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ABSTRACT

JSON is a data format used pervasively in web APIs, cloud com-

puting, NoSQL databases, and increasingly also machine learning.

To ensure that JSON data is compatible with an application, one

can define a JSON schema and use a validator to check data against

the schema. However, because validation can happen only once

concrete data occurs during an execution, it may detect data com-

patibility bugs too late or not at all. Examples include evolving

the schema for a web API, which may unexpectedly break client

applications, or accidentally running a machine learning pipeline

on incorrect data. This paper presents a novel way of detecting

a class of data compatibility bugs via JSON subschema checking.

Subschema checks find bugs before concrete JSON data is available

and across all possible data specified by a schema. For example,

one can check if evolving a schema would break API clients or if

two components of a machine learning pipeline have incompatible

expectations about data. Deciding whether one JSON schema is

a subschema of another is non-trivial because the JSON Schema

specification language is rich. Our key insight to address this chal-

lenge is to first reduce the richness of schemas by canonicalizing

and simplifying them, and to then reason about the subschema

question on simpler schema fragments using type-specific check-

ers. We apply our subschema checker to thousands of real-world

schemas from different domains. In all experiments, the approach

is correct whenever it gives an answer (100% precision and correct-

ness), which is the case for most schema pairs (93.5% recall), clearly

outperforming the state-of-the-art tool. Moreover, the approach

reveals 43 previously unknown bugs in popular software, most

of which have already been fixed, showing that JSON subschema

checking helps finding data compatibility bugs early.
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1 INTRODUCTION

JSON (JavaScript Object Notation) is a data serialization format that

is widely adopted to store data on disk or send it over the network.

The format supports primitive data types, such as strings, num-

bers, and Booleans, and two possibly nested data structures: arrays,

which represent ordered lists of values, and objects, which represent

unordered maps of key-value pairs. JSON is used in numerous ap-

plications. It is the most popular data exchange format in web APIs,

ahead of XML [51]. Cloud-hosted applications also use JSON perva-

sively, e.g., in micro-services that communicate via JSON data [43].

On the data storage side, not only do traditional database manage-

ment systems, such as Oracle, IBM DB2, MySQL, and PostgreSQL,

now support JSON, but two of the most widely deployed NoSQL

database management systems, MongoDB and CouchDB/Cloudant,

are entirely based on JSON [50]. Beyond these applications, JSON

is also gaining adoption in machine learning [21, 54].

With the broad adoption of JSON as a data serialization format

soon emerged the need for a way to describe how a JSON document

should look. For example, a web API that consumes JSON data can

avoid unexpected behavior if it knows the structure of the data it

receives. JSON Schema declaratively defines the structure of nested

values (JSON documents) via types (JSON schemas) [46]. A JSON

Schema validator checks whether a JSON document 𝑑 conforms to

a schema 𝑠 . JSON Schema validators exist for many programming

languages and are widely used to make software more reliable [58].

Despite the availability of JSON schema validators, some data-

related bugs may get exposed late in the development process or

even remain unnoticed until runtime misbehavior is observed. As

one example, consider a RESTful web API for which the data types

are specified with JSON schemas. If the API, and hence the schemas,

evolve, the revised schemas may not be backward compatible and

unexpectedly break client applications [29, 42]. As another exam-

ple, consider a machine learning pipeline where the data, as well

as the input and output of operations, are specified with JSON

schemas [21, 54]. If some data is incorrect or different components

of the pipeline have incompatible expectations, the pipeline may
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compute incorrect results or crash after hours of computation. For

both of the above scenarios, schema validators can detect these

problems only at runtime, because that is when concrete JSON data

is available for validation. Even worse, the problems may remain

unnoticed until some data that triggers the problem occurs.

We call such problems data compatibility bugs, which means that

two pieces of software that share some JSON data have incompati-

ble expectations about the data. To estimate the prevalence of JSON

schemas and the potential for bugs caused by them, we perform an

initial analysis of 25 GitHub projects with at least one schema (sam-

pled from thousands of such projects). These projects contain 3,806

schema files, 737 of which have been changed at least once. This

shows that JSON schemas are common and also commonly change,

potentially introducing bugs. Moreover, this work is motivated by

JSON schemas, and bugs related to them, within a major industrial

player. We see a clear need for detecting this class of bugs.

This paper presents a novel way of detecting data compatibility

bugs early. The key idea is to check for two given JSON schemas

whether one schema is a subschema (subtype) of the other schema.

Because such a check can be performed on the schema-level, i.e.,

independently of concrete JSON data, the approach can detect data

compatibility bugs earlier and more reliably than JSON schema

validation alone. For the first of the above examples, our approach

can check whether a revised schema is a subtype or a supertype of

the original schema. If it is neither, then the schema evolution is

a breaking API change that should be communicated accordingly

to clients. For the second example, the approach can check if the

schema of the input given to an ML pipeline step is a subtype of the

schema expected by that step, which reveals bugs before running

the pipeline. Our empirical evaluation finds real-world bugs related

to both kinds of problems.

Deciding whether one JSON schema is a subtype of another is

far from trivial because JSON Schema is a surprisingly complex lan-

guage. Semantically equivalent schemas can look syntactically dis-

similar. Schemas for primitive types involve sophisticated features,

such as regular expressions for strings, that interact with other

features, such as string length constraints. JSON Schema supports

enumerations (singleton types) and logic connectives (conjunc-

tion, disjunction, and negation) between schemas of heterogeneous

types. Even schemas without explicit logic connectives often have

implicit conjunctions and disjunctions. JSON schemas or nested

fragments thereof can be uninhabited. As a result of these and other

features of JSON Schema, simple structural comparison of schemas

is insufficient to answer the subschema question.

Ourwork addresses these challenges based on the insight that the

subschema problem can be decomposed into simpler subproblems.

Given two JSON schemas, the approach first canonicalizes and then

simplifies the schemas using a series of transformations. While

preserving the semantics of the schemas, these transformations

reduce the number of cases and ensure that the schemas consist of

schema fragments that each describe a single basic type of JSON

data. This homogeneity enables the last step, recursively performing

the subtype check using type-specific checkers. We have built an

open-source tool, jsonsubschema, that always terminates, returning

one of three answers for a subschema check: true, false, or unknown.

It returns unknown for a small set of rarely occurring features of

schemas. When it returns true or false, it is designed to be always

correct, and in our experiments, this was indeed the case.

The most closely related prior work is an open-source project

called is-json-schema-subset (issubset) [35]. It only handles a fraction

of the features of JSON Schema and, as we show experimentally,

often gives incorrect answers. The problem of subschema checking

has also been explored for XML [23, 39], where it is called schema

containment [56]. However, that approach treats XML schemas as

tree automata, which has been shown to be insufficient for JSON

schemas because it is more expressive than tree automata [46].

We evaluate the approach with thousands of real-world JSON

schemas gathered from different domains, including schemas used

for specifying web APIs, cloud computing, and machine learning

pipelines. In our evaluation, the approach was 100% precise and

100% correct, and it successfully decided the subschema question

for most schema pairs, with a recall of 93.5%. Our approach clearly

outperforms the closest existing tool in terms of all three metrics.

Applying JSON subschema checking for bug detection, we find 43

data compatibility bugs related to API evolution and mistakes in

machine learning pipelines. All bugs are confirmed by developers

and 38 are already fixed. Developers acknowledged our work and

emphasized the severity of many of the bugs.

In summary, this paper makes the following contributions:

• Formulating the problem of detecting data compatibility bugs as

JSON subschema checking (Section 2).

• A canonicalizer and simplifier that converts a given schema into

a schema that is simpler to check yet permits the same set of

documents (Sections 3.1 and 3.2).

• A subschema checker for canonicalized JSON schemas that uses

separate subschema checking rules for each basic JSON type

(Section 3.3).

