchings in G follow immediately by projection, i.e.,
removing node r and its incident edges.

For an arborescence A in D, there is a simple way to check if A is popular in D.
Let A(v) be the incoming edge of v in A. For e = (u, v) in D, define:

cA(e) :=

⎧
⎪⎨

⎪⎩

0, if e 	v A(v), i.e., v prefers e to A(v);
1, if e ∼v A(v), i.e., v is indifferent between e and A(v);
2, if e ≺v A(v), i.e., v prefers A(v) to e.

For S ⊆ E we define cA(S) = ∑
e∈S cA(e). Observe that cA(A) = |V | = n since

cA(e) = 1 for every e ∈ A. Let A′ be any arborescence in D and let Δ(A, A′) =
φ(A, A′)−φ(A′, A) be the difference in the number of votes for A and the number of
votes for A′ in the A-vs-A′ comparison. Observe that cA(A′) = Δ(A, A′) + n. Since
μ(A) = maxA′(−Δ(A, A′)) = maxA′(n − cA(A′)), we can conclude the following.

Proposition 2.1 Let A′ be a min-cost arborescence in D with respect to cA. Then
μ(A) = n − cA(A′). In particular, A is popular in D if and only if it is a min-cost
arborescence in D with edge costs given by cA.

Consider the following linear program LP1, which computes a min-cost arbores-
cence in D, and its dual LP2. For any non-empty X ⊆ V , let δ−(X) be the set of edges
entering the set X in the graph D.

minimize
∑

e∈E
cA(e) · xe (LP1)

subject to
∑

e∈δ−(X)

xe ≥ 1 ∀ X ⊆ V , X �= ∅

xe ≥ 0 ∀ e ∈ E .

3 Note that, by the special structure of D, an arborescence is popular among all arborescences in D if and
only if it is a popular branching in D.
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maximize
∑

X⊆V , X �=∅
yX (LP2)

subject to
∑

X : δ−(X)�e
yX ≤ cA(e) ∀ e ∈ E

yX ≥ 0 ∀ X ⊆ V , X �= ∅.

For any feasible solution y to LP2, let Fy := {X ⊆ V : yX > 0} be the support of
y. Inspired by Edmonds’ branching algorithm [13], Fulkerson [17] gave an algorithm
to find an optimal solution y to LP2 such that y is integral. From an alternative proof
(Theorem 6.13 in [30]), we get Lemma 2.2. A family of sets S is called laminar if for
any two sets S, S′ ∈ S we have: S ⊆ S′ or S′ ⊆ S or S ∩ S′ = ∅.
Lemma 2.2 There exists an optimal, integral solution y∗ to LP2 such that Fy∗ is
laminar.

Let y be an optimal, integral solution to LP2 such that Fy is laminar. Note that for
any nonempty X ⊆ V , there is an e ∈ A ∩ δ−(X) and thus yX ≤ cA(e) = 1. This
implies that yX ∈ {0, 1} for all X . We conclude that Fy is a dual certificate for A in
the sense of the following definition.

Definition 2.3 A dual certificate for A is a laminar family Y ⊆ 2V such that |{X ∈
Y : e ∈ δ−(X)}| ≤ cA(e) for all e ∈ E .

Lemma 2.4 The following three statements are equivalent:

(1) A is popular.
(2) There exists a dual certificate Y for A with |Y| = n.
(3) There exists a dual certificate Y for A with |A ∩ δ−(X)| = 1 for all X ∈ Y and

|{X ∈ Y : e ∈ δ−(X)}| = 1 for all e ∈ A.

Proof Let Y be a dual certificate for A of maximum cardinality and observe that Y
corresponds to an optimal solution to LP2 of value |Y|. Recall from Proposition 2.1
that A is popular if and only if it is a min-cost arborescence in D with respect to
cA. Hence (1) is equivalent to A corresponding to an optimal solution to LP1. By LP
duality, this is the case if and only if cA(A) = |Y|, which is equivalent to (2) because
cA(A) = n by definition of cA. Lastly, (3) is equivalent to the characteristic vectors
of A and Y fulfilling complementary slackness, which is again equivalent to A and Y
being optimal solutions. ��

For the rest of this section, let Y be a dual certificate maximizing |Y|.
Observation 2.5 For every v ∈ V we have |{X ∈ Y : v ∈ X}| ≤ 2.

Observation 2.5 is implied by the fact that e = (r , v) is an edge in D for every v ∈ V
and cA(e) ≤ 2. For the case when A is popular, Lemma 2.4 establishes the following
one-to-one correspondence between the nodes in V and the sets of Y: For every set
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X ∈ Y , there is a unique edge (u, v) ∈ A that enters X . We call v the entry-point for
X . Conversely, we let Yv be the unique set in Y for which v is the entry-point; thus
Y = {Yv : v ∈ V }. Laminarity of Y yields the following corollary of Lemma 2.4 and
Observation 2.5:

Corollary 2.6 If |Y| = n and w ∈ Yv \ {v} for some v ∈ V , then Yw = {w}.
Proof Assume z ∈ Yw \ {w}. By laminarity either Yw ⊆ Yv holds, in which case
z ∈ Yw ∩ Yv ∩ Yz , a contradiction to Observation 2.5, or Yv ⊆ Yw implying that the
edge from A entering Yw enters two sets from Y , namely Yw and Yv , a contradiction
to |{X ∈ Y : e ∈ δ−(X)}| = 1 for all e ∈ A (see Lemma 2.4). ��

The following definition of the set of safe edges S(X) with respect to a subset
X ⊆ V will be useful. Let S(X) be the set of edges (u, v) in E[X ] := E ∩ (X × X)

such that properties 1. and 2. hold:

1. (u, v) is undominated in E[X ], i.e., (u, v) ⊀v (u′, v) ∀ (u′, v) ∈ E[X ].
2. (u, v) dominates (w, v) ∀w /∈ X , i.e., (u, v) 	v (w, v) ∀ (w, v) ∈ δ−(X).

Observation 2.7 If A is popular, then A ∩ E[X ] ⊆ S(X) for all X ∈ Y .

Proof Let X ∈ Y with |X | > 1. By Corollary 2.6, for every node v ∈ X other than
the entry-point for X we have {v} = Yv ∈ Y . So any edge e ∈ δ−(v) within E[X ]
enters exactly one dual set, i.e., {v}, implying cA(e) ≥ 1 by LP2. By contrast, any
edge (w, v) ∈ E where w /∈ X enters two of the dual sets: X and {v}, yielding
cA((w, v)) ≥ 2. For the edge (u, v) ∈ A ∩ E[X ], these conditions induce exactly the
constraints 1. and 2. given above, showing that the edge A(v) must be safe. ��

3 Popular branching algorithm

We are now ready to present our algorithm for deciding if D admits a popular arbores-
cence or not. For each v ∈ V , step 1 of the algorithm builds the largest set Xv such
that v can reach all nodes in Xv using edges in S(Xv). To construct the sets Xv we
make use of the monotonicity of S(·), which follows directly from the definition of
safe edges:

Observation 3.1 If X ⊆ X ′ ⊆ V , then S(X) ⊆ S(X ′).

We will establish later that the collection X = {Xv : v ∈ V } is laminar (see
Lemma 3.2). In steps 2-3, the algorithm contracts each maximal set in X into a single
node and builds a graph D′ on these nodes and r . For each contracted set X ∈ X , edges
leading to node X in D′ correspond to undominated edges in D leading from outside
X to the candidate entry-points of X , which are nodes v ∈ X such that X = Xv .
Theorems 3.3-3.4 show that D admits a popular arborescence if and only if D′ admits
an arborescence.

Our algorithm for computing a popular arborescence in D is given below. An
example of the execution of the algorithm is shown in Fig. 1.

1. For each v ∈ V do:
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– let X0
v = V and i = 0;

– while v does not reach all nodes in the graph Di
v = (Xi

v, S(Xi
v)) do:

Xi+1
v = the set of nodes reachable from v in Di

v; let i = i + 1.
– let Xv = Xi

v .

2. Let X = {Xv : v ∈ V }, X ′ = {Xv ∈ X : Xv is ⊆ -maximal in X }, E ′ = ∅.
3. For every edge e = (u, v) in D such that Xv ∈ X ′ and u /∈ Xv do:

– if e is undominated (i.e., e ⊀v e′) among all edges e′ ∈ δ−(Xv), then

f (e) =
{

(U , Xv) where u ∈ U and U ∈ X ′,
(r , Xv) if u = r;

– let E ′ := E ′ � { f (e)}.
4. If D′ = (X ′ ∪ {r}, E ′) contains an arborescence A′, then

– let A′
D = {e : f (e) ∈ A′};

– let R = {v ∈ V : v has an incoming edge in A′
D};

– for each v ∈ R: let Av be an arborescence in (Xv, S(Xv)) rooted at v;
– return A∗ = A′

D ∪v∈R Av .

