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Abstract

This paper considers the problem of optimally maintaining multiple non-identical machines dete-

riorating over time. The number of maintenance activities that can be carried out simultaneously

is restricted by the number of maintenance workers. The main goal is to propose a heuristic with

low complexity that consistently produces solutions close to the optimal strategy for problems of

real size. We cast the problem as a restless bandit problem and propose an index based heuristic

(Whittle’s index policy) which can be computed efficiently. Another goal is to empirically compare

the performance of the index heuristic with alternative policies. In addition to achieving superior

performance over failure-based and threshold policies, Whittle’s policy converges to the optimal

solution when the number of machines is moderately high and/or maintenance workload is high.

Keywords: Maintenance, Restless bandit, Whittle’s index heuristic

1. Introduction

The machine repairman problem, also called the machine interference problem, is characterized

by a collection of M machines subject to random failures and R repairmen (R ≤M). Its classical

formulation determines the optimal sequence of machines to be assigned to the repair crew (See

Haque and Armstrong 2007 for a detailed review of studies in this direction). It has been extensively

studied in the literature as this type of problem arises not only in maintenance operations but also in

manufacturing, transportation, telecommunication, and computer systems (Desruelle and Steudel,

1996; Bunday et al., 1997; Kryvinska, 2004; Armstrong, 2002; Wang, 1994).

In this paper, we consider a machine repairman problem in which each machine gradually de-

teriorates over time rather than suddenly breaks down. Each machine eventually fails unless there
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is a maintenance intervention. The failure of a machine results in high costs related to production

losses and delays, safety issues and unplanned intervention on the machine. The deterioration level

of a machine can be directly measured by techniques such as vibration analysis or wear monitoring.

Thus it is reasonable to schedule maintenance actions based on the degradation statuses of ma-

chines. This maintenance scheme falls into the category of condition-based maintenance (CBM).

Under such a scheme, maintenance decisions are taken prior to any predicted failures using the

information collected via continuous monitoring or inspections. Early work on CBM has shown

that it reduces maintenance costs, improves system reliability and reduces the number of failures.

The conditions of the machines can be expressed through states based on the data collected.

A machine follows a stochastic degradation process over a finite number of discrete states starting

from the as good as new state and ending in the failed state. During maintenance, necessary

overhaul, replacement, and repair operations are carried out to bring the machine into the ‘as

good as new’ condition. The performance of the machines is assessed by output quality and it

is a non-increasing function of the accumulated degradation. This setup is especially relevant

for high-precision machining and heavy machine tooling that is utilized in many sectors such as

aerospace, electronics, defense, and medical technology (Akcay et al., 2021). Degradation increases

revenue losses due to decreasing output quality and also the likelihood of failure. The maintenance

interventions mitigate the risk of costly machine breakdown as well as escalating revenue losses

due to machine deterioration. When a factory has several machines but there is only a limited

number of repairmen, it is important to effectively utilize the repairmen. Hence, the problem is to

determine which machines to maintain at each decision point to ensure a high performance level

at minimum cost.

A primary approach to exploit maintenance optimization and resource allocation problems

is to formulate them as a Markov Decision Process (MDP). A MDP formulation can be solved

exactly through standard techniques such as value iteration or policy improvement (Puterman,

2014). However, these algorithms are computationally intractable for large-scale real life problems.

Naturally, the development of heuristics that can find near-optimal solutions in a time efficient

manner is an area of interest. Our problem relates to the restless bandit problem (RBP) which has

been introduced by Whittle (1988). The problem deals with the sequential allocation of resources

to a collection of stochastic reward-generating projects. As it cannot be solved analytically except
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for some toy problems, Whittle (1988) develops an index based heuristic that emerges from a

relaxation of the problem in which the resource capacity constraint at any decision time is replaced

with its time-averaged version. The index policy has been shown to be asymptotically optimal for

RBPs under certain conditions. These conditions are called indexability property and the heuristic

is referred to as Whittle’s index policy in literature. The heuristic relies on the computation of

indices or scores for all projects and choosing the projects with the highest index values at each

decision point. For Whittle’s index policy to be applicable to a particular problem, one needs to

establish the indexability property which is not trivial in general.

In this paper, we present two analytical models for condition-based maintenance scheduling of

deteriorating machines. Both models assume that inter-arrival times of degradation processes and

maintenance times are exponentially distributed. Also, the maintenance intervention decisions are

given dynamically at any decision epoch. We first develop an average cost MDP formulation of

the problem, which enables us to obtain the optimal policy and the corresponding optimal cost

for small sized instances. Then, we cast the problem as a RBP. We show that the indexability

property holds and the optimal policy for the relaxed RBP is of threshold type. Under a threshold

policy, a maintenance action is initiated as soon as the degradation level of the machine exceeds

a certain threshold. Next, a closed form expression for the Whittle indices is derived in terms of

the problem parameters. We further propose a linear programming formulation that finds a lower

bound on the expected cost of the optimal policy. Finally, we carry out a numerical performance

evaluation of Whittle’s index policy. Small sized settings are considered to perform a comparison

with the optimal policy, and modest and large sized systems are employed for comparison with

two benchmark policies as well as a lower bound. The first benchmark policy is an obvious one,

the failure based policy, under which failed machines are maintained on a FCFS basis. The second

benchmark policy is referred to as a naive policy as it determines the threshold wear degree levels

of intervention with no consideration of capacity. This policy is applied with the first come first

served (FCFS) discipline. The index policy shows superior performance compared to the benchmark

policies for all instances. The cost-saving achieved by the proposed policy is more remarkable when

the system size is large and the maintenance workload is high. Moreover, the performance is robust

with respect to changes in the forms of maintenance cost and revenue loss. The results verify that

Whittle’s index policy is asymptotically optimal as the number of machines and repairmen grow
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in fixed proportion, especially when maintenance capacity is heavily utilized.

Our paper makes the following contributions. We propose a well performing and simple index

policy to the capacitated condition-based maintenance scheduling problem based on Whittle’s index

theory. The resulting policy takes into account both the degradation levels and output performance

of the machines. Additionally, we develop a mathematical model that finds a lower bound on its

performance. Although, Whittle’s policy is known to be asymptotically optimal under certain

conditions, there is very limited research on how fast it converges to optimality. Our numerical

experiments show that its performance converges to the lower bound with the number of machines.

This explains why Whittle’s policy performs well in practice even when the number of machines is

moderate. Moreover, comparisons with two alternative policies show that substantial cost savings

can be achieved by Whittle’s policy. It is also important to notice that the framework and findings

are relevant for other resource allocation problems where the assets are subject to failure and

require a repair or replacement process to become operational again.

The remainder of this article is structured as follows. In Section 2, we review the related

literature, focusing on condition-based scheduling and RBPs. The details of the MDP and RBP

models developed are explained in Sections 3.2 and 3.3, respectively. Section 3.4 presents the linear

programming model that finds a lower bound on the expected cost of the optimal policy. Next,

in Section 4, we present a numerical study to investigate the performance of the proposed policy.

Finally, the conclusions are stated in Section 5.

2. Literature Review

We structure the discussion of related literature as follows. We begin with discussing CBM

optimization problems, the methodologies used, and the most relevant articles. Thereafter, we

review RBP problems and Whittle’s index theory to establish the essentials of our model. Lastly,

we focus on studies which cast the CBM scheduling problem as a RBP.