• Empirical evidence that the approach outperforms the state of

the art, and that it reveals real-world data compatibility bugs in

different domains (Section 5).

Our tool is open-source at https://github.com/ibm/jsonsubschema.

2 PROBLEM STATEMENT

2.1 Background

JSON Schema is a declarative language for defining the structure

and permitted values of a JSON document [58]. This work focuses

on JSON Schema draft-04 [31], one of the most widely adopted

versions. JSON Schema itself uses JSON syntax. To specify which

data types are allowed, JSON Schema uses the keyword type either

with one type name (e.g., {'type':'string'}) or with a list of type

names (e.g., {'type':['null','boolean']}). Each JSON type has a set

of validation keywords that restrict the values a schema of this

type permits. For example, {'type':'integer','minimum':0} restricts

integers to be non-negative, whereas {'type':'string','pattern':'^[

A-Za-z0-9]+$'} restricts strings to be alphanumeric.

In addition to type-specific keywords, JSON Schema allows enu-

merating exact values with enum and combining different schemas

using logic connectives. For example, schema {'enum':['a', [], 1]}

restricts the set of permitted JSON values to the string literal 'a',

an empty array, or the integer 1. Logic connectives, such as anyOf,

allOf, and not, allow schema writers to express disjunctions, con-

junctions, and negations of schemas. The empty schema, {}, is the
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schema ::= {type?, strKw, numKw, arrKw, objKw,

enum?, not?, allOf ?, anyOf?, oneOf?, ref ?}

type ::= 'type': (typeName | [ typeName+ ])

typeName ::= 'null' | 'boolean' | 'string' | 'number' |

'integer' | 'array' | 'object'

strKw ::= minLength?, maxLength?, pattern?

minLength ::= 'minLength': NUM

maxLength ::= 'maxLength': NUM

pattern ::= 'pattern': REGEX

numKw ::= minimum?, maximum?, exclMin?, exclMax?,

multOf?

minimum ::= 'minimum': NUM

maximum ::= 'maximum': NUM

exclMin ::= 'exclusiveMinimum': BOOL

exclMax ::= 'exclusiveMaximum': BOOL

multOf ::= 'multipleOf': NUM

arrKw ::= items?, minItems?, maxItems?,

addItems?, uniqItems?, contains ?

items ::= 'items': (schema | [ schema+ ])

minItems ::= 'minItems': NUM

maxItems ::= 'maxItems': NUM

addItems ::= 'additionalItems': (BOOL | schema)

uniqItems ::= 'uniqueItems': BOOL

contains ::= 'contains': schema

objKw ::= props?, minProps?, maxProps?, required?,

addProps?, patProps?, depend?

props ::= 'properties': {(STR : schema)* }

minProps ::= 'minProperties': NUM

maxProps ::= 'maxProperties': NUM

required ::= 'required': [STR* ]

addProps ::= 'additionalProperties': (BOOL|schema)

patProps ::= 'patternProperties': {

(REGEX :schema)* }

depend ::= 'dependencies': {

(STR : (schema | [ STR+ ]))* }

enum ::= 'enum': [ VALUE+ ]

not ::= 'not': schema

allOf ::= 'allOf': [ schema+ ]

anyOf ::= 'anyOf': [ schema+ ]

oneOf ::= 'oneOf': [ schema+ ]

ref ::= '$ref': PATH

Figure 1: Grammar of full JSON Schema.

top of the schema hierarchy, i.e., all documents are valid for {}. The

negation of the empty schema, {'not':{}}, is the bottom of the hier-

archy, i.e., no documents are valid for it. Finally, the keyword $ref

retrieves schemas using URIs and JSON pointers. JSON validation

against a schema with $ref has to satisfy the schema retrieved from

the specified URI or JSON pointer. We refer the interested reader to

the full specification of JSON Schema [31] and its formalization [46].

Figure 1 shows the grammar for JSON schemas. The start symbol

is schema. A schema can mix keywords for all types as well as logic

connectives. All-caps indicates literal tokens such as NUM or BOOL

whose lexical syntax follows the usual conventions of JSON. Some

keywords can be specified in multiple ways. For instance, type can

be just one type name or a list of types; items can be just one schema

or a list of schemas; and addItems can be a Boolean or a schema.

2.2 JSON Subschema Problem

This paper presents how to detect data compatibility bugs by ad-

dressing the JSON subschema problem. Suppose a schema valida-

tor that determines whether a JSON document 𝑑 is valid accord-

ing to a schema 𝑠: valid(𝑑, 𝑠) → {True, False}. A schema 𝑠 is a

subschema of another schema 𝑡 , denoted 𝑠 <: 𝑡 , if and only if

∀𝑑 : valid(𝑑, 𝑠) =⇒ valid(𝑑, 𝑡). The subschema relation is a form

of subtyping that views a type (schema) as a set of values (JSON

documents) [45].

As an example, consider an excerpt of versions 0.6.1 and 0.6.2

of a real-world schema that describes an API from a collection of

schemas for content used by the Washington Post [13]:

Version 0.6.1:

{'type': 'object ',

'properties ': {

'category ': {

'type': 'string ',

'enum': ['staff ', 'wires ',

'other ']}}}

Version 0.6.2:

{'type': 'object ',

'properties ': {

'category ': {

'type': 'string ',

'enum': ['staff ', 'wires ',

'stock ', 'other ']}}}

Both schemas describe an object with a property łcategoryž with

a fixed set of values. Version 0.6.1 is a subschema of version 0.6.2

because all documents valid according to the first are also valid

according to the latter. In contrast, version 0.6.2 is not a subschema

of version 0.6.1 because the JSON document {'category':'stock'} is

valid in version 0.6.2 but not in version 0.6.1. To retain backward

compatibility, this evolution is fine for API arguments, but may

break clients if the schema describes an API response.

2.3 Challenges

The rich feature set of JSON Schemamakes establishing or refuting a

subtype relation between two schemas non-trivial. Even for simple,

structurally similar pairs of schemas, such as {'enum':[1, 2]} and

{'enum':[2, 1]}, equivalence does not hold through textual equality.

There are several challenges for algorithmically checking the JSON

schema subtype relation.

First, the same set of JSON values, i.e., the same type, can be

described in several different syntactical forms, i.e., schemas. For

example, Figure 2 shows five equivalent schemas describing a JSON

value that is either a non-empty string or null.

Second, even for primitive types, such as strings and numbers,

nominal subtyping is not applicable. JSON Schema allows various

constraints on primitive types, resulting in non-trivial interactions

not captured by nominal types. For example, inferring that an

integer schema is a subtype of a number requires properly com-

paring the range and multiplicity constraints of the schemas.

Third, logic connectives combine non-homogeneous types, e.g.,

'string' and 'null' in Figure 2b. Moreover, enumerations restrict

types to predefined values, which require careful handling, espe-

cially when enumerations interact with non-enumerative types,

such as in Figures 2a, 2b, and 2c.

Fourth, the schema language allows implicit conjunctions and

disjunctions. For example, Figure 2b has an implicit top-level con-

junction between the subschemas under anyOf and not. As another

example, a schema that lacks a type keyword, such as the schema
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{'type': ['null', 'string '],

'not': {'enum': ['']}}

(a)

{'anyOf ': [{'type': 'null'},

{'type': 'string '}],

'not': {'type': 'string ',

'enum': ['']}}

(b)

{'allOf ': [{'anyOf ': [

{'type': 'null'},

{'type': 'string '}]},

{'not': {'type': 'string ', 'enum': ['']}}]}

(c)

{'anyOf ': [ {'type': 'null'},

{'type': 'string ', 'pattern ': '.+'}]}

(d)

{'allOf ': [

{'anyOf ': [

{'type': 'null'},

{'type': 'string '}]},

{'anyOf ': [

{'type': 'boolean '}, {'type': 'null'},

{'type': 'number '}, {'type': 'integer '},

{'type': 'array '}, {'type': 'object '},

{'type': 'string ', 'pattern ': '.+'}]}]}

(e)

Figure 2: Five syntactically different but semantically equivalent schemas for a value that is either a non-empty string or null.

