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Abstract—It is widely accepted that public-key cryptosystems
play a major role in the security arena of the Internet of Things
(IoT), but they need to be implemented efficiently to not deplete
the scarce resources of battery-operated devices such as wireless
sensor nodes. This paper describes a highly-optimized software
implementation of scalar multiplication for Elliptic Curve Diffie-
Hellman (ECDH) key exchange on resource-limited IoT devices
that achieves fast execution times along with reasonably small
code size and RAM consumption. Our software uses a special
class of elliptic curves, namely twisted Edwards curves with an
efficiently computable endomorphism similar to that of the so-
called Gallant-Lambert-Vanstone (GLV) curves. This allows us
to combine the main advantage of the GLV model, which is an
efficiently-computable endomorphism to speed up variable-base
scalar multiplication, with the fast and complete addition rules
of the (twisted) Edwards model. We implemented variable-base
scalar multiplication for static ECDH on two such curves, one
over a 159-bit and the second over a 207-bit pseudo-Mersenne
prime field, respectively, and evaluated their execution time on
a 16-bit MSP430F1611 processor. The arithmetic operations in
the prime field do not contain operand-dependent conditional
statements (in particular no “if-then-else” clauses) and also the
scalar multiplication follows a fixed execution path for a given
(static) scalar. A variable-base scalar multiplication on curves
over the 159 and 207-bit field takes about 2.63 and 4.84 million
clock cycles, respectively, on an MSP430F1611 processor. These
results compare favorably with the Montgomery ladder on the
equivalent Montgomery curves, which is almost 50% slower.

Index Terms—IoT security, Lightweight cryptography, ECDH
key exchange, twisted Edwards curve, Endomorphism

I. INTRODUCTION

The Internet of Things (IoT) is a frequently-used term to
describe the currently ongoing evolution of the Internet into
a network of smart objects (“things”) that have the ability to
communicate with each other and with centralized resources
via the IPv6 (resp. 6LoWPAN) protocol [1]. Today, the two
most important and widely noticed exponents of the IoT are
RFID technology (which has become a key enabler of modern
supply-chain management and industrial logistics) as well as
Wireless Sensor Networks (WSNSs), which have found wide-
spread adoption in several application domains ranging from
home automation over environmental surveillance and traffic
control to medical monitoring. A recent white paper by Cisco
estimates no less than 50 billion devices being connected to
the Internet by the year 2020 [10], which implies that, in the
near future, every person in the industrialized world will be
surrounded by dozens of sensors, actuators, RFID tags, and

many other kinds of smart objects yet to be developed. This
evolution from the Internet of people to the Internet of things
will have a profound impact on our daily life and change the
way how we interact with the physical world surrounding us
[1]. However, it is also evident that 50 billion smart devices
connected to the Internet introduce unprecedented challenges
to the security and privacy of their owners or users. On the
one hand, each of these 50 billion devices is a potential target
for a security attack over the Internet, similar to today’s PCs
and laptops. On the other hand, the plethora of IoT devices
can also be (mis)used for a large-scale attack in the opposite
direction, e.g. to trigger a denial of service.

Standardized security protocols, such as SSL and its more
recent incarnation TLS, are an indispensable part of today’s
Internet infrastructure and have been integrated into modern
web browsers, mail clients, and numerous other applications
[8]. TLS allows two parties to establish an end-to-end secure
(i.e. end-to-end authenticated and encrypted) communication
channel over an insecure network like the Internet [28]. The
emergence of the IoT quickly raised the question of how well
TLS can be adapted for wireless networks that are character-
ized by relatively low bandwidth and high packet error rates
(e.g. WSNs), for which connection-less datagram transport is
simpler to implement and incurs less overhead than a reliable
transport protocol such as TCP [19]. In order to facilitate the
seamless expansion of common TLS-based security services
into the IoT, the IETF developed the Datagram TLS (DTLS)
protocol [29], a special variant of TLS to provide end-to-end
security over unreliable datagram transport (e.g. UDP). This
property, along with the fact that the full protocol stack can
be implemented to fit into a few kB of RAM and run on an
8-bit microcontroller (as demonstrated in [28]), makes DTLS
suitable for the IoT [19]. Both TLS and DTLS apply public-
key cryptography in the handshake phase for authentication
and key establishment. Since a large share of IoT devices are
battery-powered and possess only very limited computational
and energy resources, it makes sense to utilize Elliptic Curve
Cryptography (ECC) [15] (i.e. ECDSA for digital signatures
and ECDH for key exchange) instead of RSA.

The efficient implementation of ECC for resource-limited
devices like smart cards and sensor nodes has been an active
area of research in the past 20 years, yielding a considerable
body of literature, e.g. [9], [20], [21], [25]. In 2008, Liu and
Ning introduced TinyECC [21], a flexible and configurable



ECC library for wireless sensor nodes that has been used in
countless WSN and IoT research projects and continues to be
one of the most important lightweight ECC implementations
to date. TinyECC was designed with the objective to achieve
high performance, small code size, low memory (i.e. RAM)
footprint, and the flexibility to support different curves given
in Weierstral form, including the NIST-recommended curve
P192 [15]. However, the basic Weierstral model is, in terms
of efficiency and resistance to side-channel attacks, not state-
of-the-art anymore, especially for ECDH key exchange, since
a few “alternative” curve models with better implementation
aspects exist. For example, Montgomery-form elliptic curves
[27], such as the well-known Curve25519 [2], have a unique
addition formula that enables one to efficiently compute the
sum P; + P, of two points P, P, whose difference P| — P; is
known. This so-called differential addition involves only the
projective X and Z coordinate of the two points to be added
(i.e. the Y coordinate is not used at all) and forms the basis
of the Montgomery ladder for scalar multiplication, which is
not only fast but also intrinsically secure from timing attacks
and features a very low RAM footprint [9].