2.1. CBM scheduling

Maintenance optimization problems have been extensively studied in the literature in the past

several decades. Cho and Parlar (1991); Wang (2002); Alaswad and Xiang (2017); de Jonge and

Scarf (2020) survey and summarize the research and practice in this field for different time pe-

riods using different classification schemes. Recent advances in sensor and ICT technology make
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condition monitoring data collection less costly and facilitate CBM practices and studies. CBM

optimization models and the resulting strategies rely on the choice of a stochastic deterioration

model. Si et al. (2011) and Ye and Xie (2015) present comprehensive overviews of stochastic pro-

cess models that capture degradation dynamics of a system. If the system condition is observable,

the deterioration process can be modelled either with discrete or continuous states. When discrete

state deterioration is assumed, the general approach is to formulate the problem as a MDP or one

of its extensions, and then to determine optimal maintenance policies with standard algorithms

such as policy and value iteration. Renewal theory and regenerative processes are commonly used

to model the settings with a continuous state deterioration. In this case, non-linear optimization

techniques are employed to find optimal or near-optimal solutions.

We distinguish the literature on CBM based on whether it models a single component/machine

or multi-component/machine system. Within the stream of single machine CBM models, the

goal is to determine the threshold level beyond which it is optimal to maintain/replace the ma-

chine/component. Kolesar (1966) and Kao (1973) are early studies on a single machine system

subject to discrete-state Markovian deterioration. They show that a control limit type policy is

optimal, i.e. the machine is maintained whenever its wear status exceeds a certain level. As the

concept of CBM has become more established, various extensions and variations of models have

been proposed for the single machine setting. One extension is the joint optimization of the main-

tenance threshold level and a periodic inspection schedule. Grall et al. (2002) illustrate that a

multi-level control limit rule performs well in this case. Another extension is the consideration of a

limited number of imperfect repairs, for which Kurt and Kharoufeh (2010) prove that the optimal

CBM policy exhibits control limit characteristics. Additionally, dynamic deterioration rates are

adopted by studies like Fouladirad et al. (2008); Van der Weide et al. (2010); van der Weide and

Pandey (2011); Fouladirad and Grall (2014, 2015).

The mathematical modeling and optimization of maintenance policies for multi-component/machine

systems are more complex than those for single machine systems due to possible dependencies

among machines. If all machines in the system are independent of each other, a CBM policy for

the single machine setting is applicable to a multi-machine system. On the other hand, optimal

decisions for one machine are not necessarily optimal for a group of machines that exhibit any kind

of dependency on each other. Still, several studies base their methodology on analyzing the CBM
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policy per machine and employing the optimal decision of each in the multi-machine environment

(Zhu et al., 2010; Tian and Liao, 2011; Tian et al., 2011).

In the literature, four types of dependencies between machines are identified, which are eco-

nomic, structural, stochastic, and resource dependencies (Olde Keizer et al., 2017; de Jonge and

Scarf, 2020). In our study, we consider resource dependency which applies when multiple machines

rely on a limited number of maintenance engineers. Despite its practical relevance, only a small

number of studies has addressed resource dependency under a CBM regime. Liu et al. (2014)

propose a dynamic CBM policy for a multi-component system maintained by a single worker. The

case with multiple maintenance workers is investigated by Marseguerra et al. (2002). They cal-

culate threshold degradation levels beyond which maintenance has to be performed based on a

combination of a genetic algorithm and Monte Carlo simulation. Koochaki et al. (2013) compare

the performance of CBM and age-based maintenance in the opportunistic maintenance framework

for three different maintenance workforce limitation scenarios. The situations taken into account

are: without worker constraint, with a single worker, and with multiple external workers subject to

a certain response time. Moreover, some other studies explore resource dependency in the context

of time-based maintenance with no consideration of condition information, e.g. Armstrong (2002);

Camci (2015); López-Santana et al. (2016). None of the aforementioned studies have elaborated

on the application of their model to instances of industrial sizes nor on the comparison with the

optimal strategy. These gaps in the literature constitute an important area for research, which is

addressed by our study.

2.2. The restless bandit problem: description and methodologies

RBP is as an extension of the multi-armed bandit problem (MABP) (Whittle, 1988; Gittins,

1979). In the multi-armed bandit problem (MABP), the decision maker is presented with a set of

N bandits and each bandit is endowed with a finite state space. At each discrete time instant, the

decision maker needs to select one of the bandits to activate so that the expected total discounted

reward will be maximized. Only an active bandit earns reward and changes state. However, in the

restless bandit problem the decision maker can activate a number of bandits, and inactive bandits

are also allowed to change states and generate rewards (referred to as passive rewards). The restless

bandit model has gained attention lately due to its applicability to many real-life problems.

Despite providing a powerful modeling framework, RBPs are PSPACE-Hard (Papadimitriou
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and Tsitsiklis, 1999), which makes their optimal solutions out of reach. Thus, a relaxed version

of the problem is considered in the literature, where the constraint on the maximum number of

active bandits at any moment is relaxed to its time average. The relaxation makes the problem

analytically amenable as it allows for a decomposition to one problem per bandit. The optimal

solution of the relaxed problem is defined in terms of index values per bandit depending on the

state and transition rates of the bandit. The index values for the relaxed problem serve as a

heuristic for the original problem, called Whittle’s index policy, where the bandits with the highest

Whittle index values are activated at each decision point. The Whittle index policy has been

shown to be asymptotically optimal under certain conditions and performs well in practice. In

spite of its practicality, application of the Whittle index involves two difficulties, (i) showing a

technical property called indexability; (ii) the calculation of the index function itself. Despite

being a challenging property to prove, several problems have passed the indexability test. Some

examples are Ansell et al. (2003); Glazebrook et al. (2005, 2009); Archibald et al. (2009); Niño-

Mora (2012); Larranaga et al. (2016); Ayesta et al. (2020); Li et al. (2020). Additionally, these

studies have demonstrated the power of Whittle’s index theory on multiple application areas.

More recently, Larranaga et al. (2016) and Ayesta et al. (2020) have established indexability

for a family of problems and also derived closed form Whittle’s index expressions. Larranaga

et al. (2016) restrict the attention to restless multi-armed bandit problems under the average cost

criterion, where each bandit evolves as a birth-and-death process. Birth and death state evolution

implies that state transitions are only of two types which are: (i) birth transitions that increase

the state of a bandit by one, and (ii) death transitions that decrease the state of a bandit by

one. The paper presents a general framework for solving birth and-death restless bandits that

provides a sufficient condition for the indexability property as well as a closed-form expression for

the Whittle’s index in terms of steady state probabilities. Ayesta et al. (2020) extend the study

of Larranaga et al. (2016) for the cases where there are no upward jumps under active action and

there can be an upward jump of at most one under the passive action. We base our analysis on

their results for sufficient conditions of indexability and index function derivation.

2.3. Restless bandit approach to CBM scheduling

Only a few studies have mapped the CBM scheduling of deteriorating machines as a RBP.

Glazebrook et al. (2005) is the first one but in a discrete time setting. They obtain the Whittle
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index function for the discounted cost criterion. They numerically compare Whittle’s index policy

with the optimal policy using small instances (i.e., M = 4 and R = 2 and M = 5 and R = 3). Ruiz-

Hernández et al. (2020) apply Whittle’s methodology to the case where maintenance interventions

might be imperfect. They show practicality and effectiveness of the Whittle heuristic through

numerical studies with problem sizes of up to 50 machines and 3 repairmen. Ayesta et al. (2020)

use the machine repairmen problem in continuous time as an example to show how to retrieve

Whittle’s index based on their results. Their model is different from ours in terms of cost structure

and considering the chance of experiencing catastrophic breakdowns. Furthermore, they have not

focused on the computational implementation of the policy and its performance with respect to

alternative policies in different settings.

3. Model

3.1. Problem description

A team of R repairmen is responsible for maintenance of M non-identical deteriorating ma-

chines, where 1 ≤ R < M . Each machine runs continuously while being subject to a stochastic

degradation process. A machine eventually fails if no preventive maintenance is performed. As the

number of repairmen is smaller than the number of machines, all machines cannot be maintained

simultaneously. Thus, the decision maker needs to select the machines to be maintained at each

decision epoch. The interventions are scheduled via a condition based scheme using the degradation

status of the machines. The conditions of the machines are assumed to be continuously monitored.