JSON

schema s

JSON

schema t

1) Canonicalization

2) Simplification

scan tcan

scanSimp tcanSimp

is subschema?

3) Subtype checking

Extract

fragments

Extract

fragments

scanSimp1 tcanSimp1

check if

subtype

scanSimpN tcanSimpN

check if

subtype

...

...

Figure 3: Overview of JSON subschema checker.

{'pattern':'.+'}, has an implicit disjunction of all possible types,

while still enforcing any type-specific keyword, such as the pattern

for strings only. Figure 2e makes this implicit disjunction explicit.

Finally, JSON Schema also allows uninhabited types. That is, a

schema can be syntactically valid yet semantically self-contradicting,

e.g., {'type':'number','minimum':5,'maximum':0}. Such schemas validate

no JSON value at all and complicate reasoning about subtyping.

3 APPROACH

This section describes how we address the problem of checking

whether one JSON schema is a subtype of another. Given a pair of

JSON schemas, the approach returns either true, false, or unknown.

The first two answers are guaranteed to be correct (assuming no

bugs in our algorithm or implementation), while the third occurs

rarely in practice. Because JSON schemas are complex, creating a

subtype checker for arbitrary schemas directly would necessitate

a complex algorithm. A key insight of our work is to instead de-

compose the problem into three steps, outlined in Figure 3. The

first step canonicalizes a schema into an equivalent but more stan-

dardized schema (Section 3.1). The second step further simplifies

a schema, eliminating enumerations, negation, intersection, and

schema unions where possible (Section 3.2). Finally, the two canon-

icalized and simplified schemas are compared by extracting and

comparing type-homogeneous schema fragments (Section 3.3).

The canonicalization and simplification steps reduce the ways

the different features of JSON Schema are used, and completely

eliminate some features. Table 1 summarizes the properties that

schemas have after canonicalization and after simplification. The

core principle is to convert a schema to an equivalent but more

tractable form. Equivalent means that the schema still accepts the

same set of documents. More tractable means that the schema uses

fewer and less entangled keywords with fewer forms. We next

describe these properties in more detail and explain how we ensure

them. For readers interested in a more formal description, [33]

describes the canonicalization and simplification as rewriting rules.

3.1 Canonicalizing JSON Schemas

This section introduces a canonicalization procedure that trans-

forms any JSON schema into an equivalent canonical schema. Canon-

icalization enforces two main properties. JSON Schema allows

schemas to mix specifications of different types. To enable local,

domain-specific reasoning in the subtype checker, canonicalization

first splits up these schemas into smaller, homogeneously typed

schemas combinedwith logic connectives. JSON Schema also allows

many alternative ways to represent the same thing. Additionally,

most keywords can be omitted and defaults assumed. Canonicaliza-

tion picks, when possible, one form, and explicates omitted defaults.

To ensure these properties, canonicalization applies a series of

transformations, which each takes a schema and rewrites it into a

semantically equivalent but more canonical schema. The schema is

transformed until no more transformations are applicable, yielding

a canonical schema. The following describes the transformations,

starting with type-independent transformations, followed by trans-

formations addressing the different language features in Table 1.

Type-independent transformations. To enable reasoning about

one type at a time, we transform a schema whose type is a list, such

as in the example in Figure 2a, by making the implicit disjunction

explicit using anyOf, as shown in Figure 2b. Moreover, we trans-

form schemas that contain a logical connective mixed with other

properties (e.g., other logical connectives), such as in the example in

Figure 2b. By making the implicit conjunction explicit using allOf,

we isolate logical connectives, as shown in Figure 2c.

Eliminating Booleans and integers. We eliminate these types by

representing them with other features of JSON Schema: boolean

schemas become an enumeration of true and false, and integer

schemas become number schemas constrained to be a multiple of 1.

Representing strings as patterns. In full JSON Schema, strings may

be restricted based on their minimum length, maximum length, and

a regular expression. To reduce the number of cases, and since

length constraints interact with the pattern, if specified, minLength

and maxLength keywords are transformed into a semantically equiv-

alent regular expression (intersected with the pattern schema), so

canonicalized string schemas only have the keyword pattern.

Canonicalizing arrays. We canonicalize schemas that describe

arrays using two transformations that reduce the number of ways
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Table 1: Properties of canonicalized (Section 3.1) and simplified (Section 3.2) schemas.

Language Use of feature in schemas

feature Full JSON Schema Canonicalized Simplified

null (no keywords) Yes Yes

boolean (no keywords) Represented as enum Represented as enum

string {min,max}Length, pattern Keyword pattern only Keyword pattern only

number {min,max}imum, multipleOf,

exclusive{Min,Max}imum

All keywords All keywords

integer (same keywords as number) Eliminated Eliminated

array {min,max}Items, items, additionalItems,

uniqueItems

All keywords, but

items is always a list and

additionalItems is always a schema

All keywords, but

items is always a list and

additionalItems is always a schema

object properties, {min,max}Properties, required,

additionalProperties, patternProperties,

dependencies

Only keywords {min,max}Properties,

required, patternProperties

Only keywords {min,max}Properties,

required, patternProperties

enum Heterogeneous, any type Homogeneous, any type Only for boolean

not Mixed connectives Isolated connective Only for number, array, object

allOf Mixed connectives Isolated connective Only for not

anyOf Mixed connectives Isolated connective Only for not, allOf, array, object, and

disjoint number

oneOf Mixed connectives Isolated connective Eliminated

in which the items and additionalItems keywords may be used.

With items, a schema can define what data may be stored in an

array. With additionalItems, a schema can define any data in

an array that is not specified in items. The first transformation

handles the fact that the items keyword may hold either a list

of schemas, which restricts the respective items in the array, or a

single schema, which restricts all items in the array in the same

way. The transformation eliminates the second case by using the

additionalItems keyword, e.g.:

{'type': 'array ',

'items ': {

'type': 'number '}}

→
{'type': 'array ',

'additionalItems ': {

'type': 'number '}}

Since additionalItems may be either a schema or a Boolean

(false disallows additional items), the second transformation re-

places a Boolean additionalItems with a corresponding JSON

schema, where the schemas {} and {'not':{}} replace true and

false, respectively. So additionalItems becomes always a schema.

Canonicalizing objects. Schemas for objects have various key-

words. To reduce complexity, our approach eliminates the key-

words properties, additionalProperties, and dependencies

by rewriting them into required and patternProperties. More-

over, canonicalization ensures that patternProperties uses non-

overlapping regular expressions. For example, this object schema

would be canonicalized as follows:
{'type': 'object ',

'properties ': {

'a': {'type': 'string '},

'b': {'type': 'array '}}

'patternProperties ': {

'a': {'type': 'boolean '}}}

→

{'type': 'object ',

'patternProperties ': {

'^a$': {'type': 'string '},

'^b$': {'type': 'array '},

'([^a]+a|a.).*': {

'type': 'boolean '}}}

The non-canonical schema on the left describes the types of

properties łaž and łbž using properties, and of any property that

contains an łaž using additionalProperties. The equivalent but

canonical schema on the right expresses all property names as

regular expressions, simplifying the subschema check. Note that

the regular expression '([^a]+a|a.).*' describes keys that contain

an 'a', but that are not 'a' itself. This handles the requirement

that patternProperties are relevant only for keys not provided as

properties.

Canonicalizing enumerations. In full JSON Schema, enumera-

tions of values may be heterogeneous, i.e., contain multiple dif-

ferent types. Our canonicalization ensures that enumerations are

homogeneous by transforming any heterogeneous enumeration

into a disjunction of multiple homogeneous enumerations.

