
POLLACK PERIODICA 
An International Journal for Engineering and Information Sciences 

DOI: 10.1556/606.2020.15.2.1 
Vol. 15, No. 2, pp. 3–12 (2020) 

www.akademiai.com 
 

HU ISSN 1788–1994 © 2020 The Author(s) 

EFFECTIVE VOLUME RENDERING ON MOBILE 

AND STANDALONE VR HEADSETS BY MEANS OF 

A HYBRID METHOD 
 

1,2 
Balázs TUKORA

*
 

 

1 Department of Information Technology, Faculty of Engineering and Information Technology 
University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary, e-mail: balazs.tukora@mik.pte.hu 

2 zMed Zrt., Boszorkány u. 2, H-7624 Pécs, Hungary 
 

Received 17 May 2019; accepted 5 December 2019 

 Abstract: Numerous volume rendering techniques are available to display 3D datasets on 
desktop computers and virtual reality devices. Recently the spreading of mobile and standalone 
virtual reality headsets has brought the need for volume visualization on these platforms too. 
However, the volume rendering techniques that show good performance in desktop environment 
underachieve on these devices, due to the special hardware conditions and visualization 
requirements. To speed up the volumetric rendering to an accessible level a hybrid technique is 
introduced, a mix of the ray casting and 3D texture mapping methods. This technique increases  
2-4 times the frame rate of displaying volumetric data on mobile and standalone virtual reality 
headsets as compared to the original methods. The new technique was created primarily to display 
medical images but it is not limited only to this type of volumetric data. 
 
 Keywords: Direct volume rendering, ray casting, 3D texture mapping, virtual reality, mobile 
and standalone virtual reality headsets 

1. Introduction 

 In the last three decades several techniques have been developed for displaying 
volumetric datasets. A rather old but still relevant list of the most popular methods can 
be found in the study of Meißner et al. [1], while Zhang and his colleagues give us a 
comprehensive summary [2] of the topic, mostly focusing on medical applications. The 
study of Sutherland et al. [3] provides insight into the latest Augmented Reality (AR) 
and Virtual Reality (VR) technologies to display medical images. 
                                                           