We describe the degradation process of each machine by discrete state degradation. Specifically,

a finite number of states is used to denote the condition of the machine, which starts in the new

state and ends in the failed state. After every maintenance action, the machine returns to its

“as good as new” condition and then gradually deteriorates to worse states. Machines evolve

independently from each other. In addition to providing information about the failure probability,

the degradation state also has an effect on the operational performance of the machine. The higher

the degradation state, the lower the output quality of a machine. This lower quality is incorporated

as revenue loss realized due to operating at a higher state wear. Both revenue loss and maintenance

costs are non-decreasing with the state of the machine. Furthermore, there is a higher probability

of failing at a higher degradation level for all machines. The maintenance rate is independent of
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Table 1: Notation
M number of machines

R number of repairmen

Bm breakdown state of machine m

nm degradation level of machine m, ∈ {0, 1, · · · , Bm}
λm(nm) rate with which an operating machine m jumps from state nm to nm + 1

µm maintenance rate of machine m

Ym(nm) maintenance cost of machine m at state nm
Rm(nm) revenue loss rate of operating machine m at state nm

the wear level because maintenance operations are standardized such that they are independent of

the degradation level of a machine.

The decision maker can initiate the maintenance at any moment. Whenever the machine is

under maintenance, it is considered non-operational. Although any number of repairmen might be

working at any time, a single repairman can conduct maintenance on one individual machine only.

3.2. MDP formulation

We first use MDP methodology in order to model the problem described above. A summary

of notation used by both the MDP and Restless Bandit Problem formulation is presented in Table

3.2.

We denote the degradation state of machine m by nm, where m ∈ {1, · · · ,M} and nm ∈

{0, 1, · · · Bm} with 0 being the as-good-as-new state and Bm ∈ N being the state where the revenue

generated from the manufactured product is (close to) zero. Then, the system state is given by

nnn = (n1, n2, · · · , nM ). If a repairman is assigned to machine m, it returns to pristine state 0 with

exponential repair rate µm while incurring a maintenance cost of Ym(nm). Otherwise if machine

m is unattended, its degradation state transitions from nm to nm + 1 with an exponential rate of

λm(nm). In this case, we have a revenue loss rate of Rm(nm) due to operating at state nm.

We assume that λm(nm) is increasing in nm for all machines. Then the sum of the transition

rates under any state nnn is bounded from above by ∆ =
∑M

m=1 λm(Bm − 1) +
∑M

m=1 µm. Thus, we

can formulate the system as a discrete time MDP with a time scale chosen as ∆. Under any state

nnn, the action state is defined as aaa = (a1, · · · , aM ), where action am = 1 indicates that a repairman

is assigned to machine m and am = 0 indicates that machine m continues operation. Let A denote

the set of feasible actions that satisfy the condition
∑M

i=1 ai ≤ R. The transition probability of
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going from state nnn to state n′n′n′ given a feasible action aaa is denoted by p(nnn,n′n′n′, aaa), where

p(nnn,n′n′n′, aaa) =


λm(nm)/∆ if n′n′n′ = nnn+ em for m ∈ {1, · · · ,M},

µm/∆ if am = 1 and n′n′n′ = nnnT em for m ∈ {1, · · · ,M},

0 otherwise,

where em is a vector in RM with all elements 1 except mth element. When no random event occurs

a self transition from state nnn to itself takes place with transition probability

M∑
m=1

I{am = 0}λm(Bm − 1)− λm(nm) + µm
∆

+ I{am = 1}λm(Bm − 1)

∆
,

where I is the indicator function. Let Caaa(nnn) denote the cost for choosing action aaa at state nnn,

Caaa(nnn) =

M∑
m=1

[I{am = 0}Rm(nm) + I{am = 1}(Rm(Bm) + µmYm(nm))]

The Bellman optimality equations of the MDP are given by

γ + V (nnn) = min
aaa∈A

∑
n′n′n′∈SSS

p(n′n′n′|nnn,aaa)(Caaa(nnn) + V (n′n′n′))

 , ∀nnn (1)

where V (nnn) is the value function representing the relative cost of starting at state nnn, and γ is the

optimal cost rate.

The MDP formulation given in (1) can be solved by implementing one of the well-known

approaches such as value iteration or policy improvement. However, the computational complexity

grows with the number of machines and repairmen. Hence, we employ this model only to generate

optimal solutions to problems of small sizes in Section 4.2.

3.3. RBP formulation

Independent evolution of the machines allows us to cast the problem as a RBP and utilize

Whittle’s index theory to obtain a well-performing heuristic. To formulate the problem as a

RBP, we represent each individual machine with a bandit, where the state of bandit m, nm, is

the degradation level. Hence, activation of bandit m corresponds to performing maintenance on

machine m (i.e., am = 1 if bandit m is activated and am = 0 otherwise). The transition dynamics

of a bandit are dependent on the action chosen, but are independent of the other bandits. When

bandit m is in state nm, it makes a transition to either state 0 or nm + 1 after an exponentially
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distributed amount of time. Let τam(i, j) represent the transition rate from state i to j for bandit

m under action a, then the transition rate function can be expressed as

τam(i, j) =


µm if am = 1, j = 0, 1 ≤ i ≤ Bm,

λm(i) if am = 0, j = i+ 1, 0 ≤ i < Bm,

0 otherwise.

(2)

For bandit m, the cost per unit of time when in state i under action a, Cam(i), can be written as

Cam(i) =


Rm(Bm) + µmYm(i) if am = 1,

Rm(i) o.w., for 0 ≤ i ≤ Bm.

(3)

Note that the cost of activating a bandit (i.e. maintaining a machine) has two components,

which can be explained as follows: (i) Rm(Bm) is the revenue loss due to not operating during

maintenance (i.e., equal to the maximum revenue that can be realized), and (ii) Ym(i) is the

material and workforce costs.

The decision maker is interested in finding a policy φ, which decides on bandits to activate such

that at most R out of M bandits are active at any moment in time. Given the policy φ, Xφ
m(t)

stands for the state of bandit m at time t and Xφ(t) = (Xφ
1 (t), Xφ

2 (t), · · ·Xφ
M (t)). Zm(Xφ(t)) takes

value 1 if bandit m is made active at time t under policy φ and 0 otherwise. A policy φ is called

feasible if the following constraint is satisfied.

M∑
m=1

Zm(Xφ(t)) ≤ R ∀t (4)

The collection of feasible policies satisfying constraint (4) is denoted by U and U 6= ∅. The

original optimization problem can be represented in the following form:

min lim sup
T→∞

M∑
m=1

1

T
E

[∫ T

0
CZm(Xφ(t))
m (Xφ

m(t))dt

]
(5)

s.t. φ ∈ U. (6)

where the objective function is to minimize long-run average cost. Given the intractability of the

problem, we relax it in two steps following the approach in Whittle (1988) to obtain an efficient

solution. We first relax the class of policies from those which activate at most R bandits in every
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decision epoch into those which activate at most R bandits on average. Specifically, we replace

constraint (4) with (7).

lim sup
T→∞

1

T
E

[∫ T

0

M∑
m=1

Zm(Xφ(t))dt

]
≤ R (7)

Then, the corresponding relaxed problem is to solve (5) under constraint (7), which turns out

to be tractable. The Lagrangian relaxation of the optimization problem can be expressed as the

following unconstrained minimization problem:

lim sup
T→∞

1

T
E

[∫ T

0

M∑
m=1

CZm(Xφ(t))
m (Xφ

m(t))−W

(
R−

M∑
m=1

Zm(Xφ(t))

