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Abstract

We study the Fourier transform for compactly supported distributional sections of complex homoge-
neous vector bundles on symmetric spaces of non-compact type X = G/K. We prove a characterization
of their range. In fact, from Delorme’s Paley-Wiener theorem for compactly supported smooth functions
on a real redutive group of Harish-Chandra class, we deduce topological Paley-Wiener and Paley-Wiener-
Schwartz theorems for sections.
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1 Introduction
One of the central theorems of harmonic analysis on Rn, is the so-called Paley-Wiener theorem, named
after the two mathematicians Raymond Paley and Norbert Wiener. It describes the image of the Fourier
transform of the space C∞c (Rn) of smooth functions with compact support as the space of entire functions
on Cn satisfying some growth condition. The theorem has a counterpart, known as Paley-Wiener-Schwartz
theorem. Here, the smooth functions are replaced by distributions T ∈ C−∞c (Rn) and the growth condition
by a weaker growth condition (e.g. [Hör83], Thm. 7.3.1).

Both theorems have been generalized to more general Lie groups G and furthermore to some smooth
manifolds carrying symmetries. For example, the case of Riemannian symmetric spaces of non-compact
type X = G/K was considered by Helgason [Hel66] and Gangolli [Gan71]. They proved a Paley-Wiener
theorem for compactly supported K-invariant smooth functions and Helgason [Hel73] even showed it
for general compactly supported smooth functions on X. There is also a Paley-Wiener theorem for
K ×K-finite compactly supported smooth functions on a real reductive Lie group G of Harish-Chandra
class due to Arthur [Art83] and Delorme [Del05], formulated in terms of the so-called Arthur-Campolli
and Delorme conditions, respectively. Delorme even proved a version without the K × K-finess. A
generalization to K-finite functions on reductive symmetric spaces was presented by van den Ban and
Schlichtkrull [vdBS06]. Furthermore, later van den Ban and Souaifi [vdBS14] proved, without using the
proof or validity of any associated Paley-Wiener theorems of Arthur or Delorme, that the two compatibility
conditions are equivalent. Concerning the Paley-Wiener-Schwartz theorem for distributions on symmetric
spaces, we mention Helgason [Hel73] and Eguchi, Hashizume, Okamato [EHO73]. Moreover, van den
Ban and Schlichtkrull [vdBS06] also proved a topological Paley-Wiener-Schwartz theorem for K-finite
distributions on reductive symmetric spaces.
Our aim is to establish a topological Paley-Wiener theorem for (distributional) sections of homogeneous
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vector bundles on X using Delorme’s intertwining conditions. Thus, starting, in Section 2 with Delorme’s
Paley-Wiener theorem ([Del05], Thm. 2) in the setting of van den Ban and Souaifi [vdBS14], we will
adjust it, in Sections 3 and 4, for our proposes. More precisely, we describe the intertwining conditions for
sections and show that there are equivalent with Delorme’s one by using Frobenius-reciprocity (Prop. 7
& Thm. 2). We consider three levels, (Level 1) refers to Delorme’s Paley-Wiener theorem (Thm. 1),
(Level 2) corresponds to the desired Paley-Wiener theorem for sections (Thm. 3) and (Level 3) stands
for the Paley-Wiener theorem for ’spherical functions’ (Thm. 3). For the last, we fixed an irreducible
K-representations on the left while a right, not necessary irreducible, K-type ∗ is fixed by the bundle
E∗ → X. In this way, it will be much easier to manage the intertwining conditions.
Finally in Section 6, we present, a topological Paley-Wiener-Schwartz theorem for distributional sections
(Thm. 4) in both levels (Level 2) and (Level 3). We used van den Ban and Schlichtkrull’s technique
[vdBS06] as well as Camporesi’s Plancherel theorem for sections ([Ca97], Thm. 3.4 & Thm. 4.3).
This paper ends, in Section 7, by analysing consequences of this theorem for linear invariant differential
operators between sections of homogeneous vector bundles (Prop. 10).

The motivation behind this work lies in solvability questions of systems of invariant differential equa-
tions on symmetric spaces G/K. In fact, the results of the present paper as well as applications to
solvability questions are part of the doctoral dissertation [Pal21] of the second author. For further details,
we refer to [Pal21] and the upcoming papers ([OlPa22-2], [OlPa22-3]).

2 On Delorme’s Paley-Wiener Theorem
Let G be a real connected semi-simple Lie group with finite center of non-compact type with Lie algebra
g and K ⊂ G its maximal compact subgroup with Lie algebra k. The quotient X = G/K, then is a
Riemannian symmetric space of non-compact type.

Let g = k ⊕ p be the Cartan decomposition, and let a be a maximal abelian subspace of p. Fix a
corresponding minimal parabolic subgroup P = MAN of G with split component A = exp(a), nilpotent
Lie group N and M = ZK(a) being the centralizer of A in K. Let (σ,Eσ) ∈ M̂ be a finite-dimensional
irreducible representation of M and λ ∈ a∗C

∼= Cn. For fixed (σ, λ) ∈ M̂ × a∗C, let (σλ, Eσ,λ) be the
representation of P on the vector space Eσ,λ = Eσ such that σλ(man) = aλ+ρσ(m) ∈ End(Eσ,λ) for
m ∈ M , a ∈ A,n ∈ N and where ρ ∈ a+ is the half sum of the positive roots of (g, a), counted with
multiplicities. We use the notation aλ for eλ log(a). Then, the space

Hσ,λ
∞ := {f : G

C∞→ Eσ,λ | f(gman) = a−(λ+ρ)σ(m)−1(f(g))} ∼= C∞(G/P,Eσ,λ)

together with the left regular action (πσ,λ(g)f)(x) := f(g−1x) = (lgf)(x) for g, x ∈ G and f ∈ Hσ,λ
∞ , is

the space of smooth vectors of the principal series representations of G induced from the P -representation
σλ on Eσ,λ (e.g. [Kna86], p. 168). The restriction map from Hσ,λ

∞ to functions on K is injective by
the Iwasawa decomposition g = κ(g)ea(g)n(g) ∈ KAN of G. In particular, for f ∈ Hσ,λ

∞ we have
f(g) = f(κ(g)ea(g)n(g)) = a(g)−(λ+ρ)(f(κ(g))). This yields, the so-called compact picture of Hσ,λ

∞ (e.g.
[Kna86], p. 168). It has the advantage that the representation space

Hσ
∞ := {ϕ : K

C∞→ Eσ | ϕ(km) = σ(m)−1ϕ(k), k ∈ K,m ∈M} ∼= C∞(K/M,Eσ) (2.1)

does not depend on λ. Here, Hσ
∞ is equipped with the usual Fréchet topology. From time to time, we

need the L2-norm. In the compact picture, the action of all elements g ∈ G, which are not in K, is slightly
more involved, since we need to commute them with the argument k ∈ K, i.e.

(πσ,λ(g)ϕ)(k) = a(g−1k)−(λ+ρ)ϕ(κ(g−1k)), ϕ ∈ Hσ
∞. (2.2)

Fourier transform for G in (Level 1)

Let
C∞c (G) =

⋃
r>0

C∞r (G) :=
⋃
r>0

{f ∈ C∞(G) | supp(f) ∈ Br(o)}

be the space of compactly supported smooth complex functions on G, where

Br(o) := {g ∈ G | distX(gK, o) ≤ r} ⊂ G

denotes the preimage of the closed ball of radius r and center o = eK in X under the projection G→ X.
Here, distX means a fixed G-invariant Riemannian distance on X and e is the neutral element of G. We
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equip C∞r (G) with the usual Fréchet topology, thus C∞c (G) is a LF-space. Given σ ∈ M̂ , let us consider
the map

πσ,· : G→ (a∗C → End(Hσ
∞)), g 7→ (λ 7→ πσ,λ(g)).

Definition 1 (Fourier transform for G in (Level 1)). Fix (σ, λ) ∈ M̂×a∗C, we define the Fourier transform
of f ∈ C∞c (G) by the operator

Fσ,λ(f) := πσ,λ(f) =

∫
G

f(g)πσ,λ(g) dg ∈ End(Hσ
∞).

We denote by Hol(a∗C) the space of holomorphic functions in a∗C and by Hol(a∗C,End(Hσ
∞)) the space

of maps a∗C 3 λ 7→ φ(λ) ∈ End(Hσ
∞) such that

(1.i) for ϕ ∈ Hσ
∞, the function λ 7→ φ(λ)ϕ ∈ Hσ

∞ is holomorphic.

From ([Del05], Lem. 10 (ii)), we deduce the following statement.

Proposition 1. The family of applications f 7→ Fσ,λ(f) is a linear map from C∞c (G) into∏
σ∈M̂ Hol(a∗C,End(Hσ

∞)). �

Delorme’s Paley-Wiener theorem and intertwining conditions in (Level 1)

We now proceed with the definition of Delorme’s Paley-Wiener space ([Del05], Def. 3). It induced
Delorme’s intertwining conditions for derived versions of Hσ

∞ ([Del05], Sect. 1.5 & Déf. 3 (4.4)). Van den
Ban and Souaifi present a more elegant reformulation of them ([vdBS14], Sect. 4.5, in particular Lem.
4.4. and Prop. 4.5.). In the same spirit, we present a very similar definition of derived G-representations.

Definition 2 (m-th derived representation). For λ ∈ a∗C, let Holλ be the set of germs at λ of C-valued
holomorphic functions µ 7→ fµ and mλ ⊂ Holλ the maximal ideal of germs vanishing at λ.
Denote by Hσ

[λ] the set of germs at λ of Hσ
∞-valued holomorphic functions µ 7→ φµ ∈ Hσ

∞ with G-action

(gφ)µ = πσ,µ(g)φµ, g ∈ G.

For m ∈ N0, it induces a representation π(m)
σ,λ on the space

Hσ,λ
∞,(m) := Hσ

[λ]/m
m+1
λ Hσ

[λ], (2.3)

which is equipped with the natural Fréchet topology. We call this representation the m-th derived principal
series representation of G.

Here, Holλ acts on Hσ
[λ] by pointwise multiplication. Note that the m =0-th derived representation

Hσ,λ
∞,(0)

∼= Hσ
∞ is the space of smooth vectors of the principal seriesG-representation in the compact picture.

Intuitively, we can say that Hσ,λ
∞,(m) contains all Taylor polynomials of orderm at λ of holomorphic families

φµ. Moreover, φ ∈
∏
σ∈M̂ Hol(a∗C,End(Hσ

∞)) induces an operator on each Hσ,λ
∞,(m).

The following definition turns out to be equivalent to Delorme’s intertwining condition ([Del05], Déf. 3
(4.4)).

Definition 3 (Delorme’s intertwining condition in (Level 1)). Let Ξ be the set of all 3-tuples (σ, λ,m)

with σ ∈ M̂ , λ ∈ a∗C and m ∈ N0. Consider the m-th derived G-representation Hσ,λ
∞,(m) defined in (2.3).

For every finite sequence ξ = (ξ1, ξ2, . . . , ξs) ∈ Ξs, s ∈ N, we define the G-representation

Hξ :=

s⊕
i=1

Hσi,λi
∞,(mi).

