
PUBA:
Privacy-Preserving User-Data Bookkeeping and Analytics

Valerie Fetzer2,?, Marcel Keller3, Sven Maier2,?, Markus Raiber2,?, Andy Rupp1, and Rebecca
Schwerdt2,?

1 University of Luxembourg and KASTEL SRL, E-mail: andy.rupp@uni.lu
2 Karlsruhe Institute of Technology, KASTEL, E-mail: {firstname.surname}@kit.edu

3 CSIRO’s Data61, E-mail: marcel.keller@data61.csiro.au

Abstract. In this paper we propose Privacy-preserving User-data Bookkeeping & Analytics
(PUBA), a building block destined to enable the implementation of business models (e.g.,
targeted advertising) and regulations (e.g., fraud detection) requiring user-data analysis in
a privacy-preserving way.
In PUBA, users keep an unlinkable but authenticated cryptographic logbook containing their
historic data on their device. This logbook can only be updated by the operator while its
content is not revealed. Users can take part in a privacy-preserving analytics computation,
where it is ensured that their logbook is up-to-date and authentic while the potentially
secret analytics function is verified to be privacy-friendly. Taking constrained devices into
account, users may also outsource analytic computations (to a potentially malicious proxy
not colluding with the operator).
We model our novel building block in the Universal Composability framework and provide a
practical protocol instantiation. To demonstrate the flexibility of PUBA, we sketch instan-
tiations of privacy-preserving fraud detection and targeted advertising, although it could be
used in many more scenarios, e.g. data analytics for multi-modal transportation systems.
We implemented our bookkeeping protocols and an exemplary outsourced analytics com-
putation based on logistic regression using the MP-SPDZ MPC framework. Performance
evaluations using a smartphone as user device and more powerful hardware for operator and
proxy suggest that PUBA for smaller logbooks can indeed be practical.
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1 Introduction

Privacy-enhancing cryptographic protocols could be highly beneficial to citizens and our society in a
multitude of user-centric scenarios including mobile payments, loyalty systems, ticketing systems,
toll collection, web search, participatory sensing, disease prediction and pay-as-you-drive insur-
ance. Also, operators of such systems should be encouraged to deploy strong privacy-enhancing
technologies in view of EU’s GDPR and the severe fines in case of violation.

However, despite their advantages, proposed cryptographic protocols to protect privacy in such
scenarios are rarely in real-world use today. The reasons for that are manifold; aside from costs for
development and deployment this is caused by a gap between what these protocols offer and what
is required when targeting real-world applications: While academic proposals typically strive for
“perfect” anonymity and a simple functionality, they neglect scenario-specific real-world require-
ments stemming from business models, laws, regulations, or user needs. Those requirements often
conflict with the desire for perfect anonymity. For instance, fraud detection and anti-money laun-
dering as mandated for digital payments or targeted advertising as performed in loyalty systems
are all based on a customer’s transaction history. Neglecting requirements of this kind when build-
ing privacy-preserving systems, e.g., an anonymous mobile payment or loyalty system, prevents a
practical deployment. In this paper, we make an important step towards resolving this issue by
proposing a flexible framework that enables the privacy- and authenticity-preserving bookkeeping
and analytics of user history data. Our building block is secure in the Universal Composability
framework and can thus be securely incorporated into privacy-preserving systems, e.g., anonymous
mobile payments, in order to satisfy certain requirements that rely on the analysis of behavioral
data of participating users, e.g., fraud detection.

For concreteness, let us consider two examples in more detail: Loyalty systems and mobile pay-
ments. In loyalty programs such as Optimum [Lob20] in Canada or Nectar [Aim20] in the UK,
customers collect loyalty points for purchases in participating shops which they can redeem at a
later point to pay for purchases, get vouchers, etc. Academic proposals like Black-Box Accumu-
lators (BBAs) [HHN+17] exist, which realize this point collection and redemption functionality
in a privacy-preserving way while protecting the operator from forgeries and double-redemption.
However, BBA does not take the business model of loyalty system providers into account which
typically consist in earning money by enabling advertising partners to place targeted ads and
coupons. To this end the operator is keeping track of the users’ purchase histories. Ad selection
is typically done using a machine learning based classifier which maps purchase histories to prod-
uct categories customers might find interesting. Advertisers promoting their products send ads for
certain product categories to the operator along with the price they are willing to pay every time
their ad is delivered by email or displayed on the loyalty program App.

NFC-based mobile payments are an increasingly popular method to conduct payments for
goods or services at points-of-sale. This payment mode has been boosted with the recent roll-out
of Google Pay and Apple Pay. While systems deployed in practice essentially realize a virtual
credit or debit card—thus payments are linkable—privacy-preserving systems could, in theory, be
built from anonymous e-cash, e.g., see [AB09]. However, those constructions do not take current
regulations for mobile payments into account, e.g., fraud detection as required by the 2nd European
Payment Services Directive (PSD2) [PC15]. Fraudulent transactions can occur due to lost or stolen
payment devices or compromised payment credentials stored on the device. Fraud detection consists
in continuously monitoring a customer’s transaction history for anomalies or typical fraud patterns.
This can be done using a set of rules or sophisticated machine learning algorithms. Based on these
background checks it is then decided in realtime whether a newly initiated transaction should be
granted or denied.

To realize the two above scenarios—as well as many others—in a privacy-preserving way, a
new building-block is needed which ensures privacy-friendly bookkeeping as well as analytics of
user history data: A user’s actions generate data (e.g., transaction value, date/time, location, type
of shop, etc.) observable by an operator. A logbook (solely) kept on the user’s device should be
updated with the observed data such that its content cannot be manipulated by the user while
its current content cannot be learned by the operator. The former is particularly important for
requirements like fraud or money laundering detection. More precisely, we need to ensure the
authenticity, integrity, freshness, confidentiality, and unlinkability of the logbook. At the same
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time, the building block needs to allow for analytical computations, where users are incentivized
or forced to take part in privacy-preserving analytics of their latest logbook. These computations
must not leak the input(s), but the operator may only obtain some privacy-friendly statistics,
classification, etc. as output. The user might also receive some output, e.g., targeted ads in case of
a loyalty system. Also, in some cases, a slight update of the logbook with results from the analytics
computation might be required, e.g., a risk level resulting from the background fraud detection
checks. Depending on the scenario, the actual analytics function might need to be kept confidential,
e.g., when it is considered intellectual property like the classifier for targeted advertising. In this
case, it needs to be ensured that the operator cannot misuse this opportunity to selectively deploy
privacy-violating functions.

We distinguish two types of analytics computations: outsourced heavyweight analytics and di-
rect lightweight analytics. As the privacy-preserving evaluation of machine-learning classifiers (e.g.,
to determine a user’s individual fraud risk level) might be computationally and communicationally
very demanding, in particular when mobile user devices are involved, there needs to be a possi-
bility to securely outsource this computation to a proxy server who acts on behalf of the user(s).
Ideally, even a malicious proxy should not learn anything about user and operator inputs as well as
the output provided to the user. In some scenarios, outsourced analytics should not block further
interactions with the system, i.e., users should be able to continue updating their logbooks while
analytics is running. For instance, in loyalty systems customers should be able to continue shop-
ping and keep track of purchased items while the outsourced ad selection process (for a previous
version of the logbook) is still in progress. Direct lightweight privacy-preserving analytics is jointly
performed between the user’s device and the operator. This type of analytics might be done prior
to an update of the logbook to determine further actions, e.g., whether the payment transaction
just initiated should be accepted in view of the customer’s personal risk level.

1.1 Our Contribution

In this paper, we focus on properly formalizing and instantiating the functionality and security and
privacy properties of a bookkeeping and analytics mechanism as sketched in the previous section.
Although it is evident that numerous practical application scenarios would benefit from privacy-
preserving bookkeeping and analytics, to the best of our knowledge, this is the first work formally
studying such a multi-purpose building block.

Our contribution consists in a formal UC-based modeling, protocols for managing the logbook
along with security proofs, implementations and benchmarks of crucial protocols, as well as exem-
plary instantiations of fraud detection and targeted advertising in our framework. This work is one
of very few which combines a complex, yet practical crypto system with a thorough UC security
analysis. Some details are give below.

Security model. Based on a high-level system architecture (cf. Section 2) including a set of intu-
itive but informal security properties (cf. Section 2.5), we designed a flexible ideal functionality (cf.
Section 3) in the UC framework [Can00; Can01]. Due to the page limit we only introduce parts of
the functionality here, the full functionality can be found in Appendix D. Providing a modeling and
a security analysis in the UC framework is essential as we expect PUBA to be used as a building
block for larger privacy-preserving systems. A main challenge consisted in finding an appropriate
trade-off between flexibility (to cover a broad set of applications) and complexity. Our function-
ality covers users, an operator, a trusted signing authority (verifying the privacy-friendliness of
analytical functions), and proxies who interact in preparational tasks like User Registration and
Sign Function Parameter as well as operational tasks such as Bookkeeping (which also covers Di-
rect Analytics), Outsource, Outsourced Analytics, and Update. The correct computation of an
application-specific function ∆ contained in both Bookkeeping and Outsourced Analytics is man-
aged by a subfunctionality FPPA which provides independence of the used method of computation.
The subfunctionality can, e.g., be instantiated with any secret-sharing based general MPC frame-
work (for example based on the SPDZ [DPS+12] family) that treats ∆ as a black-box, which allows
for flexible instantiations and lets PUBA easily profit from performance advances in MPC. It is,
however, also possible to provide non-black-box instantiations of FPPA which exploit the structure
of ∆, e.g., by letting the user prove in Zero-Knowledge that it was computed correctly. This allows
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for more efficient computations, which is especially desirable for the Direct Analytics included in
the Bookkeeping task.

Provably secure protocols. We designed cryptographic protocols for the tasks mentioned above
in Appendix E and provide a full security proof for our construction in Appendix G. Our main
challenge was to carefully combine different primitives and techniques into protocols that are both
secure in the UC framework and efficient at the same time. To this end, we follow a commit-sign-
rerandomize-proof approach to achieve the desired security properties for our logbook. We build
on Groth-Sahai [GS08] non-interactive zero-knowledge proofs, which are fairly practical and secure
under standard assumptions (e.g., SXDH over bilinear groups). Furthermore, we use structure-
preserving signatures [AGH+11] and homomorphic multi-commitments [AKO+15] for which state-
ments (e.g., the knowledge of a signature on a commitment) can be efficiently proven using Groth-
Sahai.

Implementation and benchmarks. We implemented our protocols for User Registration, Book-
keeping, Outsource and Update as well as an exemplary Outsourced Analytics computation based
on logistic regression using the MP-SPDZ MPC framework [Kel20]. For the user side we used a
Nexus 5X and a Galaxy S8 smartphone, whereas the operator and proxy computations were im-
plemented on more powerful server hardware. Our measurements show that even fairly complex
Bookkeeping involving permuting, setting, and adding values to entries can be done within about
2 seconds for a logbook containing 100 entries and assuming an NFC data rate of 424 kbit/s. Out-
sourcing the logbook for an analytics computation takes around 660ms assuming a mobile data
rate of 10Mbit/s. Retrieving the results of the Outsourced Analytics and (potentially) updating
the logbook can be done in 2 seconds assuming the same data rate. The privacy-preserving ana-
lytical computation itself takes around 380ms for colocated servers of operator and proxy. These
estimates show that privacy-preserving bookkeeping and analytics could indeed be practical.

Application: Fraud detection. We sketch how a simple two-tier fraud detection could be realized
with PUBA. Tier 1 enforces the user in the scope of an Outsourced Analytics computation to
perform a more complex machine learning based fraud detection with the operator if a certain
number of payment transactions has been reached. This results in some risk level which is stored in
the logbook. Tier 2 is a Direct Analytics computation performed when a new payment transaction
is initiated. It consists of checking simple rules taking the risk level into account to decide whether
the transaction is accepted or declined. Assuming the hardware and data rates from above and a
logbook storing the last 20 transaction records, where each record consists of 5 values, we estimate
Tier 1 detection using logistic regression to take around 3 seconds (including Outsourcing and
Update), where Tier 2 detection including Bookkeeping can be done in less than 2 seconds.

1.2 Related Work

To the best of our knowledge, this work is the first formally defining a multi-purpose privacy-
preserving bookkeeping and analytics building block.

Yet, regarding bookkeeping, we partly use similar mechanisms as Black-Box Accumulators
(BBA+) introduced in [JR16; HHN+17]. BBA+ provides a framework for privacy-preserving point
collection and redemption and does not consider data analytics. Moreover, its security is defined
using a game-based approach, which leads to weaker security guarantees.

In [BBD+19] updatable anonymous credentials are introduced, which allow to dynamically
modify the attributes of a credential by an update function after its creation. However, updatable
credentials as defined in [BBD+19] do not satisfy our requirements. The input to the update
function is solely provided by and only known to the user. Moreover, freshness of credentials and
their use for analytical computations is not considered. Like [JR16; HHN+17], they do not consider
security in the UC model.

Kolesnikov, Kumaresan, and Shikfa [KKS12] present schemes that provide input authentica-
tion in the following sense: in their model, malicious clients want to perform secure multi-party
computations with a semi-honest server and the scheme ensures that clients use the same input in
multiple different computations. This can be considered as a weak form of bookkeeping with weaker
requirements. While [KKS12] ensures that users cannot use arbitrary inputs for the computations,
they can be linked throughout interactions. Furthermore, in contrast to [KKS12], our framework
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also works with malicious servers and provides additional security guarantees for honest users not
directly inherited by the MPC.

Privacy-preserving analytics and data mining (without bookkeeping and input authentication)
has been well-studied before. The proposed approaches from the literature either construct dedi-
cated protocols exploiting the structure of existing methods (such as neural networks or logistic
regression) commonly used for Machine Learning [AHL+17; CCL+17], or propose techniques for
solving a given analytical problem efficiently [YLK+18; SPH+05; WR10; DZ16].

Let us briefly consider the related work regarding the applications of PUBA more thoroughly
studied in this paper: targeted advertising in loyalty system and fraud detection in mobile payments.
To the best of our knowledge, privacy-preserving targeted advertising for loyalty programs has not
been thoroughly analyzed before. The majority of work on privacy-preserving targeted advertising
deals with an Internet scenario where an advertisement network (such as Google) wants to dis-
play targeted advertisements on Websites based on the User’s prior Web activities. Besides a few
exceptions, e.g., [BKM+12], security and privacy properties of proposed systems are not formally
proven. Concerning ad selection, there are currently two prevalent approaches: client-based and
proxy-based selection. In client-based ad selection, e.g., [TNB+10; BKM+12; GLM16], typically
a browser plugin keeps track of the user’s online behavior and interests and classifies the user in
order to determine the most relevant ad. This implies that the ad network’s selection algorithm
has to be public and the correctness of inputs and computation is not ensured. In proxy-based
selection, e.g. [GCF11], a Trusted Third Party (TTP) with secure channels to the user hides user
data from the ad network. This implies a dependency on the TTP and the assumption that users
send correct data.

To the best of our knowledge, barely any work has been devoted to privacy-preserving fraud
detection for payments yet. The most interesting work [CTB+18] is performing an exploratory
study on the performance of fully homomorphic encryption based classification of finance-related
transaction data which is run by a fraud detection service provider. Authenticity and freshness of
the data is assumed.

2 High Level Description

In this section, we provide a high-level introduction to the parties and tasks involved in the
analytics-framework for PUBA. Note that we provide a further discussion in Appendix A.

2.1 Parties and Roles

PUBA considers four different types of parties:

Users U . PUBA allows for arbitrarily many users to participate in the system. Each user collects
data inside a personal logbook λ which they can provide for privacy-preserving computations. The
main part of this data is called User History (UH) UH. This part is authenticated and cannot
be changed by the user at will, but is only updated through private bookkeeping tasks with the
operator. The private data is represented by a vector of slots, each slot contains a Zp-element.
Users may be corrupted and maliciously collude with other corrupted parties. We assume that
users participate using relatively weak hardware. For many real-world applications the user side of
PUBA will probably be realized as a smartphone application.

The operator O. For any given instance of PUBA there is exactly one operator. This party is the
central entity managing the system. The operator has an interest in evaluating analytical functions
on the data collected by users. In certain scenarios, the precise details of these functions, however,
may be subject to trade secrets and should not be leaked to any other party. We thus assume
that the operator can hide all sensitive information inside Function Parameters (FPs) fp while
the publicly known function ∆ itself only provides the general structure. In real applications, FPs
correspond to transition matrices of neural networks [JVC18] or weights and features for linear
regression. Being the operator’s input to analytics computations they achieve the same level of
privacy as the users’ private data. Relying on FPs is without loss of generality [Val76] regarding
the class of computable functions. The operator may be corrupted and maliciously collude with
other corrupted parties apart from proxies (which does not affect user privacy).
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U O TSign Function ParameterUser Registration

Function Parameters Verify

Certificate

Registration Data Verify

Empty Logbook

Fig. 1: Overview of the preparatory tasks.

The Trusted Signing Authority T . Allowing arbitrary private FPs precludes any meaningful level
of privacy for the users. To prevent malicious operators from using FPs which trivially undermine
the users’ privacy, we assume the existence of a Trusted Signing Authority (TSA): Before using
FPs for computations, the operator has to let them be certified by the TSA to not violate privacy
requirements. We elaborate on the difficulties of this task in Appendix A.1. PUBA enforces that
only FPs certified by the TSA can be used during computations on the users’ data. The TSA is
an external entity and has to be trusted by users as well as the operator. We picture the TSA as a
privacy-defending donation-funded NGO (like the Electronic Frontier Foundation) or the Federal
Data Protection Officer.

Proxies P. PUBA allows arbitrarily many proxies to participate. Proxies are used for computing
analytical functions and to coordinate computations that require data from multiple users. We
assume proxies to provide the computational power and bandwidth of a regular server. Proxies
may be corrupted and collude with corrupted users. As long as proxies do not collude with the
operator, PUBA guarantees all user data to be hidden from proxy and operator. Any user may
potentially set up their own proxy, yet it is also possible that NGOs provide donation-funded proxy
servers.

2.2 Preparatory Tasks

Before users can participate in the system they have to register with the operator. Similarly, the
operator has to have FPs signed by the TSA before they can use them. Both tasks have to be
conducted only once (per user/FP respectively) before computations with them are possible. An
overview of these tasks is provided in Fig. 1.

Sign Function Parameter. Any function computed with PUBA is split in two parts: A generic
and publicly known function representation ∆ (e.g., a neural network with padded neurons) and
a corresponding set of FPs which determine the specifics (e.g., the transition matrices). These
FPs constitute sensitive data held by the operator. Before the operator can use any FPs for
computations, the TSA has to verify that the resulting function does not violate the required
privacy standards. To that end, the TSA verifies the FPs according (but not limited) to the
following criteria: 1) Is the output sufficiently general to not leak confidential user information? We
assume a public catalog of requirements FPs have to fulfill. This also provides feedback for the users
on the expected level of privacy. 2) Does this function use the slots of the UH according to their
specification? We generally assume that the specification of the UH—the semantic interpretation
of the individual slots—to be public knowledge. 3) Are there any additional leaks when combining
these FPs with any of the previously certified FPs? We model the verification function such that
the TSA can input all previously accepted FPs as auxiliary input. The actual Sign Function
Parameter (SFP) task is depicted in Fig. 1: The operator inputs FPs which are then checked by
the TSA against the privacy guidelines. If the FPs comply with the guidelines, the TSA provides
the operator with some form of certificate. Our protocol uses signatures on the FPs. This certificate
is a required input to any computation task that uses these FPs.

User Registration. Users store their private User History inside a personal logbook λ. Providing
the user with an “empty” logbook which contains an authenticated initial UH is the purpose of
the User Registration (UReg) task. The task is depicted in Fig. 1 and consists of three phases. In
the first phase the user identifies themselves. This triggers the second phase in which the operator
verifies that the user is not registered already—we require that each user can only have at most
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U OBookkeeping

Logbook
New Data

Signed Function Parameters
New Data

Computation resultUpdated Logbook

Fig. 2: Overview of the Bookkeeping task.

one logbook. Lastly both parties jointly compute the initial logbook containing an authenticated
UH. For most scenarios, the UH is supposed to start out empty. For scenarios where the initial
UH should contain some specific data, this task allows its computation based on appropriate FPs.
The logbook λ is a requirement for participation in any of the other tasks. The UReg task is the
only task identifying the user and only performed once.

2.3 Bookkeeping

A central focus of PUBA is privacy-preserving bookkeeping, which lets the operator and a user
manipulate data with certain guarantees for both parties. An overview of this task can be found
in Fig. 2.

Bookkeeping. The Bookkeeping (BK) task manipulates a single user’s data. While the main
purpose of this task is to provide an efficient targeted manipulation of the UH in an authenticated
yet privacy-preserving way (such as adding or reseting individual values), the task optionally per-
forms lightweight direct analytics of the user data according to an application-specific function ∆
and the certified FPs. This enables manipulations of the UH based on its current values, which
may be required for scenarios such as fraud detection where the decision (to be recorded) whether
a transaction is granted or not depends on a risk level stored in UH. The main part—authenticated
manipulation of the UH—is done without leaking the authenticated and private data stored in the
UH to the operator. The UH is updated using Update Information UI = (α, s,a). These contain
three consecutive operations defined by three maps which are output by ∆ during the computation.
The first map α defines a permutation of the contents inside the UH. The second map s determines
which values of the UH are set to new values directly, we call this direct update in the following.
The final map a is defined by a vector of additive updates which will be applied to the values of
UH, we call this vector additive increment. While the additive increment is hidden from the oper-
ator, the permutation and direct update are learned by both parties and hence subject to privacy
considerations during auditing with the TSA to ensure that they leak no personal information on
the user. Of course, if permutations and direct updates are not needed, the user can skip them
in favor of a more efficient updates using only the additive increment. The chosen three-operation
update mechanism is a tradeoff between what is usually required for (basic) bookkeeping appli-
cations and what can be efficiently implemented (using zero-knowledge proofs and homomorphic
commitments).

The UH remains authenticated because 1. the operator knows that the input was authenticated,
and 2. the correctness properties ensure that the data was manipulated correctly.

2.4 Outsourcing Analytical Computations

We assume users to have relatively weak hardware incapable of securely computing analytical
functions like neural networks efficiently. To still enable these costly computations we involve an
additional party—the proxy—which provides the computational power and bandwidth required
to perform such computations. As long as the proxy does not collude with the operator it learns
no secrets or even analytical results from participation. A corrupted proxy also poses no risk for
the operator’s privacy. Involving a proxy enables synchronization of analytical tasks which require
private data from several users. The basic workflow for outsourcing analytical tasks is shown in
Fig. 3; note that the three different tasks involved in this cannot be scheduled arbitrarily but have
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Fig. 3: Overview of tasks for outsourcing computations.

to be conducted top to bottom. The general workflow first lets the user distribute the logbook
containing their current UH to a proxy of its choice and the operator using the Outsource task.
These shares are then used by proxy and operator for computing the analytical function using the
Outsourced Analytics task. This can potentially cause updates on the UH which follow the same
three basic operations (permutation, direct update, additive increment) that were also used for
the Bookkeeping task. Again, we want to hide the additive vector applied to the User History and
thus use a similar mechanism as during the BK task, only that the values relevant for the user are
temporarily stored by the proxy and hence masked with One-Time Pads. The update can later be
applied by the user by means of the Update task which also re-enables the Outsource task for that
user.

Outsource. To prepare the computation of an analytical task the Outsource (OS) task is con-
ducted between user, proxy and operator as shown in Fig. 3: The user inserts their current logbook
which contains the latest authenticated User History. A snapshot of this is shared between the
operator and proxy for use in the computation while the user receives a new logbook which is
identical to the old one except that it is now marked as having been outsourced.

Outsourced Analytics. Using the shares obtained from the OS tasks, proxy and operator can
now conduct the actual computation. This is depicted in Fig. 3 as well. The function is computed
on the private user data using any secret-sharing based MPC framework. The operator learns the
desired analytical result directly. Information relevant for the user is masked and output to the
proxy; the users fetch the data and reconstruct it at their convenience but the proxy does not learn
the data. Computation again follows the function ∆ and requires validated FPs from the operator.

Update. As mentioned before, the results of Outsourced Analytics can be used to update the
user data. To apply these to the latest UH, PUBA provides the Update task (see Fig. 3). This also
re-enables the Outsource task for their logbook. The analytical result destined for the user is for-
warded to them. Both the operator and proxy input the share they obtained from the Outsourced
Analytics task. These shares contain the updates for the UH, the computation results relevant for
the user and additional information to detect tampering of the shares. The user inputs the latest
UH and obtains a new authenticated UH which was updated using the same mechanism as used
in the BK task.

The triplet from Fig. 3 is non-blocking regarding further Bookkeeping tasks: A user can out-
source the latest User History in an Outsource task, running analytics in the “background”, and
then update the UH using the Bookkeeping task arbitrarily often before participating in the Update
task. As mentioned, this is, e.g., desired in scenarios like targeted advertising. We stress, however,
that the triplet is blocking with respect to further analytical tasks (amongst others, to hamper
denial of service attacks on proxies and operator): After executing the Outsource task the user has
to successfully perform the Update task before it can call Outsource again. This implies that the
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User History input to the Update task has potentially been changed via successive Bookkeeping
tasks and significantly differs from the UH used during Outsource. Special care has to be taken
during function design to ensure that the update is still meaningful even after any number of
Bookkeeping tasks manipulating the UH in the meantime. This can, e.g., be done by defining a
separate portion of the UH which can only be modified by Update.

2.5 Security Guarantees

This section discusses the security requirements in an informal fashion based on which we designed
an ideal functionality in the UC framework (cf. Section 2.6).

The operator expects authenticated inputs and correct analytical results, thereby hiding po-
tential trade secrets. In particular, we desire the following security requirements for the operator:

Owner Binding. Users can only use their own User History. Even corrupted users cannot effi-
ciently steal an honest user’s UH.

History Freshness. No user can use an outdated User History for any of the Bookkeeping,
Outsource or Update task: The same UH can never be used twice without the operator noticing.

History Unforgeability. The User History can only be changed through task executions. It is
computationally infeasible for a user to create a User History with arbitrary values that will be
accepted by the operator. This hampers Model Extraction Attacks [TZJ+16] in which the user uses
targeted inputs to steal the FPs.

Uniqueness. Each user can have at most a single logbook. It is not efficiently possible for a user
to own two valid logbooks at the same time.

Function Privacy. The Function Parameters input by the operator remain private: only the
TSA is allowed to learn them. Other parties only learn the output of the function computed with
these FPs.

Any user interacting with PUBA expects privacy of the collected data throughout different
interactions:

Unlinkability. The leakage is limited to information that enables identifying the user during the
User Registration task as well as coupling a consecutive tuple of Outsource, Outsourced Analytics
and Update to the same anonymous user. Other than that, leakage is limited so as to not leak
any information that enables the operator to link task executions to the same user. We discuss the
amount of information leaked in each task in Appendix B.

Input Privacy. The user does not reveal anything about the UH that cannot be derived from
the result of the computation.

Function Parameter Binding. Computations can only be performed on FPs which were previ-
ously certified by the TSA. It is not efficiently possible for the operator to use uncertified FPs.

2.6 The Ideal Functionality F(∆)
PUBA

We introduce the UC functionality F (∆)
PUBA for PUBA in Appendix D. For space restrictions we

only provide a brief intuition of the functionality in Fig. 4. It is designed such that it fulfills the
requirements from Section 2.5. For an introduction to the UC framework, see Appendix C.1.

Our functionality internally manages all the User Histories. This ensures that the only way to
change a UH is by interaction through the individual tasks. Inside the functionality the data is
linked to the user via their pid which by UC conventions cannot be changed. If a user queries the
functionality it fetches the latest UH that belongs to that user and uses these values for the desired
task. This directly models Owner Binding, History Freshness and History Unforgeability directly
into the functionality.

We use the same idea to ensure the Function Parameter Binding property: The state of the
functionality contains a list fFP that contains all the FPs that were verified by the TSA to be used
for a given task. For any task where FPs are required the functionality aborts if the input is not
in the list fFP, and the list can only be expanded using the Sign Function Parameter task.
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Functionality F (∆)
PUBA (excerpt)

F (∆)
PUBA facilitates Privacy-preserving User-data Bookkeeping & Analytics. The function to be computed

is specified by the global parameter ∆. It is running with an operator O, a signer T , a polynomial
number of proxies P, and polynomial a number of users U .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. State:
The functionality stores:
A mapping fFP(task , n) which maps a tuple task ∈ {UReg, {BK(k), OA(k)}Kk=1} and n ∈ N to
Function Parameters fp that can be used for the resp. task.
And for each registered user, the functionality stores:
– The pid pid .
– The latest User History UH.
– A flag that is set iff that user is participating in an ongoing Outsourced Analytics task.
– A (possibly empty) tuple of information for an ongoing Outsourced Analytics task:

pidP : the pid of the specified proxy.
k : specifies the function to be computed by ∆.
ssid : the Subsession Identifier of the Outsource call.
UH: the snapshot of the User History when Outsource was queried.
inU : the additional input used by the user.

– A (possibly empty) tuple containing the results of an Outsourced Analytics task that were not
yet fetched during the Update task:
ssid : the Subsession Identifier of the Outsource call.
UI: the update consisting of a permutation α, a direct update s and an increment a for the
latest UH.
outU : the additional output relevant for the user.

2. Sign Function Parameter:
(a) On input (SFP, inT ) by pidT , and (SFP, fp, task , inO), abort if ∆(SFP, fp, task , inO, inT ) = 0 or if

there is some ` for which fFP(task , `) = fp.
Otherwise, let ` be min` : fFP(task , `) = ⊥ be the first free slot of fFP. Set fFP(task , `) := fp and
leak (task , `) to the adversary. Then output (ok) to O and T .

3. Bookkeeping:
(a) On input (BK(k), fp, inO) by pidO, abort if there is no ` ∈ N for which fp = fFP(BK(k), `).

Otherwise, leak ` to the adversary.
(b) On input (BK(k), inU ) by pidU , once the first operator message has already been handled, load

the User History associated with pidU and abort if UH = ⊥.
Compute ∆(BK , fp, k ,UH, inU , inO) to obtain outputs (UI, outU , outO). Interpret UI as
(α, s,a).
Set UH′ := α(UH), then for each entry s[i], if s[i] = ⊥ then set UH′′[i] := UH′[i], and otherwise
set UH′′[i] := s[i]. Finally, set UHnew := UH′′ + a and update the stored for pidU as UHnew.
Output (α, s,a, outU ) to U and (α, s, outO) to O.

...

Fig. 4: An excerpt of the ideal functionality F (∆)
PUBA.
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The functionality is parameterized by the function-specific ∆ which specifies the computations
for a given scenario. Its first parameter always specifies the task; UReg is for User Registration,
SFP stands for Sign Function Parameter, BK for Bookkeeping, and OA for Outsourced Analytics.
As there might be several (K ∈ N) possible functions for BK and OA we specify by k ≤ K the
function that is to be computed. The remaining parameters only depend on the first parameter
that specifies the task.

We assume that a list of privacy-requirements that FPs have to fulfill for any task in order to be
accepted is also contained in ∆. Those are checked in the SFP task by the functionality to ensure
that any protocol realizing this functionality allows only FPs that fulfill the given requirements.

Modeling Input Privacy and Function Privacy is done by defining the functionality such that
it does not leak any information that allows the adversary to reconstruct any of the inputs.

Not leaking the user’s identity is a more challenging task. In UC the functionality generally
reports to the adversary (and hence to the simulator in the ideal world) whenever an input has
been received; the leak contains the task description and the pid of the calling party. To ensure
Unlinkability our functionality does not leak the pid of the user to the adversary4 (cf. Appendix B)
but only that input from any user has been received. It is then up to the simulator to report
messages correctly without getting the pid directly.

3 Instantiation

This section sketches our instantiation πPUBA of PUBA, see Appendix E for the full version.

3.1 Cryptographic Building Blocks

We make use of the following building blocks. For formal definitions see Appendix C.

An IND-CPA secure symmetric encryption scheme. Parties exchange keys to set up a secure
channel before starting a task. The resulting shared secret key is used as symmetric key by both
parties to encrypt any message that belongs to this task. The parties encrypt those messages using
an IND-CPA secure symmetric encryption scheme. AES [DR02] can be used for that purpose.

A structure-preserving EUF-CMA-secure signature scheme. To ensure the integrity of the log-
book, we use an EUF-CMA-secure signature scheme which is compatible (structure-preserving)
with our zero-knowledge proofs. A possible instantiation is [AGH+11].

An additively homomorphic, structure-preserving commitment scheme. Each user stores data
inside their User History alongside additional information (see Section 3.2) to which it needs to
commit. We require the scheme to be homomorphic, unconditionally hiding and computationally
binding. These requirements are satisfied by [AKO+15].

A Non-Interactive Zero-Knowledge Proof of Knowledge scheme. This scheme is used by the
user to prove that certain operations have been performed correctly. It needs to be extractable and
zero-knowledge. Groth-Sahai proofs [GS08] satisfy our requirements.

A Robust Secret Scharing scheme. We use a robust secret sharing scheme, which lets a party
create shares of a secret in such a way that (1) the recipients can verify the integrity of the received
shares, and (2) tampering with the shares can be detected during reconstruction. Unlike verifiable
secret sharing which only protects against a malicious dealer, robust secret sharing also protects
against recipients trying to manipulate their shares in order to change the reconstructed output.

A pairing group.Wemake use of an asymmetric pairing group gp = (G1,G2,GT, e, p, g1, g2). The
groups G1, G2 and GT of prime order p are cyclic groups with generators g1 and g2. Identification
of a user relies on the hardness of the Co-CDH problem [BLS04], which asks to compute gx2 given
g1, g2, g

x
1 . The Co-DH assumption is implied by the SXDH assumption [GS08] we use to instantiate

Groth-Sahai proofs.

4 The one exception here is User Registration which is the only identifying task for the user.
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3.2 The User Logbook

We denote by λ the logbook containing the data stored by a user:

λ =
( UH

comUH
unvUH

,
ser

comser
unvser

,
lin

comlin
unvlin

,
id

comid
unvid

, σ
)

(1)

The logbook contains all the data required to maintain the User History and to anonymously
interact with the operator.

