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Introduction

This dissertation is embedded in the field of higher supermanifolds and their applications in
mathematical physics. Higher supermanifolds or Zn2 -manifolds have been introduced in foun-
dational papers by T. Covolo, J. Grabowski, V. Ovsienko and N. Poncin. Here Zn2 stands for
the Cartesian product (Z2)×n of n copies of Z2 . In the case n = 1 , we recover standard su-
permanifolds. The main difference from ordinary supergeometry is that coordinates not only
have a parity, but carry a Zn2 -degree – a degree that is an n-tuple of zeros and ones. These
coordinates are Zn2 -commutative, i.e., the sign in their commutation rule results not from the
product of their parities – which is the parity of the sum of the components of their Zn2 -degrees
– but from the standard scalar product of their Zn2 -degrees – just like with differential forms on
a supermanifold, if one agrees on using the Deligne sign convention. It follows that there are
odd parameters that commute and non-zero degree even parameters that anticommute. Since
the non-zero degree even parameters are not nilpotent, the Zn2 -functions are the formal power
series in the non-zero degree parameters with coefficients in the smooth functions in the zero
degree variables. The study of such higher degrees and the corresponding manifolds is on the
one hand necessary, as natural examples in physics and mathematics show, on the other hand
it is sufficient because every sign rule given by a commutative semigroup and a commutation
factor in the standard sense, can be described as Zn2 -sign rule in our sense.

The theory of Zn2 -manifolds is currently well established, Zn2 -differential-calculus does exist
and Zn2 -integration-theory is gradually being fully understood. In particular, the Zn2 -Berezinian
is entirely described.

The Zn2-geometry of mixed symmetry tensors

The paper ‘The graded differential geometry of mixed symmetry tensors’ is published in Archivum
Mathematicum, 55(2) (2019).

In this work we show how the new theory of Zn2 -manifolds can be used in a geometric
approach to mixed symmetry tensors such as the dual graviton. By mixed symmetry tensor
fields we mean tensors which are neither fully antisymmetric nor symmetric. Such fields play
an important role in supergravity, superstring and gauge theories. We discuss the geometric
aspects of such tensor fields on both flat and curved space-times. The text is one of many
examples of the potential of higher supergeometry in theoretical physics. It gives reason to
hope that the new Zn2 -geometric lens will allow us to expand our understanding of interacting
mixed-symmetric tensors.

We refer the reader to the introduction of the paper for more details – see page 10.

The Schwarz–Voronov embedding of Zn2-manifolds

The paper ‘The Schwarz–Voronov embedding of Zn2 -manifolds’ is published in SIGMA, 16(002)
(2020), 47 pages.
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A question arises: To what extent can Zn2 -geometry be developed? supergeometry proposes
a series of results that require special care to be generalized into the Zn2 -graded geometry. As
indicated above, the theory of Zn2 -manifolds can be understood in a sheaf-theoretic framework,
as supermanifolds can, but with significant differences, in particular in integration theory. In
this paper, we reformulate the notion of a Zn2 -manifold within a categorical framework via the
functor of points. We show that it is sufficient to consider Zn2 -points, i.e., trivial Zn2 -manifolds
for which the reduced manifold is just a single point, as ‘probes’ when employing the functor of
points. This allows us to construct a fully faithful restricted Yoneda embedding of the category
of Zn2 -manifolds into a subcategory of contravariant functors from the category of Zn2 -points to a
category of nuclear Fréchet manifolds over nuclear Fréchet algebras. We refer to this embedding
as the Schwarz–Voronov embedding. We further prove that the category of Zn2 -manifolds is
equivalent to the full subcategory of locally trivial functors in the preceding subcategory. We
are convinced that the functor of points approach to Zn2 -geometry elaborated in this text will
allow more physicists and mathematicians to take advantage of higher supergeometry in the
future.

We refer the reader to the introduction of the paper for more details – see page 20.

Zn2-Lie groups and linear actions

The paper ‘Linear Zn2 -Manifolds and Linear Actions’ is published in SIGMA 17(060) (2021),
58 pages.

In Zn2 -geometry, Zn2 -Lie groups and their actions on Zn2 -graded vector spaces represent a
natural application of the functor of points. This study is based on the point functors of
categories such as Zn2 -vector spaces (the zero rules functor), Zn2 -manifolds (the Schwarz-Voronov
functor), Zn2 -Lie groups... The values of these functors are all functors restricted to the test
category of Zn2 -manifolds over a single topological point. Throughout the paper, particular
attention must therefore be paid to the full faithfulness and to the target category of the
restricted point functors we use. Building on this, we establish the representability of the
general linear Zn2 -group defined as a functor valued in a certain category of Fréchet Lie groups,
and use the functor of points to define its smooth linear actions on Zn2 -graded vector spaces and
linear Zn2 -manifolds. For this we must prove the quite unsurprising isomorphism between the
category of finite-dimensional Zn2 -graded vector spaces and the category of linear Zn2 -manifolds.
We do this by explicitly constructing the manifoldification functor and its inverse vectorization
functor. In order to properly treat actions, need to show that the zero rules functor agrees with
the Schwarz-Voronov functor up to composition with the manifoldification functor. While the
mentioned isomorphism of categories is, for the Cartesian space Rp|q (p, q ∈ N), fairly obvious
and readily accepted, the rigorous proof is in general Zn2 -context unpredictably challenging –
to the extent that we coined the temporary subtitle ‘On the unbearable heaviness of higher
supergeometry’ for our paper, in reference to Milan Kundera’s somewhat frivolous novel ‘On
the unbearable lightness of being’ from 1984. The results of the work we just presented are
needed to study vector bundles, in particular to prove that the geometric and sheaf-theoretical
approaches to Zn2 -vector bundles lead to the same categories.

We refer the reader to the introduction of the paper for more details – see page 70.

Zn2-Lie algebra representations

The text ‘Zn2 -Lie algebra representations by coderivations’ is a work in progress and requires a
follow up research project.
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After Zn2 -Lie groups we turn to Zn2 -Lie algebras. More precisely, the last chapter concerns
representations of a Zn2 -Lie algebra g by derivations of the dual symmetric algebra S(g)∗ . To
this end, we describe the constructions of tensor, symmetric and universal enveloping algebras
associated with a Zn2 -Lie algebra. A weak Zn2 -version of the Poincaré-Birkoff-Witt theorem
(PBW) allows us to build a faithful representation of g into its universal enveloping algebra
U(g), and a strong version of the PBW allows us to construct an explicit representation by
coderivations of U(g). We examine the Hopf structures for each of the considered universal
algebras and show why the adapted Zn2 -symmetrization map is a coalgebra isomorphism. We
use this to transport the representation by coderivations to the symmetric algebra S(g) and
finally get a representation of g by derivations of S(g)∗. We continue to study an adapted version
of Zn2 -Weil algebras and intend to use this representation to obtain a formula for embedding a
Zn2 -Lie algebra into a Zn2 -Weil algebra.
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Chapter 1

The graded differential geometry of
mixed symmetry tensors

The following research paper was published in “Archivum Mathematicum”, Volume 55 (2019),
No. 2 (joint work with Andrew James Bruce).

Abstract

We show how the theory of Zn2 -manifolds - which are a non-trivial generalisation of superman-
ifolds - may be useful in a geometrical approach to mixed symmetry tensors such as the dual
graviton. The geometric aspects of such tensor fields on both flat and curved space-times are
discussed.

1.1 Introduction

Recall that differential forms are covariant tensor fields that are completely antisymmetric in
their indices. Furthermore, it is well-known that supermanifolds offer a convenient set-up in
which to deal with differential forms. In particular, differential forms can be understood as
functions on the supermanifold ΠTM known as the antitangent bundle. This supermanifold is
constructed by taking the tangent bundle of a manifold and then declaring the fibre coordinates
to be Grassmann odd. Moreover, the antitangent bundle canonically comes equipped with
an odd vector field which ‘squares to zero’, this vector field is identified with the de Rham
differential. Mixed symmetry tensor fields are covariant tensors fields with more than one set
of antisymmetrised indices. Mixed symmetry tensor fields represent a natural generalisation of
differential forms in which the tensors are neither fully symmetric nor antisymmetric. From a
representation theory point of view, they correspond to Young diagrams with more than one
column. In physics, such tensor fields appear in the context of higher spin fields, dual gravitons,
double dual gravitons etc. as found in various formulations of supergravity and string theory.
In particular, the particle spectrum of string theory contains beyond the massless particles of
the effective supergravity theory, an infinite tower of massive particles of ever higher spin. In
the tensionless limit, these higher spin excitations become massless. Thus, if one wants to
consider the effective theory beyond the effective supergravity theory, one is forced to contend
with mixed symmetry tensors. Moreover, it is known that in string theory certain mixed
symmetry tensors couple to exotic branes [4]. To our knowledge, the first study of mixed
symmetry tensors field from a physics perspective was Curtright [9] who studied a generalised
version of gauge theory. For a review of mixed symmetry tensors, including some historical
remarks, the reader may consult Campoleoni [3]. Recently, Chatzistavrakidis et al. [5] showed
how to reformulate Galileon action functionals in an index-free framework using a generalised
notion of a supermanifold. The reader should also note that these results are part of Khoo’s
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PhD dissertation [15]. Their theory involves two sets of Grassmann variables that mutually
commute. However, assigning a degree of one to all the Grassmann variables does not lead to
a consistent notion of a “graded supermanifold”, the commutation rules of the coordinates are
not defined by their degree. Thus, it is impossible to make global sense of the geometry: what
is the commutation rule for two arbitrary degree one functions? These difficulties are cured
by using a bi-grading and the theory of Zn2 -manifolds with n = 2. Moreover, the formalism of
bi-forms (and multi-forms) as developed by Dubois-Violette & Henneaux [11], de Medeiros &
Hull [10], and Bekaert & Boulanger [2], is naturally accommodated within this setting.

The locally ringed space approach to Zn2 -manifolds is currently work in progress initially
started by Covolo et al. [19, 20, 21]. However, with the basic tenets in place, the time is
ripe to seek applications and links with known constructions. Very loosely, Zn2 -manifolds are
‘manifolds’ in which we have Zn2 -graded, Zn2 -commutative coordinates. The sign rules are
controlled by the standard scalar product on Zn2 . Hence, in general, we have sets of coordinates
that anti-commute amongst themselves while commuting across the sets. This is exactly what
we require in order to describe mixed symmetry tensors. The one complication is that, in
general, there are also formal coordinates that are not nilpotent. This means that we must
consider formal power series and not just polynomials in the formal coordinates. However,
with the applications to mixed symmetry tensors in mind, we will not need to dwell on this
subtlety. We will concentrate on mixed tensors with two ‘blocks’ of antisymmetric indices and
so we will only employ very particular Z2

2-manifolds with no non-nilpotent formal coordinates.

We liken the current situation to the early days of supersymmetry and in particular the
initial works on superspace methods. In particular, physicists worked rather formally with
commuting and anticommuting coordinates largely unaware of that the mathematical theory
of supermanifolds was concurrently being developed in the Soviet Union by Berezin and col-
laborators. We speculate that Zn2 -manifolds will shed light on various aspects of theoretical
physics and here we suggest just one potentially useful facet.

1.2 Basics of Zn2-geometry

The first reference to Zn2 -manifolds (coloured manifolds) is Molotkov [16] who developed a
functor of points approach. The locally ringed space approach to Zn2 -manifolds is presented in
[19]. We will draw upon this heavily and not present proofs of any formal statements. We work
over the field R and in our notation Zn2 := Z2 × Z2 × Z2 (n-times). A Zn2 -graded algebra is an
R-algebra with a decomposition into vector spaces A := ⊕γ∈Zn2Aγ, such that the multiplication
respect the Zn2 -grading, i.e., Aα · Aβ ⊂ Aα+β. Furthermore, we will always assume the algebras
to be associative and unital. If for any pair of homogeneous elements a ∈ Aα and b ∈ Aβ we
have that

a · b = (−1)〈α,β〉b · a, (1.2.1)

where 〈−,−〉 is the standard scalar product on Zn2 , then we have a Zn2 -commutative algebra.

The basic objects we will employ are smooth Zn2 -manifolds. Essentially, such objects are
‘manifolds’ equipped with both standard commuting coordinates and formal coordinates of
non-zero Zn2 -degree that Zn2 -commute according to the general sign rule (3.5.1). Note that in
general - and in stark contrast to the n = 1 case of supermanifolds - we have formal coordinates
that are not nilpotent.

In order to keep track of the various formal coordinates, we need to introduce a convention
on how we fix the order of elements in Zn2 , we do this lexicographically. For example, with this
choice of ordering

Z2
2 = {(0, 0), (0, 1), (1, 0), (1, 1)} .
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Note that other choices of ordering have appeared in the literature. A tuple q = (q1, q2, · · · , qN),
where N = 2n−1 provides all the information about the formal coordinates. We can now recall
the definition of a Zn2 -manifold.

Definition 1.2.1. A (smooth) Zn2 -manifold of dimension p|q is a locally Zn2 -ringed spaceM :=
(M,OM), which is locally isomorphic to the Zn2 -ringed space Rp|q := (Rp, C∞Rp [[ξ]]). Local
sections of M are formal power series in the Zn2 -graded variables ξ with smooth coefficients,

OM(U) ' C∞(U)[[ξ]] :=

{
∞∑

α̂∈NN
ξα̂fα̂ | fα̂ ∈ C∞(U)

}
,

for ‘small enough’ open domains U ⊂ M . Morphisms between Zn2 -manifolds are morphisms of
Zn2 -ringed spaces, that is, pairs Φ = (φ, φ∗) : (M,OM) → (N,ON) consisting of a continuous
map φ : M → N and sheaf morphism φ∗ : ON → OM , i.e., a family of Zn2 -algebra morphisms
φ∗V : ON(V )→ OM(φ−1(V )), where V ⊂ N is open. We will refer to the global sections of the
structure sheaf OM as functions on M and denote them as C∞(M) := OM(M).

Example 1.2.2 (The local model). The locally Zn2 -ringed space Up|q :=
(
Up, C∞Up [[ξ]]

)
, where

Up ⊆ Rp is naturally a Zn2 -manifold – we refer to such Zn2 -manifolds as Zn2 -superdomains of
dimension p|q. We can employ (natural) coordinates (xa, ξα) on any Zn2 -superdomain, where
xa form a coordinate system on Up and the ξα are formal coordinates.

Many of the standard results from the theory of supermanifolds pass over to Zn2 -manifolds.
For example, the topological space M comes with the structure of a smooth manifold of
dimension p, hence our suggestive notation. Moreover, there exists a canonical projection
ε : O(M) → C∞(M). What makes Zn2 -manifolds a very workable form of noncommutative
geometry is the fact that we have well-defined local models. Much like the theory of manifolds,
one can construct global geometric concepts via the glueing of local geometric concepts. That
is, we can consider a Zn2 -manifold as being cover by Zn2 -superdomains together with specified
glueing information given by coordinate transformations, composed by homomorphisms

Ψβα := Ψ−1
β Ψα : Ψ−1

α (Ψα(Uα) ∩Ψβ(Uβ))→ Ψ−1
β (Ψα(Uα) ∩Ψβ(Uβ)),

which are labelled by the different local models (Uα, C
∞(Uα)[[ξ]]), {Ψα : Uα → Ψα(Uα) ⊂M},

whenever Uα ∩ Uβ 6= ∅; and a graded unital R−algebra morphism Ψ∗βα : C∞(Uβ)[[ξ′]] −→
C∞(Uα)[[ξ]].

We have the chart theorem ([19, Theorem 7.10]) that basically says that morphisms between
Zn2 -superdomains can be completely described by local coordinates and that these local mor-
phisms can then be extended uniquely to morphisms of locally Zn2 -ringed spaces. This allows one
to proceed to describe the theory much as one would on a standard smooth manifold in terms
of local coordinates. Indeed, we will employ the standard abuses of notation when dealing with
coordinate transformations and morphisms. In particular, the explicit way of computing change
of coordinates concerning any geometrical object are well understood and work identically as
in classical differential geometry. In essence, one need only take into account that Zn2 -degree
needs to be preserved under any permissible changes of coordinates. For example, vector fields
are defined as Zn2 -graded derivations of the global sections, X ∈ Der(C∞(M) ⊂ End(C∞(M)),
that are compatible with restrictions. That is, given some open subset U ⊂M , we can always
‘localise’ the vector field, i.e., X|U = XU ∈ Der(OM(U)). Furthermore, if this open is ‘small
enough’, we can employ local coordinates (xa, ξα) and write

XU = Xa(x, ξ)
∂

∂xa
+Xα(x, ξ)

∂

∂ξα
.
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Under changes of local coordinates

xa
′
= xa

′
(x, ξ), ξα

′
= ξα

′
(x, ξ),

remembering the abuses of notation and that Zn2 -degree is preserved, the induced transformation
law on the components of the vector field follow from the chain rule and are given by

Xa′ = Xb∂x
a′

∂xb
+Xβ ∂x

a′

∂ξβ
, Xα′ = Xb∂ξ

α′

∂xb
+Xβ ∂ξ

α′

∂ξβ
.

See Covolo et al. [21, Lemma 2.2] for details. The reader can easily verify that the Zn2 -graded
commutator of two vector fields is again a vector field and that the obvious Zn2 -graded version
of the Jacobi identity holds.

As is customary in classical differential geometry, we will not write out the restrictions of
geometric objects explicitly and simply write objects in terms of there components in some
chosen local coordinate system. In other words, one can work locally on Zn2 -manifolds in more-
or-less the same way as one works on classical manifolds and indeed, supermanifolds. The
glaring exception here is the theory of integration on Zn2 -manifolds which is expected to be
quite involved (see Poncin [37] for work in this direction).

1.3 Mixed symmetry tensors over Minkowski space-time

Consider D-dimensional Minkowski space-time M = (RD, η). The Poincaré transformations we
write as

xµ 7→ xµ
′
= xνΛ µ′

ν + aµ
′
.

We now wish to construct a Z2
2-manifold built from M in a canonical way. In particular,

consider
M := TM [(0, 1)]×M TM [(1, 0)],

where we have indicated the assignment of the Z2
2-grading to the fibre coordinates on each

tangent bundle. It is straightforward to see that we do indeed obtain a Z2
2-manifold in this way

by using coordinates (see [19, Proposition 6.1]). Specifically, we can always employ (global)
coordinates of the form (

xµ︸︷︷︸
(0,0)

, ξν︸︷︷︸
(0,1)

, θρ︸︷︷︸
(1,0)

)
,

where we have signalled the assignment of Z2
2-grading. Note that we have the non-trivial

Z2
2-commutation rules

ξµξν = −ξνξµ, θµθν = −θνθµ, ξµθν = +θνξµ.

Thus, while each ‘species’ of non-zero degree coordinate are themselves nilpotent, across ‘species’
they commute. This is, of course, very different to the case of standard supermanifolds. The
Poincaré transformations induce the obvious linear coordinate transformations on the formal
coordinates

ξν
′
= ξνΛ ν′

ν , θρ
′
= θρΛ ρ′

ρ .

Clearly, these transformation laws respect the assignment of Z2
2-grading and satisfy (rather

trivially) the cocycle condition. Thus, we do indeed obtain a Z2
2-manifold in this way. As the

coordinate transformations respect the obvious bundle structure and do not ‘mix’ the non-zero
degree coordinates we have an example of a so-called split Z2

2-manifold [20]. The fact that we
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do not, in this case, have non-zero degree coordinates that are not nilpotent means that we
only deal with polynomials in the formal coordinates.

The space of (p, q)-forms on M we define as

Ω(p,q)(M) := C∞(M)(p,q),

where we naturally have the N × N-grading given by the polynomial order in each formal
coordinate. By considering all possible degrees we obtain a unital Z2

2-commutative algebra

Ω(M) := C∞(M) =

(D,D)⊕
(p,q)∈N×N

Ω(p,q)(M),

which we refer to as the algebra of bi-forms. Note that we naturally, have a C∞(M) = Ω(0,0)(M)
module structure on the space of all bi-forms.

In coordinates, any (p, q)-form can be written as

ω(p,q)(x, ξ, θ) =
1

p!q!
θν1 · · · θνpξµ1 · · · ξµq ωµq ···µ1|νq ···ν1(x).

Due to the Z2
2-commutation rules, we have the relation that ω[µq ···µ1]|[νq ···ν1] = ωµq ···µ1|νq ···ν1 and

ω[µq ···µ1]|[νq ···ν1] = ω[νq ···ν1]|[µq ···µ1] Note that we will not insist on any further relations in general.

Example 1.3.1. The dual graviton in D-dimensions is a (1, D − 3)-form and so is given in
coordinates as

C(x, ξ, θ) =
1

(D − 3)!
θνξµ1 · · · ξµD−3 CµD−3···µ1|ν(x).

Similarly, the double dual graviton in D-dimensions of a (D− 3, D− 3)-form and so is given in
coordinates as

D(x, ξ, θ) =
1

(D − 3)!(D − 3)!
θν1 · · · θνD−3ξµ1 · · · ξµD−3 DµD−3···µ1|νD−3···ν1(x).

See Hull [13, 14] for details of the rôle of dual gravitons and double dual gravitons in electro-
magnetic duality of gravitational theories.

Canonically, the algebra of bi-forms onD-dimensional Minkowski space-time comes equipped
with a pair of de Rham differentials. These differentials we consider as homological vector fields
on the Z2

2-manifold M. That is, they ‘square to zero’, i.e., 2d2 = [d, d] = 0. In coordinate we
have

d(0,1) = ξµ
∂

∂xµ
, d(1,0) = θµ

∂

∂xµ
.

It is important to note that do indeed have a pair of vector fields in this way. In particular,
the partial derivatives change under Poincaré transformations as

∂

∂xµ′
= Λ µ

µ′
∂

∂xµ
,

∂

∂ξν′
= Λ ν

ν′
∂

∂ξν
,

∂

∂θρ′
= Λ ρ

ρ′
∂

∂θρ
.

Thus, the pair of de Rham differentials are well-defined. It is also clear that they Z2
2-commute,

i.e,
[d(1,0), d(0,1)] := d(1,0) ◦ d(0,1) − d(0,1) ◦ d(1,0) = 0 .

In this way, we obtain a de Rham bi-complex. Also, note that the interior product and Lie
derivative can also be directly ‘doubled’.
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Canonically we also have a pair of vector fields of Z2
2-degree (1, 1), given by

∆(0,1) = ξµ
∂

∂θµ
, ∆(1,0) = θν

∂

∂ξν
.

A direct calculation shows that the non-trivial Z2
2-commutators are

[∆(0,1), d(1,0)] = d(0,1), [∆(1,0), d(0,1)] = d(1,0) .

Rather conveniently, we can understand the metric as a (1, 1)-form and the inverse of the metric
as a second-order differential operator given by

η := θµξνηνµ, η−1 := ηµν
∂2

∂ξν∂θµ
,

respectively.

Example 1.3.2. Consider the Curtright field on D = 5 Minkowski space-time [9]. Such a
field is understood to be the electromagnetic dual of the graviton field. In our language, the
Curtright field is an example of a (1, 2)-form and as such can be written in coordinates as

C(x, ξ, θ) =
1

2!
θρξνξµCµν|ρ(x) .

There is a further symmetry condition on the Curtright field, i.e., Cµν|ρ + Cρµ|ν + Cνρ|µ = 0,
which comes from wanting an irreducible representation of the Poincaré group. This condition
can be expressed as

∆(0,1)C =
1

2!3
ξρξνξµ

(
Cµν|ρ + Cρµ|ν + Cνρ|µ

)
= 0.

Furthermore, a direct calculation shows that

F := d(0,1)C =
1

3!
θρξνξµξλ

(
∂Cµν|ρ
∂xλ

+
∂Cνλ|ρ
∂xµ

+
∂Cλν|ρ
∂xν

)
=

1

3!
θρξνξµξλFλµν|ρ(x) ,

which we recognise (up to possible conventions) to be the Curtright field strength. Applying
d(1,0) to the Curtright field strength yields

E := d(1,0)

(
d(0,1)C

)
=

1

2!3!
θωθρξνξµξλ

(
∂Fλµν|ρ
∂xω

−
∂Fλµν|ω
∂xλ

)
=

1

2!3!
θωθρξνξµξλEλµν|ρω(x) ,

which we recognise (up to possible conventions) to be the Curtright curvature tensor, which
is fully gauge invariant, see Bekaert, Boulanger & Henneaux [?] for details. Similarly the
Curtright–Ricci tensor and its trace (again, up to conventions) can be constructed by applying
the inverse metric, i.e.,

η−1(E) =
1

2!
θρξµξληωνEλµν|ρω(x) =

1

2!
θρξµξλEλµ|ρ(x),

η−1
(
η−1(E)

)
= ξληρµEλµ|ρ(x) = ξλEλ(x) .

Remark 1.3.3. The procedure to describe mixed symmetry tensors with more antisymmetric
‘blocks’ is clear. In particular, if we have n such blocks, then we should consider the Zn2 -manifold

M := TM [(0, · · · , 0, 1)]×M TM [(0, · · · , 0, 1, 0)]×M · · · ×M TM [(1, · · · , 0, 0)] ,

where we have signalled the Zn2 -degree of the fibre coordinates. Note that we have a canonical
de Rham differential in each sector. Thus, the previous statements of this section can be
generalised verbatim.
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1.4 Mixed symmetry tensors over curved space-times

Directly extending the constructions to curved space-times (M, g) is not possible. This was for
sure noticed in [5], albeit with no reference to Zn2 -manifolds. The two de Rham differentials
cannot be näıvely be considered as vector fields on M = TM [(0, 1)] ×M TM [(1, 0)]. The
resolution to this problem is the standard one: we use the Levi-Civita connection to lift the
vector fields. The Z2

2-manifold M comes equipped with natural coordinates(
xµ︸︷︷︸

(0,0)

, ξν︸︷︷︸
(0,1)

, θρ︸︷︷︸
(1,0)

)
,

where again we have signalled the assignment of Z2
2-grading. The permissible changes of local

coordinates are

xµ
′
= xµ

′
(x), ξν

′
= ξν

∂xν
′

∂xν
, θρ

′
= θρ

∂xρ
′

∂xρ
.

As standard, we define a covariant derivative

∇µ :=
∂

∂xµ
−ξνΓρνµ

∂

∂ξρ
−θνΓρνµ

∂

∂θρ
,

where Γρνµ are the Christoffel symbols of the Levi-Civita connection. We then define the co-
variant de Rham derivatives as

∇(0,1) := ξµ∇µ = ξµ
∂

∂xµ
−ξµθνΓρνµ

∂

∂θρ
, ∇(1,0) := θµ∇µ = θµ

∂

∂xµ
−ξµθνΓρνµ

∂

∂ξρ
,

remembering that the Christoffel symbols are symmetric in the lower indices, i.e., the Levi–
Civita connection is torsion free. Due to the transformation rules for the Christoffel symbols
both these covariant de Rham derivatives are well-defined vector fields on M. However, in
general, we lose the fact that these vector fields are homological and that they commute. This
is in stark contrast to the case of standard differential forms where the covariant derivative (with
respect to any torsionless connection) reduces to the de Rham differential. Direct calculation
shows that

[∇(0,1),∇(0,1)] = R(0,1) = θµξλξνRρ
µνλ(x)

∂

∂θρ
,

[∇(1,0),∇(1,0)] = R(1,0) = ξµθλθνRρ
µνλ(x)

∂

∂ξρ
,

[∇(1,0),∇(0,1)] = R(1,1) = ξµθλθνRρ
µνλ

∂

∂θρ
(x)− θµξλξνRρ

µνλ(x)
∂

∂ξρ
,

where Rρ
µνλ is the Riemann curvature of the Levi-Civita connection (similar expressions can

be found in [12]). The vector fields ∆(0,1) and ∆(1,0) have exactly the same local form as on
Minkowski space-time. A direct calculation shows that

[∆(0,1),∇(1,0)] = ∇(0,1), [∆(1,0),∇(0,1)] = ∇(1,0) .

where one has to take care with the signs due to the Z2
2-grading.

Example 1.4.1. The covariant Riemann tensor is an example of a (2, 2)-form on (M, g):

R(x, ξ, θ) =
1

2!2!
θνθµξσξρ Rρσ|µν(x) ,
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here Rρσ|µν := gρλR
λ
σµν and Rλ

σµν is the Riemann curvature of the Levi–Civita connection. A
direct computation shows that the first Bianchi identity can be written as

∆(0,1)R =
1

3!
θνξρξµξσ

(
Rνσ|µρ +Rνµ|ρσ +Rµρ|σµ

)
= 0 .

Similarly, a direct computation shows that the second Bianchi identity can be written as

∇(0,1)R =
1

2!3!
θνθρξµξσξλ

((
∂Rσµ|ρν

∂xλ
− ΓωνλRσµ|ρω − ΓωρλRσµ|νω

)
+

(
∂Rµλ|ρν

∂xσ
− ΓωνσRµλ|ρω − ΓωρσRµλ|νω

)
+

(
∂Rλσ|ρν

∂xµ
− ΓωνµRλσ|ρω − ΓωρνRλσ|νω

))
= 0 .

1.5 Concluding Remarks

As remarked in the introduction, differential forms on a manifold M are naturally understood
as functions of the antitangent bundle ΠTM , which itself canonically comes equipped with
the de Rham differential, here understood as a homological vector field. Similarly, bi-forms
on a (pseudo-)Riemannian manifold (M, g), are naturally understood as functions on the Z2

2-
manifold TM [(0, 1)]×M TM [(1, 0)], which canonically comes equipped with the odd vector fields
(generally, non-homological) ∇(0,1) and ∇(1,0). Similar statements can be made for more general
multi-forms.

While the goals of this note have been modest, we hope that the observations here will
prove useful in further studies of mixed symmetry tensors. In particular, it is well-known that
constructing consistent theories of interacting mixed symmetry tensors is problematic. We hope
that further geometric insight can be gained via Zn2 -manifolds and that this will lead to a better
understanding of how to build actions involving mixed symmetry tensors.
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Chapter 2

The Schwarz–Voronov embedding of
Zn2 -manifolds

The following research paper was published in “SIGMA” 16 (2020), 002, 47 pages (joint work
wth Andrew James Bruce and Norbert Poncin).

Abstract

Informally, Zn2 -manifolds are ‘manifolds’ with Zn2 -graded coordinates and a sign rule determined
by the standard scalar product of their Zn2 -degrees. Such manifolds can be understood in a
sheaf-theoretic framework, as supermanifolds can, but with significant differences, in particular
in integration theory. In this paper, we reformulate the notion of a Zn2 -manifold within a
categorical framework via the functor of points. We show that it is sufficient to consider Zn2 -
points, i.e., trivial Zn2 -manifolds for which the reduced manifold is just a single point, as ‘probes’
when employing the functor of points. This allows us to construct a fully faithful restricted
Yoneda embedding of the category of Zn2 -manifolds into a subcategory of contravariant functors
from the category of Zn2 -points to a category of Fréchet manifolds over algebras. We refer to
this embedding as the Schwarz–Voronov embedding. We further prove that the category of
Zn2 -manifolds is equivalent to the full subcategory of locally trivial functors in the preceding
subcategory.

2.1 Introduction

Various notions of graded geometry play an important rôle in mathematical physics and can
often provide further insight into classical geometric constructions. For example, superman-
ifolds, as pioneered by Berezin and collaborators, are essential in describing quasi-classical
systems with both bosonic and fermionic degrees of freedom. Very loosely, supermanifolds are
‘manifolds’ for which the structure sheaf is Z2-graded. Such geometries are of fundamental
importance in perturbative string theory, supergravity, and the BV-formalism, for example.
While the theory of supermanifolds is firmly rooted in theoretical physics, it has since become
a respectable area of mathematical research. Indeed, supermanifolds allow for an economical
description of Lie algebroids, Courant algebroids as well as various related structures, many of
which are of direct interest to physics. We will not elaborate any further and urge the reader
to consult the ever-expanding literature.

Interestingly, Zn2 -gradings (Zn2 = Z×n2 , n ≥ 2) can be found in the theory of parastatistics,
see for example [22, 25, 26, 49], behind an alternative approach to supersymmetry [45], in
relation to the symmetries of the Lévy-Lebond equation [2], and behind the theory of mixed
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symmetry tensors [11]. Generalizations of the super Schrödinger algebra (see [3]) and the super
Poincaré algebra (see [10]) have also appeared in the literature. That said, it is unknown if these
‘higher gradings’ are of the same importance in fundamental physics as Z2-gradings. It must
also be remarked that the quaternions and more general Clifford algebras can be understood as
Zn2 -graded Zn2 -commutative (see below) algebras [4, 5]. Thus, one may expect Zn2 -gradings to
be important in studying Clifford algebras and modules, though the implications for classical
and quantum field theory remain as of yet unexplored. It should be further mentioned that
any ‘sign rule’ can be understood in terms of a Zn2 -grading (see [15]). A natural question here
is to what extent can Zn2 -graded geometry be developed.

A locally ringed space approach to Zn2 -manifolds has been constructed in a series of papers by
Bruce, Covolo, Grabowski, Kwok, Ovsienko & Poncin [19, 15, 16, 17, 18, 36, 11, 13]. It includes
the Zn2 -differential-calculus, the Zn2 -Berezinian, as well as a low dimensional Zn2 -integration-
theory. Integration on Zn2 -manifolds turns out to be fundamentally different from integration
on Z1

2-manifolds (i.e., supermanifolds) and is currently being constructed in full generality by
authors of the present paper. The novel aspect of integration on Zn2 -manifolds is integration
with respect to the non-zero degree even parameters (for some preliminary results see [36]).

Loosely, Zn2 -manifolds are ‘manifolds’ for which the structure sheaf has a Zn2 -grading and
the commutation rule for the local coordinates comes from the standard scalar product of
their Zn2 -degrees. This is not just a trivial or straightforward generalization of the notion
of a supermanifold as one has to deal with formal coordinates that anticommute with other
formal coordinates, but are themselves not nilpotent. Due to the presence of formal variables
that are not nilpotent, formal power series are used rather than polynomials (for standard
supermanifolds all functions are polynomial in the Grassmann odd variables). The use of
formal power series is unavoidable in order to have a well-defined local theory (see [15]), and a
well-defined differential calculus (see [17]). Heuristically, one can view supermanifolds as ‘mild’
noncommutative geometries: the noncommutativity is seen simply as anticommutativity of the
odd coordinates. In a similar vein, one can view Zn2 -manifolds (n > 1) as examples of ‘mild’
nonsupercommutative geometries: the sign rule involved is not determined by the coordinates
being even or odd, i.e., by their total degree, but by their Zn2 -degree.

The idea of understanding supermanifolds, i.e., Z1
2-manifolds, as ‘Grassmann algebra valued

manifolds’ can be traced back to the pioneering work of Berezin [9]. An informal understanding
along these lines has continuously been employed in physics, where one chooses a ‘large enough’
Grassmann algebra to capture the aspects to the theory needed. This informal understanding
leads to the DeWitt–Rogers approach to supermanifolds which seemed to avoid the theory of
locally ringed spaces altogether. However, arbitrariness in the choice of the underlying Grass-
mann algebra is somewhat displeasing. Furthermore, developing the mathematical consistency
of DeWitt–Rogers supermanifolds takes one back to the sheaf-theoretic approach of Berezin &
Leites: for a comparison of these approaches, the reader can consult Rogers [39] or Schmitt
[43]. From a physics perspective, there seems no compelling reason to think that there is any
physical significance to the choice of underlying Grassmann algebra. To quote Schmitt [43]:
“However, no one has ever measured a Grassmann number, everyone measures real numbers”.
The solution here is, following Schwarz & Voronov [44, 45, 55], not to fix the underlying Grass-
mann algebra, but rather understand supermanifolds as functors from the category of finite-
dimensional Grassmann algebras to, in the first instance, the category of sets. For a given, but
arbitrary, Grassmann algebra Λ, one speaks of the set of Λ-points of a supermanifold. It is
well known that the set of Λ-points of a given supermanifold comes with the further structure
of a Λ0-smooth manifold. That is we, in fact, do not only have a set, but also the structure
of a finite-dimensional manifold whose tangent spaces are Λ0-modules. Moreover, thinking of
supermanifolds as functors, not all natural transformations between the Λ-points correspond
to genuine supermanifold morphisms, only those that respect the Λ0-smooth structure do. A
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similar approach is used by Molotkov [35], who defines Banach supermanifolds roughly speaking
as specific functors from the category of finite-dimensional Grassmann algebras to the category
of smooth Banach manifolds of a particular type. The classical roots of these ideas go back
to Weil [57] who considered the A-points of a manifold as the set of maps from the algebra of
smooth functions on the manifold to a specified finite-dimensional commutative local algebra
A. Today one refers to Weil functors and these have long been utilised in the theory of jet
structures over manifolds, see for example [29].

In this paper, we study Grothendieck’s functor of points [27] of a Zn2 -manifold M , which
is a contravariant functor M(−) from the category of Zn2 -manifolds to the category of sets,
and restrict it to the category of Zn2 -points, i.e., trivial Zn2 -manifolds R0|q that have no de-
gree zero coordinates. More precisely, we consider the restricted Yoneda functor M 7→ M(−)
from the category of Zn2 -manifolds to the category of contravariant functors from Zn2 -points to
sets. Dual to Zn2 -points R0|q are what we will call Zn2 -Grassmann algebras Λ (see Definition
2.2.3). The aim of this paper is to carefully prove and generalise the main results of Schwarz &
Voronov [45, 55] to the ‘higher graded’ setting. In particular, we show that Zn2 -points R0|q ' Λ
are actually sufficient to act as ‘probes’ when employing the functor of points (see Theorem
2.3.8). However, not all natural transformations ηΛ : M(Λ) → N(Λ) (where Λ is a variable)
between the sets M(Λ), N(Λ) of Λ-points correspond to morphisms φ : M → N of the un-
derlying Zn2 -manifolds. By carefully analysing the image of the functor of points, we prove
that the set M(Λ) of Λ-points of a Zn2 -manifold M comes with the extra structure of a Fréchet
Λ0-manifold (see Theorem 2.3.22 ; by Λ0 we mean the subalgebra of degree zero elements of
the Zn2 -Grassmann algebra Λ). Note that we are not trying to define infinite-dimensional Zn2 -
manifolds, yet infinite-dimensional manifolds, specifically Fréchet manifolds, are fundamental
to our paper. Moreover, we show that natural transformations ηΛ between sets of Λ-points arise
from morphisms φ of Zn2 -manifolds if and only if they respect the Fréchet Λ0-manifold struc-
tures (see Proposition 2.3.24). By restricting accordingly the natural transformations allowed,
we get a full and faithful embedding of the category of Zn2 -manifolds into the category of con-
travariant functors from the category of Zn2 -points to the category of nuclear Fréchet manifolds
over nuclear Fréchet algebras. This embedding we refer to as the Schwarz–Voronov embedding
(see Definition 2.3.28). We finally study representability of such contravariant functors and
prove that the category of Zn2 -manifolds is equivalent to the full subcategory of locally trivial
functors in the just depicted subcategory of contravariant functors from Zn2 -points to nuclear
Fréchet manifolds (see Theorem 2.3.34).

Methodology: As Zn2 -manifolds have well defined local models, we work with Zn2 -domains
and then ‘globalize’ the results to general Zn2 -manifolds. We modify the approach of Schwarz
& Voronov [45, 55] and draw on Balduzzi, Carmeli & Fioresi [7, 8] and Konechny & Schwarz
[30, 31], making all changes necessary to encompass Zn2 -manifolds. Let us mention that Bal-
duzzi, Carmeli & Fioresi study functors from the category of super Weil algebras and not that
of Grassmann algebras. However, if we truly want to build a restricted Yoneda embedding,
the source category of the functors of points must be a category of algebras that is opposite to
some category of supermanifolds – and super Weil algebras are not the algebras of functions of
some class of supermanifolds (unless they are Grassmann algebras). Moreover, the idea behind
our restriction of the Yoneda embedding is ‘the smaller the class of test algebras, the better’ –
which points again to Grassmann algebras as being the somewhat privileged objects. The most
striking difference between supermanifolds and Zn2 -manifolds (n > 1) is that we are forced,
due to the presence of non-zero degree even coordinates, to work with (infinite-dimensional)
Fréchet spaces, algebras and manifolds. Interestingly, nuclearity of the values M(Λ) of the
functor of points of a Zn2 -manifold M , i.e., nuclearity of the local models of the Fréchet Λ0-
manifolds M(Λ) or of their tangent spaces, does not play a rôle in the proofs of the statements
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in this paper. More precisely, the functor of points M(−) has values M(Λ) that are nuclear
Fréchet Λ0-manifolds. Conversely, a functor F(−) whose values F(Λ) are Fréchet Λ0-manifolds
and which is representable, has nuclear values (nuclearity is encrypted in the representability
condition (see Theorem 2.3.34)). Although nuclearity of the tangent spaces of the manifolds
M(Λ) is not explicitly used throughout this work, we do not at all claim that nuclearity is not
of importance in the theory of Zn2 -manifolds. For instance, the function sheaf of a Zn2 -manifold
is a nuclear Fréchet sheaf of Zn2 -graded Zn2 -commutative algebras – a fact that is crucial for
product Zn2 -manifolds and Zn2 -Lie groups [13].

Applications: The functor of points has been used informally in Physics as from the very
beginning. It is actually of importance in situations where there is no good notion of point
(see also Section 2.2.2), for instance in Algebraic Geometry and in Super- and Zn2 -Geometry.
Constructing a set-valued functor and showing that it is representable as a locally ringed space,
e.g., a scheme or a Zn2 -manifold, is often easier than building that scheme or manifold directly.
Functors that are not representable can be interpreted as generalised schemes or generalised Zn2 -
manifolds. Further, the category of functors is better behaved than the corresponding category
of supermanifolds or of other types of spaces. Also Homotopical Algebraic Geometry [50, 51],
as well as its generalisation that goes under the name of Homotopical Algebraic D-Geometry
(where D refers to differential operators) [20, 21], are fully based on the functor of points ap-
proach. Finally, the functor of points turns out to be an indispensable tool when it comes to
the investigation of Zn2 -Lie groups and their actions on Zn2 -manifolds, of geometric Zn2 -vector
bundles... These concepts are explored in upcoming texts that are currently being written down.

Arrangement: In Section 2.2, we review the basic tenets of Zn2 -geometry and the theory of
Zn2 -manifolds. The bulk of this paper is to be found in Section 2.3. We rely on two appendices:
in Appendix 2.4.1 we recall the notion of a generating set of a category, and in Appendix 2.4.2
we review indispensable concepts from the theory of Fréchet spaces, algebras and manifolds.

2.2 Rudiments of Zn2-graded geometry

2.2.1 The category of Zn2-manifolds

The locally ringed space approach to Zn2 -manifolds is presented in a series of papers [19, 15,
16, 17, 18, 36] by Covolo, Grabowski, Kwok, Ovsienko, and Poncin. We will draw upon these
works heavily and not present proofs of any formal statements.

Definition 2.2.1. A locally Zn2 -ringed space, n ∈ N, is a pair X := (|X|,OX), where |X| is a
second-countable Hausdorff space, and OX is a sheaf of Zn2 -graded Zn2 -commutative associative
unital R-algebras, such that the stalks Op, p ∈ |X|, are local rings.

In this context, Zn2 -commutative means that any two sections a, b ∈ OX(|U |), |U | ⊂ |X|
open, of homogeneous degrees deg(a) = a ∈ Zn2 and deg(b) = b ∈ Zn2 commute according to the
sign rule

ab = (−1)〈a,b〉 ba,

where 〈−,−〉 is the standard scalar product on Zn2 . We will say that a section a is even or odd
if 〈a, a〉 ∈ Z2 is 0 or 1.

Just as in standard supergeometry, which we recover for n = 1, a locally Zn2 -ringed space
is a Zn2 -manifold if it is locally isomorphic to a specific local model. Given the central rôle
of (finite dimensional) Grassmann algebras in the theory of supermanifolds, we consider here
Zn2 -Grassmann algebras.
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Remark 2.2.2. In the following, we order the elements in Zn2 lexicographically, and refer to
this ordering as the standard ordering. For example, we thus get

Z2
2 = {(0, 0), (0, 1), (1, 0), (1, 1)}.

Definition 2.2.3. A Zn2 -Grassmann algebra Λ q := R[[ξ]] is the Zn2 -graded Zn2 -commutative
associative unital R-algebra of all formal power series with coefficients in R generated by ho-
mogeneous parameters ξα subject to the commutation relation

ξαξβ = (−1)〈α,β〉ξβξα,

where α := deg(ξα) ∈ Zn2 \ 0, 0 = (0, . . . , 0). The tuple q = (q1, q2, · · · , qN), N = 2n − 1,
provides the number qi of generators ξα, which have the i-th degree in Zn2 \ 0 (endowed with
its standard order).

A morphism of Zn2 -Grassmann algebras, ψ∗ : Λ q → Λ p, is a map of R-algebras that preserves
the Zn2 -grading and the units.

We denote the category of Zn2 -Grassmann algebras and corresponding morphisms by Zn2GrAlg.

Example 2.2.4. For n = 0, we simply get R considered as an algebra over itself.

Example 2.2.5. If n = 1, we recover the classical concept of Grassmann algebra with the
standard supercommutation rule for generators. In this case, all formal power series truncate
to polynomials. In particular, the Grassmann algebra generated by a single odd generator is
isomorphic to the algebra of dual numbers.

Example 2.2.6. The Z2
2-Grassmann algebra Λ(1,1,1) is described by three generators(

ξ︸︷︷︸
(0,1)

, θ︸︷︷︸
(1,0)

, z︸︷︷︸
(1,1)

)
,

where we have indicated the Z2
2-degree. Note that ξθ = θξ, while ξ2 = 0 and θ2 = 0. Moreover,

ξz = −zξ and θz = −zθ, while z is not nilpotent. A general (inhomogeneous) element of Λ(1,1,1)

is then of the form
f(ξ, θ, z) = fz(z) + ξfξ(z) + θfθ(z) + ξθfξθ(z),

where fz(z), fξ(z), fθ(z) and fξθ(z) are formal power series in z. As a subalgebra we can consider
Λ(1,1,0), whose generators are ξ and θ. A general element of this subalgebra is a polynomial in
these generators.

Within any Zn2 -Grassmann algebra Λ := Λ q, we have the ideal generated by the generators
of Λ, which we will denote as Λ̊. In particular we have the decomposition

Λ = R⊕ Λ̊ ,

which will be used later on. Moreover, the set of degree 0 elements, Λ0 ⊂ Λ, is a commutative
associative unital R-algebra.

Very informally, a Zn2 -manifold is a smooth manifold whose structure sheaf has been ‘de-
formed’ to now include the generators of a Zn2 -Grassmann algebra.

Definition 2.2.7. A (smooth) Zn2 -manifold of dimension p|q is a locally Zn2 -ringed space M :=

(|M |,OM), which is locally isomorphic to the locally Zn2 -ringed space Rp|q := (Rp, C∞Rp [[ξ]]).
Local sections of OM are thus formal power series in the Zn2 -graded variables ξ with smooth
coefficients,

OM(|U |) ' C∞Rp(|U |)[[ξ]] :=

 ∑
α∈N

∑
iqi

ξαfα : fα ∈ C∞Rp(|U |)

 ,
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for ‘small enough’ open subsets |U | ⊂ |M |. A Zn2 -morphism, i.e., a morphism between two
Zn2 -manifolds, say M and N , is a morphism of Zn2 -ringed spaces, that is, a pair φ = (|φ|, φ∗) :
(|M |,OM)→ (|N |,ON) consisting of a continuous map |φ| : |M | → |N | and a sheaf morphism
φ∗ : ON → |φ|∗OM , i.e., a family of Zn2 -graded unital R-algebra morphisms φ∗|V | : ON(|V |) →
OM(|φ|−1(|V |)) (|V | ⊂ |N | open), which commute with restrictions. We will refer to the global
sections of the structure sheaf OM as functions on M and denote them as C∞(M) := OM(|M |).

Example 2.2.8 (The local model). The locally Zn2 -ringed space Up|q :=
(
Up, C∞Up [[ξ]]

)
, where

Up ⊂ Rp is open, is naturally a Zn2 -manifold – we refer to such Zn2 -manifolds as Zn2 -domains of
dimension p|q. We can employ (natural) coordinates (xa, ξα) on any Zn2 -domain, where the xa

form a coordinate system on Up and the ξα are formal coordinates.