)
dt

]
, (8)

where W is the Lagrange multiplier. Problem (8) yields decomposition into M sub-problems, one

for each bandit m, that is:

min lim sup
T→∞

1

T
E

[∫ T

0
CZm(Xφ(t))
m (Xφ

m(t))−W
(

1− Zm(Xφ(t))
)
dt

]
, (9)

In other words, optimal policies for M bandits found by (9) operate as a solution to the relaxed

problem (8). Due to the unichain nature of the problem, the sub-problem for each bandit becomes

equivalent to

E[CZm(Xφ(t))
m (Xφ

m(t))]−WE[1Zm(Xφ(t))=0], (10)

The optimal solutions of the relaxed problem facilitate the development of the Whittle’s heuristic

for the original problem in (5). The heuristic relies on establishing a technical property known

as indexability. A bandit is called indexable if the number of states in which the optimal action

is passive increases with the value of the Lagrange multiplier W . Given that indexability holds,

Whittle’s index value for bandit m at state n, Wm(n), is defined as the minimum subsidy that

makes the passive and active actions equally rewarding at state n for problem (10). Note that

indexability is not a trivial property to prove and it is not always possible to obtain a closed-form

expression for Whittle’s index. In order to analyze our problem structure, we adapt the results

found for Markovian restless bandits by Ayesta et al. (2020).

Lemma 1. An optimal solution of (10) is of a 0-1 threshold type with threshold tm. That is,

when machine m is in a state nm ≤ tm, the optimal decision is to continue operating the machine,

otherwise the optimal decision is to maintain the machine.
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Figure 1: Transition diagram for machine m under the threshold policy n

The lemma follows from Proposition 1 in Ayesta et al. (2020). We can analyze the behavior

of each machine under a threshold policy in isolation of the others. Let πnm(.) denote steady state

probabilities for machine m under threshold policy tm = n. The transition diagram corresponding

to threshold policy tm = n for machine m is presented in Figure 1. Action a = 0 is taken in states

0, 1, 2, · · · , n, whereas action a = 1 is taken in states n+ 1, n+ 2, · · · , Bm.

The balance equations to find the stationary distribution are given by

λm(0)πnm(0) = µmπ
n
m(n+ 1)

λm(i)πnm(i) = λm(i− 1)πnm(i− 1), for i = 1, · · · , n

µmπ
n
m(n+ 1) = λm(n)πn(n),

n+1∑
i=0

πnm(i) = 1.

From the set of equations given above, we obtain the following expressions:

πnm(i) =
1

λm(i)(
∑n

j=0
1

λm(j) + 1
µm

)
, for i = 0, 1, · · ·n (11)

πnm(n+ 1) =
1

µm(
∑n

j=0
1

λm(j) + 1
µm

)
, (12)

πnm(i) = 0, for i = n+ 2, · · ·Bm (13)

Lemma 2. (a) Problem (10) is indexable, if E[1Znm(Xn
m)=0] =

∑n
j=0 π

n
m(j) is non-negative and

strictly increasing in n. (b) Let Cnm(i) denote the cost of bandit m at state i under threshold policy

tm = n. Whittle’s index for machine m at state n, Wm(n) is given by

E[Cnm(i)]− E[Cn−1
m (i)]∑n

j=0 π
n
m(j)−

∑n−1
j=0 π

n−1
m (j)

, (14)

provided that (14) is a monotone function in n.
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Proof. (a) As πnm(i) = 0 for i ≥ n+ 2,
∑n

j=0 π
n
m(j) being strictly increasing in n is equivalent to

πnm(n+ 1) being strictly decreasing in n. We then obtain

πnm(n+ 1)− πn−1
m (n) =

1

µm(
∑n

j=0
1

λm(j) + 1
µm

)
− 1

µm(
∑n−1

j=0
1

λm(j) + 1
µm

)
, (15)

which is negative. So, the result follows. (b) It follows from Proposition 3 in Ayesta et al.

(2020).

Although we could not prove that Wm(n) is a monotonic function of n, we observe that this

always holds in the numerical experiments.

Note that the expected cost of implementing threshold policy tm = n for machine m is given

by

E[Cnm(i)] =

n∑
j=1

Rm(j)πnm(j) +Rm(Bm)πnm(n+ 1) + µmYm(n+ 1)πnm(n+ 1) (16)

Given index values, one can implement Whittle’s index policy to determine for which machines

to conduct maintenance. At any decision point, the policy decides to intervene up to R machines

with the highest non-negative index values at their current states, Wm(n). If all machines have

negative index values, then none of them will be worked on.

Several remarks should be made at this point about Whittle’s index and its corresponding

policy. The index value is quite intuitive and easy to compute. Given that a machine is at state

n, the first term in the numerator of equation (14) represents the expected cost of continuing

operating and then performing maintenance at state n + 1; and the second term corresponds to

the expected cost of performing the maintenance now. The difference between them gives us the

expected cost savings realized if the maintenance is carried out immediately. The denominator

of the expression calculates the difference in the fraction of time spent under threshold policy n

and (n − 1), respectively. Thus, (14) calculates the expected cost saving per unit time due to

maintaining the machine immediately. This also brings an intuitive interpretation to the Whittle

policy, which is to select machines to work on that would result in higher cost savings. Another

advantage of the policy is being flexible. As the index values are found independently for each

machine, any change in the problem environment can be handled easily. Examples include the

purchase of a new machine, removal of a machine, and changes in the availability of repairmen.
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3.4. LP formulation of the threshold policy n

The dimensionality problem of the MDP formulation hinders the sub-optimality assessment

of Whittle’s policy for relatively large sized instances. Therefore, we now proceed to develop a

performance bound that can be used to assess the strength of the policy. We develop a linear

programming model of the threshold policy n to find the minimum cost achievable by it.

To formulate the problem, we introduce variable xnm to represent the fraction of time that

maintenance of machine m is controlled by threshold deterioration state n. Recall that under the

n-threshold policy, maintenance is carried on the machine when its wear state exceeds n. We

consider that n can take values in {0, 1, · · · , Bm}. n = Bm corresponds to the situation when no

maintenance is performed on the machine and hence it remains inoperable.

We draw on the stationary distribution and expected costs of threshold policies derived in

the preceding section (i.e., equations (11)-(13) and (16)) and translate n-threshold policy into a

mathematical program as follows:

(LB) : min

M∑
m=1

Bm∑
n=0

xnmE[Cnm(i)] (17)

st

Bm∑
n=0

xnm = 1 ∀m ∈ {1, · · · ,M} (18)

M∑
m=1

Bm−1∑
n=0

xnmπ
n
m(n+ 1) ≤ R (19)

0 ≤ xnm ≤ 1 ∀m ∈ {1, · · · ,M}, ∀n ∈ {0, 1, · · · , Bm − 1}. (20)

The formulation determines the threshold deterioration degrees that trigger an intervention

decision for each machine together with the percentage of time that threshold levels are used.

The objective of the model is to minimize the expected cost of exercising such a policy while

ensuring that on the average at most R repairmen are working. It is important to note that this

LP formulation is another way of solving Whittle’s relaxed version of the problem.

It has been shown that Whittle’s policy is optimal in an asymptotic regime in which M and

R converge to infinity in fixed proportion (Weber and Weiss, 1990). Accordingly, Whittle’s index

policy achieves asymptotic optimality for problem environments satisfying the prescribed conditions

in Proposition 1. Hence, LB provides a lower bound on the optimal solution of our problem.
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4. Numerical experiments

In this section, we study the performance of Whittle’s policy through an extensive numerical

experiment. The first phase of our analysis centres on small scale problems for which it is possible

to investigate the optimality gap of the policy. In the second phase, we continue with larger

instances to assess the strength of the policy with problem sizes of practical interest. Given that

aim, we benchmark the proposed policy against the lower bound presented in Section 3.4 and two

other simpler policies, a failure based one and a naive one. In order to evaluate the average cost

of implementing any policy, it is necessary to simulate the system. The set-up of the simulation

study is included in Appendix B.