Another family of elliptic curves with excellent arithmetic
features are twisted Edwards curves, introduced by Bernstein
et al in 2008 [3]. Their most outstanding feature is a fast and
complete addition law that requires just seven multiplications
in the underlying prime field F,, to perform a mixed addition
(i.e. a point addition where one point is given in projective
coordinates and the other in affine coordinates) [6]. In com-
parison, a mixed point addition on a Weierstrall curve costs
normally eight multiplications and three squarings in F,. Bos
et al showed in [5] that twisted Edwards curves can achieve
similar performance as Montgomery curves in variable-base
scalar multiplication (or may even slightly outperform them
at the 256-bit security level), but do so only at the expense
of high RAM consumption. A third family of elliptic curves
over prime fields for fast ECDH key exchange was presented
by Gallant, Lambert, and Vanstone [13] at the IACR Crypto
conference 2001. These so-called GLV elliptic curves are, in
essence, Weierstra3 curves over F,, with an efficiently-compu-
table endomorphism, whereby the two most relevant versions
are (i) curves with j-invariant j = 1728 and p = 1 mod 4, and
(i1) curves with j = 0 and p = 1 mod 3. This endomorphism
makes it possible to implement an n-bit scalar multiplication
k - P through an operation of the form k; - P + k, - O, where
k1, ko have a length of just about n/2 bits. Performing these
two half-length scalar multiplication simultaneously based on
“Shamir’s trick” [15] eliminates half of the point doublings
(and also a few point additions) compared to the double-and-
add method using the n-bit scalar k. GLV curves outperform
Montgomery curves in the variable-base setting, but are more
difficult to protect against side-channel attacks [11].

The literature also contains a few papers with approaches
to combine the arithmetic advantages of (twisted) Edwards
curves and GLV curves, which resulted in (twisted) Edwards
curves that are equipped with endomorphisms. Galbraith, Lin
and Scott extended in [12] the GLV method to a larger class

of elliptic curves, namely all curves defined over a quadratic
extension field F,» that have their j-invariants belong to the
base field F;,. Any so-called GLS curve E(F,.) features an
endomorphism arising from the p-th power Frobenius map on
a quadratic twist E’ of E, which is very easy to compute in
Fp,. Section 4 of [12] shows how this approach can be used
with the twisted Edwards model for GLS curves and presents
an explicit formula for the endomorphism. By exploiting this
endomorphism along with a two-dimensional decomposition
of k, similar to the GLV method, it is possible to reduce the
number of point doublings in an n-bit scalar multiplication to
roughly n/2. However, the GLS technique can be extended
to dimension 4 (and even higher dimensions) by using curves
over F,» with a large automorphism group and splitting the
scalar into four (n/4)-bit parts. Hu et al [18] studied various
implementation aspects of the 4-dimensional endomorphism-
accelerated scalar multiplication on j-invariant-0 GLS curves
(i.e. curves of the form y? = x> + b over F,2) and provided a
decomposition method with a concrete bound on the lengths
of the sub-scalars. According to the results they obtained on
a Core2 processor, the 4-dimensional scalar multiplication on
a j-invariant-0 GLS curve given in Weierstrall form is up to
27% faster than the basic 2-dimensional scalar multiplication
on a comparable GLS curve in twisted Edwards form.

Longa and Sica [26] generalized Hu et al’s 4-dimensional
method from the family of j-invariant-O curves to the twists
of any GLV curve over F > (called GLV-GLS curves). More
concretely, they described how to “merge” the GLV and GLS
approaches by combining the GLV-endomorphism ¢ and the
GLS-endomorphism ¢ to compute a scalar multiplication via
the equation kP = kP + kyd(P) + k3 (P) + kay ¢(P), where
the length of ki, k», k3 and k4 is only about a quarter of the
length of k. Further contributions of [26] are an algorithm to
decompose any k € [1,£] into four integers ki, k», k3, k4 SO
that max;(|k;|) < c£'/* for an explicit (small) constant ¢ and
techniques to speed up the GLV-GLS method by switching to
the twisted Edwards model with a = —1. Recently, Costello
and Longa [7] introduced FourQ, a special twisted Edwards
curve over the extension field F,» with p = 2'%7 — 1 that is
equipped with two efficient endomorphisms (very similar to
GLV-GLS curves) and, consequently, supports 4-dimensional
scalar multiplication. Thanks to the very unique combination
of a fast algorithm for scalar multiplication (by exploiting the
two endomorphisms), fast point additions/doublings (enabled
by the twisted Edwards form), and fast field operations (due
to the Mersenne prime p), FourQ was able to set impressive
new speed records for variable-base scalar multiplication on
numerous platforms [24]. However, the superior performance
of FourQ (and also GLV-GLS curves) comes at the expense
of large code size and high RAM footprint. For example, the
results in [20], [22] show that 4-dimensional scalar multipli-
cation on FourQ or a similarly strong GLV-GLS curve takes
over 2.5 kB RAM on an MSP430 processor, which is more
than five times the RAM footprint of Curve25519 [16].