Canonically associated to any Zn2 -graded algebra A is the homogeneous ideal J of A gen-
erated by all homogeneous elements of A having nonzero degree. If f : A → A′ is a morphism
of Zn2 -graded algebras, then f(JA) ⊂ JA′ . The J-adic topology plays a fundamental rôle in the
theory of Zn2 -manifolds. In particular, these notions can be ‘sheafified’. That is, for any Zn2 -
manifold M , there exists an ideal sheaf JM , defined by J (|U |) = 〈f ∈ OM(|U |) : deg(f) 6= 0〉.
The JM -adic topology on OM can then be defined in the obvious way.

Many of the standard results from the theory of supermanifolds pass over to Zn2 -manifolds.
For example, the topological space |M | comes with the structure of a smooth manifold of
dimension p and the continuous base map of any Zn2 -morphism is actually smooth. Further, for
any Zn2 -manifold M , there exists a short exact sequence of sheaves of Zn2 -graded Zn2 -commutative
associative R-algebras

0 −→ ker ε −→ OM
ε−→ C∞|M | −→ 0 ,

such that ker ε = JM .
The immediate problem with Zn2 -manifolds is that JM is not nilpotent – for supermanifolds

the ideal sheaf is nilpotent and this is a fundamental property that makes the theory of su-
permanifolds so well-behaved. However, this loss of nilpotency is compensated by Hausdorff
completeness of OM with respect to the JM -adic topology.

Proposition 2.2.9. Let M be a Zn2 -manifold. Then OM is JM -adically Hausdorff complete as
a sheaf of Zn2 -commutative associative unital R-algebras, i.e., the morphism

OM → lim
←k
OM/J k

M ,

naturally induced by the filtration of OM by the powers of JM , is an isomorphism.

The presence of formal power series in the coordinate rings of Zn2 -manifolds forces one to
rely on the Hausdorff-completeness of the J -adic topology. This completeness replaces the
standard fact that supermanifold functions of Grassmann odd variables are always polynomials
– a result that is often used in extending results from smooth manifolds to supermanifolds.

What makes Zn2 -manifolds a very workable form of noncommutative geometry is the fact
that we have well-defined local models. Much like the theory of manifolds, one can construct
global geometric concepts via the gluing of local geometric concepts. That is, we can consider
a Zn2 -manifold as being covered by Zn2 -domains together with specified gluing information, i.e.,
coordinate transformations. Moreover, we have the chart theorem ([15, Theorem 7.10]) that says
that Zn2 -morphisms from a Zn2 -manifold (|M |,OM) to a Zn2 -domain (Up, C∞Up [[ξ]]), are completely
described by the pullbacks of the coordinates (xa, ξα). In other words, to define a Zn2 -morphism
valued in a Zn2 -domain, we only need to provide total sections (sa, sα) ∈ OM(|M |) of the source
structure sheaf, whose degrees coincide with those of the target coordinates (xa, ξα). Let us
stress the condition (. . . , εsa, . . .)(|M |) ⊂ Up, which is often understood in the literature.
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A few words about the atlas definition of a Zn2 -manifold are necessary. Let p|q be as above.
A p|q-chart (or p|q-coordinate-system) over a (second-countable Hausdorff) smooth manifold
|M | is a Zn2 -domain

Up|q = (Up, C∞Up [[ξ]]) ,

together with a diffeomorphism |ψ| : |U | → Up, where |U | is an open subset of |M |. Given two
p|q-charts

(Up|qα , |ψα|) and (Up|qβ , |ψβ|) (2.2.1)

over |M |, we set Vαβ := |ψα|(|Uαβ|) and Vβα := |ψβ|(|Uαβ|), where |Uαβ| := |Uα|∩ |Uβ|. We then
denote by |ψβα| the diffeomorphism

|ψβα| := |ψβ| ◦ |ψα|−1 : Vαβ → Vβα . (2.2.2)

Whereas in classical differential geometry the coordinate transformations are completely defined
by the coordinate systems, in Zn2 -geometry, they have to be specified separately. A coordinate
transformation between two charts, say the ones of (3.5.2), is an isomorphism of Zn2 -manifolds

ψβα = (|ψβα|, ψ∗βα) : Up|qα |Vαβ → U
p|q
β |Vβα , (2.2.3)

where the source and target are the open Zn2 -submanifolds

Up|qα |Vαβ = (Vαβ, C
∞
Vαβ

[[ξ]])

(note that the underlying diffeomorphism is (3.5.3)). A p|q-atlas over |M | is a covering

(Up|qα , |ψα|)α by charts together with a coordinate transformation (3.5.4) for each pair of charts,
such that the usual cocycle condition ψβγψγα = ψβα holds (appropriate restrictions are under-
stood).

Definition 2.2.10. A (smooth) Zn2 -manifold of dimension p|q is a (second-countable Hausdorff)
smooth manifold |M | together with a preferred p|q-atlas over it.

As in standard supergeometry, the definitions 2.2.7 and 2.2.10 are equivalent [32]. For instance,
if M = (|M |,OM) is a Zn2 -manifold of dimension p|q in the sense of Definition 2.2.7, there are
Zn2 -isomorphisms (isomorphisms of Zn2 -manifolds)

hα = (|hα|, h∗α) : Uα = (|Uα|,OM ||Uα|)→ U
p|q
α = (Upα, C∞Rp |Upα [[ξ]]) ,

such that (|Uα|)α is an open cover of |M |. For any two indices α, β, the restriction hα|Uαβ of hα
to the open Zn2 -submanifold Uαβ = (|Uαβ|,OM ||Uαβ |), |Uαβ| = |Uα| ∩ |Uβ|, is a Zn2 -isomorphism
between Uαβ and

Up|qα |Vαβ = (Vαβ, C
∞
Rp|Vαβ [[ξ]]), Vαβ = |hα|(|Uαβ|) .

Therefore, the composite
ψβα = hβ|Uβαhα|−1

Uαβ
(2.2.4)

is a Zn2 -isomorphism

ψβα : Up|qα |Vαβ → U
p|q
β |Vβα ,

such that the cocycle condition is satisfied. As a matter of some formality, Zn2 -manifolds and
their morphisms form a category. The category of Zn2 -manifolds we will denote as Zn2Man. We
remark this category is locally small. Moreover, as shown in [13, Theorem 19], the category
of Zn2 -manifolds admits (finite) products. More precisely, let Mi, i ∈ {1, 2}, be Zn2 -manifolds.
Then there exists a Zn2 -manifold M1 × M2 and Zn2 -morphisms πi : M1 × M2 → Mi (with
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underlying smooth manifold |M1×M2| = |M1| × |M2| and with underlying smooth morphisms
|πi| : |M1| × |M2| → |Mi| given by the canonical projections), such that for any Zn2 -manifold N
and Zn2 -morphisms fi : N →Mi, there exists a unique morphism h : N →M1×M2 making the
obvious diagram commute. It follows that, if φ ∈ HomZn2 Man(M,M ′) and ψ ∈ HomZn2 Man(N,N

′),
there is a unique morphism φ× ψ ∈ HomZn2 Man(M ×N,M

′ ×N ′).

Remark 2.2.11. It is known that an analogue of the Batchelor–Gawȩdzki theorem holds
in the category of (real) Zn2 -manifolds, see [16, Theorem 3.2]. That is, any Zn2 -manifold is
noncanonically isomorphic to a Zn2 \ {0}-graded vector bundle over a smooth manifold. While
this result is quite remarkable, we will not exploit it at all in this paper.

2.2.2 The functor of points

Similar to what happens in classical supergeometry, a Zn2 -manifold M is not fully described by
its topological points in |M |. To remedy this defect, we broaden the notion of ‘point’, as was
suggested by Grothendieck in the context of algebraic geometry.

More precisely, set V = {z ∈ Cn : P (z) = 0} ∈ Aff, where P denotes a polynomial in
n indeterminates with complex coefficients and Aff denotes the category of affine varieties.
Grothendieck insisted on solving the equation P (z) = 0 not only in Cn, but in An, for any
algebra A in the category CA of commutative (associative unital) algebras (over C). This leads
to an arrow

SolP : CA 3 A 7→ SolP (A) = {a ∈ An : P (a) = 0} ∈ Set ,

which turns out to be a functor

SolP ' HomCA(C[V ],−) ∈ [CA, Set] ,

where C[V ] is the algebra of polynomial functions of V . The dual of this functor, whose value
SolP (A) is the set of A-points of V , is the functor

HomAff(−, V ) ∈ [Affop, Set] ,

whose value HomAff(W,V ) is the set of W -points of V .
The latter functor can be considered not only in Aff, but in any locally small category, in

particular in Zn2Man. We thus obtain a covariant functor (functor in •)

•(−) = Hom(−, •) : Zn2Man 3M 7→M(−) = HomZn2 Man(−,M) ∈ [Zn
2Man

op, Set] . (2.2.5)

As suggested above, the contravariant functor Hom(−,M) (we omit the subscript Zn2Man) (func-
tor in −) is referred to as the functor of points of M . If S ∈ Zn2Man, an S-point of M is just
a morphism πS ∈ Hom(S,M). One may regard an S-point of M as a ‘family of points of M
parameterised by the points of S’. The functor •(−) is known as the Yoneda embedding. For
any underlying locally small category C (here C = Zn2Man), the functor •(−) is fully faithful,
what means that, for any M,N ∈ Zn2Man, the map

•M,N(−) : Hom(M,N) 3 φ 7→ Hom(−, φ) ∈ Nat(Hom(−,M),Hom(−, N))

is bijective (here Nat denotes the set of natural transformations). It can be checked that the
correspondence •M,N(−) is natural in M and in N . Moreover, any fully faithful functor is
automatically injective up to isomorphism on objects: M(−) ' N(−) implies M ' N . Of
course, the functor •(−) is not surjective up to isomorphism on objects, i.e., not every functor
X ∈ [Zn2Manop, Set] is isomorphic to a functor of the type M(−). However, if such M does
exist, it is, due to the mentioned injectivity, unique up to isomorphism and it is called ‘the’
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representing Zn2 -manifold of X. Further, if X, Y ∈ [Zn2Manop, Set] are two representable func-
tors, represented by M,N respectively, a morphism or natural transformation between them,
provides, due to the mentioned bijectivity, a unique morphism between the representing Zn2 -
manifolds M and N . It follows that, instead of studying the category Zn2Man, we can just as
well focus on the functor category [Zn

2Man
op, Set] (which has better properties, in particular

it has all limits and colimits). A generalized Zn2 -manifold is an object in the functor cate-
gory [Zn2Manop, Set] and morphisms of such objects are natural transformations. The category
[Zn2Manop, Set] of generalised Zn2 -manifolds has finite products. Indeed, if F,G are two general-
ized manifolds, we define the functor F ×G, given on objects S, by (F ×G)(S) = F (S)×G(S),
and on morphisms Ψ : S → T , by

(F ×G)(Ψ) = F (Ψ)×G(Ψ) : F (T )×G(T )→ F (S)×G(S) .

It is easily seen that F ×G respects compositions and identities. Further, there are canonical
natural transformations η1 : F × G → F and η2 : F × G → G. If now (H,α1, α2) is another
functor with natural transformations from it to F and G, respectively, it is straightforwardly
checked that there exists a unique natural transformation β : H → F ×G, such that αi = ηi◦β.

One passes from the category of Zn2 -manifolds to the larger category of generalised Zn2 -
manifolds in order to understand, for example, the internal Hom objects. In particular, there
always exists a generalised Zn2 -manifold such that the so–called adjunction formula holds

Hom Zn2 Man
(M,N)(−) := HomZn2 Man(−×M,N) .

This internal Hom functor is defined on φ ∈ HomZn2 Man(P, S) by

Hom Zn2 Man
(M,N)(φ) : Hom Zn2 Man

(M,N)(S) −→ HomZn2 Man
(M,N)(P ) ,

ΨS 7−→ ΨS ◦ (φ× 1M) .

In general, a mapping Zn2 -manifold Hom Zn2 Man
(M,N) will not be representable. We will re-

fer to ‘elements’ of a mapping Zn2 -manifold as maps reserving morphisms for the categorical
morphisms of Zn2 -manifolds.

Composition of maps between Zn2 -manifolds is naturally defined as a natural transformation

◦ : Hom(M,N)× Hom(N,L) −→ Hom(M,L) , (2.2.6)

defined, for any S ∈ Zn2Man, by

Hom(S ×M,N)× Hom(S ×N,L) −→ Hom(S ×M,L) (2.2.7)

(ΨS,ΦS) 7−→ (Φ◦Ψ)S := ΦS ◦ (1S ×ΨS) ◦ (∆× 1M) ,

where ∆ : S −→ S × S is the diagonal of S and 1S : S −→ S is its identity.
Similarly to the cases of smooth manifolds and supermanifolds, morphisms between Zn2 -

manifolds are completely determined by the corresponding maps between the global functions.
We remark that this is not, in general, true for complex (super)manifolds. More carefully, we
have the following proposition that was proved in [13, Theorem 3.7.].

Proposition 2.2.12. Let M = (|M |,OM) and N = (|N |,ON) be Zn2 -manifolds. Then the
natural map

HomZn2 Man
(
M,N

)
−→ HomZn2 Alg

(
O(|N |),O(|M |)

)
,

where Zn
2Alg denotes the category of Zn2 -graded Zn2 -commutative associative unital R-algebras,

is a bijection.
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It is worth recalling how a morphism ψ ∈ HomZn2 Alg
(
O(|N |),O(|M |)) defines a continuous

base map |φ| : |M | → |N |. We denote by εm ∈ HomZn2 Alg
(
O(|M |),R), m ∈ |M |, the morphism

εm : O(|M |) 3 f 7→ (ε|M |f)(m) ∈ R ,

and by Spm(O(|M |)) the maximal spectrum of the algebra O(|M |). The map

[ : |M | 3 m 7→ ker εm ∈ Spm(O(|M |))

is a homeomorphism, both, when the target space is endowed with its Zariski topology and
when it is endowed with its Gel’fand topology. The continuous map |φ| : |M | → |N | that is
induced by the morphism ψ is now given by

|φ| : |M | ' Spm(O(|M |)) 3 m ' ker εm 7→ ker(εm ◦ ψ) ' n ∈ Spm(O(|N |)) ' |N | .

The fact that the functor HomZn2 Man(S,−) respects limits and in particular products directly
implies that (

M ×N
)
(S) 'M(S)×N(S) . (2.2.8)

The latter result is essential in dealing with Zn2 -Lie groups. A (super) Lie group can be defined
as a group object in the category of smooth (super)manifolds. This leads us to the following
definition.

Definition 2.2.13. A Zn2 -Lie group is a group object in the category of Zn2 -manifolds.

A convenient fact here is that, if G is a Zn2 -Lie group, then the set G(S) is a group (see
(2.2.8)). In other words, G(−) is a functor from Zn2Manop → Grp.

Remark 2.2.14. We leave details and examples of Zn2 -Lie groups for future publications.
However, we will remark at this point that the idea of “colour supergroup manifolds” has
already appeared in the physics literature, albeit without a proper mathematical definition
(see [1, 3, 37, 38], for example). Another approach to Zn2 -Lie groups is via a generalisation of
Harish-Chandra pairs (see [34] for work in this direction).

2.3 Zn2-points and the functor of points

In view of (2.2.5), we need to ‘probe’ a given Zn2 -manifold M ' M(−) with all Zn2 -manifolds.
We will show that this is however not the case, since, much like for the category of super-
manifolds, we have a rather convenient generating set that we can employ, namely the set of
Zn2 -points.

2.3.1 The category of Zn2-points

Definition 2.3.1. A Zn2 -point is a Zn2 -manifold R0|m with vanishing ordinary dimension. We
denote by Zn2Pts the full subcategory of Zn2Man, whose collection of objects is the (countable)
set of Zn2 -points.

Morphisms φ : R0|m → R0|n of Zn2 -points are exactly morphisms φ∗ : Λn → Λm of Zn2 -
Grassmann algebras:

Proposition 2.3.2. There is an isomorphism of categories

Zn2Pts ' Zn2GrAlgop .



29

We can think of Zn2 -points as formal thickenings of an ordinary point by the non-zero degree
generators. The simplest Zn2 -point is the one with trivial formal thickening, R0|0 :=

(
R0,R

)
:

Proposition 2.3.3. The Zn2 -point R0|0 = R0 is a terminal object in both, Zn2Man and Zn2Pts.

Proof. The unique morphism M −→ R0|0 corresponds to the morphism R 3 r · 1 7→ r · 1M ∈
OM(|M |), where 1M is the unit function.

Proposition 2.3.4. The object set Ob(Zn2Pts) ' Ob(Zn2GrAlg) is a directed set.

Proof. Given any m = (m1,m2, · · · ,mN) and n = (n1, n2, · · · , nN), we write Λm ≤ Λn if and
only if mi ≤ ni, for all i . This preorder makes the non-empty set of Zn2 -Grassmann algebras into
a directed set, since, any Λm and Λn admit Λp, where pi = sup{mi, ni}, as upper bound.

We will need the following functional analytic result in later sections of this paper. See
Definition 2.4.4 and Definition 2.4.8 for the notion of Fréchet space and Fréchet algebra, re-
spectively.

Proposition 2.3.5. The algebra of functions of any Zn2 -point is a Zn2 -graded Zn2 -commutative
nuclear Fréchet algebra.

The proposition is a special case of the fact that the structure sheaf of any Zn2 -manifold is
a nuclear Fréchet sheaf of Zn2 -graded Zn2 -commutative algebras [12, Theorem 14].

Moreover, as a direct consequence of [13, Theorem 19, Definition 13], we observe that the
category of Zn2 -points admits all finite categorical products; in particular: R0|m×R0|n ' R0|m+n .
By restricting attention to elements of degree 0 ∈ Zn2 , we get the following corollary. See
Definition 2.4.10 for the concept of Fréchet module.

Corollary 2.3.6. The set Λ0 of degree 0 elements of an arbitrary Zn2 -Grassmann algebra Λ is
a commutative nuclear Fréchet algebra. Moreover, the algebra Λ can canonically be considered
as a Fréchet Λ0-module.

Remark 2.3.7. Specialising to the n = 1 case, we recover the standard and well-known facts
about superpoints and their relation with Grassmann algebras.

2.3.2 A convenient generating set of Zn2Man
It is clear that studying just the underlying topological points of a Zn2 -manifold is inadequate
to probe the graded structure. Much like the category of supermanifolds, where the set of
superpoints forms a generating set, the set of Zn2 -points forms a generating set for the category
of Zn2 -manifolds. For the classical case of standard supermanifolds, see for example [41, Theorem
3.3.3]. For the general notion of a generating set, see Definition 2.4.1.

Theorem 2.3.8. The set Ob
(
Zn2Pts

)
constitutes a generating set for Zn2Man.

Proof. Let φ = (|φ|, φ∗) and ψ = (|ψ|, ψ∗) be two distinct Zn2 -morphisms φ, ψ : M → N between
two Zn2 -manifolds M = (|M |,OM) and N = (|N |,ON). These morphisms have distinct smooth
base maps

|φ|, |ψ| : |M | → |N | ,
or, if |φ| = |ψ|, they have distinct pullback morphisms of sheaves of algebras

φ∗, ψ∗ : ON → |φ|∗OM .

If |φ| 6= |ψ|, there is at least one point m ∈ |M |, such that |φ|(m) 6= |ψ|(m) . Let now
s : R0|0 →M be the Zn2 -morphism, which corresponds to the Zn2Alg morphism s∗ : OM(|M |) 3
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f 7→ (εf)(m) ∈ R , where ε is the sheaf morphism ε : OM → C∞|M | . It follows from the

reconstruction theorem [13, Theorem 9] that the base morphism |s| : {?} → |M | maps ? to m.
Hence, the Zn2 -morphisms φ ◦ s and ψ ◦ s have distinct base maps.

Assume now that |φ| = |ψ|, so that there exists |V | ⊂ |N |, such that φ∗|V | 6= ψ∗|V |, i.e., such

that φ∗|V |f 6= ψ∗|V |f, for some function f ∈ ON(|V |). A cover of |V | by coordinate patches (Vi)i,
induces a cover |Ui| := |φ|−1(Vi) of |U | := |φ|−1(|V |). It follows that

(φ∗|V |f)||Ui| 6= (ψ∗|V |f)||Ui| ,

for some fixed i, i.e., that

φ∗Vi(f |Vi) 6= ψ∗Vi(f |Vi) ,

so that φ∗Vi 6= ψ∗Vi .
Recall that, for any open subset |X| ⊂ |M |, there is a Zn2 -morphism

ιX : (|X|,OM ||X|)→ (|M |,OM) ,

whose base map |ιX | is the inclusion and whose pullback ι∗X is the obvious restriction. Further,
any Zn2 -morphism φ : M → N , whose base map |φ| : |M | → |N | is valued in an open subset
|Y | of |N |, induces a Zn2 -morphism

φY : (|M |,OM)→ (|Y |,ON ||Y |) ,

whose base map |φY | is the map |φ| : |M | → |Y | and whose pullback φ∗Y is the pullback φ∗

restricted to ON ||Y |.
In view of the above, if (Uj)j is a cover of |Ui| by coordinate domains, we have

(φ∗Vi(f |Vi))|Uj 6= (ψ∗Vi(f |Vi))|Uj , (2.3.1)

for some fixed j. This implies that the Zn2 -morphisms (φ ◦ ιUj)Vi and (ψ ◦ ιUj)Vi from the Zn2 -
domain Uj = (Uj, C∞Uj [[ξ]]) to the Zn2 -domain Vi = (Vi, C∞Vi [[θ]]) are different. More precisely,
they have the same base map |φ| = |ψ| : Uj → Vi, but their pullbacks are distinct. Indeed, these
sheaf morphisms’ algebra maps at Vi are the maps ι∗Uj ,|Ui| ◦φ

∗
Vi and ι∗Uj ,|Ui| ◦ψ

∗
Vi from C∞Vi (y)[[θ]]

to C∞Uj (x)[[ξ]], where y runs through Vi and x through Uj, and the values of these algebra maps
at f |Vi are different (see Equation (2.3.1)).

In view of Lemma 2.3.9, there is a Zn2 -morphism s : R0|m → Uj, such that

(φ ◦ ιUj)Vi ◦ s 6= (ψ ◦ ιUj)Vi ◦ s .

However, then the Zn2 -morphism ιUj ◦ s : R0|m →M separates φ and ψ, since the algebra maps
at Vi of the pullbacks (s∗ ◦ ι∗Uj) ◦ φ

∗ and (s∗ ◦ ι∗Uj) ◦ ψ
∗ differ. Indeed, as the Zn2 -morphisms

(φ ◦ ιUj)Vi and (ψ ◦ ιUj)Vi are fully determined by the pullbacks of the target coordinates, their
pullbacks at Vi differ for at least one coordinate yb, θB. It follows from the proof of Lemma
2.3.9 that the pullback s∗Uj ◦ (ι∗Uj ,|Ui| ◦ φ

∗
Vi) at Vi of (φ ◦ ιUj)Vi ◦ s and the similar pullback for ψ

differ for the same coordinate. However, the pullback at Vi considered is also the algebra map
at Vi of the pullback (s∗ ◦ ι∗Uj) ◦ φ

∗, so that the pullbacks (s∗ ◦ ι∗Uj) ◦ φ
∗ and (s∗ ◦ ι∗Uj) ◦ ψ

∗ are
actually distinct.

It remains to prove the following

Lemma 2.3.9. The statement of Theorem 2.3.8 holds for any two distinct Zn2 -morphisms be-
tween Zn2 -domains.
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Proof. We consider two Zn2 -domains Up|q and Vr|s together with two distinct Zn2 -morphisms

Up|q
φ
−→−→
ψ
Vr|s .

As in the general case above, there are two cases to consider: either |φ| 6= |ψ|, or |φ| = |ψ| and
φ∗ 6= ψ∗. In the proof of Theorem 2.3.8, we showed that in the first case, the maps φ and ψ can
be separated. In the second case, since a Zn2 -morphism valued in a Zn2 -domain is fully defined
by the pullbacks of the coordinates, these global Zn2 -functions φ∗Vr(Y

i), ψ∗Vr(Y
i) ∈ C∞Up(x)[[ξ]]

differ for at least one coordinate Y i = yb or Y i = θB. Let B be an index, such that

φ∗Vr(θ
B) =

∞∑
|α|=1

φBα (x)ξα ,

ψ∗Vr(θ
B) =

∞∑
|α|=1

ψBα (x)ξα ,

where we denoted the coordinates of Up|q by (xa, ξA) and used the standard multi-index no-
tation, differ. This means that the functions φBα (x) and ψBα (x) differ for at least one α and
at least one x ∈ Up, say for α = a and x = x ∈ Up ⊂ Rp. From this, we can construct the
separating Zn2 -morphism

R0|q s−→ Up|q
φ
−→−→
ψ
Vr|s .

Let us denote the coordinates of R0|q by χA. We then define the Zn2 -morphism s by setting

s∗Upx
a = xa ∈ R[[χ]], deg(xa) = deg(xa) ,

s∗Upξ
A = χA ∈ R[[χ]], deg(χA) = deg(ξA) .

It is clear that φ ◦ s 6= ψ ◦ s, since

∞∑
|α|=1

φBα (x)χα = s∗Up(φ
∗
Vr(θ

B)) 6= s∗Up(ψ
∗
Vr(θ

B)) =
∞∑
|α|=1

ψBα (x)χα .

The case where φ∗Vr(Y
i) 6= ψ∗Vr(Y

i) for Y i = yb is almost identical. In particular, we then have

φ∗Vr(y
b) = |φ|b(x) +

∞∑
|α|=2

φbα(x)ξα ,

ψ∗Vr(y
b) = |ψ|b(x) +

∞∑
|α|=2

ψbα(x)ξα .

Since we know that |φ| = |ψ|, we can proceed as for Y i = θB.

In view of Proposition 2.4.3, we get the

Corollary 2.3.10. The restricted Yoneda functor

YZn2 Pts : Zn2Man 3M 7→ HomZn2 Man
(
−,M

)
∈
[
Zn2Ptsop, Set

]
,

is faithful.
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Above, we wrote M(−) ∈ [Zn2Manop, Set] for the image of M ∈ Zn2Man by the non-restricted
Yoneda functor. If no confusion arises, we will use the same notation M(−) for the image
YZn2 Pts(M) ∈ [Zn2Ptsop, Set] of M by the restricted Yoneda functor.

Definition 2.3.11. Let M be an object of Zn2Man and Λ ' R0|m an object of Zn2GrAlg '
Zn2Ptsop. We refer to the set

M(Λ) := HomZn2 Man
(
R0|m,M

)
' HomZn2 Alg

(
O(|M |),Λ

)
(2.3.2)

as the set of Λ-points of M .

Proposition 2.3.12. Let
m∗ ∈ HomZn2 Alg

(
O(|M |),Λ

)
be a Λ-point of M and let s ∈ O(|M |). The Λ-point m∗ can equivalently be viewed as a Zn2 -
morphism

m = (|m|,m∗) ∈ HomZn2 Man(R
0|m,M)

and therefore it defines a unique topological point x := |m|(?) ∈ |M |. If |U | ⊂ |M | is an open
neighbourhood of x, such that s||U | = 0, then m∗(s) = 0.

Proof. Since m∗ : OM → OR0|m is a sheaf morphism, it commutes with restrictions, i.e., for any
open subsets |V | ⊂ |U | ⊂ |M | and any s ∈ OM(|U |), we have m∗|U |(s) ∈ OR0|m(|m|−1(|U |)) and

(m∗|U |(s))||m|−1(|V |) = m∗|V |(s||V |) ∈ OR0|m(|m|−1(|V |)) .

It follows that m∗(s) = m∗|M |(s) ∈ Λ = OR0|m({?}) reads

m∗(s) = (m∗|M |(s))|{?} = (m∗|M |(s))||m|−1(|U |) = m∗|U |(s||U |) = 0 .

Lemma 2.3.13. There is a 1:1 correspondence

M(Λ) '
⋃
x∈|M |

HomZn2 Alg
(
OM,x,Λ

)
between the set of Λ-points of M and the set of morphisms from the stalks of OM to Λ. The set

Mx(Λ) := HomZn2 Alg
(
OM,x,Λ

)
is referred to as the set of Λ-points near x.

Proof. Any Λ-point m∗ or m = (|m|,m∗) defines a topological point x = |m|(?) ∈ |M |, as well
as a Zn2Alg-morphism φx ∈ HomZn2 Alg(OM,x,Λ) between stalks. This morphism is given, for any
tU ∈ O(|U |) defined in some neighbourhood |U | of x in |M |, by

φx[tU ]x = m∗?[tU ]x = [m∗|U |tU ]? = m∗|U |tU .

Conversely, any morphism ψy ∈ HomZn2 Alg(OM,y,Λ) (y ∈ |M |) between stalks defines a

Λ-point µ∗ ∈ HomZn2 Alg
(
O(|M |), Λ

)
. It suffices to set

µ∗t = ψy[t]y ∈ Λ ,

for all t ∈ O(|M |).



33

It remains to check that the composites m∗ 7→ φx 7→ µ∗ and ψy 7→ µ∗ 7→ φx are identities.
In the first case, for any t ∈ O(|M |), we get µ∗t = φx[t]x = m∗t, so that µ∗ = m∗. In the second
case, we need the following reconstruction results. Let |U | ⊂ |M | be an open subset and set

SU = {s ∈ O0(|M |) : (εs)||U | is invertible in C∞(|U |)} .

Then the localization map λU : O(|M |) · S−1
U → O(|U |) is an isomorphism in Zn2Alg. More

precisely, for any tU ∈ O(|U |), there is a unique Fs−1 ∈ O(|M |) · S−1
U , such that tU = F ||U |s|−1

|U |
(if s ∈ SU , then s||U | is invertible in O(|U |)), and we identify Fs−1 with tU . For the proof of
these statements or more details on them, see [13, Proposition 3.5.]. It is further clear from the
results of [13, Proposition 3.1.] that x = |µ|(?) is the topological point y.

We now compute the second composite above. For any tU defined in a neighborhood |U | of
x, we get

φx[tU ]x = µ∗|U |(Fs
−1) = µ∗(F )µ∗(s)−1 =

ψx[F ]x (ψx[s]x)
−1 = ψx[F ]x ψx([s]

−1
x ) = ψx([F ||U |]x[s|−1

|U |]x) = ψx[tU ]x ,

where the second equality is part of the reconstruction theorem of Zn2 -morphisms [13].

Let us consider an open cover (|UI |)I∈A of the smooth manifold |M |, as well as the open
Zn2 -submanifolds UI :=

(
|UI |,OM ||UI |

)
of the Zn2 -manifold M (which need not be coordinate

charts).

Proposition 2.3.14. For any Zn2 -Grassmann algebra Λ and Zn2 -manifold M =
(
|M |,OM

)
, we

have a natural 1:1 correspondence

M(Λ) '
⋃
I∈A

UI(Λ) ,

so that the family of sets (UI(Λ))I∈A is a cover of the set M(Λ).

Proof. Since it is clear from the definition of a stalk that OUI ,x = OM,x, for any x ∈ |UI |, it
follows from Lemma 2.3.13 that⋃

I∈A

UI(Λ) '
⋃
I∈A

⋃
x∈|UI |

HomZn2 Alg
(
OM,x,Λ

)
=
⋃
x∈|M |

HomZn2 Alg
(
OM,x,Λ

)
'M(Λ) .

Recall that
HomZn2 Man(−,−) ∈ [Zn2Man, [Zn2Ptsop, Set]] ,

so that,

i. any Zn2 -morphism φ = (|φ|, φ∗) : M → N is mapped (injectively) to a natural transfor-
mation

φ ' HomZn2 Man(−, φ) : HomZn2 Man(−,M)→ HomZn2 Man(−, N) ,

whose Λ-component (Λ ' R0|m) is the Set-map given by

φΛ := HomZn2 Man(Λ, φ) : M(Λ) = HomZn2 Man(R
0|m,M) ' HomZn2 Alg(O(|M |),Λ) 3 m∗ 7→

(2.3.3)

m∗ ◦ φ∗ ∈ HomZn2 Alg(O(|N |),Λ) ' HomZn2 Man(R
0|m, N) = N(Λ) , and ,
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ii. for any fixed M ∈ Zn2Man, given a morphism ψ = (|ψ|, ψ∗) : R0|m′ → R0|m of Zn2 -points,
or, equivalently, a morphism ψ∗ : Λ→ Λ′ of Zn2 -Grassmann algebras, we get the induced
Set-map

M(ψ∗) := HomZn2 Man(ψ,M) : M(Λ) = HomZn2 Man(R
0|m,M) ' HomZn2 Alg(O(|M |),Λ) 3 m∗ 7→

(2.3.4)

ψ∗ ◦m∗ ∈ HomZn2 Alg(O(|M |),Λ′) ' HomZn2 Man(R
0|m′ ,M) = M(Λ′) .

When reading the maps φΛ and M(ψ∗) through the 1:1 correspondence

M(Λ) 3 m∗ 7→ (x,m∗?) ∈
⋃
y∈|M |

HomZn2 Alg
(
OM,y,Λ

)
,

where x = |m|(?), we obtain

φΛ : M(Λ) −→ N(Λ) (2.3.5)

(x, m∗?) 7→ (|φ|(x), m∗? ◦ φ∗x) , and ,

M(ψ∗) : M(Λ) −→M(Λ′) (2.3.6)

(x, m∗?) 7→ (x, ψ∗ ◦m∗?) .

2.3.3 Restricted Yoneda functor and fullness

The Yoneda functor from any locally small category C into the category of Set-valued con-
travariant functors on C, is fully faithful. This holds in particular for C = Zn2Man. When we
restrict the contravariant functors to the generating set Zn2Pts, the resulting restricted Yoneda
functor is automatically faithful. In the following, we show that it is not full, i.e., that not all
natural transformations are induced by a Zn2 -morphism.

Naturality of any transformation φ : M(−) → N(−) between Set-valued contravariant
(resp., covariant) functors on Zn2Pts (resp., Zn2GrAlg), means that the diagram

M(Λ) N(Λ)

M(Λ′) N(Λ′)

//
φΛ

��

M(ψ∗)

��

N(ψ∗)

//
φΛ′

(2.3.7)

commutes, for any morphism ψ∗ : Λ→ Λ′ of Zn2 -Grassmann algebras.
A Λ-point of a Zn2 -manifold M is denoted by m∗ or m = (|m|,m∗). If the manifold is a

Zn2 -domain Up|q, we use the notation x∗ or x = (|x|, x∗). If (xa, ξA) are the coordinates of Up|q,
a Λ-point x∗ in Up|q is completely determined by the degree-respecting pullbacks

(xaΛ, ξ
A
Λ ) := (x∗(xa), x∗(ξA)) .

Since xaΛ ∈ Λ0 = R⊕Λ̊0, we write xaΛ = (xa||, x̊
a
Λ). Hence, any Λ-point x∗ in Up|q can be identified

with
x∗ '

(
xaΛ, ξ

A
Λ

)
=
(
xa||, x̊

a
Λ, ξ

A
Λ

)
∈ Rp × Λ̊p

0 × Λ̊q1
γ1
× · · · × Λ̊qN

γN
, (2.3.8)
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where
x|| = (xa||) = (..., xa||, ...) ∈ Up ,

and where γ1, . . . , γN denote the non-zero Zn2 -degrees in standard order. Here the x̊aΛ (resp.,
the ξAΛ ) are formal power series containing at least 2 (resp., at least 1) of the generators (θC)
of the Zn2 -Grassmann algebra Λ.

As mentioned above, any Zn2 -morphism, in particular any morphism φ : Up|q → Vr|s between
Zn2 -domains, naturally induces a natural transformation, with Λ-component

φΛ : Up|q(Λ) 3 x∗ 7→ x∗ ◦ φ∗ ∈ Vr|s(Λ) .

If (yb, ηB) are the coordinates of Vr|s, the morphism φ reads

φ∗(yb) =
∑
|α|≥0

φbα(x) ξα , (2.3.9a)

φ∗(ηB) =
∑
|α|>0

φBα (x) ξα , (2.3.9b)

where the right-hand sides have the appropriate degrees and where φ0(Up) ⊂ Vr. Further, the
image Λ-point x∗ ◦ φ∗ in Vr|s by φΛ of the Λ-point x∗ '

(
x∗(xa); x∗(ξA)

)
=
(
xa||, x̊

a
Λ; ξAΛ

)
in Up|q,

is given by

ybΛ =
∑
|α|≥0

∑
|β|≥0

1

β!
(∂βxφ

b
α)(x||) x̊

β
Λ ξ

α
Λ , (2.3.10a)

ηBΛ =
∑
|α|>0

∑
|β|≥0

1

β!
(∂βxφ

B
α )(x||) x̊

β
Λ ξ

α
Λ . (2.3.10b)

Let us recall that there is no convergence issue with terms in x|| [15]. Thus the components
of a natural transformation implemented by a Zn2 -morphism between Zn2 -domains, are very
particular formal power series in the formal variables x̊aΛ and ξAΛ , which are themselves formal
power series in the generators (θC) of Λ.

We are now able to prove that not all natural transformations between the restricted functors
M(−), N(−) ∈ [Zn2Pts, Set] associated with M,N ∈ Zn2Man, arise from a Zn2 -morphism M →
N . Since it suffices to give one counter-example, we choose M = N = Rp|0 = Rp.

Example 2.3.15. Consider an arbitrary diffeomorphism φ : Rp −→ Rp. The Λ-component of
the associated natural transformation is

φΛ : Rp|0(Λ) −→ Rp|0(Λ)

(xbΛ, 0) 7→

φb(x||) +
∑
|β|>0

1

β!
(∂βxφ

b)(x||) x̊
β
Λ, 0

 .

From this data we obtain another natural transformation

αΛ : Rp|0(Λ) −→ Rp|0(Λ)

(xbΛ, 0) 7→
(
φb(x||), 0

)
.

The natural transformation α is not implemented by a morphism ψ : Rp → Rp. Indeed,
otherwise αΛ = ψΛ, for all Λ. This means that

(
φb(x||), 0

)
=

ψb(x||) +
∑
|β|>0

1

β!
(∂βxψ

b)(x||) x̊
β
Λ, 0

 ,
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for all Λ and all Λ-points. Since φb(x) ≡ ψb(x), we have ∂βxφ
b ≡ ∂βxψ

b. Take now any β : |β| = 1,
so that βa = 1, for some fixed a ∈ {1, . . . , p}. As we can choose Λ and xbΛ, for all b ∈ {1, . . . , p},
arbitrarily, we can choose x̊bΛ = 0, for all b 6= a, and x̊aΛ = θDθE, where θD and θE are two
different generators of Λ that have the same degree. The coefficient of θDθE in the sum over
all β is then (∂xaψ

b)(x||), hence ∂xaφ
b ≡ ∂xaψ

b ≡ 0. The latter observation is a contradiction,
since the Jacobian determinant of φ does not vanish anywhere in Rp.

We now generalise a technical result [55, Theorem 1] to Zn2 -domains Up|q. Let

Bp|q(Up) := F(Up,R)[[X,Ξ]],

be the Zn2 -graded Zn2 -commutative associative unital R-algebra of formal power series in p
parameters Xa of Zn2 -degree 0 and q1, . . . , qN parameters ΞA of non-zero Zn2 -degree γ1, . . . , γN ,
and with coefficients in arbitrary R-valued functions on Up, i.e., we do not ask that these
functions be continuous let alone smooth. Following [44, 45, 55], we will refer to this algebra
as a Zn2 -Berezin algebra. Any element of this algebra is of the form

F =
∑
|α|≥0

∑
|β|≥0

Fαβ(x)XβΞα, (2.3.11)

where the xa are coordinates in Up.

Theorem 2.3.16. For any Zn2 -domains Up|q and Vr|s, there is a 1:1 correspondence

Nat(Up,q,Vr,s)→ (Bp|q(Up))r|s

between
- the set of natural transformations in [Zn2Ptsop, Set] between Up|q(−) and Vr|s(−), and
- the set of ‘vectors’ F with r ( resp., with s1, . . . , sN ) components F b of degree 0 ( resp.,

components FB of degrees γ1, . . . , γN ) of the type (2.3.11), such that the r-tuple (F b
00) made of

the coefficients F b
00(x) of the r series F b satisfies

(F b
00)(Up) ⊂ Vr .

Proof. Let F be such a ‘vector’. For any Λ, we define the map

βΛ : Up|q(Λ) 3 (xa||, x̊
a
Λ, ξ

A
Λ ) 7→ (ybΛ, η

B
Λ ) ∈ Vr|s(Λ) ,

where

ybΛ :=
∑
|α|≥0

∑
|β|≥0

F b
αβ(x||) x̊

β
Λ ξ

α
Λ and ηBΛ :=

∑
|α|≥0

∑
|β|≥0

FB
αβ(x||) x̊

β
Λ ξ

α
Λ . (2.3.12)

Since x̊aΛ, ξ
A
Λ have the same degrees as Xa,ΞA, the right-hand sides of (2.3.12) have the same

degrees as F b, FB, hence, ybΛ, η
B
Λ have the degrees required to be a Λ-point in Vr|s. Moreover,

we have

yb|| = F b
00(x||) ,

so that y|| ∈ Vr. The target of the map βΛ is thus actually Vr|s(Λ). The naturality of β under
morphisms of Zn2 -Grassmann algebras is obvious: β is a natural transformation in [Zn2Ptsop, Set]
between Up|q(−) and Vr|s(−). Finally, we defined a map

I : (Bp|q(Up))r|s → Nat(Up,q,Vr,s) .
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We will explain now that any natural transformation β : Up|q(−) −→ Vr|s(−) is the image
by I of a unique ‘vector’ F. We first show that, for any Λ ' R0|m, the image βΛ(x∗) ∈ Vr|s(Λ)
of any Λ-point

x∗ ' (xa||, x̊
a
Λ, ξ

A
Λ ) ∈ Up × Λ̊p

0 × Λ̊q1
γ1
× · · · × Λ̊qN

γN

in Up|q, has components ybΛ and ηBΛ of the type (2.3.12).
Step 1. We prove that any Λ-point in Up|q is the image by a Zn2 -Grassmann algebra map

ϕ∗ : Λ′ → Λ of a Λ′-point in Up|q, some of whose defining series are series in formal pairings.
Let (θC) be the generators of Λ. The Λ-point x∗ then reads

x∗ ' (xa||,
∑

λκ θ
λθκKa

κλ, ξ
A
Λ ) ,

where the degree of Ka
κλ ∈ Λ is the sum of the degrees of θλ and θκ. Recall that a (resp., A)

runs through {1, . . . , p} (resp., through {1, . . . , |q|}), and that λ, κ run through {1, . . . , |m|}.
Consider now the set S of generators

θ′ =
(
ηaλ, ζbκ, ψ

A
)
,

where b has the same range as a, and define their (non-zero) Zn2 -degrees by

deg(ηaλ) = deg(θλ), deg(ζbκ) = deg(θκ), deg(ψA) = deg(ξAΛ ) = deg(ξA) .

Let Λ′ be the Zn2 -Grassmann algebra defined by S, and set

x′∗ '
(
xa||,
∑

λ η
aλζaλ, ψ

A
)
∈ Up × Λ̊′p0 × Λ̊′q1γ1

× · · · × Λ̊′qNγN (2.3.13)

(no sum over a in the formal pairings
∑

λ η
aλζaλ). The degree-respecting equalities

ϕ∗(ηaλ) = θλ, ϕ∗(ζbκ) =
∑
λ

θλKb
λκ, ϕ∗(ψA) = ξAΛ

define a morphism of Zn2 -Grassmann algebras ϕ∗ : Λ′ −→ Λ. It suffices to set

ϕ∗
(∑

ε

rεθ
′ε) :=

∑
ε

rε(ϕ
∗θ′)ε .

Indeed, any term of the right-hand side is a series in θ whose terms contain at least |ε| generators.
Hence, for any ε, only the terms |ε| ≤ |ε| can contribute to θε, and therefore there is no
convergence issue with the coefficient of θε. Since the Λ-point ϕ∗ ◦ x′∗ in Up|q reads

ϕ∗ ◦ x′∗ ' ϕ∗
(
xa||,
∑

λ η
aλζaλ, ψ

A
)

=
(
xa||,
∑

λκ θ
λθκKa

κλ, ξ
A
Λ

)
' x∗ ,

naturality of the transformation β : Up|q(−) −→ Vr|s(−) implies that

(ybΛ, η
B
Λ ) :' βΛ(x∗) = βΛ(ϕ∗ ◦ x′∗) = βΛ

(
Up|q(ϕ∗) (x′∗)

)
=

Vr|s(ϕ∗)(βΛ′(x
′∗)) = ϕ∗ ◦ (βΛ′(x

′∗)) ' ϕ∗(ybΛ′ , η
B
Λ′) , (2.3.14)

where ybΛ′ and ηBΛ′ are series in the generators of Λ′.
Step 2. We define formal rotations under which the formal pairings are invariant. Moreover,

we show that any formal series that is invariant under the formal rotations is a series in the
formal pairings.
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The formal part of each degree 0 component of x′∗ can be viewed as a formal pairing
ηa · ζa =

∑
λ η

aλζaλ, which is stable under formal rotations R∗. More precisely, we set

R∗(ηaλ) =
∑
κ

ηaκ(Oa) λ
κ , R

∗(ζbκ) =
∑
λ

(Ob t) λ
κ ζ

b
λ, R

∗(ψA) = ψA ,

where Oa and Ob t are any (m1 + . . . + mN) × (m1 + . . . + mN) block-diagonal matrices with
entries in R that satisfy ∑

λ

(Oa) λ
ρ (Oa t) ω

λ = δ ω
ρ . (2.3.15)

Since, for any fixed a (resp., b), the components ηaλ (resp., ζbκ) are ordered such that the
m1 first components have degree γ1, the next m2 degree γ2, and so on, these equalities are
degree-preserving. Hence, they define a Zn2 -Grassmann algebra morphism R∗ : Λ′ → Λ′ via

R∗
(∑

ε

rεθ
′ε) = R∗

(∑
αβγ

rαβγ η
αζβψγ

)
:=
∑
αβγ

rαβγ (R∗η)α(R∗ζ)βψγ .

Since the images R∗(ηaλ) (resp., R∗(ζbκ)) are linear in the ηaκ (resp., ζbλ) (of the same degree),
the term indexed by αβγ is a homogeneous polynomial of order |α|+ |β|+ |γ| in the generators
θ′. Hence, for any ε, only the terms |α| + |β| + |γ| = |ε| can contribute to θ′ε, so that no
convergence problems arise. In view of (2.3.15), it is clear that, as mentioned above, the formal
pairing ηa · ζa =

∑
λ η

aλζaλ is invariant under R∗. As any Zn2 -Grassmann algebra morphism, the
formal rotation R∗ induces maps Up|q(R∗) and Vr|s(R∗), and due to naturality of β, we find

Vr|s(R∗)(βΛ′x
′∗) = βΛ′(Up|q(R∗)(x′∗)) = βΛ′(R

∗ ◦ x′∗) ' βΛ′
(
R∗
(
xa||,
∑
λ

ηaλζaλ, ψ
A
))
' βΛ′x

′∗ ,

so that βΛ′x
′∗ is invariant under rotations.