The User History UH. The key component of the logbook is the User History. It is a vector of
Zp elements that represents the authenticated data collected by the user.

The Serial Number ser . The serial number is a single Zp element that uniquely determines a
revision of a logbook. It is unique with overwhelming probability in that throughout the lifetime of
PUBA there are no two logbooks (neither belonging to different users nor to the same user) that
share the same serial number.

The Linking Number lin. We require linkability inside the triplet for outsourcing computations:
consecutive tasks of Outsource, Outsourced Analytics and Update have to be linked to the same
user as otherwise the data outsourced during the Outsource task cannot be used during Outsourced
Analytics and the changes of the resulting update cannot be applied to the correct User History
during the Update task. We thus use an additional Zp element that links these executions for all
three parties involved in outsourcing computations, which the user stores inside the logbook. If no
data has been outsourced since the latest update then the linking number is 0.

The Identity id . The user has a fixed private identity which is represented as a secret Zp element.
It is randomly chosen during User Registration and is never directly revealed to anybody. To prove
ownership of the logbook, knowledge of id has to be proven.

The Commitment Information com, unv and Signature σ. To ensure authenticity the operator
generally signs all values inside the logbook. However, the signature is not on the values directly—as
this would conflict with the users privacy requirement—but on commitments thereof. This is why
the user not only stores the values inside the logbook but also the commitments that were used by
the operator to compute the signature. As those are part of the witness to generate zero-knowledge
proofs, the user also stores the corresponding unveil information.

The final value in the logbook is a signature by the operator that ensures integrity of the
commitments on the UH, the serial number, the linking number and the identity.

3.3 General Principles

For every task involving the user, our protocol begins and ends with the same two mechanisms:
The authenticated input mechanism ensures the user enters a fresh and authenticated logbook into
the interaction while the updating mechanism provides the user with a new valid logbook when
the task is finished.

Authenticated Input Mechanism. At the start of each task the user owns a valid logbook λ
containing the data shown in Eq. (1). To prove validity of the logbook to the operator the user first
rerandomizes all commitments com∗ to commitments c̃om∗ by homomorphically adding a commit-
ment to 0. In the second step the user computes a Zero-Knowledge proof Π showing that they know
(1) commitments com∗ on the same values as the c̃om∗ and (2) a signature σ that authenticates the
original commitments under the verification key of the operator. The rerandomized commitments
c̃om∗ and proof Π are sent to the operator for validation. The above process is only conducted for
values the operator is not supposed to learn, usually (UH, lin, id). In case the user wants to fetch
updates from an outsourced analytical computation or wants to start one and needs to show the
logbook contains lin = 0, the hidden values are (UH, id) only. The serial number ser is always
revealed at the start of a task and checked by the operator (using a database lookup) to make sure
the user does not try to use an outdated logbook for a new task.

Updating Mechanism. At the end of each task the user and operator jointly compute a new
valid logbook λnew to be used in the next task. To do so, the operator needs to reliably learn
commitments (comnew

UH , comnew
ser , comnew

lin , comnew
id ) to all new values (UHnew, linnew, sernew, idnew)
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and sign them for the user without learning the values themselves. We explain how commitments
to each of the values are obtained by the operator.

The new UH is calculated in two steps: Permutations and value setting by the user and additive
increments by the operator. If there are updates which are not compatible with the homomorphic
property of the underlying commitment scheme—i.e., permutations and or data fields which should
be set to entirely new values—the user performs those updates on their old UH, providing the
operator with a new commitment value com′UH to the updated version and a zero-knowledge proof
that they have done so correctly. For updates compatible with the commitment scheme—i.e.,
additive increments—the operator directly learns a commitment coma of the additive increment
which they can add to com′UH to obtain comnew

UH . In case there are only additive updates, the first
step is skipped and the user directly adds coma to the commitment c̃omUH they learned at the
start of the task.

A new serial number sernew is coin-tossed similar to [Blu81] by the operator and user. The
modified protocol works in two rounds: (1) The user picks a random share sernew

(U) and sends a
commitment com(U) of that value to the operator. (2) The operator picks a random share sernew

(O) ,
computes a commitment com(O) to that value, calculates the commitment comnew

ser := com(U)+com(O)

to the complete value sernew = sernew
(U) + sernew

(O) (without knowing sernew
(U) ) and sends their serial

number share alongside the commitment and unveil information to the user.
The linking number lin of the logbook stays the same for most interactions. Whenever the

linking number is changed (in Outsource and Update) the operator knows the new value linnew,
so computing a new commitment comnew

lin to sign for the user is no problem. If linnew = lin, the
operator can use the rerandomized commitment comnew

lin := c̃omlin from the old logbook.
The ID id of course stays the same for one user throughout all tasks and hence the operator

can use the rerandomized commitment comnew
id := c̃omid as well.

The operator signs all these commitments (comnew
UH , comnew

ser , comnew
lin , comnew

id ) to create a signature
σnew for the new logbook and sends it to the user. Finally, the user verifies the validity of the new
logbook λnew.

3.4 Individual Tasks

Let us explain how the central tasks of Bookkeeping, Outsource, Outsourced Analytics and Update
are realized by πPUBA.

Bookkeeping. The Bookkeeping task is almost completely covered by the authenticated input
and updating mechanisms explained above. Between the two mechanisms, the user verifies that
the operator uses correctly signed Function Parameters (c.p. Section 2.2) for the task and both
of them jointly compute the update information and additional outputs according to ∆. We give
more information on this MPC computation in Section 3.5.

Outsourcing Analytical Computations. An overview of how πPUBA realizes outsourcing analyt-
ical computations can be found in Fig. 5.

For the Outsource task the user reveals the logbook’s linking number lin to be zero when
proving the validity of their input logbook. Additionally, the user provides additive robust secret
shares of their UH UH and their auxiliary input inU to the Outsourced Analytics, and of several
one-time pads for the proxy and operator, respectively. The one-time pads will be used to let the
user collect their update information and computation outputs in a privacy-preserving manner. The
secret shares are also proven to be computed correctly. Proxy and operator check the values using
the robust secret sharing scheme and, using the values obtained from the proxy in this process, the
operator checks the zero-knowledge proof to ensure that the shares were created correctly. Proxy
and operator then coin toss a new linking number linnew to be used for this Outsource/Outsourced
Analytics/Update triple. Again, as the last step the operator provides the user with the necessary
information to obtain a new valid logbook, which only contains a new serial and linking number
but the same UH as before.

As Outsourced Analytics does not include the user, the general principles from Section 3.3 do
not apply to this task. Instead, the proxy verifies that the operator uses correctly signed FPs fp
for the computation. To do so the operator sends a commitment comfp as well as a signature σfp
on the commitment to the proxy who checks that the signature verifies under the key of the TSA.
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Fig. 5: Simplified depiction of πPUBA for outsourcing computations.

Afterwards both jointly compute ∆ via FPPA. Note that—apart from the update information the
operator is supposed to learn—the update information and outputs for the respective users are
one-time padded to retain privacy from both proxy and operator.

In the Update task the user again proves their input logbook to be valid, revealing the linking
number lin so the proxy and operator can hand out the correct update information and user output
from Outsourced Analytics. The user unmasks the one-time padded information from the proxy
and operator, respectively, checking them for consistency. The remainder of the task again consists
of the user and operator conducting the logbook updating mechanism. The linking number linnew

is set to zero again in this process so the user will be able to outsource a new analytical task.

3.5 Wrapping the Computation of ∆

We constructed our protocol in a modular way. While our contribution lies in the construction of
a privacy-preserving bookkeeping mechanism built around any existing MPC framework, we move
the correct usage of the MPC framework itself into an own subfunctionality FPPA. We only provide
a description of the subfunctionality that is sufficient to understand the main body of the paper.

The key reason why we cannot use a general MPC framework directly is because we require
extra steps to ensure that both parties input the same data that was previously verified by our
protocol. However, those extra steps can be achieved by using any protocol for secret-sharing-
based MPC and expanding the computed function accordingly. Moreover, we stress that for a
given instantiation of ∆, more efficient instantiations of FPPA making non-black-box use of ∆ (for
example by letting the user prove in zero-knowledge that the function was computed correctly) are
also possible.

We use the underlying computation mechanism to extend the following tasks:

User Registration. Here, user and operator use the actual MPC framework for computing the
initial UH based on the (unauthenticated) inputs of both parties. Essentially, the added code
verifies before the computation that the operator used the same FPs for the MPC that were also
verified earlier. After the actual output of ∆ has been computed we require additional steps to
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compute the initial commitment on the UH; from FPPA, the operator only learns the commitment
on the UH and not the actual values.

Bookkeeping. Before starting the actual computation of ∆ we again have to verify that the FPs
match the ones that were verified before. This is the same trick used during UReg. We use a similar
trick to ensure that the user uses the same UH that was verified before. Furthermore, the additive
increment of the update should not be learned by the operator, thus, a commitment on this vector
is output. The operator then only learns the commitment and the user learns the plain value and
unveil information.

Outsourced Analytics. Again, the FPs have to be verified. Our protocol for outsourcing the latest
UH is sketched in Fig. 5: During the Outsource task it lets the user create robust secret shares of
their User History for the proxy and the operator and prove that those are indeed shares which
sum up to an authenticated User History. The proxy and operator then only insert their respective
shares and the wrapper ensures that 1. the shares are reconstructed correctly, and 2. computation
only continues if no tampering is detected. More details can be found in Appendix E.

The function is designed to output the required maps for our three-stage update mechanism:
the permutation α, the direct update s, and the additive increment a. Since the operator is again
not supposed to learn a, the wrapper adds code that computes an honest commitment and cor-
responding unveil information. As the user cannot fetch their relevant output directly those are
routed through the proxy. To ensure that the proxy does not learn any of the values in the process,
we let the user not only create robust shares of the UH but also of five One-Time Pads (OTPs).
The first three OTPs hide α, s, and a, respectively. The fourth one hides the decommitment in-
formation on a, and the final one is used to mask the function outputs relevant for the user. The
additional code hence has to reconstruct and apply these masks to the function output and output
all these masked values to the proxy.

3.6 Achieving Security Guarantees

In this section we argue informally why our protocol πPUBA satisfies the security guarantees from
Section 2.5 under the assumption that the underlying building blocks from Section 3.1 fulfill their
respective properties.

Achieving Owner Binding. Generating a logbook on behalf of another user is infeasible, as this
would require showing ownership of its public key which violates the co-CDH assumption. Also,
the adversary cannot successfully steal another user’s logbook as users never interact with each
other, and communication uses confidential channels. Pretending the adversary’s logbook belongs
to a different user is also prevented: Given the (perfect) extractability of the NIZKPoK this would
result in a different witness, which in turn means that (1) the adversary used different unveil
information for the commitment, breaking the binding property, or (2) forged a signature on a new
commitment, breaking EUF-CMA security.

Achieving History Freshness. History freshness follows from the online-check of serial numbers.
A user trying to re-use an old UH has only three options: (1) Lie during the ZK proof that
the rerandomization of comser was correctly performed, thus breaking the soundness-property, or
(2) open their coin toss commitment com(U) during the creation of the new serial number to a
different value, which would break the binding property, or (3) compute a new signature σ on a
changed commitment com′ser that verifies under the operator’s verification key, which would break
the unforgeability of the signature scheme.

Achieving History Unforgeability. The logbook entries are only used as witnesses for ZK proofs,
but each of them comes with a commitment signed by the operator. Thus history unforgeability
intuitively holds for the following reasons: (1) The soundness property of the ZK scheme ensures
that proofs containing forged entries will be rejected with overwhelming probability. (2) The binding
property of the commitment scheme and the unforgeability of the signature scheme further disable
attacks where the commitments on the entries are opened to different values or where the signature
on a manipulated entry is forged.

Achieving Uniqueness. During the task for User Registration the operator fetches the public
key of the user from FReg, which models a Public-Key Infrastructure (PKI) in UC but with the
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difference that each user can only register one key. If the public key the user tries to use during
User Registration has already been used the operator aborts. Thus uniqueness follows from the
security properties of the PKI.

Function Privacy. Function Privacy during the actual computation follows from the security
properties of the MPC framework. In the surrounding protocol the FPs are only ever sent as
commitments; the hiding property of the commitment scheme hence ensures that this leaks no
information about the actual FPs.

Achieving Unlinkability. We use the Zero-Knowledge property of the NIZKPoK scheme and the
hiding and rerandomization property of the commitment scheme: Any data that could be used to
link a user to a previous interaction is only used as witness for ZK proofs and the operator only
sees commitments thereof. As the commitments are rerandomizable they do not leak information
regarding their previous use.

Achieving Input Privacy. Computation of the function∆ inherits input privacy from the security
of the functionality FPPA. In the surrounding protocol users only use UH in three settings: (1) Inside
commitments, where the hiding property ensures that this leaks no information. (2) As part of the
witness in ZKs proofs, where input privacy follows from the Zero-Knowledge property. (3) For
secret sharing during the Outsource task, which is information-theoretically secure as long as the
two recipients—the operator and the proxy—do not collude.

Function Parameter Binding. For using FPs which were not verified by the TSA a malicious
operator would have to: (1) forge a signature σfp in the name of the TSA, which would break the
unforgeability of the signature scheme, or (2) open a valid commitment comfp to new (invalid) FPs
fp′ by breaking the binding property of the commitment scheme.

3.7 Formal Security Statement

As already mentioned in Section 2.6 we prove security of our protocol in the Universal Compos-
ability framework by showing indistinguishability against an ideal functionality F (∆)

PUBA. In this
section we elaborate on the achieved security level.

Set-Up Assumptions. We formally conduct our investigation in the asynchronous UC frame-
work with anonymous abort against static corruption of an arbitrary subset of parties that does
not include both the proxy and the operator at the same time. Following strong impossibility
results [CF01] regarding constructions in the UC-framework, most instantiations require set-up
assumptions: Building blocks with a pre-defined behavior that are generally used in a black-box
way. This means that those too can be interpreted as functionalities which are controlled entirely
by the simulator—providing an advantage over real-world adversaries. The set up assumptions can
be instantiated by any protocol realizing this functionality or even by using trusted hardware.

We require the following set-up assumptions:

FCRS : Common Reference String (CRS) A CRS is a string visible to all parties, sampled
from a publicly known distribution.

Fauth : Authenticated Channels Classical communication in the UC framework is unauthenti-
cated; all communication goes through the adversary, who can read and arbitrarily change the
messages. In contrast, authenticated channels enforce integrity of the communication between
parties: While messages sent through this channel are still visible to the adversary they can
neither be altered by a third party nor be sent in the name of a different party.
To ensure user privacy we stress that only the operator, the proxy and the TSA send authen-
ticated messages; users send messages over unauthenticated (hence anonymous) channels.

FKE : Key Exchange (KE) The functionality for secure KE allows two parties to negotiate a
shared secret key over an open channel. The resulting key is known only to those two parties and
can be used to set up confidential channels by using the shared key for symmetric encryption.

FBB : Bulletin Board (BB) The BB is a common abstraction to model a Public-Key Infras-
tructure (PKI). Parties can register their own public keys and fetch keys from other parties.
Unlike real PKIs, BBs allow users to register a key exactly once and stored keys do not expire.
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Security Theorem. We provide our ideal functionality F (∆)
PUBA in Appendix D and a proof of

the following theorem in Appendix G:

Theorem 1. Let Z be any PPT-environment that corrupts a subset of parties that does not contain
the operator and the proxy at the same time and that does not contain the TSA, and let the building
blocks be instantiated as described in Section 3.1. Then it holds that:

πPUBA
(FCRS,Fauth,FKE,FBB,FPPA) ≥UC F (∆)

PUBA

This means that the protocol πPUBA is at least as secure as F (∆)
PUBA. While F (∆)

PUBA had to be
deferred to the Appendix due to the page limit, we stress here that it fulfills all the requirements
stated in Section 2.5. The UC proof implies that they maintain their validity regardless of which
environment they are executed in.

4 Application: Fraud Detection

In the European Central Bank’s latest report on card fraud [Eur18] published in 2018, the total
value of fraudulent transactions at points-of-sale in 2016 amounted to about 342 Million Euro. This
number sounds high, yet it only amounts to 0.008% of the overall card transaction value. This small
ratio is achieved mainly thanks to the use of “strong authentication” methods like Chip&Pin as well
as fraud detection mechanisms required by the 2nd European Payment Services Directive (PSD2).

We define a privacy-preserving mobile payment system including fraud detection capabilities.
The operator in this system is the bank that offers the mobile payments service to its customers.
These are the users in our system who interact using a smartphone App. Fraud detection con-
sists in monitoring a customer’s transactions for anomalies or typical fraud patterns. This can be
done based on simple rules or sophisticated machine learning algorithms. Due to the real-time
requirements, the combination of fraud detection with privacy for mobile payments is particularly
challenging. To this end, we consider the following two-tier mechanism: We force the user to per-
form a more complex machine learning based fraud detection with the operator if some threshold
of payment transactions has been reached, resulting in some risk level, and a simple but faster
rule-based fraud detection during each payment at a point-of-sale. The latter takes the risk level
into account and decides whether the current transaction is accepted or declined.

We assume that a transaction record consists of the following data: a bit indicating whether the
transaction has been accepted or declined, a timestamp, the geographic location the transaction
took place, the type of shop (e.g., grocery store, jewelry store, etc.), and the transaction value. The
User History stores the latest T transactions along with the account’s balance and risk level and
some values that support the fraud detection mechanisms: a limit on the maximum value a single
transaction can have and a value that indicates when the next tier-2-fraud detection mechanism
should be executed. In the following we sketch the individual tasks of the system.

Registration. The user registers with the system and gets a new account with an empty balance.

Top-Up. The user can top-up the balance of his account, which is internally realized with a
Bookkeeping task. Note that only an addition is needed to update the UH here.

Payment (with simple fraud detection). Before a payment is conducted, it is first checked
whether the payment is allowed or the threshold of payment transactions has been reached and a
risk calculation has to be performed first. Then, a light-weight fraud detection mechanism is exe-
cuted (based on the risk level). Depending on the result the payment is either accepted or denied.
Internally the Bookkeeping task is used.

Risk Calculation (with complex fraud detection). After a certain number of payment transaction
have been executed, a more complex fraud detection algorithm has to be executed. We assume this
complex fraud detection mechanism to be based on machine learning (e.g., logistic regression, as
suggested by [Cam18; IMS20]). Since this is a computationally expensive operation, this task is
realized with the Outsourced Analytics task. The fraud detection mechanism takes all transactions
in the User History as well as the current risk level into account and computes a new risk level.

A more detailed description of this application—including specifics of how the function ∆
is instantiated—can be found in Appendix F.1. We estimate the application’s performance in
Section 5.4.
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|UH| Reg. Bookkeeping Outsource Update∑
ZK

∑
ZK

∑
ZK P

∑
ZK

10 6 3 22 16 20 10 4 20 12
100 6 3 57 51 30 10 15 54 44
200 6 3 96 90 42 10 26 93 80
400 6 3 176 170 60 10 44 172 152
600 7 3 254 248 79 10 65 251 225
800 7 3 332 327 97 10 84 331 299

1000 7 3 411 405 117 10 105 408 370

Table 1: Running times for operator/proxy in ms.
∑

denotes the total operator running time, ZK
the portion of that spent verifying the zero-knowledge proof and P denotes the running time of the
proxy during Outsource. Proxy running time during Update is <1ms for all User History sizes.

|UH|: 10 100 200 400 600 800 1000

Registration 1.6 1.6 1.6 1.6 1.6 1.6 1.6
Bookkeeping 5.8 11.8 18.4 31.6 44.8 58.0 71.2
(only add) 4.1 4.1 4.1 4.1 4.1 4.1 4.1
Outsource 8.9 34.1 62.0 118.0 174.0 229.9 285.9

Update 7.0 22.6 40.0 74.8 109.6 144.4 170.2

Table 2: Data exchanged in relation to User History size in kB.

5 Implementation

We evaluated the practicality of PUBA by measuring execution times of a practical implementation.
Since network communication depends on various external factors, we omitted communication
times and only measured local computation.

5.1 Bookkeeping

Evaluation of the user side is done on a Nexus 5X smartphone released 2015 featuring a Snapdragon
808 with 2× 1.8GHz + 4× 1.4GHz running Android 8.1.0 (Phone 1) and a Galaxy S8 smartphone
released 2017 featuring an Exynos 8895 with 4× 2.3GHz + 4× 1.7GHz running Android 9 (Phone
2). We executed the code for operator and proxies on much more powerful servers, equipped with
an AMD Ryzen 9 3900X with 12× 3.8GHz. In all cases our implementation makes use of 6 threads
to speed up cryptographic operations.

We implemented our protocol in C++17, employing the open-source library RELIC toolkit
v0.5.0 [AG20] for group operations. The required building blocks were instantiated as suggested
in Section 3.1: for signatures we use the scheme from [AGH+11], for commitments we imple-
mented [AKO+15], and for the NIZKPoK scheme we use the method from [GS08; EG14]. Our
building blocks are instantiated over the pairing-friendly Barreto–Naehrig Curves Fp254BNb and
Fp254n2BNb [AKL+11; BN06].

We averaged over 50 executions of each protocol task for User History sizes of 10, 100, 200, 400,
600, 800 and 1000 in order to get representative results. For Bookkeeping we implemented both the
three-stage update comprising a permutation of User History, setting values, and adding values,
as well as a simplified version where no permutation and direct update are done. The concrete
choice of permutation has no impact on performance, whereas performance improves slightly the
more entries are set. Thus to provide a good lower bound, we performed a cyclic shift and then
set a single entry. Table 1 shows the results using a server for operator and proxy and Table 3
using a smartphone for the user side. When only performing addition during Bookkeeping (and no
permutation/setting of entries) it needs to communicate ≈4 kB regardless of the number of entries
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|UH|

P
ho

ne Registration Bookkeeping Outsource Update∑
O ZK Val

∑
O ZK Val

∑
PC O ZK Val

∑
O ZK Val

10 1 154 97 78 57 616 556 494 60 551 189 298 193 64 528 461 400 67
2 181 99 73 81 969 881 788 87 749 244 409 272 87 809 719 622 90

100 1 155 100 78 56 1559 1501 1432 58 1247 818 369 181 63 1541 1439 1319 107
2 176 96 71 80 2200 2116 2033 84 1750 1180 477 240 89 2102 2008 1842 92

200 1 223 116 86 84 2725 2616 2542 87 2088 1540 499 204 92 2868 2723 2484 124
2 175 96 70 79 3465 3382 3300 82 2959 2242 625 235 86 3353 3265 3011 90

400 1 241 122 91 118 5649 5530 5441 119 4309 3373 804 221 128 5633 5502 5015 130
2 178 96 71 82 6302 6217 6136 85 5603 4508 986 249 88 6422 6331 5902 93

600 1 240 120 88 120 9226 9103 9003 121 7073 5773 1182 252 126 9210 9079 8406 129
2 178 96 70 84 9695 9612 9519 84 8228 6801 1336 265 88 9978 9885 9269 92

800 1 242 121 90 122 11 899 11 775 11 672 125 9386 7763 1460 253 129 12 100 11 966 11 104 131
2 186 99 74 87 13 130 13 046 12 950 85 10 778 9020 1656 265 90 13 402 13 311 12 462 93

1000 1 245 121 90 123 14 667 14 539 14 443 129 11 440 9594 1708 256 131 14 940 14 807 13 763 130
2 189 100 74 92 16 383 16 290 16 213 91 13 447 11 377 1987 269 91 16 642 16 538 15 471 94

Table 3: Running time on user devices in ms.
∑

denotes the total user running time, O denotes
the online running time, ZK denotes the portion of that spent creating the zero-knowledge proofs,
Val the time spent validating the new User History (not included in the online time) and PC
precomputation time (also not included in the online time).

in the User History, and takes between ≈310ms and ≈440ms on Phone 1 and ≈460ms on Phone
2, while taking 14ms for the operator.

Overall, even for UH sizes where computation time on a smartphone exeeds 10 s, less than
300 kB of data need to be communicated. Thus, even when using mobile data, communication
times will mostly depend on network latency and in general be relatively short.

5.2 Analytics Computation

We implemented logistic regression inference using MP-SPDZ [Kel20], which allows for benchmark-
ing across a range of security models and protocols. As the cleartext modulus of the used curve
is not compatible with the implementation of homomorphic encryption in MP-SPDZ, we restrict
ourselves to protocols based on oblivious transfer with malicious security. For this we use MAS-
COT [KOS16]. As MP-SPDZ already implements logistic regression, we only had to choose the
number of features and whether to approximate the sigmoid function for faster computation. For
the former, we ran inference for 10, 20, 50, 100, and 1000 features, and for the latter benchmarked
both the established sigmoid function and the three-piece approximation [MR18]. The latter has
been found to deliver good results while being much simpler to compute in the context of secure
computation. This is because the restrictions to three linear pieces only requires two comparisons
and oblivious selections instead of exponentiation and logarithm. To define the computation do-
main, we used the order of the 254-bit prime field Weierstrass curve. This allows for a smooth
integration with our zero-knowledge proof.

Table 4 shows our end-to-end timings when running on AWS c5.9xlarge and m4.large instances.
The LAN times refers to the colocated setting. We simulate a WAN setting by adding a 100ms
roundtrip delay and a bandwidth restriction of 10Mbit/s. We only use one thread and about
300MB RAM for malicious security.

At the time of writing, the spot price in US East was USD 0.10 and 1.53 for m4.large and
c5.9xlarge, respectively. This results in a cost per computation ranging from USD 1.6× 10−5 to
USD 0.0032.
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No. features Precise sigmoid Approximate sigmoid
Strong LAN (s) LAN (s) WAN (s) MB Strong LAN (s) LAN (s) WAN (s) MB

10 3.60 5.06 94.86 591.74 0.32 0.59 11.61 69.71
20 3.62 5.07 95.12 593.29 0.33 0.60 11.93 71.26
50 3.65 5.11 95.84 597.94 0.35 0.64 12.58 75.91

100 3.68 5.19 96.90 605.68 0.38 0.71 13.53 83.66
1000 4.28 6.47 116.10 745.10 0.97 1.87 32.82 223.07

Table 4: Time and communication for logistic regression with two parties. “Strong” refers to
c5.9xlarge instances, otherwise we use m4.large.

5.3 Discussion

Our results show that, even on weak hardware compared to modern smartphones, for moderately
sized User History our protocol runs fast enough for a smooth user experience: A Bookkeep-
ing—which will be executed most frequently—runs in less than 3 s even including typical network
latency for User Histories with 100 entries. When Bookkeeping can be performed without the need
of permuting or setting User History entries, it runs in well under 1 s and can even support much
larger User History sizes. Outsource needs to transmit more data but is also used less frequently,
and a large part of the necessary computation is independent of the current User History state
(i.e. creating commitments to shares of one-time pads and the random shares for one of the two
parties) and can thus be done in the background in advance. This allows Outsource to have very
short online running time even for large User History sizes. Update on the other hand takes about
the same time as Bookkeeping. Thus, the main limiting factor for the size of the UH is the time
needed for Bookkeeping. This can be partially mitigated if the need of permuting/setting values
arises only sparingly or if only parts of the UH are affected. Then the whole UH can be split
into multiple parts where permuting/setting is done on some parts and a simple additive update is
performed on the other parts. Our evaluation also shows that Phone 2 was consistently slower than
Phone 1 even though the stronger processor would suggest otherwise. We are not certain about
the cause of this. Possible explanations are the introduction of new battery saving mechanisms in
Android 9, or the fact that Phone 1 has the stock google version of Android whereas Phone 2 has
vendor-specific modifications.

5.4 Performance of Fraud Detection

We evaluated our fraud detection application from Section 4 with a User History containing 100
elements, corresponding to a scenario where the last T = 19 transactions are taken into account
for analysis (5 entries per transaction plus previous risk level, number of remaining transactions,
transaction limit and balance). We consider these numbers to be realistic and discuss them in
Appendix A.3.

Since registration only needs to initialize the default risk level, number of remaining transactions
and transaction limit, this is independent of the UH size and takes the same time and data volume
as the registration task shown in Table 3 (i.e., 160ms for Phone 1 and 190ms for Phone 2 combined
user plus operator computation time excluding communication time and 1.6 kB data). Similarly,
the top-up task does not require any special computation and thus the results for bookkeeping
with only addition holds for this task (i.e., 330ms-450ms for Phone 1 and ≈490ms for Phone 2
combined user plus operator computation time excluding communication time and 4.1 kB data).

Fraud detection happens in two stages: A more complex machine learning based risk assessment
is performed regularly, which results in a risk score, a limit for individual payments and a limit
for the number of transactions before it has to be executed again. During each payment, simpler
rules based on the result of the risk assessment are checked. In our implementation we verified the
following two rules: 1. the transaction value is less or equal than the maximum allowed transaction
amount 2. the number of payment transactions the user can perform before the complex fraud
detection mechanism has to be run has not exceeded its limit. Additionally it is verified, that the
current balance is sufficient for the transaction. To do so, we use bulletproof rangeproofs [BBB+18]
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to let the user prove that it evaluated the simple rules correctly. These additional proofs take
≈200ms on Phone 1 and ≈185ms on Phone 2, and 17ms for the operator, independent of the UH
size. Thus, for 100 entries (corresponding to the last T = 19 transactions), this task takes a total
of 1.85 s/2.5 s (for Phone 1/2 resp.) on the user side and 80ms on the operator side (excluding the
communication time to transmit 22 kB of data) for 100 entries. Thus, when storing 19 previous
transactions, a transaction can be performed in under 3 s even when taking the communication
time into account. Increasing the number of previous transactions increases the computation time
on average by ≈1.5 s/≈1.6 s for Phone 1/2 resp. and 40ms for the operator per 20 additional
transactions.

For the outsourced risk calculation we used logistic regression on 100 features using approximate
sigmoid calculation and active security for the complex fraud detection mechanism. Our results
suggest that the whole outsourced risk calculation process can be completed in well under 5 s: ≈0.7 s
for outsourcing, ≈0.4 s for the logistic regression and ≈1.3 s for the update, plus communication
time between the user and operator/proxy.
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Appendix

A Discussion: On the limitations of our scheme

A.1 Verification by the TSA

A common problem of functions constructed using deep machine learning (such as neural networks)
is a lack of transparency regarding their behavior. Our framework suffers from the same problem
which even persists if we ignore function privacy for the operator; a user who has to compute a
neural network on private data does not automatically know what the network computes and how
the output is to be interpreted. A function that maps, say, purchases of a user to some abstract
class of advertisements relevant for that user is hard to distinguish from one that maps purchases
to an encoding that reflects the individual purchases on a fine-grained level.

In PUBA the problem is even harder as we additionally require function privacy for the operator;
only a Trusted Signing Authority is there to ensure that the operator only uses valid Function
Parameters which provide a sufficient level of privacy for the user. The TSA has the same problems
mentioned above: While it is straightforward to check whether a given machine learning model
indeed classifies as specified for randomly chosen inputs, a sufficiently complex model can be used
to hide backdoors [CLL+17] in the form of special inputs provided by the operator which would
break unlinkability and input privacy for any user. As it is highly unlikely that the TSA finds this
backdoor by using random testing, the model behaves normally for all inputs chosen by the TSA
with high probability and could even get certified. While we generally assume that the output of
the function is a discrete set of much smaller size than the input space—as is the case for both
applications we propose—we do not restrict PUBA to this behavior; using arbitrary output for the
operator requires special attention during the versification step.

While it is possible to implant a backdoor into the model given a sufficiently large output space
and a sufficiently complex model we stress that there are several different ways to detect—and
even to remove, although at the cost of overall accuracy—a backdoor. A survey on the scenario
itself alongside mechanisms to detect and remove a backdoor is given in [GDZ+20].

The generality of PUBA lets the operator create a model with a backdoor and submit it for the
Sign Function Parameter task, yet increasing progress in the field of backdoor detection [GDZ+20;
WYS+19] given only the final model makes it unlikely that these Function Parameters will get a
certificate. We hence require the TSA to perform a number of such tests in order for verification
mechanism to be sufficiently daunting for an operator that tries to use backdoors.

A.2 The Case of Aborts

Aborts are a common problem in MPC: If a party looses connection during a computation or
refuses to answer entirely then the computation can not be finished. This is also modeled into most
security frameworks. For example, in the asynchronous UC model we model our protocol in the
entire communication is managed by the adversary; parties can ask the adversary to transfer a
given message to an other party but the adversary is free to change any part of the message. Using
authenticated channels removes the adversaries capability ot change the message and secure chan-
nels additionally take the adversaries ability to read the message. Yet even with these precautions
the adversary is still able to drop messages at will.

For normal computations an abort only means that the parties do not get any output. But for
PUBA this means that the user is at worst left with no valid logbook if the abort happened after
the old logbook has been invalidated at the start of a task but before the new one has been created
and sent to the user. An additional case to consider is if the abort happens during an Outsourced
Analytics task. This leaves the user incapable of ever outsourcing data again as the linking number
will never be reset.

Yet we stress that dealing with aborts is straightforward and could easily be incorporated into
the protocol, albeit at the cost of a longer functionality and protocol description and a much more
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complicated security proof. But for completeness reasons we sketch here how the protocol can be
secured against aborts.

In total there are four tasks where the user is directly involved and where aborting in between
means that there is no logbook that the user can use and one task where an abort implies that
the user cannot outsource anymore. The four tasks where the user is directly involved in, namely
User Registration, Bookkeeping, Outsource and Update, we have to ensure that the mechanism
can not be abused to let a malicious user obtain two different logbooks. Thus we require that
the same messages that were sent before the abort will be sent in the next interaction again to
ensure that the reconstructed logbook will end up with the same serial number. So essentially the
reconstruction only finishes the protocol using the state both parties had during the abort.

The situation only becomes complicated if an abort occurs during an Outsourced Analytics
task. Without a reconstruction mechanism the user would be unable to outsource ever again, as
resetting the linking number lin to 0 is only possible in the Update task which requires a completed
Outsourced Analytics task. However, a slight modification suffices to deal with this case:

If an abort occurs during an Outsourced Analytics task then this abort only matters if no
output has been provided to the operator as parties generally get notified of the abort.5 Hence
the operator is aware that the computation involving data from a given linking number lin has
failed. The reconstruction task basically consists of the update task but with all three manipulation
vectors corresponding to ⊥. That is, the permutation α is the identity, the direct update s is ⊥
everywhere, and the additive increment is a = 0. This resets the linking number lin stored inside
the users logbook to 0 and thus enables future Outsource tasks for that user.