In this paper we analyze the suitability of twisted Edwards
curves with an efficiently-computable endomorphism for the



IoT, in particular when implemented for constrained devices
equipped with an MSP430 processor [30], whereby we focus
on variable-base scalar multiplication. While previous papers
on such “endomorphism curves” aimed primarily to increase
performance, i.e. tried to answer the question of how fast an
endomorphism-accelerated scalar multiplication can become
(see e.g. [12] and [7]), we direct our attention to the question
of how small (in terms of RAM consumption and code size)
it can be implemented. Answering this question is crucial to
get a better understanding of the trade-offs between execution
time, memory footprint, and code size these curves offer. In
addition, we strive to answer the question of whether curves
with endomorphisms are still faster than Montgomery curves
when one optimizes the scalar multiplication for small code
size and low RAM usage instead of high speed. We resort to
conventional GLV curves in twisted Edwards form since we
consider them more “resource-friendly” than GLV-GLS and
similar speed-oriented curves with two endomorphisms. An-
other argument against GLV-GLS curves is their dependence
on quadratic extension fields, which are not supported by the
vast majority of software libraries and hardware accelerators
for ECC. The specific curve we use in our work is a twisted
Edwards curve of the form —x? + y> = 1 + xy? over a prime
field F), of order p = 2k — ¢ (i.e. a pseudo-Mersenne prime
field). This curve is birationally-equivalent to the GLV curve
y> = x3 + x/4 and was used before by Liu et al [22] in the
context of a hardware implementation of ECDSA signature
verification. The present paper complements the work of Liu
et al by showing the curve’s suitability for efficient software
implementation of (static) ECDH key exchange.

II. PRELIMINARIES

In this section, we recap the basic properties and features
of the two special families of elliptic curves our work is based
on, namely GLV curves and twisted Edwards curves.

A. Gallant-Lambert-Vanstone (GLV) Curves

At Crypto 2001, Gallant et al [13] presented an ingenious
method to accelerate scalar multiplication on elliptic curves
equipped with an endomorphism ¢ whose characteristic poly-
nomial has small coefficients. Such an endomorphism allows
one to perform a scalar multiplication k - P by a computation
of the form

k-P=ki-P+ky-¢(P) (1

where k; and k, are “small” scalars satisfying the equation
k = ki + koA mod ¢, A is an integer root of the characteristic
polynomial of ¢ modulo ¢, and ¢ is the (prime) order of the
point P. Even though Gallant et al did not give a concrete
upper bound on the size of |k;| and |k3|, it could be proven
that max(|k;|, |k2|) < ¢V for some explicit (relatively small)
constant ¢, see e.g. Theorem 1 in [26]. In other words, it is
possible to “decompose” any n-bit scalar k into two scalars
ky and k, of a length of just around n/2 bits. The two half-
length scalar multiplications k; - P and k; - ¢(P) can be done
in an interleaved fashion (as specified by Algorithm 3.51 in
[15]) or simultaneously (Algorithm 3.48 in [15], sometimes

referred to as “Shamir’s trick™), which approximately halves
the number of point doublings and also reduces the overall
number of point additions in relation to the double-and-add
method using the full-length (i.e. n-bit) scalar k.

Gallant et al discussed in [13] several examples of curves
that come with an efficiently-computable endomorphism; the
most important ones are Weierstral curves with j-invariant 0
and 1728, respectively. We summarize both examples in the
following. Let p be a prime with p = 1 mod 3 and let E| be
an elliptic curve over F, given by

Ei: yY=x+b )

Equation (2) is nothing else than a short Weierstrall equation
with a = 0, which means the j-invariant of Ej is 0. Let 5 be
an element of order 3 in FF,,. Then, the map

¢l : ()C,y) — (ﬂX,y), 0~ 0 (3)

is an endomorphism of E; defined over F, with characteris-
tic polynomial 4,2+ A, + 1. If P = (x,y) € E1(Fp) has prime
order ¢, then ¢(P) corresponds to the scalar multiplication
of P by 4y, i.e. we have ¢{(P) = (Bx,y) = 4P, where A is
an integer satisfying 4,2 + A; + 1 = 0 mod £. Note that ¢;(P)
can be computed using a single multiplication in F,. Since
the curve parameter a = 0, the formula for point doubling in
Jacobian coordinates (see [15, page 90]) can be optimized to
take only three multiplications and four squarings in FF,,.