We consider proper closed G-subrepresentations W ⊆ Hξ.
Such a pair (ξ,W ) with ξ ∈ Ξs and W ⊂ Hξ as above, is called an intertwining datum. Every function
φ ∈

∏
σ∈M̂ Hol(a∗C,End(Hσ

∞)) induces an element

φξ ∈
s⊕
i=1

End(Hσi,λi
∞,(mi)) ⊂ End(Hξ).

(D.a) We say that φ satisfies Delorme’s intertwining condition, if φξ(W ) ⊆ W for every intertwining
datum (ξ,W ).
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Next, we define Delorme’s Paley-Wiener space ([Del05], Déf. 3). We denote by U(k) the universal
enveloping algebra of complexification of k (e.g. [Jac62] Chap. V). Note that our fixed Riemannian metric
corresponds to a Ad-invariant bilinear form on g, which is definit on k and p. Therefore, we get a norm
| · | on b∗C for each subspace b ⊂ k or b ⊂ p.

Definition 4 (Paley-Wiener space in (Level 1)). For r > 0, Delorme’s Paley-Wiener space is the vector
space

PWr(G) :=
{
φ ∈

∏
σ∈M̂

Hol(a∗C,End(Hσ
∞)) | φ satisfies the growth condition (1.ii)r below and (D.a)

}
.

(2.4)
Here,

(1.ii)r for all Y1, Y2 ∈ U(k), (σ, λ) ∈ M̂ × a∗C and N ∈ N0, there exists a constant Cr,N,Y1,Y2
> 0 such that

||πσ,λ(Y1)φ(σ, λ)πσ,λ(Y2)|| ≤ Cr,N,Y1,Y2(1 + |Λσ|2 + |λ|2)−Ner|Re(λ)|

for φ ∈ End(Hσ
∞) and where Λσ is the highest weight of σ, || · || is the operator norms on Hσ

∞ with
respect to the L2-norm of Hσ

∞.

Notice that, due to Lem. 10 (i) in [Del05], the space PWr(G) equipped with semi-norms:

||φ||r,N,Y1,Y2
:= sup

(σ,λ)∈M̂×a∗C

(1 + |Λσ|2 + |λ|2)Ne−r|Re(λ)|||πσ,λ(Y1)φ(σ, λ)πσ,λ(Y2)||Hσ∞ , φ ∈ PWr(G)

is a Fréchet space. Furthermore, the intertwining condition (D.a) in Def. 4 is a special case of van den
Ban and Souaifi’s one ([vdBS14], Cor. 4.7 and Prop. 4.10.). The small difference is, that instead of the
defined m-th derived representations Hσ,λ

∞,(m) (2.3), they consider

Hσ
[λ],E := Hσ

[λ] ⊗Holλ E,

where E is a finite-dimensional Holλ-module. By the following proposition, this leads to equivalent
intertwining conditions.

Proposition 2. With the previous notations, let (σ, λ) ∈ M̂ × a∗C. Then, for E = Holλ/mm+1
λ , we have

that Hσ
[λ],E

∼= Hσ,λ
∞,(m).

Moreover, for any finite-dimensional Holλ-module E, there exists m1, . . . ,ms ∈ N0 such that Hσ
[λ],E is a

quotient of Hσ,λ
∞,(m1) ⊕ · · · ⊕H

σ,λ
∞,(ms).

Proof. Consider a (commutative) ring R with neutral element 1, a R-module M and I ⊂ R an ideal.
Then, we have the following isomorphism

M ⊗R R/I ∼= M/IM.

In fact, by an algebraic computation, one can easily show that the two maps

α : M ⊗R R/I →M/IM and β : M/IM →M ⊗R R/I
α(m⊗ [r]) := [rm] β([m]) := m⊗ [1]

are well-defined and inverse to each other. Here [·] denotes the class in the corresponding quotient. For
m ∈ N0 and R = Holλ, consider its maximal ideal mm+1

λ ⊂ Holλ. Take E = Holλ/mm+1
λ = R/I and

M = Hσ
[λ], then

Hσ
[λ] ⊗Holλ E

∼= Hσ
[λ]/m

m+1
λ Hσ

[λ] =: Hσ,λ
∞,(m).

Moreover, by their Lem. 2.1 in [vdBS14], an ideal I in Holλ is cofinite, if and only, if there exists m ∈ N0

such that mm+1
λ ⊂ I.

Thus, for some s ∈ N and finitely many cofinite ideals mm1+1
λ , . . . ,mms+1

λ of Holλ, we have that E is a
quotient of the direct sum

Holλ/mm1+1
λ ⊕Holλ/mm2+1

λ ⊕ · · · ⊕Holλ/mms+1
λ .

Hence, the map
Hσ,λ
∞,(m1) ⊕ · · · ⊕H

σ,λ
∞,(ms) −→ E

is surjective and the result follows.
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Now, we can formulate Delorme’s Paley-Wiener theorem.

Theorem 1 (Paley-Wiener Theorem, [Del05], Thm. 2). For r > 0, the Fourier transform

C∞r (G) 3 f 7→ Fσ,λ(f) ∈ PWr(G), (σ, λ) ∈ M̂ × a∗C

is a topological isomorphism between the two Fréchet spaces C∞r (G) and PWr(G).

Remark 1. Delorme formulated the Paley-Wiener Thm. 1 in terms of all cuspidal parabolic subgroups.
By Casselman’s subrepresentation theorem (e.g. [Wal88], Thm. 3.8.3.), it is clear that it remains true if
we restrict to the minimal parabolic subgroup P (compare [vdBS14], Lem. 4.4).)

3 Fourier transforms for (distributional) sections and its proper-
ties
Let (τ, Eτ ) be a finite dimensional, not necessary irreducible, representation of K. We obtain a homoge-
neous vector bundle Eτ over X, whose space C∞(X,Eτ ) of smooth sections is identified with the following
space:

C∞(X,Eτ ) ∼= {f : G
C∞−→ Eτ | f(gk) = τ−1(k)(f(g)),∀g ∈, k ∈ K}.

The group G acts on C∞(X,Eτ ) by left translations, (g · f)(g′) = f(g−1g′),∀g, g′ ∈ G. It is not difficult
to see that we have the following G-isomorphisms:

C∞(X,Eτ ) ∼= C∞(G,Eτ )K ∼= [C∞(G)⊗ Eτ ]K .

Moreover, by taking the topological linear dual of C∞(X,Eτ ), we obtain the space of compactly supported
distributional sections:

C−∞c (X,Eτ̃ ) =
⋃
r≥0

C−∞r (X,Eτ ) :=
⋃
r≥0

{T ∈ C−∞(X,Eτ ) | supp(T ) ∈ Br(o)} = C∞(X,Eτ ))′, (3.1)

where (τ̃ , Eτ̃ ) is the dual of the representation (τ, Eτ ).

Fourier transform in (Level 2)

We want to study the reduced Fourier transform F on the space [C±∞c (G)⊗ Eτ ]K ∼= C±c (X,Eτ ) by

dτ∑
i=1

fi ⊗ vi 7→
dτ∑
i=1

F(fi)⊗ vi, f ∈ C±∞c (G),

where dτ denotes the dimension of Eτ and vi, i ∈ {1, · · · , dτ}, is a basis of Eτ . Roughly, for r > 0, one
can deduce from Thm. 1, that

C∞r (X,Eτ ) ∼= [C∞r (G)⊗ Eτ ]K
Thm. 1∼= [PWr(G)⊗ Eτ ]K ,

where PWr(G) is Delorme’s Paley-Wiener space defined in (2.4). The goal is to make [PWr(G) ⊗ Eτ ]K

more explicit and then do the same study for distributions. For this, let us study the map

C∞r (X,Eτ ) 3 f 7→
dτ∑
i=1

fi ⊗ vi ∈ [C∞r (G)⊗ Eτ ]K

Thm. 17→
dτ∑
i=1

Fσ,λ(fi)⊗ vi ∈ [End(Hσ
∞)⊗ Eτ ]K ∼= Hσ

∞ ⊗HomK(Hσ
∞, Eτ ).

Bringing the Frobenius reciprocity into play, it gives us a better description of the space HomK(Hσ
∞, Eτ ).

Namely, we have

HomK(Hσ
∞, Eτ )

Frob∼= HomM (Eσ, Eτ ) defined by
〈Frob(S)w, ṽ〉 = 〈w, S∗ṽ(e)〉, w ∈ Eσ, ṽ ∈ Eτ̃ , S∗ : Eτ̃ → H σ̃

∞. (3.2)

Let us next compute the inverse of Frob.
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Lemma 1 ([Olb95], Lem. 2.12). Let s ∈ HomM (Eσ, Eτ ) and f ∈ Hσ
∞. Then, we have

Frob−1(s)(f) =

∫
K

τ(k)sf(k) dk.�

The dual of Frob is given by

HomK(Eτ , H
σ
∞)

F̃ rob∼= HomM (Eτ , Eσ)

F̃ rob(T )(v) = T (v)(e), v ∈ Eτ (3.3)

and for t ∈ HomM (Eτ , Eσ) and v ∈ Eτ , the inverse of F̃ rob will be

F̃ rob
−1

(t)(v)(k) = tτ(k−1)v. (3.4)

Coming back to our previous computation, we get

[End(Hσ
∞)⊗ Eτ ]K ∼= Hσ

∞ ⊗HomK(Hσ
∞, Eτ )

Frob∼= Hσ
∞ ⊗HomM (Eσ, Eτ )

(2.1)∼= C∞(K/M,Eσ ⊗HomM (Eσ, Eτ ))
∼= C∞(K/M,Eτ |M (σ))

∼= Hτ |M (σ)
∞ , (3.5)

where Eτ |M (σ) is the σ-isotypic component of Eτ |M . Here, τ is restricted toM , it is generally no more irre-
ducible and splits into a finite direct sum τ |M =

⊕
σ∈M̂ m(σ, τ)σ, wherem(σ, τ) = dim(HomM (Eσ, Eτ )) ≥

0 is the multiplicity of σ in τ |M . Now by taking the algebraic direct sum over all σ ∈ M̂ , where only
finitely many of them appears, we obtain⊕

σ∈M̂

[End(Hσ
∞)⊗ Eτ ]K

(3.5)∼=
⊕
σ∈M̂

Hτ |M (σ)
∞

∼= Hτ |M
∞ = {f : K

C∞→ Eτ | f(km) = τ(m)−1f(k)},

which can be viewed as the principal series representations corresponding to τ |M .

Definition 5 (Fourier transform for sections over homogeneous vector bundles in (Level 2)). Let g =
κ(g)a(g)n(g) ∈ KAN = G be the Iwasawa decomposition. For fixed λ ∈ a∗C and k ∈ K, we define the
function eτλ,k by

eτλ,k : G → End(Eτ ) ∼= Eτ̃ ⊗ Eτ
g 7→ eτλ,k(g) := τ(κ(g−1k))−1a(g−1k)−(λ+ρ). (3.6)

(a) For f ∈ C∞c (X,Eτ ), the Fourier transformation is given by

Fτf(λ, k) =

∫
G

eτλ,k(g)f(g) dg =

∫
G/K

eτλ,k(g)f(g) dg, (3.7)

where the last equality makes sense, since the integrand is right K-invariant.
(b) The Fourier transform for distributional section T ∈ C−∞c (X,Eτ ) is defined by

FτT (λ, k) := 〈T, eτλ,k〉 = T (eτλ,k) ∈ Eτ , (λ, k) ∈ a∗C ×K/M.