4.1. Instance generation

We consider non-identical machines whose characteristics will be individually generated. The

degradation is modelled so as to have an increasing drift toward higher value states in which

higher revenue losses and maintenance costs are incurred. We assume that maintenance cost is

a linear function of the state, which is given by Ym(j) = αm + bmj, where αm and bm are non-

negative constants. Revenue loss rates are selected so that Rm is 0 for the first two states and

a linear function is considered for the later states. Specifically, Rm(j) = 0 for j = 0, 1, and

Rm(j) = fm(j − 2), where fm is a positive constant. The parameters αm, bm, and fm are drawn

from different uniform distributions, for which the details are given in Sections 4.2 and 4.3. The

deterioration rates are sampled as follows: λm(0) ∼ U [0, 1] and λm(j) = λ(j − 1) + U [0, 1] for

j = 1, · · ·Bm − 1. Then, λm(j) values are scaled so that the mean time to failure is equal to a

specified value.

We are interested in the impact of different levels of maintenance workload (i.e. utilization

of repairmen) on the performance of Whittle’s policy. Higher maintenance workload may result

in queues for repairmen and consequently maintenance delays. Thus, it is critical to identify

whether the policy is robust enough in a congested setting. As it is analytically challenging to

derive an exact expression for the utilization level, we can look at the workload under the failure-

based policy. To that aim, we deploy an approximation using closed queueing network theory. To

facilitate application of the theory, we assume that the maintenance rate is independent of the

machine, µm = µ for all m. We first formulate a multi-class closed queueing network model of

the system operating under a failure based policy and then use the SCAT algorithm to calculate
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Table 2: Parameters for the illustrative example

Parameter Machine 1 Machine 2 Machine 3

αm 80 50 53

bm 15 5 5

fm 100 45 20

ρ 0.8

Degradation states {0, 1, · · · , 6}
Mean life time 10

the utilization for a given maintenance rate (Lavenberg and Reiser, 1980; Neuse and Chandy,

1981). µ is calibrated for each instance to achieve the target utilization level. The details of the

queueing model and calibration procedure are presented in Appendix A. Maintenance workload,

ρ, is assumed to range over {0.8, 0.85, 0.9, 0.95} by controlling the maintenance rates.

As indicated in Section 3.3, the Whittle’s index policy is given by (14) for the parameter settings

such that (14) is non-decreasing with respect to the wear state. Thus, this precondition is checked

for every randomly generated parameter set before running the simulation experiment.

4.2. Small sized systems

Whittle’s policy can be easily applied to systems with a large number of machines, however it

is not generally tractable to evaluate the MDP formulation in such systems. Therefore, we restrict

ourselves to small sized instances to assess the optimality gap of Whittle’s policy. The optimal

cost is obtained by means of a standard value iteration algorithm with a tolerance limit of 10−5

Puterman (2014).

First of all, we investigate the behavior of the Whittle index on a small example with 3 machines

and 7 degradation levels. We employ linear configurations for the revenue loss and maintenance cost

functions as explained in the previous section. The specific parameter set considered is presented

in Table 2. Notice that the deterioration rates are generated as described in Section 4.1. Whittle

index values are calculated by equation (14) and reported in Table 3. The index values show

that ordering the machines with respect to degradation level does not necessarily return the same

sequence as the one found by index values. The reason is that the Whittle index also encodes

information about how the degradation processes are likely to evolve in the future, as well as cost

differentials between machines.

Thereafter, we explore the optimality gap of the Whittle’s policy based on 20 randomly gener-
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Table 3: Whittle index values for the illustrative example

State Machine 1 Machine 2 Machine 3

1 -492.78 -231.40 -105.22

2 -236.58 -131.22 -54.13

3 47.25 -14.12 0.38

4 323.97 103.84 58.07

5 621.32 227.97 114.82

6 108 108 108

Table 4: Input parameters for optimality gap analysis

Input parameters Values

Degradation states {0, 1, · · · , 6}
Mean life time 10

M,R (3, 1)

ρ 0.8, 0.85, 0.9, 0.95

αm ∼ U [80, 110]

bm ∼ U [5, 15]

fm ∼ U [40, 60]

ated instances (i.e., deterioration rates) for 3 machines and 1 repairmen. In the RBP framework,

our problem translates into maintaining cost minimizing R machines at any decision point, and this

corresponds to preemptive scheduling discipline. Hence, we conduct the optimality gap analysis

with simulation results of Whittle’s policy under both preemptive and non-preemptive scheduling

rules. We use the instance generation process explained in Section 4.1. The results of the data set

given in Table 4 is summarized in Table 5. In this table, we report minimum, mean, maximum

percentage of optimality gap for both of the scheduling rules.

The majority of instances have a cost rate within 3% of what can be optimally achieved for

our problem. The optimality gap decreases with the workload of the repairman, which is a strong

endorsement of Whittle’s policy for congested systems. Moreover, the performance of the policy

under preemptive and non-preemptive scheduling rules are very close to each other. This shows

applicability of the policy for practical situations where non-preemptive scheduling is preferable.

Thus, we only consider the performance of Whittle’s policy under non-preemptive scheduling in

the next section.

4.3. Large sized systems

In this section, we subject the proposed policy to numerical investigation for large sized in-

stances, which preclude the use of the value iteration algorithm. Therefore, the performance com-
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Table 5: Results of optimality gap analysis

% GAP

Preemptive Scheduling Non-preemptive Scheduling

ρ Min Avg Max Min Avg Max

0.8 1.74 2.33 2.96 2.50 2.94 3.23

0.85 1.05 1.94 2.41 1.59 2.24 2.61

0.9 0.52 1.34 1.94 0.83 1.53 2.03

0.95 0.36 1.06 1.59 0.44 1.11 1.58

Table 6: Input parameters for simulation study

Input parameters Values

Degradation states {0, 1, · · · , 6}
Mean life time 10

M,R (10, 1), (40, 4), (80, 8), (160, 16)

ρ 0.8, 0.85, 0.9, 0.95

αm ∼ U [50, 80], U [80, 110], U [150, 200]

bm ∼ U [5, 15]

fm ∼ U [40, 60], U [20, 40]

parison of interest is conducted between Whittle’s policy exercised with non-preemptive scheduling

rule, the lower bound on the optimal solution (formulation LB), and two other scheduling policies

that emerge in practice. These two policies are:

• Failure based policy: Only the failed machines are maintained under a first come first served

(FCFS) discipline. This policy is reasonable if there is no information regarding the conditions

of the machines. It acts as a basic benchmark since any decent degradation state dependent

policy should perform better.

• Naive policy: The machines exceeding their deterioration thresholds are maintained on a

FCFS basis. The threshold level of a machine is determined as the degradation state that

minimizes the cost expression (16). Note that the thresholds are found with no consideration

of maintenance capacity.

We set up a test bed including instances that are obtained through the parameter values

displayed in Table 6. Four possible values for the number of machines and repairmen are explored.