Note that this reconstruction mechanism can be used to restore a broken logbook; yet until
the reconstruction has been performed the user is locked from any further interactions, with the
exception of aborts during Outsourced Analytics where the user can still perform Bookkeeping
tasks.

A.3 On the Expressiveness of our Application Benchmark

We are no domain experts for fraud detection in mobile payments, and real-world parameters and
implementation details for use cases like fraud detection are not easily obtainable. The simplified
instantiations we benchmark in Section 5.4 should therefore be viewed as educated guess how real-
world systems could be parameterized. Some explanation for our parameter choices: On average,
we have 0.3-0.8 credit card transactions per day per person in Europe [Eur17]. So 20 transactions
per logbook (UH-size of 100) would cover about a month, while 200 transactions per logbook
(UH-size of 1000) would cover at least 8 months. Older transactions are also implicitly taken into
account by making the new risk level depend on the old risk level (and the new transactions).
Moreover, Logistic Regression seems to be a reasonable method for credit card fraud detection
(e.g., see [Cam18; IMS20]), therefore we used that for our analysis. The simple fraud detection
mechanism we implemented is most likely simpler that mechanisms used in practice. One could
of course extend the simple fraud detection we implemented with additional rules. Some ideas on
how the simple fraud detection mechanism could be extended are:
1. Look at the location and time difference between transactions and deny them if it is not

physically possible to travel the distance in that amount of time.
2. If the transaction amount is a lot higher than the average transaction amount, the number of

remaining transactions until the next calculation gets decreased by more than one.
3. Implement daily limits: a limit on the number of transactions that are allowed per day or a

limit on the total transaction value that is allowed per day or both.

It would be nice to study how good our system models fraud detection systems used in practice,
but that would be a research line of its own.

B Leakage of the Tasks

We claim in Section 2.5 that we ensure unlinkability: the operator can identify the user in the
task for User Registration and link the triplet of consecutive executions of Outsource, Outsourced
5 If the abort is happening in the real world, then we can assume standard techniques such as timeouts
can be used to determine that the message will likely never arrive.
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User Registration Bookkeeping Outsource Outsourced Analytics Update
– Output outO of
∆.

–Output
(α, s, outO) of
∆.

– Nothing. – Output ((αz , sz )z ,
outO) of the computa-
tion.

– Outputs (α, s) of the
function ∆.

– pid of the user. – Index of the
used FP.

– Index of the used val-
ues from Outsource.

– Subsession Identifier of
the Outsource task.

– Index of the
used FP.

– Index of the used FP.

Table 5: Leakage of each task involving a user.

Analytics and Update to some anonymous user, but other than that any two tasks could have
been performed by any two users inside the set of successfully registered users. We stress that in
real applications the communication structure could still be used to link the same user to different
tasks; yet other than that, the individual task executions leak no information to connect any two
tasks to the same user outside the computation results. The leakage is listed in Table 5.

In User Registration, the user is de-anonymized. This is required to ensure that no user registers
twice. In addition, the operator learns the output outO of the function ∆ alongside the used
Function Parameters; this output is privacy preserving due to the requirements of the Sign Function
Parameter task.

In Bookkeeping, all that a corrupted operator learns are the used Function Parameters and the
parts of the output of ∆ we consider to be relevant for the operator, namely everything except for
the additive increment. Again, ensuring unlinkability comes down to the SFP task.

In Outsource, the operator learns no identifying information from the behavior of the task itself
but the tasks name leaks for which function an Outsourced Analytics task has been scheduled.

In Outsourced Analytics, the task execution already leaks the function specifier k through
the inputs. As the number of parties required for each function is public knowledge and since it is
known in which order the calls are executed, the operator knows which Outsource calls are relevant
and used for this task. Thus linking the used data to their corresponding Outsource call is trivially
possible. Additionally, the operator once more obtains parts of the output from ∆ which we require
to be privacy-preserving.

In Update, the operator learns the Subsession Identifier of the Outsource call that caused the
analytical computation. As this Outsource execution is already linked to an Outsourced Analytics
execution, the operator can link the entire triplet to the same user. Other than that, the operator
learns no new information as the outputs for that user were already learned during the Outsourced
Analytics task execution.

C Preliminaries

C.1 The Universal Composability framework

The Universal Composability (UC) framework [Can01; Can00] models security through indistin-
guishability between worlds. It is a special case of simulation-based security [GM82; GMW87], the
key idea of it can be sumarized as follows: Secure Multi-Party Computation (MPC) is relatively
easy if we have a single entity that is trusted by all the participants and with whom the parties
can communicate over secure and authenticated channels. The behavior of this party is referred
to as the Ideal Functionality (IF) which defines how the inputs are used for computations, which
outputs exist and which party obtains which output. The IF can be only accessed in a black-box
way: each party sends its inputs to the trusted entity and obtains its output, without learning any
other information in the process. This also makes the level of privacy apparent as anything that
an adversary can learn is modelled explicitly by having the trusted party send this information to
the adversary. The Ideal Functionality is generally much easier to understand than the protocol
and thus enables easier analysis of the security guarantees.

As it is unrealistic to assume that such a trusted party exists in the real world we refer to the
world in which the computations are performed by the trusted party as the ideal world.
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The actual protocol is then executed in the real world where (mutually distrustful) parties
interact with each other according to the protocol description. If the real world can be shown to
be indistinguishable to an interaction of all parties with the Ideal Functionality then the protocol
inherits all the security guarantees of the IF. This requires a simulator that reports all protocol
messages from the honest parties, as honest parties in the ideal world only forward their input to
the functionality and do not send protocol messages. The simulator reports the messages without
knowing the actual input and only learns the leaks provided by the IF. By proving that the
view provided by the simulator in the ideal world is indistinguishable from the view of a protocol
execution in the real world we get the guarantee that any attack on the protocol can also be
launched against the IF. In particular, this means that no attacks on the real world exist that leak
information which cannot be extracted in the ideal world.

While the standalone-setting requires the simulator to provide the entire transcript as a whole
the Universal Composability framework extends this scenario by requiring the simulator to provide
the protocol messages in time and await the environments response. This means that while in the
standalone-setting, the transcript can be arbitrarily rewritten during simulation as long as the
result still looks like a valid protocol execution, in the UC-setting a message once reported can
not be changed later. This models the idea that other protocols are running in parallel and hence
ensures that security guarantees remain valid in arbitrary environments instead of requiring the
protocol to be blocking as in the standalone case.

Each session in the UC-framework has a unique Session Identifier (sid). We additionally assume
that each new task is assigned with a unique (inside this session) Subsession Identifier (ssid).

UC provides no restrictions on the scheduling of protocols which results in a rather strong
security guarantee. However, this comes at the cost of feasibility. In fact, it was shown in [CF01]
that not even weak (MPC-incomplete) building blocks such as commitments can be proven secure
in this framework without set-up assumptions. This is why most constructions in the UC framework
rely on set-up assumptions such as the Common Reference String (CRS) which is assumed to be
a hybrid functionality that is set up by a trusted party. These can in reality either be instantiated
by protocols based on computational hardness assumptions or by hardware assumptions.

C.2 Symmetric Encryption Schemes

Indistinguishability under Chosen Plaintext Attacks. Security for symmetric encryption schemes
follows the indistinguishability-pardigm. The Indistinguishability under Chosen Plaintext Attacks
(IND-CPA) security of symmetric schemes is defined as follows [Gol04]:

Definition 2. A symmetric encryption scheme ENC = (Gen,Enc,Dec) is IND-CPA-secure if for
every PPT-adversary A and every x, y ∈ {0, 1}poly(κ) such that |x| = |y|, and where κ is the
security parameter, the following equation is negligible in κ:

| Pr
[
A(ENC.Enck(x)) = 1

∣∣k← ENC.Gen(1κ)
]

− Pr
[
A(ENC.Enck(y)) = 1

∣∣k← ENC.Gen(1κ)
]
|

C.3 Commitment Schemes

We provide descriptions for bit-commitment schemes which can be expanded cannonically to string-
commitments.

Unconditionally Hiding Commitment Schemes. A commitment scheme is unconditionally hid-
ing if the commitment message contains absolutely no information on the committed bit. More
formally [Gol01]:

Definition 3. A bit commitment scheme COM = (Gen,Com,Unv) is unconditionally hiding if the
following condition holds:

{gp← COM.Gen : COM.Comgp(0)} ≈s {gp← COM.Gen : COM.Comgp(1)}

Computationally Binding Commitment Schemes. The binding property implies that a commit-
ment on some bit b can not be efficiently opened to a commitment on 1− b. More formally [Gol01]:
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Definition 4. A bit commitment scheme COM = (Gen,Com,Unv) is computationally binding if for
every PPT-adversary A = (A1,A2) and security parameter κ it holds that the following equation
is negligible in κ:

Pr

COM.Unv(comb, unvb, b)∧COM.Unv(comb, unvb, b)

∣∣∣∣∣∣∣∣
b

r← {0, 1},
gp← COM.Gen,
(comb, unvb, s)← A1(κ, b),
unvb ← A2(κ, s)


Additively Homomorphic Commitment Schemes. A bit commitment scheme is additively homo-

morphic if commitments expose a desired form of malleability such that arithmetic operations on
the commitment yield a desired effect on the underlying values.

Definition 5. A bit commitment scheme COM = (Gen,Com,Unv,CAdd,DAdd) is additively ho-
momorphic if the following equation is overwhelming in the security parameter κ:

Pr

COM.Unv(comb⊕b′ , unvb⊕b′ , b⊕ b
′)

∣∣∣∣∣∣∣∣∣∣∣∣

(b, b′)
r← {0, 1},

gp← Gen,
(comb, unvb)← COM.Comgp(b),
(comb′ , unvb′)← COM.Comgp(b

′),
comb⊕b′ ← COM.CAdd(comb, comb′),
unvb⊕b′ ← COM.DAdd(unvb, unvb′)


Structure Preserving Commitment Schemes. If a commitment scheme is defined over some

pairing group then an important property for enabling ZK proofs is that it preserves the structure.
This means [AKO+15]

Definition 6. A commitment scheme COM = (Gen,Com,Unv) is called structure-preserving with
respect to a bilinear group generator g if the following conditions are all satisfied.

1) Common parameter gp consists of a group description gp generated by g and constants aij ∈ Zp.
2) Commitment and unveil messages consist of group elements in G1 and G2.
3) Opening algorithm Unv consists only of evaluating membership in G1 and G2 and relations

described by pairing product equations.

C.4 Signature Schemes

Signature schemes aim to provide authenticity of messages. Existential Unforgeability under Chosen

Message Attacks. We follow the outline for describing Existential Unforgeability under Chosen
Message Attacks (EUF-CMA) security set by [Gol04]:

Definition 7. A signature scheme SIG = (Gen,Sgn,Vfy) is EUF-CMA secure if for every PPT-
adversary A with access to a signing oracle OSIG it holds that the following equation is negligible
in the security parameter κ:

Pr

[
SIG.Vfy(σ∗, vk,m∗)

∣∣∣∣ (sk, vk)← SIG.Gen(1κ),

(σ∗,m∗)← AOSIGsk(vk, 1κ)

]
where σ∗ was never returned from OSIGsk.

Structure Preserving Signature Schemes. The definition of structure preserving signature schemes
is similar to that for commitments. We again use the definition from [AKO+15]:

Definition 8. A digital signature scheme SIG = (Gen,Sgn,Vfy) is called structure-preserving with
respect to a bilinear group generator g if the following conditions are all satisfied.

1) Common parameter gk consists of a group description gp generated by g and constants aij ∈ Zp.
2) Verification key vk consists of group elements in G1 and G2 other than gp.
3) Messages and signatures consist of group elements in G1 and G2.
4) Verification algorithm Vfy consists only of evaluating membership in G1 and G2 and relations

described by pairing product equations.
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C.5 Zero-Knowledge Schemes

Let R be a witness relation for some NP-language L = {stmt |∃wit : (stmt ,wit) ∈ R}. A Zero-
Knowledge Proof of Knowledge (ZKPoK) contains of two parties, a Prover P and a Verifier V .
The prover tries to convince the verifier that for a given statement stmt it holds that stmt ∈ L
without leaking any other information. If this requires only a single message sent from P to V we
call the scheme Non-Interactive Zero-Knowledge.

For efficiency reasons we work with group-based constructions, which generally follow the fol-
lowing definition:

Definition 9. A Zero-Knowledge scheme POK = (GenPoK,SetupPoK,Prove,Vfy) is group-based
if each verifiable relation contains triplets (gp, stmt ,wit) for a group parameter gp. Further, the
algorithms behave as follows:

GenPoK takes as input a security parameter 1κ and output public parameters gp.
SetupPoK takes as input gp and outputs a (public) Common Reference String crs.
Prove takes as input the Common Reference String crs, the group parameters gp, a statement stmt

and a witness wit with (gp, stmt ,wit) ∈ R, and outputs a proof Π.
Vfy takes as input the Common Reference String crs, the group parameter gp, a statement stmt ,

and a proof Π, and outputs 0.

The following definitions are implicitly with respect to group-based NIZKs.

Perfect Completemness. A ZK scheme is perfectly complete if a proof regarding a true relation
will always be accepted. More formally [GS08]

Definition 10. A Zero-Knowledge scheme POK = (GenPoK,SetupPoK,Prove,Vfy) is perfectly
complete if for all adversary A we have

Pr

 (gk, x,wit) ∈ R =⇒ POK.Vfy(gk, crs, x,Π)

∣∣∣∣∣∣∣∣
(gk, sk)← POK.GenPoK(1κ),
crs ← POK.SetupPoK(gk, sk),
(x,wit)← A(gk, crs),
Π ← POK.Prove(gk, crs, x,wit)

 = 1

Perfect Soundness. Perfect soundness is completeness in the other direction; it formally states
that it should be impossible to convince a verifier of a false statement [GS08].

Definition 11. A Zero-Knowledge scheme POK = (GenPoK,SetupPoK,Prove,Vfy) is perfectly
sound if for all adversaries A we have

Pr

x /∈ L =⇒ POK.Vfy(gk, crs, x,Π)

∣∣∣∣∣∣
(gk, sk)← POK.GenPoK(1κ),
crs ← POK.SetupPoK(gk, sk),
(x,Π)← A(gk, crs)

 = 0

CRS Indistinguishability. CRS Indistinguishability intuitively means that there is some different
way to compute the CRS such that (1) the new CRS can not be distinguished from one that was
honestly created, and (2) the new CRS can be constructed with a backdoor. More formally:

Definition 12. A Zero-Knowledge scheme POK = (GenPoK,SetupEPoK,SetupSPoK,Prove,Vfy,
ExtractWit,SimProof) provides computationally indistinguishable Common Reference Strings if
for every PPT-adversary A the following equation is negligible in the security parameter κ:

| Pr
[
A(crs) = 1

∣∣∣∣ (gk, sk)← POK.GenPoK(1κ),
(crs, td ext)← POK.SetupEPoK(gk, sk)

]
− Pr

[
A(crs) = 1

∣∣∣∣ (gk, sk)← POK.GenPoK(1κ),
(crs, td sim)← POK.SetupSPoK(gk, sk)

]
|

Perfect F-Extractability. This property implies a (limited) way of extracting information from
the witness. While it is not possible to extract the witness directly, its exponentiation can be
extracted efficiently.
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Definition 13. A Zero-Knowledge scheme POK = (GenPoK,SetupPoK,Prove,Vfy,ExtractWit) is
perfectly Fgp-extractable if POK follows CRS indistinguishability (Definition 12) and for all ad-
versaries A we have:

Pr

 b = 1 =⇒ ∃witFgp(wit) = wit ′

∣∣∣∣∣∣∣∣∣∣
gp← GenPoK(1κ),
(crs, td ext)← SetupPoK(gp),
(stmt , Π)← A(crs, td ext),
wit ′ ← ExtractWit(crs, td ext, stmt , Π),
b← Vfy(crs, stmt , Π)

 = 1

Dual-Mode. Dual-Mode Zero-Knowledge generally depends on the Common Reference String
crs. Such schemes provide two different distributions on how the CRS is created which follow CRS
indistinguishability (Definition 12).

We furthermore require Fgp-extractability in the mode that uses SetupEPoK to set up the
CRS [GS08].

The second mode that uses SetupSPoK is supposed to provide zero-knowledge:

Definition 14. A Zero-Knowledge scheme POK = (GenPoK,SetupEPoK,SetupSPoK,Prove,Vfy,
ExtractWit,SimProof) provides Statistical Simulatability if for every adversary A it holds that the
followinng equation is overwhelming in the security parameter κ:

Pr

POK.Vfy(crs, x,Π)

∣∣∣∣∣∣∣∣
(gk, sk)← POK.GenPoK(1κ),
(crs, td sim)← POK.SetupSPoK(gk, sk),
(x,wit)← A(gk, crs),
Π ← POK.SetupSPoK(x, crs, td sim)


We now have all the tools required to define a dual-mode Zero-Knowledge scheme.

Definition 15. A Zero-Knowledge scheme POK = (GenPoK,SetupEPoK,SetupSPoK,Prove,Vfy,
ExtractWit,SimProof) is called Dual-Mode Zero-Knowledge scheme if all of the following conditions
are fulfilled:

1) POK has CRS indistinguishability.
2) POK when set up with (crs, td ext)← POK.SetupEPoK(·) has perfect completeness.
3) POK when set up with (crs, td sim)← POK.SetupSPoK(·) has perfect completeness.
4) POK when set up with (crs, td ext)← POK.SetupEPoK(·) has perfect soundness.
5) POK when set up with (crs, td ext)← POK.SetupEPoK(·) has Fgp-extractability.
6) POK when set up with (crs, td sim)← POK.SetupSPoK(·) has statistical Zero-Knowledge.

D The Ideal Functionality

In this section, we provide the full description of our Ideal Functionality F (∆)
PUBA. We use the

standard UC model [Can01], and assume that the simulator S is activated by F (∆)
PUBA, whenever

any party provides any input.
Our functionality F (∆)

PUBA is defined such that all inputs have the form (Task name,List of secret
inputs). The task name uniquely determines the task to be executed.

The notifications S obtains after F (∆)
PUBA obtained input from any party depends on the re-

spective party providing the input: On inputs from T , O, or P, F (∆)
PUBA activates S with input

(Task name, pid), where pid is the Party Identifier of T , O or P, respectively.
For users, however, we ensure unlinkability in all tasks except for User Registration (for which

we assume an out-of-band verification of the user’s identity). During User Registration, the func-
tionality explicitly leaks pidU of the calling U . For all other tasks, we model unlinkability by having
the functionality only revealing the role of a user after a call, and not the pid ; that is, the simulator
only gets notified with (Task name,User) after a user sent input.

That way, with the exception of User Registration, the pid of any user is never revealed to
anyone outside of F (∆)

PUBA. As such, the user can interact anonymously.
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Functionality F (∆)
PUBA

This functionality facilitates user-centric Privacy-Preserving Analytics. The function to be computed is
specified by the global parameter ∆.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

State:
The Ideal Functionality stores:

– Set PUser of registered users.
– fUH : pidU 7→ UH
– fOA : PUser → {true, false}
– fOI : {pidP} × {1, . . . ,K} where (pidP , k) maps to a list fOI(pidP , k) of entries (ssid , pidU ,UH, inU ).
– fFP : {UReg ∪ {BK((K ))} ∪ {OA(K )}} × N→ {fp}∗, where different tasks are mapped to a list of

Function Parameters fp.
– Partial mapping fUI on PUser. pidU 7→ (ssid , α, s,a, outU ).

Tasks:

– F (∆)
PUBA-Init (Fig. 7)

– F (∆)
PUBA-Sign Function Parameter (Fig. 8)

– F (∆)
PUBA-User Registration (Fig. 9)

– F (∆)
PUBA-Bookkeeping (Fig. 10)

– F (∆)
PUBA-Outsource (Fig. 11)

– F (∆)
PUBA-Outsourced Analytics (Fig. 12)

– F (∆)
PUBA-Update (Fig. 13)

Fig. 6: The basic functionality F (∆)
PUBA for user-centric Privacy-Preserving Analytics. The remaining

tasks are described in Figs. 7 to 13.

For our subtasks, we generally assume that additionally to what we explicitly write as in- and
outputs, parties append the Subsession Identifier (ssid) of the current task.

The stateful functionality. Our Ideal Functionality is stateful, meaning that after interaction
with any party, it updates its state. The state contains of several lists, which we present in Fig. 6.
First of all, F (∆)

PUBA stores lists PUser of registered users. This list contains the pids of all users
which registered using F (∆)

PUBA-User Registration, and which hence have a valid UH. The UH itself
is stored inside the functionality with fUH, which ensures that the only way to change it is by using
the provided tasks.

For Outsourced Analytics (OA) we only allow each user to only outsource one computation
at a time. To that end, the Ideal Functionality remembers in fOA if a given user—identified via
pidU—has an outsourcing-triplet in progress or not. Furthermore, the data the user outsourced is
stored in fOI. The result of the outsourced computations are stored in fUI, until they are fetched
by a user using F (∆)

PUBA-Update from Fig. 13.
Finally, the functionality stores all certified Function Parameters for a given task task in a list

fFP(task , ·). The only way to update this list is after positive response from the Trusted Signing
Authority T , which ensures that the operator can only perform computations of functions which
were verified before.

The Init-task. The initializing task from Fig. 7 has to be called before anything else. The task
only contains the operator and the TSA and essentially starts the whole process. Before calling
init, all calls are ignored, after that, the functionality responds to calls of the forms given in Figs. 8
to 13.

5 If this fails, output ⊥ and abort.



34 Fetzer et al.

F (∆)
PUBA-Init :

Input O: (init).
Input T : (init)

1. Respond to the other tasks.

Output O: (ok).
Output T : (ok).

Fig. 7: Task F (∆)
PUBA-Init for initializing the functionality.

F (∆)
PUBA-Sign Function Parameter :

Input O: (SFP, fp, task , inO).
Input T : (SFP, inT ).

1. Check5 that ∆(SFP, fp, task , inO, inT ) = 1.
2. Check5 that fp have not been registered before for task task .
3. Let ` be min` : fFP(task , `) = ⊥.
4. Set fFP[task , `] = fp.
5. Leak (task , `) to the adversary.

Output O: (ok).
Output T : (ok).

Fig. 8: Task F (∆)
PUBA-Sign Function Parameter for signing Function Parameters.

Sign Function Parameters. With the task shown in Fig. 8, the operator can input Function
Parameters fp to be used for a given task task . We assume that the application-specific function
∆ contains some mechanism to verify that a given input fp is suitable for this task. If the function
verifies fp for usage in task , then F (∆)

PUBA adds these fp to fFP(task), which enables its future use.
The functionality leaks the new amount of FPs it has for the task task to the adversary; we require
this information for our simulation.

User Registration. With the User Registration task from Fig. 9, a user can register for partici-
pation. This task has to be executed before any further interaction with the user. This is ensured
in the ideal world by giving the user their User History (UH) and storing it in fUH. For any fu-
ture interaction, the users current UH is always fetched from fUH. This does not only ensure that
a user cannot manipulate data on its own, it also enforces that any user wanting to perform a
computation has undergone the registration process.

Specifics of the function that computes the initial UH are input as fp, a unique identifier—which
does not leak any of the values in fp—is leaked to the adversary.

Bookkeeping. The update of the latest User History (possibly based on the data so far collected)
by a validly registered user is shown in Fig. 10. The functionality fetches the current UH from fUH,
which ensures that the latest UH is used. The operator inputs FPs fp, which define the function
to be computed; the identifier of which is leaked to the adversary. We generally assume that
computations only leak the basic structure, such as a neural network or logistic regression, to the
user and hide the trade secrets in fp. To ensure that only valid fp are used the functionality only
continues if fp ∈ fFP(BK(k)), and aborts if the operator wants to use uncertified input.

The computation of function k is defined in the application-specific function ∆. It yields a result
(α, s,a, outU , outO). (α, s,a) is the part of the result that is used for the later update of the User
History. outU and outO are respective analytical outputs for the user and the operator. For our
security proof we further require that the outputs of corrupted users are leaked to the adversary.
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F (∆)
PUBA-User Registration :

Input O: (UReg, fp, inO).

1. Let5 ` be the index for which fFP(UReg, `) = fp.
2. Leak ` to the adversary.

Input U : (UReg, inU ).

1. Check5 pidU 6∈ PUser
2. Append pidU to PUser.
3. (UH, outU , outO)← ∆(UReg , fp, inU , inO).
4. Append (pidU 7→ UH) to fUH.
5. Append (pidU 7→ false) to fOA.

Output U : (UH, outU ).
Output O: (outO).

Fig. 9: Task F (∆)
PUBA-User Registration for registering a user.

Yet we stress that this is not in conflict with our confidentiality guarantees as we do not enforce
privacy for corrupted users.

Afterwards, the User History gets updated through “permute”, “set” and “add” operations. The
variable α contains a permutation, which is applied to the User History to create a temporary User
History as

UH′ ← α(UH).
This permutation changes the slots of some (or all) entries, while not changing the contents itself.
For example, UH := (9, 8, 7) and α :=

(
0 1 2
2 1 0

)
6 would yield UH′ := (7, 8, 9). After the permutation,

a set operation is executed. The set vector s has length m and contains either Zp elements or ⊥.
A new temporary User History is then created via

UH′′ := (uh ′′0 , . . . , uh
′′
m−1)

with uh ′′i :=

{
s[i] for s[i] 6= ⊥
UH′[i] for s[i] = ⊥

.

To continue our small example, UH′ := (7, 8, 9) and s := (1, 3,⊥) would yield UH′′ := (1, 3, 9).
Last, an add operation is performed by simply adding the vector a (which has also length m) to
UH′′ to create the final new User History:

UHnew ← UH′′ + a.

Finishing the example, UH′′ := (1, 3, 9) and a := (4, 0, 0) would yield UHnew := (5, 3, 9). This
3-step-process of updating the User History enables flexible updates, yet defines some rules for the
update process so that later in the protocol (see Appendix E) the user can efficiently prove that
he correctly updated the User History.

Outsource. The outsource-task is described in Fig. 11. It is a three-party task, consisting of
the user U providing the data, the operator O providing the framework, and a proxy P providing
computational power.

Outsourced tasks are intended to compute functions that either require more than one user, or
are too complex to be efficiently computed on the users device.

In it, the functionality verifies that the user has no previous outsourced computation in progress,
and remembers that one was started now. It stores the current UH alongside the remaining informa-
tion for later use, and marks it with the pid of the proxy that should be used for the computation.
6 Note that since our User History slots are numbered from 0 to m − 1, we also define the permutation
that way.
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{F (∆)
PUBA-Bookkeeping(k)}Kk=1 :

Input O: (BK(k), fp, inO).

1. Let5 ` be min` : fFP(BK(k), `) = fp.
2. Leak ` to the adversary.

Input U : (BK(k), inU ).

1. Set5 UH := fUH(pidU ).
2. (α, s,a, outU , outO)← ∆(BK , fp, k ,UH, inU , inO).
3. UH′ ← α(UH).

4. UH′′ := (uh ′′0 , . . . , uh
′′
m−1) with uh ′′i :=

{
s[i] for s[i] 6= ⊥
UH′[i] for s[i] = ⊥

.

5. fUH(pidU ) := UH′′ + a.
6. Set fUH(pidU ) := UHnew.

Output U : (α, s,a, outU ).
Output O: (outO, α, s)

Fig. 10: Task F (∆)
PUBA-Bookkeeping

(k) for direct computation between user and operator of the task
defined by k ∈ {1, . . . ,K}.

To allow linkability with the next Outsourced Analytics and Update tasks, the functionality also
stores the ssid of this task.

Outsourced Analytics. The actual analyical computation between operator and proxy is shown
in Fig. 12. In any real protocol this task should only be possible if there was a previous call to
Outsource. The functionality ensures this by fetching the values from its state, namely by taking
the inputs of the users from fOI(pidP , ·).

Similar to a normal computation the proxy only learns a very basic structure, whereas the trade
secrets involved in creating the function are hidden as input fp from O and only used if they were
previously certified by T and hence stored in fFP.

Despite the computation of k according to the application-specific function ∆ and a subsequent
storing of the results in fUI for later use in F (∆)

PUBA-Update the functionality contains leaks in case
of corruptions. For one, it is not efficiently possible for a simulator to extract the whole auxiliary
input inU during F (∆)

PUBA-Outsource so the functionality asks for new inputs for all corrupted users.
Furthermore, we stress that a corrupted operator can create arbitrary users which means that for
real protocols, it might be the case that some users who called F (∆)

PUBA-Outsource never registered.
For those, we also input the data a bit later.

Update.While the premise of our framework is to (1) ensure that any update to the UH is applied
by the user, and (2) reward users who gave their data for computation tasks, whereas relevant
information was output during F (∆)

PUBA-Outsourced Analytics, the final task of our functionality
lets the user fetch the results from F (∆)

PUBA-Outsourced Analytics and obtain the incentive. Fig. 13
shows this step. Ignoring the leakage for now, the functionality fetches the latest UH (to model
the fact that after Outsource, the user can perform further Bookkeeping tasks) and applies the
three-stage update that was defined by the output from OA onto it. Furthermore, it marks the
user as being allowed to outsource a computation again.
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{F (∆)
PUBA-Outsource(k)}Kk=1 :

Input U : (OS(k), inU ).
Input P: (OS(k)).
Input O: (OS(k)).

1. Load current Subsession Identifier ssid .
2. If U and O are corrupted, append (ssid ,⊥,⊥,⊥) to fOI(pidP , k) and skip all following steps.
3. Check5 fOA(pidU )

?
= false.

4. Set fOA(pidU ) := true.
5. Set5 UH := fUH(pidU ).
6. Append (ssid , pidU ,UH, inU ) to fOI(pidP , k).

Output U : (ok).
Output P: (ok).
Output O: (ok).

Fig. 11: Task F (∆)
PUBA-Outsource(k) for outsourcing user data required for outsourced computation

of the task defined by k ∈ {1, . . . ,K}.

{F (∆)
PUBA-Outsourced Analytics(k)}Kk=1 :

Input O: (OA(k), fp, inO).

1. Let5 ` be min` : fFP(OA(k), `) = fp.
2. Leak ` to the adversary.

Input P: (OA(k)).

1. Load5 and remove the first Z k entries
{(

ssid z , pid z ,UHz , inz

)}Z k

z=1
from fOI(pidP , k).

2. If P is corrupted, ask for updated inputs
{
inz | 1 ≤ z ≤ Z k , pid z ∈ Pcorr

}
.

3. If O is corrupted, ask for updated information (UHz , inz ) for each z ∈ {1, . . . ,Z k} with pid z 6∈ PUser.
4.
(
{(αz , sz ,az , outz )}Z k

z=1, outO
)
← ∆

(
OA, fp, k , {(UHz , inz )}Zz=1, inO

)
.

5. Leak {(z , αz , sz ,az , outz ) | 1 ≤ z ≤ Z k , pid z ∈ Pcorr} to the adversary.
6. If O is corrupted, leak {(z , αz , sz ,az , outz ) | 1 ≤ z ≤ Z k , pid z 6∈ PUser} to the adversary.
7. For every z from 1 to Z k with pid z ∈ PUser set fUI(pid z ) := (ssid z , αz , sz ,az , outz ).

Output P: (ok).
Output O: ({αz , sz}Z k

z=1outO).

Fig. 12: Task F (∆)
PUBA-Outsourced Analytics(k) for outsourced computation between the operator

and the proxy of the task defined by k ∈ {1, . . . ,K}.
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F (∆)
PUBA-Update :

Input U : (Upd).
Input P: (Upd).
Input O: (Upd).

1. If U and O are corrupted, set (UH, outU ) = (⊥,⊥) and skip all following steps.
2. Set5 UH := fUH(pidU ).
3. Set5 (ssid , α, s,a, outU ) := fUI(pidU ).
4. If O is corrupted, leak ssid to the adversary.
5. If U is honest and P is corrupted, leak ssid to the adversary.
6. Remove pidU 7→ (ssid , α, s,a, outU ) from fUI.
7. UH′ ← α(UH).

8. UH′′ := (uh ′′0 , . . . , uh
′′
m−1) with uh ′′i :=

{
s[i] for s[i] 6= ⊥
UH′[i] for s[i] = ⊥

.

9. Set fUH(pidU ) := UH′′ + a.
10. Set fOA(pidU ) := false.

Output U : (α, s,a, outU ).
Output P: (ok).
Output O: (α, s).

Fig. 13: Task F (∆)
PUBA-Update for letting the user update its User History and obtain the incentive

based on the results of the outsourced computation.
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E Realization of the Functionality

E.1 Prerequisites

Our protocol requires certain pre- and post-processing steps, before the actual MPC-protocol can
be executed. We model those additional steps, namely how the in- and outputs are handled, by an
additional subfunctionality FPPA.

The stateless subfunctionality from Fig. 14 is required for executing the protocol for User
Registration, Bookkeeping, and Outsourced Analytics.

User Registration. During User Registration shown in Fig. 15, FPPA handles the function-
specific part of defining how the initial User History UH looks like; there, FPPA essentially is
a wrapper for the actual function ∆, which additionally checks integrity of the used Function
Parameters before using ∆ and computes the commitment aftter its termination.

Bookkeeping. The case for the Bookkeeping is shown in Fig. 16. FPPA verifies that both sides
used the correct values as input; verification of the user inputs lets the user input the User History
UH and unveil information unvUH, which opens a commitment comUH input by O. Likewise, the
operator inputs Function Parameters fp and unveil information unvfp , which open the commitment
comfp input by the user. The check whether the given pairs of commitment and unveil messages
for the given clear values are performed via MPC, hence the respective inputs of one party remain
hidden from the respective other party. FPPA only continues with computing the actual function
∆ on the given inputs, if the commitments successfully opened to the specified values.

