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 Abstract: Modeling and robotic handling of a plastic box buckle is discussed in this paper. 
The closing mechanism of the box buckle is simulated to determine the characteristic of the 
nonlinear load-deflection curve. An intelligent end-effector was designed and manufactured to 
handle the assembly with a robot. The closing force is measured by a built-in load cell and its 
values are processed by a micro-controller. The intelligent end-effector can be used in a robotic 
system, which deals with different snap-fit applications. 
 
 Keywords: Robotic assembly, Snap-fit, Nonlinear finite element method, Intelligent end-
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1. Introduction 

 The human haptic concept is important for numerous manual assembly operations 
[1]. Nowadays more and more companies change from the manual assembly to the 
automated one, which can be carried out by e.g. industrial robots. In general, industrial 
robots cannot provide haptic feedback [1]. Position-based assembly with industrial 
robots may raise assembly uncertainties [2]. Besides prescribed positions, it is a key 
feature to measure assembly forces. 
 Although commercial force sensors for robotic operations are available [3] but these 
sensors are relative expensive and can provide only restricted programming capability 
for tasks, which may have loss of stability. In this paper an intelligent end-effector is 
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applied to find the releasing point of e.g. snap-fit joints [4], [5]. The load-deflection 
curve of most of the snap-fit elements contains an unstable branch. There are several 
approaches to develop an end-effector, which contains load cells [6], [7]. 
 The main purpose of this paper is modeling and simulating the closing process of a 
plastic box buckle using nonlinear Finite Element Method (FEM), then to compare the 
results obtained via an industrial robot. An intelligent end-effector has been developed, 
which contains a load cell to measure the forces during the assembly operation and a 
Micro-Controller (MC), which processes the measured data in order to determine snap-
through point. 

2. Modeling and simulation of the closing process 

 A plastic buckle of a box is shown in Fig. 1 and its mechanical model can be seen in 
Fig. 2. The buckle element consists of three joints A, F, G. The curved beam has a 
radius R=70 mm. Angle φ1 and φ2 of the curved beam D-E are equal to 2.35 rad and 
0.93 rad, respectively. The beam structure is subdivided to 12 straight 2D beam FEM 
elements and it contains 13 nodes. The point C is on the wall of the box where the 
buckle may have contact, in the initial configuration there is a gap h between point B 
and point C. 

   FE
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Fig. 1. The plastic box buckle Fig. 2. The model of the plastic buckle 

 The beam elements may suffer large displacements and rotations, small strains 
without shear deformations. These structures can be modeled with co-rotational 
approach or total Lagrangian description [8]. A beam element is shown in Fig. 3 in two 
configurations, i.e. the initial and current configurations. The previous one has an angle 
β0 and the later one has an angle α, which is measured from the initial configuration. 
The deformed configuration is given by the angle β. The global nodal rotations of the 
first and second node are denoted by Θ1 and Θ2. The local nodal rotations Θ1l, Θ2l due to 
deformation can be given in a local coordinate system Xl, Yl. 
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Fig. 3. Definition of the initial and current configurations 

 Souza published a formula for the local nodal rotations to determine its value 
without any limitation [9]: 
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where 011 ββ += Θ , . 

 A local internal element load vector e
if  contains axial forces Ni, Nj, end moments 

Mi, Mj of the beam and shear forces Vi, Vj. A nodal displacement vector eq  consists of 

axial nodal displacements iu , ju  lateral nodal displacements iv , jv  and nodal 

rotations iΘ , jΘ . A tangent stiffness matrix e
tK  of one element is the sum of a local 

linear e
LK  and a local geometric stiffness matrix e

gK : 

022 ββ += Θ
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e
g

e
L

e
t KKK += . (3) 

The linear geometric stiffness matrix is given by 
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where A is the area of the cross section, I is the area moment of inertia, E is the Young’s 
modulus and 0L  is the length of the beam element. 
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 The geometric stiffness matrix can be produced with different ways; one of them is 
to develop the geometric stiffness matrix (5) from the displacement approximation 
based on the interpolation functions and the principles of the virtual displacement [10]. 
The second term of the internal virtual work, which contains the nonlinear increment of 
the strain, can be used to formulate the geometric stiffness matrix. 
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 Another way is to build the matrix based on virtual work calculated by the nodal 
internal forces and nodal virtual displacements [8], as it is shown in the next equation, 
where lu  is the local axial displacement, 
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Before assembling the elements transformation T
eT  is applied to obtain the global 

element nodal forces and stiffness matrices into Cartesian coordinate system: 

e
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The vector of the loads and the stiffness matrix of the complete structure are written as 

∑ ∑==
e e

e
tt

e
ii , KKff . (8) 

Newton-Raphson iteration s=1, 2, 3,…, method is used to determine the nodal 
displacement vector: 

)()1(∆)(∆ ∆ ssttstt qqq += −++ , (9) 

where q )(∆ s  consists the increment of the nodal point displacements.  