Let p be a prime with p = 1 mod 4 and let E; be an elliptic
curve over F,, given by

3

Ey: ¥y =x>+ax “4)

Equation (4) is a (short) Weierstral equation with b = 0, and
consequently, the curve E; has j-invariant 1728. Let o be an
element of order 4 in F,. Then, the map

¢2: (X,y)H(—X,Q’y), O-0 (5)

is an endomorphism of E; defined over F, with characteris-
tic polynomial 1, + 1. When P = (x,y) € E>(Fp) has prime
order ¢, then ¢,(P) corresponds to the scalar multiplication
of P by Ay, i.e. we have ¢o(P) = (—x, @y) = A, P, where A, is
an integer satisfying 1,2 + 1 = 0 mod £. Note that ¢,(P) can
be computed via a multiplication and a negation in FF,,. The
Jacobian doubling on E, requires either four multiplications
and four squarings in F,, (if E; is isomorphic or isogenious
to the curve x> — 3x) or four multiplications (of which one is
performed by a # —3) and six squarings [15, page 88].

B. Twisted Edwards (TE) Curves

Twisted Edwards curves (henceforth denoted as TE curves)
were introduced by Bernstein et al in [3] as a generalization
of ordinary (untwisted) Edwards curves. A TE curve defined
over a prime field F,, is governed by the equation

Er: ax®>+y? =1 +dx*y? (6)

where a and d are two distinct, non-0 elements of F,. Like
Montgomery curves (see Section I and [27]), TE curves have



a co-factor of (at least) 4; therefore, not every elliptic curve
can be represented in TE form. Bernstein et al [3] were the
first to describe an interesting connection between TE curves
and Montgomery curves, namely their birational equivalence
over Fp: any TE curve given by Equation (6) is birationally-
equivalent to a Montgomery curve specified by the equation
Er: By? = x3 + Ax® + x where

A=2a+d)/(a-d) and B=4/(a-d). 7)

The converse is also true: any Montgomery curve over F, is
birationally-equivalent over F,, to a TE curve. Bernstein et al
provided the following map to send a point P; = (x;, y;) on
E7 to the corresponding point Py, = (X, Yim) On Epy.

1+)’t 1+yt )

y 3
L=y (1 =y)x

This map is not defined when x; = 0 or y, = 1. The inverse
map to obtain P, € E7(F,) corresponding to P, € Ep(Fp) is
Xm Xm — 1)

5 = > =\
(Xms Ym) (¢, yr) (ym o + 1

(s 31) = (s i) = (

€))

The above map is irregular at some points, namely the points
P,, with x,, = -1 or y,, = 0 (see [3, Section 3.3] for a more
detailed discussion of these exceptional points). A TE curve
contains a neutral element in affine coordinates, which is the
rational point O = (0, 1). The point (0, —1) has order 2. When
the product ad is a square in F,, then there are two points
of order 2 at infinity on the desingularization of Er. If d is
a square, then there are two points of order 4 at infinity on
the desingularization of Er [3].

The TE model features a unique addition law with various
interesting implementation aspects. Given two (affine) points
P = (xl,yl) € ET(Fp) and P, = (XQ, yz) € ET(]Fp)v their sum
P1 + P, can be computed as

X1y2 +y1x2  y1y2 —axixp
1 +dxixayiyy’ 1 —dxixyiy

(x1,y1) + (X2, y2) = (10)
This addition formula is unified, which means it can also be
used to double a point. Furthermore, the addition formula is
complete when a is a square in F, and d is a non-square in
F,. Completeness refers to the fact that the obtained sum is
correct for any pair Pi, P, € Er(Fp), including corner cases
like P = O, P, = O, or P; = —P>. On the other hand, if the
curve parameters a, d do not meet these conditions, then the
addition formula fails in certain cases, namely exactly when
Py — P, is a point of order 2 or 4 at infinity. However, this
implies that the addition formula given above always works
correctly for point doubling (without exceptional cases) since
Py — P; = O has order 1 [4]. Hisil et al [17] introduced the
so-called extended coordinates for TE curves, which enable
extremely efficient point addition when a = —1. The addition
formula from [17] is complete if a is a square and d a non-
square in F,. However, a TE curve not satisfying these two
conditions can still have a complete addition formula when
using the extended coordinate system, provided the points to
be added have both odd order [17, Theorem 1].

ITII. TWISTED EDWARDS CURVES WITH ENDOMORPHISM

Both the efficiency and security of ECDH key exchange is
to a large extent determined by certain properties of the used
elliptic curve. In the following, we describe a simple method
to generate a secure TE curve with an efficiently-computable
endomorphism. Furthermore, we discuss some peculiarities to
take into account when this kind of TE curve is employed in
an ECDH key exchange protocol.

A. Curve Generation

The generation of an elliptic curve for cryptographic usage
requires one to take into account a multitude of security and
efficiency criteria [5]. A major example for the former is the
requirement that the group of rational points has to contain
a large sub-group of prime order ¢ (or, equivalently, the co-
factor h = #E(F),)/¢ should be small). In addition, the curve
must not belong to one of the known classes of weak curves
for which the ECDLP can be solved significantly faster than
one would normally expect, e.g. anomalous curves or curves
with a small embedding degree. A further requirement often
mentioned in the literature, especially in the context of “x-
coordinate-only” key exchange with a Montgomery curve, is
twist security, which means that the curve and its quadratic
twist are cryptographically strong [2], [25]. However, when
using a TE curve, twist security is less crucial (at least from
a theoretical perspective) since the point arithmetic involves
both coordinates and public keys in ECDH key exchange are
usually validated to ensure the incoming x and y coordinate
form a point on the curve [7]. This validation is cheap; it is
just a check whether x and y satisfy Equation (6).