* Corresponding Author 



4 B. TUKORA 

Pollack Periodica 15, 2020, 2 

 At first volume rendering algorithms were executed by the Central Processing Unit 
(CPU), and after the appearance of generally programmable Graphics Processing Units 
GPU’s they became run as shader programs on the graphics hardver [4], [5]. The 
winners of this change have been the ray casting [6] and 3D texture mapping [7], [8] 
methods, the most popular ones to date, while some other previously dominant 
techniques, like the splatting [9] and shear-warp algorithm [10], though attempts were 
made to port them onto GPU’s, have actually become extinct by today. A good example 
of this evolution is the recent version of Visualization Toolkit, in which GPU ray 
casting is applied as the default volume rendering algorithm, and if it is not supported 
by the hardware, 3D texture mapping is chosen for interactive and CPU ray casting for 
still rendering [11].  
 Ray casting, similarly to the other above-mentioned techniques, is a Direct Volume 
Rendering method (DVR) as it displays the 3D dataset without computing any 
intermediate geometry representations [12]. The basic idea behind it is casting a ray into 
the volume from each pixel of the screen, sampling the volume along the ray in a front-
to-back or back-to-front order and finally compositing the optical values at the sampling 
points, thus obtaining the final color of the pixel. The secret of popularity of the ray 
casting technique is, beyond its simplicity and easy programmability on both CPU’s and 
GPU’s, that it can be optimized in several ways. Some improvements exploit the high 
coherency between the pixels in image space [13], [14] or between the voxels in object 
space [15]. Early ray termination can be used when rendering in front-to-back order: 
When the opacity of the composited pixel color has reached a threshold value that can 
be considered as fully opaque, the sampling process can be terminated as the further 
samples wouldn’t make significant contribution to the final color. Empty space skipping 
or space-leaping is another widely-used optimization technique: Skipping the empty 
spaces within the volume when sampling does not affect the image quality but can 
speed up the calculations significantly. Numerous solutions (summed up in [1] and [2]) 
were born in this subject, being distinct in the way of representing the empty and non-
empty parts of the volume. 
 In 3D texture mapping the volume is uploaded to the GPU as a single 3D texture. A 
set of polygons perpendicular to the viewing, the so-called proxy geometry, is placed 
within the volume and the 3D texture is mapped onto them with nearest neighbor or tri-
linear sampling. Finally the textured polygons are alpha-blended in a back-to front order 
to produce the final image on the screen. Rendering with 3D texture mapping doesn’t 
require programmable shaders, GPU’s with fixed-function pipeline can also fulfill this 
task.  
 The time complexity of the 3D texture mapping and ray casting algorithms is the 
same, especially as 3D textures are used to upload the volume data to the GPU and the 
same sampling technique is applied in both cases. The 3D texture mapping method, 
however, cannot be optimized in the free manner as it can be done so with the 
programmable shaders in ray casting. Even so effective and robust optimization 
methods like the early ray termination and empty space skipping cannot be used. 
 Despite the fact that the ray casting method is effective and easy to optimize, it 
simply fails on mobile or standalone VR headsets. Far from interactive visualization no 
more than 4-5 Frames Per Second (FPS), doubled with empty space skipping, could be 
reached in the case of a common medical volume visualization task (detailed in later 
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sections). Recent studies [16], with no VR but mobile applications in scope, also 
confirm these results. In their paper of this year [3] Sutherland and his colleagues claim 
that rendering of most medical datasets on mobile VR platforms is ‘likely to be too 
challenging’. The reasons can be found in the special characteristics of these devices. 
 A mobile VR device is a VR platform powered by a smartphone: A headset into 
which a smartphone is placed that provides the screen and acts also as the computing 
unit. Standalone VR headsets have their own in-built display and computing unit. They 
are called standalone as there is no need of a high-performance personal computers to 
be attached to create and run VR contents on them. The mobile and standalone VR 
headsets are similar in terms of the hardware components and the typical software tasks 
to run: A multi-core CPU and integrated graphics unit with shared memory on a low-
power SoC (System on a Chip); displaying stereoscopic polygon-based graphics on a 
quite high-resolution (FHD+, WQHD+) screen at high frame rates.  
 Though the GPU’s on the SoC’s are compliant with the latest shader models, their 
performance is fairly low as compared to the GPU’s of desktop computers. The thumb 
rule of shader programming on these chipsets is keeping the code (especially the 
fragment shader code) as short as possible. Using program loops that cannot be unrolled 
by the compiler (reshaped as a repeated sequence in order to eliminate loop-controlling 
instructions) should also be avoided. A typical ray casting fragment shader with 
sampling loops executed several hundred times simply cannot fit these requirements.  
 The 3D texture mapping technique performs slightly better thanks to the simple 
shader code, but the desirable frame rates cannot be reached as the method does not let 
further optimization. Here it must be cleared what a desirable frame rate means in the 
current situation. Displaying static volumetric data, like still medical 3D images, 
requires an interactive frame rate that ensures an acceptable graphical response time 
after sending a request from the input peripherals to the program. Miller identified this 
as 10 frames per second [17], which has been accepted and applied to date by 
consensus. A frame rate is called real-time, when it gives the impression of smooth, 
continuous moving of the displayed objects. It is usually 24-30 FPS in 2D and 
monoscopic 3D environments. VR devices, however, use much higher, not rarely 90 
FPS to avoid the virtual reality sickness and to handle the intensive movements and 
changings in the scene. It was found that for displaying a static medical volumetric 
image on mobile and standalone VR headsets, where the point of view does not change 
dynamically, about 30 FPS is acceptable, similarly to the plain 3D visualization. During 
the measurements described in later sections, the 3D texture mapping technique 
provided 14 FPS, which is under the desired speed in our case. 
 To overcome the performance issues the ray casting and 3D texture mapping 
techniques has been merged. The basic idea is the following: If the 3D texture mapping 
technique is used with a reduced number of slices and the color on the proxy polygons 
are calculated by means of hidden ray casting layers, the number of executed program 
loops decreases and the opportunity to the optimization also remains. To fit the two 
methods together, the blending functions of 3D texture mapping must be applied during 
the ray casting composition. To keep the fragment shader code simple a special empty 
space skipping technique has been chosen. A novel fashion of proxy geometry has been 
initiated to avoid some resource-consuming calculations. The test results justified our 
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efforts: Under unchanged conditions the FPS increased to a decent frame rate when a 
typical volumetric dataset were displayed by the new hybrid technique. 
 In the following sections the main components of the introduced technique are 
detailed: The creation of 3D texture mapping proxy geometry; the hybrid compositing 
algorithm; the solution of empty space skipping. These sections are followed by the test 
results to show the correctness of the conception, as compared to the solutions of others 
and the original techniques. At last the conclusions are drawn from the experiences. 

2. Materials and methods 

2.1. Proxy geometry 

 In 3D texture mapping the intersections of the volume bounding box and the series 
of slicing planes perpendicular to the direction of view form the polygons of proxy 
geometry. After calculating the six or less intersection points of the bounding box edges 
and a plane, these points are used as the vertices of the polygon on that plane (see Fig. 1 
left). These calculations are performed by the CPU and the newly created polygons are 
uploaded onto the GPU at every rendering cycle whenever the point of view has 
changed. 