We are now prepared to continue the computation (2.3.14). Since

βΛ′(x
′∗) ' (ybΛ′ , η

B
Λ′) = (yb||, ẙ

b
Λ′ , η

B
Λ′) (2.3.16)

is invariant under the rotations R∗, the series ẙbΛ′ , η
B
Λ′ in the generators θ′ are invariant. More

explicitly, for each series, we have an equality of the type∑
γ

(∑
k,`

∑
|α|=k, |β|=`

Fαβγ η
αζβ
)
ψγ =

∑
γ

(∑
k,`

∑
|α|=k, |β|=`

Fαβγ (R∗η)α(R∗ζ)β
)
ψγ ,

which is equivalent to ∑
|α|=k, |β|=`

Fαβγ . . . η
aληbµζcν . . . =

∑
|α|=k, |β|=`

Fαβγ η
αζβ =

∑
|α|=k, |β|=`

Fαβγ (R∗η)α(R∗ζ)β =
∑

|α|=k, |β|=`

Fαβγ . . . η
aδ(Oa) λ

δ ηbδ
′
(Ob) µ

δ′ (Oc t) δ′′

ν ζcδ′′ . . . ,

and holds for all (!) formal rotations. This is only possible, if the power series considered,
i.e., the series ẙbΛ′ and ηBΛ′ , are series in pairings ηa · ζa =

∑
λ η

aλζaλ. In the classical setting,
the result is known under the name of First Fundamental Theorem of Invariant Theory for the
orthogonal group [24, 58]. It has been extended to the graded situation in [7, Proposition 4.13].
In view of (2.3.14), we thus get

(yb||, ẙ
b
Λ, η

B
Λ ) = βΛ(x∗) = βΛ(xa||, x̊

a
Λ, ξ

A
Λ ) = (yb||, ϕ

∗(ẙbΛ′), ϕ
∗(ηBΛ′)) ,
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where any image by ϕ∗ is of the type∑
(α,β) 6=(0,0)

Fαβ ϕ
∗((η · ζ)β

)
ϕ∗
(
ψα
)

=
∑

(α,β)6=(0,0)

Fαβ x̊
β
Λ ξ

α
Λ .

It is clear from (2.3.16) and (2.3.13) that the coefficients

F b
αβ, F

B
αβ ((α, β) 6= (0, 0)) , and F b

00 := yb||

depend (only) on x|| ∈ Up. Hence, the image

(ybΛ, η
B
Λ ) = βΛ(x∗) = (F b(x||, x̊Λ, ξΛ), FB(x||, x̊Λ, ξΛ))

is actually of the type (2.3.12). Since βΛ(x∗) is a Λ-point in Vr|s, the r series F b(x||, x̊Λ, ξΛ)
and the si series FB(x||, x̊Λ, ξΛ) are of degree 0 and degree γi, respectively, i.e., the r series
F b(x,X,Ξ) and the si series FB(x,X,Ξ) are of degree 0 and degree γi, respectively. For
the same reason, we have F00(x||) ∈ Vr, for all x|| ∈ Up, so that we constructed a ‘vector’
F ∈ (Bp|q(Up))r|s , whose image by I is obviously β.

Step 3. We show that F is unique (which concludes the proof). If there is another ‘vector’
F′, such that I(F′) = β, we have∑

|α|≥0,|β|≥0

F b
αβ(x||) x̊

β
Λ ξ

α
Λ =

∑
|α|≥0,|β|≥0

F ′bαβ(x||) x̊
β
Λ ξ

α
Λ , (2.3.17)

for all b ∈ {b, B}, all Λ, and all x∗. Notice first that any x̊aΛ (resp., any ξAΛ ) is a series of degree
0 (resp., of degree deg(ξA) = γA) in the θ-s that contains at least two parameters θCθC

′
(resp.,

at least one parameter θC
′′
). Hence, both sides are series in θ, and the left-hand side and right-

hand side coefficients of any monomial θε coincide. A term (α, β) 6= (0, 0) cannot contribute
to the independent term θ0. Hence F b

00(x||) = F ′b00(x||). We now show that F b
αβ(x||) = F ′bαβ(x||),

for an arbitrarily fixed (α, β) 6= (0, 0). Since Λ is arbitrary, we can choose as many different
generators θ in each non-zero degree as necessary, and, since x∗ is arbitrary, we can choose x||
arbitrarily in Up and we can choose the coefficients of the series x̊aΛ and ξAΛ arbitrarily (except
that we have to observe that the coefficient of a monomial θε, which does not have the required
degree, must be zero). Let now α1, . . . , αµ and β1, . . . , βν be the non-zero components in the
fixed α and β. For each factor ξAiΛ of

ξαΛ = (ξA1
Λ )α1 . . . (ξ

Aµ
Λ )αµ ,

we choose a monomial in one generator θCi of degree γAi , set its coefficient rCi to 1, and all
the other coefficients in the series ξAiΛ to zero. Further, for different ξAiΛ , we choose different
generators θCi . Similarly, for each factor x̊

aj
Λ of

x̊βΛ = (̊xa1
Λ )β1 . . . (̊xaνΛ )βν ,

we choose monomials θDjkθEjk (k ∈ {1, . . . , βj}) in two generators of the same odd degree (for
all Zn2 -manifolds with n ≥ 1, there is at least one odd degree), set their coefficient rDjkEjk to
1, and all the other coefficients in the series x̊

aj
Λ to zero. Further, we choose the generators so

that all generators θCi , θDjk , and θEjk are different. When setting

θω =
ν∏
j=1

θDj1θEj1 . . . θDjβj θEjβj
µ∏
i=1

(θCi)αi 6= 0 ,

the terms indexed by (the fixed) (α, β) in both sides of (2.3.17), read

β!F b
αβ(x||)θ

ω and β!F ′bαβ(x||)θ
ω .
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For any term (α′, β′) 6= (α, β), we either get a new series ξAΛ or x̊aΛ (i.e., a series that is not
present in ξαΛ or x̊βΛ), or we get an old series a different number of times. In the second case, the
term (α′, β′) does not contribute to the coefficient of θω; in the first, we set all the coefficients
of the new series to 0, so that the term (α′, β′) vanishes. Finally, we obtain F b

αβ(x||) = F ′bαβ(x||),
for any x|| ∈ Up.

We now show that Rp|q(Λ) is a Fréchet space and that Up|q(Λ) is an open subset of Rp|q(Λ).
This means that we have a notion of directional derivative, as well as a notion of smoothness
of continuous maps between the Λ-points of Zn2 -domains. For more details on Fréchet objects,
we refer the reader to Appendix 2.4.2.

Proposition 2.3.17. For any Λ ∈ Zn2GrAlg , the set Rp|q(Λ) is a nuclear Fréchet space and a
Fréchet Λ0-module. Moreover, the set Up|q(Λ) is an open subset of Rp|q(Λ).

Proof. Let Λ ∈ Zn2GrAlg . As explained above, there is a 1:1 correspondence between the
Λ-points x∗ of Rp|q (resp., of Up|q) and the (p+ |q|)-tuples

x∗ '
(
xaΛ, ξ

A
Λ

)
∈ Λp

0 × Λq1
γ1
× · · · × ΛqN

γN

(resp., the same (p+ |q|)-tuples, but with the additional requirement that the p-tuple (xa||) made

of the independent terms of (xaΛ) be a point in Up ⊂ Rp). Note now that Λ is the Zn2 -graded
Zn2 -commutative nuclear Fréchet R-algebra of global Zn2 -functions of some R0|m. Hence, all its
homogeneous subspaces Λγi (i ∈ 0, . . . , N , γ0 = 0) are nuclear Fréchet vector spaces. Since
any product (resp., any countable product) of nuclear (resp., Fréchet) spaces is nuclear (resp.,
Fréchet), the set Rp|q(Λ) of Λ-points of Rp|q is nuclear Fréchet. The latter statements can be
found in [12].

As for the second claim in Proposition 2.3.17, recall that Λ0 is a (commutative) Fréchet
algebra, see Corollary 2.3.6. The Fréchet Λ0-module structure on Rp|q(Λ) is then defined by

m : Λ0 × Rp|q(Λ) 3 (a, x∗) 7→ (a · xaΛ, a · ξAΛ ) ∈ Rp|q(Λ) . (2.3.18)

Since this action is defined using the continuous associative multiplication · : Λγi×Λγj → Λγi+γj

of the Fréchet algebra Λ, it is (jointly) continuous.
As any closed subspace of a Fréchet space is itself a Fréchet space, the space

Λ̊0 ' {0} × Λ̊0 ⊂ R× Λ̊0 = Λ0

is Fréchet. We thus see that

Up|q(Λ) ' Up × Λ̊p
0 ×

N∏
i=1

Λqi
γi
⊂ Rp × Λ̊p

0 ×
N∏
i=1

Λqi
γi
' Rp|q(Λ) (2.3.19)

is open.

Remark 2.3.18. In the following, we will use the isomorphisms (2.3.19) (and similar ones)
without further reference.

The just described Λ0-module structure is vital in understanding the structure of the Λ-
points of any Zn2 -manifold. In particular, morphisms between Zn2 -domains induce natural trans-
formations between the associated functors that respect this module structure. The converse
is also true, that is, any natural transformation between the associated functors that respects
the Λ0-module structure comes from a morphism between the underlying Zn2 -domains. More
carefully, we have the following proposition.



41

Theorem 2.3.19. Let Up|q and Vr|s be Zn2 -domains. A natural transformation β : Up|q(−) −→
Vr|s(−) comes from a Zn2 -manifold morphism Up|q → Vr|s if and only if βΛ : Up|q(Λ) −→ Vr|s(Λ)
is Λ0-smooth, for all Λ ∈ Zn2GrAlg. That is, for all Λ, the map βΛ must be a smooth map (from
the open subset Up|q(Λ) of the Fréchet space Rp|q(Λ) to the Fréchet space Rr|s(Λ), see Appendix
2.4.2) and its Gâteaux derivative (see Appendix 2.4.2) must be Λ0-linear, i.e.,

dx∗βΛ(a · v) = a · dx∗βΛ(v) ,

for all x∗ ∈ Up|q(Λ), a ∈ Λ0, and v ∈ Rp|q(Λ).

Proof. Part I. Let β : Up|q(−) −→ Vr|s(−) be a natural transformation with Λ0-smooth com-
ponents βΛ, Λ ∈ Zn2GrAlg. From Theorem 2.3.16, we know that βΛ is completely specified by
the systems

ybΛ =
∑

|α|≥0,|β|≥0

F b
αβ(x||) x̊

β
Λξ

α
Λ and ηBΛ =

∑
|α|>0,|β|≥0

FB
αβ(x||) x̊

β
Λξ

α
Λ , (2.3.20)

where the coefficients F b
αβ (b ∈ {b, B}) are set-theoretical maps from Up to R .

Part Ia. Smoothness of βΛ implies that these coefficients are smooth. Indeed, we will show
that F b

αβ ∈ C0(Up) and that, if F b
αβ ∈ Ck(Up) (k ≥ 0), then F b

αβ ∈ Ck+1(Up) .

Step 1. Since

βΛ : Up|q(Λ)→ Λr
0 ×

N∏
i=1

Λsi
γi

is continuous, any of its components

ybΛ : Up|q(Λ)→ Λγi(b)
= R[[θ]]γi(b)

'
∏
γi(b)

R

is continuous. For simplicity, we wrote yBΛ instead of ηBΛ , and we will continue doing so. More-
over, the target space are the formal power series in θ with coefficients in R, all whose terms
have the degree γi(b) of yb, and this space is identified with the corresponding space of families
of reals. For any ω such that θω has the degree γi(b), the corresponding real coefficient gives
rise to a continuous map

yb,ωΛ : Up|q(Λ)→ R .

Since this joint continuity implies separate continuity with respect to x|| ∈ Up, for any fixed
(̊xΛ, ξΛ) and any Λ, we can proceed as at the end of the proof of Theorem 2.3.16. More precisely,
select any (α, β) and select (for an appropriate Λ) the pair (̊xΛ, ξΛ) such that x̊βΛξ

α
Λ = β! θω,

where θω is now the degree γi(b) monomial defined in the proof just mentioned. The real
coefficient of this monomial is β!F b

αβ(x||), which, as said, is an R-valued continuous map on Up,
so that F b

αβ ∈ C0(Up), for all b and all (α, β).

Step 2. Since

Up|q(Λ) ⊂ R×
(
Rp−1 × Λ̊p

0 ×
N∏
i=1

Λqi
γi

)
is an open subset of a product of two Fréchet spaces, smoothness of βΛ implies (via an iterated
application of Proposition 2.4.7) that, for any b ∈ {b, B}, any ` ∈ N and any γ ∈ Np (|γ| = `),
the partial derivative

dγx|| y
b
Λ : Up|q(Λ)× R×` →

∏
γi(b)

R
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is continuous.
Assume now that F b

αβ ∈ Ck(Up) (k ≥ 0), for any b and any (α, β), as well as that, for any
γ ∈ Np (|γ| = k) and any b, the continuous partial Gâteaux derivative

dγx|| y
b
Λ(1, . . . , 1) : Up|q(Λ)→

∏
γi(b)

R

is given by

dγx||,x∗ y
b
Λ(1, . . . , 1) =

∑
αβ

(
∂γxF

b
αβ

)
(x||) x̊

β
Λξ

α
Λ . (2.3.21)

Observe that for k = 0, this condition is automatically satisfied. We will now show that, under
these assumptions, the same statements hold at order k+1. In view of (2.3.21), any order k+1
continuous partial Gâteaux derivative

dxa|| d
γ
x||
ybΛ(1, . . . , 1) : Up|q(Λ)→

∏
γi(b)

R

(a ∈ {1, . . . , p}, |γ| = k) is given, at any x∗ ' (x||, x̊Λ, ξΛ) ∈ Up|q(Λ), by∑
αβ

lim
t→0

1

t

((
∂γxF

b
αβ

)
(x1
||, . . . , x

a
|| + t, . . . , xp||)−

(
∂γxF

b
αβ

)
(x1
||, . . . , x

a
||, . . . , x

p
||)
)
x̊βΛξ

α
Λ . (2.3.22)

When proceeding as in Step 1, we get that the limit is an R-valued continuous function in
Up. In other words, the partial derivative ∂xa∂

γ
xF

b
αβ exists and is continuous in Up, i.e., F b

αβ ∈
Ck+1(Up). Moreover, Formula (2.3.21) pertaining to order k derivatives, extends to the order
k + 1 derivatives, see (2.3.22).

Part Ib. We examine the further consequences of Λ0-smoothness, in particular those of
Λ0-linearity. Since βΛ is of class C1, its components ybΛ : Up|q(Λ) →

∏
γi(b) R are of class C1.

Further, as

Up|q(Λ) ⊂
(
R× Λ̊0

)
×
(
Rp−1 × Λ̊p−1

0 ×
N∏
i=1

Λqi
γi

)
is an open subset of a product of two Fréchet spaces, the partial Gâteaux derivative

d(xa|| ,̊x
a
Λ) y

b
Λ : Up|q(Λ)×

(
R× Λ̊0

)
→
∏
γi(b)

R

is continuous. It is given by

d(xa||, x̊
a
Λ), x∗ y

b
Λ(v||, v̊Λ) = dxa||, x∗ y

b
Λ(v||) + dx̊aΛ, x∗ y

b
Λ(̊vΛ) =

v||
∑
αβ

(
∂xaF

b
αβ

)
(x||)̊x

β
Λξ

α
Λ +

∑
αβ

F b
αβ(x||) lim

t→0

1

t

(
(̊xaΛ + t̊vΛ)βa − (̊xaΛ)βa

)∏
b 6=a

(̊xbΛ)βbξαΛ =: v||T1 + T2 .

As Λ̊0 is a commutative algebra, it follows from the binomial formula that

T2 = v̊Λ

∑
αβ

βaF
b
αβ(x||)̊x

β−ea
Λ ξαΛ =: v̊ΛT2 ,

where (ea)a is the canonical basis of Rp. Observe now that, in view of (3.2.22), the Λ0-linearity
of the total Gâteaux derivative of ybΛ with respect to x∗ is equivalent to the Λ0-linearity of all its
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partial Gâteaux derivatives with respect to the xaΛ = (xa||, x̊
a
Λ) and the ξAΛ . For a = 0 + v̊Λ ∈ Λ0

and v = 1 + 0 ∈ R + Λ̊0 = Λ0, this implies that

v̊ΛT2 = d(xa||, x̊
a
Λ), x∗ y

b
Λ(̊vΛ · 1) = v̊Λ · d(xa||, x̊

a
Λ), x∗ y

b
Λ(1) = v̊ΛT1 ,

i.e., that

v̊Λ

∑
αβ

(βa + 1)F b
α,β+ea(x||)̊x

β
Λξ

α
Λ = v̊Λ

∑
α,γ:γa 6=0

γaF
b
αγ(x||)̊x

γ−ea
Λ ξαΛ = v̊Λ

∑
αβ

(
∂xaF

b
αβ

)
(x||)̊x

β
Λξ

α
Λ .

Since Λ ∈ Zn2GrAlg, v̊Λ ∈ Λ̊0, and x∗ ∈ Up|q(Λ) are arbitrary, we can repeat the θω-argument
used above. More precisely, we select (α, β), select (̊xΛ, ξΛ) such that x̊βΛξ

α
Λ = β! θω, and select

v̊Λ = θDθE ∈ Λ̊0 such that θDθEθω 6= 0. The coefficients of the latter monomial in the left and
right hand sides do coincide, which means that

(βa + 1)F b
α,β+ea(x||) =

(
∂xaF

b
αβ

)
(x||), or, equivalently, F b

αγ(x||) =
1

γa

(
∂xaF

b
α,γ−ea

)
(x||) , (2.3.23)

for all b, α, a, all γ : γa 6= 0, and all x|| ∈ Up. For any b, α, and x||, we now set

φb
α(x||) := F b

α0(x||) ∈ C∞(Up) .

An iterated application of (2.3.23) shows that

F b
αγ(x||) =

1

γ!

(
∂γxφ

b
α

)
(x||) .

Hence, the ybΛ have the form (3.2.29a) and (3.2.29b). This means that the natural transfor-
mation β is implemented by the φb

α, which define actually a Zn2 -morphism from Up|q to Vr|s.
Indeed, the property (φb0)(Up) ⊂ Vr follows from the similar property of (F b

00). On the other
hand, the pullback

φ∗(yb) :=
∑
α

φb
α(x)ξα

must have the same degree as yb. However, if deg(ξα) 6= deg(yb), then deg(ξαΛ) 6= deg(ybΛ),
whatever ξΛ. It follows therefore from (2.3.20) that φb

α = F b
α0 = 0.

Part II. The proof of the converse implication is less demanding. Let β : Up|q(−)→ Vr|s(−)
be a natural transformation that is induced by a Zn2 -morphism φ : Up|q → Vr|s , i.e., that is of
the form (3.2.29a) and (3.2.29b). For any Λ ∈ Zn2GrAlg, the map βΛ is smooth and its derivative
is Λ0-linear if and only if its components ybΛ have these properties. The total derivative of ybΛ
with respect to x∗ exists, is continuous, and is Λ0-linear if and only if its partial derivatives
with respect to the xaΛ and the ξAΛ exist, are continuous, and are Λ0-linear. When computing
the derivative ybΛ with respect to ξAiΛ ∈ Λγi at x∗ ∈ Up|q(Λ) in the direction of wΛ ∈ Λγi , we get∑

αβ

1

β!

(
∂βxφ

b
α

)
(x||) x̊

β
Λ (ξA1

Λ )α1 . . . lim
t→0

1

t

(
(ξAiΛ + twΛ)αi − (ξAiΛ )αi

)
. . . (ξ

A|q|
Λ )α|q| .

If γi is odd, the exponent αi is 0 or 1. In the first (resp., the second) case, the limit vanishes
(resp., is wΛ). If γi is even, the multiplication of vectors in Λγi is commutative and the binomial
formula shows that the limit is wΛαi(ξ

Ai
Λ )αi−1 . The derivative thus exists, is continuous, and is

Λ0-linear. Similarly, the derivative of ybΛ with respect to xaΛ exists if and only if its derivatives
with respect to xa|| and with respect to x̊aΛ exist. The (standard) computation of the derivative
with respect to xaΛ at x∗ in the direction of

vΛ = (v||, v̊Λ) ∈ R× Λ̊0



44

thus leads to the sum of the terms

v||
∑
αβ

1

β!

(
∂β+ea
x φb

α

)
(x||) x̊

β
Λ ξ

α
Λ

and

v̊Λ

∑
α,γ:γa 6=0

1

γ!

(
∂γxφ

b
α

)
(x||) γa x̊

γ−ea
Λ ξαΛ = v̊Λ

∑
αβ

1

β!

(
∂β+ea
x φb

α

)
(x||) x̊

β
Λ ξ

α
Λ .

The derivative considered does therefore exist, is continuous, and is Λ0-linear (note that it is
essential that the derivative is the series over αβ multiplied by vΛ – as a ∈ Λ0 does not act on
v||).

Remark 2.3.20. The Λ0-linearity is a strong constraint that takes us from the category of
generalized Zn2 -manifolds to the one of Zn2 -manifolds. A similar phenomenon exists in complex
analysis. Indeed, for any real differentiable function f = u + i v : Ω ⊂ C ' R2 → C ' R2, the
Jacobian is an R-linear map Jf : R2 → R2. However, if we further insist that the Jacobian be
C-linear, then we see that f must be holomorphic, that is, it must satisfy the Cauchy–Riemann
equations on Ω. Imposing C-linearity thus greatly restricts class of functions and takes us from
real analysis to complex analysis.

It will also be important to understand what happens to the Λ-points of a given Zn2 -domain
under morphisms of Zn2 -Grassmann algebras.

Proposition 2.3.21. Let Up|q be a Zn2 -domain and let ψ∗ : Λ → Λ′ be a morphism of Zn2 -
Grassmann algebras. The induced map ( see (2.3.4) )

Ψ := Up|q(ψ∗) : Up|q(Λ) 3 x∗ ' (xΛ, ξΛ) 7→ ψ∗ ◦ x∗ ' ψ∗(xΛ, ξΛ) ∈ Up|q(Λ′)

is a smooth map from the open subset Up|q(Λ) of the Fréchet space and Fréchet Λ0-module
Rp|q(Λ) to the open subset Up|q(Λ′) of the Fréchet space and Fréchet Λ′0-module Rp|q(Λ′), such
that

dx∗Ψ(a · v) = ψ∗(a) · dx∗Ψ(v) ,

for all x∗ ∈ Up|q(Λ), v ∈ Rp|q(Λ) and a ∈ Λ0 .

Proof. Since Λ = OR0|m({?}), so that

ψ∗ ∈ HomZn2 Alg(OR0|m({?}),OR0|m′ ({?})) ,

there is a unique morphism

Φ = (|φ|, φ∗) ∈ HomZn2 Man(R
0|m′ ,R0|m) ,

such that ψ∗ = φ∗{?}. Hence, the morphism ψ∗ is continuous from Λ = R[[θ]] to Λ′ = R[[θ′]]

endowed with their standard locally convex topologies [12], and so are its restrictions ψ∗|Λγi
from Λγi to Λ′γi . We thus see that the induced map

Ψ = (ψ∗|Λ0)×p ×
N∏
i=1

(ψ∗|Λγi )
×qi

is continuous.

At x∗ ' (xΛ, ξΛ) =: uΛ ∈ Up|q(Λ) and v ' vΛ ∈ Rp|q(Λ), the derivative

dΨ : Up|q(Λ)× Rp|q(Λ) −→ Rp|q(Λ′)
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is defined as

dx∗Ψ(v) = lim
t→0

Ψ(x∗ + tv)−Ψ(x∗)

t

= lim
t→0

(
· · · , ψ

∗(uaΛ + tvaΛ)−ψ∗(uaΛ)

t
, · · ·

)
=
(
· · · , ψ∗(vaΛ) , · · ·

)
=: (ψ∗(vaΛ)) ,

where a is the label a ∈ {1, . . . , p} or A ∈ {1, . . . , |q|} of any coordinate in Rp|q(Λ), and where
we used the R-linearity of the Zn2 -algebra morphism ψ∗ : Λ → Λ′. Hence, for any a ∈ Λ0, we
get

dx∗Ψ(a · v) = (ψ∗(a · vaλ)) = (ψ∗(a) · ψ∗(vaλ)) = ψ∗(a) · dx∗ψ(v) .

Since the higher order derivatives of Ψ vanish, all its derivatives exist and are continuous, hence,
the map Ψ is actually smooth.

2.3.4 The manifold structure on the set of Λ-points

The next theorem generalizes Propositions 2.3.17 and 2.3.21. For information about Fréchet
manifolds, we refer to Appendix 2.4.2. We recall that the Λ-points M(Λ) of a Zn2 -manifold
M can be equivalently viewed as the maps m = (|m|,m∗) ∈ HomZn2 Man

(R0|m,M), as the global
pullbacks m∗ = m∗|M | ∈ HomZn2 Alg(OM(|M |),Λ), or as the induced morphisms

m∗? ∈ HomZn2 Alg(OM,x,Λ) ,

where x = |m|(?) ∈ |M | . If M = Up|q is a Zn2 -domain, we often write x instead of m and we
can identify x ' x∗ ' x∗? with the pullbacks

(u||, ůΛ, ρΛ) ∈ Up × Λ̊p
0 ×

∏
i

Λqi
γi

by x∗ of the coordinate functions (u, ρ) in Up|q . Recall as well that Zn2 -morphisms φ : M → N
are mapped injectively to natural transformations φ : M(−)→ N(−) with Λ-component

φΛ : M(Λ) 3 (x,m∗?) 7→ (|φ|(x),m∗? ◦ φ∗x) ∈ N(Λ) , (2.3.24)

and that, for any fixed M , a Zn2 -Grassmann algebra morphism ψ∗ : Λ→ Λ′ induces a map

M(ψ∗) : M(Λ) 3 (x,m∗?) 7→ (x, ψ∗ ◦m∗?) ∈M(Λ′) .

Theorem 2.3.22. Let M be a Zn2 -manifold, and let Λ and Λ′ be Zn2 -Grassmann algebras. Then

i. M(Λ) has the structure of a nuclear Fréchet Λ0-manifold, and,

ii. given a morphism of Zn2 -Grassmann algebras ψ∗ : Λ −→ Λ′, the induced mapping M(ψ∗)
is ψ∗-smooth.

Proof.

i. Let p|q be the dimension of the Zn2 -manifold M . The local Zn2 -isomorphisms

hα = (|hα|, h∗α) : Uα = (|Uα|,OM ||Uα|)→ U
p|q
α = (Upα, C∞Rp |Upα [[ρ]]) ,
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where α varies in some A and where |Uα| ⊂ |M | is open, provide an atlas on M (see
paragraph below Definition 2.2.10). As recalled above, the Zn2 -isomorphisms

hα : Uα → U
p|q
α

implement natural isomorphisms hα with Λ-components

hα,Λ : Uα(Λ) 3 (x,m∗?) 7→ (|hα|(x),m∗? ◦ (hα)∗x) ∈ U
p|q
α (Λ) , (2.3.25)

whose inverses are the similar maps defined using

|h−1
α | = |hα|−1 and (h−1

α )∗y = ((hα)∗|hα|−1(y))
−1 (y ∈ Upα) .

The family (Uα(Λ), hα,Λ) (α ∈ A) is an atlas that endows M(Λ) with a nuclear Fréchet
Λ0-manifold structure. Indeed:

(a) Any hα,Λ : Uα(Λ) → Up|qα (Λ) is a bijection valued in the open subset Up|qα (Λ) of the
nuclear Fréchet vector space Rp|q(Λ), which is also a Fréchet module over the nuclear
Fréchet algebra Λ0. Moreover, as the |Uα| are an open cover of |M |, we have

M(Λ) =
⋃
α∈A

Uα(Λ) ,

in view of Proposition 2.3.14.

(b) The image hα,Λ(Uα(Λ) ∩ Uβ(Λ)) is open in Rp|q(Λ). To see this, set |Uαβ| = |Uα| ∩
|Uβ| ⊂ |Uα| and consider the open Zn2 -submanifold Uαβ = (|Uαβ|,OM ||Uαβ |) of Uα.
The Zn2 -isomorphism hα restricts to a Zn2 -isomorphism

hα : Uαβ → U
p|q
αβ ,

where the target is the open Zn2 -subdomain Up|qαβ of Up|qα defined over the open subset

Upαβ := |hα|(|Uαβ|) ⊂ Upα ,

obtained as the image of the open subset |Uαβ| ⊂ |Uα| by the diffeomorphism |hα|.
The restricted Zn2 -isomorphism hα induces a natural isomorphism hα, whose Λ-
component is a bijection

hα,Λ : Uαβ(Λ)→ Up|qαβ (Λ) .

Further, we have

Uαβ(Λ) =
⋃

x∈|Uαβ |

HomZn2 Alg(OM,x,Λ) =

⋃
x∈|Uα|

HomZn2 Alg(OM,x,Λ)
⋂ ⋃

x∈|Uβ |

HomZn2 Alg(OM,x,Λ) = Uα(Λ) ∩ Uβ(Λ) .

Hence, the image hα,Λ(Uα(Λ) ∩ Uβ(Λ)) = Up|qαβ (Λ) ⊂ Rp|q(Λ) is open.

(c) We have still to prove that the transition bijections

hβ,Λ(hα,Λ)−1 : Up|qαβ (Λ)→ Up|qβα (Λ)

are Λ0-smooth. In view of Theorem 2.3.19, the Zn2 -isomorphism

hβh
−1
α : Up|qαβ → U

p|q
βα
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induces a natural isomorphism hβh
−1
α with a Λ0-smooth Λ-component

(hβh
−1
α )Λ : Up|qαβ (Λ)→ Up|qβα (Λ) .

In view of Equations (2.3.24) and (2.3.25), we get

(hβh
−1
α )Λ(u, x∗?) =

(
|hβh−1

α |(u), x∗? ◦ (hβ ◦ h−1
α )∗u

)
=(

|hβ|(|hα|−1(u)), x∗? ◦ ((hα)∗|hα|−1(u))
−1 ◦ (hβ)∗|hα|−1(u)

)
= hβ,Λ((hα,Λ)−1(u, x∗?)) ,

for any (u, x∗?) ∈ U
p|q
αβ (Λ) . It follows that hβ,Λ(hα,Λ)−1 = (hβh

−1
α )Λ is Λ0-smooth.

ii. The statement of part (ii) is purely local, see Appendix 2.4.2. Let (x,m∗?) ∈ M(Λ), let
(Uα(Λ), hα,Λ) be a chart of M(Λ) around (x,m∗?), and let (Uβ(Λ′), hβ,Λ′) be a chart of
M(Λ′), such that M(ψ∗)(Uα(Λ)) ⊂ Uβ(Λ′). We must show that the local form

hβ,Λ′ ◦M(ψ∗) ◦ (hα,Λ)−1

of M(ψ∗) is ψ∗-smooth. Actually, we can choose (Uα(Λ′), hα,Λ′) as second chart, since the
image by M(ψ∗) of a point (y, n∗?) in Uα(Λ), i.e., a point

(y, n∗?) ∈ HomZn2 Alg(OM,y,Λ)

with y ∈ |Uα|, is the point

(y, ψ∗ ◦ n∗?) ∈ HomZn2 Alg(OM,y,Λ
′) ,

i.e., in Uα(Λ′). From here, we omit subscript α. Since h : U(−) → Up|q(−) is a natural
transformation, the diagram

U(Λ) U(Λ′)

Up|q(Λ) Up|q(Λ′)

//
M(ψ∗)

��
hΛ

��
hΛ′

//

Up|q(ψ∗)

commutes. Since h is in fact a natural isomorphism, we get that

hΛ′ ◦M(ψ∗) ◦ (hΛ)−1 = Up|q(ψ∗) .

From Proposition 2.3.21 we conclude that this local form is indeed ψ∗-smooth.

In view of (2.3.8), in general, the local model Rp|q(Λ) of M(Λ) is infinite-dimensional, due
to the non-zero degree even coordinates of Λ. If the particular Zn2 -Grassmann algebra has no
non-zero degree even coordinates, then it is a polynomial algebra and the resulting local model
Rp|q(Λ) will, of course, be finite-dimensional. Further, we have the

Corollary 2.3.23. For any Zn2 -manifold M , the associated functor

M(−) ∈ [Zn2Pts op, Set]
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can be considered as a functor

M(−) ∈ [Zn2Pts op, A(N)FMan] ,

where the target category is either the category AFMan of Fréchet manifolds over a Fréchet
algebra or the category ANFMan of nuclear Fréchet manifolds over a nuclear Fréchet algebra, see
Appendix 2.4.2. Therefore, the faithful restricted Yoneda functor YZn2 Pts, see Corollary 2.3.10,
can be viewed as a faithful functor

YZn2 Pts : Zn2Man→ [Zn2Pts op, A(N)FMan] .

The latter statement requires that the natural transformation φ : M(−) → N(−) induced
by a Zn2 -morphism φ : M → N have components φΛ : M(Λ) → N(Λ) that are morphisms in
A(N)FMan between the Fréchet Λ0-manifolds M(Λ) and N(Λ), i.e., that the φΛ be ρ-smooth for
some morphism ρ : Λ0 → Λ0 of Fréchet algebras. We will show in the next subsection that this
condition is satisfied for ρ = idΛ0 , i.e., we will show that:

Proposition 2.3.24. Any natural transformation φ : M(−) → N(−) that is implemented by
a Zn2 -morphism φ : M → N has Λ0-smooth components φΛ : M(Λ)→ N(Λ).

Theorem 2.3.25. Let M ∈ Zn2Man be of dimension p|q and let Λ ∈ Zn2GrAlg.

i. The nuclear Fréchet Λ0-manifold M(Λ) is a fiber bundle in the category ANFMan. Its base
is the nuclear Fréchet R-manifold M(R), i.e., the smooth manifold |M |, and its typical
fiber is the nuclear Fréchet Λ0-manifold

Λp|q := Λ̊p
0 ×

N∏
i=1

Λqi
γi
. (2.3.26)

ii. The topology of M(Λ), which is defined, as in the case of smooth manifolds, by the atlas
providing the nuclear Fréchet Λ0-structure, is a Hausdorff topology, so that M(Λ) is a
genuine Fréchet manifold.

Proof. (i) We think of fiber bundles in ANFMan exactly as of fiber bundles in the category of
smooth manifolds. Of course, in such a fiber bundle, all objects and arrows are ANFMan-objects
and ANFMan-morphisms.

Let p∗ : Λ→ R be, as above, the canonical Zn2GrAlg-morphism. The induced map

π := M(p∗) : M(Λ) 3 (x,m∗?) 7→ (x, p∗ ◦m∗?) ' x ∈M(R) ' |M |

is p∗-smooth, i.e., is a morphism in the category ANFMan.
We will show that π is surjective and that the local triviality condition is satisfied.
Let z ∈ |M |. There is a Zn2 -chart (U, h) of M , such that |U | ⊂ |M | is a neighborhood of

z. The Zn2 -isomorphism h : U → Up|q induces a natural isomorphism h, whose Λ-components
are Λ0-diffeomorphisms, i.e., Λ0-smooth maps that have a Λ0-smooth inverse. We have the
following commutative diagram:

U(Λ) Up|q(Λ) ' Up × Λp|q

U(R) ' |U | Up|q(R) ' Up

oo //
hΛ

��

U(p∗) = π|U(Λ)

��

Up|q(p∗) ' prj1 ,

oo //
hR = |h|
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where prj1 is the canonical projection. Let us explain that Up|q(p∗) ' prj1, when read through
[ : Up × Λp|q ↔ Up|q(Λ). We need a more explicit description of the equivalent views on Λ-
points of a Zn2 -domain, see beginning of Subsection 2.3.4. As elsewhere in this text, we denote
a Zn2 -morphism R0|m → Up|q by x = (|x|, x∗) and we denote the morphism it induces between
the stalks OUp|q ,|x|(?) → Λ by x∗?. The morphism [ is the succession of identifications

Up × Λp|q 3 (x||, x̊Λ, ξΛ) ' x = (|x|, x∗) ' (|x|(?), x∗?) ∈ Up|q(Λ) , (2.3.27)

where the components of the base morphism |x| are obtained (see [15]) by applying the base
projection ε? : Λ → R of R0|m, i.e., the canonical morphism p∗, to the components xaΛ =
(xa||, x̊

a
Λ) ∈ Λ0. Hence, we get

|x|(?) = |x| = (. . . , p∗(xaΛ), . . .) = x|| . (2.3.28)

Therefore, we actually obtain that

Up|q(p∗)([(x||, x̊Λ, ξΛ)) = (|x|(?), p∗ ◦ x∗?) ' |x|(?) = x|| = prj1(x||, x̊Λ, ξΛ) .

Since π|U(Λ) = |h|−1 ◦ prj1 ◦hΛ, the local projection π|U(Λ) is surjective, so that z is in the
image of π, which is thus surjective as well.

As just mentioned, we started from z ∈ |M | and found a neighborhood |U | of z and a
Λ0-diffeomorphism hΛ. When identifying |U | with Up via |h| (which then becomes id), we get
the Λ0-diffeomorphism

hΛ : π−1(|U |) ' U(Λ) 3 (y,m∗?) 7→ (y,m∗? ◦ h∗y) ∈ |U | × Λp|q . (2.3.29)

Observe that in Equation (2.3.29) we used [−1 defined in Equations (2.3.27) and (2.3.28), thus
identifying

(y,m∗? ◦ h∗y) ∈ HomZn2 Alg(OUp|q ,y,Λ) ⊂ Up|q(Λ)

with h ◦m ∈ HomZn2 Man(R
0|m,Up|q), and then with(
y,pr2(m∗(h∗(x))),m∗(h∗(ξ))

)
∈ |U | × Λp|q ,

where we denoted the projection of Λ0 onto Λ̊0 by pr2. Notice also that the conclusion that
Λp|q is a nuclear Fréchet Λ0-manifold comes from the facts that any subspace (resp., any closed
subspace) of a nuclear (resp., a Fréchet) space is a nuclear (resp., a Fréchet) space.

Hence, the trivialization condition is satisfied as well, and M(Λ) is a fiber bundle in ANFMan,
as announced.

(ii) Now consider two different Λ-points m∗ = (x,m∗?) and n∗ = (y, n∗?) in M(Λ). If x 6= y,
then, as |M | is Hausdorff, there exist open neighborhoods |U | of x and |V | of y, such that
|U |∩|V | = ∅. When denoting the corresponding open Zn2 -submanifolds by U and V , respectively,
we get open neighborhoods U(Λ) and V (Λ) of m∗ and n∗, such that U(Λ) ∩ V (Λ) = ∅. We
have of course to check that, for any Zn2 -chart (Uα, hα), the image

hα,Λ(Uα(Λ) ∩ U(Λ))

is open in Rp|q(Λ), and similarly for V (Λ). To see this, it suffices to proceed as in the proof of
Theorem 2.3.22.

Next, consider the situation where x = y =: z ∈ |M |, use the trivialization constructed in
(i), and denote the canonical projection from Up×Λp|q onto Λp|q by prj2. As m∗ 6= n∗, we have
hΛ(m∗) 6= hΛ(n∗), i.e.,

(|h|(z),prj2(hΛ(m∗))) 6= (|h|(z),prj2(hΛ(n∗))) .
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Since prj2(hΛ(m∗)) 6= prj2(hΛ(n∗)) are points in the Hausdorff space Λp|q, there are open neigh-
borhoods Vm∗ and Vn∗ of these projections that do not intersect. The preimages Um∗ and Un∗
of Vm∗ and Vn∗ by the continuous map

prj2 ◦hΛ : U(Λ)→ Λp|q

are then open neighborhoods of m∗ and n∗ that do not intersect.
Finally, the space M(Λ) is indeed a Hausdorff topological space.

2.3.5 The Schwarz–Voronov embedding

In order to get a fully faithful functor, hence, to embed the category Zn2Man as full subcate-
gory into a functor category, we need to replace the target category [Zn2Ptsop, A(N)FMan] by a
subcategory that we denote by [[Zn2Ptsop, A(N)FMan]] and that we define as follows:

Definition 2.3.26. The category [[Zn2Ptsop, A(N)FMan]] is the subcategory of the category
[Zn2Ptsop, A(N)FMan],

i. whose objects are the functors F , such that, for any Λ ∈ Zn2Ptsop, the value F(Λ) is a
(nuclear) Fréchet Λ0-manifold, and

ii. whose morphisms are natural transformations η : F → G, such that, for any Λ, the
component ηΛ : F(Λ)→ G(Λ) is Λ0-smooth.

Proposition 2.3.27. The restricted Yoneda functor YZn2 Pts can be considered as a faithful
functor

S : Zn2Man→ [[Zn2Ptsop, A(N)FMan]] .

Proof. The image YZn2 Pts(M) of an object M ∈ Zn2Man is a functor M(−) ∈ [Zn2Ptsop, A(N)FMan],
such that, for any Λ, the value M(Λ) is a (nuclear) Fréchet Λ0-manifold. Further, the image
YZn2 Pts(φ) of a Zn2 -morphism φ : M → N is a natural transformation φ : M(−) → N(−), such
that, for any Λ, the component φΛ : M(Λ)→ N(Λ) is Λ0-smooth.

The proof of Λ0-smoothness uses the following construction, which we will also need later on.
Let M,N ∈ Zn2Man be manifolds of dimension p|q and r|s , respectively, let |φ| ∈ C∞(|M |, |N |),
and let (|Vβ|)β be an open cover of |N | by Zn2 -charts

gβ : Vβ → Vr|sβ , where Vβ = (|Vβ|,ON ||Vβ |) .

The open subsets |Uβ| := |φ|−1(|Vβ|) ⊂ |M | cover |M |, and each |Uβ| can be covered by Zn2 -
charts

hβα : Uβα → U
p|q
βα , where Uβα = (|Uβα|,OM ||Uβα|) .

The Zn2 -morphism φ : M → N restricts to a Zn2 -morphism φ|Uβα : Uβα → Vβ. In particular,
the composite

gβ ◦ φ|Uβα ◦ (hβα)−1 : Up|qβα → V
r|s
β

is a Zn2 -morphism.
We now show that φΛ is Λ0-smooth. Therefore, let (x,m∗?) ∈ M(Λ). There is a Zn2 -chart

(Vβ, gβ) ofN such that |φ|(x) ∈ |Vβ|, and there is a Zn2 -chart (Uβα, hβα) ofM such that x ∈ |Uβα|.
These charts (we omit in the following the subscripts β and α) induce charts (U(Λ), hΛ) of M(Λ)
around (x,m∗?), and (V (Λ), gΛ) of N(Λ) such that φΛ(U(Λ)) ⊂ V (Λ). It suffices to show (see
Appendix 2.4.2) that the local form

gΛ ◦ φΛ ◦ (hΛ)−1 = (g ◦ φ|U ◦ h−1)Λ

is Λ0-smooth. This is the case in view of Theorem 2.3.19. Finally, the faithfulness is established
in Corollary 2.3.10. This completes the proof.
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We will prove that the functor S is fully faithful, hence, injective (up to isomorphism) on
objects. Therefore, it embeds the category Zn2Man of Zn2 -manifolds as full subcategory into the
larger functor category [[Zn2Ptsop, A(N)FMan]].

Definition 2.3.28. We refer to the faithful functor

S : Zn2Man −→ [[Zn2Ptsop, A(N)FMan]]

as the Schwarz–Voronov embedding.

Theorem 2.3.29. The Schwarz–Voronov embedding S is a fully faithful functor. That is, given
two Zn2 -manifolds M and N , the injective map

SM,N : HomZn2 Man
(
M,N

)
→ Hom[[Zn2 Ptsop, A(N)FMan]]

(
M(−), N(−)

)
is bijective.

Proof. Notice first that it follows from the results of [13] and Lemma 2.3.13 that there is a 1:1
correspondence

|M | ' HomZn2 Alg(OM(|M |),R) '
⋃
x∈|M |

HomZn2 Alg(OM,x,R) = M(R) ,

which is given by
x 7→ εx 7→ (x, εx) ,

where εx is the evaluation map εx(f) = (εf)(x) (f ∈ OM(|M |)) and where ε is the base map
ε : OM → C∞|M |. Hence, any (x,m∗?) ∈ M(R) is equal to (x, εx) and can be identified with x.

In view of (2.3.25), this 1:1-correspondence identifies the nuclear Fréchet R-manifold structure
on M(R) with the smooth manifold structure on |M |.

Let now
η : M(−)→ N(−)

be a natural transformation in the target set of SM,N , i.e., a natural transformation such that,
for any Λ, the Λ-component ηΛ is Λ0-smooth. In particular, the map

|φ| := ηR : |M | → |N |,

is a smooth map between the reduced manifolds. As in the proof of Proposition 2.3.27, let
(Vβ, gβ)β be an open cover of |N | by Zn2 -charts, and, for any β, let (Uβα, hβα)α be an open
cover of |Uβ| := |φ|−1(|Vβ|) by Zn2 -charts. When denoting the canonical Zn2 -Grassmann algebra
morphism Λ→ R by p∗, we get the commutative diagram⋃

βα Uβα(Λ)
⋃
β Vβ(Λ)

⋃
βα |Uβα|

⋃
β |Vβ|

//
ηΛ

��

M(p∗)

��

N(p∗) ,

//
|φ|

(2.3.30)

which shows that, for any β, α, we get the Λ0-smooth map

(ηΛ)|Uβα(Λ) : Uβα(Λ)→ Vβ(Λ) .

Indeed, if, for (x,m∗?) ∈ Uβα(Λ), we set ηΛ(x,m∗?) = (y, n∗?), the commutativity of the diagram
implies that

y ' (y, p∗ ◦ n∗?) = (N(p∗) ◦ ηΛ)(x,m∗?) = (ηR ◦M(p∗))(x,m∗?) = ηR(x, p∗ ◦m∗?) ' |φ|(x) ∈ |Vβ| .
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Therefore, the restriction

η|Uβα(−) : Uβα(−)→ Vβ(−)

is a natural transformation with Λ0-smooth components.
Note that

hβα : Uβα → U
p|q
βα and gβ : Vβ → Vr|sβ

are Zn2 -isomorphisms and induce natural isomorphisms, also denoted by hβα and gβ, whose
components are chart diffeomorphisms

hβα,Λ : Uβα(Λ)→ Up|qβα (Λ) and gβ,Λ : Vβ(Λ)→ Vr|sβ (Λ)

of nuclear Fréchet Λ0-manifolds. The local form

gβ,Λ ◦ (ηΛ)|Uβα(Λ) ◦ (hβα,Λ)−1 : Up|qβα (Λ)→ Vr|sβ (Λ)

of ηΛ is thus Λ0-smooth. In other words, any Λ-component of the natural transformation

ϕβα := gβ ◦ η|Uβα(−) ◦ h−1
βα : Up|qβα (−)→ Vr|sβ (−) (2.3.31)

between functors associated to Zn2 -domains, is Λ0-smooth. It therefore follows from 2.3.19 that
ϕβα is implemented by a Zn2 -morphism

ϕβα : Up|qβα → V
r|s
β ,

so that the composite

φβα := g−1
β ◦ ϕβα ◦ hβα : Uβα → N (2.3.32)

is a Zn2 -morphism that is defined on an open Zn2 -submanifold of M . The question is whether
we can patch together these locally defined Zn2 -morphisms, which are inherited from η, and get
a globally defined Zn2 -morphism φ : M → N that induces η.

Let φβα|Uβα,νµ and φνµ|Uβα,νµ be the Zn2 -morphisms obtained by restriction to the open Zn2 -
submanifold Uβα,νµ with base manifold |Uβα,νµ| := |Uβα|∩|Uνµ|. They coincide as Zn2 -morphisms,
if they do as associated natural transformations, i.e., if all Λ-components of those transforma-
tions coincide. This is the case since both Λ-components are equal to ηΛ|Uβα,νµ(Λ). It follows
that the Zn2 -algebra morphisms

φβα|∗Uβα,νµ , φνµ|
∗
Uβα,νµ

: ON(|N |)→ OM(|Uβα,νµ|)

coincide. This implies that we can glue the Zn2 -algebra morphisms φ∗βα : ON(|N |)→ OM(|Uβα|)
and get a Zn2 -algebra morphism

φ∗ : ON(|N |)→ OM(|M |) .

Indeed, for any f ∈ ON(|N |), the φ∗βα(f) ∈ OM(|Uβα|) are a family of Zn2 -functions on an open
cover of |M |, which do coincide on the intersections. To see this, note that

(φ∗βα(f))||Uβα,νµ| = φβα|∗Uβα,νµ(f) = φνµ|∗Uβα,νµ(f) = (φ∗νµ(f))||Uβα,νµ| .