With respect to efficiency, there are two basic requirements
to consider in the curve generation, namely (i) the TE curve
has to provide an efficiently-computable endomorphism, and
(ii) the parameter a of the TE curve must be —1 to achieve
maximum performance with Hisil et al’s addition formula in
extended coordinates [17]. The fact that any elliptic curve is
representable through a Weierstrall equation enables a simple
approach to find a suitable TE curve, which we sketch in the
following. Given the parameters a and d of a TE curve, one
can use Equation (7) to get the parameters A and B of the
birationally-equivalent Montgomery curve. These parameters
can, in turn, be used to compute a Weierstrall representation
of the Montgomery curve. Combining the two computations
leads to the following equations for obtaining the parameters
ay, by, of a Weierstral} curve that is birationally-equivalent to
the TE curve with the parameters a and d.

—(a® + l4ad + d*) /48
—(a + d)(a® - 34ad + d*)/864

Y
12)

Ay
by

Since endomorphisms are preserved across curve models, the
two efficiency requirements can be easily met by fixing the
TE parameter a to —1 and choosing d so that either a,, = 0
or by, = 0. The right side of Equation (11) becomes 0 when
a®> + 14ad + d*> = d*> — 14d + 1 = 0, which is exactly the case
for d = 7 + 44/3. However, a TE curve with these parameters



can only exist if 3 is a square in the underlying prime field
Fp, ie. if p = £1 mod 12. On the other hand, an inspection
of Equation (12) reveals two basic options for choosing the
TE parameter d so that b,, of the corresponding Weierstraf3
equation becomes 0. The first choice requires d to satisfy the
equation a®> — 34ad + d* = d* + 34d + 1 = 0, which means
d =17 + 12V2. These d parameters are elements of F, when
p = =1 mod 8. The second choice is d = —a = 1.

Of all these options for d, the last one (i.e. d = 1) is the
best choice because it is least restrictive about the properties
of the underlying field and provides an arithmetic advantage
since most formulae for point addition (in particular those in
[3] and [17]) involve a multiplication by d. In this way, we
obtain a TE curve with a = —1 and d = 1, represented by the
following equation

Er: —x>+y? =1+x*y% (13)

The described approach for generating a TE curve is some-
what unusual since these specific values for a and d are the
outcome of a process that took solely efficiency criteria into
account, but no security requirements. However, a TE curve
is not fully specified without an underlying field. Hence, the
final task of our curve generation procedure is to obtain an
appropriate prime field for which a = —1 and d = 1 defines
a cryptographically strong TE curve. This contrasts with con-
ventional techniques for curve generation where the field is
normally chosen first and then one has to find suitable curve
parameters for that specific field.

Most “lightweight” elliptic curve cryptosystems for use in
the IoT provide security levels of 80, 96, 112, and 128 bits
[25], though a few alternative levels were also proposed. An
example is the ECDSA variant of Liu et al [22], which uses
the TE curve defined by Equation (13) over a 207-bit prime
field and targets a medium security level lying in the middle
between 80 and 128 bits of security, respectively. More con-
cretely, Liu et al based their ECDSA implementation on the
pseudo-Mersenne prime p = 22°7 — 5131 in order to facilitate
the modular reduction operation. We use the same TE curve
in this paper, plus an additional one over the smaller prime
p = 213 — 7339, providing roughly 80 bits of security. This
means we evaluate the performance of ECDH key exchange
with the following two TE curves.

Eiso: —x2+y2 =1+ x?y* mod 2% — 7339
Exyr i —x2+y? =1+ x*y? mod 227 - 5131

(14)
15)

Each of the two primes is congruent to 5 modulo 8 (i.e. the
field F,, contains an element @ of order 4) and the TE curve
with a = —1 and d = 1 is birationally-equivalent over F,, to
the GLV curve y? = x> + x/4, thereby implying the existence
of an efficiently-computable endomorphism ¢. Both curves
have a co-factor of & = 8 and satisfy all further requirements
a GLV curve needs to satisfy to be suitable for cryptographic
purposes. However, when using the TE model, the concrete
computation of ¢ differs slightly from Equation (5), which is
only valid for the Weierstral model. Liu et al presented in
[22] the following equation for computing ¢ in TE form.

¢: (x,y) (ax,1/y) (16)

The characteristic polynomial of ¢ is A% + 1, which means
this endomorphism corresponds to ¢, on the j-invariant-1728
curve y? = x3 + ax described in Section II-A. The map given
by Equation (16) fixes the identity element O = (0, 1), but is
obviously not defined when y = 0, i.e. for points of the form
(£1/+/a,0). Such points only exist if a is a square in F, and
have order 4. For any other other point (x, y), it is trivial to
show that (ax, 1/y) satisfies Equation (13), and is therefore
indeed a point on the curve, since a? =-1. Equation (16) is
fairly easy to derive from ¢, by simply mapping the points
P=(x,y)and Q = ¢»(P) = AP = (—x,ay) on the GLV curve
y% = x> + x/4 to the corresponding ones on the birationally-
equivalent TE curve. A similar equation was presented before
in [12, Section 4.1] for computing an automorphism on the
classical (un-twisted) Edwards curve x> + y*> = 1 — x?y?. The
endomorphism ¢ in the TE model is more costly than ¢; in
the GLV model (since it involves the inversion of y), but can
still be computed efficiently enough to be beneficial [22]. In
addition, it is possible to avoid the inversion by switching to
projective coordinates, as will be shown in Section IV.