3.2 Simplifying Combined Schemas

The canonicalization described so far ensures that schemas consist

of simpler schemas that each describe only one type and that some

keywords of the JSON Schema language are used in specific ways

only. The following describes the second step of our approach: a

simplifier that further reduces the complexity of JSON schemas.

Column łSimplifiedž of Table 1 summarizes the properties that

the simplifier establishes. The simplifier eliminates many cases

of enumerations and logical connectives, making the subschema

checking rules less complicated. Similar to the canonicalization, the

simplifier consists of a set of transformation rules that transform

schemas into semantically equivalent yet simpler schemas.

Eliminating non-Boolean enumerations. The first set of transfor-

mations eliminates enumerations, replacing themwith type specific

restriction keywords. For instance, in Figure 2c, the enumerated

empty string value is compiled into the regular expression '^$' be-

fore computing its complement '.+' in Figure 2e. Numeric enumer-

ations are converted into the disjunction of appropriately bounded

ranges. For example, {enum:[1,2,4]} becomes {anyOf:[{type:integer,

minimum:1,maximum:2},{type:integer,minimum:4,maximum:4}]}. Using dis-

junction here is appropriate as the schemas are non-overlapping.

For structured types, i.e., arrays and objects, the approach pushes

down enumerations to components, until it eventually reaches prim-

itive types, where the enumerations get eliminated. The simplifier
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does not eliminate Boolean enumerations as the space of values is

finite and there is no other way to specify the true and false values.

Simplifying logical connectives. The second set of transforma-

tions simplifies logical connectives by eliminating the not, allOf,

and anyOf keywords in all but a few specific cases, and by com-

pletely eliminating the oneOf keyword. The approach eliminates

negations by using type-specific ways to express negation and by

applying De Morgan’s rule. An example is the transformation of

Figure 2c to Figure 2e, where the complement of a string schema

introduces schemas of all non-string types. We keep negation in

numbers, arrays, and objects because JSON Schema is not closed

under complement for these schema types. To eliminate allOf, the

approach uses type-specific ways to reason about intersections of

types. For example, eliminating the allOf in Figure 2e yields the

simplified schema in Figure 2d. We choose not to push intersections

through negations because we prefer the end result of simplifica-

tion to resemble disjunctive normal form to the extent possible. We

reduce the cases in which anyOf occurs using type-specific ways to

reason about unions of types. For example, the following schema

that specifies strings using regular expressions gets simplified by

computing the union of the two regular expressions:

{'anyOf ': [{'type': 'string ',

'pattern ': '.+'},

{'type': 'string ',

'pattern ': 'a'}]}

→
{'type': 'string ',

'pattern ': '.+'}

The transformations keep some anyOfs since JSON Schema num-

bers, arrays, and objects are not closed under union. E.g., the union

of {'type':'number','minimum':0} and {'type':'number','multipleOf':1}

is R+ ∪ Z, which JSON schema cannot express without anyOf.

Finally, we eliminate oneOf by rewriting it as a disjunction

of (partially negated) conjunctions, and then simplifying the re-

sult as above. For example, assuming three subschemas 𝑠1, 𝑠2, 𝑠3:

{'oneOf ':

[s1, s2, s3]}
→

{'anyOf ':[

{'allOf ': [s1, {'not': s2}, {'not': s3}]},

{'allOf ': [{'not': s1}, s2, {'not': s3}]},

{'allOf ': [{'not': s1}, {'not': s2}, s3]}]}

3.3 JSON Subschema Checking

Given two canonicalized and simplified schemas, the final step is to

check whether one schema is a subtype of the other. The basic idea

is to extract pairs of type-homogeneous schema fragments from the

schemas, and then check the subtype relation for each pair. This

approach is enabled by canonicalization and simplification, which

allows for a compact set of rules that define the subtype checking.

Figure 4 shows these inference rules. Each rule describes the

preconditions (above the bar) for concluding that there is a subtype

relation (below the bar) of two schemas, where <: means łis subtype

ofž. Given two schemas 𝑠 and 𝑡 , our implementation recursively

applies these rules to fragments of 𝑠 and 𝑡 . The approach concludes

that 𝑠 <: 𝑡 if and only if there is a subtype relation between all

pairs of extracted fragments. The notation 𝑠 .𝑘 indicates access of

keyword 𝑘 in schema 𝑠 . For any JSON schema 𝑠 , helper function

dom(𝑠) returns its property names, i.e., the set of keys in the key-

value map 𝑠 . The notation [ . . . ] indicates a JSON array and the

notation { . . . } indicates a JSON object. The notation 𝑎 ∥ 𝑏 is a

default operator that returns 𝑎 if it is defined and 𝑏 otherwise.

Rule null simply says schemas that allow only the null value

are subtypes of each other. Rules boolean and string state that

a schema 𝑠1 that allows a subset or the same set of values as a

schema 𝑠2 is a subschema of 𝑠2. Rule number handles complexity

due to multipleOf constraints. The simplifier cannot push nega-

tion through multipleOf constraints, and it cannot combine allOf

combinations of such negated schemas. Instead, the rule handles

several such constraints on both sides of the relation, with or with-

out negation. We treat simple number schemas as single-element

allOfs for consistency. This rule verifies that any number allowed

by the set of constraints on the left is also allowed by the set of con-

straints on the right using an auxiliary subNumber relation, which

is sketched in the following.

The subNumber relation first normalizes all schema range bounds

by rounding them to the nearest included number that satisfies

its multipleOf constraint. For each side, it then finds the least

and greatest finite bound used. Every unbounded schema is split

into two (or three for totally unbounded) schemas: one (or two)

that are unbounded on one side, with the least/greatest bound as

the other bound. The łmiddlež part is bounded. All these derived

schemas keep the original multipleOf. The bounded schemas are

all checked (exhaustively if needed). We can separately check the

non-negated and negated unbounded schemas, as they do not prob-

lematically interact over unbounded sets. If 𝑃𝐿 and 𝑃𝑅 are the left

and right non-negated schemas, and 𝑁𝐿 and 𝑁𝑅 are the left and

right negated schemas, verify that the constraints divide each other:

∀pl∈PL, ∃pr∈PR, pl.multipleOf mod pr.multipleOf = 0

∀nr∈NR, ∃nl∈NL, nr.multipleOf mod nl.multipleOf = 0

For example, because 3 divides 9 and 2 divides 4, we have:

{'allOf ':[

{'type': 'number ',

'multipleOf ': 9},

{'type': 'number ',

'not': {'multipleOf ': 2}}]}

<:

{'allOf ':[

{'type': 'number ',

'multipleOf ': 3},

{'type': 'number ',

'not': {'multipleOf ': 4}}]}

This somewhat complex scheme is necessary to handle inclusions

on finite ranges that cannot be handled by simple factoring. For ex-

ample, {multipleOf:3}<:{allOf:[{multipleOf:3},{multipleOf:2}]} holds

on the bounded range [4,8]. Splitting unbounded ranges into parts

enables correctly comparing the entirely unbounded and bounded

parts. Similarly, if only {multipleOf:3} is bounded to range [4,8]

while {allOf:[{multipleOf:3},{multipleOf:2}]} is unbounded, splitting

enables us to conclude (correctly) that the subschema relation holds.