Note that the Fourier transform for sections has already been introduced and studied by Camporesi
([Ca97], (3.18)). It is a direct generalization of Helgason’s Fourier transform for Eτ = C. It is not difficult
to see that Fτf(λ, ·) and FτT (λ, ·) are in Hol(a∗C, H

τ |M
∞ ). Observe that, for k ∈ K and g ∈ G, we have,

by definition
eτλ,k(g) = lk(eτλ,1(g)) = eτλ,1(k−1g). (3.8)

This function eτλ,k in Def. 5 can be seen as the analogous of the ’exponential’ function in the definition
of Fourier transform in the Euclidean case Rn. It has some interesting properties. Note that for fixed
k ∈ K, eτλ,k(g) is an entire function on λ ∈ a∗C, since a(g−1k)−(λ+ρ) is an entire function on λ ∈ a∗C.

Proposition 3. Let τ ∈ K̂, λ ∈ a∗C and k ∈ K. Then, we have

eτλ,k(hg) = eτλ,κ(h−1k)(g)a(h−1k)−(λ+ρ), g, h ∈ G. (3.9)
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Proof. Let h, g ∈ G = KAN , then by Iwasawa decomposition, we have

hg = hκ(g)a(g)n(g) = κ(h(κ(g)) a(hκ(g)) n(hκ(g)) a(g) n(g)

= κ(hκ(g))︸ ︷︷ ︸
∈K

a(hκ(g)) a(g)︸ ︷︷ ︸
∈A

n(hκ(g)) n(g)︸ ︷︷ ︸
∈N

.

In other words, we have κ(hg) = κ(hκ(g)a(g)n(g)) = κ(h(κ(g)), and
a(hg) = a(hκ(g)a(g)n(g)) = a(hκ(g)) a(g). Hence,

eτλ,k(hg)
(3.6)
= τ(κ(g−1h−1k))−1a(g−1h−1k)−(λ+ρ)

= τ(κ(g−1κ(h−1k))−1a(g−1κ(h−1k))−(λ+ρ)a(h−1k)−(λ+ρ)

(3.6)
= eτλ,κ(h−1k)(g)a(h−1k)−(λ+ρ).

Fourier transform in (Level 3) and its properties

Now consider an additional finite-dimensional K-representation γ : K → GL(Eγ) with its associated
homogeneous vector bundle Eγ over X. It induces a mapping

HomK(Eγ , C
∞
c (X,Eτ )) −→ HomK(Eγ ,Hol(a∗C, H

τ |M
∞ )). (3.10)

The LHS of (3.10) can be identified with a space of functions with values in Hom(Eγ , Eτ ), the (γ, τ)-
spherical functions:

HomK(Eγ , C
∞
c (X,Eτ )) ∼= C∞c (G, γ, τ)

:= {f : G→ Hom(Eγ , Eτ ) | f(k1gk2) = τ(k2)−1f(g)γ(k1)−1,∀k1, k2 ∈ K}.

For the RHS of (3.10), we use the Frobenius reciprocity between K and M , by evaluating at k = 1, and
we obtain the space of functions {φ : a∗C → HomM (Eγ , Eτ )}. Now we define the Fourier transformation
γFτ of f ∈ C∞c (G, γ, τ).

Definition 6 (Fourier transform in (Level 3)). With the previous notations, the Fourier transformation
for f ∈ C∞c (G, γ, τ) is given by

γFτf(λ) :=

∫
G

eτλ,1(g)f(g) dg, λ ∈ a∗C. (3.11)

Similar, the Fourier transformation for distributional function T ∈ C−∞c (G, γ, τ) is defined by

γFτT (λ) := 〈T, eτλ,1〉.

Observe that

τ(m)Fγf(λ) =

∫
G

eτλ,1(mg)f(g) dg =

∫
G

eτλ,1(g)f(m−1g) dg = γFτf(λ)γ(m) ∈ HomM (Eγ , Eτ ),

same for the distributions. Let us consider now the convolution G of f ∈ C∞c (X,Eγ) to a (γ, τ)-spherical
function ϕ ∈ C∞c (G, γ, τ), which is defined by

(f ∗ ϕ)(g) :=

∫
G

ϕ(x−1g)f(x) dx =

∫
G

ϕ(xg)f(x−1) dx, g ∈ G. (3.12)

By considering the corresponding Fourier transform, we obtain the following result, which is analogous
as Lem. 1.4. in ([Hel89], Chap. 3).

Proposition 4. With the notations above, we then have that

Fτ (f ∗ ϕ)(λ, k) = γFτϕ(λ)Fγf(λ, k), λ ∈ a∗C, k ∈ K.
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Proof. For (λ, k) ∈ a∗C ×K, we compute

Fτ (f ∗ ϕ)(λ, k)
(3.12)

=

∫
G×G

eτλ,k(g)ϕ(x−1g︸ ︷︷ ︸
=:h

)f(x) dx dg

Fubini’s thm.
=

∫
G

(∫
G

eτλ,k(xh)ϕ(h) dh
)
f(x) dx

(3.6)
=

∫
G

(∫
G

eτλ,κ(x−1k)(h)a(x−1k)−(λ+ρ)ϕ(h) dh
)
f(x) dx

(3.8)
=

∫
G

(∫
G

eτλ,1(κ(x−1k)−1h︸ ︷︷ ︸
=:g

)ϕ(h) dh
)
a(x−1k)−(λ+ρ)f(x) dx

=

∫
G

(∫
G

eτλ,1(g)ϕ(κ(g−1k)g) dg
)
a(x−1k)−(λ+ρ)f(x) dx

=

∫
G

(∫
G

eτλ,1(g)ϕ(g) dg
)
γ(κ(x−1k))−1a(x−1k)−(λ+ρ)f(x) dx

= γFτϕ(λ)Fγf(λ, k).

Remark 2. (a) If γ = τ , then we have Fτ (f ∗ ϕ)(λ, k) = τFτϕ(λ)Fτf(λ, k), for f ∈ C∞c (X,Eτ ) and a
spherical function ϕ ∈ C∞c (G, τ, τ).

(b) In a smiliar way, one can define the left convolution for scalar valued-function ϕ ∈ C∞c (G). In fact,
we know that, for f ∈ C∞c (X,Eτ ) and g ∈ G, we have

Fτ (lgf)(λ, k) =

∫
G

eτλ,k(x)lgf(x) dx =

∫
G

eτλ,k(gh)f(h) dh

(3.9)
= a(g−1k)−(λ+ρ)

∫
G

eτλ,κ(g−1k)(h)f(h) dh

(2.2)
= (πτ,λ(g)Fτf(λ, ·))(k).

Hence, we can deduce for ϕ ∈ C∞c (G):

Fτ (ϕ ∗ f)(λ, k) = (πτ,λ(ϕ)Fτf(λ, ·))(k). (3.13)

(c) Analogously as for smooth compactly functions (3.12), we define the convolution for distributions
T ∈ C−∞c (X,Eτ ) by

(T ∗ ϕ)(g) := T (lgϕ
∨) = 〈T, lgϕ∨〉, g ∈ G,ϕ ∈ C∞c (G, τ, τ),

where ϕ∨ ∈ C∞c (X,Eτ̃ )⊗Eτ is given by ϕ∨(g) := ϕ(g−1), g ∈ G. Then, the obtained results can be
applied for distributions as well.

Now, for positive ε > 0, take aK-conjugation invariant open neighbourhood Uε ⊂ Bε(0) so that
⋂
ε>0 Uε =

{0}, and for ε1 < ε2, we have Uε1 ⊂ Uε2 . Consider a scalar-valued positive function η̃ε ∈ C∞c (Uε) ⊂ C∞c (G)
in G satisfying ∫

Uε

η̃ε(g) dg = 1. (3.14)

Note that η̃ε cannot be K × K-invariant. Let us construct from this an endomorphism function ηε ∈
C∞(G, τ, τ) by

ηε(g) :=

∫
K×K

η̃ε(k1gk2)τ(k1k2) dk1 dk2, g ∈ G. (3.15)

Then, we get the following observation.

Corollary 1. For each ε > 0, let ηε ∈ C∞c (G, τ, τ) be the K×K-invariant endomorphism function (3.15).
Then, its Fourier transform τFτηε converges uniformly on compact sets C on a∗C to the identity map:

τFτηε(λ)→ Id, λ ∈ C

when ε→ 0.
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Proof. Consider ηε ∈ C∞(G, τ, τ), then for g ∈ G:

ηε(g) =

∫
K

∫
K

η̃ε(k1gk2)τ(k1k2) dk1 dk2 =

∫
K

∫
K

η̃ε(k1glk
−1
1 )τ(l) dk1 dl =

∫
K

ηε(gl)τ(l) dl,

where we did a change of variable and set ηε(g) :=
∫
K
η̃ε(k1gk

−1
1 ) dk1. Here, η̃ε ∈ C∞c (Uε) as above (3.14).

By computing its Fourier transform, we obtain, for λ ∈ a∗C

τFτ (ηε)(λ)
(3.11)

=

∫
G

eτλ,1(g)ηε(g) dg =

∫
G

(∫
K

eτλ,1(g)ηε(gl)τ(l) dl
)
dg

(3.18)
=

∫
G

(∫
K

eτλ,1(gl)ηε(gl) dl
)
dg

=

∫
G

eτλ,1(g)ηε(g) dg

=

∫
Uε

ηε(g)(eτλ,1(g)− Id)dg + Id.

Now, consider a compact set C on a∗C and δ > 0, then there exists ε > 0 such that

|eτλ,1(g)− Id| < δ for g ∈ Uε, λ ∈ C.

Thus, this implies that τFτηε converges uniformly on compact sets to Id, when ε converges to 0.

Furthermore, consider an non-zero linear G-invariant differential operator between sections over ho-
mogeneous vector bundles

D : C∞(X,Eτ ) −→ C∞(X,Eγ) (3.16)

such that D(g · f) = g · (Df), for all g ∈ G, f ∈ C∞(X,Eτ ). Denote by DG(Eτ ,Eγ) the vector space of
all these G-invariant differential operators on sections. We get the following relation.

Proposition 5. Let Q ∈ DG(Eτ̃ ,Eγ̃) be an invariant linear differential operator. Then, we have

Qeτλ,k = (Qeτλ,1(1)) ◦ eγλ,k, λ ∈ a∗C, k ∈ K. (3.17)

Proof. Let us first consider the case k = 1. We then have for g ∈ G = NAK:

eτλ,1(g) = eτλ,1(nak1) = aλ+ρτ(k1) = aλ+ρeτλ,1(k1), n ∈ N, a ∈ A, k1 ∈ K. (3.18)

In particular, for n1a1 ∈ NA

l(n1a1)−1eτλ,1(nak1) = eτλ,1(n1a1nak1) = eτλ,1(n1(a1na
−1
1 )a1ak1)

(3.18)
= aλ+ρ

1 aλ+ρτ(k1)

= aλ+ρ
1 eτλ,1(g).