Outsourced Analytics. The behavior of FPPA for analytical tasks is shown in Fig. 17. The
operator input is verified in the same way as for Bookkeeping. After successful verification FPPA

internally reconstructs the shares for each user, computes the function, and masks the outputs.
Since MPC leaks no intermediate results, this means that FPPA only outputs cryptographically
protected private outputs outU for each participating user. FPPA also provides P with additional
information for the user to verify the integrity of the update. The update itself consists of three
parts, namely a permutation α, a list of updates that are applied directly s, and an additional
increment a. We stress that while α and s are public values, the addition vector a is only to be
known by the user. Hence it is not output to either of the proxy or operator directly. To increase
the Users privacy guarantees, while still allowing guarantees for O that UH has been updated
correctly, FPPA computes a commitment coma with corresponding unveil information unva on the
addition vector a, and outputs coma to O. The remaining values, that is, a and unva, are masked
with oa and oUNV, respectively, and output to P. This hides all information from P, as only the
User knows the One-Time Pads.

A Robust Secret Sharing-protocol. Both our subfunctionality and our protocol make use of a
sharing protocol and its corresponding combine protocol. Those are required so that the user can
share information with P and O in such a way, that no party —neither P nor O —can change the
shares unnoticed. The protocols are shown in Fig. 18.

Essentially, this comes down to additive secret sharing, where the dealer does not only send
the additive share of a value to each party, but also adds a commitment on the respective other
parties share. Additionally, each party obtains unveil information on its own commitment.

The combine protocol then lets each party send their own value and their unveil information;
the other party only accepts, if the unveil information matches the commitment it received during
the sharing-phase.

Additionally, since this task is used after each user interaction during any task, we have a
verification protocol πVerify. This protocol lets a a user can check that its logbook λ has been
created correctly.

The protocol basically verifies that all the commitments are on the correct values and that the
signature is correct.

6 If this fails, output ⊥ and abort.
6 If this fails, output ⊥ and abort.
7 If this fails, output ⊥ and abort.
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Functionality FPPA

This functionality performs the computation specified by ∆ in a way that provides input consistency. It
is parameterized by the to-be-computed function ∆, a homomorphic commitment scheme COM which is
unconditionally hiding and computationally binding and uses the subprotocol πShare with the same
commitment scheme COM, and a EUF-CMA-secure signature scheme SIG′. The following tasks are
provided by FPPA:

– User Registration (Fig. 15):
Handles the initial values of the user history during user registration.

– Bookkeeping (Fig. 16):
Define different possible Bookkeepings between U and O.

– Outsourced Analytics (Fig. 17):
Define different possible Outsourced Analytics between P and O.

Fig. 14: The functionality FPPA we use to perform the computations.

Input U : (UReg, comfp , inU )
Input O: (UReg, fp, unvfp , inO)

1. Check6 COM′.Unv(comfp , unvfp , fp) = 1.
2. Compute (UH, outU , outO)← ∆(UReg , fp, inU , inO).
3. (comUH, unvUH)← COM.Com (UH)

Output U : UH, unvUH, outU .
Output O: comUH, outO.

Fig. 15: The subfunctionality-task of FPPA for performing user registration.

E.2 Our protocol

With those building blocks we can now provide our full protocol. The protocol runs in the
{FPPA,FBB,FKE,FCRS}-hybrid model. Those are used for the following purpose:

FPPA has been explained earlier in this chapter.
FBB is used during User Registration to ensure that no user creates more than one account and

to verify that the user really is who it claims to be.
FKE is used to set up private channels which are not subject to eavesdropping. We implicitly

assume that prior to each protocol execution each pair of participating parties calls an instance
of FKE to create a secure session key which encrypts each message exchanged.

FCRS is required for our pairing-based instantiations of the Zero-Knowledge protocol.

The full protocol is parameterized by:

– an Ideal Functionality FPPA that handles problem-specific tasks of the computation, which
works on inputs defined by IN .

– an Ideal Functionality FBB that provides a bulletin board functionality.
– an Ideal Functionality FKE that provides a secure key exchange functionality. We implicitly

assume that all parties call this to obtain a pair-wise shared secret key k which both of them
use throughout the subsession.

– a IND-CPA-secure symmetric encryption scheme ENC = (Setup,
Gen,Enc,Dec) which parties implicitly use for all messages using their shared key k.

– a common reference string crs.
7 If this fails, output ⊥ and abort.
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Input U : (BK(k),UH, unvUH, comfp , inU )
Input O: (BK(k), comUH, fp, unvfp , inO)

1. Check6 COM.Unv(comUH, unvUH,UH)
?
= 1.

2. Check6 COM′.Unv(comfp , unvfp , fp) = 1.
3. Compute (α, s,a, outU , outO)← ∆(BK , fp, k ,UH, inU , inO).
4. (coma, unva)← COM.Com(a).

Output U : α, s,a, coma, unva, outU .
Output O: α, s, coma, outO.

Fig. 16: The subfunctionality-task of FPPA for performing direct computations.

– group parameters gp.
– an unconditionally hiding and computationally binding homomorphic commitment scheme COM

for which inverse elements in the image group of COM are efficiently computable. This is instan-
tiated as the same scheme used in πShare.

– an unconditionally hiding and computationally binding commitment scheme COM′.
– an EUF-CMA-secure, structure-preserving signature scheme SIG. Again, this scheme is the same

as the one used for πShare.
– a trapdoor dual-mode zero-knowledge proof-of-knowledge scheme POK based on crs where an

honestly chosen crs yields overwhelming completeness and negligible soundness property whereas
one mode offers F -extractability and the other mode offers simulatability.

– An EUF-CMA-secure signature scheme SIG′.

The protocol from Fig. 20 makes heavy use of the languages defined in Figs. 26, 29, 33 and 38.
The intuition behind each task is as follows:

Init. Before any other task can be executed the operator and the TSA have to run the Init
task. While we modeled it as a two-party task the two parties never interact with one another and
only create their signing keys and register them at FBB.

Sign Function Parameter. Our framework is designed such that it hides the function details
from the user. While we believe this to be extremely important on one hand as the operator
potentially spent a lot of time and money in the creation of the model, we stress that fully hiding
the function and the result from the user allows for a trivial attack on the users anonymity if the
operator inputs a non-privacy-preserving function such as the identity.

As a compromise we suggest a third party which certifies that operator input meets certain
privacy criteria: the Trusted Signing Authority (TSA) T . The key idea is that the function to-
be-computed only has a very generic design—say in the form of general logistic regression or a
neural network—but the function specifics are stored in Function Parameters (FPs) fp. In order
to circumvent the attack sketched above and ensure that the operator only ever uses valid inputs
the tasks User Registration, Bookkeeping and Outsourced Analytics require signed FPs. To that
end, the task Sign Function Parameter lets the operator input some FPs fp which are to be used
for computation of some task task ∈ {UReg, BK(k), OA(k)} alongside a commitment comfp and
corresponding unveil information unvfp . The TSA verifies them using the application-dependent
∆ to ensure that they match the required privacy standards. We assume those privacy standards
to be public knowledge.

If a given set of FPs verifies the operator obtains a signature σfp on (task , comfp) and uses comfp
as future certificate for fp: Before using the FPs fp the O sends comfp and σfp to the respective
other party (the user or the proxy, respectively who then input comfp into FPPA. The operator
O inputs fp and unvfp . Before starting the computation defined by ∆ the commitment is verified.
The binding property of the commitment scheme COM′ ensures that the operator can only use
FPs which were signed by T .

User Registration. The protocol for User Registration is shown in Figs. 24 and 25. We want
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Input P: (OA(k), comfp , {(sh(P)
UHz

, sh
(P)
inz
, sh

(P)
oOUTz , sh

(P)
oUNVz , sh

(P)
oα , sh

(P)
os , sh

(P)
oa )}Z k

z=1).
Input O: (OA(k), fp, unvfp , {(sh(O)

UHz
, sh

(O)
inz

, sh
(O)
oOUTz , sh

(O)
oUNVz , sh

(O)
oα , sh

(O)
os , sh

(O)
oa )}Z k

z=1, inO).

1. Check6 COM′.Unv(comfp , unvfp , fp) = 1.
2. For every z from 1 to Z k :

– Combine6 UHz ← πShare-Combine(sh(P)
UHz

, sh
(O)
UHz

).
– Combine6 inUz ← πShare-Combine(sh(P)

inUz
, sh

(O)
inUz

).

– Combine6 oOUTz ← πShare-Combine(sh(P)
oOUTz , sh

(O)
oOUTz ).

– Combine6 oUNVz ← πShare-Combine(sh(P)
oUNVz , sh

(O)
oUNVz ).

– Combine6 oαz ← πShare-Combine(sh(P)
oαz

, sh
(O)
oαz

).
– Combine6 osz ← πShare-Combine(sh(P)

osz , sh
(O)
osz ).

– Combine6 oaz ← πShare-Combine(sh(P)
oaz
, sh

(O)
oaz

).
3. Compute ({(αz , sz ,az , outUz )}

Z k
z=1, outO)← ∆(OA, fp, k , {(UHz , inUz )}Zz=1, inO).

4. For every z from 1 to Z k :
– (comaz , unvaz )← COM.Com(az )
– cunvaz := unvaz + oUNVz .
– coutUz

:= outUz + oOUTz .
– cαz := αz + oαz .
– csz := sz + osz .
– caz := az + oaz .

Output P: {(cαz , csz , caz , cunvaz , coutUz
)}Z k

z=1.
Output O: {(α, s, comaz , coutUz

)}Z k
z=1, outO.

Fig. 17: The subfunctionality-task of FPPA for performing Outsourced Analytics.

to ensure that each user has at most a single logbook. To ensure that no user can create multiple
accounts we make use of the Bulletin Board functionality FBB. This lets the user register a key
exactly once. The user has to publish a fresh public key to the bulletin board which is taken from a
pairing group e (·, ·). The user can only register if it knows the corresponding secret key and hence
proves knowledge of it using the ZK proof from Fig. 26. This proves knowledge of both unvid and
id such that the pairing equation is fulfilled and such that the commitment comid unveils to pkU .
The operator O then only accepts if this proof is valid and if the public key has not been used
before. If this succeeds the two parties engage in the creation of the initial logbook.

The initial contents of the User History are computed via the MPC-framework from FPPA

according to ∆ which can depend on additional secret FPs which are input by the operator. These
are verified before the computation such that only FPs which were signed by the TSA T can be
used for the computation.

After obtaining the initial User History this way the two parties create the initial logbook
together. The principle is fairly similar in this task to all the following tasks: To ensure history
freshness the user has to carry a serial number ser in its logbook which is invalidated during the
next interaction with the operator. However, the serial number would allow tracking of the same
user through different tasks—which we want to avoid. Hence, we decided to take inspiration from
the Blum coin flipping protocol [Blu81] over Zp where only the user learns the outcome of the
coin toss and the operator only learns that the outcome is randomly distributed over Zp. This
is to ensure that no party picks a malicious serial number such as one that contains tracking
information. Using the homomorphism of the commitment scheme COM the operator thus can
create a commitment on the actual serial number based only on the commitment of the users share
and its own commitment.

Using this information alongside the previously created commitments comlin on the linking
number (which is initially 0 as is only set if outsourcing-triplets have been started) and comUH and
comid which were obtained by the user the operator creates a signature.
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Protocol πShare

This protocol facilitates Robust Secret Sharing. It is parameterized by an unconditionally hiding and
computationally binding homomorphic commitment scheme COM, for which inverse elements in the
image group of COM are efficiently computable.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
πShare-Share:

Input: Value x .

– Sample uniformly random x (0).
– x (1) := x − x (0).
–
(
com

(0)
x , unv

(0)
x

)
← COM.Com

(
x (0)

)
.

–
(
com

(1)
x , unv

(1)
x

)
← COM.Com

(
x (1)

)
.

– sh
(0)
x :=

(
x (0), com

(1)
x , unv

(0)
x

)
.

– sh
(1)
x :=

(
x (1), com

(0)
x , unv

(1)
x

)
.

Output: Shares
(
sh

(0)
x , sh

(1)
x

)
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
πShare-Combine:

Input: Shares
(
sh

(0)
x , sh

(1)
x

)
.

– Parse6
(
x (0), com

(1)
x , unv

(0)
x

)
:= sh

(0)
x .

– Parse6
(
x (1), com

(0)
x , unv

(1)
x

)
:= sh

(1)
x .

– Check6 COM.Unv
(
com

(0)
x , unv

(0)
x , x (0)

)
?
= 1.

– Check6 COM.Unv
(
com

(1)
x , unv

(1)
x , x (1)

)
?
= 1.

– x := x (0) + x (1).

Output: Value x .

Fig. 18: Protocol for Robust Secret Sharing (RSS).

This signature is only over commitments. Our instantiation of the signature scheme preserves
the structure of the message ensures that this can later be used to prove in ZK that a signature
on a commitment of a given value is known. Furthermore, since the commitment itself could
theoretically be used for linking when seeing it again the operator only sees rerandomized versions
of this commitment in future interactions alongside a ZK proof that this rerandomization is really
on a commitment for which a signature made by the operator is known.

Note that all the communication happening here is identifying on both sides—even for the user.
The id is uniquely identifiable along different tasks and hence hidden by the user from this point
onwards. It is only used in the witness of Zero-Knowledge proofs in future interactions.

Bookkeeping. The protocol for directly updating the User History is given in Figs. 27 and 28.
Essentially it is a wrapper around FPPA: Before accessing the hybrid functionality the user

proves to the operator that the latest input is used and the operator proves to the user that
it will input valid Function Parameters that were signed by the TSA T . The language LVal

B for
proving the former can be found in Fig. 29: The user proves correct rerandomization of the User
History and that it knows serial, id and linking number for which it knows a signature from O.
For the latter—namely letting the operator prove that the FPs used for the computation are
validly signed—we use an interactive protocol: O sends the commitment and the signature on
the current task and the commitment to the user. Note that we do not hide from the user which
FPs will be used—meaning that the user learns whether the same FPs have been used in previous
computations—but only what those FPs are. Hence we do not require any form of rerandomization.
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Protocol πVerify

This protocol facilitates sharing and verification of logbooks. It is parameterized by an unconditionally
hiding and computationally binding homomorphic commitment scheme COM, for which inverse elements
in the image group of COM are efficiently computable, and an EUF-CMA-secure, structure-preserving
signature scheme SIG.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input: Message VfyL, logbook λ := (UH, comUH, unvUH, ser , comser , unvser , lin, comlin , unvlin ,

id , comid , unvid , σ).

– Check7 COM.Unv(comUH, unvUH,UH)
?
= 1

– Check7 COM.Unv(com
(O)
ser , unv

(O)
ser , ser

(O))
?
= 1

– Check7 COM.Unv(comlin , unvlin , lin)
?
= 1

– Check7 COM.Unv(comid , unvid , id)
?
= 1

– Check7 SIG.Vfy(vkO, σ, comUH‖comser‖comlin‖comid)
?
= 1

Output: λ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input: Message ShareL, logbook λ := (UH, comUH, unvUH, ser , comser , unvser , lin, comlin , unvlin ,

id , comid , unvid , σ).

– oOUT ∼ IN
– oUNV

r← Zp
– oα

r← Zm
p

– os
r← Zm

p

– oa
r← Zm

p

– (sh
(P)
UH, sh

(O)
UH)← πShare-Share(UH)

– (sh
(P)
inU

, sh
(O)
inU

)← πShare-Share(inU )
– (sh

(P)
oOUT , sh

(O)
oOUT )← πShare-Share(oOUT)

– (sh
(P)
oUNV , sh

(O)
oUNV )← πShare-Share(oUNV)

– (sh
(P)
oα , sh

(O)
oα )← πShare-Share(oα)

– (sh
(P)
os , sh

(O)
os )← πShare-Share(os)

– (sh
(P)
oa , sh

(O)
oa )← πShare-Share(oa)

Output: (oOUT, oUNV, oα, os, oa, {sh(x)UH, sh
(x)
inU

, sh
(x)
oOUT , sh

(x)
oUNV , sh

(x)
oα , sh

(x)
os , sh

(x)
oa }x∈{P,O})

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input: Message VfyS, inputs
comUH, unvUH,UH, cominU , unvinU , inU , comoOUT , unvoOUT , oOUT, comoUNV , unvoUNV , oUNV, comoα , unvoα , α, comos ,

unvos , s, comoa , unvoa ,a

– Check7 Unv(comUH, unvUH,UH) = 1
– Check7 Unv(cominU , unvinU , inU ) = 1
– Check7 Unv(comoOUT , unvoOUT , oOUT) = 1
– Check7 Unv(comoUNV , unvoUNV , oUNV) = 1
– Check7 Unv(comoα , unvoα , oα) = 1
– Check7 Unv(comos , unvos , os) = 1
– Check7 Unv(comoa , unvoa , oa) = 1

Output: ok

Fig. 19: Protocol for User logbook verification.
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Protocol πPUBA

This protocol facilitates user-centric Privacy-Preserving Analytics.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

π-Shared State:
Each user U stores:

– User logbook λ
– User public key pkU
– One-Time Pads oα, os, oa, oOUT and oUNV
– Verification key vkO of the operator
– Verification key vkT of the Trusted Signing Authority

Each proxy P stores:

– Verification key vkO of the operator
– Verification key vkT of the Trusted Signing Authority
– Mapping f (P)

OI on {1, . . . ,K} that maps k to a list f (P)
OI (k) of entries (lin, sh(P)

UH,

sh
(P)
inU

, sh
(P)
oOUT , sh

(P)
oα , sh

(P)
os , sh

(P)
oa )

– Partial mapping f (P)
UI on {lin} : lin 7→ (cα, cs, ca, coutU )

The operator O stores:

– Signature key pair (vkO, skO)
– List LSER of observed serial numbers
– Mapping f (O)

OI on {pidP} × {1, . . . ,K} that maps (pidP , k) to a list f (O)
OI (pidP , k) of entries

(lin, sh
(O)
UH, sh

(O)
inU

, sh
(O)
oOUT , sh

(O)
oα , sh

(O)
os , sh

(O)
oa )

– Partial mapping f (O)
UI on {lin} : lin 7→ (α, s, coma, coutU )

– Mapping fFP on fp that maps Function Parameters fp to a list fFP(fp) of tuples (comfp , unvfp , σfp).

The Trusted Signing Authority T stores:

– Signature key pair (vkT , skT )

Tasks:

– π-Init (Fig. 21)
– π-Sign Function Parameter (Fig. 22)
– π-User Registration (Fig. 24)
– π-Bookkeeping (Fig. 27)
– π-Outsource (Fig. 31)
– π-Outsourced Analytics (Fig. 34)
– π-Update (Fig. 36)

Fig. 20: Shared state of the protocol πPUBA.
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π-Init :
Input O: (init)
Input T : (init)

O: Generate signature key pair:
• (vkO, skO)← SIG.Gen(gp).
• Call7 FBB instance sidFBB with input (Register, pidO, vkO).

T : Generate signature key pair:
• (vkT , skT )← SIG′.Gen(gp).
• Call7 FBB instance sidFBB with input (Register, pidT , vkT ).

Output O: (ok)
Output T : (ok)

Fig. 21: The protocol π-Init for the Init-task (Fig. 7).

π-Sign Function Parameter :
Input O: Message SFP, FPs fp, task task , aux. input inO
Input T : Message SFP, aux. input inT .

O: (comfp , unvfp)← COM′.Com(fp).
O9T : (fp, comfp , unvfp , task , inO)
T : Check7 that ∆(SFP, fp, task , inOperator, inT ) = 1.
T : Check7 that COM′.Unv(comfp , unvfp , fp) = 1.
T : σfp ← SIG′.Sgn(skT , (task , comfp)).

O8T : (σfp)
O: fFP(fp) := (comfp , unvfp , σfp).

Output T : Message ok

Output O: Message ok

Fig. 22: The protocol π-Sign Function Parameter for the Sign Function Parameter-task (Fig. 8).

The operator sends comfp alongside the signature σfp directly to the user. The user then verifies
the signature using the verification key vkT of T and only continues if this signature is valid. In
that case the user inputs the commitment to FPPA.

The operator inputs the corresponding opening information unvfp and the clear values of fp.
The definition of FPPA ensures that computation only happens if unvfp (which is an input by the
operator) successfully opens comfp (which is input by the user) to fp (which again is input by the
operator). Assuming both unforgeability of signatures and binding of the commitment scheme this
ensures that no malicious operator can input uncertified Function Parameters; it either would have
to forge a signature on a new commitment without knowing the signing key of T or use an existing
signature but find some opening information and clear text values which open the (previously
signed) comfp to a different value.

U O

fp, comfp , unvfp , task , inO
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

σfp
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 23: Message overview for π-Sign Function Parameter .
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After computation via FPPA the user updates its UH. We consider this tasks use-case to be
primarily for bookkeeping and for updating the User History which is why we allow more complex
transformations here than in Outsourced Analytics. The user obtains the triple (α, s,a) from FPPA,
the vectors α and s are also learned by the operator. This triple contains a permutation α that
arbitrarily permutes contents of the User History and can be the identity if no permutation is
required, a set vector s which defines which slots of the User History are set to new values directly
and which can contain elements indicating that the old values should be used, and a private add
vector a which defines the additive increment for each value of the User History which can be the
neutral element if this entry should not be changed. The first two maps are applied to the elements
in the User History directly by the user: First the contents are permuted according to α and then
those slots for which an entry in s exists are updated to their corresponding new values. The user
then proves to the operator that it updated its history correctly. For that purpose the language
LTr

B from Fig. 29 is used. Note that the operator never learns the actual contents of the new User
History. Instead, the operator only learns a commitment on it and the permutation α and the
directly updated values s. The proof alongside the commitments on the new User History are sent
to the operator. We stress that this step is optional in our protocol and can be skipped if the output
of the function only contained trivial a permutation α and set vector s (that is, one that does not
manipulate the User History). In this case both parties directly engage in the computation of the
new User History instead of the user proving and the operator verifying that the updates were
applied correctly.

The operator homomorphically computes the commitment of the final User History using the
commitment on the permuted and updated UH from the user and the commitment on the addition
vector a obtained from FPPA. The same technique is used to update the serial number homo-
morphically. This commitment is incorporated into the signature computed by the operator. The
operator then sends the information required by the user to create the new logbook to the user.
The user updates its logbook as in the User Registration task.

Outsource. The goal of the Outsource task is to distribute the data of the user between the
operator and a proxy in such a way that (1) both parties know afterwards that the values were
shared correctly, and (2) assuming P and O do not work together no information on the user data
is leaked. Those two guarantees are met by the Robust Secret Sharing (RSS) protocol from Fig. 18
which creates shares of a given user-input such that each party obtains its own additive share and
a commitment of the other parties share. Additionally, each party gets its own unveil information
for later verification.

The user uses the RSS-protocol πShare-Share to create robust shares of the User History UH
which are later used for the computation, the auxiliary input inU , and five One-Time Pads oα,
os, oa, oOUT and oUNV. Those are also used as input for the Outsourced Analytics as they mask
the following outputs: The first three pads (oα, os and oa) mask the three outputs relevant for
updating the User History (namely the permutation α, the set vector s and the addition vector a)
later from the proxy such that given the output of FPPA to P only the user can reconstruct them.
The fourth pad (oOUT) masks the auxiliary output outU .

During Outsourced Analytics the operator only learns a commitment coma of the addition vector
a. For an update that works analogous to the Bookkeeping task the user requires the decommitment
information unva. Since there are commitment schemes in which access to the unveil information
only suffices to reconstruct the input of the commitment,9 FPPA masks the unveil information with
the final OTP, oUNV.

As in every interaction that requires double-spending detection the user computes a Zero-
Knowledge-proof that the User History is valid. The language LO from Fig. 33 used for this task
additionally ensures that the secret shares have been created correctly: The first line of the proof
ensures that the commitment on the User History for which the user knows the signature from the
operator can be homomorphically split into the two values one of which is sent to the operator

9 Technically, the security definition of any commitment scheme makes no restriction on the amount of
information regarding x stored in unvx. So given any commitment scheme COM where given unvx only,
it is hard to determine x, we can create a commitment scheme COM′ which is equivalent to COM only
that COM.Unv sends a tuple (unvx, x). The new protocol would be as secure as the actual commitment
protocol.
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directly and one of which is sent to the proxy who then sends the commitment to the operator. Both
are then used in the statement of LO. The hiding property of the commitment scheme ensures that
the operator does not learn the share of the proxy while the fact that the proxy sent the commitment
to the operator ensures that this really is the commitment that the user sent; otherwise the user
could send some commitment to the operator claiming that it is the proxy-server’s share and send
a different commitment to the proxy such that the reconstructed User History contains different
values than the ones stored in the user’s logbook.

Since the user had to unveil the latest serial number of its logbook in order to convince the
operator that indeed the latest User History was used the protocol also includes the creation of
a new logbook. Note that this logbook then has a non-zero linking number which at the same
time prohibits the user from starting a second outsourcing-triplet before finishing the first one and
stores information that can be used later by the user to fetch the results during the Update task.
Other than that the logbook generation is the same as the one used during the Bookkeeping task.

Outsourced Analytics. The protocol for performing analytical tasks lets both parties fetch
the values stored earlier and input them into FPPA. Again, function specifics are input by the
operator as fp and the input is verified beforehand using the same basic technique as in the task
for Bookkeeping—but this time against the proxy.

After receiving output from FPPA both parties store the results for later use.

Update. The Update protocol contains two steps which do not necessarily have to be executed
at once. In the first step the user only requests the data P has stored by sending the linking number.
In the second step the user requests the data from O and additionally computes a new logbook
and proves that the data in there has been applied correctly. This proof employs the language
from Fig. 38 which is reminiscent of the proof used during π-Bookkeeping , but also proves that the
linking number is correct. Additionally, in case of a non-trivial permutation or direct update the
user uses the language LTr

B in order to prove that the permutation was applied correctly.
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π-User Registration :

Input U : Message UReg, aux. input inU
Input O: Message UReg, Function Parameters fp, aux. input inO

U : Fetch verification keys:
• Call7 FBB instance sidFBB with input (Retrieve, pidO) and store output vkO.
• Call7 FBB instance sidFBB with input (Retrieve, pidT ) and store output vkT .

Draw User secret key:
• Draw random User ID id

r← Zp.
• Compute User public key pkU := id · g1.
• Call FBB instance sidFBB with input (Register, pidU , pkU ).
• (comid , unvid)← COM.Com(id)

Calculate proof of user secret key knowledge:
• stmt := (pkU , comid)
• wit := (unvid , id

′ := id · g2)
• Π ← Prove(stmt ,wit ,LR), using LR from Fig. 26.

Draw share of new serial number:
• (sernew)(U)

r← Zp
• (com

(U)
sernew , unv

(U)
sernew)← COM.Com((sernew)(U))

U9O: (Π, comid , com
(U)
sernew)

O: Fetch FP information:
• Set7 (comfp , unvfp , σfp) := fFP(fp).

O: Fetch user public key:
• Call FBB instance sidFBB with input (Retrieve, pidU ) and receive output pkU .

Check8 that no user with public key pkU has registered yet.
Check proof:
• stmt := (pkU , comid)
• Check7 Vfy(Π, stmt ,LR) = 1

U←O: (comfp , σfp)
U : Check7 that SIG′.Vfy((UReg, comfp), σfp , vkT ) = 1.

U=O: Compute initial user history:
U→FPPA: (UReg, comfp , inU )
O→FPPA: (UReg, fp, unvfp , inO)
U←FPPA: (UH, unvUH, outU )
O←FPPA: (comUH, outO)

O: Draw share of new serial number:
• (sernew)(O) r← Zp
• (com

(O)
sernew , unv

(O)
sernew)← COM.Com((sernew)(O))

Compute commitments and signature for initial User History:
• comsernew := com

(O)
sernew ⊕ com

(U)
sernew

• (comlin , unvlin)← COM.Com(0)
• σ ← SIG.Sgn(skO, comUH‖comsernew‖comlin‖comid)

U8O: (comUH, (ser
new)(O), com

(O)
sernew , unv

(O)
sernew , comlin , unvlin , σ)

U : Set7 and store λnew := πVerify(VfyL, (UH, comUH, unvUH, ((sernew)(U) + (sernew)(O)),

(com
(U)
sernew ⊕ com

(O)
sernew), (unv

(U)
sernew ⊕ unv

(O)
sernew), 0, comlin , unvlin , id , comid , unvid , σ))

Output U : Initial user history UH, aux. output outU
Output O: Aux. output outO

Fig. 24: The protocol π-User Registration for User Registration (Fig. 9).
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U FPPA O

Π, comid , com
(U)
sernew

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

comfp , σfp
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

UReg, comfp , inU
−−−−−−−−−−−−−−→

UReg, fp, unvfp , inO
←−−−−−−−−−−−−−−

UH, unvUH, outU
←−−−−−−−−−−−−−−

comUH, outO
−−−−−−−−−−−−−−→

comUH, unvUH, (ser
new)(O), com

(O)
sernew , unv

(O)
sernew ,

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
comlin , unvlin , σ

Fig. 25: Message overview for π-User Registration.

LR[ (unvid , id
′) : e (pkU , g2) = e (g1, id

′)∧
COM.Unv (comid , unvid , pkU ) = 1]

Fig. 26: Language LR from π-User Registration following the notation of [CS97].
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{π-Bookkeeping(k)}Kk=1 :

Input U : Message BK(k), aux. input inU
Input O: Message BK(k), FPs fp, aux. input inO
U : Calculate lb-validity proof and draw share of new serial:

• (c̃omUH, ũnvUH)← COM.Rrnd(comUH, unvUH)
• (c̃omlin , ũnvlin)← COM.Rrnd(comlin , unvlin)
• (c̃omid , ũnvid)← COM.Rrnd(comid , unvid)
• stmtVal := (c̃omUH, ser , c̃omlin , c̃omid , vkO)
• witVal :=

(comUH, unvUH, ũnvUH, comser , unvser , comlin , unvlin , ũnvlin , pkU , comid , unvid , ũnvid , σ)
• ΠVal ← POK.Prove(stmtVal ,witVal ,LVal

B ), using LVal
B from Fig. 29.

Draw share of new serial number:
• (sernew)(U)

r← Zp
• (com

(U)
sernew , unv

(U)
sernew)← COM.Com((sernew)(U))

U→O: (c̃omUH, ser , c̃omlin , c̃omid , ΠVal , com
(U)
sernew)

O: Check proof and serial number and fetch FP information:
• stmtVal := (c̃omUH, ser , c̃omlin , c̃omid , vkO)
• Check7 POK.Vfy(ΠVal , stmtVal ,LVal

B ) = 1
• Check7 ser 6∈ LSER

• LSER := LSER ∪ {ser}
• Set7 (comfp , unvfp , σfp) := fFP(fp).

U←O: (comfp , σfp)
U : Check7 that SIG′.Vfy((BK(k), comfp), σfp , vkT ) = 1.

Communicate with FPPA:
U→FPPA: (BK(k),UH, ũnvUH, comfp , inU )
O→FPPA: (BK(k), c̃omUH, fp, unvfp , inO)
U←FPPA: (α, s,a, coma, unva, outU )
O←FPPA: (α, s, coma, outO)

U : Calculate new User History and prove correctness:
• if α 6= ⊥ ∨ s 6= ⊥ then

∗ Apply permutation: UH′ ← α(UH).
∗ For i from 0 to |UH| − 1, if s[i] 6= ⊥, then set UH′′[i] := s[i], else copy UH′′[i] := UH′[i].
∗ Apply addition: UHnew ← UH′′ + a.
∗ (com′UH, unv

′
UH)← COM.Com(UH′).

∗ (com′′UH, unv
′′
UH)← COM.Com(UH′′).

∗ (comnewUH , unv
new
UH )← (com′′UH, unv

′′
UH)⊕ (coma, unva).

∗ Parse (uh0, . . . , uhm−1) =: UH, (uh ′0, . . . , uh ′m−1) =: UH′, and (uh ′′0 , . . . , uh
′′
m−1) =: UH′′.

∗ stmtTr := (c̃omUH, com
′
UH, com

′′
UH, α, s)

∗ witTr := (ũnvUH, unv
′
UH, unv

′′
UH, uh0, . . . , uhm−1, uh

′
0, . . . , uh

′
m−1, uh

′′
0 , . . . , uh

′′
m−1)

∗ ΠTr ← POK.Prove(stmtTr ,witTr ,LTr
B ), using LTr

B from Fig. 30.
U →O : (com′UH, com

′′
UH, ΠTr )

• else
∗ (comnewUH , unv

new
UH )← (com′′UH, unv

′′
UH)⊕ (coma, unva).

O: Draw share of new serial number:
• (sernew)(O) r← Zp
• (com

(O)
sernew , unv

(O)
sernew)← COM.Com((sernew)(O))

Verify proof, compute signature for the new UH.
• if α 6= ⊥ ∨ s 6= ⊥ then

∗ stmtTr := (c̃omUH, com
′
UH, com

′′
UH, α, s)

∗ Check7 POK.Vfy(ΠTr , stmtTr ,LTr
B ) = 1.

∗ comnewUH := com′′UH ⊕ coma.
• else

∗ comnewUH := c̃omUH ⊕ coma.
• comnewser := com

(O)
sernew ⊕ com

(U)
sernew

• σnew ← SIG.Sgn(skO, com
new
UH ‖comnewser ‖c̃omlin‖c̃omid)

U←O: (comnewUH , (ser
new)(O), com

(O)
sernew , unv

(O)
sernew , σnew)

U : Set7 and store λnew := πVerify(VfyL, (UHnew, comnewUH , unv
new
UH , ((ser

new)(U) ⊕ (sernew)(O)),

(com
(U)
sernew ⊕ com

(O)
sernew), (unv

(U)
sernew ⊕ unv

(O)
sernew), lin, c̃omlin , ũnvlin , id , c̃omid , ũnvid , σ

new)).

Output U : User History UHnew, aux. output outU .
Output O: Aux. output outO, permutation α, set vector s.