Hence, there is a unique global section F ∈ OM(|M |) of the sheaf OM , such that F ||Uβα| =
φ∗βα(f). The Set-morphism, which is defined by

φ∗|N | : ON(|N |) 3 f 7→ F ∈ OM(|M |) ,
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is actually a morphism of Zn2 -algebras. Indeed, note that

ρ
|M |
|Uβα| ◦ φ

∗
|N | = φ∗βα

(ρ is the restriction) and observe that, for any element |Uβα| of the open cover of |M | considered,
we have

(φ∗|N |(f · g))||Uβα| = φ∗βα(f) · φ∗βα(g) = (φ∗|N |(f) · φ∗|N |(g))||Uβα| .

The Zn2 -algebra morphism φ∗|N | fully characterizes a Zn2 -morphism φ = (||φ||, φ∗) : M → N . We
will show that φ induces the natural transformation η, which then completes the proof.

Since φ is glued from the Zn2 -morphisms φβα, we get, in view of Equations (2.3.31) and
(2.3.32), in particular that

||φ|| ||Uβα| = |φβα| = ηR|Uβα(R) = |φ| ||Uβα| , (2.3.33)

so that ||φ|| = |φ|. Further, for any |Vβ|,

ρ
|Uβ |
|Uβα| ◦ φ

∗
|Vβ | = φ∗βα,|Vβ | : ON(|Vβ|)→ OM(|Uβα|) . (2.3.34)

Let now Λ be any Zn2 -Grassmann algebra and let (x,m∗?) ∈ Uβα(Λ). As x ∈ |Uβα| and |φ|(x) ∈
|Vβ|, it follows from Equations (2.3.33), (2.3.34), (2.3.31), and (2.3.32), that the image of (x,m∗?)
by the Λ-component of the natural transformation induced by φ is

φΛ(x,m∗?) = (|φ|(x),m∗? ◦ φ∗x) = (|φβα|(x),m∗? ◦ φ∗βα,x) = (φβα)Λ(x,m∗?) = ηΛ(x,m∗?) .

The following theorem is of importance in the study of Zn2 -Lie groups.

Theorem 2.3.30. The Schwarz–Voronov embedding S sends Zn2 -Lie groups G to functors
S(G) = G(−) from the category Zn2Pts op of Zn2 -Grassmann algebras to the category ANFLg of
nuclear Fréchet Lie groups over nuclear Fréchet algebras.

The proof is not entirely straightforward and will be given in a paper on Zn2 -Lie groups,
which is currently being written down.

2.3.6 Representability and equivalence of categories

As the Schwarz–Voronov embedding is fully faithful, the category Zn2Man can be viewed as a
full subcategory of the category [[Zn2Ptsop, A(N)FMan]]. Functor categories are known to be well-
suited for geometric constructions. Hence, when trying to build a Zn2 -manifold M (possibly
from other Zn2 -manifolds Mι), it is often easier to build a functor F in [[Zn2Ptsop, A(N)FMan]]
(from the given Zn2 -manifolds interpreted as functors Mι(−)). However, one has then to show
that F can be represented by a Zn2 -manifold M , i.e., that there is a Zn2 -manifold M , such that
M(−) ' F .

Definition 2.3.31. A functor

F ∈ [[Zn2Ptsop, A(N)FMan]]

is said to be representable, if there exists a Zn2 -manifold M ∈ Zn2Man (which is then unique up
to unique isomorphism), such that

M(−) ' F in [[Zn2Ptsop, A(N)FMan]] .
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We define the restriction F||U | of a functor F ∈ [[Zn2Ptsop, A(N)FMan]] to an open subset
|U | ⊂ F(R) ∈ (N)FMan.

For any Λ ∈ Zn2GrAlg, let
p∗Λ : Λ −→ R

be the canonical projection, let

F(p∗Λ) : F(Λ) −→ F(R)

be the corresponding smooth map. The preimage

F||U |(Λ) := (F(p∗Λ))−1(|U |) (2.3.35)

is an open (nuclear) Fréchet Λ0-submanifold of F(Λ).
Consider now a morphism ϕ∗ : Λ −→ Λ′ in Zn2GrAlg. As p∗Λ′ ◦ϕ∗ = p∗Λ, we get the restriction

F||U |(ϕ∗) := F(ϕ∗)|F||U|(Λ) : F||U |(Λ) −→ F||U |(Λ′) , (2.3.36)

which is a morphism in A(N)FMan.

Definition 2.3.32. For any functor

F ∈ [[Zn2Ptsop, A(N)FMan]]

and any open subset |U | ⊂ F(R), the restriction of F to |U | is the functor

F||U | ∈ [[Zn2Ptsop, A(N)FMan]]

that is defined by Equations (2.3.35) and (2.3.36).

Example 2.3.33. Let M ∈ Zn2Man, let M(−) be the corresponding functor, and let |U | ⊂
|M | 'M(R) be an open subset. The restriction M(−)||U | is given:

i. on objects Λ, by

M(−)||U |(Λ) := {(x,m∗?) ∈M(Λ) : (x, p∗Λ ◦m∗?) ' x ∈ |U |} = U(Λ) , (2.3.37)

where U = (|U |,OM ||U |) is the open Zn2 -submanifold of M over |U |, and

ii. on morphisms ϕ∗ : Λ→ Λ′, by

M(−)||U |(ϕ∗) := M(ϕ∗)|U(Λ) = U(ϕ∗) , (2.3.38)

since both maps are given by

U(Λ) 3 (x,m∗?) 7→ (x, ϕ∗ ◦m∗?) ∈ U(Λ′) .

Let F be representable, let M be ‘its’ representing Zn2 -manifold, and let

η : F →M(−) (2.3.39)

be the corresponding natural isomorphism in [[Zn2Ptsop, A(N)FMan]]. The maps ηΛ and η−1
Λ are

then Λ0-smooth, i.e., ηΛ is a Λ0-diffeomorphism, for any Λ. In particular, the map ηR : F(R)→
M(R) is a diffeomorphism of (nuclear) Fréchet manifolds. This means that the (nuclear) Fréchet
structures on F(R) ' M(R) coincide. Further, if one identifies F(R) ' M(R) with |M |, the
(nuclear) Fréchet structure on F(R) 'M(R) coincides with the smooth structure on |M |. We



55

can therefore view F(R) as being the smooth manifold |M |. Consider now a Zn2 -atlas (Uα, hα)α
of M . If we denote the dimension of M by p|q, the Zn2 -chart map hα is a Zn2 -isomorphism

hα : Uα → U
p|q
α

valued in a Zn2 -domain of dimension p|q, which implies that

hα : Uα(−)→ Up|qα (−) (2.3.40)

is a natural isomorphism in [[Zn2Ptsop, A(N)FMan]]. In view Equations (2.3.39), (2.3.37), (2.3.38),
and (2.3.40), the family (|Uα|)α is an open cover of |M | ' F(R), such that, for any α, we have

F||Uα| 'M(−)||Uα| = Uα(−) ' Up|qα (−)

in [[Zn2Ptsop, A(N)FMan]].

Theorem 2.3.34. A functor F ∈ [[Zn2Ptsop, A(N)FMan]] is representable if and only if there
exists an open cover (|Uα|)α of F(R), such that, for each α, we have

F||Uα| ' U
p|q
α (−) (2.3.41)

in [[Zn2Ptsop, A(N)FMan]], where Up|qα is a Zn2 -domain in a fixed Rp|q.

Proof. We showed already that the condition is necessary. Assume now that Condition (2.3.41)
is satisfied, i.e., that we have natural isomorphisms

kα : F||Uα| → U
p|q
α (−)

in [[Zn2Ptsop, A(N)FMan]]. This means that the Λ-components

kα,Λ : F||Uα|(Λ)→ Up|qα (Λ)

are Λ0-diffeomorphisms.
In particular, we have a diffeomorphism

|hα| := kα,R : F||Uα|(R) = (F(p∗R))−1(|Uα|) = |Uα| → U
p|q
α (R) ' Upα .

Notice that (|Uα|, |hα|)α can be interpreted as a smooth atlas on |M | := F(R). The direct
image of the structure sheaf O

Up|qα
over Upα by the continuous map |hα|−1 : Upα → |Uα| is a sheaf

over |Uα|, which we denote by OUα :

OUα := (|hα|−1)∗OUp|qα .

The Zn2 -ringed space

Uα := (|Uα|,OUα)

is isomorphic to the Zn2 -domain Up|qα . The isomorphism is hα := (|hα|, h∗α), where h∗α is the
identity map (a composite of direct images is the direct image by the composite). In other
words, we have an isomorphism of Zn2 -manifolds

hα : Uα → U
p|q
α .
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Consider now an overlap |Uαβ| := |Uα| ∩ |Uβ| 6= ∅. Omitting restrictions, we get that kβk
−1
α

is a natural isomorphism (in [[Zn2Ptsop, A(N)FMan]])

kβα := kβk
−1
α : Up|qαβ (−)→ Up|qβα (−)

between functors corresponding to Zn2 -domains (defined as usual). In view of Theorem 2.3.19,
the natural isomorphism kβα is implemented by a Zn2 -isomorphism

kβα : Up|qαβ → U
p|q
βα .

It follows that
ψβα := h−1

β kβαhα : Uαβ → Uβα

is an isomorphism of Zn2 -manifolds, where Uαβ := (|Uαβ|,OUα||Uαβ |). The Zn2 -manifolds Uα
can thus be glued and provide then a Zn2 -manifold M over |M | = F(R), such that there are
Zn2 -isomorphisms (|Uα|,OM ||Uα|)→ Uα, if the ψβα satisfy the cocycle condition.

Since the Schwarz–Voronov embedding is fully faithful, we have that ψγβψβα = ψγα as Zn2 -
morphisms if and only if the induced natural transformations coincide. However, for any Λ, we
get

(ψγβψβα)Λ = (hγ,Λ)−1kγ,Λ(kβ,Λ)−1hβ,Λ(hβ,Λ)−1kβ,Λ(kα,Λ)−1hα,Λ = ψγα,Λ .

It remains to show thatM actually represents F , i.e., that we can find a natural isomorphism
η : M(−) → F in the category [[Zn2Ptsop, A(N)FMan]], i.e., that, for any Λ ∈ Zn2GrAlg, there is
a Λ0-diffeomorphism ηΛ : M(Λ) → F(Λ) that is natural in Λ. As (|Uα|)α is an open cover of
|M |, the source decomposes as

M(Λ) =
⋃
α

Uα(Λ) ,

the Uα(Λ) being open (nuclear) Fréchet Λ0-submanifolds. On any Uα(Λ), we define ηΛ by
setting

ηΛ|Uα(Λ) := (kα,Λ)−1hα,Λ : Uα(Λ)→ F||Uα|(Λ) ⊂ F(Λ) .

These restrictions provide a well-defined map

ηΛ : M(Λ)→ F(Λ) .

Indeed, if (x,m∗?) ∈ Uα(Λ) ∩ Uβ(Λ), we have

(kα,Λ)−1(hα,Λ(x,m∗?)) = (kβ,Λ)−1(hβ,Λ(x,m∗?)) if and only if ψβα,Λ(x,m∗?) = (x,m∗?) .

However, since we glued M from the Uα, the gluing Zn2 -isomorphisms ψβα became identities
and so did the induced natural isomorphisms. The definition of η−1

Λ is similar. The source F(Λ)
decomposes as

F(Λ) =
⋃
α

F||Uα|(Λ),

the F||Uα|(Λ) being open (nuclear) Fréchet Λ0-submanifolds. On any F||Uα|(Λ), we define η−1
Λ

by setting
η−1

Λ |F||Uα|(Λ) := (hα,Λ)−1kα,Λ : F||Uα|(Λ)→ Uα(Λ) ⊂M(Λ) .

The condition for these restrictions to give a well-defined map

η−1
Λ : F(Λ)→M(Λ)

is equivalent to the condition for ηΛ. Clearly, the maps ηΛ and η−1
Λ are inverses. Naturality

and Λ0-smoothness are local questions and are therefore consequences of the naturality and the
Λ0-smoothness of (kα,Λ)−1hα,Λ and of (hα,Λ)−1kα,Λ.
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We are now prepared to show that the category Zn2Man is equivalent to a functor category.

Theorem 2.3.35. The category Zn2Man of Zn2 -manifolds (defined as Zn2 -ringed spaces that are lo-
cally isomorphic to Zn2 -domains) and Zn2 -morphisms (defined as morphisms of Zn2 -ringed spaces)
is equivalent to the full subcategory [[Zn2Ptsop, A(N)FMan]] rep of representable functors in
[[Zn2Ptsop, A(N)FMan]].

In other words, the category Zn2Man is equivalent to the category of locally trivial functors
in the subcategory of the functor category [Zn2Ptsop, A(N)FMan], whose objects F have values
F(Λ) in (nuclear) Fréchet Λ0-manifolds and whose morphisms are the natural transformations
with Λ0-smooth components.

Remark 2.3.36. This result is reminiscent of the identification of schemes with those con-
travariant functors from affine schemes to sets that are sheaves (for the Zariski topology on
affine schemes) and have a cover by open immersions of affine schemes.

Proof. The Schwarz–Voronov embedding viewed as functor valued in [[Zn2Ptsop, A(N)FMan]] rep is
obviously fully faithful and essentially surjective. It thus induces an equivalence of categories.
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2.4 Appendix

2.4.1 Generating sets of categories

We will freely use Mac Lane’s book [33] as our source of categorical notions and proofs of
general statements. For completeness, we recall the concept of generating set of a category.

Definition 2.4.1 ([33], page 127). Let C be a category. A set S = {Si ∈ Ob(C) : i ∈ I}, where
I is any index set, is said to be a generating set of C , if, for any pair of distinct C-morphisms

φ, ψ : A −→ B ,

i.e., φ 6= ψ, there exists some i ∈ I and a C-morphism

s : Si −→ A ,

such that the compositions

Si
s−→ A

φ

⇒
ψ
B ,

are distinct, i.e., φ ◦ s 6= ψ ◦ s. In this case, we say that the object Si separates the morphisms
φ and ψ, and that the set S generates the category C.

Example 2.4.2. The set {R} is a generating set of the category of finite dimensional real
vector spaces. This is easily seen, as, if we have two distinct linear maps φ, ψ : V → W , then
there exists a vector v ∈ V (v 6= 0), such that φ(v) 6= ψ(v). Thus, the two linear maps differ
on the one dimensional subspace generated by v. Now let z be a basis of R. Then, the linear
map s : R→ V given by s(z) = v, keeps φ and ψ separate.



58

Proposition 2.4.3. For any locally small category C, a set S ⊂ Ob(C) generates C if and only
if the restricted Yoneda embedding

YS : C→ [S op, Set] ,

where S is viewed as full subcategory of C, is faithful.

Proof. The restricted embedding is defined on objects by

YS(A) = HomC(−, A) ∈ [S op, Set]

and on morphisms by
YS(φ) = HomC(−, φ) : YS(A)→ YS(B) ,

where
(YS(φ))Si : HomC(Si, A) 3 s 7→ φ ◦ s ∈ HomC(Si, B) .

The embedding YS is faithful if and only if, for any different φ, ψ : A→ B, the corresponding
natural transformations are distinct, i.e., there is at least one i ∈ I and one s ∈ HomC(Si, A),
such that φ ◦ s 6= ψ ◦ s .

2.4.2 Fréchet spaces, modules and manifolds

Manifolds over algebras A, also known as A-manifolds, are manifolds for which the tangent
spaces are endowed with a module structure over a given finite-dimensional commutative alge-
bra. For details, the reader may consult Shurygin [47, 48, 49], and for a discussion of the specific
case of (the even part of) Grassmann algebras one may consult Azarmi [6]. A comprehensive
introduction to the subject can be found in the book by Vishnevskĭı, Shirokov, and Shurygin
[54] (in Russian). The concept needed in this paper is a infinite-dimensional generalisation of
an A-manifold to the category of Fréchet algebras and Fréchet manifolds. For an introduction
to locally convex spaces, including Fréchet vector spaces, we refer the reader to Conway [14,
Chapter IV], Trèves [53, Part I], or Rudin [40, Chapter 1]. A brief introduction to Fréchet
algebras can be found in Waelbroeck [56, Chapter VII]. For Fréchet manifolds, the reader can
consult Saunders [42, Chapter 7] and Hamilton [28, Part I.4].

Definition 2.4.4. A Fréchet (vector) space is a complete Hausdorff metrizable locally convex
topological vector space.

There exist a few other, equivalent, definitions of Fréchet spaces. The topology on a locally
convex space is metrizable if and only if it can be derived from a countable family of semi-norms
|| − ||k , k ∈ N . The topology is Hausdorff if and only if the family of semi-norms is separating,
i.e., if ||x||k = 0, for all k, implies x = 0. Given such a family of semi-norms, one defines a
translationally invariant metric that induces the topology by setting

d(x, y) =
∞∑
k=0

2−k
||x− y||k

1 + ||x− y||k
,

for all x and y.

Example 2.4.5. Let M = (|M |,O) be a Zn2 -manifold. For any open subset U ⊂ |M |, the space
O(U) of Zn2 -functions on U is a Fréchet space. An inducing family of semi-norms is given by

||f ||C,D = supx∈C |ε(D(f))(x)| ,
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where ε is the projection ε : O(U) → C∞(U) of Zn2 -functions to base functions, where C is
any compact subset of U , and where D is any Zn2 -differential operator over U . Details on the
construction of a countable family of semi-norms that is equivalent to (|| − ||C,D)C,D , can be
found in the proof of the last lemma in [12].

Given two Fréchet spaces
(
F, (|| − ||Fk )k∈N

)
and

(
G, (|| − ||Gk )k∈N

)
, a linear map

φ : F −→ G ,

is continuous if and only if, for every semi-norm || − ||Gk , there exists a semi-norm || − ||Fl and
a positive real number C > 0, such that

||φ(x)||Gk ≤ C||x||Fl ,

for every x ∈ F . A similar result holds for continuous bilinear maps

φ : F ×G→ H .

The morphisms of Fréchet spaces are the continuous linear maps, so that the category of Fréchet
spaces is a full subcategory of the category of topological vector spaces.

What makes Fréchet spaces interesting, is the fact that they have just enough structure to
define a derivative of a mapping between such spaces. This leads to a meaningful notion of a
smooth map between Fréchet spaces, and so much of finite dimensional differential geometry
can be transferred to the infinite dimensional setting, using Fréchet spaces as local models. The
well known Gâteaux (directional) derivative is defined as follows.

Definition 2.4.6. Let F and G be Fréchet spaces and U ⊂ F be open, and let φ : U → G be
a (nonlinear) continuous map. Then the derivative of φ in the direction of v ∈ F at x ∈ U is
defined as

dxφ(v) := lim
t→0

φ(x + tv)− φ(x)

t

provided the limit exists. We say that φ is continuously differentiable, if the limit exists for all
x ∈ U and v ∈ F , and if the mapping

dφ : U × F −→ G

is (jointly) continuous.

Higher order derivatives are defined inductively, i.e.,

dk+1
x φ(v1, v2, . . . , vk+1) := lim

t→0

dkx+tvk+1
φ(v1, v2, . . . , vk) − dkxφ(v1, v2, . . . , vk)

t
.

A continuous map φ : U → G is then said to be k times continuously differentiable or to be of
class Ck, if

dkφ : U × F×k −→ G

is continuous (or, more explicitly, if all its derivatives of order ≤ k exist everywhere and are
continuous). If φ is of class Ck, its derivative dkxφ(v1, v2, . . . , vk) is multilinear and symmetric
in F×k [46]. Furthermore, we say that φ is smooth, if it is of class Ck, for all k.
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Proposition 2.4.7. Let F1, F2 be Fréchet spaces and let U ⊂ F1 × F2 be an open subset. A
continuous map φ : U → G valued in a Fréchet space G is of class C1 if and only if its (total)
derivative

dφ : U × (F1 × F2) 3 ((f1, f2), (v1, v2)) 7→ d(f1,f2) φ (v1, v2) ∈ G
is continuous, which is the case if and only if the naturally defined partial derivatives

df1 φ : U × F1 3 ((f1, f2), v1) 7→ df1,(f1,f2) φ (v1) ∈ G

and
df2 φ : U × F2 3 ((f1, f2), v2) 7→ df2,(f1,f2) φ (v2) ∈ G

are continuous. In this case, we have

d(f1,f2) φ (v1, v2) = df1,(f1,f2) φ (v1) + df2,(f1,f2) φ (v2) .

The Gâteaux or Fréchet–Gâteaux derivative gives a rather weak notion of differentiation,
however, most of the standard results from calculus in the finite dimensional setting remain
true. Specifically, the fundamental theorem of calculus and the chain rule still hold. However,
the inverse function theorem is in general lost. For a special class of Fréchet spaces, known
as ‘tame’ Fréchet spaces, there is an analogue of the inverse function theorem known as the
Nash–Moser inverse function theorem, see Hamilton [28] for details.

A nuclear space is a locally convex topological vector space F , such that, for any locally
convex topological vector space G, the natural map F ⊗̂πG −→ F ⊗̂ιG from the projective to
the injective tensor product of F and G is an isomorphism of locally convex topological vector
spaces. In particular, a nuclear Fréchet space is a locally convex topological vector space that
is a nuclear space and a Fréchet space. Loosely, if a space F is nuclear, then, for any locally
convex space G, the complete topological vector space F ⊗̂G is independent of the locally
convex topology considered on F ⊗G. Because of this, and their nice dual properties, nuclear
spaces provide a reasonable setting for infinite dimensional analysis. All the Fréchet spaces we
encounter in this paper are in fact nuclear.

The following definition is standard.

Definition 2.4.8. A Fréchet algebra is a Fréchet vector space A, which is equipped with an
associative bilinear and (jointly) continuous multiplication · : A×A→ A . If (pi)i∈I is a family
of semi-norms that induces the topology on A, (joint) continuity is equivalent to the existence,
for any i ∈ I, of j ∈ I, k ∈ I, and C > 0, such that

pi(x · y) ≤ C pj(x) pk(y), ∀x, y ∈ A .

We can always consider an equivalent increasing countable family of semi-norms (|| − ||n)n∈N.
The preceding condition then requires that, for any n ∈ N, there is r ∈ N (r ≥ n) and C > 0,
such that

||x · y||n ≤ C ||x||r ||y||r ∀x, y ∈ A .

In particular, the topology can be induced by a countable family of submultiplicative semi-
norms, i.e., by a family (qn)n∈N that satisfies

qn(x · y) ≤ qn(x) qn(y) , ∀n ∈ N, ∀x, y ∈ A .

Note that many authors define a Fréchet algebra simply as a Fréchet vector space, which
carries an associative bilinear multiplication, and whose topology can be induced by a countable
family of submultiplicative semi-norms. This latter definition is equivalent to the former.

In general, a Fréchet algebra need not be unital, and, if it is, one does not require pi(1A) = 1,
in contrast to what is usually required for Banach algebras.
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Example 2.4.9 (Formal power series). Consider the space

R[[z1, z2, . . . , zq]]

of formal power series in q parameters and coefficients in reals. We set j := (j1, j2, . . . , jq) ∈ N×q
and |j| := j1 + j2 + · · ·+ jq. A general series x now reads

x =
∑
j

zjaj =
∑
j

zj11 z
j2
2 . . . zjqq ajq ...j2j1 ,

with no question on the convergence. The algebra structure is the standard multiplication of
formal power series. The topology of coordinate-wise convergence is metrizable and given by
the family of semi-norms

||x||k :=
∑
|j|≤k

|aj| , ∀ k ∈ N .

This algebra is unital with the obvious unit, and it is submultiplicative.

Let us denote the category of Fréchet algebras (resp., commutative Fréchet algebras) as FAlg
(resp., CFAlg). Morphisms in this category are defined to be continuous algebra morphisms. If
we restrict attention to nuclear Fréchet algebras (resp., commutative nuclear Fréchet algebras),
then we work in the full subcategory NFAlg (resp., CNFAlg).

Definition 2.4.10. Fix A ∈ FAlg. A Fréchet A-module is a Fréchet vector space F , together
with a continuous action

A× F µ−→ F

(a, v) 7→ µ(a, v) ,

which we will write as µ(a, v) := a ·v (and which is of course compatible with the multiplication
in A).

We give a short survey on Fréchet manifolds.

Definition 2.4.11. Let M be a set. An F -chart of M is a bijective map φ : U → φ(U) ⊂ F ,
where U ⊂M and φ(U) is an open subset of a Fréchet space F .

A Fréchet atlas can be defined using charts valued in various Fréchet spaces. For our
purposes, it is sufficient to consider a fixed Fréchet model.

Definition 2.4.12. Let M be a set. A smooth F -atlas on M is a collection of F -charts
((Uα, φα))α∈A , such that

i. the subsets Uα cover the set M ,

ii. the subsets φα(Uα ∩ Uβ) are open in F ,

iii. the transition maps

φβα := φβ ◦ φ−1
α : φα(Uα ∩ Uβ) ⊂ F −→ φβ(Uβ ∩ Uα) ⊂ F

are smooth.
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A new F -chart (U, φ) on M is compatible with a given smooth F -atlas, if and only if their
union is again a smooth F -atlas, i.e., the subsets φ(U ∩Uα) ⊂ F and φα(Uα∩U) ⊂ F are open,
and the transition maps

φα ◦ φ−1 : φ(U ∩ Uα) −→ φα(Uα ∩ U) and φ ◦ φ−1
α : φα(Uα ∩ U) −→ φ(U ∩ Uα)

are smooth (for every α ∈ A). Similarly, two smooth F -atlases are compatible provided their
union is also a smooth F -atlas. Compatibility is an equivalence relation on all possible smooth
F -atlases on M.

Definition 2.4.13. A smooth F -structure on a set M is a choice of an equivalence class of
smooth F -atlases on M. We say that M is a Fréchet manifold modelled on the Fréchet space
F , if M comes equipped with a smooth F -structure. If the model vector space F is nuclear,
we speak of a nuclear Fréchet manifold.

A smooth F -atlas on a Fréchet manifoldM allows us to define in the obvious way a topology
onM, which is independent of the atlas considered in the chosen equivalence class. The domain
U of an F -chart (U, φ) is open in this topology and the bijective map φ : U ⊂M→ φ(U) ⊂ F
is a homeomorphism for the induced topologies. Most authors confine themselves to Fréchet
manifolds, whose topology is Hausdorff.

Morphisms between two Fréchet manifolds are the smooth maps between them, where smooth-
ness is defined, just as in the finite dimensional case of smooth manifolds, in terms of charts and
smoothness of local representatives of the maps. We denote the category of Fréchet manifolds
and the morphisms between them by FMan.

Further, the tangent space TfM to a Fréchet manifoldM at a point f ∈M can be defined
as usual, using the tangency equivalence relation for the smooth curves ofM that pass through
f at time 0. One can easily see that TfM is a Fréchet space. The concept of Fréchet vector
bundle is the natural generalization of the notion of smooth vector bundle to the category of
Fréchet manifolds. The tangent bundle TM of a Fréchet manifoldM is an example of a Fréchet
vector bundle.

In general, we must make a distinction between the ( kinematic ) tangent bundle as defined
here and the operational tangent bundle defined in terms of derivations of the algebra of func-
tions of a Fréchet manifold. Indeed, the two notions do not, in general, coincide, there are
derivations that do not correspond to tangent vectors. However, it is known that for nuclear
Fréchet manifolds the two concepts do coincide.

Let F : M→ N be a smooth map between Fréchet manifolds modelled on Fréchet spaces
F and G, respectively. There is a tangent map TF of F, which is a smooth map

TF : TM→ TN ,

and restricts, for any f ∈M, to a linear map

TfF : TfM→ TF(f)N .

As in the finite dimensional case, the local representative of TfF is the derivative dφ(f)(ψFφ
−1)

of the corresponding local representative

ψFφ−1 : φ(U) ⊂ F → G

of F at the point φ(f).

Fundamental to the work in this paper are Fréchet manifolds with a further module structure
on their tangent bundle.
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Definition 2.4.14. Let M be a Fréchet manifold, whose model Fréchet space F is a module
over a Fréchet algebra A. We say that M is a Fréchet A-manifold, if and only if all transition
maps are A-linear, i.e.,

dφα(f)φβα(a · v) = a · dφα(f)φβα(v) ,

for all f ∈ Uα ∩ Uβ, a ∈ A, and v ∈ F .

Morphisms between Fréchet A-manifolds M and N are the A-smooth maps between them,
i.e., are the smooth maps F : M→ N that are A-linear at every point. This means that, for
any point f ∈ M, there is an M-chart (U, φ) around f and an N -chart (V, ψ) around F(f)
that contains F(U), such that the local representative

dφ(f)(ψFφ
−1)

of the derivative TfF is an A-linear endomorphism of the A-module F . The requirement
actually means that the derivative TfF must be A-linear at any point f ∈M. In this way, we
obtain the category of Fréchet A-manifolds, which we denote as AFMan.

In this paper, we will use the category AFMan, whose objects are the Fréchet A-manifolds,
where A is not a fixed Fréchet algebra, but any Fréchet algebra. The definition of AFMan-
morphisms generalizes the definition of AFMan-morphisms. Suppose that M is a Fréchet A-
manifold modelled on an A-module F and N is a Fréchet B-manifold modelled on a B-module
G. The AFMan-morphisms from M to N are the A-smooth maps between them, i.e., those
smooth maps F : M→ N that are at any point compatible with the module structures of F
and G. This means that there is a Fréchet algebra morphism ρ : A→ B, and, for any f ∈M,
there exist charts (U, φ) and (V, ψ) as above, such that

dφ(f)(ψFφ
−1)(a · v) = ρ(a) · dφ(f)(ψFφ

−1)(v) ,

for any a ∈ A and v ∈ F . This requirement actually means that, for any f , the derivative TfF
is compatible with the induced actions on the tangent spaces. We will refer to an A-smooth map
with associated Fréchet algebra morphism ρ, as a ρ-smooth map. If we restrict our attention to
nuclear objects, i.e, the model Fréchet vector space and the Fréchet algebra are both nuclear,
then we denote the corresponding category as ANFMan.
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Chapter 3

Linear Zn2 -Manifolds and Linear
Actions

The next research paper was published in “SIGMA”17 (2021), 060, 58 pages (joint work with
Andrew James Bruce and Norbert Poncin).

Abstract

We establish the representability of the general linear Zn2 -group and use the restricted functor of
points – whose test category is the category of Zn2 -manifolds over a single topological point – to
define its smooth linear actions on Zn2 -graded vector spaces and linear Zn2 -manifolds. Through-
out the paper, particular emphasis is placed on the full faithfulness and target category of the
restricted functor of points of a number of categories that we are using.

3.1 Introduction

In order to be able to deal with the technical details of vector bundles and related structures in
the category of Zn2 -manifolds (for n = 1 see [6]), we need some foundational results on Zn2 -Lie
groups and their smooth linear actions on linear Zn2 -manifolds. However, the proofs of some
folklore results, i.e., results that we tended to accept somewhat hands-waving, are often not at
all obvious in the Zn2 -context. The present paper, beyond its supposed applications, intrinsic
interest and the beauty of some of its developments, raises the question of the scientific value
of ‘results’ that are partially based on speculations.

Loosely speaking, Zn2 -manifolds (Zn2 = Z×n2 ) are ‘manifolds’ for which the structure sheaf
has a Zn2 -grading and the commutation rules for the local coordinates comes from the standard
scalar product (see [11, 13, 14, 15, 19, 20, 21, 23, 37] for details). This is not just a trivial or
straightforward generalization of the notion of a standard supermanifold, as one has to deal
with formal coordinates that anticommute with other formal coordinates, but are themselves
not nilpotent. Due to the presence of formal variables that are not nilpotent, formal power
series are used rather than polynomials. Recall that for standard supermanifolds all functions
are polynomial in the Grassmann odd variables. The theory of Zn2 -geometry is currently being
developed and many foundational questions remain. For completeness, we include Appendix
3.5.2 in which the foundations of Zn2 -geometry are given. In this paper, we examine the relation
between Zn2 -graded vector spaces and linear Zn2 -manifolds, and then we use this to define linear
actions of Zn2 -Lie groups.

In the literature on supergeometry, the symbol Rp|q has two distinct, but related meanings.
First, we have the notion of a Z2-graded, or super, vector space with p even and q odd dimen-
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sions, i.e., the real vector space Rp|q = Rp
⊕

Rq. Secondly, we have the locally ringed space
Rp|q =

(
Rp, C∞Rp [ξ]

)
, where ξi (i ∈ {1, . . . , q}) are the generators of a Grassmann algebra. The

difference can be highlighted by identifying the points of these objects. The Z2-graded vector
space has as its underlying topological space Rp+q (we just forget the “superstructure”), while
for the locally ringed space the topological space is Rp. There are several ways of showing that
these two notions are deeply tied. In particular, the category of finite dimensional super vector
spaces is equivalent to the category of “linear supermanifolds” (see [32, 33, 38]).

In this paper, we will show that the categories of finite dimensional Zn2 -graded vector spaces
V and linear Zn2 -manifolds V are isomorphic. We do this by explicitly constructing a ‘man-
ifoldification’ functor M, which associates a linear Zn2 -manifold to every finite dimensional
Zn2 -graded vector space, and a ‘vectorification’ functor, which is the inverse of the previous
functor. It turns out that working in a coordinate-independent way (V, V ) is much more
complex than working with canonical coordinates (Rp|q,Rp|q).

Throughout this article, a special focus is placed on functors of points. The functor of points
has been used informally in Physics as from the very beginning. It is actually of importance in
contexts where there is no good notion of point as in Super- and Zn2 -Geometry and in Algebraic
Geometry. For instance, Homotopical Algebraic Geometry [43, 44] and its generalisation that
goes under the name of Homotopical Algebraic Geometry over Differential Operators [25, 26],
are completely based on the functor of points approach. In this paper, we are particularly inter-
ested in functors of Λ-points, i.e., functors of points from appropriate locally small categories C
to a functor category whose source is not the category Cop but the category G of Zn2 -Grassmann
algebras Λ . However, functors of points that are restricted to the very simple test category G

are fully faithful only if we replace the target category of the functor category by a subcategory
of the category of sets.

More precisely, closely related to the above isomorphism of supervector spaces and linear
supermanifolds is the so-called ‘even rules’. Loosely this means including extra odd parameters
to render everything even and in doing so one removes copious sign factors (see for example [24,
§1.7]). We will establish an analogue of the even rules in our higher graded setting which we will
refer to as the ‘zero degree rules’ (see Definition 3.2.1). To address this we will make extensive
use of Zn2 -Grassmann algebras Λ, Λ-points and the Schwarz–Voronov embedding, which is a
fully faithful functor of points S from Zn2 -manifolds to a functor category with source G and the
category of Fréchet manifolds over commutative Fréchet algebras as target (see [13]). We show
that the zero degree rules functor F , understood as an assignment of a functor from G to the
category of modules over commutative [Fréchet] algebras, given a [finite dimensional] Zn2 -graded
vector space, is fully faithful (see Theorem 3.2.2 [and Proposition 3.2.25]). The ‘zero degree
rules’ allow one to identity a finite dimensional Zn2 -graded vector space, considered as a functor,
with the functor of points of its ‘manifoldification’. In other words, the composite S ◦M and
F can be viewed as functors between the same categories and are naturally isomorphic. This
identification is fundamental when describing linear group actions on Zn2 -graded vector spaces
and linear Zn2 -manifolds.

Another important part of this work is the category of Zn2 -Lie groups and its fully faithful
functor of points valued in a functor category with G as source category and Fréchet Lie groups
over commutative Fréchet algebras as target category. We define the general linear Zn2 -group
as a functor in this functor category and show that it is representable, i.e., is a genuine Zn2 -
manifold (see Theorem 3.3.4). This leads to interesting insights into the computation of the
inverse of an invertible degree zero Zn2 -graded square matrix of dimension p|q with entries in a
Zn2 -commutative algebra. Furthermore, the approach using Λ-points and the zero rules allows
us to construct a canonical smooth linear action of the general linear Zn2 -group on Zn2 -graded
vector spaces and linear Zn2 -manifolds. All these notions, in particular the equivalence between
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the definitions of a smooth linear action as natural transformation and as Zn2 -morphism, are
carefully and explicitly explained in the main text.

We remark that many of the statements in this paper are not surprising in themselves.
However, due to the subtleties of Zn2 -geometry, many of the proofs are much more involved
than the analogue statements in supergeometry. The main source of difficulty is that one has
to deal with formal power series in non-zero degree coordinates, rather than polynomials as one
does in supergeometry. This forces one to work with infinite dimensional objects and the J -
adic topology (J is the ideal generated by non-zero degree elements). Many of the ‘categorical’
proofs are significantly more involved than the proofs for supermanifolds. In general, there is a
lot of work to establish the form of natural transformations as we have non-nilpotent elements
of non-zero degree. While the ethos of the proofs may be standard, they are not, in general,
simple or routine checks due to the aforementioned subtleties.

Motivation from physics: Zn2 -gradings (n ≥ 2) can be found in the theory of parastatistics
(see for example [27, 28, 29, 49]) and in relation to an alternative approach to supersymmetry
[45]. ‘Higher graded’ generalizations of the super Schrödinger algebra (see [3]) and the super
Poincaré algebra (see [10]) have appeared in the literature. Furthermore, such gradings appear
in the theory of mixed symmetry tensors as found in string theory and some formulations of
supergravity (see [12]). It must also be pointed out that quaternions and more general Clifford
algebras can be understood as Zn2 -graded Zn2 -commutative algebras [4, 5]. Finally, any ‘sign
rule’ can be interpreted in terms of a Zn2 -grading (see [19]).

Background: For various sheaf-theoretical notions we will draw upon Hartshorne [31, Chapter
II] and Tennison [42]. There are several good introductory books on the theory of superman-
ifolds including Bartocci, Bruzzo & Hernández Ruipérez [7], Carmeli, Caston & Fioresi [16],
Deligne & Morgan [24] and Varadarajan [46]. For categorical notions we will be based on Mac
Lane [35]. We will make extensive use of the constructions and statements found in our earlier
publications [13, 14, 15].

3.2 Zn2-graded vector spaces and Linear Zn2-manifolds

3.2.1 Zn2-graded vector spaces and the zero degree rules

When dealing with linear superalgebra one encounters the so-called even rules (see [16, §1.8],
[24, §1.7] and [46, pages 123-124], for example). Very informally, the idea is to remove sign
factors by allowing extra parameters to render the situation completely even. The idea has
been applied in physics since the early days of supersymmetry. More precisely, let

V (A) = (A⊗ V )0

be the even part of the extension of scalars in a (real) super vector space V , from the base field
R to a supercommutative algebra A ∈ SAlg (in the even rules that we are about to describe,
it actually suffices to use supercommutative Grassmann algebras A = R[θ1, . . . , θN ]: the θi are
then the extra parameters mentioned before). The main result in even rules states, roughly,
that defining a morphism φ : V ⊗V → V is equivalent to defining it functorially on the even part
of V after extension of scalars, i.e., is equivalent to defining a functorial family of morphisms

φ(A) : V (A)× V (A)→ V (A)

(indexed by A ∈ SAlg). More precisely, there is a 1:1 correspondence between parity respecting
R-linear maps φ : V1 ⊗ . . .⊗ Vn → V and functorial families

φ(A) : V1(A)× . . .× Vn(A)→ V (A)
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(A ∈ SAlg) of A0-multilinear maps.

We now proceed to generalise this theorem to the Zn2 -setting. We will work with the category
Zn2GrAlg of Zn2 -Grassmann algebras rather than the category Zn2Alg of all Zn2 -commutative
algebras.

Let V =
⊕N

i=0 Vγi be a (real) Zn2 -graded vector space, i.e., a (real) vector space with a direct
sum decomposition over i ∈ {0, . . . , N} (we say that the vectors of Vγi are of degree γi ∈ Z). The
category of Zn2 -graded vector spaces (not necessarily finite dimensional) we denote as Zn2Vec.
Morphisms in this category are degree preserving linear maps. We denote the category of
modules over commutative algebras as AMod (see Appendix 3.5.1).

To V we associate a functor

V (−) ∈ Fun0(Zn2Ptsop, AMod)

in the category of those functors whose value on any Zn2 -Grassmann algebra Λ ∈ Zn2Ptsop is
a Λ0-module, and of those natural transformations that have Λ0-linear Λ-components. The
functor V (−) is essentially the tensor product functor −⊗ V . It is built in the following way.
First, for every Zn2 -Grassmann algebra Λ, we define

V (Λ) :=
(
Λ⊗ V

)
0
∈ Λ0Mod ,

where the tensor product is over R. Secondly, for any Zn2 -algebra morphism ϕ∗ : Λ → Λ′, we
define

V (ϕ∗) :=
(
ϕ∗ ⊗ 1V

)
0
,

where the RHS is the restriction of ϕ∗ ⊗ 1V to the degree 0 part of Λ⊗ V , so that V (ϕ∗) is an
AMod-morphism

V (ϕ∗) : V (Λ)→ V (Λ′) , (3.2.1)

whose associated algebra morphism is the restriction (ϕ∗)0 : Λ0 → Λ′0 . It is clear that V (−)
respects compositions and identities and is thus a functor, as announced.

We thus get an assignment

F : Zn2Vec 3 V 7→ F(V ) := V (−) ∈ Fun0(Zn2Ptsop, AMod) .

The map F is essentially −⊗ • and is itself a functor. It associates to any grading respecting
linear map φ : V → W and any Zn2 -Grassmann algebra Λ, a Λ0-linear map

φΛ := (1Λ ⊗ φ)0 : V (Λ)→ W (Λ) .

The family F(φ) := φ− is a natural transformation from F(V ) to F(W ). Since F respects
compositions and identities, it is actually a functor valued in the restricted functor category
Fun0(Zn2Ptsop, AMod) .

Definition 3.2.1. The functor

F : Zn2Vec −→ Fun0(Zn2Ptsop, AMod)

is referred to as the zero degree rules functor.

Theorem 3.2.2. The zero degree rules functor

F : Zn2Vec −→ Fun0(Zn2Ptsop, AMod)

is fully faithful, i.e., for any pair of Zn2 -graded vector spaces V and W , the map

FV,W : HomZn2 Vec(V,W ) −→ HomFun0(Zn2 Ptsop,AMod)(F(V ),F(W )) ,

is a bijection.
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This result is the Zn2 -counterpart of the 1:1 correspondence mentioned above.

Proof. We show first that the map FV,W is injective. Let φ, ψ : V → W be two degree preserving
linear maps, and assume that F(φ) = φ− = ψ− = F(ψ), so that, for any Λ ∈ Zn2Ptsop and any
λ⊗ v ∈ V (Λ), we have

λ⊗ φ(v) = φΛ(λ⊗ v) = ψΛ(λ⊗ v) = λ⊗ ψ(v) . (3.2.2)

Notice now that

V (Λ) = (Λ⊗ V )0 =
N⊕
i=0

Λγi ⊗ Vγi

and let Λ be the Grassmann algebra

Λ1 := R[[θ1, . . . , θN ]] (3.2.3)

that has exactly one generator θj in each non-zero degree γj ∈ Zn2 (N = 2n − 1). For any
vj ∈ Vγj , Equation (3.2.2) implies that θj⊗φ(vj) = θj⊗ψ(vj), so that φ and ψ coincide on Vγj ,
for all j ∈ {1, . . . , N}. For v0 ∈ V0 := Vγ0 and λ = 1, the same equation shows that φ and ψ
coincide also on V0.

To prove surjectivity, we consider an arbitrary natural transformation Φ− : V (−)→ W (−)
and will define a degree 0 linear map φ : V → W , such that F(φ) = φ− = Φ−, i.e., such that,
for any Λ ∈ Zn2Ptsop, we have

φΛ = ΦΛ (3.2.4)

on V (Λ). Since an element of V (Λ) (uniquely) decomposes into a sum over i ∈ {0, . . . , N} of
(not uniquely defined) finite sums of decomposable tensors λi⊗ vi, with (not uniquely defined)
factors λi and vi of degree γi, it suffices to show that

φΛ(λi ⊗ vi) = ΦΛ(λi ⊗ vi) , (3.2.5)

for all i ∈ {0, . . . , N}.

Further, it suffices to prove Condition (3.2.5) for Λ1 (see (3.2.3)) and for the tensors θi ⊗ vi
(θ0 := 1, vi ∈ Vγi , i ∈ {0, . . . , N}). The observation follows from naturality of Φ. Indeed, assume
that (3.2.5) is satisfied for Λ1 and the decomposable tensors just mentioned (Assumption (?)).
For any fixed i ∈ {1, . . . , N} (resp., i = 0), and for Λ, λi and vi as above, let ϕ∗ : Λ1 → Λ be
the Zn2 -algebra map defined by ϕ∗(θi) = λi, ϕ

∗(θj) = 0 for j 6= i, j 6= 0, and ϕ∗(θ0) = ϕ∗(1) = 1
(resp., ϕ∗(θj) = 0 for all j 6= 0, and ϕ∗(θ0) = ϕ∗(1) = 1). For i ∈ {1, . . . , N}, when applying
the naturality condition

V (Λ1) W (Λ1)

V (Λ) W (Λ)

//
ΦΛ1

��

V (ϕ∗)

��

W (ϕ∗)

//
ΦΛ

to θi ⊗ vi, we get clockwise

W (ϕ∗)(ΦΛ1(θi ⊗ vi)) = W (ϕ∗)(θi ⊗ φ(vi)) = ϕ∗(θi)⊗ φ(vi) = λi ⊗ φ(vi) = φΛ(λi ⊗ vi) ,

in view of (?), whereas anticlockwise we obtain

ΦΛ(V (ϕ∗)(θi ⊗ vi)) = ΦΛ(λi ⊗ vi) .
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Hence, Condition (3.2.5) holds for i ∈ {1, . . . , N}. For i = 0, the above naturality condition
yields 1 ⊗ φ(v0) = ΦΛ(1 ⊗ v0), when applied to 1 ⊗ v0. In view of the Λ0-linearity of the
Λ-components of the natural transformations considered, we get now

φΛ(λ0 ⊗ v0) = λ0 φΛ(1⊗ v0) = λ0(1⊗ φ(v0)) = ΦΛ(λ0 ⊗ v0) .

Finally, Condition (3.2.5) holds for an arbitrary Λ, if it holds for Λ1.

Surjectivity now reduces to constructing a Zn2Vec-morphism φ : V → W that satisfies (3.2.5)
for Λ1 and decomposable tensors of the type θi ⊗ vi (i ∈ {0, . . . , N}).

We first build φ(vj) ∈ Wγj linearly in vj ∈ Vγj for an arbitrarily fixed j ∈ {0, . . . , N}. We
set again θ0 = 1 ∈ Λ1,0. Since ΦΛ1(θj ⊗ vj) ∈ (Λ1 ⊗W )0, it reads

ΦΛ1(θj ⊗ vj) =
N∑
i=0

Mi∑
k=1

λki ⊗ wki ,

where Mi ∈ N, λki ∈ Λ1,γi and wki ∈ Wγi . When setting

Ai = {α ∈ N×N :
N∑
`=1

α`γ` = γi}

and
λki =

∑
α∈Ai

rkα,i θ
α (rkα,i ∈ R) ,

where we used the standard multi-index notation, we get

ΦΛ1(θj ⊗ vj) =
N∑
i=0

∑
α∈Ai

θα ⊗
( Mi∑
k=1

rkα,iw
k
i

)
=:

N∑
i=0

∑
α∈Ai

θα ⊗ wα,i (wα,i ∈ Wγi) .

Denoting the canonical basis of RN by (e`)` and decomposing the RHS with respect to the
values of |α| = α1 + . . .+ αN ∈ N, we obtain

ΦΛ1(θj ⊗ vj) = w0,0 +
N∑
i=1

θi ⊗ wei,i +
N∑
i=0

∑
α∈Ai:|α|≥2

θα ⊗ wα,i . (3.2.6)

Let now ϕ∗r0 (r0 ∈ R, r0 > 0 and r0 6= 1) be the Zn2 -algebra endomorphism of Λ1 that is
defined by ϕ∗r0(θk) = r0θk if k 6= 0 and by ϕ∗r0(θ0) = 1. It follows from the naturality condition

V (Λ1) W (Λ1)

V (Λ1) W (Λ1)

//
ΦΛ1

��

V (ϕ∗r0)

��

W (ϕ∗r0)

//
ΦΛ1

that

W (ϕ∗r0)(ΦΛ1(θj ⊗ vj)) = w0,0 +
N∑
i=1

θi ⊗ (r0wei,i) +
N∑
i=0

∑
α∈Ai:|α|≥2

θα ⊗ (r
|α|
0 wα,i)

and

ΦΛ1(V (ϕ∗r0)(θj ⊗ vj)) = r
1−δj0
0 w0,0 +

N∑
i=1

θi ⊗ (r
1−δj0
0 wei,i) +

N∑
i=0

∑
α∈Ai:|α|≥2

θα ⊗ (r
1−δj0
0 wα,i),

where δj0 is the Kronecker symbol, coincide. As all the monomials in θ in the RHS-s of the two
last equations are different, we get,
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i. if j 6= 0: w0,0 = 0 and wα,i = 0, for all i ∈ {0, . . . , N} and all α ∈ Ai : |α| ≥ 2, and,

ii. if j = 0: wei,i = 0, for all i ∈ {1, . . . , N}, and wα,i = 0, for all i ∈ {0, . . . , N} and all
α ∈ Ai : |α| ≥ 2.