Else return “No popular arborescence in D”.

Correctness of the above algorithm. We first establish the laminarity of the sets Xu

for u ∈ V constructed in step 1 of the algorithm.

Lemma 3.2 X = {Xv : v ∈ V } is laminar. For any v ∈ V , if u ∈ Xv then Xu ⊆ Xv .

Proof We start by proving the second statement. Let v ∈ V and u ∈ Xv . We first
show that Xi

u ⊆ Xi
v for any i , where we set Xi

v := Xv whenever Xi
v is not defined

by the above algorithm. The claim clearly holds for i = 0. Let i be the smallest index
such that x ∈ Xi

u \ Xi
v for some node x ; we must have x ∈ Xi−1

u ∩ Xi−1
v . By the

definition of Xi
u , x is reachable from u in S(Xi−1

u ). Note that Xi−1
u ⊆ Xi−1

v implies
S(Xi−1

u ) ⊆ S(Xi−1
v ), which yields that x is reachable from u in S(Xi−1

v ) as well.
Moreover, u is reachable from v in S(Xi−1

v ) ⊇ S(Xv) because u ∈ Xv and S(·) is
monotone. Hence it follows that x is reachable from v in S(Xi−1

v ) via u, contradicting
the assumption that x /∈ Xi

v . This concludes the proof of the second statement.
Now we will show the laminarity of X . For contradiction, assume there exist s, t ∈

V such that Xs and Xt cross, i.e., their intersection is non-empty and neither contains
the other. Then, by the second statement of the lemma, neither s ∈ Xt nor t ∈ Xs can
hold. So we have that s /∈ Xt and t /∈ Xs .

Let (x, y) be an edge in S(Xt ) such that y ∈ Xs ∩ Xt but x ∈ Xt \ Xs ; since each
node in Xt is reachable from t in S(Xt ), such an edge exists. Since y ∈ Xs \ {s}, there
also exists an edge (u, y) in S(Xs). As x /∈ Xs but (u, y) ∈ S(Xs), we know that
(u, y) 	y (x, y) which contradicts (x, y) ∈ S(Xt ). ��
Theorem 3.3 If the above algorithm returns an edge set A∗, then A∗ is a popular
arborescence in D.
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Fig. 1 The left figure shows an example for the graph D, i.e., the input instance extended by a root node
r . Some outgoing arcs from the root are omitted in D. Solid arcs are preferred over dashed arcs which are
preferred over dotted arcs. Grey areas correspond to sets in X . The right figure depicts the corresponding
graph D′ constructed by our algorithm. Any arborescence in D′ can be extended to a popular arborescence
in D. e.g., the arborescence indicated by bold blue arcs is popular

Proof We start by showing that A∗ is an arborescence in D. Laminarity of X implies
that the sets in X ′ are pairwise disjoint. Moreover, by construction, each node in V
is included in at least one set in X , namely v ∈ Xv for each v ∈ V . Hence, X ′
forms a partition of V . Thus each w ∈ V has exactly one incoming edge in A∗: an
edge from A′

D if w ∈ R or an edge from the arborescence Av for the unique node
v ∈ R with w ∈ Xv if w ∈ V \ R. Now assume by contradiction that A∗ contains a
cycle C . Because the arborescences Av for v ∈ R are node-disjoint, this cycle must
contain edges from A′

D and the set { f (e) : e ∈ C ∩ A′
D} ⊆ A′ must contain a cycle,

a contradiction. Thus A∗ is an arborescence.
We now establish that A∗ is popular by showing that Y := {Xv : v ∈ R} ∪ {{v} :

v ∈ V \ R} is a dual certificate for A∗ of size n. Note that |Y| = |R| + |V \ R| = n.
We now show that for all v ∈ V , the incoming edges satisfy the constraints in LP2.

Suppose v ∈ R. An edge (w, v) ∈ E enters one set of Y iff w /∈ Xv and no set iff
w ∈ Xv . Hence, it suffices to show that cA∗((w, v)) ∈ {1, 2} for w /∈ Xv . Let (u, v)

be the incoming edge of v in arborescence A∗; note that (u, v) ∈ A′
D and u /∈ Xv . By

construction of E ′, (w, v) does not dominate (u, v) and therefore cA∗((w, v)) ∈ {1, 2}.
Suppose v ∈ V \ R. Let s ∈ R be the unique node in R with v ∈ Xs . Then there

is (u, v) ∈ As ⊆ S(Xs) by construction of As . Any edge (w, v) ∈ δ−(v) enters at
most two sets of Y: {v} and possibly Xs . If, on the one hand, (w, v) ∈ δ−(Xs), then
(u, v) ∈ S(Xs) dominates (w, v) by property 2. of S(Xs), and hence cA∗((w, v)) = 2.
If, on the other hand, w ∈ Xs , then (u, v) ∈ S(Xs) is not dominated by (w, v) by
property 1. of S(Xs), and hence cA∗((w, v)) ≥ 1. This proves thatY is a dual certificate
of size n for A∗, thus A∗ is popular. ��
Theorem 3.4 If D has a popular arborescence, then our algorithm finds one.

Before we prove Theorem 3.4, we need Lemma 3.5 and Lemma 3.6.

Lemma 3.5 Let A be a popular arborescence and Y = {Yv : v ∈ V } a dual certificate
for A of size n. Then Yv ⊆ Xv for any v ∈ V .
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Proof Assume for contradiction that Yv \ Xv �= ∅. Because Yv ⊆ V = X0
v , there is

an iteration i with Yv ⊆ Xi
v and Yv � Xi+1

v . Let z ∈ Yv \ Xi+1
v . By Lemma 2.4, A

enters Yv only at v and thus A contains a directed v-z-path using only nodes of Yv .
Because z /∈ Xi+1

v , there must be an edge (u, w) ∈ A on this path with u ∈ Xi+1
v and

w ∈ Yv \ Xi+1
v . Note that δ+(Xi+1

v ) ∩ S(Xi
v) = ∅ by construction of Xi+1

v from Xi
v .

Thus (u, w) /∈ S(Xi
v) and one of the following two cases must be true:

Case 1: There exists an edge (x, w) ∈ E[Xi
v] that dominates (u, w) and hence

cA((x, w)) = 0. However, {w} ∈ Y by Corollary 2.6. SoY violates the dual constraint
for (x, w), a contradiction.

Case 2: There is an edge (x, w) ∈ δ−(Xi
v) which is not dominated by (u, w) and

hence cA((x, w)) ∈ {0, 1}. But since x /∈ Xi
v ⊇ Yv the edge (x, w) enters both the set

{w} and the set Yv in Y , again a contradiction. ��
Lemma 3.6 Let A be a popular arborescence in D and let X ∈ X ′. Then A enters X
exactly once, and it enters X at some node v such that X = Xv .

Proof Let X ∈ X ′ and let A be a popular arborescence which enters X at some node
v ∈ V through an edge (u, v) ∈ A ∩ δ−(X). Moreover, let Y be a dual certificate for
A, and let Yv be the set whose entry-point is v.

Let entry(X) := {w ∈ V : Xw = X}. We first show that entry(X) ⊆ Yv . Assume
for contradiction that there exists w ∈ entry(X) such that w /∈ Yv . Since Xw = X ,
we know that there exists a w-v-path P in (X , S(X)). Hence, there exists an edge
e = (u′, v′) ∈ P which enters Yv . If v′ = v, we know that e ∈ S(X) dominates
(u, v) ∈ δ−(X) and hence cA(e) = 0, a contradiction to the feasibility of Y . If v′ �= v,
then e enters not only Yv ∈ Y , but also {v′} ∈ Y . However, cA(e) ≤ 1 since e ∈ S(X)

must be an undominated edge, a contradiction to the feasibility of Y .
We next show that v ∈ entry(X). Let s ∈ entry(X). By the previous paragraph and

Lemma 3.5, we get s ∈ Yv ⊆ Xv , from which Lemma 3.2 implies Xs ⊆ Xv . Because
s ∈ entry(X), we have X = Xs ⊆ Xv . Because X ∈ X ′ is inclusionwise maximal in
X , we get X = Xv , proving v ∈ entry(X).