)1(∆)(∆)()(∆ ∆ −+++ −= s
i

tts
u

ttss
t

tt ffqK , (10) 

where )(∆ s
u

tt f+  is the vector of the kinematical load in iteration step s at time t+∆t. The 

iteration is terminated when the relative error of the unbalanced loads is smaller than a 
prescribed value ε. 
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2.1. Simulation results 

 A special purpose FEM program has been developed under Scilab program system. 
The program can handle elastic flexible 2D beam structures undergoing large 
displacements and rotations but small deformations, friction is not considered. 
 The material of the plastic buckle is PolyPropylene (PP) in Fig. 2, which has a 
Young’s modulus E=1300 MPa. There are three different structural components with 
different beam properties. The geometric properties of the first and the second beam 
component are given as area AA–B=AB–D=120 mm2, inertia IA–B=IB–D=40 mm4. The third 
beam component is given by AD–E=142 mm2, ID–E=178 mm4. The forth and the fifth 
component has the same cross section with AE–F=AF–G=36 mm2, IE–F=IF–G=12 mm4. 
 The solution of (10) is performed by displacement control. The horizontal 
displacement of structural point E is increased in 40 steps with uniform increments 
∆uE=0.5 mm. The displacements of the structure determined by simulation are shown in 
Fig. 4. The initial position shown with thin solid line is the left one, only every fifth step 
is drawn for the better visibility. The buckle elements with thick solid lines represent the 
case of positive assembly force. The negative values of the assembly forces have been 
obtained in the positions drawn by dash-dotted lines. 

 

Fig. 4. Every fifth step is shown 
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 The assembling force Fa is shown in Fig. 5, where the solid line represents the 
positive values and the dashed line shows its negative values. Displacement is 
prescribed horizontally at point E in the model. However, in the robotic assembly it is 
performed by a unilateral contact between the gripper and the buckle in point E. 
Physical contact occurs only along the solid line. Then snap-fit takes place at the mutual 
border between the solid and dashed line, which is denoted by a small circle. Thereafter 
the buckle is closed autonomously. The maximum value of the contact force is Fa=4 N. 

 

Fig. 5. The load-deflection curve of the plastic buckle 

 The simulation has been performed with the two different geometric stiffness 
matrices given in (5), (6) with the same tolerance ε=10-8 to terminate the equilibrium 
iteration in (11). The number of iteration steps was smaller for with a consistent 
geometric stiffness matrix given in (5) comparing to its counterpart (6) obtained by co-
rotational method. It was experienced that in every load increment the number of 
equilibrium iteration steps for the consistent geometric stiffness matrix was less with 1 
comparing to the co-rotational method. It means that the convergence of the consistent 
method is better with 10 % than the other one. 

3. Robotic assembly with an intelligent end-effector 

 An intelligent end-effector has been developed and manufactured in order to treat 
assembling tasks, which may have loss of stability. An AVR type MC with an A/D 
converter, a load cell and a self-devised Printed Circuit Board (PCB) are the main 
electronic elements of the system. 
 The maximum capacity of the load cell is 200 N and 4 strain gages are glued on it. 
The assembling force is determined by the signals of the strain gages. Fig. 6 shows the 
A/D converter, the PCB and the MC, which is soldered on an Arduino Nano platform. 
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 The communication between the robot and the MC carried out via digital input and 
output channels. Opto-couplers are mounted onto the self-devised PCB since the 
voltage level is different between the MC and the robot. 
 The test bench of the closing process of the box buckle is shown in Fig. 7. The end 
effector unit besides the electronic units contains a parallel mechanism, which can 
eliminate disturbing force and torque components [11]. Furthermore, an overload 
protection with setscrews was built in. The system can communicate with a laptop 
through USB port and it is capable to store the measured assembling forces. 

 

Fig. 6. The electronic elements of the intelligent end-effector 

 

Fig. 7. The testbench: 1-Fanuc industrial robot; 2-intelligent end effector; 3-load cell;  
4-pneumatic gripper; 5-plastic box buckle; 6-laptop 
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 A pneumatic gripper is mounted on the intelligent end-effector to make possible 
manipulation of work pieces. The tests have been carried out with a Fanuc LRMate 
200iC type industrial robot, its controller is not an open-access one. 
 The robot starts the assembling process from a base position then it moves the end 
effector close to the buckle. The controller sends a digital signal to the MC to set zero 
value of the load cell. The MC starts to measure the forces. A loop in the robot program 
provides the 0.2 mm displacement increments. The end-effector is pushing the plastic 
buckle while the assembly force is measured. 
 The event of the snap-through phenomenon is determined by the MC with an 
algorithm. The MC sends a signal to the digital input of the robot to stop the loop of 
displacement increments. Thereafter the robot moves the base position and a signal is 
sent to the MC to set the initial values of the variables. 

3.1. Algorithm of the microcontroller 

 In order to determine the snap-through phenomenon the algorithm takes into 
consideration the characteristics of the load-deflection curve, which can be the 
maximum and average values of the force function and detection its negative gradient or 
slope. The termination point usually is located on the downhill side of the load-
deflection curve (see Fig. 8) and the force value is close to zero. 