Hence, since Q is linear and G-invariant, we obtain that

l(n1a1)−1(Qeτλ,1(g)) = Q(l(n1a1)−1eτλ,1(g)) = Q(aλ+ρ
1 eτλ,1(g)) = aλ+ρ

1 Q(eτλ,1(g)) (3.19)

and by setting g = k1 = 1, we have

Qeτλ,1(n1a1)
(3.19)

= aλ+ρ
1 Qeτλ,1(1). (3.20)

Therefore, since eτλ,1 ∈ C∞(X,Eτ̃ ) ⊗ Eτ ⊂ C∞(G,End(Eτ )), we have that Qeτλ,1 ∈ C∞(X,Eγ̃) ⊗ Eτ ⊂
C∞(G,Hom(Eγ , Eτ )). Therefore, for g = n1a1k2 ∈ G, we can conclude that

Qeτλ,1(n1a1k2) = Qeτλ,1(n1a1)γ(k2)
(3.20)

= aλ+ρ
1 (Qeτλ,1(1))γ(k2)

(3.18)
= (Qeτλ,1(1))eγλ,1(n1a1k2).

(3.21)

Now for general k ∈ K, we observe that eτλ,k = lke
τ
λ,1. Hence

Qeτλ,k = Q(lke
τ
λ,1)

(3.21)
= lk(Qeτλ,1(1))eγλ,1 = (Qeτλ,1(1)) ◦ eγλ,k.

Thus, we get the desired result.
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4 Delorme’s intertwining conditions and some examples
We study Delorme’s intertwining conditions (D.a) in Def. 3 and determine the intertwining conditions
in (Level 2) and (Level 3) induced by them. To do this, we firstly need some preparations. In the
previous Section 3, we have seen that the identification (3.5). Let us now take a closer look. Consider the
Frobenius-reciprocity (3.2) with its dual (3.3) and define the map

I :
⊕
σ∈M̂

Hσ
∞ ⊗HomK(Hσ

∞, Eτ ) −→ Hτ |M
∞

by I(α) = dσ
∑m(τ,σ)
i=1 siαi, for α =

∑m(τ,σ)
i=1 αi⊗Si ∈ Hσ

∞⊗HomK(Hσ
∞, Eτ ), where si = Frob(Si) runs a

basis through HomM (Eσ, Eτ ), for all i. Here, m(τ, σ) stands for the dimension of the multiplicity space
HomK(Hσ

∞, Eτ ). For T ∈ HomK(Eτ , H
σ
∞), let

〈α, T 〉 :=

m(τ,σ)∑
i=1

αi · Trτ (Si ◦ T ).

Now, by using the identification [End(Hσ
∞)⊗ Eτ ]K

j∼= Hσ
∞ ⊗HomK(Hσ

∞, Eτ ), we can define the map

J :
⊕
σ∈M̂

[End(Hσ
∞)⊗ Eτ ]K −→ Hτ |M

∞ (4.1)

by J = I ◦ j. In addition, for β =
∑dτ
i=1 βi ⊗ vi ∈

⊕
σ∈M̂ [End(Hσ

∞)⊗ Eτ ]K and T ∈ HomK(Eτ , H
σ
∞), let

〈β, T 〉 :=

dτ∑
i=1

βi ◦ T (vi) ∈ Hσ
∞, (4.2)

where {vi, i = 1, . . . , dτ} runs a vector basis of Eτ . One checks that 〈β, T 〉 = 〈j(β), T 〉.

Proposition 6. With the previous notations, let f :=
∑dτ
i fi ⊗ vi ∈ C∞c (X,Eτ ). Denote by Fτ (f) its

Fourier transform in Hτ |M
∞ given in (3.7).

Then, for T ∈ HomK(Eτ , H
σ
∞) and t = F̃ rob

−1
(T ) ∈ HomM (Eτ , Eσ), we obtain

(1) 〈α, T 〉 = t ◦ I(α),

(2) 〈Fσ,λ(f), T 〉 = t ◦ Fτf(λ, ·) ∈ Hσ,λ
∞ , for λ ∈ a∗C,

(3) Fτf(λ, ·) = J(
⊕

σ∈M̂ Fσ,λ(f)), for λ ∈ a∗C.

Proof. (1) It is sufficient to prove it for only one summand in α, hence let α = α1 ⊗ S. For T =

F̃ rob(t) ∈ HomK(Eτ , H
σ
∞) and S = Frob(s) ∈ HomK(Hσ

∞, Eτ ), we thus obtain

〈α, T 〉 = α1Trτ (S ◦ T )
Lem. 1+(3.4)

= α1Trτ
(
v 7→

∫
K

τ(k)s ◦ t(τ(k−1))v dk
)
, v ∈ Eτ

= α1Trτ
(∫

K

τ(k)s ◦ tτ(k−1) dk
)

= α1Trτ (s ◦ t)
= Trσ(t ◦ s)α1.

Since σ ∈ M̂ is irreducible and t ◦ s ∈ EndM (Eσ), by Schur’s lemma, we have that t ◦ s = λ · Id, for
some λ ∈ C and thus Trσ(t ◦ s) = λ. Hence 〈α, T 〉 = (t ◦ s)(α1) = t(I(α)).

(2) By computation, we obtain

〈Fσ,λ(f), T 〉 =

dτ∑
i=1

Fσ,λ(fi) ◦ T (vi)
(3.4)
=

dτ∑
i=1

Fσ,λ(fi)(tτ(·)(vi))

Def. 1
=

dτ∑
i=1

∫
G

fi(g)πσ,λ(g)(tτ(·)(vi)) dg

=

dτ∑
i=1

∫
G

fi(g)(πσ,λ(g)ϕi)(·) dg.
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In the last line, we set ϕi(k) := tτ(k−1)(vi), for k ∈ K. Fix k ∈ K, by applying (2.2), we have
(πσ,λ(g)ϕi)(k) = a(g−1k)−(λ+ρ)ϕ(κ(g−1k))−1.

Thus,

dτ∑
i=1

∫
G

fi(g)tτ(κ(g−1k))−1a(g−1k)−(λ+ρ)vi dg =

dτ∑
i=1

∫
G

fi(g)teτλ,k(g)vi dg

= t ◦
∫
G

dτ∑
i=1

eτλ,k(g)fi(g)vi dg

= t ◦
∫
G

eτλ,k(g)f(g) dg = t ◦ Fτf(λ, k).

(3) By rewritting (1) and (2) in the following way:

(1’) Trτ (I−1(α) ◦ T ) = t ◦ α,
(2’) Trτ (Fσ,λ(f) ◦ T ) = t ◦ Fτf(λ, ·),
we get that

Trτ (J−1(Fτf(λ, ·)) ◦ T ) = Trτ (I−1(Fτf(λ, ·)) ◦ T )
(1′)
= t ◦ Fτf(λ, ·) (2′)

= Trτ (Fσ,λ(f) ◦ T ).

By taking only the σ-component of
⊕

σ∈M̂ [End(Hσ
∞) ⊗ Eτ ]K , we have that the parining in Trσ is

non-degenerate, thus J−1(Fτf(λ, ·)) =
⊕

σ∈M̂ Fσ,λ(f).

We first study what happens to Delorme’s intertwining condition (D.a) if we tensor it with Eτ and take
K-invariants.

Definition 7. Consider τ ∈ K̂.
(1) We say that a function

φ ∈
∏
σ∈M̂

[Hol(a∗C,End(Hσ
∞))⊗ Eτ ]K ∼=

⊕
σ⊂τ |M

Hol(a∗C, [End(Hσ
∞)⊗ Eτ ]K)

satisfies the intertwining condition, if for each ṽ ∈ Eτ̃ :

〈φ, ṽ〉τ ∈
∏
σ∈M̂

Hol(a∗C,End(Hσ
∞))

satisfies the intertwining condition in Def. 3.

Proposition 7. Let φ ∈
∏
σ∈M̂ [Hol(a∗C,End(Hσ

∞))⊗Eτ ]K as in Def. 7 and (ξ,W ) the intertwining data
defined in Def. 3.

(D.1) Then, φ satisfies the intertwining condition (1) of Def. 7 if, and only if, for each intertwining datum
(ξ,W ) and T ∈ HomK(Eτ ,W ) ⊂ HomK(Eτ , Hξ), the induced element φξ ∈ [End(Hξ) ⊗ Eτ ]K

satisfies
〈φξ, T 〉 ∈W.

Proof. For each i ∈ {1, . . . , dτ}, consider fi ∈ End(Hξ) so that for each intertwining datum (ξ,W ), we
have fi(W ) ⊆W . Consider

φξ =

dτ∑
i=1

fi ⊗ vi ∈ [End(Hξ)⊗ Eτ ]K

as in Thm. 2. It is sufficient to show that for each i and T ∈ HomK(Eτ ,W ), we have fi ◦ T ∈ W if, and
only if, 〈φξ, T 〉 ∈W, ∀T ∈ HomK(Eτ ,W ).

The right implication is obvious. By using the definition of the brackets 〈·, ·〉 as in (4.2), we have

〈φξ, T 〉 =

dτ∑
i=1

fi ◦ T (vi) ∈W

since for vi ∈ Eτ , T (vi) ∈W ⊂ Hξ.
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For the left implication, write fi = 〈φξ, ṽi〉τ , for all i ∈ {1, . . . , dτ}, where ṽi runs a dual basis of Eτ̃ .
Consider the mapping Aij ∈ End(Eτ ) such that vi 7→ vj and vk 7→ 0, k 6= i. Then, for all i, j ∈ {1, . . . , dτ},
we have

fi ◦ T (vj) = 〈φξ, T (vj) · ṽi〉 = 〈φξ, T ◦Aij〉 = 〈φξ, pK(T ◦Aij)〉,

where pK : Hom(Eτ ,W )→ HomK(Eτ ,W ) is the orthogonal projection. Note that T (vj)·ṽi ∈ Hom(Eτ ,W ),
for all i, j. By setting, now in the last line T ′ij := pK(T ◦ Aij), we get that 〈φξ, T ′ij〉 ∈ W . Thus, for all
i ∈ {1, . . . , dτ}, we have fi ◦ T ∈W .

Next, we state the intertwining condition in (Level 2) and (Level 3) induced from Delorme’s intertwin-
ing condition (D.a), more presciely (1) in Def. 7.

Definition 8 (Intertwining conditions in (Level 2) and (Level 3)). Let τ, γ ∈ K̂ and consider the map J
defined in (4.1).

(2) We say that a function ψ ∈ Hol(a∗C, H
τ |M
∞ ) satisfies the intertwining condition, if

J−1ψ ∈
⊕
σ⊂τ |M

Hol(a∗C, [End(Hσ
∞)⊗ Eτ ]K)

satisfies the intertwining condition (1) in Def. 7.