Rule array checks two array schemas. The size bounds of the

left array should be within the size bounds of the right array. Ad-

ditionally, the schema of every item specified in the former needs

to be a subschema of the corresponding specification in the lat-

ter. If a schema is not explicitly provided, the schema provided by

additionalItems is used. Recall that canonicalization adds in a de-

fault additionalItems schema if it was not specified. Additionally,

if the right side specifies that the items must be unique, then the left

needs to either specify the same or implicitly enforce this. For ex-

ample, {'type':'array','items':[{'enum':[0]},{'enum':[1]}]} is a sub-

schema of {'type':'array','uniqueItems':true]}. The allDisjointItems

predicate checks for this by first obtaining the set of all the effective

item schemas: every item schema for an index within the speci-

fied min/max bounds, and additionalItems if any allowed indices
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null
𝑠1 .type = null 𝑠2 .type = null

𝑠1 <: 𝑠2
boolean

𝑠1 .type = boolean 𝑠2 .type = boolean 𝑠1 .enum ⊆ 𝑠2 .enum

𝑠1 <: 𝑠2

string
𝑠1 .type = string 𝑠2 .type = string 𝑠1 .pattern ⊆ 𝑠2 .pattern

𝑠1 <: 𝑠2

number

∀𝑖 ∈ {1, . . . , 𝑘 }, not ∉ dom(𝑠𝑖 ) ∧ 𝑠𝑖 .type = number

∀𝑖 ∈ {𝑘 + 1, . . . , 𝑛}, not ∈ dom(𝑠𝑖 ) ∧ 𝑠𝑖 .not.type = number

∀𝑖 ∈ {1, . . . , 𝑙 }, not ∉ dom(𝑡𝑖 ) ∧ 𝑡𝑖 .type = number

∀𝑖 ∈ {𝑙 + 1, . . . ,𝑚}, not ∈ dom(𝑡𝑖 ) ∧ 𝑡𝑖 .not.type = number

subNumber ( ( [𝑠1, . . . , 𝑠𝑘 ], [𝑠𝑘+1, . . . , 𝑠𝑛 ]), ( [𝑡1, . . . , 𝑡𝑙 ], [𝑡𝑙+1, . . . , 𝑡𝑚 ]))

{allOf:[𝑠1, . . . , 𝑠𝑘 , 𝑠𝑘+1, . . . , 𝑠𝑛]} <: {allOf:[𝑡1, . . . , 𝑡𝑙 , 𝑡𝑙+1, . . . , 𝑡𝑚]}

array

𝑠1 .type = array 𝑠2 .type = array

𝑠1 .minItems ≥ 𝑠2 .minItems 𝑠1 .maxItems ≤ 𝑠2 .maxItems
𝑠1 .items = [𝑠11 , . . . , 𝑠1𝑘 ] 𝑠2 .items = [𝑠21 , . . . , 𝑠2𝑚 ]

∀𝑖 ∈ {0, . . . ,max(𝑘,𝑚) + 1}, (𝑠1𝑖 ∥ 𝑠1 .additionalItems) <: (𝑠2𝑖 ∥ 𝑠2 .additionalItems)
𝑠2 .uniqueItems =⇒ (𝑠1 .uniqueItems ∨ allDisjointItems (𝑠1))

𝑠1 <: 𝑠2

object

𝑠1 .type = object 𝑠2 .type = object

𝑠1 .minProperties ≥ 𝑠2 .minProperties 𝑠1 .maxProperties ≤ 𝑠2 .maxProperties
𝑠1 .required ⊇ 𝑠2 .required

∀𝑝1 :𝑠𝑝1 ∈ 𝑠1 .patternProperties, 𝑝2 :𝑠𝑝2 ∈ 𝑠2 .patternProperties, 𝑝1 ∩ 𝑝2 ≠ ∅ =⇒ 𝑠𝑝1 <: 𝑠𝑝2
𝑠1 <: 𝑠2

non-overlapping anyOf
∀𝑖 ∈ {1, . . . , 𝑛}, ∃ 𝑗 ∈ {1, . . . ,𝑚}, 𝑠𝑖 <: 𝑡 𝑗 nonOverlapping([𝑡1, . . . , 𝑡𝑚])

{anyOf:[𝑠1, . . . , 𝑠𝑛]} <: {anyOf:[𝑡1, . . . , 𝑡𝑚]}
uninhabited

¬ inhabited (𝑠1)

𝑠1 <: 𝑠2

Figure 4: JSON Schema subtype inference rules.

are unspecified. It then verifies that the conjunction of all pairs of

effective item schemas are uninhabited.

Rule object checks two object schemas. It first verifies that the

number of properties of both sides have the appropriate relation

and that the left side requires all the keys that the right side requires.

Next, for every regular expression pattern 𝑝1 on the left, if there is an

overlapping regular expression pattern 𝑝2 on the right, it checks that

the corresponding schemas are subschemas. This check can be done

one pattern at a time since canonicalization eliminates overlapping

pattern properties. We note that regular expressions are well known

to be closed under union, intersection, and complement [38], and

deciding inclusion for regular expressions is decidable1.

Rule non-overlapping anyOf handles anyOf schemas for the

cases where simplification eliminates overlapping unions. Helper

function nonOverlapping checks for unions of arrays and objects

and conservatively assumes that those might overlap. In the non-

overlapping case, it suffices to check the component schemas inde-

pendently. For each schema on the left, we require a same-typed

superschema on the right.

Finally, rule uninhabited states that an uninhabited schema is a

subtype of any other schema. łUninhabitedž here means that no

legal JSON data exists for the schema. This rule is the only rule

that checks schemas of possibly different types, since there is no

valid data that would constrain the type. We define simple rules

for uninhabitedness, e.g., checking for numerical schemas that the

minimum is larger than the maximum, which are elided from this

exposition. Like the other parts of this paper, the uninhabitedness

checker is intended (but not proven) to be sound, but not complete.

1Asking if 𝑟1 is included in 𝑟2 is the same as asking if the complement of 𝑟2 intersected
with 𝑟1 is equivalent to the regular expression that accepts nothing. This can be checked
by converting to a finite automate, minimizing, and checking for equivalence [37].

Baazizi et al.’s witness generation algorithm could be used for a

more complete inhabitedness check [20].

Unsupported Features. Our approach does not handle the fol-

lowing corner cases of the JSON Schema specification: negation,

disjunction, and enumeration of object and array schemas; non-

regular regex patterns; and recursive references. Our approach

detects these corner cases and returns łunknownž for them. Sec-

tion 5.3.3 shows that these cases occur in only 6.5% of the real-world

schema pairs we tested with. Addressing them is future work.

4 IMPLEMENTATION

We implemented our subschema checker as an open-source Python

library (https://github.com/ibm/jsonsubschema). The implementa-

tion builds upon the jsonschema library [8] to validate schemas

before running our subtype checking, the greenery library [9] for

computing intersections of regular expressions, and the jsonref

library [11] for resolving JSON schema references.

5 EVALUATION

This section evaluates our JSON subschema checker, which we refer

to as jsonsubschema. It addresses the following research questions:

RQ1 How effective is jsonsubschema in finding real bugs?

RQ2 How correct and complete is jsonsubschema?

RQ3 How does our approach compare against prior work?

RQ4 How efficient is jsonsubschema?

5.1 Experimental Setup

We evaluate our approach on four datasets of JSON schemas listed

in Table 2. The datasets cover different application domains and

different ways of using JSON schemas. Snowplow is a service for
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Table 2: Datasets of JSON schemas used for evaluation.

Project Description Schemas (incl. versions)

Snowplow Data collection and live-

streaming of events [55]

306 (382)

Lale Automated machine

learning library [21]

1,444 (NA)

Washington Post (WP) Content creation and

management [13]

165 (2,728)

Kubernetes (K8) Containerized applica-

tions [16]

1,336 (104,453)

Total 3,251 (107,563)

data collection and aggregation for live-streaming of event data [2].

The service aggregates data from various sources and uses JSON

schemas to specify data models, configurations of several compo-

nents, etc. [55]. Lale is a Python library for type-driven automated

machine learning [21]. It uses JSON schemas to describe the inputs

and outputs of machine-learning (ML) operators, as well as stan-

dard ML datasets. The Washington Post dataset is a collection of

schemas describing content used by theWashington Post within the

Arc Publishing content creation and management system [13]. The

final dataset comprises JSON schemas extracted from the OpenAPI

specifications for Kubernetes [16], a system for automating deploy-

ment, scaling, and management of containerized applications [4].