Fig. 27: The protocol π-Bookkeeping for the Bookkeeping-task (Fig. 10).
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U FPPA O

c̃omUH, ser , c̃omlin , c̃omid , ΠVal , com
(U)
sernew

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

comfp , σfp
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

BK(k),UH,
−−−−−−−−−−−−−−→
ũnvUH, comfp , inU

BK(k), c̃omUH,
←−−−−−−−−−−−−−−

fp, unvfp , inO

α, s,a, coma, unva, outU
←−−−−−−−−−−−−−−

α, s, coma, outO
−−−−−−−−−−−−−−→

com′UH, com
′′
UH, com

new
UH , ΠTr

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

com
new
UH , (ser

new)(O), com
(O)
sernew , unv

(O)
sernew , σ

new

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 28: Message overview for π-Bookkeeping(k). The highlighted message is not always sent.

LVal
B [ (comUH, unvUH, ũnvUH, comser , unvser , comlin ,

unvlin , ũnvlin , pkU , comid , unvid , ũnvid , σ) :

COM.Unv((comUH 	 c̃omUH), (unvUH 	 ũnvUH),0) = 1∧
COM.Unv(comser , unvser , ser) = 1∧
COM.Unv((comlin 	 c̃omlin), (unvlin 	 ũnvlin), 0) = 1∧
COM.Unv(comid , unvid , pkU ) = 1∧
COM.Unv(c̃omid , ũnvid , pkU ) = 1∧
SIG.Vfy(vkO, σ, comUH‖comser‖comlin‖comid) = 1]

Fig. 29: Language LVal
B from π-Bookkeeping following the notation of [CS97].

LTr
B [ (ũnvUH, unv

′
UH, unv

′′
UH, uh0, . . . , uhm−1, uh

′
0, . . . , uh

′
m−1,

uh ′′0 , . . . , uh
′′
m−1) :

COM.Unv(c̃omUH, ũnvUH, (uh0, . . . , uhm−1)) = 1∧
COM.Unv(com′UH, unv

′
UH, (uh

′
0, . . . , uh

′
m−1)) = 1∧

COM.Unv(com′′UH, unv
′′
UH, (uh

′′
0 , . . . , uh

′′
m−1)) = 1∧

For i from 0 to m − 1 :
uh ′i = uhα(i)

uh ′′i :=

{
s[i] for s[i] 6= ⊥
uh ′i for s[i] = ⊥

]

Fig. 30: Language LTr
B used in π-Bookkeeping and π-Update following the notation of [CS97].
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{π-Outsource(k)}Kk=1 :

Input U : Message OS(k), aux. input for the computation inU .
Input P and O: Message OS(k)

U : Create robust secret shares:
• (oOUT, oUNV, oα, os, oa, {sh(x)UH, sh

(x)
inU

, sh
(x)
oOUT , sh

(x)
oUNV , sh

(x)
oα , sh

(x)
os , sh

(x)
oa }x∈{P,O})←

πVerify(ShareL, λ)
Calculate proof and draw serial number share:
• (c̃omid , ũnvid)← COM.Rrnd(comid , unvid)

• stmt := (sh
(O)
UH, com

(O)
UH, ser , c̃omid , vkO)

• wit := (comUH, unvUH, unv
(P)
UH, comser , unvser , comlin , unvlin , pkU , comid , unvid , ũnvid , σ)

• Π ← POK.Prove(stmt ,wit ,LO), using LO from Fig. 33.
• (sernew)(U)

r← Zp.
• (com

(U)
sernew , unv

(U)
sernew)← COM.Com((sernew)(U))

U→O: (sh
(O)
UH, sh

(O)
inU

, sh
(O)
oOUT , sh

(O)
oUNV , sh

(O)
oα , sh

(O)
os , sh

(O)
oa , ser , c̃omid , Π, com

(U)
sernew)

U→P: (sh
(P)
UH, sh

(P)
inU

, sh
(P)
oOUT , sh

(P)
oUNV , sh

(P)
oα , sh

(P)
os , sh

(P)
oa )

O: Check7 serial number ser 6∈ LSER and add ser to LSER.
Prepare linking number: (linnew)(O) r← Zp
(com

(O)
linnew , unv

(O)
linnew)← Com((linnew)(O))

O9P: (com
(O)
linnew , com

(P)
UH, com

(P)
inU

, com
(P)
oOUT , com

(P)
oUNV , com

(P)
oα , com

(P)
os , com

(P)
oa )

P: Check7 πVerify(VfyS, com
(P)
UH, unv

(P)
UH,UH

(P), com
(P)
inU

, unvPinU , in
P
U , com

(P)
oOUT , unv

P
oOUT , oOUT

P , com
(P)
oUNV ,

unvPoUNV , oUNV
P , com

(P)
oα , unv

(P)
oα , oα

(P), com
(P)
os , unv

(P)
os , os

(P), com
(P)
oa , unv

(P)
oa , oa

(P)) = 1

Draw (linnew)(P) r← Zp
P9O: ((linnew)(P), com

(O)
UH, com

(O)
inU

, com
(O)
oOUT , com

(O)
oUNV , com

(O)
oα , com

(O)
os , com

(O)
oa )

O: Check proof and sharings
• stmt := (sh

(O)
UH, com

(O)
UH, ser , c̃omid , vkO)

• Check7 POK.Vfy(Π, stmt ,LO) = 1

• Check7 πVerify(VfyS, com
(O)
UH, unv

(O)
UH,UH

(O), com
(O)
inU

, unvOinU , in
O
U , com

(O)
oOUT , unv

O
oOUT , oOUT

O, com
(O)
oUNV ,

unvOoUNV , oUNV
O, com

(O)
oα , unv

(O)
oα , oα

(O), com
(O)
os , unv

(O)
os , os

(O), com
(O)
oa , unv

(O)
oa , oa

(O)) = 1
Store outsource information and draw share of new serial number:
• linnew := (linnew)(O) + (linnew)(P)

• Add (linnew, sh
(O)
UH, sh

(O)
inU

, sh
(O)
oOUT , sh

(O)
oUNV , sh

(O)
oα , sh

(O)
os , sh

(O)
oa ) to f (O)

OI (pidP , k)

• (sernew)(O) r← Zp
• (com

(O)
sernew , unv

(O)
sernew)← COM.Com((sernew)(O))

Compute commitments and signature for updated UH:
• comnewUH := com

(P)
UH ⊕ com

(O)
UH

• comnewser := com
(U)
sernew ⊕ com

(O)
sernew

• (comnewlin , unvnewlin )← COM.Com(linnew)
• σnew ← SIG.Sgn(skO, com

new
UH ‖comnewser ‖comnewlin ‖c̃omid)

U←O: ((sernew)(O), com
(O)
sernew , unv

(O)
sernew , comnewlin , unvnewlin , σnew)

P8O: ((linnew)(O), unv
(O)
linnew)

P: Store outsource information:
• Check7 Unv(com

(O)
linnew , unv

(O)
linnew , (lin

new)(O)) = 1
• linnew := (linnew)(O) + (linnew)(P)

• Add (linnew, sh
(P)
UH, sh

(P)
inU

, sh
(P)
oOUT , sh

(P)
oUNV , sh

(P)
oα , sh

(P)
os , sh

(P)
oa ) to f (P)

OI (k)
U←P: (linnew)

U : Set7 and store λnew := πVerify(VfyL, (UH, (com(P)
UH ⊕ com

(O)
UH), (unv

(P)
UH ⊕ unv

(O)
UH),

((sernew)(U) + (sernew)(O)), (com
(U)
sernew ⊕ com

(O)
sernew),

(unv
(U)
sernew ⊕ unv

(O)
sernew), linnew, comnewlin , unvnewlin , id , c̃omid , ũnvid , σ

new)).

Output U , P and O: Confirmation ok.

Fig. 31: The protocol π-Outsource for the Outsource-task (Fig. 11).
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U P O

sh
(O)
UH, sh

(O)
inU

, sh(O)
oOUT , sh

(O)
oUNV , sh

(O)
oα , sh(O)

os , sh(O)
oa , ser , c̃omid , Π, com

(U)
sernew

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

sh
(P)
UH, sh

(,)
inU−−−−−−−−−−−−−−−−−−−−−−−−−→

sh
(P)
oOUT , sh

(P)
oUNV , sh

(P)
oα , sh(P)

s , sh(P)
a P

comlinnew
(O), com

(P)
UH, com

P
inU ,←−−−−−−−−−−−−−−−−−−−−−−−−−−

com
P
oOUT , com

P
oUNV , com

P
oα , com

P
os , com

P
oa

(linnew)(P), com
(O)
UH, com

O
inU ,−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

com
O
oOUT , com

O
oUNV , com

(O)
oα , com(O)

os , com(O)
oa

((linnew))(O), unv
(O)
linnew

←−−−−−−−−−−−−−−−−−−−−−−

(sernew)(O), com
(O)
sernew , unv

(O)
sernew , com

new
lin , unvnewlin , σnew

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

linnew

←−−−−−−−−−−−−−−−−−−−−−−

Fig. 32: Message overview for π-Outsource.

LO[ (comUH, unvUH, unv
(P)
UH, comser , unvser , comlin , unvlin ,

pkU , comid , unvid , ũnvid , σ) :

COM.Unv(comUH 	 (com
(O)
UH ⊕ com

(P)
UH),

unvUH 	 (unv
(O)
UH ⊕ unv

(P)
UH),0) = 1∧

COM.Unv(comser , unvser , ser) = 1∧
COM.Unv(comlin , unvlin , 0) = 1∧
COM.Unv(comid , unvid , pkU ) = 1∧
COM.Unv(c̃omid , ũnvid , pkU ) = 1∧
SIG.Vfy(vkO, σ, comUH‖comser‖comlin‖comid) = 1]

Fig. 33: Language LO from π-Outsource following the notation of [CS97].
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{π-Outsourced Analytics(k)}Kk=1 :

Input P: Message OA(k).
Input O: Message OA(k), FPs fp, aux. input inO.

P: Load outsource information:
• Load7 and remove the first Z k entries {(lin, sh(P)

UH,

sh
(P)
inU

, sh
(P)
oOUT , sh

(P)
oUNV , sh

(P)
oα , sh

(P)
os , sh

(P)
oa )z}Z k

z=1 from f
(P)
OI (k).

O: Load outsource information:
• Load7 and remove the first Z k entries {(lin, sh(O)

UH,

sh
(O)
inU

, sh
(O)
oOUT , sh

(O)
oUNV , sh

(O)
oα , sh

(O)
os , sh

(O)
oa )z}Z k

z=1 from f
(O)
OI (pidP , k).

O: Fetch FP information:
• Set7 (comfp , unvfp , σfp) := fFP(fp).

O→P: (comfp , σfp)
P: Check7 that SIG′.Vfy((OA(k), comfp), σfp , vkT ) = 1.

P=O: Compute function:

P→FPPA: (OA(k), comfp , {(sh(P)
UH, sh

(P)
inU

, sh
(P)
oOUT , sh

(P)
oUNV , sh

(P)
oα , sh

(P)
os , sh

(P)
oa )z}Z k

z=1)

O→FPPA: (OA(k), fp, unvfp , {(sh(O)
UH, sh

(O)
inU

, sh
(O)
oOUT , sh

(O)
oUNV , sh

(O)
oα , sh

(O)
os , sh

(O)
oa )z}Z k

z=1, inO)

P←FPPA: {(cαz , csz , caz , cunvaz , coutUz
)}Z k

z=1

O←FPPA: {(α, s, comaz , coutUz
)}Z k

z=1, outO

O: Store update information:
For all z ∈ (1, . . . ,Z k ) : set f (O)

UI (linz ) := (α, s, coma, coutU )z .
P: Store update information:

For all z ∈ (1, . . . ,Z k ) : set f (P)
UI (linz ) := (cα, cs, ca, cunva , coutU )z

Output P: Confirmation ok.
Output O: Aux. output outO.

Fig. 34: The protocol π-Outsourced Analytics for the Outsourced Analytics-task (Fig. 12).

P FPPA O

comfp , σfp
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

OA(k), comfp , {(sh(P)
UH, sh

(P)
inU

, sh(P)
oOUT ,−−−−−−−−−−−−−−−−−−−−−−−→

sh
(P)
oUNV , sh

(P)
oα , sh(P)

os sh
(P)
oa }z}

Z k
z=1

OA(k), fp, unvfp , {(sh(O)
UH, sh

(O)
inU

, sh(O)
oOUT ,←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

sh
(O)
oUNV , sh

(O)
oα , sh(O)

os , sh(O)
oa }z}

Z k
z=1, inO,

{(cαz , csz , caz , cunvaz , coutUz
)}Z k

z=1←−−−−−−−−−−−−−−−−−−−−−−
{(α, s, comaz , coutUz

)}Z k
z=1, outO−−−−−−−−−−−−−−−−−−−−−−→

Fig. 35: Message overview for π-Outsourced Analytics(k).



56 Fetzer et al.

π-Update :
Input U : Upd

Input P: Upd

Input O: Upd

U→P: (lin)

P: Set7 and remove (cα, cs, ca, cunva , coutU ) := f
(P)
UI (lin)

U←P: (cα, cs, ca, cunva , coutU )
U : Prove lb validity and correct updates and draw share of serial number:

• (c̃omUH, ũnvUH)← COM.Rrnd(comUH, unvUH)
• Set α := cα − oα, s := cs − os and a := ca − oa.
• Set unva := cunva − oUNV and outU := coutU − oOUT
• (c̃omid , ũnvid)← COM.Rrnd(comid , unvid)
• stmt := (c̃omUH, ser , lin, c̃omid , vkO)
• wit := (comUH, unvUH, ũnvUH, comser , unvser , comlin , unvlin , pkU , comid , unvid , ũnvid , σ)
• Π ← POK.Prove(stmt ,wit ,LU), using LU from Fig. 38.
• (sernew)(U)

r← Zp
• (com

(U)
sernew , unv

(U)
sernew)← COM.Com((sernew)(U))

• if α 6= ⊥ ∧ s 6= ⊥ then
∗ Apply permutation: UH′ ← α(ŨH).
∗ For i from 0 to |UH| − 1, if s[i] 6= ⊥, then set value UH′′[i] := s[i], else copy
UH′′[i] := UH′[i].

∗ Apply addition: UHnew ← UH′′ + a.
∗ (com′UH, unv

′
UH)← COM.Com(UH′).

∗ (com′′UH, unv
′′
UH)← COM.Com(UH′′).

∗ stmtTr := (c̃omUH, com
′
UH, com

′′
UH, α, s)

∗ witTr := (ũnvUH, unv
′
UH, unv

′′
UH, uh0, . . . , uhm−1, uh

′
0, . . . , uh

′
m−1, uh

′′
0 , . . . , uh

′′
m−1)

∗ ΠTr ← POK.Prove(stmtTr ,witTr ,LTr
B ), using LTr

B from Fig. 30.
U →O: (c̃omUH, com′UH, com′′UH, c̃omid , ser , lin, Π,ΠTr , com

(U)
sernew)

• else
∗ Apply addition: UHnew ← UH+ a.
U →O: (c̃omUH, c̃omid , ser , lin, Π, com(U)sernew)

O: Load update information:
• Set7 (α, s, coma, (coutU )

′) := f
(O)
UI (lin)

• Remove lin 7→ (α, s, coma, (coutU )
′) from f

(O)
UI

Check proof and serial number:
• stmt := (c̃omUH, ser , lin, c̃omid , vkO)

• Check7 POK.Vfy(Π, stmt ,LU)
?
= 1

• if α 6= ⊥ ∨ s 6= ⊥ then
∗ stmtTr := (c̃omUH, com

′
UH, com

′′
UH, α, s)

∗ Check7 POK.Vfy(ΠTr , stmtTr ,LTr
B )

?
= 1

∗ comnewUH := com′′UH ⊕ coma
• else

∗ comnewUH := c̃omUH ⊕ coma
• Check7 ser 6∈ LSER

• LSER := LSER ∪ {ser}
Draw share of new serial number:
• (sernew)(O) r← Zp
• (com

(O)
sernew , unv

(O)
sernew)← COM.Com((sernew)(O))

Compute commitments and signature for updated UH:
• comnewser := com

(O)
sernew ⊕ com

(U)
sernew

• (comnewlin , unvnewlin )← COM.Com(0)
• σnew ← SIG.Sgn(skO, com

new
UH ‖comnewser ‖comnewlin ‖c̃omid)

U←O: (coma, com
new
UH , (ser

new)(O), com
(O)
sernew , unv

(O)
sernew , comnewlin , unvnewlin , σnew, coutU )

U : Check7 Unv(coma, unva,a)
?
= 1 and7 coutU

′ ?
= coutU Set7 and store

λnew := πVerify(VfyL, (UHnew, comnewUH , (ũnvUH ⊕ unva), ((ser
new)(U) + (sernew)(O)),

(com
(U)
sernew ⊕ com

(O)
sernew), (unv

(U)
sernew ⊕ unv

(O)
sernew), 0, comnewlin , unvnewlin , id , c̃omid , ũnvid , σ

new))

Output U : Permutation α, set vector s, add vector a, aux. outU .
Output P: Confirmation ok.
Output O: Permutation α, set vector s.

Fig. 36: The protocol π-Update for the Update-task (Fig. 13).
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U P O

lin
−−−−−−−−−−−−→

cα, cs, ca, cunva , coutU←−−−−−−−−−−−−

c̃omUH, c̃omid , ser , lin, Π, com
(U)
sernew or

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
c̃omUH, com

′
UH, com

′′
UH, c̃omid , ser , lin, Π,ΠTr , com

(U)
sernew

coma, com
new
UH , (ser

new)(O), com
(O)
sernew , unv

(O)
sernew ,

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
com

new
lin , unvnewlin , σnew, coutU

Fig. 37: Message overview for π-Update.

LU[ (comUH, unvUH, ũnvUH, comser , unvser , comlin , unvlin , pkU , comid ,

unvid , ũnvid , σ) :

COM.Unv((comUH 	 c̃omUH), (unvUH 	 ũnvUH),0) = 1∧
COM.Unv(comser , unvser , ser) = 1∧
COM.Unv(comlin , unvlin , lin) = 1∧
COM.Unv(comid , unvid , pkU ) = 1∧
COM.Unv(c̃omid , ũnvid , pkU ) = 1∧
SIG.Vfy(vkO, σ, comUH‖comser‖comlin‖comid) = 1]

Fig. 38: Language LU from π-Update following the notation of [CS97].



58 Fetzer et al.

F Applications

Here we sketch two privacy-preserving applications for PUBA, namely fraud detection for mobile
payments and a targeted advertising network.

F.1 Fraud Detection for Mobile Payments

The scenario was already introduced in Section 4, therefore we only recap it shortly here. We
construct a mobile payment service that supports anonymous payments and is equipped with
strong fraud detection mechanisms. We consider a two-tier fraud detection mechanism: At each
transaction at a point-of -sale a light-weight rule-based fraud detection mechanism is executed and
a more complex machine learning-based fraud detection mechanism is executed with the operator
after some threshold of payments has been reached.

Each time the user conducts a payment at a point-of-sale, a new transaction is created and
stored in the UH. We assume that a transaction record t consists of the following data encoded as
vector of Zp elements:

t := (acc, ts, loc, type, tval),

where acc is one iff the transaction has been accepted, ts is a timestamp, loc indicates the geographic
location the transaction took place, type describes the type of shop (e.g., grocery store, jewelry
store, etc.), and tval is the transaction value. We stress that this is only an example, adding other
attributes is pretty straightforward.

The UH contains the latest T transaction records, the user’s balance bal and some important
additional information to support the fraud detection mechanisms. These additional information
include the account’s current risk level rsk , a maximum value max a single transaction can have,
and a limit rem on the number of payment transactions a user can perform before the complex
fraud detection mechanism has to be run. Note that the latter two values depend on the current
risk level.

Thus, the UH has the following form:

UH := (t11 , . . . , t
1
5 , . . . , t

T
1 , . . . , t

T
5 , rsk , rem,max , bal)

The first 5T slots store the last T transactions (each transaction t i requires 5 slots), t1 is the most
recent transaction. The UH has a total length of 5T + 4 entries.

We now describe the individual tasks a user can perform. The details of the function ∆mpayment

can be found in Fig. 39.

Registration. During registration the user obtains a UH with an empty balance and no stored
transactions using the User Registration task, which calls the function ∆mpayment with input mes-
sage UReg . Both parties input the initial values for the risk level, the remaining number of transac-
tions and the maximum transaction value, i.e., (rsk , rem,max ). The values rem and max can either
be fixed constants or depend on the risk level. Alongside empty transactions, those are written into
the new UH.

Top-Up. Our mobile payments service is prepaid-based; it is important that a user can top-
up its balance. We propose a general method where user and bank agree on the amount that
should be topped up and leave the actual transfer of money to the implementation method, such
as anonymously depositing money at an ATM or making a transfer from the normal bank account
(which would be identifying). The user invokes a Bookkeeping task where both parties input the
amount to be deposited, which is added to the user’s balance. In our example, a top-up transaction
is not recorded in the user’s transaction history (although this might be reasonable).

Payment (with simple fraud detection). To issue a payment, a user communicates with a point-
of-sale that has a communication channel with the bank and forwards all messages between the
user and the bank. The payment is done via the Bookkeeping task where both parties input all
transaction details excluding the acceptance bit, i.e., timestamp, location, type of shop and trans-
action value. The function aborts if the transaction value exceeds the account’s balance. Otherwise,
the simple rule-based fraud detection mechanism ffdsimple is executed to decide whether the trans-
action is accepted or not based on the last T transactions, the risk level rsk , the remaining number
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∆mpayment
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Registration:
(UReg , fp := ⊥, inU := (rsk , rem,max ), inO := (rsk , rem,max ))
If inU 6= inO, abort.
Set UH := (⊥, . . . ,⊥, rsk , rem,max , 0).
Return (UH, outU := ok, outO := ok).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Top-Up:
(BK , fp := ⊥, k := 1,UH, inU := val, inO := val)
If inU 6= inO, abort.
a := (0, . . . , 0, val).
Return (α :=

(
0 ... m−1
0 ... m−1

)
, s := (⊥, . . . ,⊥),a, outU := ok, outO := ok).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Payment:
(BK , fp := ⊥, k := 2,UH, inU := (ts, loc, type, tval), inO := (ts, loc, type, tval))
If inU 6= inO, abort.
Parse (t11 , . . . , t

1
5 , . . . , t

T
1 , . . . , t

T
5 , rsk , rem,max , bal) := UH.

If bal < tval,
then return

(
α :=

(
0 ... m−1
0 ... m−1

)
, s := (⊥, . . . ,⊥),a := (0, . . . , 0),

outU := ⊥, outO := ⊥
)
.

acc := ffdsimple(UH, (ts, loc, type, tval)).
(tnew1 , . . . , tnew5 ) := (acc, ts, loc, type, tval).
If acc = 1,

then baldiff := tval,
else baldiff := 0.

α :=
(

0 ... 4 5 ... 9 ... 5T−5 ... 5T−1 5T ... 5T+3
5T−5 ... 5T−1 0 ... 4 ... 5T−10 ... 5T−6 5T ... 5T+3

)
.

s := (tnew1 , . . . , tnew5 ,⊥, . . . ,⊥).
a := (0, . . . , 0, 0,−1, 0,−baldiff).
Return

(
α, s,a, outU := acc, outO := acc

)
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Risk Calculation:
(OA, fp, k := 3, (UH, inU := ⊥), inO := ⊥)
Parse (t11 , . . . , t

1
5 , . . . , t

T
1 , . . . , t

T
5 , rsk , rem,max , bal) := UH.

(rsknew, remnew,maxnew) := ffdcomp(fp,UH).
s := (⊥, . . . ,⊥, rsknew,⊥,maxnew,⊥).
a := (0, . . . , 0, 0,−rem + remnew, 0, 0).
Return ((α :=

(
0 ... m−1
0 ... m−1

)
, s,a, outU := ok), outO := ok).

Fig. 39: Instantiation of ∆ for privacy-preserving mobile payments with fraud detection.

of transactions rem, the maximum transaction value max , and the details of the current transac-
tion. In our example implementation in Section 5.4 we verify that the following conditions are all
satisfied: 1. tval ≤ max (the transaction value does not exceed the allowed amount) 2. rem > 0 (the
number of payment transactions the user can perform before the complex fraud detection mecha-
nism has to be run has not exceeded its limit). Of course, additional checks could be included: The
transaction could be denied if the risk level is medium but there are more than three transactions
within a 10 minute period, or if two consecutive transactions differ in their location so much that
no user could have possibly traveled that far in such a short time period.

This simple mechanism already provides some fraud protection, but is lightweight enough to be
computed by the user’s resource-constrained device. As those can be public, the user can evaluate
the rule-based fraud detection by itself and provide the point-of-sale with a ZK proof that it eval-
uated the mechanism correctly based on its logbook. This can significantly speed up the payment
process compared to an MPC-based computation, assuming the rules are simple and efficiently
compatible with the ZK proof system.

Only if the transaction is accepted it is physically executed and the user’s balance gets updated
accordingly. More specifically, the three output maps of ∆ look as follows: The permutation shifts
all past transactions to the right to make room for the new transaction, which is written into the
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UH with the direct update. This is done because the UH only stores the last T transactions to hide
the total number of transactions. The additive increment then subtracts one from the number of
remaining transactions rem and subtracts the transaction value tval from the balance bal iff the
transaction was accepted. The risk level and the maximum transaction value stay the same.

More precisely, the new transaction is assembled as (tnew
1 , . . . , tnew

5 ) = (acc, ts, loc, type, tval)
and the new UH then looks as follows after applying the three maps: UHnew := (tnew

1 , . . . , tnew
5 ,

t11 , . . . , t
1
5 , . . . , t

T−1
1 , . . . , tT−15 , rsk , rem − 1,max , balnew).

Risk Calculation (with complex fraud detection). Each time the user executes a payment trans-
action, the counter for the number of remaining transactions decreases by one. When this counter
reaches zero, it forces the user to participate in this task, where the risk level gets updated and
a more sophisticated fraud detection algorithm is executed. By choosing a suitable value for the
initial value of that counter, we can ensure that users regularly participate in the complex fraud
detection mechanism. As we assume this complex fraud detection mechanism to be based on ma-
chine learning, this might result in considerable computational effort. Therefore, the Outsourced
Analytics (OA) task is used. The operator inputs its FPs fp into OA. Note that, as usually, these
FPs were verified by the TSA to pose no privacy-risk for the user and yet are not learned by the
user. The fraud detection mechanism then computes the user’s new risk level rsk along with a new
maximum number of transactions rem, and maximum transaction value max . These new values are
then stored in the UH. More specifically, only the direct update and additive increment are needed.
The direct update sets the new values for the risk level and the new maximum transaction value at
the corresponding slots and overwrites the old values in the process. Since the outsourcing triple
is non-blocking regarding Bookkeeping operations, we have to take into account that the value of
the remaining number of transaction may have changed since Outsource was called. Therefore, the
additive increment adds the difference between the old remaining number of transactions (from
the point when Outsource was called) and the new value to the corresponding slot.

F.2 Targeted Advertising System

We now briefly sketch a targeted mobile advertising system which can optionally be used as an
extension for loyalty systems. For their cooperation, users are rewarded with vouchers targeted at
their purchase behavior. The central idea is that the user’s purchases are stored in the UH. From
time to time, users submit their purchase history to the operator, who analyzes it together with
the histories of several other users. The user is rewarded with a voucher targeted at the user’s
probable interests and is displayed alongside a suitable ad in the smartphone app.

We now assume that the operator acts as a conglomeration of supermarket chains and further
participating shops. In the following, we describe how to use PUBA in this scenario.

Registration. Upon registration with the User Registration task, the user obtains an empty UH.
Each slot in the UH represents a product category, e.g., “vegetables”, “candy”, or “fast food”. The
UH tracks the amount of money spent in each category.

Checkout.When purchasing goods at a participating store, the user updates the purchase history
using the Bookkeeping task. The amount of money spent in each category is calculated and added
to the corresponding slots in the UH.

Analytics. The Outsourced Analytics task lets the user provide data for analytical purposes.
We assume the operator has an analytical function (for example for marketing analyses) which
takes some FPs and multiple UHs as input and assigns to each UH a class that describes the most
likely interests of the corresponding user. The user is rewarded with a voucher that matches this
class and that can be redeemed at a participating shop. Additionally, the user gets a matching
advertisement. For example, if the analysis reveals that the user likes chocolate, the user obtains
advertisements for a new kind of chocolate and a voucher for a 10% discount on chocolate. The
UHs of the participating users remain unchanged.

If the targeted advertising system is interconnected with a loyalty system, the user could also
earn loyalty points instead of vouchers.
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G Security

In this section, we prove the security of our system. That is, we show that the protocol πPUBA
is at least as secure, as our Ideal Functionality F (∆)

PUBA, without relying on a trusted party to
execute F (∆)

PUBA on all parties inputs. To that end, we provide a simulator that simulates the
protocol messages of honest parties without knowing the parties secret input, and prove that those
simulated messages cannot be differentiated by any efficient environment Z.

For technical reasons, we have to restrict our adversary to corrupting only either the proxy P,
or the operator O. We split our simulator up in two parts. Appendix G.1 contains the simulator for
all corruption scenarios related to the security of an honest user U , even in the presence of other
malicious users. Appendix G.2 contains the simulator for all corruption scenarios regarding the
security of an honest operator O. Combined, those two simulators cover all corruption scenarios,
in which either P or O are honest.

G.1 User Security

In this section, we investigate the security of our system in scenarios that relate to the security of
an honest user U . To that end, we prove the following theorem:

Theorem 16 (User Security). If instantiated with a trapdoor-commitment scheme COM and a
dual-mode zero-knowledge protocol POK, it holds that

πPUBA
(FPPA,FBB,FKE,FCRS) ≥UC F (∆)

PUBA

against all PPT-adversaries A who statically corrupted the operator O and a subset of users U .

We use the UC-framework [Can01] and provide a simulator S for this case. The simulator provides a
view for any PPT-environment Z (that is restricted to not corrupting any proxies) that is consistent
with a real protocol execution.

The simulator is given as follows:

Simulator SUSec for a corrupted operator

π-Shared State:

– Trapdoor td sim for simulating proofs.
– Verification key vkO of the operator
– Mapping fOI on {pidP} × {1, . . . ,K} that maps (pidP , k) to a list fOI(pidP , k) of entries

(lin, sh
(P)
UH, sh

(P)
inU

, sh
(P)
oOUT , sh

(P)
oUNV , sh

(P)
oα , sh

(P)
os , sh

(P)
oa ) for all proxies P

– Partial mapping fUI on {lin} : lin 7→ (comaz
, unvaz

,az , α, s, oα, os, oa, oUNV, coutz )
– Partial mapping fLN on {ssid}: ssid 7→ lin
– Mapping fFP that maps a given task task to a set of tuples {fp, comfp , σfp} of Function

Parameters and corresponding signatures.

π-Setup:

1. Run a modified version of crs ← π-Setup(1κ):
– crspok ← SetupPoK is replaced by (crspok, td sim)← SetupSPoK for simulating proofs.

π-Init :

1. Upon receiving instructions from Z to send (Register, pidO, vkO) from O to FBB:
– Checka that no key has previously been stored for pidO.
– Store vkO.
↪→ Call Ideal Functionality F (∆)

PUBA with input (operatorInit) in the name of O.
2. Upon receiving output (ok) from F (∆)

PUBA to O:
↪→ Report message (ok) from FBB to O.
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3. Upon receiving (init, pidT ) from F
(∆)
PUBA:

– Generate signature key pair: (vkT , skT )← SIG′.Gen(gp)
– Respond to future calls of the form (Retrieve, pidT ) to FBB with skT .

π-Sign Function Parameter :

1. Upon receiving instructions from Z to send (fp, comfp , unvfp , task , inO) from O to T :
– Checka that COM′.Unv(comfp , unvfp , fp) = 1.
↪→ Call Ideal Functionality F (∆)

PUBA in the name of O with input (SFP, fp, task , inO).
2. Upon receiving output ok from F (∆)

PUBA to O:
– Compute signature SIG′.Sgn(skT , (task , comfp)).
– Add (fp, comfp , σfp) to fFP(task).
↪→ Report message (σfp) from T to O.

π-User Registration:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
U honest, O corrupted:

1. Upon receiving (UReg, pidU ) from F
(∆)
PUBA:

– id
r← Zp, pkU := id · g1

– (comid , unvid)← COM.Com(0)
– x := (pkU , comid)
– Π ← SimProof(x,LR)

– (com
(U)
sernew , unv

(U)
sernew)← COM.Com(0)

↪→ Report message (Π, comid , com
(U)
sernew) from U to O.

2. Upon receiving (Retrieve, pidU ) from O to FBB:
↪→ Report message (Retrieve, pidU , pkU ) from FBB to O.

3. Upon receiving instructions from Z to send (comfp , σfp) from O to U :
– Checka that there exists an entry (·, comfp , σfp) in fFP(UReg).

4. Upon receiving (UReg, fp, unvfp , inO) from O to FPPA:
– Checka that (comfp , σfp) ∈ fFP(UReg).
– Checka that COM.Unv(comfp , unvfp , fp) = 1.
↪→ Call Ideal Functionality F (∆)

PUBA with input (UReg, fp, inO) in the name of O.
5. Upon receiving leak ` from F (∆)

PUBA and output (outO) from F (∆)
PUBA:

– (comUH, unvUH)← Com(0)
↪→ Report output (comUH, outO) from FPPA to O.

6. Upon receiving instructions from Z to send (comUH, ser
(O), com

(O)
ser , unv

(O)
ser , comlin , unvlin ,

comid , unvid , σ) from O to U :
– comser := com

(O)
ser ⊕ com

(U)
ser

– unvser := unv
(O)
ser ⊕ unv

(U)
ser

– λnew :=
(
0, comUH, unvUH, ser

(O), comser , unvser , 0, comlin , unvlin , 0, comid , unvid , σ
)

– Calla πVerify(λ
new)

↪→ Allow F (∆)
PUBA to deliver output to U .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
U and O corrupted: Nothing to do.

{
π-Bookkeeping(k)

}K

k=1
:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
U honest, O corrupted:
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1. Upon receiving (BK(k),User) from F (∆)
PUBA:

– ser
r← Zp

– (com
(U)
sernew , unv

(U)
sernew)← COM.Com(0)

– (c̃omUH, ũnvUH)← COM.Com(0)
– (c̃omlin , ũnvlin)← COM.Com(0)
– (c̃omid , ũnvid)← COM.Com(0)
– stmtVal := (c̃omUH, ser , c̃omlin , c̃omid , vkO)
– ΠVal ← POK.SimProof(td sim, stmtVal ,LVal

B )

↪→ Report message (c̃omUH, ser , c̃omlin , c̃omid , ΠVal , com
(U)
sernew) from U to O.