(3) We say that a function ϕ ∈ Hol(a∗C,HomM (Eγ , Eτ )) satisfies the intertwining condition, if for all
w ∈ Eγ :

(λ, k) 7→ ϕ(w)(λ, k) := ϕ(λ)γ(k−1)w ∈ Hol(a∗C, H
τ |M
∞ )

satisfies the above intertwining condition (2).

We now want to make the intertwining conditions more explicit. Let us first introduce some notations.
We define

HomM (Eτ , Eσ)λ(m) := Hol(a∗C,HomM (Eτ , Eσ))/mm+1
λ Hol(a∗C,HomM (Eτ , Eσ))

as in (2.3), similarly for Hτ |M ,λ
∞,(m). For τ ∈ K̂ and each intertwining datum (ξ,W ), consider

Dτ
W := {t ∈

s⊕
i=1

HomM (Eτ , Eσi)
λi
(mi)
| T = F̃ rob

−1
(t) ∈ HomK(Eτ ,W ) ⊂ HomK(Eτ , Hξ)}

⊂
s⊕
i=1

HomM (Eτ , Eσi)
λi
(mi)

. (4.3)

Write by Ξ the set of all 2-tuples (λ,m) with λ ∈ a∗C and m ∈ N0 and we define the map

Ξ −→ Ξ, ξ = (σ, λ,m) 7→ ξ = (λ,m).

For s ∈ N and ξ ∈ Ξs, we have the corresponding element ξ ∈ Ξ
s
.

Theorem 2 (Intertwining conditions in the three levels). With the notations above, we then have:

(D.2) (Level 2) Then, ψ ∈ Hol(a∗C, H
τ |M
∞ ) satisfies the intertwining condition (2) of Def. 8 if, and only if,

for each intertwining datum (ξ,W ) and each non-zero t = (t1, t2, . . . , ts) ∈ Dτ
W , the induced element

ψξ ∈
⊕s

i=1H
τ |M ,λi
∞,(mi) =: H

τ |M
ξ

satisfies

t ◦ ψξ = (t1 ◦ ψ1, . . . , t2 ◦ ψs) ∈W.

(D.3) (Level 3) Then, ϕ ∈ Hol(a∗C,HomM (Eγ , Eτ )) satisfies the intertwining condition (3) of Def. 8 if,
and only if, for each intertwining datum (ξ,W ) and each non-zero t = (t1, t2, . . . , ts) ∈ Dτ

W , the
induced element ϕξ ∈

⊕s
i=1 HomM (Eγ , Eτ )λi(mi)

=: Hγ,τ

ξ
satisfies

t ◦ ϕξ = (t1 ◦ ϕ1, . . . , t2 ◦ ϕs) ∈ Dγ
W .

Proof. We obtain directly the equivalence between (D.1) for J−1ψ and (D.2) for ψ by applying the
Frobenius reciprocity, Prop. 7 and Prop. 6 (2).
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Concerning (D.2) for ϕ(w) ⇐⇒ (D.3) for ϕ, one implication is trivial. For the other one, we have,
by the inverse dual Frobenius reciprocity, that

W 3 t ◦ ψξ = t ◦ F̃ rob
−1

(ϕξ)(w)(k)
(3.3)
= t ◦ ϕξ ◦ γ(k−1)w, ∀t ∈ Dτ

W ,

for w ∈ Eγ and k ∈ K. This means that F̃ rob
−1

(t ◦ ϕξ)(w) ∈ HomK(Eγ ,W ) and hence by applying the

dual Frobenius-reciprocity HomK(Eγ ,W )
F̃ rob∼= Dγ

W , this implies that t ◦ ϕξ ∈ D
γ
W .

Example 1. (a) Consider s = 1 and m = 0. Let ξ := (σ, λ, 0) ∈ Ξ and W ⊂ Hσ,λ
∞ . Consider

Dτ
W ⊂ HomM (Eτ , Eσ) as in Thm. 2. Then, we have the following intertwining conditions in the

corresponding levels:
(D.2a) (Level 2) For each intertwining datum (ξ,W ) and 0 6= t ∈ Dτ

W , we have

t ◦ ψ(λ, ·) ∈W.

Note that for each ξ ∈ Ξ, the induced element ψξ = ψ(λ, ·).
(D.3a) (Level 3) For each intertwining datum (ξ,W ) and 0 6= t ∈ Dτ

W , we have

t ◦ ϕ(λ) ∈ Dγ
W .

Note that for each ξ ∈ Ξ, the induced element ϕξ = ϕ(λ).

(b) Consider now s = 2 and m1 = m2 = 0. Let L : Hσ1,λ1
∞ −→ Hσ2,λ2

∞ be an intertwining operator
between the two principal series representations. Let ξ := ((σ1, λ1, 0), (σ2, λ2, 0)) ∈ Ξ2 and W =
graph(L) ⊂ Hσ1,λ1

∞ ⊕Hσ2,λ2
∞ . Moreover, define lτ : HomM (Eτ , Eσ1

) −→ HomM (Eτ , Eσ2
) by

lτ (t)(v) = L(tτ(·)−1v)(e)

for v ∈ Eτ and t ∈ HomM (Eτ , Eσ1
). Then

Dτ
W = {(t1, t2) | t2 = lτ (t1)} = {(t, lτ (t)) | t ∈ HomM (Eτ , Eσ1)}

⊂ HomM (Eτ , Eσ1)⊕HomM (Eτ , Eσ2).

In this situation, we have the following intertwining conditions.
(D2.b) (Level 2) For each intertwining datum (ξ,W ) and t ∈ HomM (Eτ , Eσ1), we have for ψ(λi, ·) ∈

H
τ |M ,·
∞ , i = 1, 2

L(t ◦ ψ(λ1, ·)) = lτ (t) ◦ ψ(λ2, ·). (4.4)

(D3.b) (Level 3) For each intertwining datum (ξ,W ) and t ∈ HomM (Eτ , Eσ1), we have for ϕ(λi) ∈
HomM (Eγ , Eτ ), i = 1, 2

lγ(t ◦ ϕ(λ1)) = lτ (t) ◦ ϕ(λ2). (4.5)

5 Topological Paley-Wiener theorem for sections
The Paley-Wiener space for sections over homogeneous vector bundles is defined as follows.

Definition 9 (Paley-Wiener space for sections in (Level 2) and (Level 3)).

(a) For r > 0, let PWτ,r(a
∗
C ×K/M) be the space of sections ψ ∈ C∞(a∗C ×K/M,Eτ |M ) be such that

(2.i) the section ψ is holomorphic in λ ∈ a∗C, i.e. ψ ∈ Hol(a∗C, H
τ |M
∞ ).

(2.ii)r (growth condition) for all Y ∈ U(k) and N ∈ N0, there exists a constant Cr,N,Y > 0 such that

||lY ψ(λ, k)||Eτ ≤ Cr,N,Y (1 + |λ|2)−Ner|Re(λ)|, k ∈ K,

where || · ||Eτ denotes the norm on finite-dimensional vector space Eτ (for convenience, we often
denotes it by | · |).

(2.iii) (intertwining condition) (D.2) from Thm. 2.
(b) By considering an additional K-type, let γPW τ,r(a

∗
C) be the space of functions

a∗C 3 λ 7→ ϕ(λ) ∈ HomM (Eγ , Eτ )

be such that
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(3.i) the function ϕ is holomorphic in λ ∈ a∗C.
(3.ii)r (growth condition) for all N ∈ N0, there exists a constant Cr,N > 0 such that

||ϕ(λ)||op ≤ Cr,N (1 + |λ|2)−Ner|Re(λ)|,

where || · ||op denotes the operator norm on HomM (Eγ , Eτ ).
(3.iii) (intertwining condition) (D.3) from Thm. 2.

The inequalities provide semi-norms ||·||r,N,Y (resp. ||·||r,N ) on PWτ,r(a
∗
C×K/M) (resp. γPW τ,r(a

∗
C))

and made the vector space PWτ,r(a
∗
C×K/M) (resp. γPW τ,r(a

∗
C)) to Fréchet space, e.g. one can compare

Lem. 10 of Delorme [Del05].
Combining Delorme’s Paley-Wiener Thm. 1 with the above identifications and observations, we obtain a
Paley-Wiener theorem in (Level 2) and (Level 3).

Theorem 3 (Topological Paley-Wiener theorem for sections in (Level 2) and (Level 3)). Let (τ, Eτ ) be a
K-representation with associated homogeneous vector bundle Eτ . For r > 0, then the Fourier transform

C∞r (X,Eτ ) 3 ψ 7→ Fτ (ψ)(λ, k) ∈ PWτ,r(a
∗
C ×K/M), (λ, k) ∈ a∗C ×K

is a topological isomorphism between C∞r (X,Eτ ) and PWτ,r(a
∗
C ×K/M).

Moreover, by considering an additional K-representation (γ,Eγ) with associated homogeneous vector bun-
dle Eγ , then the Fourier transform

C∞r (G, γ, τ) 3 ϕ 7→ γFτ (ϕ)(λ) ∈ γPW τ,r(a
∗
C), λ ∈ a∗C

is a topological isomorphism between C∞r (G, γ, τ) and γPW τ,r(a
∗
C). �

Furthermore, by taking the union of all r > 0, the Paley-Wiener space PWτ (a∗C ×K/M) is defined as

PWτ (a∗C ×K/M) :=
⋃
r>0

PWτ,r(a
∗
C ×K/M)

similar for γPW τ (a∗C). Equip PWτ (a∗C×K/M) and γPW τ (a∗C) with the inductive limit topology (compare
the next Sect. 6). Hence, by the above result (Thm. 3), we also have a linear topological Fourier transform
isomorphism from C∞c (X,Eτ ) (resp. C∞c (G, γ, τ)) onto PWτ (a∗C ×K/M) (resp. γPW τ (a∗C)).

6 On topological Paley-Wiener-Schwartz theorem for sections and
its proof

Distributional sections and their corresponding topology

In (3.1), we already introduced the vector space C−∞c (X,Eτ ) by taking the taking the topological linear
dual of C∞(X,Eτ̃ ). We provide C−∞c (X,Eτ ) with the strong dual topology. Actually, we know that
C∞(X,Eτ̃ ) is a Fréchet space with semi-norm

||h||Ω,Y := sup
g∈Ω
|lY h(g)|, h ∈ C∞(X,Eτ̃ ), (6.1)

where Y ∈ U(g) and Ω is a compact subset of G. Furthermore, a subset B ⊂ C∞(X,Eτ̃ ) is called bounded,
if for each compact Ω ⊂ G and Y ∈ U(g) there exists a constant CΩ,Y > 0 such that supϕ∈B ||ϕ||Ω,Y ≤
CΩ,Y . Shortly, every semi-norm is bounded on B.
The strong dual topology on C−∞c (X,Eτ ) is a locally convex topology vector space given by the semi-norm
system

pB(T ) := ||T ||B = sup
ϕ∈B
|T (ϕ)| = sup

ϕ∈B
|〈T, ϕ〉|, T ∈ C−∞c (X,Eτ ), (6.2)

where B belongs to the family of all bounded subsets of C∞(X,Eτ̃ ). Similarly, we equip C−∞(X,Eτ ) =
(C∞c (X,Eτ̃ ))′ with the strong dual topology. As an immediate consequence of theses dualities, the topolo-
gies on C−∞c (X,Eτ ) and C−∞(X,Eτ ) induce the same topology on the space of distributions supported
in a fixed compact subset Ω of G ([vdBS06], Sect. 14). For example, one can take Ω = Br(o).