 

Fig. 8. The determination of the average force value 

The average force value of the concerned interval can be sufficiently approximated by 
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The maximum value of the force function is determined by 

},{max 3max δ≥= i
i

FF where 03 >δ  a prescribed value. (13) 
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The slope iαtan can be formulated as 

1    where,tan ≥
−

= − k
k

FF kii
iα . (14) 

 Furthermore, a nominal average force nomF̂ and a nominal maximum force nomFmax  

values are stored in the MC, which were determined by a previous experiment. 
 The decision is made by the fulfillment of the problem dependent combination of 
four conditions, which are given by 
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 In this paper the handling is terminated when the first and the last conditions of (15) 
with logical relational operator AND provided true. 

3.2. Measurements 

 In order to validate the simulation a test measurement is performed. The 
measurement of the closing operation with the simulation results are shown in Fig. 9. 
The obtained fine solid curve represents the simulation results with characteristic points. 
The result of the measurement is indicated by a thick solid curve, its characteristic 
points are denoted by black circles. The maximum occurring closing force is maxF . 

 

Fig. 9. The measurement with the simulation results 
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 On the downhill part of the load-deflection curve at point 21−F  there is a sharp 

change in the gradient due to contact of the buckle (see point C shown in Fig. 2). The 
location of the termination point is denoted by termF , which is higher than zero since 

the assembly performed dynamically. 
 The two curves in Fig. 9 are comparable but it shows that the stiffness of the 
simulation model is higher than the real structure, since the real joints possess back-
lashes. 

4. Conclusion 

 Snap-fit modeling and robotic handling of a plastic box buckle have been discussed 
in this paper. Nonlinear large displacements with small strains were used to treat the 
modeling and simulation processes. The difference between the geometric stiffness 
matrices obtained by consistent and co-rotational methods provided similar number of 
iterations noting that, the former performed better. A self-devised intelligent end-
effector is capable to recognize snap-fit phenomenon and terminate automatically the 
handling process. The end effector can be used also to measure the whole snap-fit 
process and save the data to a computer. 
 The simulation and the real measurements show differences, due to the back-lash 
property of the joints of the buckle. 

Acknowledgements 

 The described article was carried out as part of the EFOP-3.6.1-16-2016-00011 
‘Younger and Renewing University - Innovative Knowledge City - institutional 
development of the University of Miskolc aiming at intelligent specialization’ project 
implemented in the framework of the Szechenyi 2020 program. The realization of this 
project is supported by the European Union, co-financed by the European Social Fund. 

Open Access statement 

 This is an open-access article distributed under the terms of the Creative Commons 
Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original author and source are credited, a link to the CC License is provided, and 
changes - if any - are indicated. (SID_1) 

References 

[1] Radi M., Reinhart G. Industrial haptic robot, Guidance system for assembly processes, 
IEEE International Workshop on Haptic Audio visual Environments and Games, Lecco, 
Italy, 7-8 November 2009, pp. 69‒74. 



 MODELING AND ROBOTIC HANDLING OF A SNAP-FITTING BOX BUCKLE 105 

Pollack Periodica 15, 2020, 2 

[2] Newman W. S., Branicky M. S., Podgurski H. A., Chhatpar S., Swaminathan L. Huang, J., 
Zhang H. Force-responsive robotic assembly of transmission components, IEEE 

International Conference on Robotics & Automation, Detroit, USA, 10-15 May 1999,  
pp. 2096‒2102. 

[3] Loske J., Biesenbach R. Force-torque sensor integration in industrial robot control, 15th 

International Workshop on Research and Education in Mechatronics, El Gouna, Egypt,  
9-11 September 2014, pp. 1‒5. 

[4] Bayer Material Science LLC. Snap-Fit Joints for Plastics - A Design Guide, Bayer 

Polycarbonate Business Unit, Pittsburg, PA, 1998. 
[5] Rónai L., Szabó T. Snap-fit assembly process with industrial robot including force 

feedback, Robotica, Cambridge University Press, Article in Press, Published online: 14 
May 2019, pages 1‒20. 

[6] Ren C., Gong Y., Jia F., Wang X. Theoretical analysis of a six-axis force/torque sensor 
with overload protection for polishing robot, 23rd International Conference on 

Mechatronics and Machine Vision in Practice, Nanjing, China, 28-30 November 2016,  
pp. 1‒6. 

[7] Liu J., Li P., Li Z. A multi-sensory end-effector for spherical fruit harvesting robot, IEEE 

International Conf. on Automation and Logistics, Jinan, China, 18-21 August 2007,  
pp. 258‒262. 

[8] Crisfield M. A. Non-linear finite element analysis of solids and structures, John Wiley and 
Sons, Chichester, UK, 1991. 

[9] de Souza R. M. Force-based finite element for large displacement inelastic analysis of 
frames, PhD Thesis, Department of Civil and Environmental Engineering, University of 
California, Berkeley, 2000. 

[10] McGuire W., Gallagher R. H., Ziemian R. D. Matrix structural analysis, Second Edition, 
John Wiley and Sons, Printed in USA, 2000. 

[11] Rónai L. Design aspects of a robotic end-effector, Design of Machines and Structures,  
Vol. 8, No. 2, 2019, pp. 52‒58. 

 
 