Equation (3.2.6) thus yields

ΦΛ1(θj ⊗ vj) =
N∑
i=1

θi ⊗ wei,i (j 6= 0) and ΦΛ1(1⊗ v0) = w00 . (3.2.7)

If j 6= 0, a new application of naturality, now for the Zn2 -algebra endomorphism ϕ∗R0
(R0 ∈ R,

R0 6= 1) of Λ1 that is defined by ϕ∗R0
(θi) = R0θi (i 6= 0, i 6= j), ϕ∗R0

(θj) = θj and ϕ∗R0
(θ0) = 1,

leads to
θj ⊗ wej ,j +

∑
i 6=j

θi ⊗ (R0wei,i) = θj ⊗ wej ,j +
∑
i 6=j

θi ⊗ wei,i ,

so that
ΦΛ1(θj ⊗ vj) = θj ⊗ wej ,j (j 6= 0) . (3.2.8)

The vectors w00 ∈ W0 (see (3.2.7)) and wej ,j ∈ Wγj (j 6= 0) (see (3.2.8)) are well-defined
and depend obviously linearly on v0 and vj, respectively. Hence, setting φ(v0) = w00 and
φ(vj) = wej ,j (j 6= 0), we define a degree 0 linear map from V to W . Moreover, since (3.2.5) is
clearly satisfied for Λ1 and the θi⊗vi (i ∈ {0, . . . , N}), it is satisfied for any Λ, which completes
the proof of surjectivity.

Since
F : Zn2Vec→ Fun0(Zn2Ptsop, AMod)

is fully faithful, it is essentially injective, i.e., it is injective on objects up to isomorphism. It
follows that Zn2Vec can be viewed as a full subcategory of the target category of F .

The above considerations lead to the following definition.

Definition 3.2.3. A functor
V ∈ Fun0(Zn2Ptsop, AMod)

is said to be representable, if there exists V ∈ Zn2Vec, such that F(V ) is naturally isomorphic
to V .

As F is essentially injective, a representing object V , if it exists, is unique up to isomorphism.
We therefore refer sometimes to V as ‘the’ representing object.

3.2.2 Cartesian Zn2-graded vector spaces and Cartesian Zn2-manifolds

In the literature, the space Rp|q is viewed, either as the trivial Zn2 -manifold

Rp|q = (Rp, C∞Rp [[ξ]])

with canonical Zn2 -graded formal parameters ξ, or as the Cartesian Zn2 -graded vector space

Rp|q = Rp ⊕
N⊕
j=1

Rqj ,

where Rp (resp., Rqj) is the term of degree γ0 = 0 ∈ Zn2 (resp., γj ∈ Zn2 ). Observe that we
use the notation R• (resp., R•), when R• is viewed as a vector space (resp., as a manifold). It
can happen that we write R• for both, the vector space and the manifold, however, in these
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cases, the meaning is clear from the context. Further, we set q0 = p, q = (q0, q1, . . . , qN), and
|q| =

∑
i qi . When embedding Rqi (i ∈ {0, . . . , N}) into Rp|q, we identify each vector of the

canonical basis of Rqi with the corresponding vector of the canonical basis of R|q|. We denote
this basis by

(eik)i,k (i ∈ I = {0, . . . , N}, k ∈ Ki = {1, . . . , qi})
and assign of course the degree γi to every vector eik. We can now write

Rp|q =
N⊕
i=0

Rqi =
⊕

(i,k)∈I×Ki

R eik .

The dual space of Rp|q is defined by

(Rp|q)∨ = Hom(Rp|q,R) =
N⊕
i=0

Homγi
(Rp|q,R) ,

where Hom is the internal Hom of Zn2Vec, i.e., the Zn2 -graded vector space of all linear maps,
and where Homγi

is the vector space of all degree γi linear maps. We sometimes write HomZn2 Vec
instead of Hom. The dual basis of (eik)i,k is defined as usual by

εki (e
j
`) = δji δ

k
` ,

so that εki is a linear map of degree γi and

(Rp|q)∨ =
⊕

(i,k)∈I×Ki

R εki .

Let us finally mention that any Zn2 -vector x ∈ Rp|q reads x =
∑

j,` x
`
je
j
` and that

εki (x) = xki , (3.2.9)

as usual.

Notice now that if M is a smooth m-dimensional real manifold and (U,ϕ) is a chart of M ,
the coordinate map ϕ sends any point x ∈M to ϕ(x) = (x1, . . . , xm) ∈ Rm, so that

ϕi(x) = xi . (3.2.10)

Hence, what we refer to as coordinate function xi ∈ C∞(U) is actually the function ϕi. Equa-
tions (3.2.9) and (3.2.10) suggest to associate to any Zn2 -graded vector space Rp|q a Zn2 -manifold
Rp|q with coordinate functions εki . In other words, the associated p|q-dimensional Zn2 -manifold
will be the locally Zn2 -ringed space

Rp|q = (Rp,ORp|q) = (Rp, C∞Rp [[ε
1
1, . . . , ε

qN
N ]]) ,

where C∞Rp is the standard function sheaf of Rp, where the degree γj linear maps ε1
j , . . . , ε

qj
j

(j ∈ {1, . . . , N}) are interpreted as coordinate functions or formal parameters of degree γj, and
where the degree 0 linear maps ε1

0, . . . , ε
p
0 are viewed as coordinates in Rp. We often set

ξ`j := ε`j (j 6= 0) and x` := ε`0 . (3.2.11)

Remark 3.2.4. In the following, we denote the coordinates of Rp|q by

(x`, ξ`j) = (xa, ξA) = (ua) ,

if we wish to make a distinction between the coordinates of degree 0, γ1, . . . , γN , if we distinguish
between zero degree coordinates and non-zero degree ones, or if we consider all coordinates
together.
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We refer to the category of Zn2 -graded vector spaces Rp|q (p, q1, . . . , qN ∈ N) and degree 0
linear maps, as the category Zn2CarVec of Cartesian Zn2 -vector spaces. As just mentioned, the
interpretation of the dual basis as coordinates leads naturally to a map

M : Zn2CarVec 3 Rp|q 7→ Rp|q ∈ Zn2Man ,

where Zn2Man is the category of Zn2 -manifolds and corresponding morphisms. This map can
easily be extended to a functor. Indeed, if L : Rp|q → Rr|s is a morphism in Zn2CarVec (it is
canonically represented by a block diagonal matrix L ∈ gl(r|s×p|q,R)), its dual (Zn2 -transpose)

L∨ : (Rr|s)∨ → (Rp|q)∨ (which is represented by the standard transpose tL ∈ gl(p|q × r|s,R))
is also a degree 0 linear map. If we set

L =
(
L`i
ik

)
,

where i ∈ I, ` ∈ {1, . . . , si} label the row and i ∈ I, k ∈ {1, . . . , qi} label the column, we get

L∨(ε′`i ) =

qi∑
k=1

L`i
ikε

k
i ,

where (ε′`i )i,` is the basis of (Rr|s)∨. When using notation (3.2.11), we obtain

L∗(x′`) := L∨(x′`) =

p∑
k=1

L`0
0k x

k ∈ O0
Rp|q(R

p) (` ∈ {1, . . . , r}) (3.2.12)

and

L∗(ξ′`j ) := L∨(ξ′`j ) =

qj∑
k=1

L`j
jk ξ

k
j ∈ O

γj

Rp|q
(Rp) (j 6= 0, ` ∈ {1, . . . , sj}) . (3.2.13)

These pullbacks define a Zn2 -morphism L : Rp|q → Rr|s . This is the searched Zn2 -morphism
M(L) : M(Rp|q) → M(Rr|s). Since M(L) is defined interpreting the standard transpose tL
as pullback (M(L))∗ of coordinates, we have

(M(M ◦ L))∗ ' tL ◦ tM ' (M(L))∗ ◦ (M(M))∗ = (M(M) ◦M(L))∗ ,

so that M respects composition. Further, it obviously respects identities. Hence, we defined a
functor M.

The pullbacks (3.2.12) and (3.2.13) are actually linear homogeneous Zn2 -functions, i.e., ho-
mogeneous Zn2 -functions in

O lin
Rp|q(R

p) := {
p∑

k=1

rk x
k +

N∑
j=1

qj∑
k=1

rjk ξ
k
j : rk, r

j
k ∈ R} = (Rp|q)∨ ⊂ ORp|q(R

p) , (3.2.14)

where the last equality is obvious because of Equation (3.2.11). Hence, the functorM is valued
in the subcategory Zn2CarMan ⊂ Zn

2Man of Cartesian Zn2 -manifolds Rp|q (p, q1, . . . , qN ∈ N) and
Zn2 -morphisms whose coordinate pullbacks are global linear functions of the source manifold
that have the appropriate degree:

M : Zn2CarVec→ Zn2CarMan .

The inverse ‘vectorification functor’ V of this ‘manifoldification functor’ M is readily defined:
to a Cartesian Zn2 -manifold Rp|q we associate the Cartesian Zn2 -vector space Rp|q, and to a
linear Zn2 -morphism we associate the degree 0 linear map that is defined by the transpose of
the block diagonal matrix coming from the morphism’s linear pullbacks. It is obvious that
V ◦M =M◦ V = id .
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Proposition 3.2.5. We have an isomorphism of categories

M : Zn2CarVec� Zn2CarMan : V (3.2.15)

between the full subcategory Zn2CarVec ⊂ Zn2Vec of Cartesian Zn2 -vector spaces Rp|q and the
subcategory Zn2Car Man ⊂ Zn2Man of Cartesian Zn2 -manifolds Rp|q and Zn2 -morphisms with linear
coordinate pullbacks.

Remark 3.2.6. Let us stress that the Zn2 -vector space of linear Zn2 -functions

(Rp|q)∨ ' O lin
Rp|q(R

p) ⊂ ORp|q(R
p)

is of course not an algebra. In the case p = 0, we get

O lin
R0|q({?}) = Λ lin ⊂ OR0|q({?}) = Λ

where {?} denotes the 0-dimensional base manifold R0 of the Zn2 -point R0|q, where
Λ = R[[θ1

1, . . . , θ
qN
N ]] is the Zn2 -Grassmann algebra that corresponds to R0|q, and where Λ lin is

the Zn2 -vector space of homogeneous degree 1 polynomials in the θ1
1, . . . , θ

qN
N (with vanishing

term Λ lin
0 of Zn2 -degree zero).

We close this subsection with some observations regarding the functor of points.

The Yoneda functor of points of the category Zn2Man is the fully faithful embedding

Y : Zn2Man→ Fun(Zn2Manop, Set) ,

In [13], we showed that Y remains fully faithful for appropriate restrictions of the source and
target of the functor category, as well as of the resulting functor category. More precisely, we
proved that the functor

S : Zn2Man→ Fun0(Zn2Ptsop, A(N)FM) (3.2.16)

is fully faithful. The category A(N)FM is the category of (nuclear) Fréchet manifolds over a (nu-
clear) Fréchet algebra, and the functor category is the category of those functors that send a
Zn2 -Grassmann algebra Λ to a (nuclear) Fréchet Λ0-manifold, and of those natural transforma-
tions that have Λ0-smooth Λ-components. For any M ∈ Zn2Man and any R0|m ' Λ ∈ Zn2Ptsop,
we have

M(Λ) := S(M)(Λ) = Y(M)(Λ) = HomZn2 Man(R
0|m,M) .

On the other hand, the Yoneda functor of points of the category Zn2CarVec is the fully
faithful embedding

• : Zn2CarVec 3 Rp|q 7→ Rp|q := HomZn2 Vec(−,R
p|q) ∈ Fun(Zn2CarVecop, Set) .

The value of this functor on R0|m ' R0|m ' Λ, is the subset

Rp|q(Λ) = HomZn2 Vec(R
0|m,Rp|q) ' HomZn2 CarMan(R

0|m,Rp|q) ⊂ (3.2.17)

Rp|q(Λ) = S(Rp|q)(Λ) = HomZn2 Man(R
0|m,Rp|q) '

N⊕
i=0

qi⊕
k=1

OR0|m,γi({?}) =
N⊕
i=0

qi⊕
k=1

Λγi =
N⊕
i=0

qi⊕
k=1

Λγi ⊗Reik =
N⊕
i=0

Λγi⊗
qi⊕
k=1

Reik =
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(Λ⊗Rp|q)0 = F(Rp|q)(Λ) = Rp|q(Λ) ∈ Λ0Mod .

More precisely,

Rp|q(Λ) = HomZn2 Vec(R
0|m,Rp|q) '

N⊕
i=0

qi⊕
k=1

O lin
R0|m,γi

({?}) = (Λ lin ⊗Rp|q)0 ∈ Set . (3.2.18)

Remark that, if we denote the coordinates of Rp|q compactly by (ua), the bijection in Equation
(3.2.18) sends a degree 0 linear map L to the linear pullbacks L∗(ua) of the corresponding
Zn2 -morphism L =M(L) .

Remark 3.2.7. If we restrict the functor Rp|q (resp., the functor F(Rp|q)) from Zn2CarVecop '
Zn2CarManop (resp., from Zn2Ptsop) to the joint subcategory Zn2CarPtsop of Zn2 -points and Zn2 -
morphisms with linear coordinate pullbacks, the restricted Hom functor Rp|q is actually a
subfunctor of the restricted tensor product functor F(Rp|q). This observation clarifies the
relationship between the fully faithful ‘functor of points’ F(•)(−) = •(−) of the full subcategory
Zn2CarVec ⊂ Zn2Vec and its standard fully faithful Yoneda functor of points •(−).

Indeed, we observed already that the values of the Hom functor on Zn2 -points are subsets of
the values of the tensor product functor. Further, on morphisms, the values of Hom(−,Rp|q)
are restrictions of the values of (−⊗Rp|q)0. Indeed, if

HomZn2 CarPts(R
0|n,R0|m) 3 L ' V(L) = L ∈ HomZn2 Vec(R

0|n,R0|m) ,

the morphisms Rp|q(L) and F(Rp|q)(L) are defined on Rp|q(Λ) and its supset F(Rp|q)(Λ),
respectively. When interpreting an element K of the first as an element of the second, we use
the identifications

K ' K ' (K∗(ua))a ∈
N⊕
i=0

qi⊕
k=1

Λγi .

Similar identifications are of course required when Λ is replaced by Λ′. We thus get

Rp|q(L)(K) = HomZn2 Vec(L,R
p|q)(K) = K ◦ L ' K ◦ L ' (L∗(K∗(ua)))a .

On the other hand, we have

F(Rp|q)(L∗)((K∗(ua))a) = (L∗(K∗(ua)))a ,

since

(L∗ ⊗ 1Rp|q)0 '
N⊕
i=0

qi⊕
k=1

L∗ ,

when read through the isomorphism

N⊕
i=0

Λγi⊗
qi⊕
k=1

R eik '
N⊕
i=0

qi⊕
k=1

Λγi .

This completes the proof of the subfunctor-statement.

3.2.3 Finite dimensional Zn2-graded vector spaces and linear Zn2-manifolds

In this subsection, we extend Equivalence (3.2.15) in a coordinate-free way.
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Finite dimensional Zn2 -graded vector spaces

We focus on the full subcategory Zn2FinVec ⊂ Zn2Vec of finite dimensional Zn2 -graded vector
spaces, i.e., of Zn2 -vector spaces V of finite dimension

p|q (p ∈ N, q = (q1, . . . , qN) ∈ N×N) .

Clearly
Zn2CarVec ⊂ Zn2FinVec

is a full subcategory.

Above, we already used the canonical basis of Rp|q, i.e., the basis

eik = t(0 . . . 0; . . . ; 0 . . . 1 . . . 0; . . . ; 0 . . . 0) ,

where 1 sits in position k of block i. If

(bik)i,k (i ∈ I = {0, . . . , N}, k ∈ Ki = {1, . . . , qi}, deg(bik) = γi ∈ Zn2 )

is a basis of V , the degree respecting linear map

b : V 3 v =
∑
i,k

vki b
i
k 7→

∑
i,k

vki e
i
k = t(v1

0, . . . , v
qN
N ) =: vI ∈ Rp|q (3.2.19)

maps a basis to a basis and is thus an isomorphism of Zn2 -vector spaces.

We already discussed extensively the functor of points F = F(•)(−) = •(−) of Zn2Vec .
Since Zn2FinVec is a full subcategory of Zn2Vec , the functor F remains fully faithful when
restricted to Zn2FinVec :

Proposition 3.2.8. The functor of points F : Zn2FinVec → Fun0(Zn2Pts op, AMod) of the cate-
gory Zn2FinVec is fully faithful.

Remark 3.2.9. Later on, we consider linear Zn2 -manifolds and denote them sometimes using
the same letter V as for Zn2 -vector spaces. We often disambiguate the concept considered by
writing V in the vector space case.

Linear Zn2 -manifolds

In this subsection, we investigate the category of linear Zn2 -manifolds, linear Zn2 -functions of its
objects, as well as its functor of points.

2.3.2.1 Linear Zn2 -manifolds and their morphisms. A Zn2 -manifold of dimension p|q is a locally

Zn2 -ringed space M := (|M |,OM) that is locally isomorphic to Rp|q.

Definition 3.2.10. A linear Zn2 -manifold of dimension p|q is a locally Zn2 -ringed space L =

(|L|,OL) that is globally isomorphic to Rp|q, i.e., it is a Zn2 -manifold such that there exists a
Zn2 -diffeomorphism

h : L −→ Rp|q .

The diffeomorphism h is referred to as a linear coordinate map or a linear one-chart-atlas.

We now mimic Classical Differential Geometry and say that two linear one-chart-atlases are
linearly compatible, if their union is a ‘linear two-chart-atlas’. In other words:
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Definition 3.2.11. Two linear coordinate maps h1, h2 : L → Rp|q are said to be linearly
compatible, if the Zn2 -morphisms

h2 ◦ h−1
1 , h1 ◦ h−1

2 : Rp|q −→ Rp|q

have linear coordinate pullbacks, i.e., if they are Zn2CarMan-morphisms.

Linear compatibility is an equivalence relation on linear one-chart-atlases. There is a 1:1
correspondence between equivalence classes of linear one-chart-atlases and maximal linear at-
lases, i.e., the unions of all linear one-chart-atlases of an equivalence class. For simplicity, we
refer to a maximal linear atlas as a linear atlas.

Just as a classical smooth manifold is a set that admits an atlas, or, better, a set endowed
with an equivalence class of atlases, a linear Zn2 -manifold is a locally Zn2 -ringed space L equipped
with a linear atlas (L, hα)α .

We continue working in analogy with Differential Geometry and define a linear Zn2 -morphism
between linear Zn2 -manifolds as a locally Zn2 -ringed space morphism, or, equivalently, a Zn2 -
morphism, with linear coordinate form:

Definition 3.2.12. Let L and L′ be two linear Zn2 -manifolds of dimension p|q and r|s, respec-
tively. A Zn2 -morphism φ : L→ L′ is linear, if there exist linear coordinate maps

h : L→ Rp|q and k : L′ → Rr|s

in the linear atlases of L and L′, such that the Zn2 -morphism

k ◦ φ ◦ h−1 : Rp|q → Rr|s

has linear coordinate pullbacks.

It follows that any linear coordinate map h of the linear atlas of a linear Zn2 -manifold L, is a
linear Zn2 -morphism between the linear Zn2 -manifolds L and Rp|q. This justifies the name ‘linear
coordinate map’. Further, the inverse h−1 of h is a linear Zn2 -morphism.

Proposition 3.2.13. If φ : L → L′ is a linear Zn2 -morphism, then, for any linear coordinate
maps (L, h′) and (L′, k′) of the linear atlases of L and L′, respectively, the Zn2 -morphism k′◦φ◦h′−1

has linear coordinate pullbacks.

Proof. We use the notations of Definition 3.2.12 and Proposition 3.2.13. Since

k′ ◦ φ ◦ h′−1 = (k′ ◦ k−1) ◦ (k ◦ φ ◦ h−1) ◦ (h ◦ h′−1)

and each parenthesis of the RHS has linear pullbacks, their composite has linear pullbacks as
well.

Proposition 3.2.14. Linear Zn2 -manifolds and linear Zn2 -morphisms form a subcategory
Zn2LinMan ⊂ Zn2Man of the category of Zn2 -manifolds. Further, Cartesian Zn2 -manifolds and
Zn2 -morphisms with linear coordinate pullbacks form a full subcategory Zn2CarMan ⊂ Zn2LinMan.

Proof. If φ : L → L′ and ψ : L′ → L′′ are linear Zn2 -morphisms, the composite Zn2 -morphism
is linear as well. Indeed, if k ◦ φ ◦ h−1 and q ◦ ψ ◦ p−1 have linear pullbacks, then q ◦ ψ ◦ k−1

has linear pullbacks and so has q ◦ (ψ ◦ φ) ◦ h−1 . Further, for any linear Zn2 -manifold L, the
Zn2 -identity map idL is linear, as for any linear coordinate map h, we have h ◦ idL ◦h−1 = idRp|q .
The second statement is obvious.
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3.3.2.2 Sheaf of linear Zn2 -functions.

Definition 3.2.15. Let L ∈ Zn2LinMan be of dimension p|q and let |U | ⊂ |L| be open. A Zn2 -

function f ∈ OL(|U |) is a linear Zn2 -function, if there exists a linear coordinate map h : L→ Rp|q ,
such that

(h∗)−1(f) ∈ O lin
Rp|q(|h|(|U |)) .

We denote the subset of all linear Zn2 -functions of OL(|U |) by O lin
L (|U |) .

The subset O lin
Rp|q

(|h|(|U |)) is defined in the obvious way. If f ∈ O lin
L (|U |), then for any chart

(L, h′) of the linear atlas of L , we have

(h′∗)−1(f) ∈ O lin
Rp|q(|h

′|(|U |)) .

This follows from the equation

(h′∗)−1(f) = (h ◦ h′−1)∗((h∗)−1(f))

and the compatibility of the two charts.

As O lin
L (|U |) ⊂ OL(|U |) is visibly closed for linear combinations, it is a vector subspace of

OL(|U |). Hence, the intersection

O lin
L,γi

(|U |) := O lin
L (|U |) ∩ OL,γi(|U |) ⊂ OL(|U |)

is also a vector subspace. We thus get vector subspaces O lin
L,γi

(|U |) ⊂ O lin
L (|U |), so their direct

sum over i is a vector subspace as well. Since any f ∈ O lin
L (|U |) reads uniquely as

f =
N∑
i=0

fi (fi ∈ OL,γi(|U |)) ,

we get

(h∗)−1f0 +
∑
j

(h∗)−1fj = (h∗)−1f =
∑
`

r` x
` +
∑
j

∑
`

rj` ξ
`
j .

As (h∗)−1 is Zn2 -degree preserving, we find that fi ∈ O lin
L,γi

(|U |), so that

O lin
L (|U |) =

⊕
i

O lin
L,γi

(|U |) ∈ Zn2Vec .

Remark 3.2.16. Observe that:

i. For any open subset |U | ⊂ |L| and any linear coordinate map h : L→ Rp|q , the map

h∗ : O lin
Rp|q(|h|(|U |))→ O

lin
L (|U |)

is an isomorphism of Zn2 -vector spaces of dimension p|q .

ii. The restriction maps and the gluing property of OL endow O lin
L with a sheaf of Zn2 -vector

spaces structure.

iii. A Zn2 -morphism φ : L → L′ between linear Zn2 -manifolds is itself linear, if and only if φ∗

is a degree respecting linear map

φ∗ : O lin
L′ (|L′|)→ O lin

L (|L|) .
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It is straightforward to check the first two statements. For the third one, let L (resp., L′)
be of dimension p|q (resp., r|s) and denote the coordinates of the corresponding Cartesian

Zn2 -manifold by ua = (xa, ξA) (resp., vb = (yb, ηB)). The morphism φ is linear, if and only if
there exist linear coordinate maps (L, h) and (L′, k) , such that k ◦φ ◦ h−1 has linear coordinate
pullbacks, i.e., such that

((h∗)−1 ◦ φ∗ ◦ k∗)(vb) ∈ O lin
Rp|q(R

p) . (3.2.20)

On the other hand, in view of the first item of the previous remark, the condition

φ∗
(
O lin

L′ (|L′|)
)
⊂ O lin

L (|L|)

of the third item is equivalent to asking that

(φ∗ ◦ k∗)(
∑
b

rbv
b) ∈ h∗(O lin

Rp|q(R
p)) . (3.2.21)

The conditions (3.2.20) and (3.2.21) are visibly equivalent.

2.3.2.3 Functor of points of Zn2LinMan. We start with the following

Proposition 3.2.17. For any linear Zn2 -manifold L (of dimension p|q ) and any Zn2 -Grassmann

algebra Λ ' R0|m , the set

L(Λ) := HomZMan(R0|m, L) ' HomZn2 Alg(OL(|L|),Λ)

of Λ-points of L admits a unique Fréchet Λ0-module structure, such that, for any chart h : L→
Rp|q of the linear atlas of L, the induced map

hΛ : L(Λ) 3 x∗ 7→ x∗ ◦ h∗ ∈ Rp|q(Λ)

is a Fréchet Λ0-module isomorphism.

The definition of the category FAMod of Fréchet modules over Fréchet algebras can be found
in Appendix 3.5.1. In the preceding proposition, it is implicit that the (unital) Fréchet algebra
morphism that is associated to hΛ is idΛ0 .

Proof. Let Λ ∈ Zn2GrAlg . In view of the fundamental theorem of Zn2 -morphisms, there is a 1:1
correspondence between the Λ-points x∗ of Rp|q and the (p+ |q|)-tuples

x∗ '
(
xaΛ, ξ

A
Λ

)
∈ Λ×p0 × Λ×q1γ1

× · · · × Λ×qNγN

(we used this correspondence already in Equation (3.2.17)). Indeed, the algebra Λ is the Zn2 -
commutative nuclear Fréchet R-algebra of global Zn2 -functions of some R0|m (in particular, the
degree zero term Λ0 of Λ is a commutative nuclear Fréchet algebra). Hence, all its homogeneous
subspaces Λγi (i ∈ {0, . . . , N}, γ0 = 0) are nuclear Fréchet vector spaces. Since any product
(resp., any countable product) of nuclear (resp., Fréchet) spaces is nuclear (resp., Fréchet), the
set Rp|q(Λ) of Λ-points of Rp|q is a nuclear Fréchet space. The latter statements can be found
in [14]. The Fréchet Λ0-module structure on Rp|q(Λ) is then defined by

/ : Λ0 × Rp|q(Λ) 3 (a, x∗) 7→ a / x∗ := (a · xaΛ, a · ξAΛ ) ∈ Rp|q(Λ) . (3.2.22)

Since this action (which is compatible with addition in Λ0 and addition in Rp|q(Λ)) is defined
using the continuous associative multiplication · : Λγi ×Λγj → Λγi+γj of the Fréchet algebra Λ,
it is (jointly) continuous.
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We now define the Λ0-module structure on L(Λ). Observe first that, for any chart map
h : L � Rp|q : h−1 of the linear atlas of L, the induced maps hΛ : L(Λ) � Rp|q(Λ) : (h−1)Λ

are inverse maps: (h−1)Λ = (hΛ)−1 =: h−1
Λ . For K ∈ N \ {0}, k ∈ {1, . . . , K}, ak ∈ Λ0, and

y∗k ∈ L(Λ), we set ∑
k

ak ? y∗k := h−1
Λ (
∑
k

ak / hΛ(y∗k)) ∈ L(Λ) .

This defines a Λ0-module structure on L(Λ) that makes hΛ a Λ0-module isomorphism. The
Λ0-module structures L(Λ)h and L(Λ)k that are implemented by h and another chart k of the
linear atlas, respectively, are related by the Λ0-module isomorphism

k−1
Λ ◦ hΛ : L(Λ)h → L(Λ)k .

Hence, the Λ0-module structure on L(Λ) is well-defined.

In order to get a Fréchet structure on the real vector space L(Λ) that we just defined, we
need a countable and separating family of seminorms (pn)n∈N, such that any sequence in L(Λ)
that is Cauchy for every pn, converges for every pn to a fixed vector (i.e., a vector that does not
depend on n). We define this family (of course) by transferring to L(Λ) the analogous family
(ρn)n∈N of the Fréchet vector space Rp|q(Λ) (see [14, Theorem 14]). In other words, for each
y∗ ∈ L(Λ), we set

pn(y∗) := ρn(hΛ(y∗)) ∈ R+ .

It is straightforwardly checked that (pn)n∈N is a countable family of seminorms that has the
required properties. Moreover, the vector space isomorphism hΛ is an isomorphism of Fréchet
vector spaces, i.e., a continuous linear map with a continuous inverse. We show that hΛ is
continuous for the seminorm topologies implemented by the pn and the ρn, i.e., that, for all
n ∈ N, there exist m ∈ N and C > 0, such that

ρn(hΛ(y∗)) ≤ C pm(y∗) ,

for all y∗ ∈ L(Λ). This requirement is of course satisfied. Hence, the composite k−1
Λ ◦ hΛ of

isomorphisms of Fréchet spaces is an isomorphism of Fréchet spaces, so that the Fréchet space
structure on L(Λ) is well-defined.

The Λ0-module structure and the Fréchet vector space structure on L(Λ) combine into a
Fréchet Λ0-module structure, if they are compatible, i.e., if the Λ0-action

? : Λ0 × L(Λ) 3 (a, y∗) 7→ h−1
Λ (a / hΛ(y∗)) ∈ L(Λ) (3.2.23)

is continuous. The condition is obviously satisfied as this action is the composite of the contin-
uous maps id×hΛ, / and h−1

Λ . Further, the map hΛ is clearly a Fréchet Λ0-module isomorphism,
for any h in the linear atlas of L.

There is obviously no other Fréchet Λ0-module structure on L(Λ) with that property. Indeed,
if there were, it would be isomorphic to the Fréchet Λ0-module structure on Rp|q(Λ), hence
isomorphic to the Fréchet Λ0-module structure that we just constructed.

In the following, we denote the Λ0-action ? on L(Λ) by simple juxtaposition, i.e., we write
ay∗ instead of a ? y∗ .

To proceed, we need some preparation.

Let Fun0(Zn2Ptsop, FAMod) be the category of functors F , whose values F (Λ) are Fréchet Λ0-
modules, and of natural transformations β, whose Λ-components βΛ are continuous Λ0-linear
maps. We already used above the category Fun0(Zn2Ptsop, AFM) of functors, whose values are
Fréchet Λ0-manifolds, and of natural transformations, whose components are Λ0-smooth maps.
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Proposition 3.2.18. The category Fun0(Zn2Pts op, FAMod) is a subcategory of the category
Fun0(Zn2Pts op, AFM) .

Proof. Observe first that composition of natural transformations (resp., identities of functors)
is (resp., are) induced by composition (resp., identities) in the target category of the functors
considered, which is (resp., are) in both target categories the standard set-theoretical com-
position (resp., identities). Hence, composition and identities are the same in both functor
categories. However, we still have to show that objects (resp., morphisms) of the first functor
category are objects (resp., morphisms) of the second.

Let F be a functor with target FAMod. Since a Fréchet Λ0-module (i.e., a Fréchet vector
space with a (compatible) continuous Λ0-action) is clearly a Fréchet Λ0-manifold, the functor
F sends Zn2 -Grassmann algebras Λ to Fréchet Λ0-manifolds F (Λ). Let now ϕ∗ : Λ → Λ′ be a
morphism of Zn2 -algebras. As F (ϕ∗) : F (Λ) → F (Λ′) is a morphism between Fréchet modules
over the Fréchet algebras Λ0 and Λ′0, respectively, it is continuous and it has an associated
continuous (unital, R-) algebra morphism ψ : Λ0 → Λ′0, such that

F (ϕ∗)(av + a′v′) = ψ(a)F (ϕ∗)(v) + ψ(a′)F (ϕ∗)(v′) , (3.2.24)

for all a, a′ ∈ Λ0 and all v, v′ ∈ F (Λ) . We must show that F (ϕ∗) is a morphism between Fréchet
manifolds over Λ0 and Λ′0, respectively, i.e., we must show that F (ϕ∗) is smooth and has first
order derivatives that are linear in the sense of (3.2.24) (see [13]). Since, for any t ∈ R, we have
ψ(t) = tψ(1) = t, it follows from (3.2.24) that

dxF (ϕ∗)(v) := lim
t→0

1

t
(F (ϕ∗)(x + tv)− F (ϕ∗)(x)) = F (ϕ∗)(v)

and

dk+1
x F (ϕ∗)(v1, . . . , vk+1) = 0 ,

for any x, v, v1, . . . , vk+1 ∈ F (Λ) and any k ≥ 1. Hence, all derivatives exist everywhere and
are (jointly) continuous. This implies that F (ϕ∗) has the required properties, so that F is a
functor with target AFM.

As for morphisms, let η : F → G be a natural transformation between functors valued in
FAMod. Its Λ-components ηΛ : F (Λ) → G(Λ) are continuous and Λ0-linear maps. Repeating
the proof given in the preceding paragraph for F (ϕ∗), we obtain that ηΛ is Λ0-smooth, i.e.,
is smooth and has Λ0-linear first order derivatives. Therefore, the morphism η of the functor
category with target FAMod is a morphism of the functor category with target AFM .

Since

Zn2LinMan ⊂ Zn2Man and Fun0(Zn2Ptsop, FAMod) ⊂ Fun0(Zn2Ptsop, AFM)

are subcategories, we expect that:

Proposition 3.2.19. The functor

S : Zn2Man→ Fun0(Zn2Pts op, AFM) (3.2.25)

(see Equation (3.2.16)) restricts to a functor

S : Zn2LinMan→ Fun0(Zn2Pts op, FAMod) . (3.2.26)
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Proof. We have to explain why S sends linear Zn2 -manifolds and linear Zn2 -morphisms to objects
and morphisms, respectively, of the target subcategory.

Let L ∈ Zn2LinMan. The functor S(L) is an object of the functor category with target AFM .
Since composition and identities are the same in both target categories, it suffices to show that,
for any Zn2 -Grassmann algebra Λ, the value S(L)(Λ) = L(Λ) is a Fréchet Λ0-module and that,
for any Zn2 -algebra morphism ϕ∗ : Λ→ Λ′, the morphism

L(ϕ∗) : L(Λ) 3 y∗ 7→ ϕ∗ ◦ y∗ ∈ L(Λ′)

is a morphism of the category FAMod. The first of the preceding conditions holds in view of
Proposition 3.2.17. We start proving the second condition for L = Rp|q . Since Rp|q(ϕ∗) is a
morphism of AFM , it is smooth, hence, continuous. Further, omitting the summation symbols
and using our standard notation, we get

Rp|q(ϕ∗)(ak / x∗k) = Rp|q(ϕ∗)(ak · xaΛ,k , ak · ξAΛ,k) = (ϕ∗(ak) · ϕ∗(xaΛ,k) , ϕ∗(ak) · ϕ∗(ξAΛ,k))

= ϕ∗(ak) / Rp|q(ϕ∗)(x∗k) . (3.2.27)

It now suffices to recall that the Zn2 -algebra morphism ϕ∗ is the pullback ϕ∗? over the whole
base manifold {?} of a Zn2 -morphism ϕ : R0|m′ → R0|m, and that all pullbacks of Zn2 -morphisms
are continuous, so that the restriction ϕ∗ : Λ0 → Λ′0 is a continuous algebra morphism. We
are now able to prove that the second condition holds also for an arbitrary linear Zn2 -manifold
L . Indeed, since ϕ∗ : Λ → Λ′ is a morphism of Zn2 -algebras, the map L(ϕ∗) : L(Λ) → L(Λ′) is
a morphism of AFM, hence, it is continuous. Recall now that any chart h : L → Rp|q is a Zn2 -
morphism, so that S(h) : L(−) → Rp|q(−) is a natural transformation h− with Λ-components
hΛ : L(Λ) → Rp|q(Λ) that are Fréchet Λ0-module isomorphisms in view of Proposition 3.2.17.
Naturality of h− implies that

hΛ′ ◦ L(ϕ∗) = Rp|q(ϕ∗) ◦ hΛ ,

and, due to invertibility, that

L(ϕ∗) = h−1
Λ′ ◦ R

p|q(ϕ∗) ◦ hΛ .

Definition (3.2.23) yields

L(ϕ∗)(ak ? y∗k) = (h−1
Λ′ ◦ R

p|q(ϕ∗) ◦ hΛ)(h−1
Λ (ak / hΛ(y∗k))) = ϕ∗(ak) ? L(ϕ∗)(y∗k)

(we used our standard notation). Hence, the functor S(L) is an object of the functor category
with target FAMod.

As for morphisms, we consider a linear Zn2 -morphism

φ : L→ L′

and will prove that S(φ), which is a natural transformation φ− of the functor category with
target AFM, i.e., a natural transformation with Λ0-smooth Λ-components φΛ, has actually con-
tinuous (but this results from Λ0-smoothness) Λ0-linear components.

Let p|q (resp., r|s) be the dimension of L (resp., of L′). We first discuss the case of a linear
Zn2 -morphism

Φ : Rp|q → Rr|s
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between the corresponding Cartesian Zn2 -manifolds with canonical coordinates (xa, ξA) and
(yb, ηB), respectively. We know from [13] that, if the Zn2 -morphism (resp., the linear Zn2 -
morphism) Φ reads

Φ∗(yb) =
∑
|α|≥0

Φb
α(x) ξα (resp., =

∑
a

Lb
ax

a) , (3.2.28a)

Φ∗(ηB) =
∑
|α|>0

ΦB
α (x) ξα (resp., =

∑
A

LB
Aξ

A) , (3.2.28b)

(where the right-hand sides have the appropriate degree and where the coefficients L∗∗ are real
numbers), then the Λ-component ΦΛ associates to the Λ-point x∗ ' (xaΛ; ξAΛ ) =

(
xa||, x̊

a
Λ; ξAΛ

)
of

Rp|q(Λ), the Λ-point x∗ ◦ Φ∗ ' (ybΛ; ηBΛ ) of Rr|s(Λ) that is given by

ybΛ =
∑
|α|≥0

∑
|β|≥0

1

β!
(∂βxΦb

α)(x||) x̊
β
Λ ξ

α
Λ (resp., =

∑
a

Lb
ax

a
Λ) , (3.2.29a)

ηBΛ =
∑
|α|>0

∑
|β|≥0

1

β!
(∂βxΦB

α )(x||) x̊
β
Λ ξ

α
Λ (resp., =

∑
A

LB
Aξ

A
Λ ) . (3.2.29b)

Here, we used the obvious decomposition Λ = R× Λ̊ and wrote xaΛ = (xa||, x̊
a
Λ) . The particular

linear versions of Equations (3.2.29a) and (3.2.29b) (in parentheses), show that the component
ΦΛ is Λ0-linear, as needed.

In the general case of a linear Zn2 -morphism φ : L → L′, the Zn2 -morphism Φ := k ◦ φ ◦
h−1 : Rp|q → Rr|s has linear coordinate pullbacks Φ∗(yb) and Φ∗(ηB) (and is thus a linear Zn2 -
morphism), for any charts h and k of L and L′, respectively. Since φ = k−1 ◦ Φ ◦ h, we have
φΛ = k−1

Λ ◦ΦΛ ◦hΛ and, in view of Proposition 3.2.17 and the result of the preceding paragraph,
all three factors of the RHS are Λ0-linear.

Finally, the natural transformation S(φ) is a natural transformation of the functor category
with target FAMod.

Theorem 3.2.20. The functor of points

S : Zn2LinMan→ Fun0(Zn2Pts op, FAMod)

of the category Zn2LinMan is fully faithful.

Proof. We need to prove that the map

SL,L′ : HomZn2 LinMan(L, L
′) 3 φ 7→ φ− ∈ HomFun0(Zn2 Pts op,FAMod)(L(−), L′(−))

is bijective, for all linear Zn2 -manifolds L, L′.

Since S is the restriction of the fully faithful functor S : Zn2Man→ Fun0(Zn2Ptsop, AFM), the
map SL,L′ is injective.

To prove that SL,L′ is also surjective, it actually suffices to show that the property holds for
Cartesian Zn2 -manifolds. Indeed, in this case, if η : L(−) → L′(−) is a natural transformation
of Fun0(Zn2Ptsop, FAMod), then k− ◦ η ◦ h−1

− is a natural transformation in the same category
from Rp|q(−) to Rr|s(−), and this transformation is implemented by a linear Zn2 -morphism
ϕ : Rp|q → Rr|s. It follows that

η = k−1
− ◦ ϕ− ◦ h− = (k−1 ◦ ϕ ◦ h)− ,
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where the latter composite is a linear Zn2 -morphism.

Let now H : Rp|q(−)→ Rr|s(−) be a natural transformation of Fun0(Zn2Ptsop, FAMod), hence,
a natural transformation of Fun0(Zn2Ptsop, AFM). We know from [13] that H is implemented by
a Zn2 -morphism Φ : Rp|q → Rr|s, but we still have to prove that this morphism is linear. It
follows from Equations (3.2.29a) and (3.2.29b) that HΛ = ΦΛ is given by

ybΛ =
∑
|α|≥0

∑
|β|≥0

F b
αβ(x||) x̊

β
Λ ξ

α
Λ , (3.2.30a)

ηBΛ =
∑
|α|>0

∑
|β|≥0

FB
αβ(x||) x̊

β
Λ ξ

α
Λ , (3.2.30b)

where we set

F ∗αβ(x) :=
1

β!
∂βxΦ∗α ∈ C∞(Rp) (3.2.31)

(the Φ∗α ∈ C∞(Rp) are the coefficients of the coordinate pullbacks by Φ, see Equations (3.2.28a)
and (3.2.28b)), and where the RHS-s have of course the same Zn2 -degree as the corresponding
coordinates of Rr|s. Since HΛ is Λ0-linear, we have∑

α

∑
β

F ∗αβ(r x||) r
|α|+|β|x̊βΛ ξ

α
Λ = r

∑
α

∑
β

F ∗αβ(x||) x̊
β
Λ ξ

α
Λ ,

i.e.,
r|α|+|β|F ∗αβ(r x||) = r F ∗αβ(x||) ,

for any r ∈ R>0 ⊂ Λ0, any α, β and for any x|| ∈ Rp. When deriving with respect to r, we
obtain

r|α|+|β|−1
(
(|α|+ |β|)F ∗αβ(rx||) + r

p∑
a=1

xa||(∂xa||F
∗
αβ)(rx||)

)
= F ∗αβ(x||) ,

so that setting r = 1 yields

p∑
a=1

xa||∂xa||F
∗
αβ = (1− n)F ∗αβ(x||) (n := |α|+ |β| ∈ N) , (3.2.32)

again for all α, β and all x|| ∈ Rp.

Recall now that Euler’s homogeneous function theorem states that, if F ∈ C1(Rp \ {0}),
then, for any ν ∈ R, we have

p∑
a=1

xa∂xaF = νF (x), ∀x ∈ Rp\{0} is equivalent to F (rx) = rνF (x), ∀r > 0,∀x ∈ Rp\{0} .

In view of (3.2.32), we thus get

F ∗αβ(rx||) = r1−nF ∗αβ(x||), ∀r > 0,∀x|| ∈ Rp , (3.2.33)

where we could extend the equality from Rp \ {0} to Rp due to continuity. If r tends to 0+, the
limit of the LHS is F ∗αβ(0) ∈ R and, for n = 0 (resp., n = 1; resp., n ≥ 2), the limit of the RHS

is 0 (resp., F ∗αβ(x||); resp., +∞ · F ∗αβ(x||)).

In the case n ≥ 2, we conclude that

F ∗αβ(x||) = 0, ∀x|| ∈ Rp,∀α, β : |α|+ |β| ≥ 2 . (3.2.34)
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For n = 0, we get

F ∗00(0) = 0 .

Observe that α = β = 0 is only possible in Equation (3.2.30a). Differentiating (3.2.33), in the
case n = 0, with respect to any component xa|| of x|| and simplifying by r, we obtain

(∂xa||F
b
00)(rx||) = ∂xa||F

b
00(x||) ,

and taking the limit r → 0+, we get

∂xa||F
b
00(x||) = ∂xa||F

b
00(0) =: Lb

a ∈ R .

Integration yields

F b
00(x||) =

∑
a

Lb
ax

a
||, ∀x|| ∈ Rp,∀b , (3.2.35)

as F b
00(0) = 0 .

In the remaining case n = |α| + |β| = 1, we have necessarily α = 0 and β = ea, or
α = eA and β = 0 (the e∗ are of course the vectors of the canonical basis of Rp and R|q|,
respectively). For Zn2 -degree reasons, the first (resp., second) possibility is incompatible with
Equation (3.2.30b) (resp., Equation (3.2.30a)). Hence, the only terms in (3.2.30a) that still
need being investigated are the terms (α, β) = (0, ea). It follows from Equation (3.2.33) and
its limit r → 0+ (see above) that F b

0 ea(x||) = Kb
a , where we set Kb

a := F b
0 ea(0) ∈ R . However,

Equations (3.2.31) and (3.2.35) imply that

Kb
a = F b

0 ea(x||) = ∂xa||F
b
00(x||) = Lb

a ,

so that

F b
0 ea(x||) = Lb

a ∈ R, ∀x|| ∈ Rp, ∀a, b . (3.2.36)

In Equation (3.2.30b), the only terms that still need being investigated are the terms (α, β) =
(eA, 0). Using again the limit r → 0+ of Equation (3.2.33), we find

FB
eA0(x||) = LB

A, ∀x|| ∈ Rp,∀A,B , (3.2.37)

where we wrote LB
A instead of FB

eA0(0) .

When combining now the results of Equations (3.2.34), (3.2.35), (3.2.36), and (3.2.37), we
see that Equations (3.2.30a) and (3.2.30b) reduce to

ybΛ =
∑
a

Lb
a (xa|| + x̊aΛ) and ηBΛ =

∑
A

LB
A ξ

A
Λ (3.2.38)

and that the Zn2 -morphism Φ that induces the natural transformation H is defined by the
coordinate pullbacks

Φ∗(yb) =
∑
a

Lb
a x

a and Φ∗(ηB) =
∑
A

LB
A ξ

A ,

i.e., that Φ is linear (see (3.2.28a), (3.2.28b), (3.2.29a), and (3.2.29b)).
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Isomorphism between finite dimensional Zn2 -graded vector spaces and linear Zn2 -
manifolds

In this subsection, we extend the isomorphism

M : Zn2CarVec
 Zn2CarMan : V

of Proposition 3.2.5 between the full subcategories Zn2CarVec ⊂ Zn2FinVec and Zn2CarMan ⊂
Zn2LinMan, to an isomorphism

M : Zn2FinVec
 Zn2LinMan : V .

3.2.3.1 Zn2 -symmetric tensor algebra. We start with some remarks on tensor and Zn2 -
symmetric tensor algebras over a (finite dimensional) Zn2 -vector space (see [36] and [9]).

Let

V =
N⊕
i=0

Vi :=
N⊕
i=0

Vγi ∈ Zn2FinVec

be of dimension p|q . The Zn2 -symmetric tensor algebra of V is defined exactly as in the non-
graded case, as the quotient of the Zn2 -graded associative unital tensor algebra of V by the
homogeneous ideal

Ī = (vi ⊗ vj − (−1)〈γi,γj〉 vj ⊗ vi : vi ∈ Vi, vj ∈ Vj) .