A subset B′ ⊂ C−∞c (X,Eτ ) is bounded in the strong dual topology, if for each bounded B ⊂
C∞(X,Eτ̃ ), we have

sup
T∈B′

pB(T ) = sup
T∈B′,ϕ∈B

|T (ϕ)| <∞. (6.3)
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Since, by Schaefer ([Sch71], Cor. 1.6, p. 127), we know that all such sets B′ are equicontinuous, this means
that there exist a continuous semi-norm p on C∞(X,Eτ̃ ) and a constant C > 0 such that

B′ ⊂ {T ∈ C−∞c (X,Eτ ) | |T (ϕ)| ≤ Cp(ϕ),∀ϕ ∈ C∞(X,Eτ̃ )}.

Let Y1, . . . , Yn be a basis of g, then for a multi-index α ∈ Nn0 , we set Yα := Y α1
1 · · ·Y αnn ∈ U(g). We may

assume that the semi-norm p has the form

p(ϕ) =
∑
|α|≤m

||ϕ||Ω,α
(6.1)
=

∑
|α|≤m

sup
g∈Ω
|lYαϕ(g)|, ϕ ∈ C∞(X,Eτ̃ ),∀α (6.4)

for some m ∈ N0 and compact Ω ⊂ G.
It is interesting to notice that C∞(X,Eτ̃ ) is a reflexive Fréchet space, even a Montel space, that is, it

is reflexive and a subset is bounded if, and only if, it is relatively compact ([Sch71], p. 147).
Thus, since C−∞c (X,Eτ ) is the strong dual space of a Montel space C∞(X,Eτ̃ ), we can deduce by Cor. 1
in ([Sch71], p.154) that C−∞c (X,Eτ ) is a bornological space, that is a locally convex space on which each
semi-norm pB , which is bounded on bounded subsets, is continuous ([Sch71], Chap.2.8, p. 61).
This observation leads us to the following general result, which will play an imporant role in the proof
of the Paley-Wiener-Schwartz theorem. For bornological spaces, bounded linear maps are continuous
([Sch71], Thm. 8.3., p. 62), hence, we obtain the following.

Lemma 2. Let W be any locally convex topological vector space and consider a linear map

A : C−∞c (X,Eτ )→W.

Then A is continuous if, and only if, A(B′) is bounded in W , for every bounded subset B′ ⊂ C−∞c (X,Eτ ).
�

Let Y1, . . . , Yk be a basis of U(k), then for a multi-index α ∈ Nk0 , we have Yα := Y α1
1 · · ·Y αkk ∈ U(k). Now

we are in the position to define Paley-Wiener-Schwartz space for sections.

Definition 10 (Paley-Wiener-Schwartz space for sections in (Level 2) and (Level 3)).

(a) For r > 0, let PWSτ,r(a
∗
C ×K/M) be the space of sections ψ ∈ C∞(a∗C ×K/M,Eτ |M ) be such that

(2.i) the section ψ is holomorphic in λ ∈ a∗C, i.e. ψ ∈ Hol(a∗C, H
τ |M
∞ ).

(2.iis)r (growth condition) for all multi-indices α, there exist N ∈ N0 and a positive constant Cr,N,α
such that

||lYαψ(λ, k)||Eτ ≤ Cr,N,α(1 + |λ|2)N+
|α|
2 er|Re(λ)|, k ∈ K.

(2.iii) (intertwining condition) (D.2) from Thm. 2.

(b) By considering an additional K-type, let γPWSτ,r(a
∗
C) be the space of functions

a∗C 3 λ 7→ ϕ(λ) ∈ HomM (Eγ , Eτ )

be such that

(3.i) the function ϕ is holomorphic in λ ∈ a∗C.
(3.iis)r (growth condition) there exist N ∈ N0 and a positive constant Cr,N such that

||ϕ(λ)||op ≤ Cr,N (1 + |λ|2)Ner|Re(λ)|.

(3.iii) (intertwining condition) (D.3) from Thm. 2.

For all r ≥ 0 and N ∈ N0, we consider

PWSτ,r,N := {ψ ∈ PWSτ,r(a
∗
C ×K/M) | ||ψ||r,N,α <∞,∀α},

with semi-norms

||ψ||r,N,α := sup
λ∈a∗C, k∈K/M

(1 + |λ|2)−(N+
|α|
2 )e−r|Re(λ)|||lYαψ(λ, k)||Eτ , ∀α, k ∈ K.

This gives PWSτ,r,N the structure of a Fréchet space. We set PWSτ (a∗C×K/M) :=
⋃
r≥0

⋃
N∈N0

PWSτ,r,N (a∗C×
K/M) and equip it with the locally convex inductive limit topology. It is the finest locally convex topology
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on PWSτ (a∗C × K/M) such that all the embeddings PWSτ,r,N
ir,N
↪→ PWSτ (a∗C × K/M) are continuous.

Furthermore, this topology is characterized by the following property. A linear map

A : PWSτ →W,

where W is any locally convex space, is continuous if, and only if, all the maps

PWSτ,r,N
ir,N
↪→ PWSτ

A−→W

are continuous, i.e., A ◦ ir,N are continuous. The exactly same procedure, can be done for γPWSτ (a∗C).
We are now in the position to state the main theorem.

Theorem 4 (Topological Paley-Wiener-Schwartz theorem for sections).

(a) Let (τ, Eτ ) be a K-representation with associated homogeneous vector bundle Eτ .
Then, for each r ≥ 0, the Fourier transform Fτ is a linear bijection between the two spaces
C−∞r (X,Eτ ) and the Paley-Wiener-Schwartz space PWSτ,r(a

∗
C × K/M). Moreover, it is a linear

topological isomorphism from C−∞c (X,Eτ ) onto PWSτ (a∗C ×K/M).
(b) Similarly, if we consider an additional K-representation (γ,Eγ) with associated homogeneous vec-

tor bundle Eγ . Then, the Fourier transform γFτ is a linear bijection between the two spaces
C−∞r (G, γ, τ) and γPWSτ,r(a

∗
C), for each r ≥ 0, and a linear topological isomorphism from C−∞c (G, γ, τ)

onto γPWSτ (a∗C).

Remark 3. Delorme proved in his paper ([Del05]), the Paley-Wiener theorem in (Level 1) for Hecke algebra

H(G,K) := C−∞r=0 (G)K ∼= U(g)⊗U(k) C
∞(K)K , (6.5)

which consists of all K ×K-finite distributions on G supported by K ⊂ G.

Harish-Chandra inversion and Plancherel Theorem for sections

In order to prove Thm. 4, we need the Harish-Chandra Plancherel inversion formula for sections over
homogeneous vector bundles.

Theorem 5 (Plancherel Theorem for sections, [Ca97], Thm. 3.4 & Thm. 4.3). Let Q be a complete set of
representatives of association classes of cuspidal parabolic subgroups Q = MQAQNQ with Q ⊃ P = MAN
and AQ ⊂ A. We have a∗ = a∗Q ⊕ a∗MQ

.
Then, there exists a finite set AτQ ⊂ a∗MQ

⊂ a∗ and for ν ∈ AτQ, there exists an analytic function of at
most polynomial growth

µQν : ia∗Q −→ EndM (Eτ )

such that for each f ∈ C∞c (X,Eτ ), we have

f(e) =
∑
Q∈Q

∑
ν∈AτQ

∫
ia∗Q

∫
K

τ(k)µQν (λ)Fτ (f)(ν + λ, k) dk dλ.�

Note that AτP = {0}.

Corollary 2. With the notations above, let f ∈ C∞c (X,Eτ ) and ϕ ∈ C∞c (X,Eτ̃ ). Then∫
G

〈ϕ(g), f(g)〉τ dg =
∑
Q∈Q

∑
ν∈AτQ

∫
ia∗Q

∫
K

〈Fτ̃ (ϕ)(−ν − λ, k), µQν (λ)Fτ (f)(ν + λ, k)〉τ dk dλ. (6.6)

Proof. Let {ṽi, i = 1, . . . , dτ} be a vector basis of Eτ̃ . We write ϕ =
∑dτ
i=1 ϕi · ṽi with ϕi ∈ C∞c (G). For

h ∈ C∞c (G), we set h∨(g) := h(g−1). Then∫
G

〈ϕ(g), f(g)〉 dg =

dτ∑
i=1

〈(ϕ∨i ∗ f)(e), ṽi〉,

where we used the usual convolution defined in (3.12). Note that h ∗ f = l(h)f , where l is the (left)
regular representation of G on C∞c (X,Eτ ). By the G-equivariance of the Fourier transform, we have by
(3.13): Fτ (h ∗ f)(λ, k) = πτ,λ(h)(Fτ (f)(λ, ·))(k). By applying Thm. 5, we obtain for all i ∈ {1, . . . , dτ}

〈ṽi, (ϕ∨i ∗ f)(e)〉 =
∑
Q,ν

∫
ia∗Q

∫
K

〈ṽi, τ(k)µQν (λ)πτ,ν+λ(ϕ∨i )(Fτ (f)(ν + λ, ·))(k)〉 dk dλ.
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Using that µQν commutes with πτ,ν+λ and that integration over K gives a G-equivariant pairing between
Hτ,ν+λ
∞ and H τ̃ ,−(ν+λ)

∞ , we obtain that the K-integral equals∫
K

〈τ̃(k−1)ṽi, πτ,ν+λ(ϕ∨i )µQν (λ)(Fτ (f)(ν + λ, ·))(k)〉 dk

=

∫
K

〈(πτ̃ ,−(ν+λ)(ϕi)τ̃(·)−1ṽi)(k), µQν (λ)Fτ (f)(ν + λ, k)〉 dk.

Now

(πτ̃ ,−(ν+λ)(ϕi)τ̃(·)−1ṽi)(k) =

∫
G

ϕi(g)τ̃(κ(g−1k))−1a(g−1k)ν+λ−ρṽi dg

=

∫
G

ϕi(g)eτ̃−(ν+λ),k(g)ṽi dg.

The sum over all i equals to Fτ̃ (ϕ)(−(ν + λ), k). Combining all the previous formulas, we obtain the
corollary.

Proof of the topological Paley-Wiener-Schwartz Thm. 4

For r ≥ 0, let us frist provide the bijection between the vector spaces C−∞r (X,Eτ ) and PWSτ,r(a
∗
C×K/M).

Proposition 8. Consider a K-representation (τ, Eτ ).

(a) Let T ∈ C−∞c (X,Eτ ) such that its Fourier transform Fτ (T ) = 0, then T = 0.