The last column of Table 2 shows how many schemas each of these

projects has, and how many schemas there are when considering

each version of a schema as a separate schema. The total number

of schemas is 3,251, and 107,563 including versions.

Many of the schemas are of non-trivial size, with an average of

56KB and a maximum of 1,047KB. To validate the correctness of the

canonicalization and simplification steps of jsonsubschema, we also

use the official test suite for JSON Schema draft-04 [10]. It contains

146 schemas and 531 JSON documents that fully cover the JSON

Schema language. All experiments used Ubuntu 18.04 (64-bit) on

an Intel Core i7-4600U (2.10GHz) machine with 12GB RAM.

5.2 Effectiveness in Detecting Bugs (RQ1)

To evaluate the usefulness of jsonsubschema for detecting bugs, we

consider two real-world scenarios wherewe could clearly determine

the expected relationship between pairs of schemas using an inde-

pendent source of ground truth. In both examples, the correctness

of software requires a specific subschema relation to hold.

5.2.1 Schema Evolution Bugs in Snowplow. The first bug detec-

tion scenario checks whether evolving schemas in the Snowplow

project may break clients that rely on the backward compatibility

of schemas. Snowplow maintains versioned schemas that specify

data sources and configurations [55]. To ensure backward com-

patibility of clients and to avoid unnecessary updates of client

code, the project adopts semantic version numbers of the form

major.minor.patch [6]. In a blog post, the developers of Snowplow

express the goal of using these schemas and versions to make

interactions less error-prone [3]Ðin other words, to avoid data

compatibility bugs. For each schema evolution, we check whether

the schema change is consistent with the version number change.

Specifically, a backward compatible schema fix corresponds to a

{'properties ': {

'event ':

{'type': 'object '},

'error ':

{'type': 'string '},

...}

'required ':

['event ', 'error '],

'additionalProperties ':

false }

Version 1.0.0

{'properties ': {

'payload ':

{'type': 'object '},

'failure ':

{'type': 'string '},

...}

'required ':

['payload ', 'failure '],

'additionalProperties ':

false }

Version 1.0.1

Figure 5: Snow-1: A schema evolution bug in Snowplow.

1 rfe = RFE(estimator=RandomForestClassifier(n_estimators=10))

2 lale_pipe = rfe » NMF()

3 %%time

4 try:

5 lale_pipe.fit(train_X, train_y)

6 except ValueError as e:

7 print(str(e), file=sys.stderr)

8 CPU times: user 156 ms, sys: 31.2 ms, total: 188 ms

9 Wall time: 168 ms

10 NMF.fit() invalid X, the schema of the actual data is not a

subschema of the expected schema of the argument.

11 actual_schema = {

12 "type": "array",

13 "items": {"type": "array", "items": {"type": "number"}}}

14 expected_schema = {

15 "type": "array",

16 "items": {"type": "array",

17 "items": {"type": "number", "minimum": 0.0}}}

Figure 6: Dataset error check example in Lale.

patch increment, a change that adds functionality in a backward-

compatible way to a minor increment, and a change that breaks

backward compatibility to a major increment.

For this experiment, we consider all schemas in the Snowplow

project that have at least two versions, and then apply jsonsub-

schema to all pairs of consecutive schema versions. For each pair

of two consecutive versions, we then check if the subtype relation

found by jsonsubschema is consistent with the version numbering.

Our approach detects five schema evolution bugs, summarized

in the top part of Table 3. We summarize multiple similar bugs into

a single one for space reasons. For example, in Snow-1 (Figure 5),

two object properties changed their names. This change breaks

backward compatibility for old data, hence, the major version num-

ber should have been incremented. The developers of Snowplow

confirmed all reported bugs in Table 3 and acknowledged that

specifically Snow-1 and Snow-2 are severe. One developer wrote

that łOur long-term plan is to implement an automatic algorithm to

recognize versioning and clarify/formalise specification for known

corner-casesž. Our approach provides this kind of tool, and could

help avoid schema evolution bugs in the future.

5.2.2 Incorrect ML Pipelines in Lale. As a second real-world usage

scenario, we apply jsonsubschema to type-check machine learning

pipelines implemented in Lale [21]. Lale uses JSON schemas to

describe both ML operators and ML datasets. An ML pipeline is

a graph where nodes are operators and edges are dataflow. Lale

uses jsonsubschema to check whether the root operators of an ML

pipeline are compatible with an input dataset, as well as whether

on all edges the intermediate dataset from the predecessor is com-

patible with the successor.
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Table 3: 43 real-world bugs detected by jsonsubschema. Issue ids and commits removed for double-blind review.

Bug Id Description Bug Report Status

Bugs in Snowplow schema versions

Snow-1 Breaking change.Wrong increment of Patch version; should increment Major version instead. Confirmed

Snow-2 Wrong version.Wrong update of Minor and Patch versions; should increment Patch instead. Confirmed

Snow-3 Spurious version increment. Increment of Major version; should increment Patch instead. Confirmed

Snow-4ś5 Spurious version increment. Increment of Minor version; should increment Patch instead. Confirmed

Bugs in schemas of machine learning operators in Lale

Lale-1ś2 Classifiers output either string or numeric labels; output schemas should be union of arrays not array of unions. Fixed

Lale-3ś14 Classifiers should allow output labels to be strings or numeric instead of numeric only. Fixed

Lale-15ś32 Classifiers should allow output labels to be Booleans, beside strings or numeric. Fixed

Lale-33 Using the empty schema in a union is too permissive and implies the empty schema, which validates everything. Fixed

Lale-34ś38 Using the empty schema as an output schema causes problems when used as input to the next operator. Fixed

{'type': 'array ',

'items ': {

'anyOf ':[

{'type': 'number '},

{'type': 'string '}]}}

Wrong schema

{'anyOf ': [

{'type': 'array ',

'items ': {'type': 'number '}},

{'type': 'array ',

'items ': {'type': 'string '}}]}

Correct schema

Figure 7: Lale-1: Wrong schema for an ML operator in Lale.

Figure 6 shows an example. Lines 1ś2 configure an ML pipeline

with two operators, RFE (recursive feature elimination) and NMF (non-

negative matrix factorization). The pipe combinator ( » ) introduces

a dataflow edge between these two operators. Line 5 tries to train

the pipeline on a given dataset. Internally, Lale uses jsonsubschema

to check whether the output schema of RFE is a subschema of the

input schema of NMF. In this example, that check quickly yields an

error message, since RFE returns an array of arrays of numbers,

but NMF expects an array of arrays of non-negative numbers. In

this example, the subschema check saved time compared to the

approach of first training RFE, which can take minutes, and only

then triggering an exception in NMF due to negative numbers.

We ran Lale’s regression test suite with instrumentation to log

all subschema checks and counted 2,818 unique schema pairs being

checked. In two years of production use of jsonsubschema, the

checks have revealed many bugs, 38 of which are summarized in

the lower part of Table 3. All bugs have been fixed in response to

finding them with jsonsubschema. For example, in Lale-1 (Figure 7),

a subschema check reveals that the output of a classifier could either

be numeric or string labels, but no mixing of the two kinds.

The approach detects 43 bugs, most of which are already fixed.

5.3 Correctness and Completeness (RQ2)

We aim for soundness, i.e., giving a correct answer whenever not re-

turning łunknownž, while being as complete as possible, i.e., trying

to cover as many JSON Schema features as possible. The follow-

ing evaluates to what extent our approach and implementation

achieves these goals.