More precisely, for k ≥ 2, we have

V ⊗k =
N⊕

i1,...,ik=0

Vi1 ⊗ . . .⊗ Vik =
⊕

i1≤...≤ik

Vi1,...,ik :=
⊕

i1≤...≤ik

( ⊕
σ∈Perm

Vσi1 ⊗ . . .⊗ Vσik
)
, (3.2.39)

where Perm is the set of all permutations of i1 ≤ . . . ≤ ik . For instance, if n = 1, i.e., in the
standard super case, the space V ⊗3 is the direct sum of the tensor products whose three factors
have the subscripts 000, 001, 010, 011, 100, 101, 110, 111 . The notation we just introduced means
that we write

V ⊗3 = V000 ⊕ V001 ⊕ V011 ⊕ V111 , (3.2.40)

where we used the lexicographical order and where

V000 = V0 ⊗ V0 ⊗ V0, V001 = V0 ⊗ V0 ⊗ V1 ⊕ V0 ⊗ V1 ⊗ V0 ⊕ V1 ⊗ V0 ⊗ V0, et cetera .

Further, as we are dealing with formal power series in this paper, we define the Zn2 -graded
tensor algebra of V by

TV := ΠkV
⊗k ,

where Πk means that we consider not only finite sums of tensors of different tensor degrees,
but full sequences of such tensors. The vector space structure on such sequences is obvious
and the algebra structure is defined exactly as in the standard case. Indeed, for T k ∈ V ⊗k and
U ` ∈ V ⊗`, we have T k ⊗ U ` ∈ V ⊗(k+`) and we just extend this tensor product by linearity. In
other words, if

T =
∞∑
k=0

T k ∈ TV and U =
∞∑
`=0

U ` ∈ TV ,

we set
T ⊗ U =

∑
k

∑
`

T k ⊗ U ` =
∑
m

∑
k+`=m

T k ⊗ U ` ∈ TV . (3.2.41)
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It is clear that the just defined tensor multiplication endows TV with a Zn2 -graded algebra
structure. Indeed, since

V ⊗k =
⊕

i1≤...≤ik

Vi1,...,ik =
N⊕
p=0

⊕
i1≤...≤ik∑
j γij

=γp

Vi1,...,ik =:
N⊕
p=0

(V ⊗k)p

is visibly a Zn2 -graded vector space, the space TV is itself Zn2 -graded:

TV = Πk

N⊕
p=0

(V ⊗k)p =
N⊕
p=0

Πk (V ⊗k)p =:
N⊕
p=0

(TV )p .

Now, if T ∈ (TV )p and U ∈ (TV )q , we have T k ∈ (V ⊗k)p and U ` ∈ (V ⊗`)q , so that T ⊗ U ∈
(TV )p+q (where p+ q means γp + γq), which shows that TV is a Zn2 -graded (associative unital)
algebra (over R), as announced.

The ideal Ī is homogeneous with respect to the decomposition

TV = Πk

⊕
i1≤...≤ik

Vi1,...,ik , i.e., Ī = Πk(≥2)

⊕
i1≤...≤ik

(Vi1,...,ik ∩ Ī) .

Therefore, the Zn2 -symmetric tensor algebra of V is given by

S̄V = Πk

⊕
i1≤...≤ik

Vi1,...,ik/(Vi1,...,ik ∩ Ī) =: Πk

⊕
i1≤...≤ik

Vi1 � . . .� Vik

=
N⊕
p=0

Πk

⊕
i1≤...≤ik∑
j γij

=γp

Vi1 � . . .� Vik , (3.2.42)

see [9] . We denote by � the Zn2 -commutative multiplication that is induced on S̄V by the
multiplication ⊗ of TV . By definition, we have, for [T ] ∈ (S̄V )γi and [U ] ∈ (S̄V )γj (obvious
notation),

[T ]� [U ] = [T ⊗ U ] = (−1)〈γi,γj〉[U ]� [T ] .

For instance, if vi ∈ Vi ⊂ (S̄V )γi , vj ∈ Vj ⊂ (S̄V )γj and if i ≤ j , we get

vi � vj = [vi ⊗ vj] = [(−1)〈γi,γj〉vj ⊗ vi] = (−1)〈γi,γj〉vj � vi ∈ Vi � Vj . (3.2.43)

Notice further that, if i < j, the linear map

ι : Vi ⊗ Vj 3 T 7→ [T ] ∈ Vi � Vj (ι : Vi ⊗ Vj 3 vi ⊗ vj 7→ vi � vj ∈ Vi � Vj) (3.2.44)

is a vector space isomorphism. Indeed, if [T ] = 0, the representative T is a vector in (Vi⊗ Vj ⊕
Vj ⊗ Vi) ∩ Ī and is therefore a finite sum of generators of Ī :

(−1)〈γi,γj〉
∑
k

vkj ⊗ vki =
∑
k

vki ⊗ vkj − T ∈ (Vi ⊗ Vj) ∩ (Vj ⊗ Vi) = {0} . (3.2.45)
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It follows that the LHS of Equation (3.2.45) vanishes; hence, the first term of the RHS vanishes,
due to the isomorphism Vi ⊗ Vj ' Vj ⊗ Vi , and thus T vanishes as well. In order to show that
ι is also surjective, consider an arbitrary vector in Vi � Vj . It reads

[T ] = [
∑
k

vki ⊗ vkj +
∑
`

w`j ⊗ w`i ] .

The image by ι of ∑
k

vki ⊗ vkj + (−1)〈γi,γj〉
∑
`

w`i ⊗ w`j ∈ Vi ⊗ Vj

is the corresponding class. This class coincides with [T ] , since the difference of the representa-
tives is a vector of Ī.

It follows that, for n = 2 for instance, we have in particular

V00�V00�V01�V10�V10�V10�V11 ' �2V00⊗V01⊗�3V10⊗V11 ' ∨2V00⊗V01⊗∧3V10⊗V11 ,
(3.2.46)

where ∨ (resp., ∧) is the symmetric (resp., antisymmetric) tensor product. Moreover, if the
(finite dimensional) vector space V has dimension q0|q1, q2, q3, we denote the vectors of its basis
(in accordance with the notation we adopted earlier in this text) by bij , where i ∈ {0, 1, 2, 3}
refers to the degrees 00, 01, 10, 11 and where j ∈ {1, . . . , qi} . The basis of the Zn2 -symmetric
tensor product (3.2.46) is then made of the tensors

b0
j1
∨ b0

j2
⊗ b1

j3
⊗ b2

j4
∧ b2

j5
∧ b2

j6
⊗ b3

j7

(j1 ≤ j2 and j4 < j5 < j6) , which can also be written

b0
j1
� b0

j2
� b1

j3
� b2

j4
� b2

j5
� b2

j6
� b3

j7

(j1 ≤ j2 and j4 < j5 < j6) (see (3.2.44)). More generally, the basis of Vi1�. . .�Vik (i1 ≤ . . . ≤ ik)
is made of the tensors

bi1j1 � . . .� b
ik
jk

(3.2.47)

(j` ≤ j`+1 [resp., <], if i` = i`+1 and 〈γi` , γi`+1
〉 even [resp., odd]) . To refer to the previous

condition regarding the j-s, we write in the following j1 C . . .C jk .

Observe also that

SkV =
⊕

i1≤...≤ik

Vi1 � . . .� Vik = Sk
⊕
i

Vi =
(⊗

i

SVi
)k
,

as well as that, in order to define a linear map on Vi1 � . . . � Vik (see (3.2.46)), it suffices to
define a k-linear map on Vi1 × . . .× Vik that is Zn2 -commutative in the variables i` = . . . = im.

3.2.3.2. Manifoldification functor. If V is a Zn2 -graded vector space, its dual V ∨ is defined by

V ∨ := Hom(V,R) =
N⊕
i=0

Homγi
(V,R) =

N⊕
i=0

Hom(Vi,R) =
N⊕
i=0

(Vi)
∨ ∈ Zn2Vec .

More explicitly, we consider the space of R-linear maps from V to R of any Zn2 -degree. It is
clear that the linear maps of degree γi are the linear maps from Vi to R (that vanish in any
other degree). Hence,

(V ∨)i = (Vi)
∨ =: V ∨i .
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It follows that, if V is finite dimensional of dimension p|q , its dual V ∨ has the same dimension.
Moreover, any basis (bik)i,k (i ∈ {0, . . . , N} and k ∈ {1, . . . , qi}, where we set q0 := p) of V
defines a dual basis (βki )i,k of V ∨ .

Let now V ∈ Zn2FinVec be of dimension p|q . We set

V ∨∗ :=
N⊕
j=1

V ∨j ∈ Zn2FinVec (dim(V ∨∗ ) = 0|q) .

Proposition 3.2.21. If V is a Zn2 -graded vector space of dimension p|q , there is a non-
canonical isomorphism of Zn2 -commutative associative unital R-algebras

[ : S̄(V ∨∗ )
∼−→ R[[ξ]] , (3.2.48)

where R[[ξ]] is the global function algebra of R0|q .

Proof. As usual, we ordered the Zn2 -degrees lexicographically, so that the ξ`j-s are ordered un-
ambiguously. We have

R[[ξ]] = ΠαR ξα ,

where the multi-index α has components α`j ∈ N (resp., α`j ∈ {0, 1}), if 〈γj, γj〉 is even (resp.,
odd).

On the other hand, it follows from Equations (3.2.42) and (3.2.47) that, choosing a basis
(bj`)j,` of V∗ (defined similarly as V ∨∗ ) and denoting its dual basis by (β`j)j,` , leads to

S̄(V ∨∗ ) = Πk

⊕
j1≤...≤jk

⊕
`1C...C`k

R β`1j1 � . . .� β
`k
jk

= Πk

⊕
|α|=k

R βα = ΠαR βα, (3.2.49)

where α`j ∈ N (resp., α`j ∈ {0, 1}), if 〈γj, γj〉 is even (resp., odd).

In view of (3.2.41) and (3.2.43), the multiplications of R[[ξ]] and S̄(V ∨∗ ) are exactly the
same, so that the two Zn2 -commutative algebras are canonically isomorphic, once a basis of V∗
has been chosen.

Remark 3.2.22. We denoted the isomorphism by [ to remind us of its dependence on the
basis (bj`)j,` .

We are now prepared to define the linear Zn2 -manifold associated to a finite dimensional
Zn2 -vector space. From here we denote the vector space by V instead of V and reserve the
notation V for the manifold V :=M(V) .

Hence, let V ∈ Zn2FinVec be of dimension p|q . The p-dimensional vector space V0 of degree
0 is of course a smooth manifold of dimension p , as well as a linear Zn2 -manifold V0 of dimension
p|0 . On the other hand, the algebra S̄(V∨∗ ) is a sheaf of Zn2 -commutative associative unital R-
algebras over {?}, i.e., it is a Zn2 -ringed space with underlying topological space {?} , and, in view
of Proposition 3.2.21, this space is (non-canonically) globally isomorphic to R0|q = ({?},R[[ξ]]) .
Hence, the space ({?}, S̄(V∨∗ )) is a linear Zn2 -manifold V> of dimension 0|q . Finally, the product
V = V0×V> is a Zn2 -manifold of dimension p|q , with base manifold V0×{?} ' V0 and function
sheaf OV that is, for any open subset Ω ⊂ V0 ' Rp, given by

OV (Ω) = OV0×V>(Ω×{?}) = C∞V0
(Ω)⊗̂ROV>({?}) ' C∞(Ω)⊗̂R R[[ξ]] = C∞(Ω)[[ξ]] = ORp|q(Ω)

(3.2.50)
(since Ω and {?} are Zn2 -chart domains; for more information about the problem with the
function sheaf of product Zn2 -manifolds, we refer the reader to [15]). In particular, the Zn2 -
algebras OV (V0) and ORp|q(R

p) are isomorphic (see also Definition 13 of product Zn2 -manifolds
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in [15]), so that the Zn2 -manifolds V and Rp|q are diffeomorphic (given what has been said above,
the diffeomorphism is implemented by the choice of a basis of V). Finally V ∈ Zn2LinMan
(dimV = p|q). We define the manifoldification functor M on objects by

M(V) = V . (3.2.51)

We now define M on morphisms. A degree zero linear map L : V → W between finite
dimensional vector spaces (of dimensions p|q and r|s , respectively) is a family of linear maps
Li : Vi →Wi (i ∈ {0, . . . , N}). We denote the transpose maps by tLi : W∨

i → V∨i .

The linear map L0 : V0 →W0 is of course a smooth map L0 : V0 → W0, where V0,W0 are
the vector spaces V0,W0 viewed as smooth manifolds. The map L0 can also be interpreted as
Zn2 -morphism L0 : V0 → W0 between the Zn2 -manifolds V0,W0 (which are of dimension zero in
all non-zero degrees). The base morphism of L0 is L0 itself and, for any open subset Ω ⊂ W0,
the pullback (L0)∗Ω is the (unital) algebra morphism −◦L0|ω : C∞(Ω)→ C∞(ω) (ω := L−1

0 (Ω))
that extends the transpose tL0(−) = − ◦ L0 .

The linear maps tLj : W∨
j → V∨j (j ∈ {1, . . . , N}) define a linear map

S̄(tL) : S̄(W∨
∗ )→ S̄(V∨∗ ) .

Observe first that to define such a map, it suffices to define a linear map in each tensor degree
k, hence, it suffices to define a linear map

(tL)�kj1...jk : W∨
j1
� . . .�W∨

jk
→ V∨j1 � . . .�V∨jk ,

for any j1 ≤ . . . ≤ jk (ja ∈ {1, . . . , N}). Since the k-linear maps

(tL)×kj1...jk : W∨
j1
× . . .×W∨

jk
3 (ω1

j1
, . . . , ωkjk) 7→

tLj1(ω1
j1

)� . . .� tLjk(ω
k
jk

) ∈ V∨j1 � . . .�V∨jk

are Zn2 -commutative in the variables j` = . . . = jm, they define the degree zero linear maps
(tL)�kj1...jk (we set (tL)� 0 = idR) and thus the degree zero linear map S̄(tL) that we are looking
for. In view of our definitions, the latter is a (unital) Zn2 -algebra morphism between the global
function algebras of the Zn2 -manifoldsW> and V>, and it therefore defines a unique Zn2 -morphism
L> : V> → W> . The base morphism of L> is the identity c : {?} → {?} .

We thus get a Zn2 -morphism

M(L) := L := L0 × L> :M(V) = V = V0 × V> →M(W) = W = W0 ×W> , (3.2.52)

with base map L0 × c ' L0 and pullback (Ω open subset of W0 , ω := L−1
0 (Ω))

L∗Ω : OW (Ω) = C∞W0
(Ω)⊗̂R S̄(W∨

∗ )→ OV (ω) = C∞V0
(ω)⊗̂R S̄(V∨∗ ) , (3.2.53)

which is fully defined by (− ◦ L0|ω)⊗ S̄(tL) .

We must now prove that the Zn2 -morphismM(L) = L is a morphism of Zn2LinMan, i.e., that
in linear coordinates it has linear coordinate pullbacks. As said above, the linear coordinate map
k : W → Rr|s is the product of the linear coordinate maps k0 : W0 → Rr|0 and k> : W> → R0|s .
The first of these coordinate maps is implemented by a basis bW of W0 and its global pullback
b∗W : C∞(Rr)→ C∞W0

(W0) sends a coordinate function y` ∈ C∞(Rr) to

b∗W (y`) = y` ◦ bW = β`W ∈ C∞W0
(W0) ,

where βW is the dual basis (observe that b∗W extends the transpose of bW viewed as vector space
isomorphism). Similarly, it is clear from Proposition 3.2.21 that the global pullback [−1

W of the
second coordinate map sends a coordinate function η`j ∈ R[[η]] to

[−1
W (η`j) = β`j ∈ S̄(W∨

∗ ) ,
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where (β`j)j,` is the dual of a basis of W∗ . Based on what we just said and on the statement
(3.2.53), we get that the coordinate pullbacks in the linear coordinate expression of L are

(b∗V )−1((b∗W (y`)) ◦ L0) = (b∗V )−1(tL0(β`W )) = (b∗V )−1(
∑
k

(L0)`kβ
k
V ) =

∑
k

(L0)`kx
k

and
[V (tLj([

−1
W (η`j))) = [V (tLj(β

`
j)) = [V (

∑
k

(Lj)
`
kβ

k
j ) =

∑
k

(Lj)
`
kξ
k
j ,

where the notations are self-explanatory. Hence, M(L) : M(V) → M(W) is a morphism of
Zn2LinMan .

Since M(L) is essentially the transpose of L , we have defined a functor

M : Zn2FinVec→ Zn2LinMan

and this functor coincides on Zn2CarVec with the functor M that we defined earlier.

We already mentioned that the Zn2 -diffeomorphism, say h , between V =M(V) and Rp|q is
implemented by a basis (bik)i,k of V. Now we can explain this observation in more detail. Indeed,
the basis chosen provides a Zn2 -vector space isomorphism b : V → Rp|q , hence, the image
M(b) : M(V) → M(Rp|q) is a Zn2 -diffeomorphism (it is even an isomorphism of Zn2LinMan),
say b : V → Rp|q . The diffeomorphism b = M(b) is a special case of the map L = M(L)
of Zn2LinMan , whose construction has been described above. It is almost obvious from the
penultimate paragraph that the diffeomorphism h coincides with the diffeomorphism b . Indeed,
the diffeomorphism h is the product of two Zn2 -diffeomorphisms h0 : V0 → Rp|0 and h> : V> →
R0|q (see k in the penultimate paragraph). The same holds for b , which is defined as b = b0×b> ,
where b0 : V0 → Rp|0 and b> : V> → R0|q (see (3.2.52) and (3.2.53)). The map h0 is canonically
induced by the basis (b0

k)k of V0 , and so is b0 ; hence h0 = b0 . The Zn2 -diffeomorphism b> is
defined by the corresponding Zn2 -algebra isomorphism

S̄(tb) : S̄((R0|q)∨)→ S̄(V∨∗ ) ,

where the source algebra is ΠαR εα = R[[ξ]] . As seen above, this algebra morphism is fully
defined by the transposes tbj : (Rqj)∨ → V∨j and their action on the basis (ε`j)` . The action is

tbj(ε
`
j) = ε`j ◦ bj = β`j ,

since the image of any vj =
∑

k v
k
j b

j
k ∈ Vj by the two maps is v`j . It follows that

S̄(tb) = [−1 . (3.2.54)

This yields b> = h> . Finally, we get

h = b =M(b) . (3.2.55)

3.3.3.3. Vectorification functor. In this subsection, we define the vectorification functor

V : Zn2LinMan→ Zn2FinVec .

If L ∈ Zn2LinMan has dimension p|q , we set

V(L) := L :=
(
O lin

L (|L|)
)∨

=
⊕
i

(O lin
L,γi

(|L|))∨ =:
⊕
i

Li ∈ Zn2FinVec , (3.2.56)



96

where Li has dimension qi (q0 = p). Further, in view of Item (iii) of Remark 3.2.16, if φ : L→ L′

is a morphism of Zn2LinMan, then tφ∗ is a degree preserving linear map

V(φ) := Φ := tφ∗ : V(L) =
(
O lin

L (|L|)
)∨ → (

O lin
L′ (|L′|)

)∨
= V(L′) .

The definition of V(φ) implies that V is a functor.

2.3.3.4. Compositions of the manifoldification and the vectorification functors.

(i) We first turn our attention to V ◦M . If

V ∈ Zn2FinVec (dim V = p|q) ,

its image
M(V) = V = V0 × V> ∈ Zn2LinMan (dimV = p|q)

is the product of the linear Zn2 -manifolds V0 and V> . Let (bi`)i,` be a basis of V with dual (β`i )i,`
and induced Zn2 -vector space isomorphism b : V→ Rp|q (we denote the induced diffeomorphism
from V0 to Rp by b0). As explained above, it defines a linear coordinate map

h =M(b) : V → Rp|q (3.2.57)

with pullback morphism

h∗ = (− ◦ b0)⊗̂R [
−1) : C∞(Rp)⊗̂R R[[ξ]]→ C∞V0

(V0)⊗̂R S̄(V∨∗ )

(see (3.2.55), (3.2.53) and (3.2.54)). Using Equation (3.2.14), denoting the basis of (Rp|q)∨ as
usual by (ε`i)i,` , and remembering the identifications (3.2.11), we thus get

V(M(V)) =
(
O lin
V (V0)

)∨
=
(
h∗O lin

Rp|q(R
p)
)∨

=
(
h∗(
⊕
`

R ε`0 ⊕
⊕
j,`

R ε`j)
)∨

=

(⊕
`

R (ε`0 ◦ b0)⊕
⊕
j,`

R [−1(ξ`j)
)∨

=
(⊕

`

R β`0 ⊕
⊕
j,`

R β`j
)∨

= V .

(ii) Regarding M◦ V , recall that if

L ∈ Zn2LinMan (dim L = p|q) ,

Definition (3.2.56) yields V(L) = L =
(
O lin

L (|L|)
)∨

(notice that L denotes a vector space here,
and not a linear map) and Definition (3.2.50) leads to M(L) := L := (L0,OL) , where L0 is
L0 =

(
O lin

L,γ0
(|L|)

)∨
viewed as smooth manifold, and where OL(ω) (ω ⊂ L0 open) is

OL(ω) = C∞L0
(ω)⊗̂R S̄(L∨∗ )

(see (3.2.50)). If we choose a basis (β`j)j,` of L∨∗ , we have

S̄(L∨∗ ) = Πk

⊕
j1≤...≤jk

⊕
`1C...C`k

R β`1j1 � . . .� β
`k
jk

= ΠαR βα ,

where αkj ∈ N (resp., αkj ∈ {0, 1}), if 〈γj, γj〉 is even (resp., odd) (see (3.2.49)). Just as

C∞Rp(Ω)⊗̂R ΠαR ξα = C∞Rp(Ω)⊗̂R R[[ξ]] = C∞Rp(Ω)[[ξ]] = ΠαC
∞
Rp(Ω) ξα

(Ω ⊂ Rp open) (see [15]), we have

OL(ω) = ΠαC
∞
L0

(ω) βα = Πk

⊕
j1≤...≤jk

⊕
`1C...C`k

C∞L0
(ω) β`1j1 � . . .� β

`k
jk
. (3.2.58)
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Remark 3.2.23. Let us mention that L and L denote a priori different linear Zn2 -manifolds
and that our goal is to show that they do coincide.

Recall first that, for any Zn2 -manifold M , there is a projection

εM : OM → C∞|M |

of |M |-sheaves of Zn2 -algebras and that εM commutes with pullbacks. In particular, if h : L→
Rp|q is a linear coordinate map of L [a (linear) Zn2 -diffeomorphism], its pullback is, for any open
subset |U | ⊂ |L|, a Zn2 -algebra isomorphism

h∗ : ORp|q(|h|(|U |))→ OL(|U |)

and it restricts to a Zn2 -vector space isomorphism

h∗ : O lin
Rp|q(|h|(|U |))→ O

lin
L (|U |) .

Further, as just said, we have

εL ◦ h∗ = h∗ ◦ εRp|q = (− ◦ |h|) ◦ εRp|q

on ORp|q(|h|(|U |)). Taking |U | = |L| and restricting the equality to degree zero linear functions

O lin
Rp|q ,γ0

(Rp) = (Rp)∨

(see (3.2.14)), we obtain
εL ◦ h∗ = − ◦ |h| , (3.2.59)

or, equivalently,
εL = (− ◦ |h|) ◦ (h∗)−1 , (3.2.60)

where (h∗)−1 is a vector space isomorphism from (L0)∨ = O lin
L,γ0

(|L|) to (Rp)∨ and where −◦|h| is
an algebra isomorphism from C∞(Rp) to C∞(|L|). In view of the diffeomorphism |h| : |L| → Rp,
the smooth manifold |L| is linear. Hence, it is a finite dimensional vector space also denoted |L|
and |h| is a vector space isomorphism, whose dual t|h| = − ◦ |h| is a vector space isomorphism
from (Rp)∨ ⊂ C∞(Rp) to |L|∨. It follows (see also Equation (3.2.60)) that the canonical map
εL is a vector space isomorphism from (L0)∨ to |L|∨. When identifying these vector spaces, we
get εL = id and |L| = L0, hence the corresponding linear manifolds do also coincide: |L| = L0 .

To prove that the linear Zn2 -manifolds L and L coincide, it now suffices to show that their
function sheaves coincide. The pullback of h is an isomorphism h∗ : ORp|q → OL of sheaves of
Zn2 -algebras. Since h∗ is a Zn2 -vector space isomorphism

h∗ : (R0|q)∨ = O lin
R0|q(Rp)→ O lin

L,∗(|L|) = L∨∗ ,

the images (h∗(ε`j))j,` are a basis (β`j)j,` of L∨∗ . Moreover, we know that

|h| = (. . . , εL(h∗(ε`0)), . . .) = (. . . , h∗(ε`0), . . .) ,

as εL = id on (L0)∨ . Therefore, if f(x) ∈ C∞(Rp) , we get

h∗(f(x)) = f(h∗(x)) = f ◦ (. . . , h∗(ε`0), . . .) = f ◦ |h| ∈ C∞(|L|) . (3.2.61)

Equation (3.2.61) (which generalizes Equation (3.2.59)) shows that h∗ is an algebra isomorphism
h∗ : C∞(Rp) → C∞(|L|) . Similarly, if ω ⊂ |L| is open, Ω := |h|(ω) ⊂ Rp and f(x) ∈ C∞(Ω) ,
we have

h∗(f(x)) = f ◦ |h||ω ∈ C∞(ω) ,
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so that

h∗ : C∞(Ω)→ C∞(ω) (3.2.62)

is also an algebra isomorphism. Finally, the Zn2 -algebra isomorphism

h∗ : ΠαC
∞(Ω) ξα → OL(ω) (3.2.63)

sends any series
∑

α fα(x)ξα to∑
α

h∗(fα(x))(. . . , h∗(ξ`j), . . .)
α =

∑
α

h∗(fα(x))(. . . , h∗(ε`j), . . .)
α =

∑
α

h∗(fα(x))βα ∈ OL(ω)

(see (3.2.58)). The Zn2 -algebra morphism

h∗ : ΠαC
∞(Ω)ξα → OL(ω) (3.2.64)

we get this way (notice that the targets of the arrows (3.2.63) and (3.2.64) are different) is visibly
an isomorphism. Indeed, it is obviously injective, and it is surjective due to (3.2.62). It follows
from (3.2.63) and (3.2.64) thatOL(ω) = OL(ω), for any open subset ω ⊂ |L|. Since h∗ commutes
with restrictions, the sheaves OL and OL coincide and M(V(L)) = L . An alternative way of
saying what we just said is to observe that in view of (3.2.63) every element of OL(ω) is the
image by h∗ of a unique series

∑
α fα(x)ξα and therefore belongs to OL(ω) . Conversely, in view

of (3.2.62) every element
∑

α gαβ
α (gα ∈ C∞(ω)) of OL(ω) uniquely reads

∑
α h∗(fα(x))βα , is

therefore the image by h∗ of
∑

α fα(x)ξα and so belongs to OL(ω) .

(iii) We leave it to the reader to check that both functors, V ◦M and M◦V , coincide also on
morphisms with the identity functors.

Theorem 3.2.24. The functors

M : Zn2FinVec� Zn2LinMan : V

are an isomorphism of categories.

2.3.3.5. Comparison of the functors of points. Since Zn2FinVec ' Zn2LinMan , the fully faithful
functors of points F (see Proposition 3.2.8) and S (see Theorem 3.2.20) of these categories
should coincide. However, up till now, the functor F is valued in Fun0(Zn2Ptsop, AMod) , whereas
the functor S is valued in Fun0(Zn2Ptsop, FAMod) . Since FAMod is a subcategory of AMod , the
latter functor category is a subcategory of the former. Hence, if we show that the image F(V)
of any object V of Zn2FinVec is a functor of Fun0(Zn2Ptsop, FAMod) (?) and that the image F(φ)
of any morphism φ : V →W of Zn2FinVec is a natural transforation of Fun0(Zn2Ptsop, FAMod)
(∗), we can conclude that F is a functor

F : Zn2FinVec→ Fun0(Zn2Ptsop, FAMod) .

We start proving (?). Since FAMod is a subcategory of AMod , we just have to show that the
image

F(V)(Λ) = V(Λ) = (Λ⊗V)0

of any object Λ of Zn2Ptsop is a Fréchet Λ0-module (•) and that the image

F(V)(ϕ∗) = V(ϕ∗) = (ϕ∗ ⊗ 1V)0

of any morphism ϕ∗ : Λ→ Λ′ of Zn2Alg is a morphism of FAMod (◦).
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To prove (•), we consider a basis of V (dim V = p|q), i.e., an isomorphism b : V � Rp|q :
b−1 of Zn2 -vector spaces. Since F(b) = b− is a natural isomorphism of Fun0(Zn2Ptsop, AMod) ,
any of its Λ-components is an isomorphism

bΛ : V(Λ)� Rp|q(Λ) : b−1
Λ

of Λ0-modules. We use this isomorphism to transfer to V(Λ) the Fréchet vector space structure
of

Rp|q(Λ) = (Λ⊗Rp|q)0 =
⊕
i

⊕
k

Λγi = ΠiΠkΛγi = Λ×p0 × Λ×q1γ1
× . . .× Λ×qNγN

(3.2.65)

(see Proof of Proposition 3.2.17 and Equation (3.2.17)), thus obtaining a well-defined Fréchet
structure and making bΛ a Fréchet vector space isomorphism, i.e., a continuous linear map with
continuous inverse. Since bΛ is Λ0-linear, the action · of Λ0 on V(Λ) is related to its action /
on Rp|q(Λ) by

a · v = b−1
Λ (a / bΛ(v)) ,

for any a ∈ Λ0 and any v ∈ V(Λ) . The action · is thus the composite of the continuous maps
id×bΛ , / , and b−1

Λ , hence, it is itself continuous. The Λ0-module and the Fréchet vector space
structures on V(Λ) therefore define a Fréchet Λ0-module structure on V(Λ) and bΛ becomes
an isomorphism of Fréchet Λ0-modules (for any basis b of V).

As concerns (◦), recall that V(ϕ∗) is a (ϕ∗)0-linear map, where the algebra morphism
(ϕ∗)0 : Λ0 → Λ′0 is the restriction of ϕ∗. Observe now that, in view of (3.2.65), we have

Rp|q(ϕ∗) = (ϕ∗ ⊗ 1)0 = ΠiΠk ϕ
∗ ,

so that Rp|q(ϕ∗) is continuous as product of continuous maps (indeed, the Zn2Alg-morphism ϕ∗

is continuous as pullback of the associated Zn2 -morphism). As b− is a natural transformation
of Fun0(Zn2Ptsop, AMod), we have

V(ϕ∗) = b−1
Λ′ ◦Rp|q(ϕ∗) ◦ bΛ ,

so that V(ϕ∗) is continuous (and (ϕ∗)0-linear), hence, is a morphism of FAMod .

It remains to show that (∗) holds. We know that F(φ) = φ− is a natural transformation of
Fun0(Zn2Ptsop, AMod) , i.e., its Λ -components φΛ are Λ0-linear maps and the naturality condition
is satisfied. It thus suffices to explain that φΛ = (1 ⊗ φ)0 is continuous. Since Λ is a Fréchet
algebra, it is a locally convex topological vector space (LCTVS) and 1 : Λ → Λ is a degree
zero continuous linear map. Further, since V and W are finite dimensional Zn2 -vector spaces,
the degree zero linear map φ : V → W is automatically continuous for the canonical LCTVS

structures on its source and target. It follows that 1 ⊗ φ and (1 ⊗ φ)0 are continuous linear
maps.

Proposition 3.2.25. The functor

F : Zn2FinVec→ Fun0(Zn2Pts op, FAMod)

is fully faithful.

Proof. The result is obvious in view of Proposition 3.2.8, since Fun0(Zn2Ptsop, FAMod) is a sub-
category of Fun0 (Zn2Ptsop, AMod) .
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We are now ready to refine the idea expressed at the beginning of this subsection that the
(fully faithful) functors of points

F : Zn2FinVec→ Fun0(Zn2Ptsop, FAMod)

(see Proposition 3.2.25) and

S : Zn2LinMan→ Fun0(Zn2Ptsop, FAMod)

(see Theorem 3.2.20) of the isomorphic categories

M : Zn2FinVec� Zn2LinMan : V

should coincide.

Theorem 3.2.26. The functors

S ◦M, F : Zn2FinVec→ Fun0(Zn2Pts op, FAMod)

are naturally isomorphic.

We first prove the theorem in the Cartesian case

M : Zn2CarVec� Zn2CarMan : V

(see Proposition 3.2.5). More precisely, it follows from Proposition 3.2.25 and Theorem 3.2.20
that the functors F and S are (fully faithful) functors

F : Zn2CarVec→ Fun0(Zn2Ptsop, FAMod)

and
S : Zn2CarMan→ Fun0(Zn2Ptsop, FAMod) .

Actually:

Proposition 3.2.27. The functors

S ◦M, F : Zn2CarVec→ Fun0(Zn2Pts op, FAMod)

are naturally isomorphic.

Proof. In order to construct a natural isomorphism I : S ◦M → F , we must define, for any
Rp|q , a natural isomorphism

IRp|q : S(Rp|q)→ F(Rp|q)

of Fun0(Zn2Ptsop, FAMod) that is natural in Rp|q . To build IRp|q , we have to define, for each Λ ,
an isomorphism

IRp|q ,Λ : S(Rp|q)(Λ)→ F(Rp|q)(Λ)

of Fréchet Λ0-modules that is natural in Λ . Recalling that the source and target of this arrow
are

Rp|q(Λ) = HomZn2 Man(R
0|m,Rp|q) (R0|m ' Λ)

and

Rp|q(Λ) = (Λ⊗Rp|q)0 =
N⊕
i=0

qi⊕
k=1

Λγi ⊗Reik =
N⊕
i=0

qi⊕
k=1

Λγi = Λ×p0 × Λ×q1γ1
× . . .× Λ×qNγN

,
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respectively, we set

IRp|q ,Λ : x 7→
∑
i,k

x∗(uki )⊗ eik = (x∗(uki )) = (x∗(xk), x∗(ξkj )) =: (xkΛ, ξ
k
j,Λ) ,

where (uki ) = (xk, ξkj ) are the coordinates of Rp|q and where (eik)i,k is the canonical basis of Rp|q .
Since we actually used this 1:1 correspondence to transfer the Fréchet Λ0-module structure from
Rp|q(Λ) to Rp|q(Λ) (see (3.2.22)), the bijection IRp|q ,Λ is an isomorphism of Fréchet Λ0-modules.
This isomorphism is natural with respect to Λ. Indeed, if ϕ∗ : Λ → Λ′ is a Zn2 -algebra map
(with corresponding Zn2 -morphism ϕ), we have

IRp|q ,Λ′

(
Rp|q(ϕ∗)(x)

)
= IRp|q ,Λ′(x ◦ ϕ) = (ϕ∗(x∗(xk)), ϕ∗(x∗(ξkj ))) = (ϕ∗ ⊗ 1)0

(
IRp|q ,Λ(x)

)
.

It now suffices to check that IRp|q is natural with respect to Rp|q . Hence, let L : Rp|q → Rr|s

be a degree zero linear map and let L : Rp|q → Rr|s be the corresponding linear Zn2 -morphism
M(L) . In order to prove that

IRr|s ◦ S(L) = F(L) ◦ IRp|q , (3.2.66)

we have to show that the Λ-components of these natural transformations coincide. To find that
these Fréchet Λ0-module morphisms coincide, we must explain that they associate the same
image to every x ∈ Rp|q(Λ) . When denoting the coordinates of Rr|s by (u′`i ) = (x′`, ξ′`j ) , we
obtain

IRr|s,Λ

(
S(L)Λ(x)

)
= IRr|s,Λ(L ◦ x) =

(
x∗(L∗(x′`)), x∗(L∗(ξ′`j ))

)
= (x∗(L∗(u′`i ))) ,

where

L∗(u′`i ) =

qi∑
k=1

L`i
ik u

k
i ,

in view of (3.2.12) and (3.2.13). It follows that

(x∗(L∗(u′`i ))) =
( qi∑
k=1

L`i
ik x∗(uki )

)
=
∑
i,`

(∑
k

L`i
ik x∗(uki )

)
⊗ e′i` =

∑
i,k

x∗(uki )⊗
(∑

`

L`i
ike
′i
`

)
=

∑
i,k

x∗(uki )⊗ L(eik) = (1⊗ L)0

(∑
i,k

x∗(uki )⊗ eik
)

= F(L)Λ(IRp|q ,Λ(x)) ,

where (e′i` )i,` is the basis of Rr|s .

We are now able to prove Theorem 3.2.26.

Proof. For simplicity, we set
T := Fun0(Zn2Ptsop, FAMod) .

In order to build a natural isomorphism I : S◦M→ F , we must define, for any V ∈ Zn2FinVec ,
a natural isomorphism

IV : S(V )→ F(V)

of T that is natural in V .

Set
dim V = p|q
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and let b be a basis of V, or, equivalently, a Zn2 -vector space isomorphism b : V → Rp|q .
In view of (3.2.57), the morphism M(b) : V → Rp|q is a linear Zn2 -diffeomorphism. Using
Proposition 3.2.25 and Theorem 3.2.20, we obtain that

F(b) : F(V)→ F(Rp|q)

and
S(M(b)) : S(V )→ S(Rp|q)

are natural isomorphisms of T . As

IRp|q : S(Rp|q)→ F(Rp|q)

is a natural isomorphism of T as well, the transformation

IV := F(b−1) ◦ IRp|q ◦ S(M(b))

is a natural isomorphism
IV : S(V )→ F(V)

as requested. In view of Equation (3.2.66), the transformation IV is well-defined, i.e., is inde-
pendent of the basis chosen.

It remains to show that IV is natural in V, i.e., that, for any degree zero linear map
φ : V→W (dim W = r|s) and for any basis b (resp., c) of V (resp., W), we have

F(φ) ◦ F(b−1) ◦ IRp|q ◦ S(M(b)) = F(c−1) ◦ IRr|s ◦ S(M(c)) ◦ S(M(φ)) ,

or, equivalently,
IRr|s ◦ S(M(c ◦ φ ◦ b−1)) = F(c ◦ φ ◦ b−1) ◦ IRp|q .

Since L := c ◦ φ ◦ b−1 is a degree zero linear map L : Rp|q → Rr|s , Equation (3.2.66) allows
once more to conclude.

2.3.3.6. Internal Homs. A topological property is a property of topological spaces that is
invariant under homeomorphisms (isomorphisms of topological spaces). More intuitively, a
‘topological property’ is a property that only depends on the topological structure, or, equiv-
alently, that can be expressed by means of open subsets. Similarly, equivalences of categories
(“isomorphisms” of categories) preserve all ‘categorical properties and concepts’. Hence, an
equivalence should preserve products. It turns out that this statement is actually correct.
More precisely, if E : S → T is part of an equivalence of categories, then a functor D : I → S

has limit s if and only if the functor E ◦ D : I → T has limit E(s) . Applying the statement
to the discrete index category I with two objects {1, 2} and setting D(i) = si (i ∈ {1, 2}), we
get that s1 and s2 have product s if and only if E(s1) and E(s2) have product E(s) . Now, the
category Zn2FinVec has the obvious binary product × . It follows that, for any vector spaces
V,W ∈ Zn2FinVec , the manifolds M(V),M(W) ∈ Zn2LinMan have product

M(V)×M(W) =M(V ×W) .

If L, L′ ∈ Zn2LinMan , the categorical isomorphism implies that L = M(V(L)) and similarly for
L′ , so that the product L× L′ exists and is

L× L′ =M(V(L)× V(L′)) . (3.2.67)

Hence, the category Zn2LinMan has finite products.
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Equation (3.2.67) shows that we got the product of Zn2LinMan by transferring to T :=
Zn2LinMan the product of S := Zn2FinVec . We can similarly transfer to T the closed symmet-
ric monoidal structure of S . Indeed, the category Zn2Vec is closed symmetric monoidal for
the standard tensor product − ⊗Zn2 Vec − of Zn2 -vector spaces and the standard internal Hom
HomZn2 Vec

(−,−) of Zn2 -vector spaces, which is defined, on objects for instance, by

HomZn2 Vec
(V,W) :=

⊕
i

HomZn2 Vec,γi
(V,W) ∈ Zn2Vec , (3.2.68)

for any V,W ∈ Zn2Vec . Of course, if V,W ∈ S , then HomZn2 Vec
(V,W) ∈ S , and the same holds

for V ⊗Zn2 Vec W . It follows that S = Zn2FinVec is also a closed symmetric monoidal category.
If we set now

L⊗T L
′ :=M(V(L)⊗Zn2 Vec V(L′)) and HomT(L, L

′) :=M
(
HomZn2 Vec

(V(L),V(L′))
)
, (3.2.69)

and similarly for morphisms, we get a closed symmetric monoidal structure on T = Zn2LinMan :

Proposition 3.2.28. The category Zn2LinMan is closed symmetric monoidal for the structure
(3.2.69).

Alternatively, we could have defined HomT(L, L
′) ∈ T using the fully faithful functor of points

S : T 3 L 7→ HomZn2 Man(−, L) =: L(−) ∈ Fun0(Zn2Ptsop, FAMod) ,

i.e., defining first a functor FL,L′(−) in the target category, and then showing that this functor
is representable by some HomT(L, L

′) ∈ T :

FL,L′(−) = HomZn2 Man(−,HomT(L, L
′)) = HomT(L, L

′)(−) . (3.2.70)

This ‘functor of points approach’ is often easier.

To shed some light on our more abstract definition above, we now compute HomT(Rp|q,Rr|s)(Λ)
(�) assuming some familiarity with Zn2 -graded matrices gl(r|s × p|q ,Λ) with entries in Λ ∈
Zn2Alg . Details can be found in Subsection 3.3.1 which we leave in its natural place. However,
we highly recommend reading it before working though the end of this section.

We observe first that

HomZn2 Vec,γk
(Rp|q,Rr|s) = glγk(r|s× p|q,R) ∈ Vec .

In order to understand the gist here, we consider the case n = 2, so that a matrix X ∈
glγk(r|s× p|q,R) has the block format

X =


X00 X01 X02 X03

X10 X11 X12 X13

X20 X21 X22 X23

X30 X31 X32 X33

 , (3.2.71)

where the degree xij of the block Xij is

xij = γi + γj + γk . (3.2.72)

Since the entries of the Xij are real numbers and so of degree γ0 , all the blocks with non-
vanishing xij do vanish. For instance, if γk = 01 ∈ Z (resp., γk = 11) (do not confuse
with the row-column index 01 in X01 (resp., 11 in X11)), the degree xij = 0 if and only if
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ij ∈ {01, 10, 23, 32} (resp., ij ∈ {03, 12, 21, 30}) (as in most of the other cases in this text, the
Zn2 -degrees are lexicographically ordered), so that only these Xij do not vanish. It follows that

HomZn2 Vec
(Rp|q,Rr|s) = gl(r|s× p|q,R) ∈ Zn2FinVec

is made of the matrices (3.2.71), where no block Xij vanishes a priori. The canonical basis
of this Zn2 -vector space are the obvious matrices Eik,j` (i, j ∈ {0, . . . , N}, k ∈ {1, . . . , si},
` ∈ {1, . . . , qj}) with all entries equal to 0 except the entry kl in Xij which is 1 . In view of
Equation (3.2.72), the vectors of this basis have the degrees γi + γj . We can of course identify
(up to renumbering) this Zn2 -vector space with Rt|u , where un (n ∈ {0, . . . , N}) is equal to

un =
∑

i,j:γi+γj=γn

siqj (3.2.73)

(we set s0 = r, q0 = p, u0 := t). Hence:

HomZn2 Vec
(Rp|q,Rr|s) = gl(r|s× p|q,R) = Rt|u ∈ Zn2CarVec . (3.2.74)

Combining (3.2.69) and (3.2.74), we get

HomZn2 LinMan
(Rp|q,Rr|s) =M(HomZn2 Vec

(Rp|q,Rr|s)) = Rt|u ∈ Zn2CarMan . (3.2.75)

We now come back to (�). Setting as usual R0|m ' Λ , we get the isomorphism

HomZn2 LinMan
(Rp|q,Rr|s)(Λ) = Rt|u(Λ) ' ΠN

n=0 Λ×unγn

of Fréchet Λ0-modules. On the other hand, the vector space gl0(r|s × p|q,Λ) is a Λ0-module
and this module ‘coincides’ obviously with

gl0(r|s× p|q,Λ) = ΠN
n=0 Λ×unγn .

By transferring the Fréchet structure, we get an ‘equality’ of Fréchet Λ0-modules. Hence, the
Fréchet Λ0-module isomorphism

HomZn2 LinMan
(Rp|q,Rr|s)(Λ) = Rt|u(Λ) ' ΠN

n=0 Λ×unγn = gl0(r|s× p|q,Λ) ∈ FΛ0Mod . (3.2.76)

There is a natural upgrade that is independent of the internal Homs and makes G :=
gl0(r|s × p|q,−) a functor G ∈ Fun0(Zn2Ptsop, FAMod) . Indeed, it suffices to define G on a
Zn2Alg-morphism ϕ∗ : Λ→ Λ′ as

G(ϕ∗) : G(Λ) 3 X 7→ ϕ∗(X) ∈ G(Λ′) ,

where ϕ∗(X) is defined entry-wise. The morphism G(ϕ∗) is clearly (ϕ∗)0-linear. It is also
continuous, as it can be viewed as a product of copies of ϕ∗ . Since G respects compositions
and identities it is actually a functor of the functor category mentioned. The functors G and
Rt|u(−) = S(Rt|u) are of course naturally isomorphic. Since S is a fully faithful functor

S : Zn2LinMan→ Fun0(Zn2Ptsop, FAMod) ,

the functor G can be viewed as represented by the linear Zn2 -manifold Rt|u .

Proposition 3.2.29. The functor gl0(r|s × p|q ,−) is representable and the Cartesian Zn2 -
manifold

gl0(r|s× p|q) := Rt|u ,

with dimension t|u defined in Equation (3.2.73), is ‘its’ representing object.

Example 3.2.30. For n = 2, we find that gl0(1|1, 1, 1) = R4|4,4,4 .
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3.3 Zn2-Lie groups and linear actions

3.3.1 Zn2-matrices

We will consider matrices that are valued in some Zn2 -Grassmann algebra Λ, though everything
we say generalizes to arbitrary Zn2 -commutative associative unital R-algebras. A homogeneous
matrix X ∈ glx(r|s× p|q ,Λ) of degree x ∈ Z is understood to be a block matrix

X =

 X00 . . . X0N

...
. . .

...
XN0 . . . XNN

 , (3.3.1)

with the entries of each block Xij being elements of the Zn2 -Grassmann algebra Λ. Here the
degree xij ∈ Z of Xij is

xij = γi + γj + x

and the dimension of Xij is

dim(Xij) = si × qj

(setting s0 = r and q0 = p as usual). Addition of such matrices and multiplication by reals are
defined in the obvious way and they endow glx(r|s× p|q ,Λ) with a vector space structure. We
set

gl(r|s× p|q ,Λ) :=
⊕
x∈Z

glx(r|s× p|q ,Λ) ∈ Zn2Vec .

Multiplication by an element of Λ requires an extra sign factor given by the row of the matrix,
i.e., for any homogeneous λ ∈ Λγk , we have that

(λ X)ij = (−1)〈γk,γi〉λ Xij .

We thus obtain on gl(r|s × p|q ,Λ) a Zn2 -graded module structure over the Zn2 -commutative
algebra Λ . If r|s = p|q , we write

gl(p|q ,Λ) := gl(p|q × p|q ,Λ) .

Multiplication of matrices in gl(p|q ,Λ) is via standard matrix multiplication – now taking care
that the entries are from a Zn2 -commutative algebra. Equipped with this multiplication, the
Zn2 -graded Λ-module gl(p|q ,Λ) is a Zn2 -graded associative unital R-algebra. In particular, the
degree zero matrices gl0(p|q,Λ) form an associative unital R-algebra. Since multiplication of
matrices only uses multiplication and addition in Λ, we can replace Λ not only, as said above,
by any Zn2 -commutative associative unital R-algebra, but also by any Zn2 -commutative ring R
and then get a ring gl0(p|q, R) . We denote by GL(p|q, R) the group of invertible matrices in
gl0(p|q, R) . For further details the reader may consult [18].