It remains to prove that A enters X only once. Suppose for contradiction that
there exist two nodes v, v′ ∈ entry(X) such that (u, v), (u′, v′) ∈ A ∩ δ−(X). By
∅ �= entry(X) ⊆ Yv ∩ Yv′ and the laminarity of Y , we can assume w.l.o.g. that
Yv ⊆ Yv′ . Moreover, since u /∈ X ⊇ Yv′ , the edge (u, v) ∈ A enters both Yv and Yv′ ,
contradicting the feasibility of the dual solution Y . ��
Proof (of Theorem 3.4) Assume there exists a popular arborescence A in D; then there
exists a dual certificate Y = {Yv : v ∈ V } of size n for A. We will show that there
exists an arborescence in D′. By Lemma 3.6, for each X ∈ X ′ there exists exactly one
edge eX = (u, v) of A that enters X = Xv .

We claim that (u, v) is not dominated by any (u′, v) ∈ δ−(X). Recall that by
Lemma 3.5, we know Yv ⊆ Xv = X . If some (u′, v) ∈ δ−(X) dominates (u, v) ∈ A,
its cost must be cA((u′, v)) = 0. However, (u′, v) clearly enters Yv ⊆ X , and Y
violates the dual constraint for (u′, v), a contradiction. Hence, eX is undominated
among the edges of δ−(X) ∩ δ−(v) and so our algorithm creates an edge f (eX ) in
E ′ pointing to X . Using that A is an arborescence in D, it is straightforward to
verify that the edges { f (eX ) : X ∈ X ′} form an arborescence A′ in D′. Thus our
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algorithm returns an edge set A∗, which by Theorem 3.3 must be a popular
arborescence in D. ��

Observe that step 1, the bottleneck step, takes O(mn) time per node. An arbores-
cence in D′ can be found by breadth first search, i.e., in time O(n′ +m′) where n′ and
m′ are the number of vertices and edges in D′, respectively. Thus the running time of
the algorithm is O(mn2), and Theorem 1.2 follows.

4 Branchings withminimum unpopularity margin

Recall the definition of the unpopularity margin for branchings from Sect. 1. Again,
instead of studying minimum unpopularity margin branchings within the digraph G,
we look at r -arborescences of minimum unpopularity margin within the digraph D as
constructed in Sect. 2. It is easy to see that the unpopularity margin of a branching in
G is the same as the unpopularity margin of the corresponding arborescence in D.4

Thus we are looking for an arborescence of minimum unpopularity margin in D. We
further obtain the following variant of Lemma 2.4 which proves useful in bounding
the unpopularity margin of a given arborescence in D.

Lemma 4.1 Let A be an arborescence in D and Y be a dual certificate for A. Then
μ(A) ≤ n − |Y|, with equality if Y has maximum cardinality.

Proof Let A′ be a min-cost arborescence in D with respect to cA. Recalling the pair of
integral LPs LP1 and LP2 from Sect. 2, we observe that A′ corresponds to an optimal
solution to LP1 of value cA(A′) and Y corresponds to a feasible solution to LP2 of
value |Y|.We conclude that cA(A′) ≥ |Y| by LP duality. Thus, Proposition 2.1 implies
thatμ(A) = n−cA(A′) ≤ n−|Y|. IfY has maximum cardinality, it is optimal to LP2
and the inequality becomes an equality by strong duality. ��

4.1 A simple extension of our algorithm: algorithmMinMargin

Our algorithm from Sect. 3 can be extended to compute an arborescence with mini-
mum unpopularity margin when nodes have weak rankings. If D′ does not admit an
arborescence, algorithmMinMargin below computes a maximum-size branching B ′
in D′ and adds edges from r to all root nodes in B ′ to construct an arborescence. This
arborescence in D′ is then transformed into an arborescence in D. Figure 2 shows an
example execution of the algorithm.

1. Let D′ be the graph constructed in the algorithm in Sect. 3, and let B ′ be a branching
of maximum size in D′.

2. Let B ′
D = {e : f (e) ∈ B ′}, R1 = {v ∈ V : δ−(v) ∩ B ′

D �= ∅}, R2 = ∅.
3. For each X ∈ X ′ which is a root in the branching B ′, select one arbitrary v ∈ V

with Xv = X . Add v to R2 and add (r , v) to B ′
D .

4. For each v ∈ R1 ∪ R2, let Av be an arborescence in (Xv, S(Xv)) rooted at v.

4 Note that, due to the special structure of D, there always exists an arborescence A′ such that A′ ∈
argmaxB∈B(D) φ(B, A) − φ(A, B), where B(D) is the set of branchings in D.
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Fig. 2 Variant of the example introduced in Fig. 1 with one additional incoming arc for node b, i.e., the arc
(d, b). As a consequence, D′ does not contain an arborescence. On the right, the bold blue edges form a
maximum-size branching in D′, which induces an arborescence of minimum unpopularity margin within
the graph D. Again, in the left figure, the grey areas correspond to the sets in X and some outgoing arcs of
r are omitted (color figure online)

5. Return A∗ := B ′
D

⋃
v∈R1∪R2

Av .

Theorem 4.2 When nodes have weak rankings, Algorithm MinMargin returns an
arborescence with minimum unpopularity margin in D.

To prove Theorem 4.2, we first show in Lemma 4.3 that the size of the set R2
is an upper bound on the unpopularity margin of the arborescence A∗ returned by
Algorithm MinMargin. Then we introduce the concept of completeness of dual cer-
tificates, which can be used to show that any arborescence in D has unpopularity
margin at least |R2|. We remark that only the latter bound requires the properties of
weak rankings, whereas the algorithm itself and Lemma 4.3 hold for arbitrary partial-
order preferences.

Lemma 4.3 Let A∗, R2 be as computed by the algorithm. Then μ(A∗) ≤ |R2|.
Proof By Lemma 4.1 it suffices to construct a dual certificate for A∗ of size n − |R2|.
Define Y := {Xv : v ∈ R1} ∪ {{v} : v ∈ V \ {R1 ∪ R2}} and note that Y is a
laminar family of size n − |R2|. It remains to show that Y fulfills the constraints of
Definition 2.3. To this end, consider any edge e = (w, v) ∈ E and let (u, v) be the
unique incoming edge of v in A∗.

Suppose v ∈ R2. Then v is not contained in any set of Y , so the constraint for
e = (w, v) is not violated.

Suppose v ∈ R1. Then (u, v) ∈ B ′
D and u /∈ Xv . Edge e = (w, v) enters exactly one

set ofY ifw /∈ Xv and no set ifw ∈ Xv . Hence, it suffices to show that cA∗(e) ∈ {1, 2}
for w /∈ Xv . Note that (u, v) ∈ B ′

D corresponds to an edge in D′ and hence e with
w /∈ Xv does not dominate (u, v) by construction of D′. Thus cA∗(e) ∈ {1, 2} in this
case.

Suppose v ∈ V \ (R1 ∪ R2). Let s ∈ R1 ∪ R2 be the unique node in R1 ∪ R2 with
v ∈ Xs . Then (u, v) ∈ As by construction of A∗. Edge e = (w, v) enters at most two
sets of Y if w /∈ Xs and exactly one set if w ∈ Xs . If w /∈ Xs , then by construction
of As and property 2 of S(Xs), it holds that (w, v) is dominated by (u, v), and hence
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cA∗(e) = 2. If w ∈ Xs , then by construction of As and property 1 of S(Xs), (w, v)

does not dominate (u, v), and hence cA∗(e) ∈ {1, 2}. Thus, Y is a dual certificate for
A∗ of size n − |R2|. ��
Lemma 4.4 Let A be an arborescence in D. For Z ⊆ V and v ∈ Z, letYZ ,v := {{w} :
w ∈ Z \ {v}} ∪ {Z}. If |{Y ∈ YZ ,v : e ∈ δ−(Y )}| ≤ cA(e) for all e = (w, x) ∈ E with
x ∈ Z \ {v}, then Z ⊆ Xv .

Proof The proof is a direct analog of the proof of Lemma 3.5, with Z taking the role of
Yv and noting that this proof only makes use of dual constraints for nodesw ∈ Yv \{v}.

��
For Observation 4.5 recall that the weakly connected components of a directed

graph are the connected components of its induced undirected graph.