 

Fig. 1. Dynamic (left) and static (right) proxy geometry 

 When rendering VR contents, the viewer’s position changes continuously. This 
means that the creation and uploading of the proxy geometry has to be repeated at every 
single frame. The limited resources of mobile and standalone VR headsets do not allow 
us this dynamic way of proxy geometry creation. A static set of polygons are used 
instead that are created at the program setup time and placed into the screen space to be 
anchored to the point of view. The geometry consists of the slices of the bounding 
sphere around the volume, as seen in Fig. 1 right. In practice the circles are 
approximated by regular polygons. It has been found that the use of 10-gons results in 
good approximation without the need of dealing with too many rectangles by the GPU. 
The unnecessary samplings outside the volume boundaries are discarded in the fragment 
shader, on the basis of the sampling point coordinates in the object space. 
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2.2. Hybrid composition 

 The applied composition method is a mix of alpha blending of overlapping polygons 
(as in 3D texture mapping) and compositing along rays casted into the volume (as in ray 
casting). The process is represented in Fig. 2. On one hand, the colors on the proxy 
polygons are blended together by the traditional over operator [18] of alpha compositing 
in a back-to-front order, thus getting the final pixel colors on the screen. On the other 
hand, the colors on the proxy polygons are calculated by a limited-length ray casting 
composition. The casting rays start at the camera center point, go through the screen 
pixels and intersect the proxy polygons. To get the color of a certain pixel on a polygon, 
some samplings are done in front of it and behind it along the intersecting ray. The 
number of samplings determines the number of hidden ray casting layers. The 
composition calculations are performed by the fragment shader, similarly to the 
traditional ray casting technique. The composition equations corresponds the equations 
of over operator of alpha blending: 
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 In the equations Cd and αd stand for the color and opacity of the destination pixel 
(the pixel to be updated by the composition), while Cs and αs are the source color and 
opacity (the values that alter the appearance of the destination pixel). 

 

Fig. 2. Hybrid composition 

By adjusting the number of 3D texture proxy planes as compared to the hidden ray 
casting layers, it can be determined which method dominates. By setting the ray casting 
layers to one per proxy plane the pure 3D texture mapping technique is chosen. By 
setting the number of proxy planes to one with setting a number of rays casting layers 
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clearly the ray casting technique works. By performing a few ray casting steps at the 
proxy planes the unrolled fragment shader loops are kept short with the possibility of 
applying some limited ray casting optimization techniques. 

2.3. Optimization 

 The most effective branch of optimization techniques in ray casting is the empty 
space skipping. Before the rendering the volumetric data is completed with information 
about the empty regions of the volume. During the sampling the ray casting shader 
reads this information in addition to the voxel properties and calculates if the 
subsequent sampling points fall in any of the empty regions. If they do so, they become 
skipped.  
 The effective empty space skipping requires that the ray casting shader calculates 
the boundaries of empty regions accurately. However this has a cost. The empty regions 
are often embedded in a hierarchical structure, e.g. octree [14] that has to be decoded on 
the fly, or complicated calculations are needed to get the ray-region intersections. Most 
time this ends up in a complex shader code.  
 In order to minimize the required calculations on the low-performance GPU’s of 
mobile and standalone VR headsets, the proximity-clouds method [19], [20] has been 
implemented from the empty space skipping techniques. In this method the distance to 
the closest occupied voxel is calculated for each voxel in a preprocessing stage. This 
data read from the voxel at a sampling point directly gives the distance that can be 
safely skipped along the ray. Though the representation of empty spaces in the 
proximity-clouds method implies that some unnecessary samplings happen in these 
regions, the simple shader code makes it very effective on the targeted devices. 

3. Results and discussion 

 To prove the effectiveness of the introduced technique a series of tests was carried 
out. The device on which the tests run was a Google Daydream View headset powered 
by a Samsung Galaxy S8 smartphone with a typical hardware of mobile and standalone 
VR devices: A Samsung Exynos 8895 Octa SoC with an 8-core (4x2.3 GHz Mongoose 
M2 & 4x1.7 GHz Cortex-A53) processor and Mali-G71 MP20 GPU that share 4GB 
RAM. The highest available WQHD+ 2960x1440 screen resolution was set with 2x 
multisampling. The test application had been made with Unity, the de-facto tool for 
mobile VR development.  
 The displayed volumetric dataset was a Computer Tomography (CT) scan of a 
human skull with 256x256x256 voxel resolution and 16 bit depth. The Hounsfield value 
of each voxel was converted into color and opacity by transfer functions in order to 
enhance the solid structure of the scull. The size of the displayed skull on the screen was 
set that it filled the field of vision when looked through the goggles of the headset, 
which is actually smaller than the available area on the screen, as it can be seen on 
Fig. 3. To save some calculations in the fragment shader, the opacity and the shaded 
color for each voxel had been pre-calculated by means of the transfer functions and the 
Blinn-Phong model [21]. These colors were then loaded into a 3D texture and sampled 
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with tri-linear interpolation during the rendering stage. According to the Blinn-Phong 
model only the specular component has to be calculated during the rendering as it is 
view-dependent. Some more speed-up could be reached by omitting this component, as 
the lack of specular highlights did not reduce particularly the user’s experience. For 
further speed-up the 2x multi-sampling and tri-linear interpolation could have been 
omitted as well, but it was not done so in order to get an acceptable image quality. 