B. Secure ECDH Key Exchange

ECDH key exchange with TE curves, including TE curves
with an efficiently-computable endomorphism, differs from
the x-coordinate-only key exchange with Montgomery curves
(e.g. Curve25519) and also from key exchange using prime-
order Weierstral} curves (e.g. NIST curves) in that it requires
protection against attacks based on invalid points. Examples
of such invalid points are points not lying on the given curve
and points outside the prime-order subgroup, which includes
points of low order. Fortunately, ECDH key exchange can be
easily and effectively protected against these small subgroup
attacks and invalid curve attacks.

When using a Montgomery curve, it is possible to perform
an entire key exchange with only the x-coordinates of points
[2], which does not hold true for any other curve model. In
particular, when implementing ECDH with a TE curve, it is
necessary to transmit both the x and the y-coordinate of the
point representing the public key (or, at least, one bit of the
y-coordinate if point compression is applied) since both are
needed as input for the scalar multiplication. The first step in
an ECDH key exchange is to validate the received point; this
consists of (i) checking that the x and y-coordinate are in the
range of [0, p — 1], and (ii) checking that x and y satisfy the
curve equation, i.e. Equation (13), which costs two squarings
and a multiplication in F,. Accepting points not lying on the
correct elliptic curve can have serious security consequences
and may, in the worst case, leak the full secret key.

Even if an incoming point satisfies the curve equation, it is
not guaranteed that the point belongs to the right subgroup
and has prime order £ = #E(F,)/h. In general, when using a
TE curve with co-factor & = 8, a point P € E(F,) can have
order 1, 2, 4, 8, ¢, 2¢, 4¢, or 8. Points of low order require
special attention to thwart small subgroup attacks, which can



reveal (parts of) the secret scalar k. Depending on the curve
parameters a and d, as well as the concrete implementation
of the point addition, it may also be necessary to pay special
attention to points of order 2¢, 4¢, and 8¢ to ensure that the
result of the scalar multiplication is correct. As mentioned in
Section II-B, the TE addition law from [3] is complete when
a is a square and d is a non-square in FF,,, which is not the
case for our TE curve since d = 1 is a square. However, the
fast addition formulae presented by Hisil et al in [17] can be
complete even if a is not a square or d is a square, provided
the points to be added are of odd order. This requirement is
always met in the course of a scalar multiplication kP when
the base point P has prime order £. However, verifying this
property requires one to compute {P and check whether the
result is O. A less costly approach to ensure completeness is
co-factor multiplication, which not only prevents exceptions
in the addition formulae caused by even-order points, but also
thwarts small subgroup attacks. So, instead of computing the
scalar multiplication kP as usual, we first multiply P by the
co-factor, i.e. we compute P’ = hP = 8P, and then use P’ as
base point for the scalar multiplication by &, which gives as
result kP’ = khP = 8kP. Of course, each of the two parties
involved in the ECDH key exchange needs to carry out this
cofactor multiplication to get the correct shared secret!.

Co-factor multiplication is a relatively cheap operation; in
our case of i = 8§, it requires just three point doublings. The
software implementation for 16-bit MSP430 microcontrollers
we present in the next section employs the projective addition
formulae given in [3, Section 6], which are unified and can
therefore be used to double a point. As explained in Section
II-B, these formulae always produce the correct result for the
doubling operation, even if a is non-square or d is a square
in Fp,. For a = —1 and d = 1, the computational cost of these
formulae is 10 multiplications (10M), one squaring (1S), and
six additions or subtractions (6A) in the underlying field. The
point P’ = hP is either the neutral element O (this happens
when ord(P) < h) or has prime order ¢, which guarantees the
completeness of Higil et al’s addition formulae in the course
of a scalar multiplication [17]. Even though P’ is obtained in
projective (X, Y, Z) coordinates, determining whether it is the
neutral element is easy; we just have to check whether X =0
and Y = Z. If this is the case, then the key exchange should
be aborted since the public key P has low order.

IV. IMPLEMENTATION DETAILS AND RESULTS

The total execution time of ECDH key exchange depends
not only on the algorithm for scalar multiplication, but also
on the efficiency of the field and point arithmetic.

A. Field Arithmetic

As mentioned in Section III-A, the two TE curves we use
for prototype implementation and performance evaluation are

The leakage of key-bits due to points of low order can also be prevented
by multiplying k € [1, £ — 1] by h = 8 or by generating k as in [2] so that its
three least significant bits are 0. However, while both methods thwart small
subgroup attacks, they do not guarantee exception-free point arithmetic.