Observation 4.5 Let B ′ be a branching of maximum size in D′ and C ⊆ X ′ be a
weakly connected component of B ′ not containing r . Then, there exists C ′ ⊆ C such
that δ−

D′(C ′) = ∅.
Proof Assume for contradiction that δ−

D′(C ′) �= ∅ for allC ′ ⊆ C . Hence, every X ∈ C
is reachable from {r} ∪ X ′ \ C in D′. Consequently, we can modify B ′ by attaching
each X ∈ C to one of the other connected components of B ′, increasing its size by 1.
This contradicts the maximality of B ′. ��
Completeness of dual certificates. Let A be an arborescence in D and Y a dual certifi-
cate for A. If an edge (u, v) ∈ A enters a set Y ∈ Y we say that Y belongs to v. Note
that every set ofY belongs to some node and, since cA(e) = 1 for every e ∈ A, at most
one set may belong to a node. However, if |Y| < n, the same set of Y may belong to
multiple distinct nodes and there may be nodes to which no set in Y belongs. We say
thatY is complete on S ⊆ V , if |{Y ∈ Y : Y belongs to some v ∈ S}| = |S|. Note that
if Y is complete on S, then for each v ∈ S there is a unique set Yv ∈ Y belonging to
v, and for any two distinct nodes v, v′ ∈ S we have Yv �= Yv′ . In the following proof
of Theorem 4.2 we will show that there exist |R2| disjoint node sets for which no dual
certificate of any arborescence can be complete.

Proof (of Theorem 4.2) Let A be an arborescence with minimum unpopularity margin
and Y a dual certificate for A with maximum cardinality. We will show that |Y| ≤
n − |R2|. By Lemmas 4.1 and 4.3 this implies μ(A) ≥ |R2| ≥ μ(A∗), which proves
the theorem.

Note that there is a one-to-one correspondence between nodes in R2 and the con-
nected components of B ′ in D′ not containing r . LetC be such a connected component.
By Observation 4.5, there exists some C ′ ⊆ C with δ−

D′(C ′) = ∅. We will show that
Y is not complete on S := ⋃

X∈C ′ X . As the sets S are disjoint for distinct connected
components C , there exist |R2| pairwise disjoint sets on which Y is not complete.
Since each set of Y belongs to some node of V , and at most one set belongs to each
node, this implies |Y| ≤ n − |R2|.

It remains to show that Y is not complete on S. Assume for contradiction that Y is
complete on S and for each v ∈ S let Yv be the unique set belonging to v. Consider
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any edge e = (u, v) ∈ A∩ δ−
D(S) at which A enters S. We will show that Yv ∩ S and v

fulfill the requirements of Lemma 4.4, but that Yv ∩ S � Xv , deriving a contradiction.
Thus Y cannot be complete on S.

In the proof of the first claim, we rely on our assumption that the preferences are
given by a weak ranking.

Claim Let Z := Yv ∩ S and YZ ,v := {{w} : w ∈ Z \ {v}} ∪ {Z}. Then |{Y ∈ YZ ,v :
e′ ∈ δ−(Y )}| ≤ cA(e′) for all e′ = (w, x) ∈ E with x ∈ Z \ {v}.
Proof of Claim Let e′ = (w, x) ∈ E with x ∈ Z \ {v}. By the laminarity of Y and
its completeness on S, we know that Yx ∩ S = {x}. Indeed, assuming that x ′ is a
node in Yx ∩ S other than x , the sets Yx ′ , Yx , and Yv would necessarily contradict
Observation 2.5. We distinguish two cases:

Case 1: w /∈ Yv \ S. In this case e′ enters Yv if and only if it enters Z = Yv ∩ S.
Hence |{Y ∈ YZ ,v : e′ ∈ δ−(Y )}| = |{Y ∈ Y : e′ ∈ δ−(Y )}| ≤ cA(e′).

Case 2:w ∈ Yv\S. In that case e′ enters the two setsYv∩S and {x}.We need to prove
cA(e′) = 2. Consider the set X ∈ C ′ that contains x . Note that δ−

D′(C ′) = ∅ implies
that e′ must be dominated by some edge f entering X at x . Without loss of generality
we can choose f such that it is undominated among all edges in δ−

D(X) ∩ δ−
D(x).

Clearly, f enters the set {x} ∈ YZ ,v . Note that f cannot enter S, because δ−
D′(C ′) = ∅

and f is not dominated by edges entering X ⊆ S. So we can apply the statement of the
previous case to f , yielding 1 ≤ |{Y ∈ YZ ,v : f ∈ δ−(Y )}| ≤ cA( f ). This implies
that f does not dominate A(x). So either A(x) 	x f 	x e′ or A(x) ∼x f , which also
implies A(x) 	x e′ because preferences are weak rankings. Hence cA(e′) = 2. �

Claim Yv ∩ S � Xv .

Proof of Claim Let X ∈ X ′ be the unique set of X ′ with v ∈ X .
Case 1: Xv �= X . Let s ∈ V with Xs = X . Note that v ∈ X implies s ∈ X ⊆ S.

By construction of Xs there exists an s-v-path P ⊆ S(X) containing only safe edges
for Xs . Recall that a safe edge cannot be dominated by any other edge. If s /∈ Yv ,
then there is an edge (u′, v′) ∈ P entering Yv . If v′ �= v, then the non-dominated
edge (u′, v′) enters two sets of Y , a contradiction. If v′ = v, then (u′, v′) dominates
(u, v) ∈ A but enters Yv , again a contradiction. We conclude that s ∈ Yv . However, as
Xv �= Xs , we know that s /∈ Xv by Lemma 3.2. We obtain s ∈ (Yv ∩ S) \ Xv .

Case 2: Xv = X . Because f (e) /∈ δ−
D′(C ′) = ∅, there must be an edge e′ = (u′, v)

entering Xv at v and dominating e. Without loss of generality, we can choose e′ such
that it is undominated among all edges in δ−

D(v) ∩ δ−
D(Xv). Because e ∈ A, we obtain

cA(e′) = 0 and hence e′ cannot enter Yv ∈ Y . We conclude that u′ ∈ (Yv ∩ S) \ Xv . �
This completes the proof of Theorem 4.2. ��

4.2 Unpopularity margin under partial preference orders

The following theorem shows that AlgorithmMinMargin cannot be extended for the
case where each node v has an arbitrary partial order over δ−(v).
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Theorem 4.6 Given a directed graph where each node has a partial preference order
over its incoming edges and an integer k ≤ n, it is NP-hard to decide if there exists a
branching with unpopularity margin at most k.

Proof We reduce from the NP-complete problem 3D- Matching where we are given
disjoint sets X ,Y , Z of equal cardinality and T ⊆ X×Y×Z , andwe ask if there exists
M ⊆ T with |M | = |X | such that for distinct (x, y, z), (x ′, y′, z′) ∈ M it holds that
x �= x ′, y �= y′ and z �= z′; such an M is called a 3D-matching. W.l.o.g. we assume
that |X | > 3 and every x ∈ X ∪ Y ∪ Z is in some t ∈ T . For any t = (x, y, z) ∈ T
we define S(t) := {x, y, z}.

We construct a digraph D = (V ∪ {r}, E) together with a partial order 	v over the
incoming edges of v for each v ∈ V as follows. For every x ∈ X ∪Y ∪ Z we introduce
a node gadget consisting of a lower node xl and an upper node xu . There exist two
parallel edges, d(1)

x and d(2)
x , from xu to xl , and there exist two parallel edges, r

(1)
x and

r (2)
x , from r to xl . Moreover, the upper node xu has an incoming edge from the upper
node of every other node gadget, i.e., (x ′

u, xu) ∈ E for all x ′ ∈ X ∪Y ∪ Z \{x}. Lastly,
there exists an incoming edge from r to the upper node which we call r (3)

x .
For each t ∈ T we introduce a hyperedge gadget consisting of six edges in D. More

precisely, for each x ∈ S(t) we introduce two parallel edges from xl to xu which we
call t (1)x and t (2)x . This finishes the definition of D.

Let us now define the preferences {	v: v ∈ V }. A lower node xl has the following
preferences over its incoming edges:

d(1)
x 	 r (1)

x , d(2)
x 	 r (2)

x ,

and all other pairs are not comparable. The preferences of an upper node xu are as
follows:

(x ′
u, xu) 	 r (3)

x for each x ′ ∈ X ∪ Y ∪ Z \ {x},
t (1)x 	 (x ′

u, xu) for each t ∈ T with x ∈ S(t) and each x ′ ∈ X ∪ Y ∪ Z \ S(t),

t (2)x 	 (x ′
u, xu) for each t ∈ T with x ∈ S(t) and each x ′ ∈ S(t) \ {x},

t (1)x 	 r (3)
x , for each t ∈ T with x ∈ S(t),

t (2)x 	 r (3)
x , for each t ∈ T with x ∈ S(t),

and all other pairs are not comparable. See Fig. 3 for an illustration.
Note that the digraph D has the special property that every node v ∈ V has at least

one incoming edge from r . As a consequence, any branching B in Dminimizingμ(B)

must in fact be an arborescence rooted at r . Moreover, we can apply Lemma 4.1 to
any given arborescence A in D as usual. In the following we show that there exists
a 3D-matching M ⊆ T with |M | = |X | iff there exists an r -arborescence in D with
unpopularity margin at most 2|X |.