2. Upon receiving instructions from Z to send (comfp , σfp) from O to U :
– Checka that (comfp , σfp) ∈ fFP(UReg).

3. Upon receiving (BK(k), c̃omUH
′
, fp, unvfp , inO) from O to FPPA:

– Checka c̃omUH
′
= c̃omUH

– Checka COM.Unv(comfp , unvfp , fp) = 1.
↪→ Call Ideal Functionality F (∆)

PUBA with input (BK(k), fp, inO) in the name of O.
4. Upon receiving leak ` from F (∆)

PUBA and output (outO, α, s) to O from F (∆)
PUBA:

– (coma, unva)← COM.Com(0)
– if α 6= ⊥ ∨ s 6= ⊥ then
• (com′UH, unv

′
UH)← COM.Com(0)

• (com′′UH, unv
′′
UH)← COM.Com(0)

• stmtTr := (c̃omUH, com
′
UH, com

′′
UH, α, s)

• ΠTr ← POK.SimProof(td sim, stmtTr ,LTr
B )

• unvnew
UH := unv′′UH ⊕ unva

– else
• unvnew

UH := ũnvUH ⊕ unva
↪→ Report output (α, s, coma, outO) from FPPA to O.

5. if α 6= ⊥ ∨ s 6= ⊥ then
↪→ Report message (com′UH, com

′′
UH, ΠTr ) from U to O.

6. Upon receiving instructions from Z to send (comnew
UH , (ser

new)(O), com
(O)
sernew , unv

(O)
sernew , σnew)

from O to U :
– sernew := (sernew)(O) + (sernew)(U)

– comnew
ser := com

(O)
sernew ⊕ com

(U)
sernew

– unvnew
ser := unv

(O)
sernew ⊕ unv

(U)
sernew

– λnew := (0, comnew
UH , unv

new
UH , (ser

new)(O), comnew
ser , unv

new
ser , 0, c̃omlin , ũnvlin , 0, c̃omid , ũnvid ,

σnew)
– Calla πVerify(λ

new)

↪→ Allow F (∆)
PUBA to deliver output to U .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
U and O corrupted: Nothing to do but relay messages.

{
π-Outsource(k)

}K

k=1
:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
U and P honest, O corrupted:

1. Upon receiving (OS(k),User) from F (∆)
PUBA and (OS(k), pidP) from F

(∆)
PUBA:

– ser
r← Zp

– (c̃omid , ũnvid)← COM.Com(0)

– (sh
(P)
UH, sh

(O)
UH)← πShare-Share(0)

– (sh
(P)
inU

, sh
(O)
inU

)← πShare-Share(0)
– (sh

(P)
oOUT , sh

(O)
oOUT )← πShare-Share(0)

– (sh
(P)
oUNV , sh

(O)
oUNV )← πShare-Share(0)
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– (sh
(P)
oα , sh

(O)
oα )← πShare-Share(0)

– (sh
(P)
os , sh

(O)
os )← πShare-Share(0)

– (sh
(P)
oa , sh

(O)
oa )← πShare-Share(0)

– Parse (UH(P), com
(O)
UH, unv

(P)
UH) := sh

(P)
UH

– stmt := (sh
(O)
UH, com

(O)
UH, ser , c̃omid , vkO)

– Π ← POK.SimProof(td sim, stmt ,LO)

– (com
(U)
sernew , unv

(U)
sernew)← COM.Com(0)

↪→ Report message (sh
(O)
UH, sh

(O)
inU

, sh
(O)
oOUT , sh

(O)
oUNV , sh

(O)
oα , sh

(O)
os , sh

(O)
oa , com

(O)
UH, ser , c̃omid , Π,

com
(U)
sernew) from U to O.

2. Upon receiving instructions from Z to send (com
(O)
linnew , com

(P)
UH, com

(P)
inU

, com
(P)
oOUT , com

(P)
oUNV , com

(P)
oα ,

com
(P)
os , com

(P)
oa ) from O to P:

– Checka that all commitments are the ones sent earlier.
– (linnew)(P)

r← Zp
Parse:
–
(
UH(P), com

(O)
UH, unv

(P)
UH

)
:= sh

(P)
UH

–
(
inPU , com

(O)
inU

, unvPinU

)
:= sh

(P)
inU

–
(
oOUT

P , com
(O)
oOUT , unv

P
oOUT

)
:= sh

(P)
oOUT

–
(
oUNV

P , com
(O)
oUNV , unv

P
oUNV

)
:= sh

(P)
oUNV

–
(
oα
P , com

(O)
oα , unvPoα

)
:= sh

(P)
oα

–
(
os
P , com

(O)
os , unvPos

)
:= sh

(P)
os

–
(
oa
P , com

(O)
oa , unvPoa

)
:= sh

(P)
oa

↪→ Report message ((linnew)(P), com
(O)
UH, com

(O)
inU

, com
(O)
oOUT , com

(O)
oUNV , com

(O)
α , com

(O)
s , coma)

(O)

from P to O.
3. Upon receiving instructions from Z to send (linnew)(O), unv

(O)
linnew) from O to P:

– Checka COM.Unv(com
(O)
linnew , unv

(O)
linnew , (lin

new)(O))
?
= 1

– linnew := (linnew)(P) + (linnew)(O)

– Append (linnew, sh
(P)
UH, sh

(P)
inU

, sh
(P)
oOUT , sh

(P)
oUNV , sh

(P)
oα , sh

(P)
os , sh

(P)
oa ) to fOI(pidP , k)

– Load current Subsession Identifier ssid and append ssid 7→ linnew to fLN
4. Upon receiving instructions from Z to send ((sernew)(O), com

(O)
sernew , unv

(O)
sernew , comnew

lin ,
unvnew

lin , σnew) from O to U :
– Parse (UH(O), com

(P)
UH, unv

(O)
UH) := sh

(O)
UH

– comnew
UH := com

(P)
UH ⊕ com

(O)
UH

– unvnew
UH := unv

(P)
UH ⊕ unv

(O)
UH

– comnew
ser := com

(U)
sernew ⊕ com

(O)
sernew

– unvnew
ser := unv

(U)
sernew ⊕ unv

(O)
sernew

– λnew := (0, comnew
UH , unv

new
UH , (ser

new)(O), comnew
ser , unv

new
ser , lin

new, comnew
lin , unvnew

lin ,0,
c̃omid , ũnvid , σ

new)
– Calla πVerify(λ

new)

↪→ Call Ideal Functionality F (∆)
PUBA with input (OS(k)) in the name of O.

5. Allow F (∆)
PUBA to deliver output to all parties.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
P honest, U and O corrupted:
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1. Upon receiving (OS(k), pidP) from F
(∆)
PUBA and instructions from Z to send (sh

(P)
UH, sh

(P)
inU

,

sh
(P)
oOUT , sh

(P)
oUNV , sh

(P)
oα , sh

(P)
os , sh

(P)
oa ) from U to P and (com

(O)
linnew , com

(P)
UH, com

(P)
inU

, com
(P)
oOUT , com

(P)
oUNV ,

com
(P)
oα , com

(P)
os , com

(P)
oa ) from O to P:

Parse:
–
(
UH(P), com

(O)
UH, unv

(P)
UH

)
:= sh

(P)
UH

–
(
inPU , com

(O)
inU

, unvPinU

)
:= sh

(P)
inU

–
(
oOUT

P , com
(O)
oOUT , unv

P
oOUT

)
:= sh

(P)
oOUT

–
(
oUNV

P , com
(O)
oUNV , unv

P
oUNV

)
:= sh

(P)
oUNV

–
(
oα
P , com

(O)
oα , unvPoα

)
:= sh

(P)
oα

–
(
os
P , com

(O)
os , unvPos

)
:= sh

(P)
os

–
(
oa
P , com

(O)
oa , unvPoa

)
:= sh

(P)
oa

Check shares
– Checka Unv(com

(P)
UH, unv

(P)
UH,UH

(P))
?
= 1

– Checka Unv(com
(P)
inU

, unvPinU
, inPU )

?
= 1

– Checka Unv(com
(P)
oOUT , unv

P
oOUT
, oOUT

P)
?
= 1

– Checka Unv(com
(P)
oUNV , unv

P
oUNV
, oUNV

P)
?
= 1

– Checka Unv(com
(P)
oα , unv

P
oα
, oα
P)

?
= 1

– Checka Unv(com
(P)
os , unvPos , os

P)
?
= 1

– Checka Unv(com
(P)
oa , unvPoa , oa

P)
?
= 1

Perform coin toss with O
– (linnew)(P)

r← Zp
↪→ Report message ((linnew)(P), com

(O)
UH, com

(O)
inU

, com
(O)
oOUT , com

(O)
oUNV , com

(O)
oα , com

(O)
os , com

(O)
oa )

from P to O.
2. Upon receiving instructions from Z to send ((linnew)(O), unv

(O)
linnew) from O to P:

– Checka COM.Unv(com
(O)
linnew , unv

(O)
linnew , (lin

new)(O))
?
= 1

– linnew := (linnew)(P) + (linnew)(O)

– Append (linnew, sh
(P)
UH, sh

(P)
inU

, sh
(P)
oOUT , sh

(P)
oUNV , sh

(P)
oα , sh

(P)
os , sh

(P)
oa ) to fOI(pidP , k)

– Load current Subsession Identifier ssid and append ssid 7→ linnew to fLN.
↪→ Report message (linnew) from P to U .
↪→ Call Ideal Functionality F (∆)

PUBA with input (OS(k),⊥) in the name of U .
↪→ Call Ideal Functionality F (∆)

PUBA with input (OS(k)) in the name of O.
3. Allow F (∆)

PUBA to deliver output to all parties.

{
π-Outsourced Analytics(k)

}K

k=1
:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
P honest, O corrupted:

1. Upon receiving instructions from Z to send (comfp , σfp) from O to U :
– Checka that (comfp , σfp) ∈ fFP(OA(k)).

2. Upon receiving (OA(k), pidP) from F
(∆)
PUBA and (OA(k), {(sh(O)

UH, sh
(O)
in , sh

(O)
oOUT , sh

(O)
oUNV , sh

(O)
oα ,

sh
(O)
os , sh

(O)
oa )z}Z k

z=1, fp, unvfp , inO) from O to FPPA:
– Checka that COM.Unv(comfp , unvfp , fp) = 1.
– Loada and remove the first Z k entries {(lin, sh(P)UH, sh

(P)
in , sh

(P)
oOUT , sh

(P)
oUNV , sh

(P)
oα , sh

(P)
os ,

sh
(P)
oa )z}Z k

z=1 from fOI(pidP , k)
– For every z from 1 to Z , combinea:
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• UHz := πShare-Combine(sh(P)UHz
, sh

(O)
UHz

)

• inz := πShare-Combine(sh(P)inz
, sh

(O)
inz

)

• oOUTz := πShare-Combine(sh(P)oOUTz , sh
(O)
oOUTz )

• oUNVz := πShare-Combine(sh(P)oUNVz , sh
(O)
oUNVz )

• oαz := πShare-Combine(sh(P)oαz
, sh

(O)
oαz

)

• osz := πShare-Combine(sh(P)osz , sh
(O)
osz )

• oaz := πShare-Combine(sh(P)oaz
, sh

(O)
oaz

)

↪→ Call Ideal Functionality F (∆)
PUBA with input (OA(k), fp, inO) in the name of O

and receive leak `.
3. Upon being asked by F (∆)

PUBA for updated inputs for (z 1, . . . , zn):
↪→ Provide inputs {(UHz i , inz i) | 1 ≤ i ≤ n} to Ideal Functionality F (∆)

PUBA.
4. Upon receiving leak {(z i, αz , sz ,az , outz i) | 1 ≤ i ≤ n} from F

(∆)
PUBA:

– For every z i with 1 ≤ i ≤ n:
• (comazi

, unvaz )
r← Com(az )

• coutz := outz i + oOUTz
– For all other z ≤ Z k :
• (comazi

, unvaz
)

r← Com(0)

• r r← IN
• coutz := r + oOUTz
• az = ⊥

↪→ Allow F (∆)
PUBA to continue.

5. Upon receiving output ({αz , sz}Z k
z=1, outO) from F

(∆)
PUBA to O:

– For each z ∈ 1 . . .Z :
• fUI(linz ) := (comaz

, unvaz
,az , αz , sz , oαz , osz , oaz , oUNV, coutz )

↪→ Report output ({(αz , sz , comaz , coutz ) | 1 ≤ z ≤ Z k}, outO) from FPPA to O.

π-Update:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
U and P honest, O corrupted:

1. Upon receiving (Upd,User) from F (∆)
PUBA and (Upd, pidP) from F

(∆)
PUBA:

↪→ Call Ideal Functionality F (∆)
PUBA with input (Upd) in the name of O.

2. Upon receiving leak ssid from F (∆)
PUBA:

– Load lin := fLN(ssid)
– Loada and remove (com′a, unv

′
a,a
′, α′, s′, oα, os, oa, oUNV, coutU

′) := fUI(lin)
– (c̃omUH, ũnvUH)← COM.Com(0)
– (c̃omid , ũnvid)← COM.Com(0)

– ser
r← Zp

– stmt := (c̃omUH, ser , lin, c̃omid , vkO)
– Π ← POK.SimProof(td sim, stmt ,LU)

– (com
(U)
sernew , unv

(U)
sernew)← COM.Com(0)

3. if α 6= ⊥ ∧ s 6= ⊥ then
– (com′UH, unv

′
UH)← COM.Com(0)

– (com′′UH, unv
′′
UH)← COM.Com(0)

– unvnew
UH := ũnv′′UH ⊕ unva

– stmtTr := (c̃omUH, com
′
UH, com

′′
UH, α, s)

– ΠTr ← POK.SimProof(td sim, stmtTr ,LTr
B )

↪→ Report message (c̃omUH, com
′
UH, com

′′
UH, c̃omid , ser , lin, Π,ΠTr , com

(U)
ser ) from U

to O.
4. else
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– unvnew
UH := ũnvUH ⊕ unva

↪→ Report message (c̃omUH, c̃omid , ser , lin, Π, com
(U)
ser ) from U to O.

5. fi
↪→ Allow F (∆)

PUBA to continue.
6. Upon receiving instructions from Z to send (coma, com

new
UH , (ser

new)(O), com
(O)
sernew , unv

(O)
sernew ,

comnew
lin , unvnew

lin , σnew, coutU ) from O to U :
– Checka coma

?
= com′a

– Checka coutU
?
= coutU

′

– comnew
ser := com

(O)
sernew ⊕ com

(U)
sernew

– unvnew
ser := unv

(O)
sernew ⊕ unv

(U)
sernew

– λnew := (0, comnew
UH , unv

new
UH , (ser

new)(O), comnew
ser , unv

new
ser , 0, com

new
lin , unvnew

lin ,0, c̃omid ,
ũnvid , σ

new)
– Calla πVerify(λ

new)

↪→ Allow F (∆)
PUBA to deliver output to all parties.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
P honest, U and O corrupted:

1. Upon receiving (Upd, pidP) from F
(∆)
PUBA and instructions from Z to send lin from U to P:

– Loada and remove (coma, unva,a, α, s, oα, os, oa, oUNV, coutU ) := fUI(lin)
– cα := α+ oα
– cs := s + os
– ca := a + oa
– cunva := unva + oUNV
– coutU := outU + oOUT
↪→ Report message (cα, cs, ca, cunva , coutU ) from P to U .
↪→ Call Ideal Functionality F (∆)

PUBA with input (Upd) in the name of O and a (random)
corrupted U .

2. Receive output (ok) from F (∆)
PUBA to U and O

a If this fails, output ⊥ and abort.

We now introduce a series of hybrid games Hi and corresponding simulators Si for protocols
πPUBAi. Formally, given security parameter κ, each hybrid has the following form:

Hi := EXECπPUBAi,FBB,FPPA,Si,Z(1
κ)

We then show for each pair of consecutive hybrids Hi and Hi+1, that, given our underlying
assumptions, no distinguisher can distinguish the two games better than by guessing.

For our proof, we consider the following hybrid games Hi:

H1 The hybrid H1 is equivalent to the real experiment. That is,

H1 := EXECπPUBA,FBB,FPPA,S1,Z(1
κ)

This means that all parties execute the real protocol.
H2 All calls to hybrid functionalities, namely to FPPA, FKE and FBB, are replaced by calls to S2,

who simulates their behavior.
H3 Introduces a map fUI to be used by the simulator S3, which is similar to what an honest proxy

would store for the updates of the User History after an Outsourced Analytics. During simula-
tion of FPPA forOA(k), i.e. afterO sent a message (OA(k), fp, unvfp , [{(sh(O)

UH, sh
(O)
inU

, sh
(O)
oOUT , sh

(O)
oUNV ,

sh
(O)
oα , sh

(O)
os , sh

(O)
oa )z}Z k

z=1], inO) to FPPA, and P has sent a message [(OA(k), comfp , {(sh(P)UH, sh
(P)
inU

,

sh
(P)
oOUT , sh

(P)
oUNV , sh

(P)
oα , sh

(P)
os , sh

(P)
oa )z}Z k

z=1)] to FPPA, S3 computes ∆ honestly (with fresh coins, if
necessary), based on the two inputs. S3 uses πShare-Combine on the inputs to reconstruct UHz ,
inz , oOUTz oUNVz , oαz , osz and oaz for each user z ∈ [Z ]. If reconstruction on any of the shares
fails, S3 aborts. With this, S3 computes (comaz , unvaz )← Com(az ) and coutz := outz + oOUTz .
S3 then adds a new entry (linz 7→ (comaz , unvaz ,az , αz , sz , oαz , osz , oaz , oUNVz , coutz )) to fUI.
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H4 During setup, instead of honestly sampling a crs, S4 computes (crspok, td sim)← SetupSPoK and
publishes crs := crspok as Common Reference String. Also, the simulator stores the verification
key vkO of the operator O, which is obtained by simulating FBB during the initialization. The
simulator stores td sim, the remainder stays as it is.

H5 Replaces all zero-knowledge proofs of honest parties by simulated proofs (using td sim) created
by the simulator. Note that the simulated proofs can be created independently from (thus
without knowing) the actual witness.

H6 During simulation of the Bookkeeping task, instead of computing the addition vector a along-
side its commitment and decommitment information honestly according to the function ∆ the
simulator uses a = 0 alongside commitment- and decommitment-information (coma, unva) ←
COM.Com(0). Note that the values for a and unva are not needed for simulation since H5 so
the only remaining value visible to the environment is coma.

H7 All commitments that honest players create in the real protocol (i.e. those on lin, ser , UH
and id) are now created by the simulator as com0, i.e. commitments to the zero-vector of
appropriate size. Also, whenever the user U is supposed to send a serial number, S7 samples a
new value ser

r← Zp and sends this instead of a real serial number.
H8 All proxies P are replaced by an equivalent machine P ′, which behave similar as P, with the ex-

ception that during the Outsource-task, P ′ sends to the simulator the shares (lin, sh(P)UH, sh
(P)
inU

,

sh
(P)
oOUT , sh

(P)
oUNV , sh

(P)
oα , sh

(P)
os , sh

(P)
oa ).

H9 Introduces a map fOI to be used by the simulator S9, which is similar to what an honest proxy
would store for the outsource information. It maps pidP × [K ] to a list fOI(pidP , k) of entries
(lin, sh

(P)
UH, sh

(P)
inU

, sh
(P)
oOUT , sh

(P)
oUNV , sh

(P)
oα , sh

(P)
os , sh

(P)
oa ).

The map is only updated during Outsource-tasks. After S9 received the leak (lin, sh
(P)
UH, sh

(P)
inU

,

sh
(P)
oOUT , sh

(P)
oUNV , sh

(P)
oα , sh

(P)
os , sh

(P)
oa ) from P ′, S9 adds an entry (pidP , k) 7→ (lin, sh

(P)
UH, sh

(P)
inU

, sh
(P)
oOUT ,

sh
(P)
oUNV , sh

(P)
oα , sh

(P)
os , sh

(P)
oa ) to fOI.

H10 Introduces a map fLN for the simulator which contains a mapping from the current Subsession
Identifier ssid to the linking number lin. The map is only updated during Outsource-tasks.
After receiving the leak (lin, sh

(P)
UH, sh

(P)
inU

, sh
(P)
oOUT , sh

(P)
oUNV , sh

(P)
oα , sh

(P)
os , sh

(P)
oa ) from the proxy P ′,

S10 loads the current Subsession Identifier ssid and adds an entry (ssid → lin) to fLN.
H11 All calls from honest parties of the form πShare-Share(x) for an arbitrary x ∈ Znp during the

protocol execution are replaced by calls πShare-Share(0) from the simulator, where 0 = 0n is
the all-zero vector of appropriate size. Furthermore, the simulator takes the role of the proxy
P during the computation of the linking number during Outsource.
Thus the proxy no longer leaks (lin, sh(P)UH, sh

(P)
inU

, sh
(P)
oOUT , sh

(P)
oUNV , sh

(P)
oα , sh

(P)
os , sh

(P)
oa ) to S11.

During simulation of Outsource-tasks, linking numbers were created by the simulator and the
operator. The simulator S11 still stores (lin, sh

(P)
UH, sh

(P)
inU

, sh
(P)
oOUT , sh

(P)
oUNV , sh

(P)
oα , sh

(P)
os , sh

(P)
oa ) in

fOI(pidP , k).
The linking number lin is known to S11 due to its participation in the Blum-type coin toss. The
shares are known regardless of the user’s corruption. If the user is honest, the shares are created
by S11 in the first place and can be stored directly. If the user is corrupted, the environment
sends the shares to the proxy in the name of the user. This message is visible to the simulator.

H12 All honest user U are replaced by machines U ′ that run a similar code as U with the one
exception that during Update-tasks, the actions are restricted to sending the linking number
lin to the simulator S12.
The remaining part of the honest user’s protocol for the Update task is played by the simulator.
In the honest user case, S12 fetches (comaz

, unvaz
,az , αz , sz , oαz , osz , oaz , oUNVz , coutz ) from

fUI(lin) and follows the honest protocol of U from H11.
H13 Introduces incorruptible entity F (∆)

PUBA that follows the specification from Fig. 6 into the ex-
periment, which is only accessible by honest users and the simulator through subroutine in-
put/output tapes.

H14 Replaces the Trusted Signing Authority (TSA) T with a dummy party that immediately for-
wards its input to the ideal functionality F (∆)

PUBA and leaks inO to S14. All interactions of T
are simulated by S14 by following the original protocol.

H15 Introduces a map fFP to be used by the simulator S15, which maps a task task ∈ {UReg, BK(K ),
OA(K )} to a set of tuples (fp, comfp , σfp) of FP and corresponding commitment and signature.
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During simulation of the task Sign Function Parameter, in case an input fp can be used for
task task , the simulator computes the signature σfp on (task , comfp) and stores (comfp , σfp) in
fFP(task).
The user U is replaced by a new user U ′, which skips verification of the signature on (UReg, comfp)
and instead asks the simulator if the certificate is valid. Instead of manually verifying the sig-
nature, S15 verifies that (comfp , σfp) ∈ fFP(task).

H16 During simulation of FBB for the Init-Task, if the simulator receives a message (Register, pidO,
vkO) from O to FBB, he follows the simulation procedure of FBB correctly and, if it succeeded,
calls F (∆)

PUBA with input (init) in the name of O.
H17 Replaces all honest user U∗ by dummy parties that immediately forward their input to the

ideal functionality F (∆)
PUBA with the additional property, that they still leak the linking number

lin during the Update-task (see H12) and still call FPPA with honest inputs when demanded
by the protocol; the remaining protocol parts are executed just as specified in the protocol by
the simulator S17.
S17 also controls input to F (∆)

PUBA for corrupted users during simulation of Outsource- and
Update-tasks. During the Outsource-task, S17 calls F (∆)

PUBA in the name of U with empty input
after the successful exchange of the linking number lin. In the Update-task, S17 calls F (∆)

PUBA

in the name of U with input (Upd) after receiving the first message.
H18 Replaces the proxies P with dummy parties that forward their input to the ideal functionality

F (∆)
PUBA. The remaining messages that the proxies sent will be simulated by the simulator by

honestly following the protocol of P from H17.
H19 The simulator now enforces that for every task, F (∆)

PUBA is called by the O with the correct in-
puts. This causes F (∆)

PUBA to have input from all parties, which means that it behaves according
to its definition and provides leaks and output to S19, which the simulator can use. Thus, S19
can stop simulating FPPA by executing ∆ and the appropriate simulator and instead uses the
inputs received from O to FPPA in order to call F (∆)

PUBA in the name of O. The leaks obtained
by F (∆)

PUBA are then used as output of FPPA.
When executing πShare-Combine with an honest user and executing the Outsourced Analytics-
task with arbitrary user corruption, the simulation of FPPA also includes a consistency check
for the operator’s input: If reconstruction with share via πShare-Combine fails, the simulator
aborts. The operator shares are obtained via input to FPPA, the proxy shares are fetched from
fOI(pidP , k).
When F (∆)

PUBA asks S19 for updated inputs (UHz , inz ) for corrupted users Uz during the Out-
sourced Analytics-task, S19 uses πShare-Combine to reconstruct those values using the shares
that U created during Outsource. The proxy-shares, (sh(P)UH, sh

(P)
in ), are taken from fOI(pidP , k).

The operator-shares sh(O)
UH and sh

(O)
in are extracted from the simulation of FPPA.

The inputs of the operator O to both the Outsource- and the Update-task do not contain any
secrets, so S19 calls F (∆)

PUBA in the name of O after seeing the first message of an Outsource-task
and immediately after the start of the simulation of the Update-task.

H20 Instead of relying on the leaked input inT and the received data from the operator to compute
whether or not the Function Parameters fp should be accepted during the Sign Function
Parameter task, S20 accepts the Function Parameters if the functionality returs ok to the
operator after both parties sent their inputs. The Trusted Signing Authority is replaced with
a genuine dummy party which does not leak inT to the simulator anymore.

H21 Instead of relying on the leak of lin send by the semi-dummy user U during simulation of
the Update-task for honest users, S21 now uses the leaks on the ssid provided by F (∆)

PUBA to
infer the correct linking number. The honest users are replaced by dummy users, i.e. they only
forward their input obtained by Z to F (∆)

PUBA. The remaining interactions with the operator
are simulated using the simulator’s knowledge. Therefore, the simulator uses its mapping from
ssid to lin to get the correct linking number lin during the Update-task.

We now show, by a series of lemmata, that no environment Z can distinguish the real execution
(H1) from the simulated version in the ideal world (H21) by proving indistinguishability of each
pair of consecutive games.
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Lemma 17 (Indistinguishability of H1 and H2). Let Z be a PPT-environment. Let Z distin-
guish H1 and H2 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. We are using the UC composition theorems, here. Letting S2 emulate FPPA, FKE and FBB

is possible, as all of them are UC-functionalities. As such, they can be replaced by a protocol, for
which a simulator SFPPA , SFKE and SFBB , respectively, exists that provides an indistinguishable
view against any environment ZFPPA and ZFBB . SFPPA is a probabilistic polynomial time (PPT)
algorithm that can be executed internally by S2. This neither breaks the requirement of S2 being
PPT —as every party executing the protocol can only perform polynomially many calls to FPPA,
for each of which S2 requires polynomial-time to successfully simulate —nor does it reduce the
distinguishing advantage of Z.

Assume for the sake of contradiction that there is an environment Z that can differentiate an
honest execution of FPPA in H1 from a simulated execution of FPPA by the simulator S2 in H2. We
can easily use this environment to build one that can differentiate between an execution of FPPA

in the real world and an ideal execution, where SFPPA
provides the view for ZFPPA

. This works
by encapsulating parties: Our new distinguishing environment ZFPPA

contains the environment Z
that successfully distinguished H1 and H2, a set of users {U}, a proxy P and an operator O, all
of which acting according to the protocol specified in H1. ZFPPA essentially forwards everything
that Z says to the respective parties. After Z decides on the game, ZFPPA

adapts its choice: If Z
outputs H1, ZFPPA

outputs real to indicate that this is in the real world. If Z outputs H2, ZFPPA

outputs ideal to indicate that this is an execution in the ideal world.
It is easy to see that the success probability of ZFPPA

in deciding whether is in the ideal or
real world is equivalent to that of Z in deciding whether it is playing H1 or H2. Hence, if Z has
a non-negligible advantage over guessing, we found an environment that breaks the UC-security
assumption of FPPA.

Note that the same line of argumentation also works for FKE and FBB, which are also assumed
to be UC-secure.

Lemma 18 (Indistinguishability of H2 and H3). Let Z be a PPT-environment. Let Z distin-
guish H2 and H3 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. The behavior of the two simulators is exactly identical, only that S3 has more information;
namely the map f

(O)
UI . Since none of the messages depend on fUI, indistinguishability trivially

follows.
Since there is an abort-criteria for the simulator, we also have show that the abort by S3 in H3

only occurs iff P aborts in H2. Assume that P and O in H2 have respective shares sh(P)· and sh
(O)
· .

W.l.o.g., assume that the share that caused the abort of FPPA in H2 be that of the user history
UH, as the cases for inU , oOUT, oUNV, oα, os and oa are analogous. In H2, the two shares are handed
over to the subfunctionality FPPA. There, they are merged with πShare-Combine, which aborts if
the verification of the shares fails.

The simulator S3 in H3 does exactly the same steps; it aborts, iff verification in πShare-Combine
fails. Hence, the abort criteria are identical, the same code is executed by two different machines.
So no environment Z can distinguish the two games.

Lemma 19 (Indistinguishability of H3 and H4). Let Z be a PPT-environment. Let Z distin-
guish H3 and H4 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. Indistinguishability trivially follows from the trapdoor-nature of COM and POK. If any
environment Z could distinguish the execution of the protocol when using crs created by crs ←
SetupPoK from crs created by (crs, td sim) ← SetupSPoK with probability 1

2 + ε, we can build a
PPT-environment Z ′ that breaks the indistinguishability of the dual-mode property of POK, by
having Z ′ execute the code of all parties in its head. This leads to the same success probability of
1
2 + ε, thus causing ε ∈ negl(κ) by requirement of the chosen POK-scheme.

Lemma 20 (Indistinguishability of H4 and H5). Let Z be a PPT-environment. Let Z distin-
guish H4 and H5 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. Any PPT-environment Z that could distinguish those two games would trivially be able to
successfully break the dual-mode property of POK, which is not possible by assumption.
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Lemma 21 (Indistinguishability of H5 and H6). Let Z be a PPT-environment. Let Z distin-
guish H5 and H6 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. As already stated in the game description the only used value that is visible to the PPT
environment is the commitment coma. The values a and unva are only used as part of the wit-
ness in the Zero-Knowledge proof in the original protocol and are not used since H5. Hence, the
environment can only see the commitment coma.

For the PPT-environment Z distinguishing H5 from H6 comes down to breaking the hiding-
property of the commitment scheme COM which is not possible (for the PPT-environment) by
requirement.

Lemma 22 (Indistinguishability of H6 and H7). Let Z be a PPT-environment. Let Z distin-
guish H6 and H7 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. First, note that since H5 the Zero-Knowledge proofs Π are simulated using td sim instead of
proving actual properties of the commitments. Hence, the commitments can be exchanged by zero-
commitments COM.Com(0). Other than that, the commitments are only ever used for homomorphic
addition, to which the environment Z only sees committed values. Any PPT-environment Z that
could distinguish the two games H6 and H7 would be able to successfully break the hiding property
of the commitment scheme COM, which by assumption is only possible with negligible advantage.

Lemma 23 (Indistinguishability of H7 and H8). Let Z be a PPT-environment. Let Z distin-
guish H7 and H8 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. The proxy sends the same messages in both games. None of the messages that S8 sends
depend in any way on the leak provided by P ′. The leak is hidden from the environment. Hence,
the distributions for both games are trivially equivalent.

Lemma 24 (Indistinguishability of H8 and H9). Let Z be a PPT-environment. Let Z distin-
guish H8 and H9 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. In both games, the same messages are sent. The simulator also behaves equivalently, as
none of the messages that S9 sends depend on the information stored in fOI. Hence, no (PPT)
environment Z can differentiate the two games.

Lemma 25 (Indistinguishability of H9 and H10). Let Z be a PPT-environment. Let Z dis-
tinguish H9 and H10 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. Again, the only difference is that the simulator obtains and stores additional information.
As no messages depend on the additional information, the environment Z is unable to differentiate
the two games.

Lemma 26 (Indistinguishability of H10 and H11). Let Z be a PPT-environment. Let Z
distinguish H10 and H11 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. Through πShare-Share, the user creates One-Time Pad encrypted inputs for P and O; the
dummy-adversary D (hence also Z) only ever sees the share of the corrupted operator, not that
of the proxy. Z only has a partial view, which information-theoretically hides the value that
is to be shared due to properties of the One-Time Pad. The share itself is not used directly
in any further arithmetic computations—only as input to the subfunctionality FPPA during the
Outsourced Analytics-task. There, the simulator does not work with the shares, but with the actual
values to simulate FPPA by computing ∆.
Hence, differentiation between shares of x and shares of 0 is not possible for any PPT-environment
Z without breaking the security of One-Time Pad encryption.

The computation of the linking number happens via Blum coin toss, where no secrets are in-
volved, meaning that S11 can easily simulate this part by following the protocol honestly. This
change is hence only cosmetical; the same code is executed on a different machine. Hence, since
the simulator performs the honest computation and does exactly the same as P ′ would, the distri-
butions for both games regarding computation of lin are equivalent.

Since the shares are created by the simulator, S11 does not have to rely on leaks by P ′, but
can store them directly, having the same information afterwards.
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Lemma 27 (Indistinguishability of H11 and H12). Let Z be a PPT-environment. Let Z
distinguish H11 and H12 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. First, note that honest user leaking information does not change anything in the distribution
of sent messages, which makes it impossible for the environment Z to distinguish. Hence, for
indistinguishability, we only have to show that, given the correct linking number lin, the simulator
for the honest-user case has all the information necessary to report the same messages that U
would have sent in H11.