3.3.2 Invertibility of Zn2-matrices

Let R be a Zn2 -commutative ring which is Hausdorff-complete in the J-adic topology, where J
is the (proper) homogeneous ideal of R that is generated by the elements of non-zero degree
γj ∈ Zn2 , j ∈ {1, . . . , N}. The Zn2 -graded ring morphism ε : R→ R/J , where

R/J =
⊕
i

Ri/(Ri ∩ J) = R0/(R0 ∩ J)
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vanishes in all non-zero degrees, induces a ring morphism

ε̃ : gl0(p|q, R) 3 X 7→ ε̃(X) ∈ Diag(p|q, R/J) ,

where ε̃(X) is the block-diagonal matrix with diagonal blocks ε̃(Xii) (with commuting entries).

The following proposition appeared as Proposition 5.1. in [22]:

Proposition 3.3.1. Let R be a J-adically Hausdorff-complete Zn2 -commutative ring and let
X ∈ gl0(p|q, R) be a degree zero p|q×p|q matrix with entries in R, written in the standard block
format

X =

 X00 . . . X0N

...
. . .

...
XN0 . . . XNN

 .

We have:

X ∈ GL(p|q, R)⇔ Xii ∈ GL(qi, R),∀i⇔ ε̃(X) ∈ GL(p|q, R/J)⇔ ε̃(Xii) ∈ GL(qi, R/J), ∀i .

In this work, we are of course mainly interested in the case R := Λ = R⊕ Λ̊ and J = Λ̊, so
that R/J = R .

3.3.3 Zn2-Lie groups and their functor of points

Groups, or, better, group objects can easily be defined in any category with finite products,
i.e., any category C with terminal object 1 and binary categorical products c× c′ (c, c′ ∈ C).

If C is a concrete category, the definition of a group object is very simple. For instance, if C
is the concrete category AFM of Fréchet manifolds over a Fréchet algebra A, a group object G
in C is just an object G ∈ C that is group whose structure maps µ : G ×G → G and inv : G → G
are C-morphisms, i.e., A-smooth maps. We refer of course to a group object in AFM as a Fréchet
A-Lie group.

If C is the category Zn2Man of Zn2 -manifolds, the definition of a group object is similar, but
all the (natural) requirements (above) have to be expressed in terms of arrows (since there are
no points here). More precisely, a group object G in C is an object G ∈ C that comes equipped
with C-morphisms

µ : G×G→ G, inv : G→ G and e : 1→ G

(the terminal object 1 is here the Zn2 -manifold R0|0 = ({?},R)), which are called multiplication,
inverse and unit, and satisfy the standard group properties (expressed by means of arrows):
µ is associative, inv is a two-sided inverse of µ and e is a two-sided unit of µ . To understand
the arrow expressions of these properties, we need the following notations. We denote by
∆ : G → G × G the canonical diagonal C-morphism and we denote by eG : G → G the
composite of the unique C-morphism 1G : G→ 1 and the unit C-morphism e : 1→ G. The left
inverse condition now reads

µ ◦ (inv× idG) ◦∆ = eG

and the left unit condition reads

µ ◦ (eG × idG) ◦∆ = idG

(and similarly for the right conditions). The associativity of µ is of course encoded by

µ ◦ (µ× idG) = µ ◦ (idG×µ) . (3.3.2)
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We refer to a group object in Zn2Man as a Zn2 -Lie group.

A morphism F : G → G ′ of Fréchet A-Lie groups is of course defined as an A-smooth map
that is a group morphism. Analogously, a morphism F : G → G ′ from a Fréchet A-Lie group
to a Fréchet A′-Lie group is a morphism of AFM that is also a group morphism. We denote the
category of Fréchet A-Lie groups by AFLg and we write AFLg for the category of Fréchet Lie
groups over any Fréchet algebra.

Further, a morphism Φ : G → G′ of Zn2 -Lie groups is a Zn2 -morphism that respects the
multiplications, the inverses and the units (obvious arrow definitions). The category of Zn2 -Lie
groups we denote by Zn2Lg .

The functor of points of Zn2 -manifolds

S : Zn2Man→ Fun0(Zn2Ptsop, AFM) (3.3.3)

induces a fully faithful functor of points of Zn2 -Lie groups:

Theorem 3.3.2. The functor

S : Zn2Lg→ Fun0(Zn2Pts op, AFLg) (3.3.4)

is fully faithful. Moreover, if M ∈ Zn2Man and

S(M) = M(−) ∈ Fun0(Zn2Pts op, AFLg) ,

then M ∈ Zn2Lg .

This theorem was announced as [13, Theorem 3.30.] without proper explanation or proof.

Proof. It is clear that we have subcategories

AFLg ⊂ AFM, Fun0(Zn2Ptsop, AFLg) ⊂ Fun0(Zn2Ptsop, AFM) and Zn2Lg ⊂ Zn2Man .

Therefore, in order to prove that the functor (3.3.3) restricts to a functor (3.3.4), it suffices
to show that S sends objects G and morphisms Φ of Zn2Lg to objects and morphisms of the
functor category with target AFLg .

Observe first that, for any M,N ∈ Zn2Man, we have the functor equality

S(M ×N) = (M ×N)(−) = M(−)×N(−) = S(M)× S(N) , (3.3.5)

in view of the universal property of M ×N . Further, if φ : M → M ′ and ψ : N → N ′ are two
Zn2 -morphisms, the natural transformation

S(φ× ψ) = (φ× ψ)− : (M ×N)(−)→ (M ′ ×N ′)(−)

becomes φ− × ψ− , if we read it through the identification (3.3.5).

Now, if G ∈ Zn2Lg with structure Zn2 -morphisms µ, inv (and e), then the AFM-valued functor
S(G) = G(−) is actually AFLg-valued. This means that it sends any Zn2 -Grassmann algebra Λ
and any Zn2Alg-morphism ϕ∗ : Λ→ Λ′ to an object G(Λ) and a morphism G(ϕ∗) of AFLg .

For G(Λ) ∈ Λ0FM , notice that the natural transformations S(µ) = µ− , S(inv) = inv− (and
S(e) = e−) have Λ0-smooth Λ-components

µΛ : G(Λ)×G(Λ)→ G(Λ), invΛ : G(Λ)→ G(Λ) (and eΛ : 1(Λ)→ G(Λ))
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(the Fréchet Λ0-manifold 1(Λ) is the singleton that consists of the Zn2Alg-morphism ιΛ that
sends any real number to itself viewed as an element of Λ) that define a group structure on
G(Λ) (with unit 1Λ := eΛ(ιΛ)), which is therefore a Fréchet Λ0-Lie group. The group properties
of these structure maps are consequences of the group properties of the structure maps of G. For
instance, when we apply S to the associativity equation (3.3.2) and then take the Λ-component
of the resulting natural transformation, we get

µΛ ◦ (µΛ × idG(Λ)) = µΛ ◦ (idG(Λ)×µΛ) .

As for G(ϕ∗) : G(Λ)→ G(Λ′) , we know that it is an AFM-morphism and have to show that
it respects the multiplications µΛ and µΛ′ , i.e., that

µΛ′ ◦ (G(ϕ∗)×G(ϕ∗)) = G(ϕ∗) ◦ µΛ . (3.3.6)

However, this equality is nothing other than the naturalness property of µ− .

Finally, let Φ : G → G′ be a Zn2Lg-morphism and denote the multiplications of the source
and target by µ and µ′ , respectively. In order to prove that the natural transformation S(Φ) =
Φ− : G(−)→ G′(−) of the functor category with target AFM is a natural transformation of the
functor category with target AFLg , it suffices to show that ΦΛ is a morphism of AFLg, which
results from the application of the functor S to the commutative diagram

µ′ ◦ (Φ× Φ) = Φ ◦ µ . (3.3.7)

The next task is to show that the functor (3.3.4) is fully faithful, i.e., that the map

SG,G′ : HomZn2 Lg(G,G
′) 3 Φ 7→ Φ− ∈ HomFun0(Zn2 Pts op, AFLg)(G(−), G′(−)) (3.3.8)

is a 1:1 correspondence, for any Zn2 -Lie groups G,G′. Since the functor (3.3.3) is fully faithful,
any natural transformation in the target set of (3.3.8) is implemented by a unique Zn2 -morphism
φ : G → G′ and it suffices to show that φ respects the group operations, for instance, that is
satisfies Equation (3.3.7). However, Equation (3.3.7) is satisfied if and only if

µ′Λ ◦ (φΛ × φΛ) = φΛ ◦ µΛ ,

for all Λ . The latter condition holds, since φΛ is, by assumption, a group morphism.

We must still prove the last statement of Theorem 3.3.2. The assumption implies that, for
any Zn2 -Grassmann algebra Λ and any Zn2 -algebra morphism ϕ∗ : Λ → Λ′, we get a Fréchet
Λ0-Lie group M(Λ) and a (ϕ∗)0-smooth group morphism M(ϕ∗) : M(Λ)→M(Λ′) . We denote
by 1Λ (resp., µΛ, invΛ) the unit element (resp., the Λ0-smooth multiplication, the Λ0-smooth
inverse) of the group structure on the Fréchet Λ0-manifold M(Λ) . We have already observed (see
(3.3.6)) that the fact that M(ϕ∗) respects the multiplications µΛ and µΛ′ is equivalent to that
of µ− being natural. The natural transformation µ− : (M×M)(−)→M(−) is implemented by
a unique Zn2 -morphism µ : M ×M → M . We obtain similarly a Zn2 -morphism inv : M → M .
As for e : 1→M , we notice that the maps

eΛ : 1(Λ) 3 ιΛ 7→ 1Λ ∈M(Λ) (Λ ∈ Zn2GrAlg)

define visibly a natural transformation with Λ0-smooth Λ-components. Hence, it is implemented
by a unique Zn2 -morphism e : 1 → M . We leave it to the reader to check that µ, inv and e
satisfy (3.3.2) and the other group properties.
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3.3.4 The general linear Zn2-group

We want to define the general linear Zn2 -group of order p|q so that it is a 2nZ-Lie group
GL(p|q) . In view of Theorem 3.3.2, it suffices to define a functor

GL(p|q)(−) ∈ Fun0(Zn2Ptsop, AFLg)

that is represented by a Zn2 -manifold GL(p|q).

Definition 3.3.3. The general linear Zn2 -group GL(p|q) is defined, for any Λ ∈ Zn2GrAlg , by

GL(p|q)(Λ) := GL(p|q ,Λ) =
{
X ∈ gl0(p|q ,Λ) : X is invertible

}
,

and, for any Zn2Alg-morphism ϕ∗ : Λ→ Λ′ and any X ∈ GL(p|q)(Λ) , by

GL(p|q)(ϕ∗)(X) := ϕ̃∗X ,

where ϕ̃∗ is ϕ∗ acting on X entry-by-entry.

Theorem 3.3.4. The maps GL(p|q)(−) of Definition 3.3.3 define a representable functor. We
refer to the representing object GL(p|q) ∈ Zn2Lg as the general linear Zn2 -group of dimension
p|q .

Proof. Recall that:

i. It follows from Equation (3.2.76) that

gl0(p|q ,Λ) = ΠN
n=0Λ×unγn = Λ×t0 × ΠN

j=1Λ×ujγj
' Rt|u(Λ) ,

where un is given by (3.2.73) (t = u0).

ii. It follows from Proposition 3.3.1 that X ∈ gl0(p|q ,Λ) is invertible if and only if ε̃(X) ∈
GL(p|q ,R) , if and only if ε̃(Xii) ∈ GL(qi,R) , for all i ∈ {0, . . . , N} , if and only if
Xii ∈ GL(qi,Λ) , for all i ∈ {0, . . . , N} .

In particular, a matrix

X ∈ gl0(p|q ,R) = Rt = Rp2+
∑
j q

2
j = Diag(p|q ,R)

is invertible if and only if Xii ∈ GL(qi,R) , for all i . It follows that

U t := GL(p|q)(R) = ΠN
i=0 GL(qi,R) ⊂ Rt . (3.3.9)

As U t ⊂ Rt is open, we can consider the Zn2 -domain

U t|u := (U t,ORt|u |Ut) , (3.3.10)

as well as its functor of points

U t|u(−) ∈ Fun0(Zn2Ptsop, AFM) ,

with value on Λ
U t|u(Λ) ' U t × Λ̊×t0 × ΠN

j=1Λ×ujγj

(see [13]).
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On the other hand, we get

GL(p|q)(Λ) = {X ∈ Rt×Λ̊×t0 ×ΠN
j=1Λ×ujγj

: (..., ε̃(Xii), ...) ∈ ΠN
i=0 GL(qi,R)} = U t×Λ̊×t0 ×ΠN

j=1Λ×ujγj
,

so that U t|u(−) and GL(p|q)(−) ‘coincide’ on objects Λ: if we denote the coordinates of Rt|u as

usually by (ua) = (xa, ξA) , this ‘equality’ reads

U t|u(Λ) 3 x∗ ' (x∗(ua))a ∈ GL(p|q)(Λ) .

Moreover, U t|u(−) and GL(p|q)(−) coincide on morphisms ϕ∗ : Λ → Λ′ . Indeed, the map
GL(p|q)(ϕ∗) acts on a matrix

(x∗(ua))a ∈ GL(p|q)(Λ) ⊂ Λ×t0 × ΠN
j=1Λ×ujγj

by acting on all its entries x∗(ua) by ϕ∗, whereas the map U t|u(ϕ∗) acts on a Zn2Alg-morphism
x∗ ∈ U t|u(Λ) by left composition ϕ∗◦x∗; if we identify x∗ with the tuple (x∗(ua))a , then U t|u(ϕ∗)
acts by acting on each x∗(ua) by ϕ∗ , which proves the claim.

It follows that GL(p|q)(−) is a functor

GL(p|q)(−) ∈ Fun0(Zn2Ptsop, AFM)

that is represented by

GL(p|q) := U t|u ∈ Zn2Man , (3.3.11)

so that it now suffices to prove that this functor is valued in AFLg , i.e., it suffices to show that
GL(p|q)(Λ) ∈ Λ0FLg and that GL(p|q)(ϕ∗) is an AFLg-morphism.

Recall that gl0(p|q ,Λ) is an associative unital R-algebra for the standard matrix multipli-
cation · (standard matrix addition, standard matrix multiplication by reals and standard unit
matrix I) (see Subsection 3.3.1). It is clear that the subset GL(p|q)(Λ) ⊂ gl0(p|q ,Λ) is closed
under · :

µΛ : GL(p|q)(Λ)×GL(p|q)(Λ) 3 (X, Y ) 7→ X · Y ∈ GL(p|q)(Λ) (3.3.12)

is an associative unital multiplication on GL(p|q)(Λ) . Therefore, µΛ and

invΛ : GL(p|q)(Λ) 3 X 7→ X−1 ∈ GL(p|q)(Λ) (3.3.13)

endow GL(p|q)(Λ) with a group structure (with unit I). Finally, the Fréchet Λ0-manifold
GL(p|q)(Λ) together with its group structure µΛ, invΛ (and I) is a Fréchet Λ0-Lie group, if its

structure maps µΛ and invΛ are Λ0-smooth. This condition is actually satisfied (see below).

As for GL(p|q)(ϕ∗) , we know that it is an AFM-morphism and need to show that it respects
the multiplications µΛ, µΛ′ . This condition is clearly met because GL(p|q)(ϕ∗) acts entry-wise
by the Zn2Alg-morphism ϕ∗ .

It remains to explain why µΛ and invΛ are Λ0-smooth.

Notice first that the source of the multiplication (3.3.12) is the open subset Ω(Λ) :=
U t|u(Λ) × U t|u(Λ) of the Fréchet space F (Λ) := Rt|u(Λ) × Rt|u(Λ) (see [13]) and that we can
choose the Fréchet vector space (and Fréchet Λ0-module) Rt|u(Λ) as its target. Since Λ is the
(Zn2 -commutative nuclear) Fréchet R-algebra of global Zn2 -functions of some Zn2 -point R0|m, its
addition and internal multiplication (its multiplication by reals and subtraction) are continu-
ous maps. It follows that each component function of the standard matrix multiplication µΛ
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is continuous, so that µΛ is itself continuous. We must now explain why all directional deriva-
tives of µΛ exist everywhere and are continuous, and why the first derivative is Λ0-linear. Let
(X, Y ) ∈ Ω(Λ) and (V,W ) ∈ F (Λ) . We get

d(X,Y )µΛ (V,W ) = lim
t→0

(X + tV ) · (Y + tW )−X · Y
t

= X ·W + V · Y .

Hence, the first derivative exists everywhere, is continuous and Λ0-linear. Indeed, for any
a ∈ Λ0 , we have

d(X,Y )µΛ (a · V, a ·W ) = a · d(X,Y )µΛ (V,W ) .

It is easily checked that

d2
(X,Y )µΛ(V1,W1, V2,W2) = V2 ·W1 + V1 ·W2 and dk≥3

(X,Y )µΛ(V1,W1, . . . , Vk,Wk) = 0 ,

so that µΛ is actually Λ0-smooth.

As for
invΛ : U t|u(Λ) ⊂ Rt|u(Λ)→ Rt|u(Λ) ,

we start computing the directional derivative of

IΛ := µΛ ◦ (invΛ× idΛ) ◦∆Λ : U t|u(Λ) ⊂ Rt|u(Λ) 3 X 7→ X−1 ·X = I ∈ Rt|u(Λ)

(∆Λ is the diagonal map), assuming continuity of invΛ , for the time being. For any V ∈ Rt|u(Λ) ,
we have

dXIΛ(V ) = lim
t→0

(X + tV )−1 · (X + tV )−X−1 ·X
t

= lim
t→0

(fXV (t) ·X + gXV (t) · V ) = 0 ,

where

fXV (t) =
(X + tV )−1 −X−1

t
and gXV (t) = (X + tV )−1 .

It follows that

dX invΛ(V ) = lim
t→0

fXV (t) = lim
t→0

(
(fXV (t)·X+gXV (t)·V )·X−1−gXV (t)·V ·X−1

)
= −X−1·V ·X−1 ,

so that the first derivative is defined everywhere, is continuous, as well as Λ0-linear. Also the
higher order derivatives exist everywhere and are continuous. For instance, the second order
derivative is given by

d2
X invΛ(V,W ) = − lim

t→0

(
fXW (t) · V ·X−1 + gXW (t) · V · fXW (t)

)
= X−1 ·W ·X−1 · V ·X−1 +X−1 · V ·X−1 ·W ·X−1 . (3.3.14)

Finally, the inverse map invΛ is Λ0-smooth, provided we prove its still pending continuity.

We will show that the continuity of (3.3.13) boils down to the continuity of the inverse map
ιΛ : Λ× 3 λ 7→ λ−1 ∈ Λ× in Λ. Here Λ× ⊂ Λ is the group of invertible elements of Λ . Since Λ is
a (unital) Fréchet R-algebra, its inverse map ιΛ is continuous if and only if Λ× is a Gδ-set, i.e.,
if and only if it is a countable intersection of open subsets of Λ [48]. We will show that Λ× is
actually open in the specific Fréchet R-algebra Λ considered. In view of Equation (16) in [14],
the topology of Λ = R[[θ]] (Λ ' R0|m) is induced by the countable family of seminorms

ρβ(λ) =
1

β!
|ε(∂βθ λ)| = |λβ| (β ∈ N×|m|, λ =

∑
α

λαθ
α ∈ Λ) ,
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where ε is the projection ε : Λ → R . This means that the topology is made of the unions of
finite intersections of the open semiballs

Bβ(ν, ε) = {λ ∈ Λ : ρβ(λ− ν) < ε} = {λ ∈ Λ : |λβ − νβ| < ε} = {λ ∈ Λ : λβ ∈ b(νβ, ε)}

(β ∈ N×|m|, ν =
∑

α ναθ
α ∈ Λ, ε > 0 and b(νβ, ε) is the open ball in R with center νβ and radius

ε). Since

Λ× = {λ ∈ Λ : λ0 ∈ R \ {0}} and R \ {0} =
⋃

r∈R\{0}

b(r, εr) (for some εr > 0) ,

we get

Λ× =
⋃

r∈R\{0}

{λ ∈ Λ : λ0 ∈ b(r, εr)} =
⋃

r∈R\{0}

B0(r, εr) ,

which implies that Λ× is open and that ιΛ is continuous, as announced.

Before we are able to deduce from this that invΛ is continuous, we need an inversion formula
for X ∈ GL(p|q)(Λ) . Notice first that, in view of [18, Proposition 4.7], an invertible 2× 2 block
matrix

X =

(
A B
C D

)
(3.3.15)

with square diagonal blocks A and D and entries (of all blocks) in a ring, has a block UDL
decomposition if and only if D is invertible. In this case, the UDL decomposition is(

A B

C D

)
=

(
I BD−1

0 I

)(
A−BD−1C 0

0 D

)(
I 0

D−1C I

)
.

As upper and lower unitriangular matrices are obviously invertible, it follows that the diagonal
matrix is invertible, hence that A − BD−1C is invertible. Similarly, the invertible matrix X
has a block LDU decomposition if and only if A is invertible and in this case D − CA−1B is
invertible. Moreover, in view of Proposition 3.3.1, a matrix X ∈ gl0(p|q,Λ) is invertible if and
only if all its diagonal blocks Xii are invertible. Let now

X =

(
A B
C D

)
(3.3.16)

be a 2 × 2 block decomposition of X ∈ gl0(p|q,Λ) that respects the (N + 1) × (N + 1) block
decomposition

X =

 X00 . . . X0N

...
. . .

...
XN0 . . . XNN

 .

Since A (resp., D) is invertible if and only if

Ã =

(
A 0
0 I

) (
resp., D̃ =

(
I 0
0 D

))
(3.3.17)

is invertible, hence, if and only if the Xkk on the diagonal of A (resp., D) are invertible, we get
that X is invertible if and only if A and D are invertible. If we combine everything we have said
so far in this paragraph, we find that if X ∈ GL(p|q)(Λ) , then A,D,A−BD−1C,D−CA−1B
are all invertible. Therefore, we can use the formula

X−1 =

(
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1

)
, (3.3.18)
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for any X ∈ GL(p|q)(Λ) .

In order to simplify proper understanding, we consider for instance the case n = 2 ,

p|q = p|q1, q2, q3 = 1|2, 1, 1

and

X =

(
A B
C D

)
=


a b c d e
f g h i j
k l m n p
q r s t u
v w x y z

 ∈ GL(1|2, 1, 1)(Λ), where A =

 a b c
f g h
k l m

 ,

and so on. We focus for instance on the first of the four block matrices in X−1 , i.e., on
(A − BD−1C)−1 . The matrix D is a 2 × 2 invertible matrix with square diagonal blocks and
entries in Λ . Since the four diagonal block matrices in X are invertible, it follows from what
we have said above that the inverse D−1 is given by Equation (3.3.18) with A = t ∈ Λ ,
B = u ∈ Λ , C = y ∈ Λ and D = z ∈ Λ . Hence all entries of D−1 are composites of the
addition, the subtraction, the multiplication and the inverse in Λ , and so are all entries in the
invertible 2× 2 block matrix

A−BD−1C =

 α β γ
δ ε ζ
η θ ξ

 (3.3.19)

with square diagonal blocks (which are invertible) and with entries in Λ (the square diagonal
blocks have entries in Λ0). Hence, the inverse (A − BD−1C)−1 can again be computed by
(3.3.18). We focus on its entry

κ :=

(
α− (β γ)

(
ε ζ
θ ξ

)−1(
δ
η

))−1

∈ Λ . (3.3.20)

Notice that here we cannot conclude that ε and ξ are invertible and apply (3.3.18) to compute
the internal inverse. However, this inverse is the inverse of a square matrix with entries in
the commutative ring Λ0 , for which the standard inversion formula holds (recall that a square
matrix with entries in a commutative ring is invertible if and only if its determinant is invertible):(

ε ζ
θ ξ

)−1

= (εξ − ζθ)−1

(
ξ −ζ
−θ ε

)
. (3.3.21)

Since all the entries of (3.3.19) are composites of the addition, subtraction, multiplication and
inverse in Λ , it follows from (3.3.20) and (3.3.21) that the same is true for the entry κ of X−1.
More precisely the entry κ corresponds to a map κ̃ that is a composite of the inclusion of
GL(p|q)(Λ) into its topological supspace Λ×(t+|u|) (continuous), the projection of Λ×(t+|u|) onto

Λ×v (v ≤ t + |u|) (continuous) and of products of the identity map id of Λ (continuous), the
diagonal map ∆ of Λ (continuous), the switching map σ of Λ× Λ (continuous), the addition a
of Λ (continuous), the scalar multiplication e of Λ (continuous), its subtraction s (continuous),
multiplication m (continuous) and its inverse ι (continuous). Indeed, it is for instance easily
seen that the map

Λ×4 3 (t, u, y, z) 7→ −z−1y(t− uz−1y)−1 ∈ Λ
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is a (continuous) composite of products of these continuous maps. We thus understand that
the entry κ of X−1 corresponds to a continuous map κ̃ : GL(p|q)(Λ) → Λ . The same holds of
course also for all the other entries of X−1. Finally, the inverse map

invΛ : GL(p|q)(Λ) 3 X 7→ X−1 ∈ Λ×(t+|u|)

is continuous and it remains continuous when view as valued in the subspace GL(p|q)(Λ).

Example 3.3.5. In view of Equations (3.3.11), (3.3.10) and (3.3.9), the general linear Z2
2-group

of order 1|1, 1, 1 is
GL(1|1, 1, 1) '

(
(R×)4,OR4|4,4,4 |(R×)4

)
,

where R× = R \ {0} .

3.3.5 Smooth linear actions

In this section we define linear actions of Zn2 -Lie groups G on finite dimensional Zn2 -vector spaces
V ' V (we identify the isomorphic categories Zn2FinVec and Zn2LinMan). The definition can be
given in the category of Zn2 -manifolds, but it is slightly more straightforward if we use the functor
of points. Notice that the functors of points of G ∈ Zn2Lg ⊂ Zn2Man and V ∈ Zn2LinMan ⊂ Zn2Man
are functors

S(G) = G(−) ∈ Fun0(Zn2Ptsop, AFLg) ⊂ Fun0(Zn2Ptsop, AFM)

and
S(V ) = V (−) ∈ Fun0(Zn2Ptsop, FAMod) ⊂ Fun0(Zn2Ptsop, AFM) .

Definition 3.3.6. Let G ∈ Zn2Lg and V ∈ Zn2LinMan. A smooth linear action of G on V is a
natural transformation

σ− : (G× V )(−) = G(−)× V (−)→ V (−)

in Fun0(Zn2Ptsop, AFM) (natural transformation with Λ0-smooth Λ-components) that satisfies
the following conditions:

i. Identity: for all vΛ ∈ V (Λ) , we have

σΛ(1Λ, vΛ) = vΛ ,

where 1Λ is the unit of G(Λ) .

ii. Compatibility: for all gΛ, g
′
Λ ∈ G(Λ) and all vΛ ∈ V (Λ) , we have

σΛ(gΛ, σΛ(g′Λ, vΛ)) = σΛ(µΛ(gΛ, g
′
Λ), vΛ) ,

where µΛ is the multiplication of G(Λ) .

iii. Λ0-linearity: for all gΛ ∈ G(Λ), all vΛ, v
′
Λ ∈ V (Λ) and all a ∈ Λ0 , we have

(a) σΛ(gΛ, vΛ + v′Λ) = σΛ(gΛ, vΛ) + σΛ(gΛ, v
′
Λ) ,

(b) σΛ(gΛ, a · vΛ) = a · σΛ(gΛ, vΛ) ,

where · is the action of Λ0 on V (Λ) .
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Since
S : Zn2Man→ Fun0(Zn2Ptsop, AFM) (3.3.22)

is fully faithful (for more details, see [13, 14, 15]), there is a 1 : 1 correspondence between
natural transformations σ− as above and Zn2 -morphisms

σ : G× V → V . (3.3.23)

This correspondence implies in particular that Condition (ii) is equivalent to the equality

σ ◦ (idG×σ) = σ ◦ (µ× idV ) (3.3.24)

of Zn2 -morphisms from G×G× V → V (µ : G×G→ G is the multiplication of G). The same
holds for Condition (i) and the equality

σ ◦ (e× idV ) = idV (3.3.25)

of Zn2 -morphisms from V ' 1× V → V (e : 1→ G is the two-sided unit of µ).

Canonical action of the general linear group.

We will now define the canonical action of the general linear Zn2 -group GL(p|q) = U t|u ∈ Zn2Lg
on the Cartesian Zn2 -manifold Rp|q ∈ Zn2LinMan . To do this, we use both, the fully faithful
functor (3.3.22) and the fully faithful functor

Y : Zn2Man 3M 7→ HomZn2 Man(−,M) ∈ Fun(Zn2Manop, Set) . (3.3.26)

We start defining a natural transformation σ− of Fun(Zn2Manop, Set) from U t|u(−)×Rp|q(−)
to Rp|q(−) . We will denote the coordinates of U t|u (resp., Rp|q) here by X a

b (resp., §c), where
a, b ∈ {1, . . . , p + |q|} (resp., where c ∈ {1, . . . , p + |q|}). For this, we must associate to any
S ∈ Zn2Man , a set-theoretical map σS that assigns to any

(X,φ) ∈ U t|u(S)× Rp|q(S) = HomZn2 Man(S,U
t|u)×HomZn2 Man(S,R

p|q) ,

i.e., to any (appropriate) coordinate pullbacks

(X a
S,b, §cS) := (X∗(X a

b ), φ∗(§c)) ∈ O(S)×(p+|q|)2 ×O(S)×(p+|q|) , (3.3.27)

a unique element σS(X,φ) ∈ Rp|q(S) , i.e., unique (appropriate) coordinate pullbacks

σS(X a
S,b, §cS) ∈ O(S)×(p+|q|) .

Since (§cS)c is viewed as a tuple (horizontal row), the natural definition of this image (horizontal
row) is

σS(X a
S,b, §cS) = (§bS X a

S,b)a , (3.3.28)

where the sum and products are taken in the global Zn2 -function algebra O(S) of S . It is clear
that the elements of this target-tuple have the required degrees, as the same holds for the
elements of the source-tuple. The transformation σ− we just defined is clearly natural. Indeed,
for any Zn2 -morphism ψ : S ′ → S , the induced set-theoretical mapping between the Hom-sets
with source S and the corresponding ones with source S ′ is − ◦ ψ , so that the induced set-
theoretical mapping between the tuples of global Zn2 -functions of S and S ′ is ψ∗ . The naturalness
of σ− follows now from the fact that ψ∗ is a Zn2Alg-morphism.
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Since (3.3.26) is fully faithful, the natural transformation σ− is implemented by a unique
Zn2 -morphism

σ : GL(p|q)× Rp|q → Rp|q , (3.3.29)

which in turn implements, via (3.3.22), a unique natural transformation in Fun0(Zn2Ptsop, AFM)
between the same functors, but restricted to Zn2Ptsop . Since this transformation is the restric-
tion of σ− to Zn2Ptsop, we use this symbol for both transformations (provided that any confusion
can be excluded). It is easily seen that

σΛ(X a
Λ,b, §cΛ) = (§bΛ X a

Λ,b)a ,

with sum and products in Λ , has the properties (i), (ii) and (iii) of Definition 3.3.6, so that we
defined a smooth linear action of GL(p|q) on Rp|q .

The interesting aspect here is that we are able to compute the Zn2 -morphism (3.3.29). Indeed,
in view of the proof of the full faithfulness of the standard Yoneda embedding c 7→ HomC(−, c)
of an arbitrary locally small category C into the functor category Fun(Cop, Set), the morphism
σ ∈ HomC(c, c

′) that implements a natural transformation

σ− : HomC(−, c)→ HomC(−, c′)

is
σ = σc(idc) ∈ HomC(c, c

′) .

In our case of interest C = Zn2Man, the previous Yoneda embedding is the functor (3.3.26) and
the morphism

σ ∈ HomZn2 Man(GL(p|q)× Rp|q,Rp|q)

is
σ = σc(idc), with c = GL(p|q)× Rp|q .

Since the pullback of the identity Zn2 -morphism idc is identity and the coordinate pullbacks
(3.3.27) are

(X a
b , §c) ∈ O(c)×(p+|q|)(p+|q|+1) ,

Equation (3.3.28) yields
σ = σc(idc) ' σc(X a

b , §c) = (§bX a
b )a ,

with sum and products in O(c) . In other words:

Proposition 3.3.7. The canonical action σ of the general linear Zn2 -group GL(p|q) on the

linear Zn2 -manifold or Zn2 -graded vector space Rp|q , is the Zn2 -morphism that is defined by the
coordinate pullbacks

σ∗(§a) = §bX a
b , (3.3.30)

where we denoted the coordinates of GL(p|q) ( resp., Rp|q ) by X a
b ( resp., §c ).

Example 3.3.8. We know that the general linear Z2
2-group GL(1|1, 1, 1) can be identified with

the open Z2
2-submanifold U4|4,4,4 of R4|4,4,4. We denote the global coordinates of this Cartesian

Z2
2-manifold by (xα, ξβ, θγ, zδ) . The indices run over {1, 2, 3, 4} and the Z2

2-degrees of these
coordinates are (0, 0), (0, 1), (1, 0) and (1, 1), respectively. We already mentioned that if we
view U4|4,4,4 as GL(1|1, 1, 1) we must rearrange the coordinates:

X = (X a
b )a,b =


x1 ξ1 θ1 z1

ξ2 x2 z2 θ2

θ3 z3 x3 ξ3

z4 θ4 ξ4 x4


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In view of (3.3.30), the action σ of GL(1|1, 1, 1) on R1|1,1,1 with global coordinates

§ = (§a)a = (x0, ξ0, θ0, z0) ,

is given as

σ∗(x0) = x0x1 + ξ0ξ1 + θ0θ1 + z0z1 ,

σ∗(ξ0) = x0ξ2 + ξ0x2 + θ0z2 + z0θ2 ,

σ∗(θ0) = x0θ3 + ξ0z3 + θ0x3 + z0ξ3 ,

σ∗(z0) = x0z4 + ξ0θ4 + θ0ξ4 + z0x4 .

Connection between the canonical action and the internal Hom.

Since

GL(p|q) = U t|u

(see Equation (3.3.11)) is an open Zn2 -submanifold (see Equation (3.3.10)) of

gl0(p|q) = Rt|u = HomZn2 LinMan
(Rp|q,Rp|q)

(see Proposition 3.2.29 and Equation (3.2.75)), we can expect a connection between the canon-
ical action of GL(p|q) on Rp|q and HomZn2 LinMan

(Rp|q,Rp|q) . It turns out that this link becomes
apparent as soon as we understand the connection between the internal Hom of linear Zn2 -
manifolds and the internal Hom of arbitrary Zn2 -manifolds. Indeed, for any Λ ' R0|m, we
have

HomZn2 Man
(Rp|q,Rp|q)(Λ) := HomZn2 Man(R

p|m+q,Rp|q)

(see [13]). If we denote the coordinates of R0|m by θ = (θd) and those of Rp|q by § = (§a) =
(xa, ξA) , the RHS Hom-set can be identified with the set of (degree respecting) coordinate
pullbacks:

HomZn2 Man
(Rp|q,Rp|q)(Λ) = {§a = §a(x, ξ, θ) =

∑
αβ

f a
αβ(x)ξαθβ} .

On the other hand, when denoting the coordinates of Rt|u as above by X = (X a
b ) , we get

similarly

HomZn2 LinMan
(Rp|q,Rp|q)(Λ) = Rt|u(Λ) = HomZn2 Man(Λ,R

t|u) = {X a
b = X a

b (θ) =
∑
δ

rab,δ θ
δ}

= gl0(p|q,Λ) . (3.3.31)

An obvious identification leads now to

HomZn2 LinMan
(Rp|q,Rp|q)(Λ) = {§a = §a(x, ξ, θ) =

∑
b

§bX a
b (θ) =

∑
b

xbX a
b (θ) +

∑
B

ξB X a
B(θ)} .

(3.3.32)
When comparing (3.3.32) and (3.3.31), we see that the internal Hom of linear Zn2 -manifolds
consists of the pullbacks of the internal Hom of arbitrary Zn2 -manifolds which are defined by
the canonical action of gl0(p|q)(Λ) on Rp|q , in the sense of (3.3.30).
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Equivalent definitions of a smooth linear action.

Subsection 3.3.5 already implicitly contained the idea that a smooth linear action of a Zn2 -Lie
group G on a linear Zn2 -manifold V in the sense of Definition 3.3.6, is equivalent to a Zn2 -
morphism σ : G × V → V that satisfies the conditions (3.3.24) and (3.3.25) and additionally
has a certain linearity property with respect to V . A natural idea is that σ∗ should send linear
Zn2 -functions of V to Zn2 -functions of G × V that are linear along the fibers. The meaning of
this concept becomes clear when we think of the classical differential geometric case in which
the functions of a trivial vector bundle E = M × Rr are

C∞(E) = Γ(∨E∗) = C∞(M)⊗ ∨ (Rr)∗

(∨ is the symmetric tensor product), i.e., are the functions that are smooth in the base and
polynomial along the fiber. Hence, linear functions of E are the functions that are smooth in
the base and linear along the fiber, i.e.,

C∞lin(E) = C∞(M)⊗ (Rr)∗ = C∞(M)⊗ C∞lin(Rr) .

We can choose the same definition in the case of the trivial Zn2 -vector bundle E = G× V :

O lin
E (|G| × |V |) := OG(|G|)⊗O lin

V (|V |) .

This definition is of course in particular valid for G = GL(p|q) ∈ Zn2Lg . However, let us
mention that the linear functions (‘linear along the fibers’) of the trivial Zn2 -vector bundle
E = GL(p|q)× V that are defined on |GL(p|q)| × |V | do not coincide with the linear functions

(‘globally linear’) of the linear Zn2 -manifold M = Rt|u×V (see (3.2.67)) that are defined on the
open subset |GL(p|q)| × |V | of its base Rt × |V | :

O lin
E (|GL(p|q)| × |V |) 6= O lin

M (|GL(p|q)| × |V |) .

Given what we have just said, we expect the following proposition to hold:

Proposition 3.3.9. A smooth linear action σ− of the Zn2 -Lie group G = GL(p|q) on a linear
Zn2 -manifold V in the sense of Definition 3.3.6, is equivalent to a Zn2 -morphism σ : G×V → V
that satisfies the conditions (3.3.24) and (3.3.25) and has the linearity property

σ∗(O lin
V (|V |)) ⊂ OG(|G|)⊗O lin

V (|V |) . (3.3.33)

Notice first that the pullback σ∗ is a morphism of Zn2 -algebras

σ∗ : OV (|V |)→ OG×V (|G| × |V |) .

Since G and V have global coordinates, it follows from [15] that the target of σ∗ is given by

OG×V (|G| × |V |) = OG(|G|)⊗̂OV (|V |) ,

which shows that it contains
OG(|G|)⊗ O lin

V (|V |)
and that the requirement (3.3.33) actually makes sense.

Another fact is also worth noting. We know from standard supergeometry that the classical
Berezinian defines a super-Lie group morphism

Ber : GL(p|q)→ GL(1|0) ,

so that we get a linear action of GL(p|q) on R1|0 . The point here is that linear actions of GL(p|q)
are not limited to actions on Rp|q .
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Proof. In the light of the observations that follow Definition 3.3.6, it suffices to prove that the
Λ0-linearity requirement (iii) in Definition 3.3.6 is equivalent to the linearity condition (3.3.33)
in Proposition 3.3.9. Hence, let σ− be a smooth action of G on V and let σ be the corresponding
Zn2 -morphism. If h : V → Rr|s is a linear coordinate map of V , the Zn2 -morphism

S := h ◦ σ ◦ (idG×h−1) : G× Rr|s → Rr|s

satisfies (3.3.33) if and only if the Zn2 -morphism σ does. Indeed, if σ has the property (3.3.33),
then

S∗ = (idG×h−1)∗ ◦ σ∗ ◦ h∗ =
(

id∗G ⊗̂ (h−1)∗
)
◦ σ∗ ◦ h∗

has obviously the same property. We similarly find that the converse implication holds. On
the other hand, if we denote the coordinates of Rr|s by † = (†c) = (yc, ηC) , the Λ-components
of the natural transformations σ− and S− satisfy

SΛ = hΛ ◦ σΛ ◦ (idG(Λ)×h−1
Λ )

and
SΛ(gΛ,

∑
k

λk†Λ,k) = hΛ(σΛ(gΛ, h
−1
Λ (
∑
k

λk†Λ,k))) ,

for any gΛ ∈ G(Λ) , any †Λ,k ∈ Rr|s(Λ) and any λk ∈ Λ0 (where k runs through a finite set).
Since

hΛ : V (Λ)→ Rr|s(Λ)

is an isomorphism of Fréchet Λ0-modules, the Λ0-smooth map SΛ is Λ0-linear in †Λ if and only
if the Λ0-smooth map σΛ is Λ0-linear in vΛ ∈ V (Λ) . It is therefore sufficient to prove the
equivalence “(iii) if and only if (3.3.33)” for V = Rr|s .

We refrain from writing down the proof of the implication “if (iii) then (3.3.33)”. It is
technical and partially reminiscent of a part of the proof of Theorem 3.2.20 (for the super-case,
see [17] and the references it contains).

We now prove the converse implication from scratch. Assume that

S∗(O lin
Rr|s(R

r)) ⊂ OG(|G|)⊗O lin
Rr|s(R

r) . (3.3.34)

In view of the universal property of the product of Zn2 -manifolds, we have

G(Λ)× Rr|s(Λ) 3 (gΛ, †Λ) ' uΛ ∈ (G× Rr|s)(Λ) .

If we identify the Zn2 -morphisms gΛ, †Λ, uΛ with the corresponding continuous Zn2 -algebra mor-
phisms

g∗Λ ∈ HomZn2 Alg(OG(|G|),Λ), †∗Λ ∈ HomZn2 Alg(ORr|s(Rr),Λ), u∗Λ ∈ HomZn2 Alg(OG(|G|)⊗̂ORr|s(Rr),Λ) ,

we get
u∗Λ = m̂Λ ◦ (g∗Λ⊗̂ †∗Λ) ,

where m̂Λ : Λ⊗̂Λ → Λ is continuous Zn2 -algebra morphism that extends the multiplication
mΛ = ·Λ of Λ (see [15]). We denote the coordinates of G× Rr|s as ‡ = (‡d) = (X a

b , †c) . Since

SΛ : (G×Rr|s)(Λ) 3 uΛ ' (gΛ, †Λ) ' u∗Λ ' u∗Λ(‡d) 7→ S◦uΛ ' u∗Λ◦S∗ ' u∗Λ(S∗(†c)) ∈ Rr|s(Λ) ,

we find that
SΛ(gΛ,

∑
k

λk†Λ,k) ' m̂Λ

((
g∗Λ⊗̂

(∑
k

λk†Λ,k
)∗)

(S∗(†c))
)
.
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In view of the definition of the Λ0-module structure on Rr|s(Λ) , we have(∑
k

λk†Λ,k
)∗

=
∑
k

λk†∗Λ,k

and in view of the assumption (3.3.34), we get for any fixed c that

S∗(†c) =
M∑
n=1

snG ⊗R
(∑

c′

rnc′†c
′
) ,

where M ∈ N, where snG ∈ OG(|G|) and where rnc′ ∈ R . Since λk ∈ Λ0 , what we just said yields

SΛ(gΛ,
∑
k

λk†Λ,k) '
M∑
n=1

g∗Λ(snG) ·Λ
∑
k

λk ·Λ
(∑

c′

rnc′ †∗Λ,k(†c
′
)
)
'
∑
k

λkSΛ(gΛ, †Λ,k) .

3.4 Future directions

We view the current paper as the first steps towards understanding actions of Zn2 -Lie groups
on Zn2 -manifolds and we claim that it will be vital in carefully constructing the total spaces of
Zn2 -vector bundles, for example. In both these settings, the functor of points, and in particular
Λ-points, are expected to be of fundamental importance. In particular, the typical fibres of
Zn2 -vector bundles cannot be Zn2 -graded vector spaces, but rather they are linear Zn2 -manifolds.
Moreover, the transition functions will correspond to an action of the general linear Zn2 -group
and as such a careful understanding of linear actions is needed. This paper provides some of
this technical background. We plan to explore the algebraic and geometric definitions of vector
bundles in the category of Zn2 -manifolds in a future publication.

3.5 Appendix

3.5.1 The category of modules over a variable algebra

We define the category AMod (resp., FAMod) of modules (resp., Fréchet modules) over any (unital)
algebra (resp., any (unital) Fréchet algebra) A. The algebra A can vary from object to object.
The objects are the modules over some A (resp., the Fréchet vector spaces that come equipped
with a (compatible) continuous A-action). We denote such modules by MA. Morphisms consist
of pairs (ϕ,Φ), where

ϕ : A −→ B

is an algebra morphism (resp., a continuous algebra morphism), and

Φ : MA −→MB

is a map (resp., a continuous map) that satisfies

Φ(am+ a′m′) = ϕ(a)Φ(m) + ϕ(a′)Φ(m′) ,

for all a, a′ ∈ A and m,m′ ∈MA. It is evident that we do indeed obtain a category in this way.

The preceding categories AMod and FAMod are similar to the category AFMan that we used
in [13]. They naturally appear when considering the zero degree rules functor or the functor of
points. See for instance Equations (3.2.1), (3.2.27) and (3.2.24).
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3.5.2 Basics of Zn2-geometry,

Zn2 -manifolds and their morphisms: The locally ringed space approach to Zn2 -manifolds
was pioneered in [19]. We work over the field R of real numbers and set Zn2 := Z2×Z2× . . .×Z2

(n-times). A Zn2 -graded algebra is an R-algebra A with a decomposition into vector spaces A :=
⊕γ∈Zn2Aγ , such that the multiplication, say · , respects the Zn2 -grading, i.e., Aα · Aβ ⊂ Aα+β .
We will always assume the algebras to be associative and unital. If for any pair of homogeneous
elements a ∈ Aα and b ∈ Aβ we have that

a · b = (−1)〈α,β〉b · a, (3.5.1)

where 〈−,−〉 is the standard scalar product on Zn2 , then A is a Zn2 -commutative algebra.

Essentially, Zn2 -manifolds are ‘manifolds’ equipped with both, standard commuting coordi-
nates and formal coordinates of non-zero Zn2 -degree that Zn2 -commute according to the general
sign rule (3.5.1). Note that in general we need to deal with formal coordinates that are not
nilpotent.

In order to keep track of the various formal coordinates, we need to introduce a convention
on how we fix the order of elements in Zn2 and we choose the lexicographical order. For example,
with this choice of ordering

Z2
2 = {(0, 0), (0, 1), (1, 0), (1, 1)} .

Note that other choices of ordering have appeared in the literature. A tuple q = (q1, q2, · · · , qN) ∈
N×N (N = 2n − 1) provides the number of formal coordinates in each Zn2 -degree. We can now
recall the definition of a Zn2 -manifold.

Definition 3.5.1. A (smooth) Zn2 -manifold of dimension p|q is a locally Zn2 -ringed space M :=

(|M |,OM), which is locally isomorphic to the Zn2 -ringed space Rp|q := (Rp, C∞Rp [[ξ]]). Local
sections of M are formal power series in the Zn2 -graded variables ξ with smooth coefficients,

OM(|U |) ' C∞(|U |)[[ξ]] :=

{
∞∑

α∈N×N
fα ξ

α : fα ∈ C∞(|U |)

}
,

for ‘small enough’ opens |U | ⊂ |M |. Morphisms between Zn2 -manifolds are morphisms of Zn2 -
ringed spaces, that is, pairs Φ = (φ, φ∗) : (|M |,OM) → (|N |,ON) consisting of a continuous
map φ : |M | → |N | and a sheaf morphism φ∗ : ON(−) → OM(φ−1(−)), i.e., a family of
Zn2 -algebra morphisms φ∗|V | : ON(|V |) → OM(φ−1(|V |)) (|V | ⊂ |N | open) that commute with

restrictions. We sometimes denote Zn2 -manifolds by M = (M,OM) instead of M = (|M |,OM)
and we sometimes denote Zn2 -morphisms by φ = (|φ|, φ∗) instead of Φ = (φ, φ∗) .