5.3.1 Canonicalization and Simplification. Canonicalization and

simplification transform a given schema into a simpler yet seman-

tically equivalent schema. To check this property, we use the offi-

cial JSON Schema test suite to validate JSON documents against

schemas before and after the two transformation steps. Specifically,

we check whether:

∀𝑠,∀𝑑 valid(𝑑, 𝑠) ⇔ valid
(

𝑑, simple(canonical(𝑠))
)

for schema 𝑠 and its associated JSON document 𝑑 in the JSON

Schema test suite. In all cases where jsonsubschema yields a canoni-

calized schema, this new schema passes all relevant tests in the JSON

Schema test suite, with one exception. This single case is due to an

ambiguity in the specification of JSON Schema about the semantics

of the allOf connector combined with the additionalProperties object

constraint.

5.3.2 Ground Truth. To evaluate the correctness and completeness

of the approach as a whole, we establish a ground truth by sampling

and manually inspecting 300 schema pairs. We sample schema pairs

from all schemas listed in Table 2 using two strategies. The first

strategy focuses on schemas likely to be related to each other. For

datasets where the schemas have versions (Snowplow, WP, K8),

we consider all pairs of schemas that have the same name but a

different version. For the Lale dataset, we consider schema pairs

where one schema describes an ML dataset and the other schema

describes an ML operator that could, in principle, be applied to

the dataset. For each of the four projects, we randomly sample 50

schema pairs. The second strategy focuses on supposedly unrelated

schemas. To this end, we consider the union of schemas from all

four projects and randomly sample 100 pairs. For both strategies,

we exclude schemas that are syntactically invalid and schemas

that contain an invalid or unresolvable URI in a $ref, and our tool

inlines all non-recursive URIs.

The sampling results in 300 schema pairs (Table 4). For each

sampled pair, we carefully inspect both schemas to decide whether

they are in a subtype relationship. Out of the 300 schema pairs,

108 are in subtype relation (<:) while 192 are not (≮:). Overall, the

sampling and manual inspection took around 40 working hours.

We envision that the resulting ground truth serves not only for this

paper, but also as a benchmark for future work.

5.3.3 Precision, Recall, Correctness. Based on the manually estab-

lished ground truth, we measure the precision, recall, and correct-

ness of our approach. Because the approach has three possible

outputs for a given schema pairÐsubschema, not subschema, and

unknownÐeach pair belongs into exactly one of the following

six categories: true positive (TP) if the output is subschema and

matches the ground truth; true negative (TN) if the output is not
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Table 4: Effectiveness of jsonsubschema and comparison to

the existing issubset tool.

Ground truth jsonsubschema issubset

Dataset Pairs <: ≮: TP TN FP FN ?<: ?≮: TP TN FP FN ?<: ?≮:

Snowplow 50 17 33 14 29 0 0 3 4 13 32 1 4 0 0

WP 50 35 15 31 4 0 0 4 11 31 3 4 0 4 8

K8 50 31 19 31 19 0 0 0 0 23 17 2 8 0 0

Lale 50 22 28 22 28 0 0 0 0 16 28 0 6 0 0

Unrelated 100 3 97 3 97 0 0 0 0 3 57 40 0 0 0

Total 300 108 192 101 177 0 0 7 15 86 137 47 18 4 8

Precision 100% 64.7%

Recall 93.5% 79.6%

Correctness 100% 77.4%

subschema and matches the ground truth; false positive (FP) if the

output is subschema but the ground truth is not subschema; false

negative (FN) if the output is not subschema but the ground is

subschema; unknown for subschema (?<:) if the approach does not

give an answer and the ground truth is subschema; and unknown

for not subschema (?≮:) if the approach does not give an answer

and the ground truth is not subschema. Precision is defined as the

percentage of correctly identified subschema pairs among all pairs

the approach identifies as a subschema:

precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall is the percentage of correctly identified subschema pairs

among all pairs that indeed are subschemas:

recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁+ ?<:

As an additional metric, we compute correctness as the percentage

of correct answers among all answers the approach gives:

correctness =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

The middle part of Table 4 shows the results of our jsonsub-

schema tool w.r.t. the ground truth. Across the 101 cases where

jsonsubschema reports two schemas to have a subschema relation,

all are correct. That is, the approach has 100% precision. Across all

101+177=278 cases where the approach gives an answer, again all

answers are correct. That is, the correctness of the approach is 100%.

Both results match our design goal of ensuring the correctness of

the algorithm.

As mentioned in Section 3, there are some cases that jsonsub-

schema does not decide. In practice, we found that such cases are

rather rare, with a recall of 93.5%. That is, the approach gets close

to completeness, i.e., supporting all real-world subschema pairs, but

there remain some JSON schemas where the approach does not give

an answer. There are two reasons for not reaching full recall. For 14

out of the 22 pairs, at least one schema uses a recursive set of ref-

erences through the $ref keyword. For the remaining eight pairs,

jsonsubschema could not decide on the sub-schema relation due

to a negated object. Both reasons are limitations of our approach,

which we consider to be non-trivial to address.

5.3.4 Pervasiveness of Validation Keywords and Supported Features.

Figure 8 shows the frequency of validation keywords across all

schemas in the four datasets in Table 2. Validation keywords on

the x-axis are sorted by their relevance to each schema type and

according to the order of keywords in Table 1. The figure shows

that jsonsubschema indeed supports the majority of JSON schema

features used in practice.

We observe that JSON schema types null and string are the two

most prevalent schema types present in the dataset. Both types

are fully supported in the subtype checking performed by jsonsub-

schema as indicated by the color code in Figure 8. The keywords

properties and required for specifying constrains on a JSON object

show up next on the order of the number of use cases. jsonsubschema

fully supports properties while the required keyword is supported

whenever it is not used in union schemas or negated schemas. In

general, disjunction of schemas happens rarely (366 occurrence

among millions of occurrences of other keywords), while negated

schemas are not used at all in our dataset.

The counts in Figure 8 are for schemas that do not use the negated

schema keyword not at all, which is also evident from its frequency

being 0. The reason is that in the dataset of schemas, there is no

single use of a negated schema. In fact, the use of negation in JSON

schemas is indeed highly discouraged since the purpose of schema

validation is to constrain what is allowed rather than filtering out

what is disallowed. The NSA security guidelines for using JSON

schemas also advises against using negated schemas for the same

reason.2 That said, jsonsubschema still supports the negation of all

basic types (null, boolean, string, integer, and number) except for the

union and negation of numeric schemas with a multipleOf constraint.

Overall, this shows that the incompleteness of jsonsubschema rarely

affects its usability on a large dataset of real-world schemas.

The only feature that is not supported at the moment is recursive

references in schemas using $ref. Although our approach currently

does not handle recursive schemas, we know theoretically that

subtyping recursive types is decidable [17]. The jsonsubschema tool

reports an error and terminates without yielding a decision when

an unsupported JSON schema feature is encountered.

The approach is correct whenever it gives an answer (100%

precision and 100% correctness) and can handle the majority of

a sample of real-world schema pairs (93.5% recall). Additionally,

jsonsubschema supports the majority of those JSON Schema

features that are widely used in practice.

5.4 Comparison to Existing Work (RQ3)

To our knowledge, this is the first academic work to address the

problem of JSON subschema checking, and the first work at all to

describe how to address this problem for a large subset of JSON

Schema. The closest developer tool we could find is issubset [35],

a tool that states the same goal as ours: łGiven a schema defining

the output of some process A, and a second schema defining the

input of some process B, will the output from A be valid input for

process B?ž

We compare against the most recent version (1.1.25) of issub-

set by running the tool on all schema pairs in our ground truth

(Section 5.3.2). Initially, the tool failed on almost half the pairs in

2https://apps.nsa.gov/iaarchive/library/reports/security_guidance_for_json.cfm
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Figure 8: Prevalence of JSON schema validation keywords in practice and supported features in jsonsubschema.
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Figure 9: Efficiency of subschema checking.

our dataset with an error complaining about the schemas using

the JSON Schema draft04, while the tool supports schemas start-

ing from draft05, although the issubset documentation does not

describe such a limitation. After careful inspection of the pairs of

schemas in our ground truth, we find that none of the schemas uses

any JSON Schema feature that changed in the later versions of the

language. We hence set the JSON Schema version number in those

schemas to draft05, enabling the issubset tool to check them.