During the Update-tasks with honest user U in game H11, the following tasks are now performed
by S12:

– Depending on α and s (both of which are stored in the clear in fUI which is maintained by the
simulator since H3) the simulator either has to:

• Send (c̃omUH, com
′
UH, com

′′
UH, c̃omid , ser , lin, Π,ΠTr , com

(U)
sernew) as U to O:

All the commitments (c̃omUH, com′UH, com
′′
UH, c̃omid and com

(U)
sernew) are commitments to a

zero-vector (due to H7) and both proofs Π and ΠTr are simulated using td sim (due to H5).
The old serial number ser is independent of the proof and drawn uniformly random by the
simulator (since H7). The new serial number com

(U)
sernew is a zero-commitment (since H7).

Finally, note that the linking number lin is leaked by the semi-dummy user. Or, for trivial
permutation and direct update vectors:
• Send (c̃omUH, c̃omid , ser , lin, Π, com

(U)
sernew) as U to O:

As this message is a subset of the other message its simulatability automatically follows.
– Verifying outputs:

As the simulator received the message from O and has the proxy’s shares stored in fUI, S12
can follow the honest protocol and abort whenever an honest user would. Hence, we have to
show that S12 aborts in H12 iff U aborts in H11.
Since in both H11 and H12, the proxy P is assumed to be honest, he sends the correct values to
the user. Those values are exactly the same as the ones that S12 has stored in fUI. Hence, the
simulator already has the user’s view on those values. Additionally, the simulator sees messages
exchanged between parties; so he also has access to coutU . Since the simulator essentially follows
the honest protocol from here on, the abort-criteria remain equivalent.

Lemma 28 (Indistinguishability of H12 and H13). Let Z be a PPT-environment. Let Z
distinguish H12 and H13 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. Since there is no direct link between Z and F (∆)
PUBA, corrupted parties do not get to access

F (∆)
PUBA. Honest parties only act according to the protocol from H12, which does not contain any

interaction with F (∆)
PUBA. Hence, there is no way for Z to distinguish the two games, as every action

any honest party takes in H12 is equivalent to their actions in H13 and the corrupted parties act
entirely independent of F (∆)

PUBA.

Lemma 29 (Indistinguishability of H13 and H14). Let Z be a PPT-environment. Let Z
distinguish H13 and H14 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. Indistinguishability easily follows from the fact that the TSA T leaks its input to the
simulator who performs the same code; hence, the simulator can execute the protocol of T per-
fectly. Concretely, during the Init-task, the only input to T is init, with the key generation
algorithm SIG′.Gen is public knowledge, and for the Sign Function Parameter-task, the only in-
puts are (SFP, inT ), and the protocol can be simulated when knowing skT (which S14 does from
simulation of the Init-task).

Thus, the distribution visible by Z is identical and the game hop is purely cosmetical. Our
claim follows.

Lemma 30 (Indistinguishability of H14 and H15). Let Z be a PPT-environment. Let Z
distinguish H14 and H15 with probability 1/2 + ε. It holds that ε ∈ negl(κ).
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Proof. Indistinguishability follows from the EUF-CMA security of SIG′: Let Z be an environment
that distinguishes between H14 and H15 with probability 1/2 + ε with non-negligible advantage ε.
From Z, we construct an adversary A on the EUF-CMA property of SIG′. Let C be the EUF-CMA
challenger. C provides a signature oracle to A. A flips a random coin and simulates either H14 or
H15. To that end, A creates all secrets honestly, except for skT and vkT . On every executiton of
the Sign Function Parameter-task, whenever A is supposed to sign (task , comfp) for O using skT ,
A forwards (task , comfp) to the signature-oracle and uses the result as signature.

Now note that we assume that Z successfully distinguishes the two games H14 and H15 notably
better than by guessing. Since the only difference is in the way signatures are handled, any dis-
tinguishing attack would require Z to input some distinguishing commitment comfp on Function
Parameters fp into the game, which cause a different simulation.

First, note that if the signature on comfp is accepted in H15, it is also accepted in H14, as
(comfp , σfp) ∈ fFP(k) implies that the Sign Function Parameter task has been called with input
(fp, comfp) successfully and yielded signature σfp . However, the other way is not as clear; the only
differing behavior that can be caused (and used by Z to detect the change) is by preparing some
tuple (comfp , σfp) that is rejected in H15 but accepted in H14. Clearly, the latter implies that the
signature σfp on (task , comfp) is valid. The former, however, implies that Z never called the Sign
Function Parameter-task on fp for function k in the name of O. This means that (1) A never called
the challenge oracle on input (task , comfp), and (2) The signature provided by Z on (task , comfp)
verifies. Taking both together makes this a valid forgery, with which A can break the EUF-CMA
property of SIG′.

Lemma 31 (Indistinguishability of H15 and H16). Let Z be a PPT-environment. Let Z
distinguish H15 and H16 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. The change induced in this game only activates the functionality F (∆)
PUBA. Since, at this

point, it is not accessed by any honest party and neither the environment, nor the dummy adversary
can access F (∆)

PUBA, indistinguishability between the two games trivially follows.

Lemma 32 (Indistinguishability of H16 and H17). Let Z be a PPT-environment. Let Z
distinguish H16 and H17 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. First, note that the environment Z is unable to differentiate between the case where the
honest user (i.e. the ones that are not controlled by Z) forwards his input to F (∆)

PUBA and the
one where he does not, as there is no direct line of communication between F (∆)

PUBA and either
the corrupted parties, or the environment. Hence, this change is impossible to detect for any
environment Z.

We claim indistinguishability of the remaining changes based on the fact that the simulator S17
sends exactly the same messages that an honest user would in H16. Using the leaks, the simulator
in H17 can create every message that the user would have sent in H16, as we will show now:

User Registration. Here, the user has no secret input; the simulator can safely draw a random
key similar to the real user and respond to calls to FBB with pkU . The verification step is
only based on the messages, which the simulator sees; this means, that S17 can abort in H17

whenever U aborts in H16.
Bookkeeping. The first message that S17 has to send here in the name of U is (c̃omUH, ser , c̃omlin ,

c̃omid , ΠVal , com
(U)
sernew).

Since H7, the commitments are commitments on the all-zero vector and hence independent
of the users secret inputs and can be simulated by S17. Since H5, S17 simulates the zero-
knowledge proof ΠVal , which is possible without knowing the witness. The old serial number,
ser , is independent of both comUH and ΠVal , and can be drawn uniformly random.
In case any non-trivial permutation α or set vector s is returned from the simulation of FPPA

and hence the computation of the application-specific function ∆, S17 has to report a second
message in which it proves correct update of the User History. This results in the message
(com′UH, com

′′
UH, ΠTr ). The commitments are once again all-zero commitments due to H7. The

proof ΠTr is simulated due to H5 but requires knowledge of the full statement. This statement
contains c̃omUH, com′UH, com

′′
UH (which were chosen as commitments on the all-zero vector due
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to H7), and α and s (which are also required in order to decide if the second message has to
be reported at all; note that both α and s are known by O and hence can not be forged or
set arbitrarily). The latter is obtained by simulation of FPPA and hence consistent with the
operators view. Hence S17 can reconstruct the statement of the second proof according to LTr

B
which proves that the output of FPPA has been transferred to the UH accordingly. Again, we
stress that this message is only reported for non-trivial values of α and s.
Finally, the simulator has to perform the verification step, as S17 always used zero-vectors for
shares and can hence verify the values received from O. This is done by executing the honest
protocol, namely by calling πVerify with an honestly created logbook λ.

Outsource. During an Outsource-task, the shares have been created since H11 by the simulator
anyways. Since H5 and H7 the simulator also creates the commitments and the zero-knowledge
proof. The serial is again drawn at random since H7 as it is independent of comser (= com0).
Hence, the first message, (sh

(O)
UH, sh

(O)
inU

, sh
(O)
oOUT , sh

(O)
oUNV , sh

(O)
oα , sh

(O)
os , sh

(O)
oa , com

(O)
UH, ser , c̃omid , Π,

com
(U)
sernew) is indistinguishable from the one in H16.

Verification, again, is only dependent on what the simulator knows already and hence can be
simulated by executing the honest protocol.

Update. The Update-task has been simulated already since H12.

For security against a corrupted user U our definition of F (∆)
PUBA requires S17 to call F (∆)

PUBA in
the name of U only during the Outsource-task and not during any of the other tasks:

– In User Registration, all that would change is that F (∆)
PUBA adds U to the list of known users,

which is never checked against corrupted users. Interaction with FBB might still take place,
though, but that one is simulated since H2.

– In the Bookkeeping-task the environment essentially talks to itself. Updates to UH can be
done by Z without access to F (∆)

PUBA as the operator can sign any User History UH and thus
create a valid new logbook λ. Simulation of FPPA occurs outside of the actual protocol since
S17 plays SFPPA

since H2.
– For Outsource F (∆)

PUBA stores the corrupted user’s information in a list, alongside that of
honest users, and which are used later for the Outsourced Analytics-task. There, it does not
make a difference if the corrupted user’s UH is input to F (∆)

PUBA directly, or if it is equivocated
during simulation of the subsequent Outsourced Analytics task.

– During Outsourced Analytics the simulator receives input from O to FPPA which contains
the shares the corrupted user U prepared for the operator: (OA(k), {(sh(O)

UH, sh
(O)
inU

, sh
(O)
oOUT , sh

(O)
oUNV ,

sh
(O)
oα , sh

(O)
os , sh

(O)
oa )z}Z k

z=1, fp, unvfp , inO). The respective shares of the proxy were already stored
in fOI(pidP , k) during simulation of the Outsource-task. Hence all shares can be reconstructed
by S17 using the protocol πShare-Combine. This value is equivalent to the input corrupted users
that would have input to F (∆)

PUBA. So S17 can provide F (∆)
PUBA with the correct tuples (UH, in)

for corrupted users.
Correctness trivially follows as the simulator in H17 has, at this point, exactly the same values
that are divided to P and O in H16. Hence, any attempt by Z to manipulate data that would
have worked in H16 also works in H17 and vice versa, making it impossible for any PPT-
environment Z to distinguish.

– During the Update-task corrupted users only obtain masked values from the proxy. This step
does not have any consequences for further interaction as F (∆)

PUBA only loads and returns data
that is not accessed at any further point throughout the lifetime of the system. Hence, it suffices
to call F (∆)

PUBA in the name of any corrupted user to have it deliver output to the Proxy.

Lemma 33 (Indistinguishability of H17 and H18). Let Z be a PPT-environment. Let Z
distinguish H17 and H18 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. Intuitively, the proxy does not have any secret inputs. It only obtains information via secret
shares of the user. At this point, the simulator S18 already simulates all the messages sent by the
user and hence can act as the honest proxy would by following the protocol from H17.

In more detail, the situation for an honest user is as follows:
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Outsource. Since the proxy is now played by the simulator who also sends all messages on behalf
of the user, all messages from user to proxy and vice versa can be ignored. This automatically
resolves most of the Outsource-task; the only interaction between the proxy and the operator
that has to be simulated is during a Blum coin toss to create lin, which does not depend on
any secret inputs at all. This can honestly be executed by S18.
Managing fOI is also trivially possible, as all the values stored there come from the user, who
is played by the simulator at this point, anyway. Correctness of the values follows from the fact
that S18 only stores information there in H18 when the honest proxy P in H17 would.

Outsourced Analytics. In H17, the proxy loads the first Z k entries of fOI before calling FPPA.
We already argued for the Outsource-task that the information S18 stores in fOI in H18 is equiv-
alent to what P stores during H17; hence, S18 can simulate by following the honest protocol.
Storing the information in f (P)UI after the simulation of FPPA is not required anymore, as it only
contains information that the simulator can infer from fUI.

Update. The protocol for the Update-task consists of two disjoint parts: the interaction between
the user and the proxy and the interaction between the user and the operator.
The latter is independent of anything the proxy does. The former is independent of anything
the environment Z (or the dummy-adversary D) do and does not have to be simulated, as Z
does not have the ability to read messages exchanged between honest parties.

For a corrupted users the changes for the Outsource- and Update-tasks are as follows:

Outsource. Here, everything works by following the protocol of P honestly. The simulator receives
the shares, which are send from U to P. Those can be stored in fOI(pidP , k).
Since the simulator now also performs the Blum coin toss, S18 knows lin and can send it to
the user directly.

Update. The only interaction that has to be simulated is the part where P, after receiving lin from
U , sends (cα, cs, ca, cunva , coutU ) to U . During simulation of the task for Outsourced Analytics
both values were created honestly and stored in fUI(lin). Since lin is obtained from U , the
proxy in H17 will send exactly the same message as the simulator in H18.

This shows that the two games are indistinguishable for all PPT-environments Z.

Lemma 34 (Indistinguishability of H18 and H19). Let Z be a PPT-environment. Let Z
distinguish H18 and H19 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. Indistinguishability of the first change, namely that computations of ∆ are replaced by leaks
from F (∆)

PUBA, follows from the following facts:

1. In both hybrid games, the result of the computation is based on the output of ∆. The simulator
performs this computation in H18; there, it acts honestly according to the simulator description,
hence S19 would not cheat. The functionality F (∆)

PUBA is, by UC-conventions, modeled as an
incorruptible entity and hence performs the same honest computation. Hence, both parties
compute ∆ honestly.

2. Both parties, F (∆)
PUBA in H19 and the simulator in H18, use exactly the same input. Until the

point where the interaction takes place, the simulators in both H18 and H19 behave equiva-
lently, leading to an identical view for Z. From there on, the simulator in H18 performs the
computation ∆(·) directly and obtains the outputs. In H19, S19 forwards the same input to
F (∆)
PUBA (which is possible because both have the same interface). The functionality then uses

this input in order to compute ∆. The outputs are leaked to S19 via functionality output, who
now has exactly the same values as in H18 and can continue equivalently.

Hence, the parts involving interaction with FPPA remain equivalent, as essentially the output data
that S19 obtains in H19 via leakage has been created similarly to the output that the simulator
computed in H18.

We now have to show that the abort-criteria remain equivalent. In H19, S19 aborts if the input
of O to FPPA differs from the shares that U sent to O during the Outsource-task. In H18, the user
aborts via FPPA, as shares that were changed by the operator would be recognized as forgery due
to πVerify with overwhelming probability.
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Next, we have to prove indistinguishability of the equivocation step for corrupted users. To that
end, we claim that the updated input shares that S19 inputs to F (∆)

PUBA are the same that were
shared during the Outsource-task and that would have been used by the proxy and operator in a
real execution. The proxy-shares were treated similar to a real execution, as the simulator stored
the message that was received during the Outsource-task in fOI. The operator shares were taken
from Os input to FPPA and are hence also visible to the simulator. Hence, the same values that
would have been taken as input for ∆ in H18 are also taken by F (∆)

PUBA in H19. As mentioned above,
F (∆)
PUBA computes ∆ just as was done in previous games, so no environment can distinguish.

Lemma 35 (Indistinguishability of H19 and H20). Let Z be a PPT-environment. Let Z
distinguish H19 and H20 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. Again this gamehop is only cosmetical as the same code still is executed on the same inputs,
but from a different machine. In H19 the simulator obtains inT from the (semi-)dummy TSA and
(fp, comfp , unvfp , task , inO) from the corrupted operator and then performs some consistency checks
regarding the FPs before evaluating∆. In H20 the simulator only obtains (fp, comfp , unvfp , task , inO)
from the corrupted operator and then performs the same consistency checks regarding the FPs be-
fore inputting (fp, task , inO) to F (∆)

PUBA. The input from the TSA—inT—was already forwarded
by the honest dummy party to F (∆)

PUBA so the inputs are the same.
Indistinguishability thus follows directly.

Lemma 36 (Indistinguishability of H20 and H21). Let Z be a PPT-environment. Let Z
distinguish H20 and H21 with probability 1/2 + ε. It holds that ε ∈ negl(κ).

Proof. The situation only changes during Update-tasks with an honest user, where the simulator
S21 in the honest-user setting does not receive the leak lin from U , but instead the Subsession
Identifier ssid of the respective Outsource-instance from F (∆)

PUBA. Since the simulator updated the
list fLN correctly during the simulation of the Outsource-task, S21 can obtain the same linking
number lin in H21 that U has sent in H20.

Given that F (∆)
PUBA is, by definition, incorruptible, it will always send the correct Subsession

Identifier ssid to the simulator S21. During the Outsource-task, the linking number lin was honestly
created by the simulator S21 in an interaction with O. This number is used by all parties as linking
number and is stored in fLN just as honest parties would store it. During the Update-task, an
honest user would look up his linking number, which can be simulated by following the program
of U and fetching it from fLN.

Hence, there is no way that the linking number an honest user would store during an Outsource-
and later reveal during an Update-task in H20 would differ from the linking number that the
simulator stores (and later reveals) during the simulation of H21.

The final game, H21, corresponds to our ideal world. Since we have shown that no efficient
environment Z can differentiate this from the real execution in H1, our corollary follows:

Corollary 37 (User Security). For all environments Z who statically corrupted the operator,
it follows that

πPUBA
(FPPA,FBB,FKE,FCRS) ≥UC F (∆)

PUBA

We have shown in Lemma 17 to Lemma 36, that under static corruption of the operator, the
simulator SUSec acting in the ideal world can provide a view for Z that is indistinguishable from
a real execution of the protocol:

viewZ,A,πPUBA ≈c viewZ,SUSec,F(∆)
PUBA
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G.2 System Security

This section contains an investigation of the remaining corruption scenarios, namely the ones that
are relevant to maintain privacy of an honest operator. That is, we consider scenarios where the
any subset of users and proxies can be corrupted and present a simulator, which provides a view
in the ideal world that cannot be distinguished from a real-world execution.

Simulator SSysSec for corrupted users and proxies

π-Shared State:

– Trapdoor td ext for extracting proofs.
– Signature key pair (vkO, skO)
– Signature key pair (vkT , skT )
– List LSER of observed serial numbers.
– Partial mapping fID on G1: pkU 7→ pidU that maps user public keys pkU to the pid of the

corresponding user
– Mapping f (P)OI on {1, . . . ,K} that maps k to a list f (P)OI (k) of entries (lin, sh(P)UH, sh

(P)
inU

, sh
(P)
oOUT ,

sh
(P)
oUNV , sh

(P)
oα , sh

(P)
os , sh

(P)
oa ) for every honest proxy P

– Mapping f (O)
OI on {pidP}×{1, . . . ,K} that maps (pidP , k) to a list f (O)

OI (pidP , k) of entries
(lin, sh

(O)
UH, sh

(O)
inU

, sh
(O)
oOUT , sh

(O)
oUNV , sh

(O)
oα , sh

(O)
os , sh

(O)
oa )

– One partial mapping f
(P)
UI on {lin} with lin 7→ (cα, cs, ca, cunva , coutU ) for every honest

proxy P
– Partial mapping f (O)

UI on {lin}. lin 7→ (α, s, coma, coutU )
– Partial mapping fLN on {ssid} : ssid 7→ lin
– Mapping fFP on ({UReg∪BK(K )∪OA(K )}× L) that maps a task task and a FP-index `

to a tuple (comfp , unvfp , σfp) of a commitment and a signature.

π-Setup:

1. Run a modified version of crs ← π-Setup(1κ)
– crspok ← SetupPoK is replaced by (crspok, td ext)← SetupEPoK for extracting proofs.

π-Init :

1. Upon receiving (init, pidO) from F
(∆)
PUBA:

– Create and store a signature-key pair (skO, vkO)← SIG.Gen(1κ)
– From now on, reply to FBB calls of the form (Retrieve, pidO) with vkO
↪→ Allow F (∆)

PUBA to continue.
2. Upon receiving (init, pidT ) from F

(∆)
PUBA:

– Create and store a signature-key pair (skT , vkT )← SIG′.Gen(1κ)
– From now on, reply to FBB calls of the form (Retrieve, pidT ) with vkT
↪→ Allow F (∆)

PUBA to continue.

π-Sign Function Parameter :
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
O honest, T honest:

1. Upon receiving leak (task , `) from F (∆)
PUBA:

– Compute (com0, unv0)← COM′.Com(0).
– Compute σfp ← SIG.Sgn((task , com0), skT ).
– Store fFP(task , `) := (com0, unvfp , σfp).
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π-User Registration:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
U and O honest:

1. Draw random user public key pkU
r← G1

2. From now on, reply to FBB calls of the form (Retrieve, pidU ) with pkU
3. Report encrypted messages.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
U corrupted, O honest:

1. Upon receiving instructions from Z to send (Retrieve, pidO) from U to FBB:
↪→ Report output (vkO) from FBB to U .

2. Upon receiving instructions from Z to send (Register, pidU , pkU ) from U to FBB:
– If a previous call (Register, pidU , pk

′
U ) to FBB for some pk′U has been previously

recorded, abort in the name of O.
3. Upon receiving leak ` from F (∆)

PUBA:
– Seta (com0, unv0, σfp) := fFP(UReg, `).

4. Upon receiving instructions from Z to send (Π, comid , com
(U)
sernew) from U to O:

– If fID(pkU ) 6= ⊥ abort, else set fID(pkU ) = pidU
– stmt := (pkU , comid)

– Checka POK.Vfy(Π, stmt ,LR)
?
= 1

↪→ Report message (com0, σfp) from O to U .
5. Upon receiving instructions from Z to send (UReg, comfp , inU ) from U to FPPA:

– Checka COM.Unv(comfp , unv0,0) = 1.
↪→ Call F (∆)

PUBA with input (UReg, inU ) in the name of U .
6. Upon receiving output (UH, outU ) from F (∆)

PUBA:
– (comUH, unvUH)← COM.Com(UH)
– (sernew)(O) r← Zp
– (com

(O)
sernew , unv

(O)
sernew)← COM.Com((sernew)(O))

– comsernew := com
(O)
sernew ⊕ com

(U)
sernew

– (comlin , unvlin)← COM.Com(0)
– σ ← SIG.Sgn(skO, comUH‖comsernew‖comlin‖comid)
↪→ Report output (UH, unvUH, outU ) from FPPA to U .
↪→ Report message (comUH, (sernew)(O), com

(O)
sernew , unv

(O)
sernew , comlin , unvlin , comid , unvid , σ)

from O to U .
↪→ Allow F (∆)

PUBA to continue.

{
π-Bookkeeping(k)

}K

k=1
:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
U and O honest: Report encrypted messages.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
U corrupted, O honest:

1. Upon receiving leak (`) from F (∆)
PUBA and instructions from Z to send (c̃omUH, ser , c̃omlin ,

c̃omid , ΠVal , com
(U)
sernew) from U to O:

– stmtVal := (c̃omUH, ser , c̃omlin , c̃omid , vkO)

– Checka POK.Vfy(ΠVal , stmtVal ,LVal
B )

?
= 1

– Checka ser 6∈ LSER
– LSER := LSER ∪ {ser}
– Seta (com0, unv0, σfp) := fFP(BK(k), `).
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↪→ Report message (com0, σfp) from O to U .
2. Upon receiving (BK(k),UH, ũnvUH, comfp , inU ) from U to FPPA:

– Checka COM.Unv(comfp , unv0,0) = 1.
– Checka COM.Unv(c̃omUH, ũnvUH,UH)

?
= 1

– Extract pkU using POK.ExtractWit(td ext, ΠVal , stmtVal ,LVal
B )

– Loada pidU ′ := fID(pkU )
– Choose U ′ as the user corresponding to pidU ′

↪→ Call Ideal Functionality F (∆)
PUBA with input (BK(k), inU ) in the name of U ′

3. Upon receiving output (α, s,a, outU ) from F (∆)
PUBA to U :

– Compute (coma, unva)← COM.Com(a)
↪→ Report message (α, s,a, coma, unva, outU ) from FPPA to U

4. if α 6= ⊥ ∨ s 6= ⊥ then
– Upon receiving instructions from Z to send (com′UH, com

′′
UH, ΠTr ) from U to O:

• stmtTr := (c̃omUH, com
′
UH, com

′′
UH, α, s)

• Checka POK.Vfy(ΠTr , stmtTr ,LTr
B )

?
= 1

fi
5. Compute new User History.

– comnew
UH := com′′UH ⊕ coma

– (sernew)(O) r← Zp
– (com

(O)
sernew , unv

(O)
sernew)← COM.Com((sernew)(O))

– comnew
ser := com

(O)
sernew ⊕ com

(U)
sernew

– σnew ← SIG.Sgn(skO, com
new
UH ‖comnew

ser ‖c̃omlin‖c̃omid)
↪→ Report message (comnew

UH , (ser
new)(O), com

(O)
sernew , unv

(O)
sernew , σnew) from O to U

↪→ Allow F (∆)
PUBA to deliver output to O

{
π-Outsource(k)

}K

k=1
:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
U , P and O honest:

1. Upon receiving (OS(k),User) from F (∆)
PUBA, (OS(k), pidP) from F

(∆)
PUBA and (OS(k), pidO)

from F (∆)
PUBA:

– Append an empty entry (⊥, . . . ,⊥) to f (P)OI (k)

– Append an empty entry (⊥, . . . ,⊥) to f (O)
OI (pidP , k)

↪→ Allow F (∆)
PUBA to continue.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
U corrupted, P and O honest:

1. Upon receiving (OS(k), pidO) from F (∆)
PUBA and (OS(k), pidP) from F (∆)

PUBA and instruc-
tions from Z to send (sh

(O)
UH, sh

(O)
inU

, sh
(O)
oOUT , sh

(O)
oUNV , sh

(O)
oα , sh

(O)
os , sh

(O)
oa , ser , c̃omid , Π, com

(U)
sernew)

from U to O and (sh
(P)
UH, sh

(P)
inU

, sh
(P)
oOUT , sh

(P)
oUNV , sh

(P)
oα , sh

(P)
os , sh

(P)
oa ) from U to P:

– stmt := (sh
(O)
UH, com

(O)
UH, ser , c̃omid , vkO)

– Checka POK.Vfy(Π, stmt ,LO)
?
= 1

– Checka ser 6∈ LSER
– LSER := LSER ∪ {ser}
– Combineb UH := πShare-Combine(sh(O)

UH, sh
(P)
UH)

– Combineb inU := πShare-Combine(sh(O)
inU

, sh
(P)
inU

)

– Combineb oOUT := πShare-Combine(sh(O)
oOUT , sh

(P)
oOUT )

– Combineb oUNV := πShare-Combine(sh(O)
oUNV , sh

(P)
oUNV )

– Combineb oα := πShare-Combine(sh(O)
oα , sh

(P)
oα )
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– Combineb os := πShare-Combine(sh(O)
os , sh

(P)
os )

– Combineb oa := πShare-Combine(sh(O)
oa , sh

(P)
oa )

– linnew r← Zp
– Append (linnew, sh

(P)
UH, sh

(P)
inU

, sh
(P)
oOUT , sh

(P)
oUNV , sh

(P)
oα , sh

(P)
os , sh

(P)
oa ) to f (P)OI (k)

– Append (linnew, sh
(O)
UH, sh

(O)
inU

, sh
(O)
oOUT , sh

(O)
oUNV , sh

(O)
oα , sh

(O)
os , sh

(O)
oa ) to f (O)

OI (pidP , k)

– Extract pkU using POK.ExtractWit(td ext, Π, stmt ,LVal
B )

– Loada pidU ′ := fID(pkU )
– Load current Subsession Identifier ssid and append ssid 7→ linnew to fLN
↪→ Call Ideal Functionality F (∆)

PUBA with input (OS(k), inU ) in the name of U ′.
2. Upon receiving output (ok) from F (∆)

PUBA to U ′:
– (sernew)(O) r← Zp
– (com

(O)
sernew , unv

(O)
sernew)← COM.Com((sernew)(O))

– comnew
UH := com

(P)
UH ⊕ com

(O)
UH

– comnew
ser := com

(U)
sernew ⊕ com

(O)
sernew

– (comnew
lin , unvnew

lin )← COM.Com(linnew)
– σnew ← SIG.Sgn(skO, com

new
UH ‖comnew

ser ‖comnew
lin ‖c̃omid)

↪→ Report message ((sernew)(O), com
(O)
sernew , unv

(O)
sernew , comnew

lin , unvnew
lin , σnew) from O to U .

↪→ Report message (linnew) from P to U .
↪→ Allow F (∆)

PUBA to deliver outputs to P and O.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
U honest, P corrupted, O honest:

1. Upon receiving (OS(k),User) from F (∆)
PUBA and (OS(k), pidO) from F

(∆)
PUBA:

– (sh
(P)
UH, sh

(O)
UH)← πShare-Share(0)

– (sh
(P)
inU

, sh
(O)
inU

)← πShare-Share(0)
– (sh

(P)
oOUT , sh

(O)
oOUT )← πShare-Share(0)

– (sh
(P)
oUNV , sh

(O)
oUNV )← πShare-Share(0)

– (sh
(P)
oα , sh

(O)
oα )← πShare-Share(0)

– (sh
(P)
os , sh

(O)
os )← πShare-Share(0)

– (sh
(P)
oa , sh

(O)
oa )← πShare-Share(0)

↪→ Report message (sh
(P)
UH, sh

(P)
inU

, sh
(P)
oOUT , sh

(P)
oUNV , sh

(P)
oα , sh

(P)
os , sh

(P)
oa ) from U to P and

encrypted message from U to O.
↪→ Call Ideal Functionality F (∆)

PUBA with input (OS(k)) in the name of P.
2. Upon receiving output (ok) from F (∆)

PUBA to P:
– (linnew)O

r← Zp
– (com

(O)
linnew , unv

(O)
linnew)← COM.Com((linnew)O)

– Parse:
•
(
UH(O), com

(P)
UH, unv

(O)
UH

)
:= sh

(O)
UH

•
(
inOU , com

(P)
inU

, unvOinU

)
:= sh

(O)
inU

•
(
oOUT

O, com
(P)
oOUT , unv

O
oOUT

)
:= sh

(O)
oOUT

•
(
oUNV

O, com
(P)
oUNV , unv

O
oUNV

)
:= sh

(O)
oUNV

•
(
oα
O, com

(P)
oα , unv

O
oα

)
:= sh

(O)
oα

•
(
os
O, com

(P)
os , unvOos

)
:= sh

(O)
os

•
(
oa
O, com

(P)
oa , unvOoa

)
:= sh

(O)
oa

↪→ Report message (com
(O)
linnew , com

(P)
UH, com

(P)
inU

, com
(P)
oOUT , com

(P)
oUNV , com

(P)
oα , com

(P)
os , com

(P)
oa ) from

O to P.
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3. Upon receiving instructions from Z to send ((linnew)(P), com
(O)
UH, com

(O)
inU

, com
(O)
oOUT , com

(O)
oUNV ,

com
(O)
oα , com

(O)
os , com

(O)
oa ) from P to O:

– Checka Unv(com
(O)
UH, unv

(O)
UH,UH

(O))
?
= 1

– Checka Unv(com
(O)
inU

, unvOinU
, inOU )

?
= 1

– Checka Unv(com
(O)
oOUT , unv

O
oOUT
, oOUT

O)
?
= 1

– Checka Unv(com
(O)
oUNV , unv

O
oUNV
, oUNV

O)
?
= 1

– Checka Unv(com
(O)
oα , unvOoα , oα

O)
?
= 1

– Checka Unv(com
(O)
os , unvOos , os

O)
?
= 1

– Checka Unv(com
(O)
oa , unvOoa , oa

O)
?
= 1

↪→ Report message ((linnew)O, unv
(O)
linnew) from O to P.

4. Upon receiving instructions from Z to send (linnew) from P to U :
– Checka linnew ?

= (linnew)(O) + (linnew)(P)

– Load current Subsession Identifier ssid and append ssid 7→ linnew to fLN
– Append (linnew, sh

(O)
UH, sh

(O)
inU

, sh
(O)
oOUT , sh

(O)
oUNV , sh

(O)
oα , sh

(O)
os , sh

(O)
oa ) to f (O)

OI (pidP , k)

↪→ Allow F (∆)
PUBA to deliver outputs to U and O.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
U and P corrupted, O honest:

1. Upon receiving (OS(k), pidO) from F
(∆)
PUBA and instructions from Z to send (sh

(O)
UH, sh

(O)
inU

,

sh
(O)
oOUT , sh

(O)
oUNV , sh

(O)
oα , sh

(O)
os , sh

(O)
oa , ser , c̃omid , Π, com

(U)
sernew) from U to O:

– Checka ser 6∈ LSER
– LSER := LSER ∪ {ser}
– Parse

(
UH(O), com

(P)
UH, unv

(O)
UH

)
:= sh

(O)
UH

– Parse
(
inOU , com

(P)
inU

, unvOinU

)
:= sh

(O)
inU

– Parse
(
oOUT

O, com
(P)
oOUT , unv

O
oOUT

)
:= sh

(O)
oOUT

– Parse
(
oUNV

O, com
(P)
oUNV , unv

O
oUNV

)
:= sh

(O)
oUNV

– Parse
(
oα
O, com

(P)
oα , unv

O
oα

)
:= sh

(O)
oα

– Parse
(
os
O, com

(P)
os , unvOos

)
:= sh

(O)
os

– Parse
(
oa
O, com

(P)
oa , unvOoa

)
:= sh

(O)
oa

– (linnew)O
r← Zp

– (com
(O)
linnew , unv

(O)
linnew)← COM.Com((linnew)O)

↪→ Report message (com
(O)
linnew , com

(P)
UH, com

(P)
inU

, com
(P)
oOUT , com

(P)
oUNV , comoα , comos , comoa) from O

to P
2. Upon receiving instructions from Z to send ((linnew)(P), com

(O)
UH, com

(O)
inU

, com
(O)
oOUT , com

(O)
oUNV ,

com
(O)
oα , com

(O)
os , com

(O)
oa ) from P to O:

– stmt := (sh
(O)
UH, com

(O)
UH, ser , c̃omid , vkO)

– Checka POK.Vfy(Π, stmt ,LO)
?
= 1

– Checka Unv(com
(O)
UH, unv

(O)
UH,UH

(O))
?
= 1

– Checka Unv(com
(O)
inU

, unvOinU
, inOU )

?
= 1

– Checka Unv(com
(O)
oOUT , unv

O
oOUT
, oOUT

O)
?
= 1

– Checka Unv(com
(O)
oUNV , unv

O
oUNV
, oUNV

O)
?
= 1

– Checka Unv(com
(O)
oα , unvOoα , oα

O)
?
= 1

– Checka Unv(com
(O)
os , unvOos , os

O)
?
= 1
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– Checka Unv(com
(O)
oa , unvOoa , oa

O)
?
= 1

– Extract pkU using POK.ExtractWit(td ext, Π, stmt ,LO)
– Loada pidU ′ := fID(pkU )

↪→ Call Ideal Functionality F (∆)
PUBA with input (OS(k),⊥) in the name of U ′

↪→ Call Ideal Functionality F (∆)
PUBA with input (OS(k)) in the name of P

3. Upon receiving output (ok) from F (∆)
PUBA to U ′ and output (ok) from F (∆)

PUBA to P:
Compute commitments and signature:
– Set lin := (linnew)O + (linnew)(P)

– Append (linnew, sh
(O)
UH, sh

(O)
inU

, sh
(O)
oOUT , sh

(O)
oUNV , sh

(O)
oα , sh

(O)
os , sh

(O)
oa ) to f (O)

OI (pidP , k)

– (sernew)(O) r← Zp
– (com

(O)
sernew , unv

(O)
sernew)← COM.Com((sernew)(O))

– comnew
UH := com

(P)
UH ⊕ com

(O)
UH

– comnew
ser := com

(U)
sernew ⊕ com

(O)
sernew

– (comnew
lin , unvnew

lin )← COM.Com(linnew)
– σnew ← SIG.Sgn(skO, com

new
UH ‖comnew

ser ‖comnew
lin ‖c̃omid)

↪→ Report message ((linnew)(O), unv
(O)
linnew) fromO to P and message ((sernew)(O), com

(O)
sernew ,

unv
(O)
sernew , comnew

lin , unvnew
lin , σnew) from O to U .