Example 3.5.2 (The local model). The locally Zn2 -ringed space Up|q :=
(
Up, C∞Up [[ξ]]

)
(Up ⊂ Rp

open) is naturally a Zn2 -manifold – we refer to such Zn2 -manifolds as Zn2 -domains of dimension
p|q . We can employ (natural) coordinates (xa, ξA) on any Zn2 -domain, where the xa form a

coordinate system on Up and the ξA are formal coordinates.

Many of the standard results from the theory of supermanifolds pass over to Zn2 -manifolds.
For example, the topological space |M | comes with the structure of a smooth manifold of
dimension p, hence our suggestive notation. Moreover, there exists a canonical projection
ε : OM → C∞|M | . What makes the category of Zn2 -manifolds a very tractable form of noncom-
mutative geometry is the fact that we have local models. Much like in the theory of smooth
manifolds, one can construct global geometric concepts via the gluing of local geometric con-
cepts. That is, we can consider a Zn2 -manifold as being covered by Zn2 -domains together with
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specified gluing data. More precisely, a p|q-chart (or p|q-coordinate-system) over a (second-
countable Hausdorff) smooth manifold |M | is a Zn2 -domain

Up|q = (Up, C∞Up [[ξ]]) ,

together with a diffeomorphism |ψ| : |U | → Up, where |U | is an open subset of |M |. Given two
p|q-charts

(Up|qα , |ψα|) and (Up|qβ , |ψβ|) (3.5.2)

over |M |, we set Vαβ := |ψα|(|Uαβ|) and Vβα := |ψβ|(|Uαβ|), where |Uαβ| := |Uα|∩ |Uβ|. We then
denote by |ψβα| the diffeomorphism

|ψβα| := |ψβ| ◦ |ψα|−1 : Vαβ → Vβα . (3.5.3)

Whereas in classical differential geometry the coordinate transformations are completely defined
by the coordinate systems, in Zn2 -geometry, they have to be specified separately. A coordinate
transformation between two charts, say the ones of (3.5.2), is an isomorphism of Zn2 -manifolds

ψβα = (|ψβα|, ψ∗βα) : Up|qα |Vαβ → U
p|q
β |Vβα , (3.5.4)

where the source and target are the open Zn2 -submanifolds

Up|qα |Vαβ = (Vαβ, C
∞
Vαβ

[[ξ]])

(note that the underlying diffeomorphism is (3.5.3)). A p|q-atlas over |M | is a covering

(Up|qα , |ψα|)α by charts together with a coordinate transformation (3.5.4) for each pair of charts,
such that the usual cocycle condition ψβγψγα = ψβα holds (appropriate restrictions are under-
stood).

Moreover, we have the chart theorem ([19, Theorem 7.10]) that says that Zn2 -morphisms
from a Zn2 -manifold (|M |,OM) to a Zn2 -domain (Up, C∞Up [[ξ]]) are completely described by the
pullbacks of the coordinates (xa, ξA). In other words, to define a Zn2 -morphism valued in a
Zn2 -domain, we only need to provide total sections (sa, sA) ∈ OM(|M |) of the source structure
sheaf, whose degrees coincide with those of the target coordinates (xa, ξA). Let us stress the
condition

(. . . , εsa, . . .)(|M |) ⊂ Up ,

where ε is the canonical projection, is often understood in the literature.

Zn2 -Grassmann algebras, Zn2 -points and the Schwarz–Voronov embedding: It is clear
that Zn2 -manifolds, as they are locally ringed spaces, are not fully determined by their topological
points. To ‘claw back’ a fully useful notion of a point, one can employ Grothendieck’s functor
of points. This is, of course, an application of the Yoneda embedding (see [35, Chapter III,
Section 2]). For the case of supermanifolds, it is well-known, via the seminal works of Schwarz
& Voronov [40, 41, 47], that superpoints are sufficient to act as ‘probes’ for the functor of
points. That is, we only need to consider supermanifolds that have a single point as their
underlying topological space. Dual to this, we may consider finite dimensional Grassmann
algebras Λ = Λ0 ⊕ Λ1 as parameterizing the ‘points’ of a supermanifold. One can thus view
supermanifolds as functors from the category of finite dimensional Grassmann algebras to sets.
However, it turns out that the target category is not just sets, but (finite dimensional) Λ0-
smooth manifolds. That is, the target category consists of smooth manifolds that have a
Λ0-module structure on their tangent spaces. Morphisms in this category respect the module
structure and are said to be Λ0-smooth (we will explain this further later on). In [13], it was
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shown how the above considerations generalize to the setting of Zn2 -manifolds. We will use the
notations and results of [13] rather freely. We encourage the reader to consult this reference
for the subtleties compared to the standard case of supermanifolds.

A Zn2 -Grassmann algebra we define to be a formal power series algebra R[[θ]] in Zn2 -graded,
Zn2 -commutative parameters θ`j. All the information about the number of generators is specified
by the tuple q as before. We will denote a Zn2 -Grassmann algebra by Λ, as usually we do not
need to specify the number of generators. A Zn2 -point is a Zn2 -manifold (that is isomorphic
to) R0|q . It is clear, from Definition 3.5.1, that the algebra of global sections of a Zn2 -point is
precisely a Zn2 -Grassmann algebra. There is an equivalence between Zn2 -Grassmann algebras
and Zn2 -points:

Zn2GrAlg ∼= Zn2Ptsop .

The Yoneda functor of points of the category Zn2Man of Zn2 -manifolds is the fully faithful
embedding

Y : Zn2Man 3M 7→ HomZn2 Man(−,M) ∈ Fun(Zn2Manop, Set) .

In [13], we showed that Y remains fully faithful for appropriate restrictions of the source and
target of the functor category, as well as of the resulting functor category. More precisely, we
proved that the functor

S : Zn2Man 3M 7→ HomZn2 Man(−,M) ∈ Fun0(Zn2Ptsop, A(N)FM)

is fully faithful. The category A(N)FM is the category of (nuclear) Fréchet manifolds over a
(nuclear) Fréchet algebra, and the functor category is the category of those functors that send
a Zn2 -Grassmann algebra Λ to a (nuclear) Fréchet Λ0-manifold, and of those natural transfor-
mations that have Λ0-smooth Λ-components.
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Chapter 4

Zn2 -Lie algebra representations by
coderivation

This chapter is a joint work in progress with Zoran Škoda.

Abstract

In this chapter we develop the required tools in the category of Zn2 -manifolds required to study
representations by coderivations of the symmetric algebra of a Lie algebra, (see chapter 3.2.3.1),
S(g). For this, we recall properties of the tensor and symmetric algebras of Zn2 -vector spaces,
construct the universal enveloping algebra and prove the Zn2 version of the Poincaré-Birkhof-
Witt theorem. This allows to construct a faithfull representation of g by acting over the
universal enveloping algebra U(g), and by use of the strong Poincaré-Birkhof-Witt-theorem,
we can extend this action to S(g). We endow this algebras with their classical Hopf algebra
structure. We prove that this action is by coderivations. We set also the basis for the study of
the embedding of the coderivations of S(g) into a Zn2 -Weil algebra.

Definition 4.0.1. A Zn2 -graded Lie algebra

g =
⊕
γ∈Zn2

gγ

Is a Zn2 -graded vector space, endowed with a graded bracket that satisfies Lie algebra and
Koszul rules:

i. [xγj , yγk ] = −(−1)<γj ,γk>[yγk , xγj ]

ii. (−1)<γk,γi>[xγi , [xγj , xγk ]] + (−1)<γi,γj>[xγj , [xγk , xγi ]] + (−1)<γj ,γk>[xγk , [xγi , xγj ]] = 0

where, < γj, γk >, denotes the inner product of Zn2 .

For fixed number of Zn2 -vector spaces,

g1, · · · , gp

the tensor product is the Universal (initial) object in the category of p-multilinear maps from
the cartesian product (See [6]).

f : g1 × · · · × gp → h

And morphisms,
(f : g1 × · · · × gp → h)⇒ (g : g1 × · · · × gp → k)
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Given by a linear map h : h→ k making the following diagram commute:

h
↗

g1 × · · · × gp ↓
↘

k

Universal objects are unique up to isomorphism. One object of this isomorphism class can
be obtained by looking at the free module generated by the set g1, · · · , gp quotiented by the
relations (the submodule generated by elements of the form):

(x1, · · · , xi + xi′, · · · , xp)− (x1, · · · , xi, · · · , xp)− (x1, · · · , xi′, · · · , xp)

(x1, · · · , axi, · · · , xp)− a(x1, · · · , xi, · · · , xp)

We denote such vector space as,

g1 ⊗ · · · ⊗ gp

Its elements can always be written as a sum of decomposable terms, meaning:

g1 ⊗ · · · ⊗ gp =
{∑

x1 ⊗ · · · ⊗ xp | xi ∈ gi

}
and inherits a Zn2 -grading

g1 ⊗ · · · ⊗ gp =
⊕
γ∈Zn2

⊕
∑p
i=1 γαi=γ

{
x
γα1
1 ⊗ xγα2

2 ⊗ · · · ⊗ xγαpp

∣∣ xi ∈ g
γαi
i

}
Given a family of linear maps, fi : gi −→ hi, there is a unique linear map,

T (f1, · · · , fp) : g1 ⊗ · · · ⊗ gp−→ h1 ⊗ · · · ⊗ hp

x1 ⊗ · · · ⊗ xp 7→ f1(x1)⊗ · · · ⊗ f(xp) (4.0.1)

Which respects composition: If fi ◦ gi is a family of composite maps, then

T (f1 ◦ g1, · · · , fp ◦ gp) = T (f1, · · · , fp) ◦ T (g1, · · · , gp)

and

T (id, · · · , id) = id.

From g, we proceed to build a unital associative algebra: Start with the monoid of natural
numbers N; and for each n ∈ N define,

T n(g) = g⊗ n−times· · · ⊗ g

Then, consider the bilinear associative map,

T p(g)× T q(g)→ T (p+q)(g)

((x1 ⊗ · · · ⊗ xp, y1 ⊗ · · · ⊗ yq) 7→ x1 ⊗ · · · ⊗ xp ⊗ y1 ⊗ · · · ⊗ yq)

This implies that,

T (g) =
∞⊕
n=0

(T n(g))
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is a ring. It is bi-graded, such being the classic N grading, and the Zn2 degree induced from g
(See Chapter II, 3.2.3.1). Using the association in morphisms (4.0.1), we get a functor, from
graded vector spaces, to associative unital algebras,

(VEC 3 g 7→ T (g) ∈ Alg) .

It is universal in the following way: For any linear map φ : g → A from the Lie algebra
into an associative unital associative algebra, in particular zero degree maps, A, there exists a
unique unital algebra morphism, h : T (g)→ A, such that the following diagram commutes:

g
i−→ T (g)

φ↘ ↓ h
A

Where, i : g → T (g), is the cannonical inclusion (⊗g0 = K; ⊗g1 = g). The map is the
obvious one, given by:

h(x1 ⊗ x2 · · · ⊗ xn) = φ(x1) •A φ(x2) •A · · · •A φ(xn)

N.B. This characterizes T (g) as the unique unital associative algebra constructed from g, up
to isomorphism. The previous is equivalent to a statement about T being a left adjunction to
the forgetful functor from algebras into vector spaces; HomZn2 Vec(g, •) ∼= HomAlg(T (g), •). (See
[8], [11])

We now look at the two sided ideals generated by elements of the form:

Js = (x⊗ y − (−1)<d(x),d(y)>y ⊗ x | x, y are homogeneous)

This ideals are distributed along all the degrees, (both N and Zn2 -degrees). For each n ∈ N,
we have the module,

Sn = T n/Jn

and we obtain a canonical map

g× · · · × g→ T n(g)→ T n/Jn = Sn.

The direct sum (see 3.2.42)

S(g) =
⊕
r

Sr

is a N-graded Zn
2 -graded-commutative algebra.

Observe how J1
∼= 0, so that the inclusion g ↪→ S(g) remains injective, and the universal

property can be written as:
For any linear map, φ : g → CA, from the vector space into a Zn2 -commutative algebra,

(with φ(u)φ(v)−(−1)<d(u),d(v)>φ(v)φ(u) = 0), then there exist a unique map of Zn2 -commutative
algebras, h : S(g)→ CA, such that the following diagram commutes:

g
is
↪−→ S(g)
φ↘ ↓ h

CA

Again, h(u1 · · ·un) = φ(u1) · · ·φ(un).

As in the classical case, S(g) may be identified with the algebra of Zn2 -graded polynomials
with the basis of g as generators (see 3.2.47).
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Definition 4.0.2. Let g be a Zn2 -graded Lie algebra. The universal enveloping algebra of
g is a pair (U(g), iu) formed by a unital associative algebra, U(g), and a linear morphism
iu : g→ U(g), such that,

iu(x)iu(y)− (−1)<deg(x),deg(y)>iu(y)iu(x) = iu([x, y]) (4.0.2)

for all x, y ∈ g; and with the following universal property: If A is any other associative unital
algebra and there exists a map ju : g → A with the property (4.0.2), there exists a unique
morphism of algebras, h : A→ U(g), sending 1 to 1, such that h ◦ iu = ju.

We proceed to construct such a pair. We start from the tensor algebra, T (V ) and consider,
the graded two sided ideal, Ju, generated by the elements

(x⊗ y − (−1)<deg(x),deg(y)>y ⊗ x− [x, y])

Again, the quotient is a unital associative algebra, with canonical map

π : T (g)→ T (g)/Ju

There exists a map coming from the restriction of π to T 1(g) ∼= g, which we will call iu : g →
U(g), and inherits the universal property from the tensor algebra in the following way: Let
(A, ju) be as before. Since A is a unital associative algebra, the universal property of the tensor
algebra points out at a unique algebra morphism, h′ : T (g) −→ A, which sends 1 to 1, extends
the morphism ju and therefore, Ju ⊂ Ker(h′). This allows us to identify a unique morphism
of algebras h : T (g)/Ju → A such that h ◦ iu = ju.

4.1 Poincaré-Birkhoff-Witt theorem

N.B. When proving the Poincaré-Birkhoff-Witt theorem, the degree issues that might have
appeared are under control by the Koszul sign rule properties and its appearance in the axioms
of the Zn2 -Lie bracket. There are parity issues that we solve in the same fashion as the proofs
to the super PBW theorem.

Let Gn be the K-module Un/Un−1, with Un = π(T n). Let G be the direct sum over n ∈ N.
G inherits a multiplication map induced by the one in U(g) with, GmGn ⊂ Gn+m. Consider
the maps

φn : T n −→ Un
q−→ Gn

This maps are all surjective and assemble into a linear map

φ : T (g) −→ G

which is an algebra epimorphism. If we take xµ ∈ gµ and xν ∈ gν , the element in T 2, xµ⊗xν −
(−1)<γµ,γν>xν ⊗ xµ projects into U1, and eventually to zero in G. This means that there is a
unique epimorphism,

β∗ : S(g)→ G

that makes the diagram

T n −→ Un
↓ ↓
Sn −→ Gn

(4.1.1)

commute (See [9], [11]).
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Theorem 4.1.1. Let g be a Zn2 -Lie algebra over K. The epimorphism,
β∗ : S(g)→ G, is an algebra isomorphism.

Proof. Let g be a Zn2 -Lie algebra, with an ordered homogeneous base X . In the context of the
diamond lemma, consider then the space of words made by using the base elements as letters,
< X > and the free group generated by X which is just he tensor algebra T (g) ∼= R < X >
(see [1], [13]).

The order in X = {Xµ} is given by parity in first instance, and lexicographical in each
parity. At every degree we suppose to have chosen an order.

Notation. Suppose Xa has degree γj, and Xb γk. We write,

(−1)<γj ,γk> := (−1)a·b

The strategy is to reduce words at < X > into a standard form in T (g) which is unique in
U(g) (unique mod Ju = (Ya ·Xb− (−1)a·bXb ·Ya− [Ya, Xb])). Standard form means to have only
ordered words. If a < b < c, then

XaXbXc is standard, while

XaXcXb ; XcXbXa are not standard and require reduction

As usual when one proceeds into a proof by diamond lemma, we substitute non standard
words by means of the algebra relations. The easiest example is a non standard quadratic term.

XbXa = (−1)a·bXaXb + [Xb, Xa]

The LHS is clearly non standard, and the RHS consists of a standard quadratic word, followed
by linear terms appearing in

[Xa, Xb] = Ck
a bXk.

• For a < b a word XbXa is changed by (−1)a·bXaXb + [Xb, Xa].

• For a is odd. We change the word XaXa = 1
2
[Xa, Xa]

Given this rules of interchange, the only ambiguity that might occur is to have an overlap. This
means that a word can be reduced in different ways, and the reduction is not unique mod Ju.
We have to study two different cases:

The more difficult case is when a < b < c: The word

XcXbXa

can be reduced starting with XcXb or with XbXa.
In the first case,

XcXbXa = (−1)c·b+c·a+a·bXaXbXc + (−1)c·b+c·a[Xb, Xa]Xc + (−1)c·bXb[Xc, Xa] + [Xc, Xb]Xa

And starting by XbXa:

XcXbXa = (−1)c·b+c·a+a·bXaXbXc + (−1)b·a+a·cXa[Xc, Xb] + (−1)b·a[Xc, Xa]Xb +Xc[Xb, Xa]

We will compare by subtracting the two reductions of XcXbXa; The cubic terms cancel, and
the quadratic terms reduce as,
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(−1)c·a+c·b[Xb, Xa]Xc −Xc[Xb, Xa] = (−1)c·a+c·b[Xb, Xa]Xc − (−1)c·a+c·b[Xb, Xa]Xc − [Xc[Xb, Xa]]

= −[Xc[Xb, Xa]].

The whole difference assemble as follows:

−[Xa, [Xc, Xb]]− [Xc, [Xb, Xa]]− [[Xc, Xa], Xb] =

(−1)c·a[Xa, [Xb, Xc]] + (−1)a·b[Xb, [Xc, Xa]] + (−1)b·c[Xc, [Xa, Xb]]

Which is zero by the Jacobi identity.
The second case concerns the fact that odd vectors do not commute. We study now reduc-

tions of words involving odd vector fields, say Xa, of the form XbXaXa a < b.
Starting with XbXa

XbXaXa = XaXaXb + (−1)b·aXa[Xb, Xa] + [Xb, Xa]Xa

=
1

2
[Xa, Xa]Xb + [[Xb, Xa], Xa]

And starting by XaXa

XbXaXa =
1

2
Xb[Xa, Xa]

If we subtract both expressions and, we can arrange them in the following way,

1

2
[Xa, Xa]Xb + [[Xb, Xa], Xa]−

1

2
Xb[Xa, Xa] =

1

2
[[Xa, Xa], Xb] + [[Xb, Xa], Xa]

Which is again zero because of the Jacobi identity.

Example 4.1.2. Consider the Z2
2-Lie algebra, with one generator per degree, and the ordered

base,
{X(0,0), X(1,1), X(0,1), X(1,0)}

relabeled as before
{X1, X2, X3, X4}.

Quadratic terms have trivial reductions,

X3X2 = (−1)<(1,1),(0,1)>X2X3 + [X3, X2] = −X2X3 + [X3, X2]

or,
X4X3 = (−1)<(1,0),(0,1)>X3X4 + [X3, X4] = X3X4 + [X3, X4].

Another example with cubic term:

X3X4X3 = X3X3X4 +X3[X4, X3]

Now In this particular case, the result of the bracket must have degree (1,1), and for this, we
know that [X4X3] = C2

43X2. In this case we still need to reduce,

X3X2 = −X2X3 + [X3, X2]

The final form, standard word, is,

X3X4X3 = X3X3X4 − C2
43X2X3 + C2

43[X3, X2].
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We follow now the classical case [3].

Corollary 1. Let W be a submodule of T (g). If the restriction of πs to W is an isomorphism.
Then the restriction of πu to W is isomorphic, as Zn2 -vector space, to a complement of Un−1 in
Un.

Proof. This follows from the fact that the composition β∗ ◦ πs|W is an isomorphism of vector
spaces, so, q ◦ πu|W is as well.

We have then three important results:

Corollary 2. The map iu : g −→ U(g) is injective. U0
∼= K and U1

∼= g.

Proof. We use the corollary 1, with n = 1 and W = T 1. This entails that, since the composition
(T 1 ∼= g 3 πs|T 1 → S1 → G1) is an isomorphism, then T 1 ∼= U1

For any homogeneous n− tuple in gn, and for every, σ ∈ Σn, we define the map

(gn 3 (x1, · · · , xn)
σ•7−→ α(σ)xσ−1(1) ⊗ · · · ⊗ xσ−1(n) ∈ T n)

A homogeneous Zn2 -symmetric tensor of degree n ∈ N, z ∈ T n, is one such that, for any
permutation, σ ∈ Σn, σ • z = z. The set of all symmetric tensors form a sub−K−module,
Symn of T n. If z is symmetric, ∑

σ∈Σn

σ • z = n!z

and then, the map,

(T n 3 t s7−→ 1

n!

∑
σ∈Σn

σ • t ∈ Symn)

is a linear map and a projector of T n into Symn. This means that s ◦ s = id. This allows
us to identify the image of the map, Im(s), and Symn (See [2] II, 1, no 8). We also obtain
an orthogonal projector, (1− s), which has Symn as kernel, and its image is Is

⋂
T n. We get,

then, the Zn2 -vector spaces isomorphisms:

T n ∼= Symn ⊕ (T n
⋂

Js)

πs|Symn : Symn −→ Sn(g)

Restricting the diagram 4.1.1 to the submodule Symn, we get

Symn → Un
‖ ↓
Sn → Gn

.

by corollary (1), we get a morphism,

Sn−̃→Symn → Un

which is a Zn2 -vector space isomorphism between Sn and a supplement to Un−1 in Un.
And, the commutative diagram of Zn2 -vector space isomorphisms

Symn → Un
↓ ↗ ↓
Sn → Gn

. (4.1.2)
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Corollary 3. Let g be a Zn2 -Lie algebra over K and let X be an ordered homogeneous basis of
g. Let Xa = iu(xa) ∈ U(g). Then 1 and the standard monomials

X
ei1
i1
· · ·Xeir

ir
(4.1.3)

where 1 ≤ i1 < · · · < ir ≤ p+Q, ei ∈ N for Xi even, and ej ∈ {0, 1} for Xj odd; Q =
∑

γ∈Zn2 /0
qγ,

is the number of non-zero degree dimensions, and p classic zero degree dimensions. form a free
K−basis of U(g).

Proof. Consider the submodule of T n generated by the ordered base X of g and the elements,

y = x
ei1
i1
⊗ · · · ⊗ xeinin .

The elements, y, span the vector space Sn, and so (1) gives us an isomorphism between it and
a supplement of Un−1 in Un. And since

πu(y) = iu(xi1)ei1 · · · iu(xin)ein = X
ei1
i1
· · ·Xeir

ir

We obtain a base for U(g).

If f : g→ h is a Zn2 -Lie algebra homomorphism, the composition,

iuh ◦ f : g→ U(h)

induces an algebra homomorphism,

U(f) : U(g)→ U(h)

N.B. The universal enveloping can be here viewed in two ways: one as a usual associative
algebra and another as a Zn2−graded associative algebra. The latter interpretation is clear as
this holds for the tensor algebra and the ideal is Zn2−homogeneous. Then there is a functor
from Zn2−graded associative algebras to Zn2−graded Lie algebras with identity.

Consequences of the the Poincaré-Birkhoff-Witt theorem

• The isomorphism between Sn and Un obtained in (4.1.2), we will call it symmetrization
map, inherits explicit formulas (See [11], [3], [9]):

β(is(x)n) = iu(x)n (4.1.4)

β(is(x1) · · · is(xn)) =
1

n!

∑
σ∈Σn

α(σ)iu(xσ(1)) · · · iu(xσ(n)) (4.1.5)

where, in this case, α(σ) ∈ {−1, 1} is the sign factor resulting from each particular
permutation of n−elements, σ ∈ Σn. The formula is obtained by Zn2 -symmetric per-
mutations, (multilinear Σn equivariant linear morphisms from the cartesian product),
linearly extended to the map T n → Symn. One is able to invert the linear isomorphism
Symn → Sn, which composed with the canonical quotient, πu|Symn : Symn → Un, gives
a well defined linear map.

• The faithful representation of g by linear transformations, by left multiplication in U(g),

g× U(g) 3 (x, u) 7−→ iu(x)u ∈ U(g)



137

4.1.1 Hopf algebras

The diagonal map,

g 3 x D7−→ (x, x) ∈ g× g, (4.1.6)

defines a linear morphism,

(g 3 x D∗7−→ 1⊗ x+ x⊗ 1 ∈ T (g)⊗ T (g)),

which lifts into an algebra map,

Λ : T (g)→ T (g)⊗ T (g)

that, along with the morphisms, (g 3 x 7−→ ε(x) = 0 ∈ R, ε(1) = 1), and ∀x ∈ g, δ(x) = −x ,
turn T (g) into a Hopf algebra. This means that this maps verify the following properties:

(id⊗ Λ) ◦ Λ = (Λ⊗ id) ◦ Λ (4.1.7)

m ◦ (id⊗ δ) ◦ Λ = m ◦ (δ ⊗ id) ◦ Λ = ε

m ◦ (id⊗ ε) ◦ Λ = m ◦ (ε⊗ id) ◦ Λ = id

m : T (g)
⊗

T (g) −→ T (g), u
⊗

v 7→ u ⊗ v, is the product in T (g). We proceed to induce
this operations into quotients of the tensor algebra (see [4], [8], [3]).

We use ms : S(g)⊗ S(g)→ S(g), the multiplication map obtained in S(g) from the multi-
plication in the tensor algebra and the canonical map T (g)→ S(g). Following (Petracci [9]) σ
is the Zn2 -cocommutation operator in S(g)⊗ S(g),

x⊗ y σ7→ (−1)<d(x),d(y)>y ⊗ x

And α(~p) ∈ {−1, 1} is the sign factor such that,

α(~p)xp1 · · ·xpjx1 · · · x̂p1 · · · x̂pj · · ·xn = x1 · · ·xn,

This maps are explicitly defined by:
For {xi}ni=1 ∈ g,

Λ(x1 · · ·xn) =
n∑
j=0

∑
1≤p1≤···≤pj≤n

α(~p)xp1 · · ·xpj ⊗ u1 · · · x̂p1 · · · x̂pj · · ·xn (4.1.8)

δ(x) = −x and ε(x) = 0 (4.1.9)

A the special case is,

x0 ∈ g0 Λ(xn) =
n∑
j=0

(
n

j

)
xj ⊗ xn−j

They satisfy relations (4.1.7) and

Λ = σ ◦ Λ (cocommutativity)

by construction.
For the case of the universal enveloping algebra, a short computation shows that the mor-

phism, x
D∗7−→ 1⊗ x+ x⊗ 1, verifies

D∗(xµ)D∗(xν)− (−1)<µ,ν>D∗(xν)D
∗(xµ) = D∗([xµ, xν ])
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By the universal property of U(g), as a morphism into U(g)⊗U(g), it lifts to a unique algebra
morphism,

Λ : U(g) −→ U(g)⊗ U(g)

which, along with (g 3 x 7−→ ε(x) = 0 ∈ R, ε(1) = 1) endows U(g) with a coalgebra structure,
and the addition of the map δ(x) = −x ∀x∈g, makes of U(g) a Hopf algebra. The formulas of
coproduct, counit and antipode can also be written like (4.1.8).

N.B. One can see that both of this algebras are Hopf algebras by looking at Hopf ideals, (δ(J) ⊂
J) of T (g) such as the ideals Js and Ju defining the universal symmetric and enveloping algebras,
(see [4]).

Given a morphism of Zn2 -graded Lie algebras, f : g −→ h, we obtain a commutative diagram

S(g)
S(f)−→ S(h)

β ↓ β ↓
U(g)

U(f)−→ U(h)

(4.1.10)

since both compositions yield

1

n!

∑
σ∈Σn

α(σ)iuh(f(xσ(1))) · · · iuh(f(xσ(n))).

We finalize this section proving that the symmetrization map, (4.1.5), is a coalgebra iso-
morphism.

The diagonal map, 4.1.6 g→ g× g, lifts naturally into the coproduct, for the case of both,
symmetric and enveloping coalgebras as an algebra homomorphism, U(g) → U(g) ⊗ Ug ∼=
U(g× g).

Commutativity of the diagram (4.1.10) applied to f : g → h = g× g, is exactly the
property required for the symmetrization map to be a coalgebra homomorphism, and ultimately,
coalgebra isomorphism (see [9] Lemma 2.5.3).

4.2 Coderivations

Given a coalgebra C, with coproduct ΛC .

Definition 4. A linear endomorphism, D ∈ End(C) is called a coderivation of C, if it verifies,

(1⊗D +D ⊗ 1) ◦ ΛC = ΛC ◦D

The action by left multiplication of the Hopf algebra U(g) restricts to a Lie algebra action
(faithful representation),

g 3 h 7→ Lh ∈ End(U(g)),

by coderivations of U(g). This is obvious since ΛC(h) = (1⊗ h+ h⊗ 1), and

(1⊗ Lh + Lh ⊗ 1) ◦ Λ(h′) = Λ(hh′) = (Λ ◦ Lh)(h′)

This allowed us to define, by means of the symmetrization map, an action by coderivations
of g in S(g) (see [5]),

β−1 ◦ Lh ◦ β : S(g) −→ S(g).
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The non degenerate pairing in g, allows to define a dual structure Sn∗ = Sn(g∗) to Sn, for
each n ∈ N, bt means of the extended inner product,

< δ1 · · · δn, x1 · · ·xn >=
n∏
i=1

1

n!

∑
σ∈Σn

α(σ) < δi, xσ(i) >

allowes to define the derivation tDh : S(g)∗ → S(g)∗. This is the same as a Zn2 -Lie algebra
homomorphism

θ : g→ Der(S(g)∗).

4.3 Weyl algebras

There are several ways to consider the Zn2 -graded Weyl algebra and its completion by the degree
of the differential operator. Sometimes and invariant form is useful, while below we shall also
use a concrete formulation in a distinguished basis. The simplest abstract approach is as an
inner object of derivations in the symmetric monoidal category of Zn2 -graded vector spaces.
While a more internal definition is in place in effect one should consider the subspace of inner
endomorphisms of graded symmetric algebra spanned by graded derivations. This subspace
has a structure of a Zn2 -graded algebra. Then one needs classification of derivations to present
this algebra in more explicit terms.

A bilinear formB on a Zn2 -vector space V is Zn2 -skew-symmetric ifB(a, b) = −(−1)〈ã,b̃〉B(b, a)

and symmetric if B(a, b) = −(−1)〈ã,b̃〉B(b, a) for all a, b ∈ V . Define ε = 1 in symmetric and
ε = −1 in skew-symmetric case. Consider the category CB, whose objects are pairs (A, λA)
where A is a Zn2 -graded associative algebra and λA : V → A a linear map such that for all
Zn2 -homogeneous x, y ∈ A

λ(x)λ(y) + (−1)〈x̃,ỹ〉ελ(y)λ(x) = B(x, y)1,

and where the morphisms (A, λA) → (B, λB) are the morphisms of Zn2 -graded associative
algebras f : A→ B such that f ◦λA = λB. Then this category has an initial object, which is in
the skew-symmetric case called the Zn2 -graded (symplectic) Weyl algebra of (V,B) and in the
nondegenerate symmetric case the Zn2 -graded Clifford algebra. (The terminology may be a bit
confusing regarding that the usual Clifford algebra appears to be Zn2 -graded, but here we talk
about the notion attached to already graded vector space.) A special case is obtained as follows:
take a Zn2 -graded vector space V and its dual V ∗ and introduce the Zn2 -graded skew-symmetric
form B(v + v′, w + w′) = v′(w)− (−1)〈ṽ,w̃

′〉w′(v) on V ⊕ V ∗, where the primed elements are in
the dual. It is clear that if we choose a homogeneous basis then the corresponding Weyl algebra
is in the form in physics known as a Zn2 -superHeisenberg algebra

∂ixj − (−1)〈i,j〉xj∂
i = δji ,

Like in the case of the usual Weyl algebra, there is a Zn2 -graded vector space isomorphism of
this Weyl algebra with the tensor product S(V ) ⊗ S(V ∗) where the polynomials of the form
xI∂

J where I, J are multiindices (xI is a generic monomial in generators of S(V ) and alike for
∂J i S(V ∗)).

We are now interested in a concrete formulas for the embeddings of U(g) into the (completion
of) the Weyl algebra corresponding to the skew-symmetric form on the space g ⊕ g∗ and in
particular for the embedding induced by the symmetrization map.

We look for the embeddings in a form

x̂i 7→
∑
j

xjφ
j
i (4.3.1)



140

where x̂j is some choice of basis of g ↪→ U(g) (consisting of Zn2 -homogeneous elements), xj are
the corresponding generators of Zn2 -graded symmetric algebra S(g) ↪→ W (g) and φji are the
Zn2 -homogeneous elements of (the completion of) the subalgebra generated by the elementary
derivations (coming from the dual space elements) ∂j = ∂xj . This form has a reason: this
is a dual description of a formal Zn2 -graded vector field on a neighborhood of unit element
of a Zn2 -graded Lie group. The Zn2 -degree of φji is x̃i + x̃j. It is an easy exercise that, as in
the classical case, one can write uniquely every element in Zn2 -superHeisenberg algebra as the
sum of products where elements of the S(g) are on the left hand side (a version of normal
ordering). Notice that these are the derivations of the same Zn2 -homogeneity as xj and the
graded commutator is

[∂j, xl] = δjl ,

while the graded commutators among x-s vanish, and graded commutators among ∂-s also van-
ish. In the purely even case, φji is a usual formal function of partial derivatives and [φji , xi] can
be written as the derivative of φji with respect to ∂i. In general case, before taking the deriva-
tive one may need to anticommute with some other generators. In any case, the commutation
drops the polynomial degree by 1 and this generalizes the derivatives with respect to ∂i. Thus,

[φji , xl] =
δφji
δ∂l

. Let also the structure constants of g be defined by the graded commutators

[x̂i, x̂j] =
∑
s

Cs
ijx̂s. (4.3.2)

The condition that the map (4.3.1) defines (on generators) a morphism of Zn2 -graded algebras
is that the Zn2 -graded commutator

[
∑
k

xkφ
k
i ,
∑
l

xlφ
l
j] =

∑
sr

Cs
ijxrφ

r
s

To that point all looked like in non-graded case. The difference comes from the expansion of the
left-hand side. For the simplicity of the notation we will use the Einstein summation convention.
Thus, after some calculations and using that the Zn2 -graded commutators [xi, xj] = 0 and
[∂i, ∂j] = 0, we obtain

xk
δφki
δ∂l

φlj − (−1)〈̃i,j̃〉xl
δφlj
δ∂k

φki = Cs
ijxrφ

r
s

Consequently, by equating the expressions on the right of xr, we get a system of Zn2 -graded
formal differential equations

δφri
δ∂l

φlj − (−1)〈̃i,j̃〉
δφrj
δ∂l

φli = Cs
ijφ

r
s (4.3.3)

Theorem 4.3.1. Every solution of the above system for φ gives an inclusion of U(g) as a
Zn2 -graded associative algebras into the appropriate Zn2 -superHeisenberg algebra.

Now we want to discuss the form of φ which corresponds to the symmetrization map. For
the usual supersymmetry Petracci [9] studied the corresponding representation by coderivations
and she called it universal as it is related to certain scalar function. It is known that the
symmetrization map is functorial in the choice of underlying Lie algebra. In particular if one
takes an identity as a map and considers the formula in terms of different bases, then one gets
covariance with respect to basis. This implies that the form has to be covariant. An extension of
the analysis in [5] of the covariance suggests that in the coordinates the form of the embedding
has to be of the form

φij(x) =
∞∑
N=0

AN(CN)ij (4.3.4)
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where AN are some numbers, A0 = 1 and C = (Ci
j) is a matrix whose upper index is a

column index (non-standard convention which has a reason coming from a deformation theory
interpretation) and where Ci

j = Ci
jk∂

k and summation over k is understood. This form can
be obtained by considering the exponential map in the graded case and expressing the graded
Lie algebra of left invariant vector fields on the Zn2 -graded Lie group in the chart given by
the exponential map. This calculation in the non-graded case is given in [7], chapter 3. The
calculation uses the formula for the differential of the exponential map; the analogue of the
formula for the differential in graded case is known and like in the classical case it involves
the formal function whose coefficients are given by Bernoulli numbers and consequently AN =
(−1)NBN/N ! where BN is the N -th Bernoulli number.

Definition 4.3.2. Bernoulli numbers BN for N = 0, 1, 2, . . . are the rational numbers defined
by the generating series

∞∑
N=0

(−1)N
BN

N !
tn =

t

1− exp(t)
(4.3.5)

In particular, it holds B0 = 1, B1 = −1/2, B2 = 1/6 and B2K+1 = 0 for all integer K ≥ 1.

The coefficients AN and the proof that 4.3.4 for AN = BN is indeed a representation of the
universal enveloping algebra by elements of the Zn2 -superHeisenberg algebra can alternatively
be inferred by a direct calculation modifying the proof which is in the classical case exhibited
in chapters 2-7 of [5]. There are however some nontrivial differences with respect to their proof
of the nongraded case. Regarding that the derivations δs = ∂

∂(∂s)
are also having parity, they

satisfy the Zn2 -graded Leibniz rule. In particular, if f = f(∂) then

δr(Ci
jf) = δr(C

i
jk∂k · f) = Ci

jrf + (−1)r·kCi
jk(δrf)

The cumbersome problem in many calculations is that the sign (−1)r·k is not an overall sign
in front of the second term, but it falls under the summation over k. Another problem is that
while the scalars Ci

jk are in the ground field, the entries of the matrix C involve odd and even
summands and hence when we contract the copies of the matrix we need to be careful with
the order and some manipulations from the earlier proof are illegal and have to be replaced by
more subtle calculations.

We first substitute the Ansatz with tensorial form (4.3.4) into (4.3.3). We obtain

∞∑
N=0

N∑
I=1

AIAN−I [(δr(CI)ci)(CN−I)rj − (−1)i·j(δr(CI)cj)(CN−I)ri ] =
∞∑
N=0

AN−1C
s
ij(CN−I)cs

In the formal topology with respect to the degree of the differential operators it is sufficient to
prove the identity in every degree N with respect to ∂-s. Thus we need to check the identities

N∑
I=1

AIAN−I [(δr(CI)ci)(CN−I)rj − (−1)i·j(δr(CI)cj)(CN−I)ri ] = AN−1C
s
ij(CN−I)cs (4.3.6)

for all N ≥ 1.
We shall extensively use the Zn2 -graded antisymmetry of the bracket expressed in terms of

the structure constants as Cij = (−1)ijCji and of the Zn2 -graded Jacobi identity,

(−1)k·iCs
jkC

l
is + (−1)i·jCs

kiC
l
js + (−1)j·kCs

ijC
l
ks = 0, (4.3.7)

and their combinations like the left and right Zn2 -graded Leibniz identity, e.g.

Cc
irC

r
jk − (−1)j·iCc

jrC
r
ik = Cs

ijC
c
sk. (4.3.8)
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Equation (4.3.6) for N = 1 reads simply as A1(Cc
ij − (−1)jiCc

ji) = Cc
ij, hence it is satisfied iff

A1 = 1
2
.

Equation (4.3.6) for N = 1 reads

A2
1[δr(C

c
ik∂

k)Cr
j − (−1)i·jδr(C

c
jk∂

k)Cr
i ] + A2[δr(C2)ciδ

r
j − (−1)i·jδr(C2)ciδ

r
j ] = A1C

s
ijCc

s

The first summand on the left hand side is

A2
1[Cc

irC
r
jk∂

k − Cc
irC

r
jk∂

k]
(4.3.8)

= A2
1C

s
ijCc

s,

while the second summand is A1(δj(C2)ci − (−1)i·jδj(C2)ci). Using the Zn2 -graded rule for the
graded derivative on the matrix square the expression in brackets expands to

Cs
ijC

c
sk∂

k − (−1)i·rCs
ik∂

kCsj − (−1)i·jCs
jiC

c
sk∂

k + (−1)i·j+j·rCc
jk∂

kCk
si

(4.3.8)
= 3Cs

ijCs
s.

This follows by observing that the third summand equals first and the second and fourth add
to the same expression using the Leibniz identity.

Thus the N = 2 equation holds iff A2
1 + A2 = A1. Using A1 = 1/2 we obtain A2 = 1/12.

We are now going to prove that the N = 3 identity holds if A3 = 0. This means that only
I = 1 and I = 2 terms (involving A1A2 and A2A1) contribute to the left hand side. After
dividing by A2 and substituting A1 = 1/2, we obtain the N = 3 condition

Cc
ir(C2)rj − (−1)i·jCc

jr(C2)ri + δr(C2)ciCr
j − (−1)i·jδr(C2)cjCr

i = 2Cs
ij(C2)cs (4.3.9)

Applying the graded derivative, the third summand is

δr(C2)ciCr
j = Cs

irCc
sCr

j − (−1)r·kCs
ik∂

kCc
srCr

j (4.3.10)

and the fourth summand is

−(−1)i·jδr(C2)cjCr
i = −(−1)i·jCs

jrCc
sCr

i + (−1)i·j+r·kCs
jk∂

kCc
srCr

i . (4.3.11)

The first summand in (4.3.10) and the first summand in (4.3.11), by the Leibniz identity for
the structure constants, add up to Cs

ij(C2)cs what is exactly one half of the right hand side
in (4.3.9). It remains to show that the remaining terms agree, that is

Cc
ir(C2)rj−(−1)r·kCs

ik∂
k ·Cc

srCr
j−(−1)i·jCc

jr(C2)ri +(−1)i·j+r·kCs
jk∂

k ·Cc
srCr

i = Cs
ij(C2)cs. (4.3.12)

For the second summand on the left hand side (and similarly for the fourth) we use the Leibniz
identity for the contraction of the first and third C-factor:

−(−1)r·kCs
ik∂

k · Cc
srCr

j = (−1)i·jCc
js(C2)si + Cs

irCc
sCr

j (4.3.13)

(−1)i·j+r·kCs
ik∂

k · Cc
srCr

j = −(−1)i·jCc
is(C2)sj − Cs

jrCc
sCr

i (4.3.14)

Substituting (4.3.13) and (4.3.14) into (4.3.12) we obtain the condition Cs
irCc

sCr
j − Cs

jrCc
sCr

i =
Ct
ij(C2)ct , which follows by contracting the Leibniz identity with one copy of Cc

s multiplied from
the left. This proves the identity (4.3.12) and hence (4.3.9).

Now we claim that not only A3 = 0 implies that the differential equation holds for N = 3 (for
previously inferred values for A0, A1, A2), but we shall also prove inductively that if A2K+1 = 0
for all K ∈ N, and any even coefficients A2K 6= 0, then the remaining identities for odd powers
N = 2K + 1 > 3 also hold. The basis of induction is the N = 3 case. If it holds then for N + 2
only the summands for I = 1 and I = N − 1. We need to prove for L = 2K ≥ 2 that

A1AL[Cc
is(CL)sj − δr(CL)cjCr

j − (−1)i·jCc
js(CL)si + (−1)i·jδr(CL)cjCr

i ] = ALC
s
ij(CL)cs

what is for AL = A2K 6= 0 equivalent to

[Cc
is(CL)sj + δr(CL)ciCr

j − (−1)i·jCc
js(CL)si − (−1)i·jδr(CL)cjCr

i ] = 2Cs
ij(CL)cs (4.3.15)

We shall in fact prove more, namely this identity hold for all L ≥ 2, both odd and even.
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Cc
ir(CL)rj+(−1)r·kCs

ik∂
k·δr(CL−1)csCr

j−(−1)i·jCc
jr(CL)ri−(−1)i·j+r·kCs

jk∂
k·δr(CL−1)csCr

i = Cs
ij(CL)cs

(4.3.16)
hold for all natural numbers L ≥ 2.

Proof. For any L we first show that (4.3.15) is equivalent to (4.3.16). Say, if we start
with (4.3.15) and expand by the graded Leibniz rule, δr(CL)ci = Cp

ir(CL−1)ci+(−1)r·k(Cp
ik∂

k)δr(CL−1)cp,
and analogously for δr(CL)cj, obtaining at the left-hand side

Cc
ir(CL)rj + Cp

ir(CL−1)cpCr
j + (−1)r·kCs

ik∂
kδr(CL−1)csCr

j

−(−1)i·jCc
jr(CL)ri − (−1)i·jCjr(CL−1)cpCr

i + (−1)i·j+r·kCs
jk∂

k · δr(CL−1)csCr
i .

The second and the fourth summand equal exactly a half of the right-hand side by the identity

Cp
ir(CL−1)cpCr

j − (−1)i·jCp
jr(CL−1)cpCr

i = Cs
ij(CL)cs (4.3.17)

which is just the Leibniz identity in the form

Cp
irC

r
jk − (−1)i·jCp

jrC
r
ik = Cs

ijC
p
sk (4.3.18)

contracted with ∂k and then contracting with (CL−1)cp from the left. Thus the remaining four
summands equate the other half of the right-hand side in (4.3.15) Thus, by subtracting (4.3.17)
we obtain (4.3.16). To conclude the proof, it remains to show (4.3.16) by induction on L. For the
basis of induction, just notice that for L = 2, equation (4.3.15) coincides with equation (4.3.9)
and equation (4.3.16) coincides with equation (4.3.12). The step of induction reduces to routine
tensorial manipulations and usage of Jacobi identities.

Corollary 4.3.4. If AN = (−1)N BN
N !

then identities (4.3.6) hold for N = 0, 2, and all odd N .

Let us now expand how the required identities look for even N ≥ 4. As products AIAN−I
vanish when I is odd, we are left with

N/2∑
k=1

A2kAN−2k

[
δr(CI)ci(CN−2k)rj − (−1)i·jδr(CI)cj(CN−2k)ri

]
= −ANδj(CN)ci + (−1)i·jANδi(CN)cj.

(4.3.19)
The right-hand side (coming from I = 2k = N summand) can also be written as −AN(M0 +
. . .+MN)cij where

(M0)cij = (1− (−1)i·j)Cs1
ij Cs2

s1
· · ·Cc

sN−1
,

(ML)cij = (CL−1
(r) )siC

t
sj(CN−I−1)ct − (−1)i·j(CL−1

(r) )sjC
t
si(CN−I−1)ct , 1 ≤ L < N − 1,

(MN−1)cij = (CN−1
(r) )siC

c
sj − (−1)i·j(CN−1

(r) )sjC
c
si,

(4.3.20)
where we introduce the auxiliary matrix (C(r))

s
t = (−1)r·kCs

tk∂
k.

A direct proof of the identities (4.3.19) for N even and bigger than 4 stays an open question
in Zn2 -graded case. This would extend from the non-graded case the explicit formula for the rep-
resentation of Zn2 -graded Lie algebras by derivations of the (completion) of Zn2 -graded symmetric
algebra, hence by elements in the corresponding Weyl algebra (completed Zn2 -superHeisenberg
algebra). We know that this representation exists by transporting the derivations of the uni-
versal enveloping algebra along the symmetrization map which is here introduced by studying
the Zn2 -graded PBW theorem.
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Università degli studi di Roma I , 2003. English.

[10] E. Petracci, Universal representations of Lie algebras by coderivationsBull. Sci. Math. 127
(2003), no. 5, 439–465; math.RT/0303020 MR2004f:17026

[11] D. Quillen Rational homotopy theory Annals of Mathematics 90, 1969 205:295

[12] O. A. Sánchez-Valenzuela, C. Victoria-Monge, Universal homogeneous derivations of
graded ε-commutative algebras. Comm. Algebra 28 (2000), no. 8, 3643–3660. 16W25
(16W50)

[13] V.S. Varadarajan, Supersymmetry for mathematicians: an introduction, Courant Lec-
ture Notes in Mathematics, 11. New York University, Courant Institute of Mathematical
Sciences, New York, American Mathematical Society, Providence, RI, 2004.

145