First, let M ⊆ T be a 3D-matching with |M | = |X |. We construct an arborescence
A together with a feasible dual certificate Y with |Y| = 4|X |. By Lemma 4.1, this
suffices to show that A has unpopularity margin at most 6|X | − 4|X | = 2|X |. We
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Fig. 3 Construction in the
reduction for Theorem 4.6
depicting the node gadget for
x ∈ X and the hyperedge gadget
for (x, y, z) ∈ T . Each solid
edge dominates dashed edges of

the same color; edge r (3)
x is

dominated by all other edges; all
other edge pairs are
incomparable (color figure
online)

define A and Y as

A := {r (1)
x : x ∈ X ∪ Y ∪ Z} ∪ {t (1)w : t ∈ M, w ∈ S(t)},

Y := {{xu} : x ∈ X ∪ Y ∪ Z} ∪ {{xu, yu, zu, xl , yl , zl} : (x, y, z) ∈ M}.

It is easy to verify that A is indeed an r -arborescence. It remains to show that Y is a
feasible dual solution.

First consider a node xl for x ∈ X ∪ Y ∪ Z which has four incoming edges. The
edges d(1)

x and d(2)
x do not enter any set in Y and hence do not violate any constraint

in the dual LP. Moreover, since node xl is indifferent between r
(1)
x and r (2)

x , we obtain
cA(r (1)

x ) = cA(r (2)
x ) = 1 and hence, none of the constraints corresponding to an edge

entering xl is violated.
Now consider xu for x ∈ X ∪ Y ∪ Z . Let S(t) = {x, y, z} for the hyperedge t in

M containing x . We obtain cA((yu, xu)) = cA((zu, xu)) = cA(e) = 1 for any edge e
pointing from xl to xu , while for any other incoming edge e of xu we get cA(e) = 2.
By construction of Y , the first group of edges enter only the set {xu} of Y , while the
second group of edges enter two sets of Y . Thus none of the constraints is violated.
This shows the first direction of the equivalence.

For the reverse direction, let A be an r -arborescence of unpopularity margin at most
2|X |. Let Y be a corresponding laminar certificate of size |Y| = 4|X |.

Since the number of sets in Y is greater than the number of node gadgets, there
exist node gadgets which intersect with more than one set from Y . Let x ∈ X ∪Y ∪ Z
be a node such that the corresponding node gadget intersects with at least two sets
Y1,Y2 ∈ Y . We will show that Y2 ⊆ Y1, {xu, xl} ⊆ Y1, xu ∈ Y2, and xl /∈ Y2 (w.l.o.g.
after possibly swapping Y1 and Y2).

First, assume for contradiction that Y1 ∩ Y2 = ∅. Then, {r (1)
x , r (2)

x } ∩ A = ∅ since
otherwise cA(d(1)

x ) = 0 or cA(d(2)
x ) = 0, however, both of them enter a set from Y .

This implies that {t (1)x , t (2)x } ∩ A = ∅ for all t ∈ T such that x ∈ S(t) since otherwise
A would contain a cycle. Therefore, no matter which other incoming edge of xu is
used by A, there exists an edge e ∈ E from xl to xu such that cA(e) = 0. But this
contradicts Y1 ∩ Y2 = ∅, as e cannot enter any set in Y . We conclude that Y1 and Y2
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intersect and since Y is laminar we can assume w.l.o.g. that Y2 ⊆ Y1. Second, assume
for contradiction that xl /∈ Y1. Observe that, no matter which edge points towards
xu within A, both t (1)x or t (2)x have a cost of at most 1 in cA, for any triple t ∈ T
containing x . However, both of these edges enter two sets from Y , a contradiction. An
analogous argument shows xu ∈ Y1. Finally note that xl can be contained in at most
one set of Y , as no arc dominates both r (1)

x and r (2)
x at the same time and therefore

min{cA(r (1)
x ), cA(r (2)

x )} ≤ 1. Thus xl /∈ Y2. We conclude that Y2 ⊆ Y1, {xu, xl} ⊆ Y1,
Y2 ∩ {xu, xl} = {xu}. Note that we have proved these properties for any two sets in Y
that intersect {xu, xl}; however there cannot exist three sets in Y such that any two of
them fulfill these conditions (i.e., that one of them contains both xu and xl , the other
contains only xu but not xl ). Therefore, this also suffices to argue that there exist at
most two sets from Y intersecting with x’s node gadget.

Let S := {Y1 ∈ Y : Y1 is ⊆ -maximal and there exists Y ′ ∈ Y,Y ′ ⊂ Y1}. As a
consequence of the above observation, no node gadget can intersect with more than
two sets of Y and therefore |Y \ S| ≤ 3|X | implying |S| ≥ |X |. For every Y1 ∈ S
we select a representative x(Y1) ∈ X ∪ Y ∪ Z whose node gadget intersects with Y1
and one other set Y2 from Y . Consider the node gadget of x := x(Y1). Recall that
xu ∈ Y1 ∩ Y2 and xl ∈ Y1 \ Y2 and that A(xu) must be an edge starting at xl , as
established in the preceding paragraph. We claim that A(xu) = t (1)x for some t ∈ T .
Assume for contradiction that xu is entered by t (2)x for some t ∈ T . Note that t (2)x is
incomparable with the edges (yu, xu) for each y ∈ X ∪ Y ∪ Z \ t , and thus none of
these edges can cross both Y1 and Y2. As Y2 ⊆ Y1, we conclude that Y1 contains xu
and all 3|X | − 3 nodes yu for y ∈ X ∪ Y ∪ Z \ t . As the sets in S do not overlap,
our assumption that |X | > 3 yields the contradiction |X | ≤ |S| ≤ 3 < |X |. Thus,
A(xu) = t (1)x for some t = (x, y, z) ∈ T . This implies {xu, yu, zu} ⊆ Y1, since
cA((yu, xu)) = cA((zu, xu)) = 1. We conclude that neither y nor z is included in any
other set of S. Thus, M := {t ∈ T : t (1)x(Y1)

∈ A,Y1 ∈ S} is a 3D-matching of size
|X |. ��

5 Branchings with low unpopularity factor

Recall the definition of unpopularity factor from Sect. 1. As done in the previous
section, instead of studying branchings in the digraph G, we look at r -arborescences
within the digraph D. The unpopularity factor of any branching inG is the same as the
unpopularity factor of the corresponding arborescence in D. Given any arborescence
A and value t , there is a simple method to verify if u(A) ≤ t or not. This is totally
analogous to our method from Sect. 2 to verify popularity, and it involves computing
a min-cost arborescence in D with the following edge costs. For e = (u, v) in D,
define:

cA(e) :=

⎧
⎪⎨

⎪⎩

0 if e 	v A(v),

1 if e ∼v A(v),

t + 1 if e ≺v A(v).
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Lemma 5.1 Arborescence A satisfies u(A) ≤ t if and only if A is a min-cost arbores-
cence in D with edge costs given by cA defined above.

Proof For any arborescence A′, we have cA(A′) = t · φ(A, A′) − φ(A′, A) + n. In
particular, cA(A) = n. Hence, A is a min-cost arborescence with respect to cA iff
n ≤ t · φ(A, A′) − φ(A′, A) + n holds for all arborescences A′. This in turn holds iff
φ(A′,A)
φ(A,A′) ≤ t for all A′ which is equivalent to u(A) ≤ t . ��

Lemma 5.2 follows from Lemma 5.1 and LP duality.

Lemma 5.2 Arborescence A satisfies u(A) ≤ t if and only if there exists a dual feasible
solution y to LP2 with cA(e) as defined above with

∑
X yX = n.

Proof of Theorem 1.5 We now assume that node preferences are strict; thus we may
assume the graph to be simple, and nodes to have preferences over their in-neighbors.
We modify our algorithm from Sect. 3 to compute an arborescence A in D = (V ∪
{r}, E) such that u(A) ≤ �log n�.
1. Initially all nodes in V are active. Set X0

v = {v} for all v ∈ V .
2. Initialize the current edge set E ′ = ∅; let i = 1.
3. Let E ′ = E ′ ∪ {(u, v) : v ∈ V is active and u is v’s most preferred in-neighbor

such that u /∈ Xi−1
v }.