While selecting (M,R) combinations, their ratio to each other is held constant to numerically

evaluate the convergence rate for the asymptotic optimality of Whittle’s policy. All of the machines

have 7 degradation states (i.e. {0, 1, · · · , 6}) and have a mean life time of 10. To vary the cost
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Table 7: Results of gap analysis for (M,R) = (10, 1)
% GAPΠ

WI N F
MC RL ρ Min Avg Max Min Avg Max Min Avg Max

low high 0.8 21.46 28.22 35.00 23.67 30.99 37.47 40.04 48.16 55.64
low high 0.85 15.07 17.94 22.18 16.08 19.75 23.46 25.46 29.08 33.32
low high 0.9 9.05 10.61 13.00 10.32 11.52 13.38 14.33 15.60 17.39
low high 0.95 3.96 5.64 6.69 5.64 6.10 6.46 6.19 6.63 7.05
med high 0.8 21.21 27.36 33.73 22.64 29.45 35.40 38.12 45.59 52.44
med high 0.85 14.79 17.48 21.42 15.62 19.04 22.66 24.52 27.93 31.98
med high 0.9 8.97 10.46 12.70 10.05 11.28 13.07 13.92 15.16 16.90
med high 0.95 3.93 5.58 6.62 5.56 6.03 6.39 6.04 6.53 6.96
high high 0.8 19.50 25.16 30.66 33.49 26.50 31.22 33.49 39.61 31.22
high high 0.85 13.66 16.42 20.53 22.24 17.59 20.89 22.24 24.97 20.89
high high 0.9 9.54 10.37 12.09 13.80 11.21 12.07 13.80 14.52 12.07
high high 0.95 5.29 6.14 6.70 5.97 6.65 7.93 5.97 6.99 7.93
low low 0.8 21.88 26.74 33.33 23.16 28.72 34.63 38.57 44.59 51.90
low low 0.85 17.04 19.78 24.91 18.07 21.01 25.48 26.69 30.07 35.01
low low 0.9 10.12 13.56 16.59 12.79 14.30 16.52 16.68 18.35 20.50
low low 0.95 5.48 9.12 11.26 7.56 9.42 10.66 8.18 9.97 11.20
med low 0.8 20.73 25.30 31.03 21.65 26.73 32.16 35.58 41.04 47.51
med low 0.85 16.24 19.04 24.05 17.17 20.11 24.58 24.93 28.31 33.04
med low 0.9 9.93 13.19 16.03 12.18 13.87 15.92 15.97 17.57 19.75
med low 0.95 5.38 8.98 11.17 7.47 9.24 10.34 7.98 9.75 10.91
high low 0.8 17.72 21.59 26.64 18.86 22.96 26.92 29.02 33.03 38.13
high low 0.85 14.80 17.05 21.42 16.17 18.13 21.27 21.79 24.16 28.17
high low 0.9 11.89 12.89 14.96 12.46 13.52 14.31 15.48 16.41 17.52
high low 0.95 8.04 9.52 10.71 8.04 9.90 11.77 8.38 10.22 11.89

levels of the machines, am, bm, and fm parameters are sampled as shown in Table 6. For each

(M,R) scenario, we follow the data generation procedure explained in Section 4.1.

In total, 480 problem instances are randomly generated and simulated. There are 6 configura-

tions of maintenance cost and revenue loss and 4 different ρ values. This makes 24 scenarios for

each pair of (M,R) values and 5 experiments are conducted for each scenario. Those 5 experiments

differ in the values of the parameters of maintenance cost and revenue loss, and degradation rates.

For every simulated instance and policy, the average cost rate is recorded and subsequently the

percentage gap between the lower bound is calculated as a performance metric. Specifically, we

are interested in %GAPΠ = (CΠ−CLB)/CLB × 100, where CLB is the lower bound on the optimal

average cost and CΠ, Π = {WI,F,N} is the average cost under Whittle’s index, failure based,

and naive policies, respectively. In Tables 7-10, we summarize outcomes by categorizing problem

instances with respect to system size, cost configurations (i.e., MC denotes maintenance cost and

RL denotes revenue loss) and workload levels. We present the minimum, average, and maximum

%GAPΠ for each policy Π = {WI,F,N}.

The results in Tables 7, 8, 9, and 10 confirm that the performance of the failure-based policy
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Table 8: Results of gap analysis for (M,R) = (40, 4)
% GAPΠ

WI N F
MC RL ρ Min Avg Max Min Avg Max Min Avg Max

low high 0.8 12.95 14.88 15.72 23.92 25.38 26.13 57.89 60.70 61.92
low high 0.85 13.25 15.07 15.73 23.86 25.70 26.86 47.73 50.59 51.70
low high 0.9 10.68 11.99 12.68 19.04 20.67 21.94 30.11 32.46 33.29
low high 0.95 6.38 7.08 7.86 9.96 10.77 11.29 12.39 13.07 13.68
med high 0.8 12.34 13.84 14.42 21.32 22.65 24.06 52.62 54.90 56.11
med high 0.85 12.71 14.21 14.99 21.23 23.03 24.30 44.03 46.49 47.42
med high 0.9 10.28 11.54 12.07 16.74 17.95 18.49 28.42 30.54 31.37
med high 0.95 6.27 6.94 7.69 9.24 9.86 10.25 11.89 12.61 13.24
high high 0.8 11.08 12.21 13.24 41.70 16.03 16.64 41.70 43.12 16.64
high high 0.85 11.56 12.88 13.75 36.22 16.84 17.68 36.22 37.89 17.68
high high 0.9 9.32 10.68 11.43 24.21 14.04 14.79 24.21 26.13 14.79
high high 0.95 5.79 6.18 7.29 10.43 8.31 9.23 10.43 11.12 9.23
low low 0.8 11.81 13.20 13.79 20.06 21.28 22.08 51.15 52.97 54.21
low low 0.85 11.97 13.44 13.98 20.14 21.44 22.39 42.40 44.73 45.56
low low 0.9 10.00 10.90 11.44 16.74 17.34 17.77 27.87 29.58 30.12
low low 0.95 8.75 10.06 11.17 11.77 13.36 14.02 14.89 16.26 17.12
med low 0.8 10.91 12.15 12.81 16.73 17.33 17.88 44.44 45.64 46.63
med low 0.85 11.27 12.61 13.12 16.91 17.69 18.54 37.79 39.45 40.13
med low 0.9 9.43 10.30 11.02 13.76 14.63 14.97 25.55 26.95 27.43
med low 0.95 8.31 9.65 10.70 11.00 12.52 13.11 14.06 15.39 16.06
high low 0.8 8.78 9.43 9.88 11.10 11.83 12.23 31.56 32.12 32.70
high low 0.85 9.33 10.33 10.84 12.20 13.06 13.42 28.42 29.27 29.72
high low 0.9 7.93 8.99 9.77 10.44 11.69 12.33 20.16 21.46 22.29
high low 0.95 7.75 8.45 10.18 9.66 10.44 11.96 12.32 12.99 14.48

is the weakest and Whittle’s policy is consistently the strongest. Specifically, the suboptimality of

the Whittle’s policy is the lowest among all policies for all problem instances which shows that it is

robust to changes in cost parameters. Even though it outperforms failure-based and naive policies,

Whittle’s policy produces rather weak results when the system size is small (i.e. M = 10, 40) and

workload is relatively low (ρ = 0.8, 0.85). However, what makes it standing out is its consistency

and robustness in performance relative to the lower bound for relatively larger system sizes that

exist in practice. For the scenarios including 160 machines, its overall worst case performance is

at most 4.9%, while the value for the other policies are 50.88%. The outperformance of Whittle’s

policy is due to its ability to dynamically react to deterioration levels of machines while also

considering workload. Ignoring both the conditions of the machines and the maintenance capacity

while scheduling maintenance can be quite costly, as gaps with the lower bound up to 50.88% are

observed under the failure based policy. Although taking maintenance actions based on degradation

levels of machines is beneficial, failing to consider maintenance capacity leads to gaps of up to

19.43% under naive policy. Also, Whittle’s policy performs better against the lower bound as the

system size increases, which is in line with the asymptotic optimality of the policy.
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Table 9: Results of gap analysis for (M,R) = (80, 8)
% GAPΠ