(b) For r ≥ 0 and T̃ ∈ PWSτ,r(a
∗
C ×K/M), there exists T ∈ C−∞r (X,Eτ ) such that T̃ = Fτ (T ).

(c) For r ≥ 0, let T ∈ C−∞r (X,Eτ ), then Fτ (T ) ∈ PWSτ,r(a
∗
C ×K/M).

Proof. For each ε > 0, consider ηε ∈ C∞(G, τ, τ) with compact support in the closed ball Bε(o) as in
Cor. 1. Let T ∈ C−∞c (X,Eτ ) be a distribution, then

Tε := T ∗ ηε ∈ C∞c (X,Eτ ).

Moreover, by using the same arguments as in the proof of Cor. 1, we have that Tε
ε→0−→ T (weakly).

Hence, by the Paley-Wiener Thm. 3, this implies that Fτ (Tε) ∈ PWτ (a∗C ×K/M). Note that Fτ (Tε) is
holomorphic on λ ∈ a∗C and it satisfies the conditions (2.i) and (2.ii)r of Def. 9. Furthermore, by Prop. 4,
we have

Fτ (Tε)(λ, k) = τFτ (ηε)(λ)Fτ (T )(λ, k), (λ, k) ∈ a∗C ×K/M. (6.7)

Due to Cor. 1, τFτ (ηε) converges uniformly on compact subsets of a∗C to the identity map, whenever ε
tends to 0. Hence, limε→0 Fτ (Tε) = Fτ (T ) uniformly on compact sets on a∗C.

(a) Now assume that Fτ (T ) = 0. By (6.7), we have that Fτ (Tε) = 0. By applying the Paley-Wiener
Thm. 3, this implies that Tε = 0. Hence, since Tε

ε→0−→ T weakly, we have that T = 0.

(b) Consider ψ ∈ PWSτ,r(a
∗
C × K/M). For each ε > 0 and h ∈ C∞c (X,Eτ̃ ), let Tε be the functional

given by

Tε(h) :=
∑
Q∈Q

∑
ν∈AτQ

∫
ia∗Q

∫
K

〈Fτ̃ (h)(−ν − λ, k) ,

µQν (λ) τFτ (ηε)(ν + λ)ψ(ν + λ, k)〉 dk dλ (6.8)

under the same notations introduced in Thm. 5. Notice that, since supp(ηε) ⊂ Bε(o) and ψ satisfies
the ’slow’ growth condition (2.iis)r of Def. 10, for all r ≥ 0, this implies that for each multi-index
α ∈ N0 and N ∈ N0, there exists a constant Cr,N,α > 0 such that

|lYα τFτ (ηε)(λ)ψ(λ, k)| ≤ Cr,N,α(1 + |λ|2)−Ne(r+ε)|Re(λ)|, (λ, k) ∈ a∗C ×K. (6.9)

In addition, for each intertwining datum (ξ,W ), the induced operator (τFτ (ηε)ψ)ξ = τFτ (ηε)ξψξ ∈
H
τ |M
∞ satisfies the intertwining condition (3.iii) of Def. 9. In fact, for t ∈ Dτ

W , we have t◦τFτ (ηε)ξ ∈
Dτ
W and since ψ ∈ PWSτ (a∗C ×K/M), this implies that

(t ◦ τFτ (ηε)ξ) ◦ ψξ ∈W.
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Therefore, by the Paley-Wiener Thm. 3, we have that τFτ (ηε)ψ is the Fourier transform of a unique
function fε ∈ C∞c (X,Eτ ), i.e.,

Fτ (fε) := τFτ (ηε)ψ.

On the other side, by (6.8) and Cor. 2, we have Tε = fε. By (6.9), we have that supp(Tε) ⊂ Br+ε(o).
Thus, by Cor. 1, this implies that

Tε(h)
ε→0−→ T (h) :=

∑
Q∈Q

∑
ν∈AτQ

∫
ia∗Q

∫
K

〈Fτ̃ (h)(−ν − λ, k), µQν (λ)ψ(ν + λ, k)〉 dk dλ

(6.10)

and thus supp(T ) ⊂ Br(o). Note that µQν has at most polynomial growth, thus T is well-defined and
continuous. Since T is compactly supported, we can set h := eτλ,k. In conclusion, we have found a
distribution T ∈ C−∞r (X,Eτ ) such that

Fτ (T )(λ, k) = T (eτλ,k)
(6.10)

= lim
ε→0

Tε(e
τ
λ,k) = lim

ε→0
Fτ (fε)(λ, k) = lim

ε→0
τFτ (ηε)(λ)ψ(λ, k)

= ψ(λ, k).

(c) Let us check that for r ≥ 0, Fτ (T ) ∈ PWSτ,r(a
∗
C ×K/M). This means that we need to verify that

the Fourier transform of T ∈ C−∞r (X,Eτ ) satisfies the conditions (2.i)− (2.iii) of Def. 9.
The condition (2.i) is immediate. Concerning the intertwining condition (2.iii), in order to show
that for each intertwining datum (ξ,W ) and t ∈ Dτ

W , we have

t ◦ (Fτ (T ))ξ ∈W ⊆ Hξ,

we will use a similar convolution argument as above, except that now we are interested to the
convolution on the left instead on the right. For each ε > 0, let δε ∈ C∞c (G) be a delta-sequence
such that limε→0 δε = δ0. Hence, limε→0 δε ∗ T = T , for T ∈ C−∞r (X,Eτ ). Moreover, for all
representations (πτ,λ, H) with Fréchet space H and v ∈ H, we have πτ,λ(δε)v

ε→0−→ v. By taking the
Fourier transform on δε ∗ T ∈ C∞r (X,Eτ ), we first prove that for each intertwining datum (ξ,W )
and t ∈ Dτ

W :
lim
ε→0

(t ◦ Fτ (δε ∗ T )ξ) ∈W.

In fact, we have

t ◦ Fτ (δε ∗ T )ξ
Remark 2

= t ◦ (πτ,·(δε)Fτ (T ))ξ
= (. . . , ti ◦ (πτ,λi(δε)Fτ (T )(λi, ·))(mi), . . . )

= (. . . , ti ◦ πξi(δε)Fτ (T )ξi , . . . )

= (. . . , πξi(δε)(ti ◦ Fτ (T )ξi), . . . )

= πξ(δε)(t ◦ Fτ (T )ξ) ∈W,

where (π
(m1)
σ1,λ1

(δε), . . . , π
(ms)
σs,λs

(δε)) = πξ(δε) ∈W ⊂ Hξ. Hence, by taking ε→ 0 and sinceW is closed,
we obtain that t ◦ (Fτ (T ))ξ ∈W .
It remains to check that Fτ (T ) statisfies the slow growth condition (2.iis)r. Fix r ≥ 0. We need to
show that for each multi-index α, there exist N ∈ N0 and a constant Cr,N,α > 0 such that

|lYαFτ (T )(λ, k)| ≤ Cr,N,α(1 + |λ|2)N+
|α|
2 er|Re(λ)|.

Note that lYαFτ (T ) = Fτ (lYαT ). Let T ∈ C−∞r (X,Eτ ) be a distribution of order m ∈ N0. Write
Xβ ∈ U(n) and Hγ ∈ U(a) for all multi-indices β, γ. Since G/K ∼= NA and U(n ⊕ a) ∼= U(n)U(a),
then, there exists a constant C > 0 such that

|T (h)| ≤ C
∑

|β|+|γ|≤m

sup
g∈Br(o)

|(lXβ (lHγh))(g)|, ∀h ∈ C∞(X,Eτ̃ ). (6.11)

Next, we want to apply it to h = eτλ,1. We observe that

lYαFτ (T )(λ, k) = Fτ (lYαT )(λ, k) = lYαT (eτλ,k)
(3.8)
= (lYαT )(lke

τ
λ,1) = (lk−1 lYαT )(h).
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Thus, lk−1 lYαT is a distribution of order m+ |α|. Applying (6.11) to (lk−1 lYαT )(h) instead of T (h),
we obtain

sup
k∈K
|(lk−1 lYαT )(h)| ≤ C ′

∑
|β|+|γ|≤m+|α|

sup
g∈Br(o)

|(lXβ (lHγh))(g)|, ∀h ∈ C∞(X,Eτ̃ ).

In fact, since K is compact and operates continuously on C−∞c (X,Eτ ), the constant C ′ > 0 can be
chosen to be independently of K. Moreover, h is annihilated by each lXβ for β 6= 0 and it is an
eigenfunction of each lHγ with eigenvalue a polynomial in λ ∈ a∗C of degree ≤ |γ|, i.e.

|lYαFτ (T )(λ, k)| = |(lklYαT )(eτλ,1)| ≤ Cr,N,α(1 + |λ|2)N+
|α|
2 er|Re(λ)|,

for N ≥ m
2 . This complete the proof.

Consequently, by (6.10), the inverse Fourier transform of ψ ∈ PWSτ (a∗C ×K/M) for a test function
h ∈ C∞c (X,Eτ̃ ) is given by

〈F−1
τ (ψ), h〉 :=

∑
Q∈Q

∑
ν∈AτQ

∫
ia∗Q

∫
K

〈Fτ̃ (h)(−ν − λ, k), µQν (λ)ψ(ν + λ, k)〉 dk dλ.

Finally, we discuss the topology on the image space by which the Fourier transform becomes a topo-
logical isomorphism.

Lemma 3. (a) The Fourier transform Fτ : C−∞c (X,Eτ ) −→ PWSτ (a∗C ×K/M) is continuous.
(b) The inverse Fourier transform

F−1
τ : PWSτ (a∗C ×K/M) −→ C−∞c (X,Eτ ) (6.12)

is continuous.

Proof. (a) We will show that for each bounded B′ ⊂ C−∞c (X,Eτ ), there exist r ≥ 0 and N ∈ N0 such
that Fτ (B′) is contained as a bounded set in PWSτ,r,N . Since PWSτ,r,N ↪→ PWSτ (a∗C ×K/M) is
continuous, by definition of inductive limit, then Fτ (B′) is also bounded in PWSτ (a∗C ×K/M). By
Lem. 2, we will have that Fτ is continuous.
Now let B′ ⊂ C−∞c (X,Eτ ) be bounded. Since B′ is equicontinuous and because of (6.4), there exist
r ≥ 0,m ∈ N0 and a constant C > 0 such that (6.11) holds uniformly for all T ∈ B′:

sup
T∈B′

pB(T ) = sup
T∈B′, ϕ∈B

|T (ϕ)| ≤ C
∑
|α|≤m

sup
g∈Br(o)

|lYαϕ(g)|.