4. For v ∈ V let Xi
v = {w ∈ V : ∃ v-w-path in E ′}.

5. Let X = {Xi
v is ⊆ -maximal in X i } where X i = {Xi

v : v is active}.
6. For each X ∈ X do:

– select any active node v such that Xi
v = X ;

– deactivate all u ∈ X \ {v}. {now v is the only active node in X}
– if v is reachable from r using edges in E ′, then deactivate v. {this means all
nodes in X are reachable from r}

7. If there exists any active node, then set i = i + 1 and go to step 3 above.
8. Compute an arborescence A in (V ∪ {r}, E ′) and return A.

See Fig. 4 for an illustration of the algorithm. When reaching step 8, there can be
no active node. This means that every node is reachable from r using the edges in E ′,
and so there exists an arborescence A in (V ∪{r}, E ′). We now bound its unpopularity
factor.

Lemma 5.3 X i is a laminar family for each iteration i .

Proof For F ⊆ E , let Xv(F) := {w ∈ V : ∃ v-w-path in F} and let X (F) :=
{Xv(F) : v ∈ V }. Let e1, . . . , e� be the edges in E ′ at the end of the algorithm in
the order that they were added to E ′ (breaking ties arbitrarily among the edges added
in the same iteration). Let E j := {e1, . . . , e j } and note that for every i there is a j
such that X i ⊆ X (E j ). Since the subset of a laminar family is also laminar, it thus
suffices to show that X (E j ) is laminar for every j , which we show by induction on
j . This is trivial for j = 0 with E0 = ∅. For some j ≥ 0, let e j+1 = (u, v). Note
that, for w ∈ V , adding e j+1 to E j results in Xw(E j+1) = Xw(E j ) ∪ Xv(E j ) if
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Fig. 4 The figure illustrates the execution of the algorithm from the proof of Theorem 1.5 for the example
instance given in Fig. 1. The three pictures illustrate the iterations i = 1, i = 2, and i = 3, respectively. Grey
areas depict the sets in X i−1 and only edges from the set E ′ as defined in step 3 are shown. Deactivated
nodes are indicated by unfilled circles and active nodes by filled circles. The tie-breaking in step 6 was
performed arbitrarily

u ∈ Xw(E j ) and Xw(E j+1) = Xw(E j ) otherwise. Combining this with the fact that
Xv(E j ) is a⊆-maximal set in the (by the induction hypothesis) laminar familyX (E j ),
we conclude that X (E j+1) is also laminar. ��
Lemma 5.4 If v, v′ are active at the end of iteration i , then Xi

v ∩ Xi
v′ = ∅.

Proof Since v was not deactivated in iteration i , it means that all nodes in Xi
v \{v}were

deactivated in that iteration. This implies that v′ /∈ Xi
v , and symmetrically, v /∈ Xi

v′ .
Thus Xi

v ∩ Xi
v′ = ∅ by laminarty of X i . ��

Lemma 5.5 If the while-loop terminates after t + 1 iterations, then u(A) ≤ t .

Proof Let Yi = {Xi−1
v : v ∈ V and v got deactivated in the i-th iteration} and let

Y = ⋃
i Yi . For X ⊆ V , let yX = 1 if X ∈ Y and yX = 0 otherwise. For each node

v, there is a corresponding set Xi−1
v in Y , and by Lemma 5.4, the sets corresponding

to distinct nodes are distinct. Hence, we have
∑

X⊆V yX = n.
Consider any v ∈ V . Again by Lemma 5.4 for each i , there is at most one set in Yi

containing v. Thus
∑

X :e∈δ−(X) yX ≤ t + 1 for any edge e pointing to v. Furthermore,
the algorithm ensures that the edge (u∗, v) ∈ A is the most preferred edge entering v

among all edges with tail outside Xi−1
v . So every other edge e = (u, v)with u /∈ Xi−1

v

is ranked worse than (u∗, v) ∈ A and thus cA(e) = t + 1. This proves that y is a
feasible dual solution for A, so u(A) ≤ t . ��
Lemma 5.6 The while-loop runs for at most �log n� + 1 iterations.

Proof Every node v that is active at the start of some iteration either becomes reachable
from r in this iteration or it joins a weakly connected component with at least one
other active node. At the end of each iteration, there is at most one active node in each
weakly connected component. So the number of active nodes is reduced by a factor of
1/2 in each iteration. Thus the number of active nodes at the end of the i-th iteration
of the while-loop is at most n/2i . Hence the while-loop can run for at most �log n�+1
iterations. ��

Combining Lemmas 5.6 and 5.5, the first part of Theorem 1.5 follows.

A tight example.We now describe an instance on n nodes with strict preferences where
every branching has unpopularity factor at least �log n�. For convenience, let n = 2k
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for some integer k. We construct an instance Gk on vertex set V = {v0, . . . , vn−1},
where every node has in-degree k = log n. The instance on 4 vertices a, b, c, d given
in Sect. 1 is, in fact, G2.

– For 0 ≤ i ≤ n/2 − 1, the nodes v2i and v2i+1 are each other’s top in-neighbors.
Thus v0, v1 are each other’s top choice in-neighbors, v2, v3 are each other’s top
choice in-neighbors, and so on.

– The nodes v0, v2 are each other’s second choice in-neighbors, similarly, v1, v3 are
each other’s second choice in-neighbors, and so on. More generally, for any i , if
i ∈ {4 j, . . . , 4 j + 3}, then the node v�, where � = 4 j + (i + 2 mod 4), is vi ’s
second choice in-neighbor.

– For any i and any t ∈ {1, . . . , k}, if i ∈ { j2t , . . . , ( j + 1)2t − 1} then the node v�,
where � = j2t + (i + 2t−1 mod 2t ), is vi ’s t-th choice in-neighbor.

For example, v0’s preference order is v1 	 v2 	 v4 	 v8 	 · · · 	 vn/2. The other
preference orders are analogous. As an example, let n = 8 and V = {v0, v1, . . . , v7}.
The preferences of each node is then defined as below:

v0 : v1 	 v2 	 v4, v1 : v0 	 v3 	 v5,

v2 : v3 	 v0 	 v6, v3 : v2 	 v1 	 v7,

v4 : v5 	 v6 	 v0, v5 : v4 	 v7 	 v1,

v6 : v7 	 v4 	 v2, v7 : v6 	 v5 	 v3.

For any branching in Gk on 2k nodes, we claim its unpopularity factor is at least k.
We will prove this claim by induction on k. The base case, i.e., k = 1, is trivial. So let
us assume that we have u(B̃) ≥ i for any branching B̃ in Gi .

Consider Gi+1. Note that v2 j and v2 j+1 are each other’s top choice in-neighbors
for 0 ≤ j ≤ 2i − 1. Let B be any branching in Gi+1. Suppose it is the case that in
B, for some j : neither v2 j is v2 j+1’s in-neighbor nor v2 j+1 is v2 j ’s in-neighbor. Then
u(B) = ∞, because by making v2 j the in-neighbor of v2 j+1, no node is worse-off
and v2 j+1 is better-off. We assume u(B) < ∞. So it is enough to restrict our attention
to the case where for each j we have in B:

(∗) either v2 j is v2 j+1’s in-neighbor or v2 j+1 is v2 j ’s in-neighbor.

For each j ∈ {0, . . . , 2i − 1}, contract the set {v2 j , v2 j+1} into a single node in the
graph Gi+1. The new graph (call it G ′

i ) is on 2
i nodes and it is exactly the same as Gi

except that there are 2 parallel edges between every adjacent pair of nodes now – both
these edges have the same rank.

Perform the same contraction step on the branching B as well. By (∗), it follows
that the contracted B (call it B ′) is a branching such that B ′ uses at most 1 edge in any
pair of parallel edges in G ′

i . Thus B ′ is a branching in Gi and we can use induction
hypothesis to conclude that u(B ′) ≥ i .

Claim There is a branching A′ in G ′
i such that φ(A′, B ′) ≥ i and φ(B ′, A′) = 1.

Moreover, the lone vertex that prefers B ′ to A′ is a root in A′.

We will first assume the above claim and finish our proof on u(B). Then we will
prove this claim. Opening up the size-2 supernodes in B ′ will create B: let us run
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the same “opening up” step on A′ to create a branching A in Gi+1. So φ(A, B) ≥ i
and φ(B, A) = 1. We will now modify A to A∗ so that φ(A∗, B) ≥ i + 1 and
φ(B, A∗) = 1.