defined over pseudo-Mersenne primes, i.e. primes of the form
p =2k — ¢, where ¢ is small in relation to 2* (typically, ¢ is
chosen to fit in a single register of the target platform). The
two specific primes of these TE curves are the 159-bit prime
p =2 —7339 and the 207-bit prime p = 2297 — 5131. Since
our target device is a 16-bit microcontroller, namely a Texas
Instruments MSP430F1611 [30], we represent the elements
of F,, as arrays of unsigned 16-bit words, i.e. arrays of type
uint16_t. Our implementation of the arithmetic operations
in F, is a slightly modified and improved version of the ECC
library for MSP430 microcontrollers introduced in [23]. This
library is written in Assembly language and provides various
low-level field operations needed to perform point additions
and point doublings on TE curves. All arithmetic functions
are parameterized with respect to the length of the operands
(i.e. number of 16-bit words they consist of), which makes
it possible to support operands of different length (in steps
of 16 bits) without recompilation. Except for inversion, the
arithmetic functions do not execute operand-dependent con-
ditional jumps or branches (i.e. they have constant execution
time), which helps to prevent timing attacks. The inversion is
based on the Extended Euclidean Algorithm (EEA), but uses
an ordinary “multiplicative masking” technique as protection
against timing attacks. This means that we first multiply the
field element Z to be inverted by a random number R, then
invert the product, and finally multiply (ZR)~' again by R to
get Z~!. Even though such a masked inversion does not have
constant execution time, it can still resist timing attacks.

TABLE I
EXECUTION TIME AND CODE SIZE OF ARITHMETIC OPERATIONS IN A
159-BIT AND A 207-BIT PRIME FIELD ON AN MSP430F1611.

Operation Execution time (cycles) Code size
159-bit field [ 207-bit field (bytes)
Addition 220 268 100
Subtraction 228 276 140
Multiplication (incl. red.) 2430 3762 352
Squaring (incl. red.) 1942 2812 388
Inversion 129528 202632 942

Table I summarizes the execution time (including function
call overhead) and code size of various arithmetic operations
in F, on a TI MSP430F1611 microcontroller. The timings
for the 159-bit field are slightly better than that reported in
[23], which is due to some low-level assembly optimizations
we added to the source code. An in-depth description of the
implementation of the [F,-arithmetic can be found in [23].

B. Point Arithmetic

Our implementation of the point operations performed in
the course of a scalar multiplication uses a slightly modified
variant of Hisil et al’s extended projective coordinates from
[17]. More specifically, we represent a point P in extended
twisted Edwards coordinates through a quintuple of the form
(X:Y:E:H:Z),where EH =T = XY/Z, the fourth coor-
dinate (similar to [6] and [14]). On the other hand, a point in
basic affine coordinates P = (x, y) takes the form of a triple



(u,v,w) with u = (y + x)/2, v = (y — x)/2, and w = dxy as
described in e.g. [14]. However, since the parameter d of the
TE curves we use is always 1, the coordinate w is simply the
product xy. Using these representations, a “mixed” addition
(i.e. an addition of a point in extended projective coordinates
with a point given in extended affine coordinates) based on
the unified formulae from [17, Section 3.1] costs only seven
multiplication (7M) and six additions or subtractions (6A) in
F,,. Doubling a point given in our special extended projective
coordinates costs 3M, 4S, and 6A. As mentioned in Section
III-B, we also need a “conventional” projective point-addition
function for co-factor multiplication (and another task to be
discussed below), which has a cost of 10M, 1S, and 6A.

On our MSP430F1611 microcontroller, the execution time
of a mixed addition on the 159-bit curve is 18485 cycles; the
doubling is about 10.8% faster and takes 16488 cycles. The
corresponding cycle counts for addition and doubling on the
207-bit curve are 28097 and 24252, respectively.

C. Scalar Multiplication

Algorithm 1 shows the main steps to compute a variable-
base scalar multiplication (including co-factor multiplication)
R =8kP on a TE curve E : —x*> + y*> = 1 + x>y? that features
an efficiently-computable endomorphism ¢.

Algorithm 1. Scalar multiplication on TE curve with endomorphism

Input: Scalar k, point P = (x,y) on TE curve with a = -1, d =1,
and co-factor h = 8.
Qutput: Scalar product R = 8kP.
1: (ky, kp) < DECOMPOSESCALAR(k)

2: (I,m) « JOINTSPARSEFORM(k, k7)

3: if (—x% + y2 # 1 + x2y?) then return O

4: Q « 8P {co-factor multiplication}
5: if Q = O then return O

6: S — ¢(Q) {S is in projective coordinates}
7. T—[S0-S50 0+S] {table with 4 projective points}
8: T «— PROTOEXTAFF(T) {table with 4 ext. affine points}
9: R« O

10: for i from MAX(|l|,|m|) by 1 down to O do

11: R « 2R

12: ki « 3; + m;

13:  if (k; > 0) then R «— R+ T[i — 1] end if

14:  if (k; <0) then R «— R — T[ABS(i) — 1] end if
15: end for

16: R < PROTOAFF(R)

17: return R

At the beginning, the n-bit scalar k is “decomposed” into
two sub-scalars k; and k, (each of which is roughly n/2 bits
long) such that k = k; + k> - A mod ¢, similar as discussed in
Section II-A for ordinary GLV curves. This decomposition is
a quite simple operation and can be carried out as described
in e.g. [13], [15], [11], whereby the latter reference provides
a secure (i.e. timing-attack-resistant) version. Thereafter, the
two half-length scalars (ky, k») are converted to the so-called
Joint Sparse Form (JSF), a special and unique representation
of pairs of integers using the digit set {—1,0, 1} to minimize
their joint Hamming weight, i.e. the overall number of non-0
columns. In this way, the JSF representation (which can be

computed according to Algorithm 3.50 in [15]) reduces the
overall number of point additions to be executed in the main
loop starting at line 10. Then, we check whether P satisfies
the curve equation so as to thwart invalid point attacks. The
next step is the co-factor multiplication Q = 8P, which we
carry out through three consecutive point doublings using the
projective addition formulae from [3, Section 6]. As pointed
out in Section II-B, these formulae are “unified” and always
produce the correct result when used for point doubling. The
rest of Algorithm 1 (i.e. from line 6 onwards) is similar to
scalar multiplication on a conventional GLV curve, with the
exception that Q is given in projective coordinates.