WI N F
MC RL ρ Min Avg Max Min Avg Max Min Avg Max

low high 0.8 7.17 7.83 8.29 19.32 19.82 20.78 52.07 53.59 54.45
low high 0.85 7.60 8.14 8.51 20.57 21.32 22.46 41.26 42.70 43.38
low high 0.9 7.26 7.89 8.41 19.04 20.05 21.85 31.75 33.19 33.94
low high 0.95 5.69 6.34 7.19 14.28 15.17 17.02 19.08 20.13 20.79
med high 0.8 6.69 7.31 7.68 16.83 17.57 18.98 46.99 48.41 49.09
med high 0.85 7.31 7.84 8.22 17.21 18.33 20.22 38.04 39.34 39.97
med high 0.9 6.99 7.56 8.04 16.53 17.46 19.47 29.53 30.93 31.59
med high 0.95 5.13 5.99 6.77 12.28 13.13 14.52 18.08 19.04 19.60
high high 0.8 6.06 6.44 6.84 36.74 10.72 11.22 36.74 37.70 11.22
high high 0.85 6.56 6.96 7.39 30.76 11.87 12.52 30.76 31.94 12.52
high high 0.9 6.23 6.88 7.55 24.54 11.77 12.40 24.54 25.90 12.40
high high 0.95 5.03 5.51 6.29 15.61 9.73 10.32 15.61 16.43 10.32
low low 0.8 6.46 7.11 7.53 15.36 16.33 18.20 45.45 47.05 47.93
low low 0.85 6.72 7.36 7.84 16.00 17.36 19.64 36.54 38.09 38.76
low low 0.9 6.48 7.27 8.01 15.25 16.37 18.77 28.74 30.15 30.76
low low 0.95 5.96 7.06 8.54 12.66 13.90 15.74 18.73 19.96 20.94
med low 0.8 6.00 6.55 6.86 11.51 12.52 13.75 39.17 40.55 41.20
med low 0.85 6.33 6.89 7.29 12.72 13.50 14.76 32.34 33.59 34.18
med low 0.9 5.99 6.77 7.55 11.87 12.88 14.13 25.74 27.04 27.69
med low 0.95 5.62 6.66 7.99 10.31 11.43 12.53 17.27 18.35 19.18
high low 0.8 4.82 5.20 5.59 7.29 7.73 8.07 27.02 28.06 28.79
high low 0.85 5.30 5.84 6.21 8.48 9.04 9.50 23.54 24.71 25.48
high low 0.9 5.21 5.92 6.52 8.74 9.49 10.08 19.52 20.79 21.64
high low 0.95 4.98 5.65 6.37 8.18 9.01 9.87 13.81 14.67 15.27

Table 10: Results of gap analysis for (M,R) = (160, 16)
% GAPΠ

WI N F
MC RL ρ Min Avg Max Min Avg Max Min Avg Max

low high 0.8 3.80 3.99 4.36 16.83 17.33 17.61 48.33 49.55 50.88
low high 0.85 4.11 4.42 4.90 18.29 19.03 19.43 37.22 38.08 39.54
low high 0.9 4.05 4.38 4.78 17.36 18.08 18.66 27.41 28.21 29.42
low high 0.95 3.82 4.11 4.49 15.29 15.75 16.16 19.36 19.92 20.98
med high 0.8 3.53 3.75 4.06 13.80 14.35 14.97 43.80 44.77 45.90
med high 0.85 3.84 4.11 4.44 15.05 15.93 16.86 34.26 35.00 36.12
med high 0.9 3.83 4.10 4.53 14.45 15.10 15.83 25.58 26.27 27.30
med high 0.95 3.72 3.97 4.32 12.79 13.38 14.11 18.15 18.66 19.51
high high 0.8 3.18 3.31 3.47 34.05 7.34 7.53 34.05 34.61 7.53
high high 0.85 3.48 3.69 4.04 27.80 9.08 9.51 27.80 28.30 9.51
high high 0.9 3.55 3.69 3.96 21.40 9.65 10.12 21.40 21.87 10.12
high high 0.95 3.52 3.63 3.92 15.69 9.35 9.74 15.69 16.03 9.74
low low 0.8 3.45 3.66 3.90 12.73 13.63 14.13 42.69 43.68 44.75
low low 0.85 3.76 3.91 4.31 13.93 14.86 15.42 33.46 34.18 35.44
low low 0.9 3.75 4.05 4.39 13.46 14.35 15.10 25.14 25.78 26.96
low low 0.95 3.87 4.24 4.61 12.42 13.09 13.92 18.31 18.78 19.62
med low 0.8 3.13 3.33 3.48 9.00 9.43 9.81 36.71 37.56 38.43
med low 0.85 3.35 3.58 3.92 10.40 10.94 11.39 29.42 30.10 31.19
med low 0.9 3.59 3.77 4.15 10.39 10.97 11.65 22.57 23.15 24.08
med low 0.95 3.77 4.00 4.38 9.73 10.41 10.96 16.68 17.19 17.98
high low 0.8 2.48 2.63 2.77 4.91 5.16 5.37 25.08 25.58 26.05
high low 0.85 2.90 3.05 3.36 6.52 6.93 7.30 21.38 21.86 22.66
high low 0.9 3.02 3.19 3.48 7.28 7.82 8.32 17.21 17.63 18.42
high low 0.95 3.27 3.42 3.78 7.60 8.05 8.54 13.11 13.51 14.19
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(a) (b)

(c) (d)

Figure 2: Average cost per machine as a function of M

Following the general discussions of the results, we shift our focus on the asymptotic optimality

of Whittle’s policy when the number of machines goes to infinity with a fixed proportion to the

number of repairmen. This is equivalent to exploring the convergence rate of the policy to the

lower bound on the optimal solution as the number of machines grows. For this purpose, we plot

the average cost per machine under Whittle’s policy and the lower bound as a function of the

number of machines at different levels of workload. We also incorporate average cost behavior of

benchmark policies to the plots for the completeness of the analysis. Even though, the plots are

drawn for a single scenario, one can observe similar behaviors for other instances as well. Figure

2 shows numerical evidence for the fact that the performance of Whittle’s policy converges to the

lower bound quite fast with the increase in the number of machines. Although the convergence rate

is high up to 80 machines, the rate of the increase slows down as the number of machines grows

23



more as expected. The gaps up to 80 machines when ρ = 0.8 and 0.85 are lower than the ones

when ρ = 0.9 and 0.95. For the same instances, we also plot the percentage gap in lower bound

for all policies with respect to the number of machines (i.e. see Figure 3). Both figures justify that

the performance of the Whittle’s policy becomes increasingly promising for systems with heavy

maintenance workload and larger number of machines.

(a) (b)

(c) (d)

Figure 3: % gap in lower bound as a function of M

5. Conclusion

In this paper, we have considered the maintenance scheduling of deteriorating machines so that

a limited number of repairmen is effectively utilized. We have first formulated the problem with

a MDP, which is restrictive due to being computationally infeasible for problems of practical size.

Thus, we instead used the RBP approach in deriving maintenance policies based on characteristics
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of the individual machines. We showed that the indexability property holds for our problem and

optimal maintenance policy follows a 0-1 threshold structure. We developed an index based heuris-

tic for our problem, which emerges from closed form expressions of the Whittle’s index values of

each machine. Furthermore, we developed a linear programming model to find a lower bound on

the performance of the heuristic. We performed a comprehensive numerical study to show outper-

formance of the Whittle’s heuristic compared to failure-based and naive policies. Furthermore, we

have shown that Whittle’s policy performs close to the optimal solution when the number of ma-

chines is high and/or maintenance workload is high. An interesting extension is to study multiple

deteriorating components for each individual machine.

Appendix A. Multi-class closed queueing network model

In this section, we consider our problem under the use of the failure based policy. This scenario is modelled as a

multi-class queueing network and the product form analysis of it is adapted to ensure an efficient analysis. We start

with the description of the model and proceed with presenting the algorithm to find the mean system throughput.