Now by arguing as in the proof of Prop. 8 (c), we obtain, for N = [m2 ] that

||Fτ (T )||r,N,α ≤ ∞, ∀T ∈ B′

i.e., Fτ (B′) ⊂ PWSτ,r,N is bounded. Hence the Fourier transform is continuous.
(b) It suffices to show that if, for all r ≥ 0 and N ∈ N0

F−1
τ : PWSτ,r,N (a∗C ×K/M) −→ C−∞(X,Eτ ) (6.13)

is continuous. Indeed, by construction of the inductive limit topology and the remark between (6.2)
& (6.3), as well as using F−1

τ (PWSτ,r,N ) ⊂ C−∞r (X,Eτ ), we have that (6.12) is continuous.
Fix r ≥ 0 and N ∈ N0. We want to show that (6.13) is continuous. For that, it suffices to show that
for every bounded B̃ ⊂ C∞c (X,Eτ̃ ), we have

pB̃(F−1
τ (ψ)) ≤ C||ψ||r,N,0(<∞), ψ ∈ PWSτ,r,N ,

where pB̃(·) is the seminorm as in (6.2) and C is a positive constant. Since B̃ is bounded subset
in C∞c (X,Eτ̃ ), there exsits R ≥ 0 so that the support of all ϕ ∈ B̃ are in BR(o). Thus, for
ψ ∈ PWSτ,r,N , we have that

pB̃(F−1
τ (ψ))

(6.2)
= sup

ϕ∈B̃
|〈F−1

τ (ψ), ϕ〉|

(6.6)
= sup

ϕ∈B̃

∣∣∣ ∑
Q∈Q

∑
ν∈AτQ

∫
ia∗Q

∫
K

〈Fτ̃ (ϕ)(−ν − λ, k) , µQν (λ)ψ(ν + λ, k)〉 dkdλ
∣∣∣

≤ sup
ϕ∈B̃

∑
Q∈Q

∑
ν∈AτQ

∫
ia∗Q

∫
K

∣∣∣〈Fτ̃ (ϕ)(−ν − λ, k) , µQν (λ)ψ(ν + λ, k)〉
∣∣∣ dkdλ.
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Fix now Q ∈ Q and ν ∈ AτQ. Set

dQ,ν := sup
ϕ∈B̃

∫
ia∗Q

∫
K

∣∣∣〈Fτ̃ (ϕ)(−ν − λ, k) , µQν (λ)ψ(ν + λ, k)〉
∣∣∣ dkdλ.

It suffices to show that dQ,ν ≤ C||ψ||r,N,0. We have

dQ,ν ≤ sup
ϕ∈B̃

∫
ia∗Q

∫
K

(1 + |ν+λ|2)−dQ(1 + |ν+λ|2)dQ |Fτ̃ (ϕ)(−ν − λ, k)|

|µQν (λ)ψ(ν + λ, k)| dkdλ
≤ C sup

ϕ∈B̃
k∈K,λ∈ia∗Q

(1 + |ν+λ|2)dQ |Fτ̃ (ϕ)(−ν − λ, k)| |µQν (λ)ψ(ν + λ, k)|

where C :=
∫
ia∗Q

(1 + |ν+λ|2)−dQ dλ <∞ and (1 + |ν+λ|2)dQ is a weight factor with some dQ ∈ N0

depending on the dimension of ia∗Q. For some positive constant N and growth constant m ∈ N0, we
get

dQ,ν ≤ C sup
ϕ∈B̃

k∈K,λ∈ia∗Q

(1 + |ν+λ|2)dQ+N+m|Fτ̃ (ϕ)(−ν − λ, k)|

· sup
k∈K,λ∈ia∗Q

(1 + |ν+λ|2)−(N+m)|µQν (λ)ψ(ν + λ, k)|

≤ C ′ sup
ϕ∈B̃

k∈K,λ∈ia∗Q

(1 + |ν+λ|2)dQ+N+m|Fτ̃ (ϕ)(−ν − λ, k)|

· sup
k∈K,λ∈ia∗C

(1 + |ν + λ|2)−N |ψ(ν + λ, k)|,

where ||µQν (λ)||op ≤ C ′(1 + |ν+λ|2)m of at most polynomial growth of m ∈ N0. Thus

dQ,ν ≤ C ′′ sup
ϕ∈B̃

k∈K,λ∈ia∗Q

eR|ν|(1 + |ν+λ|2)dQ+N+m|Fτ̃ (ϕ)(−ν − λ, k)|

· sup
k∈K,λ∈ia∗Q

er|ν|(1 + |ν+λ|2)−N |ψ(ν + λ, k)|

= C ′′ sup
ϕ∈B̃
||Fτ̃ (ϕ)||R,dQ+N+m||ψ||r,N,0,

where we set ξ := ν + λ ∈ a∗C. By the Paley-Wiener Thm. 3, Fτ̃ is continuous, thus

sup
ϕ∈B̃
||Fτ̃ (ϕ)||R,dQ+N+m < C̃ <∞.

Therefore, dQ,ν ≤ C ′′′|ψ||r,N,0 and hence the inverse Fourier transform is continuous.

End of the proof of Thm. 4. The isomorphism of the Fourier transform map outcomes from Prop. 8 and
the continuity and topology statement results from Lem. 3, hence this completes the proof.
Analogously, we obtain the topological Fourier isomorphism in (Level 3) by taking C−∞c (G, γ, τ) instead
of C−∞c (X,Eτ ).

7 Invariant differential operators on the Fourier range
We consider the vector space of distributional sections C−∞{o} (X,Eτ ) supported at the origin o = eK ∈ X.
Since g ·o 6= o, G does not act on C−∞{o} (X,Eτ ), but K as well as g do, thus C−∞{o} (X,Eτ ) is a (g,K)-module
(e.g. [Wal88], 3.3.1). Moreover, it is generated by the so-called vector-valued Dirac delta-distributions δv
at v ∈ Eτ :

δv(f) = 〈v, f(e)〉τ , with test function f ∈ C∞(c)(X,Eτ̃ ),

where 〈·, ·〉τ denotes the pairing in Eτ . In particular, we have the following identification:

U(g)⊗U(k) Eτ
β∼= C−∞{o} (X,Eτ )
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given by β(Z ⊗ v)(f) := 〈rZf(e), v〉τ , for Z ∈ U(g), v ∈ Eτ , f ∈ C∞(X,Eτ̃ ), with actions Y (Z ⊗ v) =
Y Z ⊗ v, and k(Z ⊗ v) = Ad(k)Z ⊗ τ(k)v, for Y ∈ k (or U(k)), k ∈ K.
In addition, every invariant differential operator D ∈ DG(Eγ ,Eτ ) may be viewed as a linear map between
these spaces D : C−∞{o} (X,Eγ) −→ C−∞{o} (X,Eτ ). This map defines an element

HD ∈ HomK(Eγ , C
−∞
{o} (X,Eτ ))∼=[C−∞{o} (X,Eτ )⊗ Eγ̃ ]K

given by
HD(v) := D(δv) ∈ C−∞{o} (X,Eτ ), v ∈ Eγ , δv ∈ C−∞{o} (X,Eγ). (7.1)

In other words
〈HD(v), f〉τ

(7.1)
= 〈δv, Dt(f)〉γ = 〈v,Dt(f)(1)〉γ , (7.2)

where Dt ∈ DG(Eτ̃ ,Eγ̃) is the adjoint invariant differential operator of D defined by the correspond-
ing pairing. Since the graded space of both Hilbert spaces DG(Eτ̃ ,Eγ̃) and HomK(Eγ , C

−∞
{o} (X,Eτ )) is

isomorphic to [S(p)⊗Hom(Eγ , Eτ )]K , we have the following isomorphism:

DG(Eγ ,Eτ ) −̃→ HomK(Eγ , C
−∞
{o} (X,Eτ ))

D 7→ HD.

Here, S(p) denotes the symmetric algebra of p ⊂ g.
Consequently, we have DG(Eγ ,Eτ ) ∼= HomK(Eγ , C

−∞
{0} (X,Eτ )) ∼= C−∞{0} (G, γ, τ). Hence, by applying the

Fourier transform in (Level 3) and the Paley-Wiener-Schwartz Thm. 4 (b), we can deduce the following
result.

Proposition 9. With the notations above, we then have

γFτ (DG(Eγ ,Eτ )) ∼= γPWSτ,0(a∗C)

= {P ∈ Pol(a∗C,HomM (Eγ , Eτ )) | P satisfies (3.iii) of Def. 10}.�

Thus, provided one has a good understanding of the intertwining condition (3.iii) , one can determine
DG(Eγ ,Eτ ). The converse holds by van den Ban’s and Souaifi’s Lem. 5.3 and Cor. 5.4 in [vdBS14].
Strictly speaking these results are in terms of the Hecke algebra (6.5). But the (γ, τ̃)-isotypic component
H(G,K)(γ ⊗ τ̃) of the Hecke algebra is exactly DG(Eγ ,Eτ ) ⊗ Hom(Eτ , Eγ). In other words, given all
invariant differential operators D ∈ DG(Eγ ,Eτ ), one can determine explicitly the intertwining condition
(3.iii) and the corresponding Paley-Wiener space.

Moreover, we remark that the isomorphism in Prop. 9 can also be described more algebraically as a
Harish-Chandra type homomorphism, we refer to ([Olb95], p. 4) or ([Pal21], Sect. 2.1) for more details.

In addition, we also have the following result.

Proposition 10. Let D ∈ DG(Eγ ,Eτ ) be an invariant linear differential operator. For f ∈ C±∞c (X,Eγ),
we then have that

Fτ (Df)(λ, k) = γFτ (HD)(λ)Fγ(f)(λ, k), λ ∈ a∗C, k ∈ K, (7.3)

where γFτ (HD) ∈ Pol(a∗C,HomM (Eγ , Eτ )) is a polynomial in λ ∈ a∗C with values in HomM (Eγ , Eτ ).

Proof. We know that the Fourier transform of a distribution HD ∈ HomK(Eγ , C
−∞
{o} (X,Eτ )) is defined

by γFτ (HD)(λ)(v) = 〈HD(v), eτλ,1〉, for v ∈ Eγ and where eτλ,1 ∈ C∞(G, τ, τ̃). Hence by (7.2), we obtain

γFτ (HD)(λ)(v) = 〈HD(v), eτλ,1〉τ
(7.2)
= 〈v,Dt(eτλ,1)(1)〉γ = (Dt(eτλ,1)(1))v, λ ∈ a∗C. (7.4)

Now, by considering a function f ∈ C∞c (X,Eγ), we conclude, via ’partial integration’, that (7.3) holds.
In fact

Fτ (Df)(λ, k) =

∫
G

eτλ,k(g)D(f(g)) dg
def. of Dt

=

∫
G

Dt(eτλ,k(g))f(g) dg

(3.17)
=

∫
G

Dt(eτλ,1(1)) ◦ eγλ,k(g)f(g) dg

= Dt(eτλ,1(1)) ◦ Fγ(f)(λ, k)

(7.4)
= γFτ (HD)(λ) ◦ Fγ(f)(λ, k).

The same computation remains true for f ∈ C−∞c (X,Eγ), by using the pairing 〈·, ·〉 instead of the
integration.
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Remark 4. Consider an additional not necessarily irreducible K-representation (δ, Eδ). Then, for D1 ∈
DG(Eτ ,Eδ) and D2 ∈ DG(Eγ ,Eτ ), Prop. 10 implies that

γFδ(HD1 ◦HD2) = τFδ(HD1) ◦ γFτ (HD2).
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