In line 6 we obtain the projective point S by applying the
endomorphism ¢ of our TE curve to Q = (X, : ¥, : Z,) using
a projective version of Equation (16) as follows.

(ax,1/y) = (aXq/Zq. Zq|Yy) = (@Xo¥y : 22 : Y, Zy)  (17)

In this way, the computation of ¢ costs three multiplications
(3M) and one squaring (1S) in the field F,, but (unlike the
affine formula for ¢) does not involve an expensive inversion
anymore. The next step is to compute a table T that contains
the points Q and S, as well as their sum and difference, so
that 7[0] =S, T[1] =0 - S, T[2] = Q, and T[3] = O + S. We
use again the projective addition formulae from [3] to obtain
QO+ S and Q — S. The points in T have to be converted from
projective to extended affine coordinates in order to be able
to exploit Hisil et al’s fast (7M) mixed addition in the main
loop. To simplify this operation, we first transform the table
so that all points have the same projective Z coordinate; this
costs 15M altogether. Then, we just have to invert one single
Z coordinate, obtain affine (x, y) coordinates for each of the
four points in T, and compute the extended affine coordinates
(u, v, w), which requires further 12 multiplications (12M) plus
an inversion (1I). Hence, it is possible to compute both the
endomorphism S = ¢(Q) and the table 7 with one inversion
altogether, which is also necessary for ordinary GLV curves
to obtain Q + S and Q — § in affine coordinates.

The rest of Algorithm 1 (i.e. the main loop from line 10 to
15 and the conversion of the result from projective to affine
coordinates) is basically the same as for ordinary GLV curves
(see [15, Section 3.5] for more details). In essence, the main
loop carries out a simultaneous double-scalar multiplication
R =10 + mS with joint doublings (“Shamir’s trick”) based on
a JSF representation of the scalars / and m.

D. Performance Evaluation

As mentioned in Section II-A, the decomposition of an n-
bit scalar k (in line 1 of Algorithm 1) yields two sub-scalars
k, and ky, each of which is roughly n/2 bits long. Also the
JSF representation of ki, k (denoted I, m in Algorithm 1) has
a length of approximately n/2 digits, whereby a digit can be
either —1, 0, or 1 [15]. Due to the properties of the JSF, the
joint Hamming weight of / and m (i.e. the number of non-0
columns of /,m) is, on average, n/4 in our case. This means
that the main loop performs roughly n/4 point additions (on
average) and about n/2 point doublings (e.g. 40 additions and



80 doublings when using the curve over our 159-bit field). In
summary, the computational cost of the main loop amounts
to 7TM/4 + BM +45)/2 = 3.25M + 2S5 per scalar bit, which is
significantly below the SM +4S of the Montgomery ladder on
a Montgomery curve.

TABLE 11
EXECUTION TIME, RAM FOOTPRINT, AND CODE SIZE OF VARIABLE-BASE
SCALAR MULTIPLICATION ON AN MSP430F1611.

C Exec. time | RAM footpr. Code size
urve

cycles bytes bytes
Our 159-bit TE curve 2631265 672 5680
159-bit Montg. curve 3800509 352 4132
Our 207-bit TE curve 4840407 834 5680
207-bit Montg. curve 7223444 426 4132

Table II summarizes the execution time, RAM footprint, and
code size of scalar multiplication on our TE curves and the
birationally-equivalent Montgomery curves over the 159 and
207-bit field, respectively. As expected, the two TE curves
outperform their Montgomery counterparts significantly; the
speed-up factor is about 1.44 for the 159-bit curve and even
slightly bigger (namely 1.49) for the stronger curve over the
207-bit prime field. However, the TE timings do not include
the decomposition of k and the computation of the JSF since
both is not needed for static ECDH (instead of storing k we
simply store / and m). The downside of TE curves with an
efficiently-computable endomorphism is their relatively large
demand for RAM, which exceeds that of Montgomery curves
by between 91% (159-bit) and 96% (207-bit). This increased
memory footprint is mainly due to the extended coordinates
and the table 7 containing four points. The binary code size
is roughly 37% larger (5680 vs. 4132 bytes).

Our implementation of scalar multiplication on TE curves
with efficient endomorphism can withstand timing attacks in
a static ECDH setting since, when k is fixed, the main loop
of Algorithm 1 always executes exactly the same sequence
of additions and doublings. In summary, our results indicate
that TE curves with an efficiently-computable endomorphism
can be an excellent alternative to Montgomery curves.
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