Let v2 j be the lone vertex that prefers B to A. By the “opening up” step in B, v2 j+1
has v2 j as its in-neighbor. The branching A∗ will affect only the 2 nodes v2 j and v2 j+1
in A. Every other node will have the same in-neighbor in A∗ as in A. The above claim
tells us that v2 j is a root in A. Make v2 j+1 a root in A∗ and v2 j ’s in-neighbor will be
v2 j+1. The node v2 j was the only node that preferred B to A and now v2 j prefers A∗
to B. However there is one node that prefers B to A∗: this is v2 j+1. Recall that v2 j+1’s
in-neighbor in B, just as in A, is its top-choice neighbor v2 j while v2 j+1 is a root in
A∗. Thus φ(A∗, B) ≥ i + 1 and φ(B, A∗) = 1.

Proof of Claim Let Ã be a branching that maximizes φ( Ã, B ′)/φ(B ′, Ã). Let {u1,
. . . , u j } be the nodes that prefer B ′ to Ã. There is no loss in assuming that u1, . . . , u j

are root nodes in Ã. For each i , let ni be the number of nodes in the arborescence
rooted at ui in Ã that have different in-neighbors in Ã and B ′ – note that each of these
nodes prefers Ã to B ′ (since the ones who prefer B ′ to Ã are root nodes in Ã).

Let nt = max{ni : 1 ≤ i ≤ j}. Let Ãt be the maximal sub-arborescence of Ã
rooted at ut , and let X be those nt nodes in Ãt that prefer Ã to B ′. We construct
a branching A′. Let us define an arborescence A′

t rooted at ut by modifying Ãt as
follows: for each w /∈ Ãt that is the descendant of some v ∈ Ãt in B ′, we add B ′(w).
We define A′ as the branching that contains A′

t and for which A′(v) = B ′(v) for each
v /∈ A′

t . So each node in Ãt has the same in-neighbor in A′ as in B ′, except for the
nodes in X ∪ {ut }.

The nt nodes in X prefer A′ to B ′, and ut prefers B ′ to A′, so we have φ(A′,B′)
φ(B′,A′) = nt .

By u(B) < ∞ we get u(B ′) < ∞, which implies that every node that prefers Ã to B ′
is contained in a sub-arborescence of Ã rooted at one of the nodes u1, . . . , u j . Thus

we have φ( Ã, B ′) = ∑ j
i=1 ni , yielding

φ(A′,B′)
φ(B′,A′) = nt ≥ 1

j

∑ j
i=1 ni = φ( Ã,B′)

φ(B′, Ã)
and

the claim follows. �
This concludes the proof of Theorem 1.5. ��

6 The popular branching polytope

We now describe the popular arborescence polytope of D = (V ∪ {r}, E) when every
node has a weak ranking over its incoming edges. Projecting out variables x(r ,v) for
all v ∈ V from these constraints will give us the formulation of the popular branching
polytope BG of G.

The arborescence polytope AD of D is described below [30].

∑

e∈E[X ]
xe ≤ |X | − 1 ∀ X ⊆ V , |X | ≥ 2. (1)

∑

e∈δ−(v)

xe = 1 ∀ v ∈ V and xe ≥ 0 ∀ e ∈ E . (2)
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We will define a subgraph D∗ = (V ∪ {r}, ED∗) of D: this is essentially the
expanded version of the graph D′ from our algorithm. The edge set of D∗ is:

ED∗ =
⋃

X∈X ′
S(X) ∪ {(u, v) ∈ E : Xv ∈ X ′, u /∈ Xv, and

(u, v) is undominated in δ−(Xv)}.

Thus each set X ∈ X ′, which is a node in D′, is replaced in D∗ by the nodes in X
and with the edges in S(X) between them. We also replace edges in D′ between sets
in X ′ by the original edges in E .

Lemma 6.1 If every node has a weak ranking over its incoming edges, then every
popular arborescence in D is an arborescence in D∗ that includes exactly |X | − 1
edges from S(X) for each X ∈ X ′.

Proof Let A be a popular arborescence in D and let X ∈ X ′. By Lemma 3.6 we
know |A ∩ δ−(X)| = 1, and the proof of Theorem 3.4 tells us that the unique edge
in A ∩ δ−(X) is contained in D∗. So A contains |X | − 1 edges from E[X ] for each
X ∈ X ′. We show that these |X | − 1 edges are in S(X).

Let u ∈ X . Suppose A(u) ∈ E[X ] \ S(X). This means that either (i) A(u) is
dominated by some edge in E[X ] ∪ δ−(X) or (ii) u is indifferent between A(u) and
some edge in δ−(X). Let Y = {Yv : v ∈ V } be a dual certificate for A. We know that
Yu ⊆ Xu ⊆ X (by Lemma 3.5). Since the entry point of A into X is not in Yu , there
is an edge e ∈ S(X) ∩ δ−(Yu).

Let e enter w ∈ Yu . Since e ∈ S(X), we have e 	w A(w) or e ∼w A(w), hence
cA(e) ∈ {0, 1}. If w �= u, then {w} ∈ Y by Corollary 2.6, and hence e enters two
sets Yu and {w}—thus the constraint in LP2 corresponding to edge e is violated. If
w = u, then e ∈ S(X) and A(u) ∈ E[X ] \ S(X) imply that e ∼u A(u) is not possible,
because u has a weak ranking over its incoming edges (note that for any two edges f
and f ′ in δ−(u)∩ E[X ] that are tied in the preference list of u, either { f , f ′} ⊆ S(X)

or { f , f ′} ∩ S(X) = ∅). Since e is undominated, this implies e 	u A(u), yielding
cA(e) = 0. Since e entersYu , the constraint corresponding to e in LP2 is again violated.
So A(u) ∈ S(X), i.e., A ∩ E[X ] ⊆ S(X). ��

Hence, every popular arborescence in D satisfies constraints (1)-(2) along with
constraints (3) given below, where ED∗ is the edge set of D∗.

∑

e∈E[X ]
xe = |X | − 1 ∀ X ∈ X ′, |X | ≥ 2 and xe = 0 ∀ e ∈ E \ ED∗ (3)

Note that constraints (3) define a face F of the arborescence polytopeAD of D. Thus
every popular arborescence in D belongs to face F .

Consider a vertex in faceF : this is an arborescence A in D of the form A′∪X∈X ′ AX

where (i) AX is an arborescence in (X , S(X)) whose root is an entry-point of X and
(ii) A′ = {eX : X ∈ X ′} where eX is an edge in D∗ entering the root of AX . Observe
that A is a possible output of the algorithm presented in Sect. 3 (with appropriate
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tie breaking). Therefore, by Theorem 3.3, A is popular in D. Thus we can conclude
Theorem 6.2.

Theorem 6.2 If each node has a weak ranking over its incoming edges, then face F
defined by constraints (1)-(3) is the popular arborescence polytope of D.

So the popular branching polytope BG is described by constraints (1)-(3) where for
every v ∈ V ,

∑
e∈δ−(v) xe = 1 in (2) is replaced by

∑
e∈δ−

G (v) xe ≤ 1, i.e., we project
out x(r ,v). This shows the upper bound given in Theorem 1.3.
A compact extended formulation. We now describe a compact extended formulation
of the popular arborescence polytope of D when node preferences are weak rankings.
We know from Lemma 6.1 that every popular arborescence in D is an arborescence
in D∗ that includes exactly |X | − 1 edges from S(X) for each X ∈ X ′. Conversely,
any such arborescence in D∗ is a popular arborescence in D (as a consequence of
Theorem 3.3).

Thus the popular arborescence polytope of D is the face of the arborescence poly-
tope of D∗ that corresponds to the constraints

∑
e∈ED∗ [X ] xe = |X |−1 for all X ∈ X ′.

Let AD∗ be the arborescence polytope of D∗ = (V ∪ {r}, ED∗). We will now use a
compact extended formulation of AD∗ .