 

Fig. 3. Stereoscopic volume rendering on VR headset 

 The tests consisted of a sequence of measurements, when the FPS was registered 
during displaying the skull object with different proxy plane/ray casting layer ratios. 
Since the frame rate slightly altered at different points of view, a rotating object was 
displayed and the average FPS was measured during a whole rotation. (The extent of 
alternation was not bigger than 1-2 FPS.) The distance of the layers was adjusted to be 
the same as the voxel size. As the proxy polygons are situated in the bounding sphere 
around the object, the number of layers must equal √3 times the voxel resolution, which 
is about 444. In most cases, however, the actual number of layers differed from this 
number to some degree since it was calculated by the multiplication of two integer 
numbers. At first the frame rates were measured without optimization and then with 
applying empty space skipping to exploit the advantage of the hybrid method.  
 Fig. 4 shows the results of the measurements. The values on the horizontal axis 
correspond to the total number of layers, given by the number of proxy planes and the 
number of ray casting layers at each plane. 
 The leftmost value shows 1 proxy plane and 444 ray casting layers, which indicates 
that the pure ray casting method was applied here. The reached FPS was fairly low (4.7 
without and 8.5 with optimization) due to the long-running fragment shaders. Although 
no test results were found in the literature about the speed of ray casting visualization on 
mobile and standalone VR platforms, the measurements of Holub and Winer [16] 
confirmed the above values. They displayed the structural (static) component of a fMRI 
dataset with 256x256x128 resolution on an 2016 iPad Pro and got about 18 FPS. It is 
almost impossible to compare the values of the two tests due to the differences in the 
test conditions and because of some unknown factors, but it seems correct that the 
doubled resolution of the volumetric data and the stereoscopic rendering result in a 
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halved frame rate. To play safe, the Unity ray casting visualization demo, developed by 
Gilles Ferrand [22] on the basis of the Cg example of NVIDIA [23], was rewritten to fit 
the conditions of the tests. A fairly view-dependent frame rate was observed with 9 FPS 
in the worst case, so it can be claimed that our results are typical of the ray casting 
technique on the targeted platforms.   

 

Fig. 4. Test results 

 On the rightmost side the pure 3D texture mapping method can be found with 444 
proxy planes with one sampling point along the rays at each plane. The FPS was 13.9 in 
this case, which could not be improved by optimization as the empty space skipping had 
no effect. No previous studies have been found on the efficiency of this technique on 
mobile or standalone VR devices, and the only found documented test on iPads [24] did 
not proved comparable. The implementation of the 3D texture mapping algorithm, 
however, is quite straightforward, so it can be assumed that our method provides the 
speed that can be expected from this technique.  
 Going to the left on the diagram, by decreasing the number of proxy planes and 
increasing the number of ray casting layers, more and more points get involved into the 
optimization, while the unrolled loops of the fragment shader still fit the limited 
resources of the GPU. This result in a significant speed-up: 36 FPS could be reached, 
which is 2.59 times higher than the pure 3D texture mapping technique and 4.24 higher 
than the optimized ray casting technique can provide. Considering that still medical 3D 
images are displayed this way, it can be claimed that a decent frame rate, that suits the 
requirements of VR visualization, has been achieved on the targeted platforms. 
 Going further to the left on the diagram, the complexity of the compiled fragment 
shaders exceeds the critical value that causes the sudden drop of the performance.   
 As it can be seen above, the empty space skipping significantly improves the speed 
of displaying. The question can be put, if the visualization of datasets with large semi-
transparent or opaque areas excessively decreased the performance of the introduced 
method. The speed, in this case, would not inevitably drop, because of the fact that the 
empty space skipping is executed after applying the transfer functions which results in 
extended empty areas in common medical visualization tasks. 
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4. Conclusions 

 The two most effective thus most popular direct volume rendering techniques in 
desktop environment underachieve on the mobile and standalone VR headsets. The 
reasons are different: while the difficult fragment shader code of ray casting lies heavy 
on the stomach of the limited-performance hardware, the lack of optimization doesn’t 
let the 3D texture mapping to be effective enough. To exploit the advantages of the two 
methods, the wide range of optimization of the first and the simplicity of the latter, they 
were mixed together, thus a hybrid method dedicated to the targeted platforms has been 
born. The created technique provides significantly higher, real-time frame rate on the 
mobile and standalone VR headsets, opening the door to the qualified volume rendering 
on these devices. 
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