The right part of Table 4 shows the results. issubset produces

86 true positives, which means it indeed captures some of the se-

mantics of the subtyping relation. However, issubset also produces

46 false positives and 18 false negatives, i.e., gives a wrong answer

to a subtype query. Overall, the existing tool achieves a precision

of 64.7% and a recall of 79.6%, which is significantly lower than

our approach. Additionally, its overall correctness is at 77.4%, i.e.,

clearly below ours.

To better understand issubset’s limitations, we inspect their code

and test it on simple schemas. Although the tool performs some

semantic checks, e.g., it correctly reports {'type':'integer'} <: {'

type':'number'}, it lacks the ability to capture the richness of JSON

Schema in many ways. For instance, it is oblivious to uninhabited

schemas, such as {'type':'string','enum':[1]}, and it fails to detect

{'type':['string','null']} <: {'type':['null','string']}.

Our approach outperforms the best existing subschema checker

in terms of precision (100% vs. 64.7%), recall (93.5% vs. 79.6%),

and overall correctness (100% vs. 77.4%).

5.5 Efficiency (RQ4)

To evaluate how fast our subschema checker is in practice, we

measure the time taken by subschema checks on a random sample

of 1,000 pairs of non-equal schemas from Table 2. We took every

time measurement ten times and report the average. Figure 9 shows

the size of pairs of schema files in KB against the time subschema

checking takes in seconds. In most cases, our subschema checker

terminates within a few seconds for moderately sized schemas. Our

subschema approach is lazy and terminates on the first violation of a

subtyping rule. That said, and since we envision subschema checks

to have wide range of applications, we will explore how to improve

on this performance, for instance, by on-demand canonicalization.

A subschema check takes up to several seconds, and the time

scales linearly with the schema size.

6 THREATS TO VALIDITY

The datasets in Table 2may not be representative of all JSON schema

pairs for which users may want to check compatibility. The variety

and size of the datasets and the fact that the developers confirmed

or fixed all reported bugs reduces this threat, but we do not claim

that our results necessarily generalize to all other JSON schemas.

The results in Table 4 use manually-created ground truth. Hence,

there is a possibility of human error. This is mitigated by also

running a variety of other tests that can be validated automatically

without manual human effort.

7 RELATED WORK

7.1 JSON Schema and Schema Subtyping

Practitioners have significant interest in reasoning about the sub-

type relation of JSON schemas. Section 5.4 has an experimental

comparison against the strongest competitor among the available

tools, issubset [35], which was developed concurrently with our
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work [33]. Another closely related tool [15] relies on simple syntac-

tic checks. For example, that work considers a change as a breaking

change whenever a node is removed from the schema. As illustrated

by Figure 2, removing nodes (or replacing them by others) may

yield not only subtypes but even equivalent schemas. Yet another

existing tool [14] checks whether two schemas are equivalent but

does not address the subtyping problem. Baazizi et al. [20] describe

an algorithm for JSON Schema witness generation, which could

answer 𝑠 <: 𝑡 by showing that {allOf:{not:𝑠}, 𝑡} has no witness;

however, the tool from the paper is not available.

Pezoa et al. [46] formally define the syntax and semantics of

JSON Schema, including the JSON validation problem. An alterna-

tive formulation of JSON validation uses a logical formalism [25].

Baazizi et al. [19] address the problem of inferring schemas for

irregular JSON data. None of the above pieces of work addresses

the subschema problem. There are other schema definition lan-

guages for JSON besides JSON Schema, e.g., Avro [1]. Protobuf [5]

is Google’s data exchange format, which borrows several features

from JSON schema. Our work might help define subtype relations

for these alternative languages.

The Swagger (OpenAPI) specification [7] uses JSON Schema to

define the structure of RESTful APIs. The swagger-diff tool [12]

aims at finding breaking API changes through a set of syntactic

checks, but does not provide the detailed checks that we do. Our

jsonsubschema tool could be integrated as part of the pipeline to

check for backward compatibility.

7.2 Type Systems for XML, JavaScript, Python

Semantic subtyping [27] handles Boolean connectives on types

by using a disjunctive normal form similar to that in this paper.

It was developed in the context of CDuce, a functional language

for working with XML [23]. Subschema checking for XML, called

schema containment, is also addressed in [56]. XDuce is a static

language for processing XML documents using XML schemas as

types [39] which makes use of łregular expression typesž [40]. Our

work differs in working on JSON, not XML, which has a different

feature set as described in Table 1. Also these approaches treat

XML as tree automata, shown to be less expressive than JSON

Schema [46].

Both JavaScript and Python have a convenient built-in syntax for

JSON documents. Furthermore, there are type systems retrofitted

onto both JavaScript [24] and Python [49]. Therefore, a reasonable

question to ask is whether JSON schema subtype queries could be

decided by expressing JSON schemas in those languages and then

using the subtype checker of those type systems. Unfortunately, this

is not the case, since JSON Schema contains several features that

those type systems cannot express, such as negation, multipleOf

on numbers, and pattern on strings.

7.3 Applications of Subschema Checks

One application of JSON subschema is statically reasoning about

breaking changes of web APIs. A study of the evolution of such

APIs shows that breaking changes are frequent [42]. Another study

reports that breaking changes of web APIs cause distress among

developers [29]. Since JSON schemas and related specifications are

widely used to specify web APIs, our approach can identify breaking

changes statically instead of relying on testing (Section 5.2.1).

Data validation for industry-deployedmachine learning pipelines

is crucial as such pipelines are usually retrained regularly with new

data. To validate incoming data, Google TFX [22] synthesizes a

custom data schema based on statistics from available data and

uses this schema to validate future data instances [26]. Amazon

production ML pipelines [52] offer a declarative API to define de-

sired properties of data, which are then checked on real-time data.

Both systems are missing an explicit notion of schema subtyping.

For instance, TFX uses versioned schemas to track the evolution

of inferred data schemas, and reports back to the user whether to

update to a more (or less) permissive schema based on the historical

and new data instances [22]. Lale uses JSON schemas to specify

both correct ML pipelines and their search space of hyperparame-

ters [21]. The ML Bazaar also specifies ML primitives via JSON [54].

Another type-based system for building ML pipelines is described

by [47]. These systems can benefit from JSON subschema check-

ing to avoid running and deploying incompatible ML pipelines

(Section 5.2.2).

7.4 General-Purpose Bug Detection

Static [18, 30, 32, 41], dynamic [36, 44, 48], and hybrid [34, 53]

program analysis techniques are widely used. These approaches

are designed to find bugs in program source code and observed

runtime behavior. Also, statically detecting defects in cloud server

systems [28] and dynamically in data-intensive applications [57]

are related lines of work. Our work is orthogonal to the above as it

focuses on finding data compatibility bugs at the data specification

level. This class of bugs is programming-language independent

and therefore jsonsubschema complements standard bug finding

techniques.

8 CONCLUSION

This paper addresses a class of data compatibility bugs in applica-

tions that describe their data with JSON schemas. The core of the

approach is a novel subtype checker for such schemas. It addresses

the various language features of JSON Schema by first canonical-

izing and simplifying schemas, and by then type checking pairs

of schema fragments that each describe data of a single type. The

subtype checker answers the subtype question correctly whenever

it gives an answer, achieving 100% precision and 93.5% recall for

schemas that occur in the wild, clearly outperforming the best ex-

isting work. Applying the approach to detect data compatibility

bugs in popular web APIs and ML pipelines reveals 43 previously

unknown bugs, most of which have already been fixed. We envision

our work to contribute to more reliable software in data-intensive

applications across different domains.
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