Recall that |V | = n. Let PD∗ be the polytope defined by constraints (4)-(7) on
variables xe, f v

e for e ∈ ED∗ and v ∈ V . It is known [7] thatPD∗ is a compact extended
formulation of the arborescence polytopeAD∗ . Note thatAD∗ is the projection ofPD∗
on to x-space.

xe ≥ f v
e ≥ 0 ∀v ∈ V and e ∈ ED∗ (4)

∑

e∈δ+(r)

f v
e = 1 ∀v ∈ V (5)

∑

e∈δ+(u)

f v
e −

∑

e∈δ−(u)

f v
e = 0 ∀u, v ∈ V , u �= v (6)

∑

e∈ED∗
xe = n. (7)

For any X ⊆ V with |X | ≥ 2, the constraint
∑

e∈ED∗ [X ] xe ≤ |X | − 1 is a valid
inequality forAD∗ and also forPD∗ . Thus the intersection ofAD∗ along with the tight
constraints

∑
e∈ED∗ [X ] xe = |X | − 1 for all X ∈ X ′ is a face of AD∗ . Call this face

FD∗—this is the popular arborescence polytope of D.
Consider the face of PD∗ that is its intersection with

∑
e∈ED∗ [X ] xe = |X | − 1 for

all X ∈ X ′. This face of PD∗ is an extension FD∗ . The total number of constraints
used to describe this face of PD∗ is O(mn).
Lower bound for the popular branching polytope BG of G. Let G = (V , E) be the
complete bidirected graph where every node v ∈ V regards all other nodes u ∈ V
as top-choice in-neighbors. Here X ′ = {V }. We claim that in any minimal system
contained in (1)-(3) (after projecting out variables x(r ,v) for all v ∈ V ), the constraint∑

e∈E[X ] xe ≤ |X | − 1 for every X ⊂ V with |X | ≥ 2 has to be present. This is
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because a cycle on the nodes in X along with any rooted arborescence A on V \ X
satisfies all the remaining constraints.

Thus any minimal system of inequalities from (1)-(3) that describes BG has to
contain 2n − n − 2 inequalities from (1): one for every X ⊂ V with |X | ≥ 2. Since
inequalities in a minimal system are in one-to-one correspondence with the facets of
the polyhedron they describe [7, Theorem 3.30], the lower bound given in Theorem 1.3
follows.

Min-cost Popular Branching under Partial PreferenceOrders.The results above imply
that the min-cost popular branching problem has a polynomial time algorithm when
every node has a weak ranking over its incoming edges. The following theorem reveals
that the assumption of weak rankings is indeed crucial, as the problem becomes NP-
hard when nodes preferences are in arbitrary partial order. At an intuitive level, the
construction makes use of the fact that for arbitrary partial orders, an edge that is
incomparable to a safe edge need not be safe itself, and hence popular arborescences
can contain differing numbers of safe edges with respect to the sets in X ′. We show
that finding a popular arborescence with a mimimum number of such safe edges is
NP-hard.

Theorem 6.3 Given a directed graph where node preferences are in arbitrary partial
order, a cost vector γ on the edges, and a number k, it is NP-hard to decide whether
there exists a popular branching of cost at most k.

Proof We reduce from Vertex Cover: Given an undirected graph G ′ = (V ′, E ′)
and a number k′, does there exist a subset of at most k′ vertices of G ′ that contains
at least one endpoint of every edge? We construct an instance of the minimum-cost
popular branching problem as follows. First we construct a digraph D = (V ∪{r}, E).
This node set of D comprises the root r , a special node w, the node set of G ′, and a
node we for every edge e ∈ E ′, i.e., V = V ′ ∪ W ′ ∪ {w} where W ′ = {we : e ∈ E ′}.

The node w has an incoming edge fe from we for each e ∈ E ′, with γ ( fe) = ∞. It
also has an incoming edge rw from the root r , with γ (rw) = 0. Node w’s preferences
are such that w is indifferent about the edges fe for e ∈ E ′, but each of these edges
dominates rw.

Each node we for some e ∈ E ′ with endpoints u, v ∈ V ′ has five incoming edges
in D:

– two incoming edges pe,u and pe,v from w with γ (pe,u) = γ (pe,v) = 0,
– an incoming edge qe,u from u with γ (qe,u) = ∞ and an incoming edge qe,v from

v with γ (qe,v) = ∞,
– an incoming edge re from r with γ (re) = ∞.

The preferences of we are as follows: pe,u dominates qe,v , pe,v dominates qe,u , and re
is dominated by every other incoming edge. All other pairs of edges are incomparable
for we.

Finally, every node v ∈ V ′ has three incoming edges: an edge rv from r with
γ (rv) = ∞ and two edges zyesv , znov from w, with γ (zyesv ) = 1 and γ (znov ) = 0. Node
v prefers zyesv over rv but all other incoming edges are incomparable.

Note that every node in V has an incoming edge from r , and hence the popular
branchings in D are exactly the r -rooted popular arborescences in D. See Fig. 5 for a
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Fig. 5 Sketch of the construction
used in the proof of
Theorem 6.3. The figure shows
the graph D resulting from an
instance of Vertex Cover
with two nodes u and v

connected by a single edge e.
Each solid edge dominates
dashed edges of the same color;
edge re is dominated by all other
edges. Edges marked with two
crossbars have infinite cost,
edges marked with a single
crossbar have cost 1, and edges
marked with no crossbar have
cost 0 (color figure online)

sketch of the construction. We show that D admits a popular arborescence of cost k′
if and only if G ′ has a vertex cover of cardinality k′.

Let A be a popular arborescence in D with cost k′ and let Y = {Yx | x ∈ V } be the
corresponding dual certificate. Without loss of generality we can assume k′ < |V ′|
(as finding a vertex cover of size |V ′| is trivial). Hence A contains no edge of infinite
cost. Let S = {v ∈ V ′ : A(v) = zyesv }. Note that |S| = ∑

a∈A γ (a) as the edges zyesv

are the only edges with finite non-zero cost in D.
We show that S is a vertex cover in G ′. To this end, consider any edge e ∈ E ′ with

endpoints u and v. Note that A(we) ∈ {pe,u, pe,v} as these are the only incoming
edges of we with finite cost. Without loss of generality assume that A(we) = pe,u .
Note that this implies cA(qe,u) = 1 because pe,u and qe,u are incomparable with
respect to we’s preferences. Observe that A(w) = rw as this is the only incoming
edge to w with finite cost. Because fe 	w rw, this implies cA( fe) = 0 and hence
we ∈ Yw. By Corollary 2.6, we get Ywe = {we}. This implies u ∈ Yw, as otherwise
qe,u would enter both Yw and Ywe , contradicting the feasibility of the dual certificate,
as cA(qu) = 1. We deduce that ru enters both Yw and Yu , and thus cA(ru) = 2 by dual
feasibility. This is only possible if A(u) = zyesu , as zyesu is the only edge dominating
ru . We conclude that u ∈ S and hence e is covered in S. This shows that a popular
arborescence of cost k′ in D can be turned into a vertex cover of cardinality k′ in G ′.

For the reverse direction, consider any vertex cover S ⊆ V ′ in G ′. We construct
an arborescence A. For each v ∈ V ′, we let A(v) = zyesv if v ∈ S and A(v) = znov
otherwise. For each e ∈ E ′, let A(we) = pe,v where v ∈ S is one of the endpoints of
e that is in the vertex cover. Finally, let A(w) = rw. It is easy to see that A constructed
in this way is an arborescence of cost |S|, as the only edges with non-zero cost are the
edges zyesv for v ∈ S.

To show that A is popular, we construct a dual certificate Y = {Yx | x ∈ V } as
follows. Let Yw = {w}∪W ′∪S and let Yx = {x} for all x ∈ V \{w}.We verify that this
defines a dual certificate for A. First, consider any edge enteringw. This edge is either
the edge rw ∈ A, which enters exactly the set Yw, or it is an edge of type fe for some
e ∈ E ′. Because we ∈ Yw, such an edge does not enter any set in Y . Next consider the
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edges entering a node we for some e ∈ E ′ with endpoints u and v. W.l.o.g., let u ∈ S
be the endpoint with A(we) = pe,u . Note that cA(pe,u) = cA(pe,v) = 1 and both pe,u
and pe,v enter exactly the set Ywe . Furthermore, cA(qe,u) = 1, cA(qe,v) = c(re) = 2 as
pe,u is incomparable to qe,u but dominates both qe,v and re. As u ∈ S ⊆ Yw, the edge
qe,u enters only the set Ywe . As we is contained in two sets of Y , the dual feasibility
constraints for the edge qe,v and re are also fulfilled. Now consider the edges entering
some node u ∈ S. Note that u is contained exactly in the sets Yu and Yw. Furthermore
cA(zyesu ) = cA(znou ) = 1 and cA(ru) = 2, since A(u) = zyesu dominates ru and is
incomparable to znou . The former two edges originate at w ∈ Yw and thus only enter
Yu , hence dual feasibility is fulfilled for all edges entering u. Finally, consider any
edge entering some node u ∈ V ′ \ S. Note that cA(zyesu ) = cA(znou ) = cA(ru) = 1 as
A(u) = znou , which is not dominated by any edge. Because u is only contained in Yu ,
dual feasibility is fulfilled at u. We thus showed that Y is a dual certificate for A. ��
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org/10.1007/s10107-021-01659-6.
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