Figure A.4: Closed queueing network diagram with M customer classes and M + 1 stations

We consider a network consisting of machine bases and a maintenance facility. Figure A.4 provides a pictorial

illustration of the network. M non-identical machines are characterized as M machine bases with a single machine.

Also, each machine is associated with a separate class of customers to use a multi-class queueing network framework.

We represent the maintenance facility as Station 0 and machine base m as Station m, m = 1, · · · ,M . The operating

time of base m is assumed to be exponentially distributed with mean Λm, the mean time to failure for machine m.

In the maintenance facility, R identical repairmen are retained to service the failed machines. The service times of

each repairmen follow an exponential distribution with rate µ. Once the repair of machine m is completed, it is
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Table A.11: Notation used in SCAT algorithm

M number of machine types

R number of servers

Λm mean time to failure for machine type m

µ service rate of each repairmen at Station 0

uuu state vector, (u0u0u0,u1u1u1, · · · ,umumum),

where uiuiui = (ui1, ui2, · · · , uiM )

uim number of type m jobs at Station i

u− 1su− 1su− 1s state vector when one machine is removed from type s

eim(uuu) relative frequency of visits to Station i by machine type m given state uuu

Um number of type m machines (=1)

pr(j|uuu) queue length distribution of Station 0 given state uuu

tim(uuu) mean time spent by machine type m in station i given state uuu

kim(uuu) the mean number of machine type m at station i given state uuu

ki(uuu) the mean number of machines at station i given state uuu

directly sent to machine base m. Let pij(r) express the probability that machine m that departs Station i will next

visit Station j. Note that p0m(m) = 1 and pm0(m) = 1 ∀m; and all other transitions have zero probability.

The network is described with state uuu = (u0u0u0,u1u1u1, · · · ,umumum), where uiuiui = (ui1, ui2, · · · , uiM ) and uim is the number

of type m machines at Station i for i = 0, 1, · · · ,M and m = 1, · · · ,M . Note that Um =
∑M
i=0 uim = 1 ∀r.

Suppose that eim expresses the relative frequency of visits to Station i by machine type m. It can be found by

using the following M sets of linear equations:

eim =

M∑
j=0

ejmpji(m), i ∈ 0, 1, · · · ,M, m ∈ 1, · · · ,M (A.1)

Evaluating (A.1) with the routing information gives us (i,m ∈ 1, · · · ,M)

eim =

e0m if m = i,

0 otherwise.

(A.2)

We continue our analysis by setting e0m to 1, for m ∈ 1, · · · ,M .

Mean Value Analysis is an exact technique to obtain solutions for the product-form closed queueing networks.

However, its computational complexity increases very rapidly with the number of job classes. So, several algorithms

have been developed over the years for computing approximate solutions. We adapt an early significant method

referred to as SCAT, which allowed approximate analysis of queueing network models with multiple job classes and

multiple servers for the first time (Neuse and Chandy, 1981). The method is an iterative procedure to calculate the

mean number of jobs, mean residence time and average system throughput.

The notation is summarized in Table A.11 and the general form of the algorithm adapted for our problem is

outlined below.
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Table A.12: Core Algorithm

Inputs: M , R, Um, uuu, ωim, eim for 0 ≤ i ≤M, 1 ≤ m ≤M
Initialization: kim(uuu) = Um

M+1
for 0 ≤ i ≤M, 1 ≤ m ≤M

Dims = 0 for 0 ≤ i ≤M, 1 ≤ m, s ≤M
I=1

Step 1: Compute estimates of kim(u− 1su− 1su− 1s) using equations below for 0 ≤ i ≤M, 1 ≤ m ≤M .

Fim(uuu) = kim(uuu)
Um

kim(u− 1su− 1su− 1s) = (u− 1su− 1su− 1s)s(Fim(uuu) +Dims(uuu))

Compute estimates of pr(j|uuu) for 0 ≤ j ≤M along with the equations below.

floorim = bki(u− 1mu− 1mu− 1m)c
pr(floorim|u− 1mu− 1mu− 1m) = floorim + 1− ki(u− 1mu− 1mu− 1m)

pr(floorim + 1|u− 1mu− 1mu− 1m) = 1− pr(floorim|u− 1mu− 1mu− 1m)

pr(j|u− 1mu− 1mu− 1m) = 0 ∀j < floorim and ∀j > floorim + 1

Step 2: Compute new estimates of kim(uuu) using equations below for 0 ≤ i ≤M, 1 ≤ m ≤M .

t0m(uuu) = 1
µ

∑R−1
j=1

(
1
j
− 1

R

)
jpr(j − 1|u− 1mu− 1mu− 1m) + 1

Rµ
[1 + ki(u− 1mu− 1mu− 1m)]

t0m(uuu) = Um
eim(uuu)t0m(uuu)∑M

i=1 eim(uuu)t0m(uuu)

t0m(uuu) = 1
Λm

[1 + ki(u− 1mu− 1mu− 1m)]

Step 3: Termination test.

Define Ktot = maxi,m
|kIim−k

I−1
im |

Um
for I ≥ 1. I stands for iteration I estimations.

If Ktot < (1/(4000 + 16M) < stop. Otherwise, go to Step 1.

Outputs: kim(uuu) for 0 ≤ i ≤M, 1 ≤ m, s ≤M

Table A.13: SCAT Algorithm

Inputs: M , R, Um, uuu, ωim, eim for 0 ≤ i ≤M, 1 ≤ m ≤M
Step 1: Apply the Core Algorithm for state uuu.

Step 2: Apply the Core Algorithm for each of the states u− 1xu− 1xu− 1x for 1 ≤ x ≤M .

Step 3: Compute estimates of Fim(uuu), Fim(u− 1xu− 1xu− 1x), Dixs(uuu) for 0 ≤ i ≤M , 1 ≤ x, s ≤M by

Fim(uuu) = kim(uuu)
Um

Dixs(uuu) = Fim(u− 1su− 1su− 1s)− Fim(uuu)

Step 4: Apply the Core Algorithm for state uuu.

For the kim(uuu) inputs use the values obtained from the Core Algorithm in SCAT Step 1.

For the Dims(uuu) inputs use the values computed in Step 3.

Outputs: kim(uuu), tim(uuu) for 0 ≤ i ≤M, 1 ≤ m, s ≤M

Following, we obtain mean number of machine m maintained at Station 0 with the formula Ym = k0m/t0m,

which allows us to calculate utilization of the Station 0, ρ =
∑M
m=1

Ym
Rµ

.

Lastly, we present steps of calibration procedure for µ to achieve a certain utilization of repairmen.

Table A.14: Calibration of µ

Inputs: M , R, λm for 1 ≤ m ≤M , target utilization level ρT .

Initialization: Set I=0 and µ0 = M
maxΛmR

.

Step 1: Apply SCAT algorithm to find ρI . Step 2: If |ρT − rhoI | < 0.001, stop.

Otherwise, set I=I+1. If ρT > rhoI , µI+1 = µI − 0.01, else µI+1 = µI + 0.01.

Go to Step 1.

Outputs: µ = µI .
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Appendix B. Details of the simulation study

In this part, we explain how we set up our discrete event simulations. We use the non-overlapping batch means

approach for which an extensive description is provided in Steiger and Wilson (2001). After analyzing sample sce-

narios, the number of batches and the batch size are determined. Accordingly, each simulation run is divided in 201

batches each with 10,000 maintenance completions. The simulation is started in the state with all machines working

and the first batch is disregarded to eliminate the initial bias. The average cost values are recorded for the remaining

200 batches and then the corresponding confidence interval is constructed. For each data instance, we confirm that

95% confidence interval half-widths are less than 1% of the average estimate.
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