↪→ Allow F (∆)
PUBA to deliver outputs to O.

{
π-Outsourced Analytics(k)

}K

k=1
:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
P and O honest:

1. Upon receiving (OA(k), pidP) from F
(∆)
PUBA and (OA(k), pidO) from F

(∆)
PUBA:

– Loada and remove the first Z k entries {(lin, sh(P)UH, sh
(P)
inU

, sh
(P)
oOUT , sh

(P)
oUNV , sh

(P)
oα , sh

(P)
os ,

sh
(P)
oa )z}Z k

z=1 from f
(P)
OI (k)

– Loada and remove the first Z k entries {(lin, sh(O)
UH, sh

(O)
inU

, sh
(O)
oOUT , sh

(O)
oUNV , sh

(O)
oα , sh

(O)
os ,

sh
(O)
oa )z}Z k

z=1 from f
(O)
OI (pidP , k)

– For every z ∈ {1, . . . ,Z k} with linz 6= ⊥, combinea:
• UHz := πShare-Combine(sh(P)UHz

, sh
(O)
UHz

)

• inUz
:= πShare-Combine(sh(P)inUz

, sh
(O)
inUz

)

• oOUTz := πShare-Combine(sh(P)oOUTz , sh
(O)
oOUTz )

• oUNVz := πShare-Combine(sh(P)oUNVz , sh
(O)
oUNVz )

• oαz := πShare-Combine(sh(P)oαz
, sh

(O)
oαz

)

• osz := πShare-Combine(sh(P)osz , sh
(O)
osz )

• oaz := πShare-Combine(sh(P)oaz
, sh

(O)
oaz

)

↪→ Allow F (∆)
PUBA to continue.

2. Upon receiving leak (z , αz , sz ,az , outUz ) from F (∆)
PUBA, do for each z for which a leak

(z , ·, ·, ·, ·) exists:
– (comaz

, unvaz
)

r← Com(az )
– cαz

:= αz + oαz

– csz := sz + osz
– caz

:= az + oaz
– cunvaz := unvaz

+ oUNV
– coutUz

:= outUz
+ oOUTz

– f
(P)
UI (linz ) := (cα, cs, ca, cunva , coutU )z

– f
(O)
UI (linz ) := (αz , sz , comaz

, coutU )z

↪→ Allow F (∆)
PUBA to deliver outputs to all parties.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
P corrupted, O honest:

1. Upon receiving (OA(k), pidO) from F
(∆)
PUBA and leak ` from F (∆)

PUBA:
– (com0, unv0, σfp)← fFP(OA(k), `)
↪→ Report message (com0, σfp) from O to P.

2. Upon receiving instructions from Z to send (OA(k), comfp , {(sh(P)UH, sh
(P)
inU

, sh
(P)
oOUT , sh

(P)
oUNV ,

sh
(P)
oα , sh

(P)
os , sh

(P)
oa )z}Z k

z=1) from P to FPPA:
– Checka COM.Unv(comfp , unv0,0) = 1.
– Loada and remove the first Z k entries {(lin, sh(O)

UH, sh
(O)
inU

, sh
(O)
oOUT , sh

(O)
oUNV , sh

(O)
oα , sh

(O)
os ,

sh
(O)
oa )z}Z k

z=1 from f
(O)
OI (pidP , k)

– For every z from 1 to Z k , combinea:
• UHz ← πShare-Combine(sh(P)UHz

, sh
(O)
UHz

)

• inUz
← πShare-Combine(sh(P)inz

, sh
(O)
inz

)

• oOUTz ← πShare-Combine(sh(P)oOUTz , sh
(O)
oOUTz )

• oUNVz ← πShare-Combine(sh(P)oUNVz , sh
(O)
oUNVz )

• oαz ← πShare-Combine(sh(P)oαz
, sh

(O)
oαz

)

• osz ← πShare-Combine(sh(P)osz , sh
(O)
osz )

• oaz ← πShare-Combine(sh(P)oaz
, sh

(O)
oaz

)

↪→ Call Ideal Functionality F (∆)
PUBA with input (OA(k)) in the name of P.

3. Upon being asked by F (∆)
PUBA for updated inputs for a set idcorrupted := {[Z k ],Uz corrupted}:

– Send inputs {inUz
|z ∈ idcorrupted} to F (∆)

PUBA

↪→ Allow F (∆)
PUBA to continue.

4. Upon receiving leak {(z , αz , sz ,az , outUz
)|z ∈ id corrupted} from F (∆)

PUBA and output (ok)

from F (∆)
PUBA to P :

– For each z in 1, . . . ,Z k :
• If an entry {(z ), ·, ·, ·, ·} exists in the leaked set:

∗ cαz
:= αz + oαz

∗ csz := sz + osz
∗ caz

:= az + oaz
∗ (comaz , unvaz )← Com(az )
∗ cunvaz := unvaz

+ oUNVz
∗ coutUz

:= outUz
+ oOUTz

∗ f
(P)
UI (linz ) := (cαz

, csz , caz
, cunvaz , coutUz

)

∗ f
(O)
UI (linz ) := (α, s, comaz

, coutUz
)

• Else:
∗ Draw random cαz , csz , caz , coutUz

and cunvaz
∗ f

(P)
UI (linz ) := (cαz

, csz , caz
, cunvaz , coutUz

)

↪→ Report message {(cαz
, csz , caz

, cunvaz , coutUz
)}Z k

z=1 from FPPA to P.
↪→ Allow F (∆)

PUBA to deliver outputs to O.

π-Update:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
U , P and O honest: Report encrypted messages.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
U corrupted, P and O honest:

1. Upon receiving (Upd, pidP) from F
(∆)
PUBA and instructions from Z to send (lin) from U to

P:
– If f (P)UI (lin) 6= ⊥:
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• Load and remove (cα, cs, ca, cunva , coutU ) := f
(P)
UI (lin)

↪→ Report message (cα, cs, ca, cunva , coutU ) from P to U .
– otherwise continue without reporting a message

2. Upon receiving (Upd, pidO) from F
(∆)
PUBA:

– Loada and remove (α, s, coma, coutU ) := f
(O)
UI (lin)

3. if α 6= ⊥ ∨ s 6= ⊥ then
Upon receiving instructions from Z to send (c̃omUH, com

′
UH, com

′′
UH, c̃omid , ser , lin, Π,

ΠTr , com
(U)
sernew) from U to O:

Check proof:
• stmt := (c̃omUH, ser , lin, c̃omid , vkO)
• stmtTr := (c̃omUH, com

′
UH, com

′′
UH, α, s)

• Checka POK.Vfy(Π, stmt ,LU)
?
= 1

• Checka POK.Vfy(ΠTr , stmtTr ,LTr
B )

?
= 1

• comnew
UH := com′′UH ⊕ coma

4. else
Upon receiving instructions from Z to send (c̃omUH, c̃omid , ser , lin, Π, com

(U)
sernew) from

U to O:
Check proof:
• stmt := (c̃omUH, ser , lin, c̃omid , vkO)

• Checka POK.Vfy(Π, stmt ,LU)
?
= 1

• comnew
UH := c̃omUH ⊕ coma

5. fi
Check serial number:
– Checka ser 6∈ LSER
– LSER := LSER ∪ {ser}
– Extract pkU using POK.ExtractWit(td ext, Π, stmt ,LU)
– Loada pidU ′ := fID(pkU )

↪→ Call Ideal Functionality F (∆)
PUBA with input (Upd) in the name of U ′.

6. Upon receiving output (α, s,a, outU ) from F (∆)
PUBA to U ′:

Draw share of new serial number:
– (sernew)(O) r← Zp
– (com

(O)
sernew , unv

(O)
sernew)← COM.Com((sernew)(O))

Compute commitments and signature for updated user history:
– comnew

ser := com
(O)
sernew ⊕ com

(U)
sernew

– (comnew
lin , unvnew

lin )← COM.Com(0)
– σnew ← SIG.Sgn(skO, com

new
UH ‖comnew

ser ‖comnew
lin ‖c̃omid)

↪→ Report message (coma, com
new
UH , (ser

new)(O), com
(O)
sernew , unv

(O)
sernew , comnew

lin , unvnew
lin , σnew,

coutU ) from O to U .
↪→ Allow F (∆)

PUBA to deliver outputs.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
U honest, P corrupted, O honest:

1. Upon receiving (Upd, pidO) and (Upd,User) from F (∆)
PUBA:

↪→ Call Ideal Functionality F (∆)
PUBA with input (Upd) in the name of P.

2. Upon receiving leak ssid from F (∆)
PUBA:

– Loada lin := fLN(ssid)
↪→ Report message (lin) from U to P.

3. Upon receiving instructions from Z to send (cα, cs, ca, cunva , coutU ) from P to U :
– Checka (cα, cs, ca, cunva , coutU )

?
= f

(P)
UI (lin) and remove the entry.

↪→ Allow F (∆)
PUBA to continue.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
U and P corrupted, O honest:

1. Upon receiving (Upd, pidO) from F
(∆)
PUBA:

– Loada and remove (α, s, coma, coutU ) := f
(O)
UI (lin).

2. if α 6= ⊥ ∨ s 6= ⊥ then
Upon receiving instructions from Z to send (c̃omUH, com

′
UH, com

′′
UH, c̃omid , ser , lin, Π,

ΠTr , com
(U)
sernew) from U to O:

Check proof:
– stmt := (c̃omUH, ser , lin, c̃omid , vkO)
– stmtTr := (c̃omUH, com

′
UH, com

′′
UH, α, s)

– Checka POK.Vfy(Π, stmt ,LU)
?
= 1

– Checka POK.Vfy(ΠTr , stmtTr ,LTr
B )

?
= 1

– comnew
UH := com′′UH ⊕ coma

3. else
Upon receiving instructions from Z to send (c̃omUH, c̃omid , ser , lin, Π, com

(U)
sernew) from

U to O:
Check proof:

– stmt := (c̃omUH, ser , lin, c̃omid , vkO)

– Checka POK.Vfy(Π, stmt ,LU)
?
= 1

– comnew
UH := c̃omUH ⊕ coma

4. fi
Check serial number:
– Checka ser 6∈ LSER
– LSER := LSER ∪ {ser}
– Extract pkU using POK.ExtractWit(td ext, Π, stmt ,LU)
– Loada pidU ′ := fID(pkU )

↪→ Call Ideal Functionality F (∆)
PUBA with input (Upd) in the name of U ′.

↪→ Call Ideal Functionality F (∆)
PUBA with input (Upd) in the name of P.

5. Upon receiving output (ok) from F (∆)
PUBA to P and output (α, s,a, outU ) from F (∆)

PUBA to
U ′:
– (sernew)(O) r← Zp
– (com

(O)
sernew , unv

(O)
sernew)← COM.Com((sernew)(O))

– comnew
ser := com

(O)
sernew ⊕ com

(U)
sernew

– (comnew
lin , unvnew

lin )← COM.Com(0)
– σnew ← SIG.Sgn(skO, com

new
UH ‖comnew

ser ‖comnew
lin ‖c̃omid)

↪→ Report message (coma, com
new
UH , (ser

new)(O), com
(O)
sernew , unv

(O)
sernew , comnew

lin , unvnew
lin , σnew,

coutU ) from O to U .
↪→ Allow F (∆)

PUBA to deliver output to O.
a If this fails, output ⊥ and abort.
b If this fails, use a default value 0.

For our proof, we consider the following hybrid games Hi:

H1 The hybrid H1 is equivalent to the real experiment. That is,

H1 := EXECπPUBA,FBB,FPPA,S1,Z(1
κ)

This means that all parties execute the real protocol.
H2 All calls to hybrid functionalities, namely to FPPA, FKE and FBB, are replaced by calls to S2,

who simulates their behavior using the respective code of the simulators SFPPA
and SFBB

.
H3 The simulator now maintains the list LSER, in which he stores the serials that were opened by

a user. That is, whenever a user proves that the used logbook λ is “fresh” and hasn’t been
used before by sending a serial number ser together with a proof Π during any of the tasks
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for Bookkeeping, Outsourced Analytics or Update, S3 verifies the proof and aborts, if either
the proof fails to verify or if serial is already contained in LSER. If no abort happened, S3 adds
ser to the list LSER. The code of the operator O is changed in such a way, that the checks that
the simulator does now are not performed again by the operator.

H4 Introduces a map f (O)
UI and for each proxy a map f (P)UI to be used by the simulator S4: f (O)

UI is
similar to what an honest operator would store for the updates after the Outsourced Analytics-
task, f (P)UI is the equivalent for the respective proxy. During simulation of FPPA for Outsourced
Analytics-tasks, i.e. afterO sent a message (OA(k), fp, unvfp , {(sh(O)

UH, sh
(O)
inU

, sh
(O)
oOUT , sh

(O)
oUNV , sh

(O)
oα ,

sh
(O)
os , sh

(O)
oa )z}Z k

z=1, inO) and P input (OA(k), comfp , {(sh(P)UH, sh
(P)
inU

, sh
(P)
oOUT , sh

(P)
oUNV , sh

(P)
oα , sh

(P)
os ,

sh
(P)
oa )z}Z k

z=1) to FPPA, Simulator S4 computes∆ honestly (with fresh coins, if necessary), based
on the two inputs. S4 uses the protocol πShare-Combine on both received shares to reconstruct
UHz , oαz , osz , oaz , oOUTz and oUNVz for each user z ∈ [Z ]. If reconstruction on any of the shares
fails, S4 aborts. With this, S4 computes cαz

:= αz + oαz , csz := sz + osz , caz
:= az + oaz ,

(comaz , unvaz )← COM.Com(az ), cunvaz := unvaz +oUNV and coutz := outz +oOUTz . S4 then adds
a new entry (linz 7→ (cα, cs, ca, cunva,coutU )) to f

(P)
UI and a new entry (linz 7→ (α, s, coma, coutU ))

to f (O)
UI .

S4 also uses f (P)UI to verify that a corrupted P sent the correct values during the Update-task
to an honest U , which replaces Us check with the One-Time Pads.

H5 During setup, the reference string crs is created by (crspok, td ext) ← SetupEPoK. Also, the
operator now leaks the signature key pair (vkO, skO) to S5 during the Init-task;; the simulator
then stores (vkO, skO). The simulator stores td ext, the remainder stays as it is.

H6 Introduces a new map fID for the simulator that uniquely maps user’s public keys pkU to the
pid pidU the respective user had during user registration.
During simulation of FBB, after Z gave instructions to send a message (Register, pidU , pkU )
from a corrupted user U to FBB and simulation succeeded (i.e. did not abort), S6 adds a new
entry (pkU 7→ pidU ) to fID.
During simulation of the task for User Registration, after Z gave instructions to send a message
(Π, comid , com

(U)
sernew) from a corrupted U to O, S6 takes pk′U from Π (since it is contained in

the statement of LR) and aborts if either fID(pk′U ) 6= pidU or if a user with public key pk′U is
already registered.

H7 Whenever Z instructs S7 to send a message containing a zero-knowledge proof Π in the name
of a corrupted user U during the tasks for Bookkeeping, Outsourced Analytics and Update, S7
uses the trapdoor td ext to extract the complete witness wit from Π. It then uses the extracted
public key pkU to get the pid pidU := fID(pkU ) of the user whom the User History belongs to
and aborts if pidU = ⊥.

H8 Introduces an incorruptible entity F (∆)
PUBA that follows the specification from Fig. 6 into the

experiment, which is only accessible by honest parties and the simulator through subroutine
input/output tapes.

H9 Replaces the Trusted Signing Authority T with a dummy party that immediately forwards its
input to the ideal functionality F (∆)

PUBA. All interactions of T are simulated by S9 by following
the original protocol.

H10 Introduces a map fFP that maps a given task task ∈ {UReg ∪ BK(K ) ∪ OA(K )} and a given
identifier ` ∈ [L] to a tuple (fp, comfp , unvfp , σfp).
Replaces the operator O with a new operator O′ that acts like the original one, but has a
few minor changes. After having confirmation that fp can be used for a task task during
Sign Function Parameter, O′ sends (fp, task) to S10, who computes comfp as commitment on
the actual Function Parameters and σfp as corresponding signatures honestly and stores it in
fFP(fp, comfp , σfp). Furthermore, the new operator sends the fp to S10 during UReg, BK and
OA tasks and uses the (comfp , σfp) obtained from S10, which the simulator obtains by looking
if an entry (fp, ·, ·) exists within fFP.
Also, during simulation of FPPA, S10 uses the decommitment information stored in fFP(task , `)
to verify the commitment comfp the user or proxy input into FPPA.

H11 Replaces the operator O by a dummy party, which, when receiving input by Z, forwards
the input immediately to F (∆)

PUBA. During the tasks for User Registration, Bookkeeping and
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Outsourced Analytics, the new operator O also leaks the input inO and fp to S11. All messages
that were sent by O in H10 are now created by S11 in H11 and send in the name of O.

H12 Replaces the map fFP introduced in H10 with one that has the same input space (task , `), but
whose output space only contains (comfp , unvfp , σfp), and not the actual Function Parameters.
Instead of relying on the leaked fp for a mapping, S12 uses the leak ` obtained from F (∆)

PUBA to
obtain a consistent (comfp , σfp) tuple. Furthermore, instead of creating these tuples honestly,
S12 uses the leaked (task , `) obtained during the Sign Function Parameter task to sample a
new (com0, unv0)← COM.Com(0) on the all-zero vector 0 instead of comfp on fp, and uses the
signing key skT to sign com0 and the given task task . The resulting tuple (com0, σfp) is then
stored in fFP(task , `) and used whenever F (∆)

PUBA leaks ` during UReg, BK or OA.
H13 Replaces all honest users U by dummy parties, which, when receiving input by Z, forward

the input immediately to F (∆)
PUBA. During the tasks for User Registration, Bookkeeping and

Outsourced Analytics, the new user machines U also leak the input inU to S13. All messages
honest user U sent in H12 are now created by S13 in H13 and send in the name of U .
Note that all leaks by F (∆)

PUBA are ignored by S13.
H14 Replaces all proxies P with dummy parties, which, when receiving input by Z, forward the

input directly to F (∆)
PUBA. All messages that were sent by honest proxies P in H13 are now

created by S14 in H14 and send in the name of P.
Note that all leaks by F (∆)

PUBA are ignored by S14.
H15 S15 now calls F (∆)

PUBA in the name of the corrupted parties with the correct input. This causes
F (∆)
PUBA to fully perform as defined by its specification, as all inputs are provided. Hence, instead

of computing the function ∆ on the inputs in order to simulate FPPA, S15 now relies on the
leaks provided by F (∆)

PUBA.
This game also introduces a map fLN, that maps leaked ssid values to linking numbers lin.
S15 obtains the input of the corrupted parties as follows:
User Registration, U corrupted, O honest. After simulating FPPA, S15 has obtained inU

from the corrupted U . Hence, S15 calls F (∆)
PUBA in the name of the U belonging to pidU

with input (UReg, inU ). Since F (∆)
PUBA now has full input, S15 uses the output (α, s,a, outU )

from F (∆)
PUBA to U in order to simulate FPPA.

Bookkeeping, U corrupted, O honest. After Z gave instructions to send (BK(k),UH,
ũnvUH, comfp , inU ) to FPPA in the name of U , S15 uses the extracted pidU (see H7) to obtain
the user UpidU who registered for the used public key. After verifying that the commitments
are valid, that is, COM.Unv(c̃omUH, ũnvUH,UH) = 1 and COM.Unv(comfp , unv0,0) = 1 (see
hybrid H12), S15 calls F (∆)

PUBA in the name of UpidU with input (BK(k), inU ) where inU
has been learned from simulation of FPPA.
Also, since F (∆)

PUBA now has complete input, S15 obtains leaks. Hence, instead of computing
∆ in his head, S15 uses the output (α, s,a, outU ) from F (∆)

PUBA to U in order generate the
output of FPPA to U by first computing valid commitment information (coma, unva) ←
COM.Com(a) and then reporting message (α, s,a, coma, unva, outU ).

Outsource, U corrupted, O honest, P honest. S15 obtains the input of the user by using
πShare-Combine on the shares U sent to both O and P: after Z sent instructions to send
(sh

(O)
UH, sh

(O)
inU

, sh
(O)
oOUT , sh

(O)
oUNV , sh

(O)
oα , sh

(O)
os , sh

(O)
oa , ser , c̃omid , Π, com

(U)
sernew) from U to O and to

send (sh
(P)
UH, sh

(P)
inU

, sh
(P)
oOUT , sh

(P)
oUNV , sh

(P)
oα , sh

(P)
os , sh

(P)
oa ) from U to P, S15 uses the shares from

both O and P to reconstruct inU := πShare-Combine(sh(P)inU
, sh

(O)
inU

); if this fails, S15 sets
inU := ⊥. S15 calls F (∆)

PUBA in the name of UpidU , where pidU corresponds to the user whose
identity was extracted from Π, using input (OS(k), inU ).

Outsource, U honest, O honest, P corrupted. P is designed to neither learn secrets, nor
to have secrets itself. Simulator S15 calls F (∆)

PUBA in the name of P with input (OS(k)).
Also, S15 sets fID(ssid) := linnew after negotiating the linking number.

Outsource, U corrupted, P corrupted, O honest. S15 calls F (∆)
PUBA for both the proxy

P (who has no secret input whatsoever) and the user UpidU (who was identified using the
pkU in Π), but using inU := ⊥.



88 Fetzer et al.

Outsourced Analytics, P corrupted, O honest. Since H11, S15 maintains the list f (O)
UI

in the same way an honest operator would. As S15 follows the operators code (due to
H11) it stores all the tuples (linnew, sh

(O)
UH, sh

(O)
inU

, sh
(O)
oOUT , sh

(O)
oUNV , sh

(O)
oα , sh

(O)
os , sh

(O)
oa ) during

the Outsource task; given the additional inputs from simulation of FPPA S15 now has a
complete view of the used shares.
After receiving instructions from Z to send a message (OA(k), comfp , {sh(P)UH, sh

(P)
inU

, sh
(P)
oOUT ,

sh
(P)
oUNV , sh

(P)
α , sh

(P)
s , sh

(P)
a }Zz=1) from P to FPPA, S15 restores each input using the informa-

tion stored in f (O)
UI and aborts if the reconstruction via πShare-Combine fails. When asked

by F (∆)
PUBA for inputs for an index set I ⊂ [Z k ] of corrupted users {Uz}z∈I , S15 enters the

inputs inU from the respective indices.
Reconstruction of the output now only happens for parties z ∈ I in the corrupted party
set; information related to honest parties (cαz

, csz , caz
, cunvaz , coutUz

) is drawn at random
and put to f (P)UI .

Update, any corrupted party. The inputs to the Update-task contain no secrets; so S15
can call F (∆)

PUBA in the name of any corrupted party with input (Upd). For corrupted users,
S15 awaits the proof Π to extract the correct user. For corrupted Proxies, S15 awaits their
first message. Also, if only the proxy is corrupted, S15 awaits the leaked Subsession Identifier
ssid from F (∆)

PUBA to obtain lin := fLN(ssid) and to report the first message from U to P.
H16 Introduces a map f (O)

OI and for each proxy a map f (P)OI to be used by the simulator S16: f (O)
OI

is similar to what an honest operator would store for the Outsourced Information after the
Outsource-task, f (P)OI is the equivalent for the respective proxy.
The map is used during the tasks for Outsource and Outsourced Analytics:
Outsource, U honest, P honest, O honest. S16 adds a vector of empty entries (⊥, . . . ,⊥)

to both f (P)OI (k) and f (O)
OI (k).

Outsource, U corrupted, P honest, O honest. linnew is now randomly sampled by S16,
which replaces the coin-toss of O and P.
After receiving instructions from Z to send a message (sh

(O)
UH, sh

(O)
inU

, sh
(O)
oOUT , sh

(O)
oUNV , sh

(O)
oα ,

sh
(O)
os , sh

(O)
oa , ser , c̃omid , Π, com

(U)
sernew) from a corrupted U to O, S16 adds a new entry

(linnew, sh
(O)
UH, sh

(O)
inU

, sh
(O)
oOUT , sh

(O)
oUNV , sh

(O)
oα , sh

(O)
os , sh

(O)
oa ) to f (O)

OI .
After receiving instructions from Z to send a message (sh

(P)
UH, sh

(P)
inU

, sh
(P)
oOUT , sh

(P)
oUNV , sh

(P)
oα ,

sh
(P)
os , sh

(P)
oa ) from a corrupted U to P, S16 adds a new entry (linnew, sh

(P)
UH, sh

(P)
inU

, sh
(P)
oOUT ,

sh
(P)
oUNV , sh

(P)
oα , sh

(P)
os , sh

(P)
oa ) to f (P)OI .

Outsource, U honest, P corrupted, O honest. When the honest U is supposed to create
shares of UH, inU , oOUT, oUNV, oα, os and oa, S16 creates shares of the zero-vector using
πShare-Share(0) and uses those in the same way the user uses the actual shares in the
protocol. After having the linking number linnew created honestly, S16 stores the values in
f
(O)
OI and ignores f (P)OI .

Outsource, U corrupted, P corrupted, O honest. S16 follows the protocol of O regard-
ing fOI, that is, after Z sent instructions to send a message (sh(O)

UH, sh
(O)
inU

, sh
(O)
oOUT , sh

(O)
oUNV , sh

(O)
oα ,

sh
(O)
os , sh

(O)
oa , ser , c̃omid , Π, com

(U)
sernew) from U to O and after S16 took the role of O in hon-

estly computing the linking number, it adds (linnew, sh
(O)
UH, sh

(O)
inU

, sh
(O)
oOUT , sh

(O)
oUNV , sh

(O)
oα , sh

(O)
os ,

sh
(O)
a ) to f (O)

OI .
H17 All remaining honest parties are replaced by dummy parties, which, upon receiving input by

Z, only forward their input into F (∆)
PUBA.

H18 All messages between honest parties are simulated by having S18 report messages of zero-
vectors of correct size. Consequently, all operations that do not result in messages are removed.

H19 During the User Registration-task with an honest user, instead of honestly creating a user id
id , interpreting it as secret key and computing a public key from it, S19 uniformly samples a
public key pkU

r← G1 directly.
H20 If P is corrupted and U and O are honest, S20 changes its behavior during simulation of

the Outsource-task. Instead of calling πVerify on the whole logbook, S20 only verifies that the
linking number linnew received by P confirms with the two shares (linnew)(O) + (linnew)(P).
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We now prove lemmata claiming indistinguishability of each consecutive pair of games against
every PPT-environment Z. Thus, with H1 being the real world and H20 corresponding to the ideal
world with a simulator acting as described above, we have proven the protocol πPUBA to be as
secure as the functionality F (∆)

PUBA.

Lemma 38 (Indistinguishability of H1 and H2). Let Z be a PPT-environment. Let Z distin-
guish H1 and H2 with probability 1/2 + ε. Then it holds that ε ∈ negl(κ).

Proof. FPPA, FKE and FBB are considered to be hybrid functionalities, which can be instantiated
by a real, UC-secure protocol. UC-security of the instantiations implies, that FBB, FKE and FPPA

all have a simulator, which runs in polynomial time and which can provide the view of a real
protocol execution to any PPT-environment Z, but is only using the ideal functionalities, for any
given corruption scenario. Hence, S2 can execute this code without runtime restrictions, whenever
an interaction between any party and either FBB, FKE or FPPA is requested by Z.

Indistinguishability now easily follows from the security of FBB, FKE and FPPA. Their UC-
security implies, that the resp. protocol (which is used in H1) can not be distinguished from the
simulated view (which is used in H2). If Z could differentiate H1 and H2 with non-negligible
advantage over guessing, we can build a distinguisher Z ′ for the real and ideal view of the resp.
hybrid functionalities as follows:

– Z ′ internally simulates all users U , all proxies P, the operator O and the environment Z that
can distinguish H1 and H2 with probability 1

2 + ε by executing their code in its head.
– Z ′ uses the distinguishing algorithm to let Z output a single bit: 0 for H1 and 1 for H2.
– Z ′ outputs this bit, where 0 means that it is in the real world and 1 means it is in the ideal

world.

Note that the environment Z ′ also has a distinguishing advantage of 1
2 + ε. UC-security of FBB,

FKE and FPPA thus require ε ∈ negl(κ), which concludes the proof.

Lemma 39 (Indistinguishability of H2 and H3). Let Z be a PPT-environment. Let Z distin-
guish H2 and H3 with probability 1/2 + ε. Then it holds that ε ∈ negl(κ).

Proof. The simulator mimics the behavior of an honest operator. Since none of the code regarding
LSER is in any way dependent on the secret input Z gives to U or O, this can be done without any
loss of generality. In particular, assume that any party (that is, either O or S3) aborts due to a
duplicate serial number in any game. In either case, this would mean that there was a previous
interaction of either the task for Bookkeeping, Outsource, or Update, where U opened a value of
comser to the same ser that is now seen by the respective party. Since the different parties execute
the same code, their abort-criteria is equivalent. The same is true for the verification of the proof
Π.

Lemma 40 (Indistinguishability of H3 and H4). Let Z be a PPT-environment. Let Z distin-
guish H3 and H4 with probability 1/2 + ε. Then it holds that ε ∈ negl(κ).

Proof. Indistinguishability here holds for the same reason that it held in Lemma 39. The contents
of f (P)UI and f (O)

UI only depend on messages which S4 can access via simulation of FPPA, and not
(directly) on secret input, which is hidden from it. Hence, we only have a new encapsulation, where
(PPT-)code that depends only on previous messages was executed by O or P in H3 is now executed
by S4 in H4.

The equivalence of their contents easily follows from the same argument. The contents them-
selves depend on the message that U sent to the resp. parties, the order depends on the (adversarialy
chosen) scheduling mechanism, which, given any environment Z that tries to distinguish the two
games, is equivalent.

The final change contains the check in the corruption scenario where P is corrupted, but U and
O are honest. Here, in H3, U aborts if either Unv(coma, unva,a) 6= 1, or if coutU differs from the
value the honest receiver sent.

Equivalence for the latter is straightforward. If U aborts due to the former condition (Unv(coma,
unva,a) 6= 1), then this means that some value was tampered with. coma was received by O, who,
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in this scenario, is honest, hence it is correct. The One-Time Pads oa, oUNV used to mask a and
unva were created by the user U during the Outsource task and hence are also correct. Thus, the
only values that could be tampered with are ca and cunva , which S4 has seen during the Outsource
task and hence, for which a consistency check suffices.

Lemma 41 (Indistinguishability of H4 and H5). Let Z be a PPT-environment. Let Z distin-
guish H4 and H5 with probability 1/2 + ε. Then it holds that ε ∈ negl(κ).

Proof. Indistinguishability here follows from the trapdoor nature of POK. If any environment Z
could distinguish the execution of the protocol when using crs created by crs ← SetupPoK from
crs created by (crs, td ext)← SetupEPoK with probability 1

2 + ε, we can build a PPT-environment
Z ′ that breaks the indistinguishability of the dual-mode property of POK, by having Z ′ execute
the code of all parties in its head. This leads to the same success probability of 1

2 + ε, thus causing
ε ∈ negl(κ) by requirement of the chosen POK-scheme.

Lemma 42 (Indistinguishability of H5 and H6). Let Z be a PPT-environment. Let Z distin-
guish H5 and H6 with probability 1/2 + ε. Then it holds that ε ∈ negl(κ).

Proof. The only difference between H5 and H6 is, that S6 stores additional information in H6 that
was accessible even in H5. Additionally, this game introduces a new abort-criteria.

For indistinguishability of H5 and H6, we thus have to show that those two criteria are, in fact,
equivalent. In H5, O fetches the key pkU belonging to pidU from FBB, thus effectively asking (since
H2) S6 for the key that pidU registered there. Thus, instead of S6 simulating FBB and giving O
the key pkU so O can verify that pkU is the one that was used in Π, S6 now does the exact same
thing, only that, due to the simulation of FBB, no further interaction is required to obtain pkU .
Hence, aborts in H5 due to a duplicate or mismatching pkU occur if and only if aborts in H6 happen
due to a duplicate or mismatching pkU . Thus, both distributions from H5 and H6 are equivalent.

Lemma 43 (Indistinguishability of H6 and H7). Let Z be a PPT-environment. Let Z distin-
guish H6 and H7 with probability 1/2 + ε. Then it holds that ε ∈ negl(κ).

Proof. Extraction is possible due to the different crs introduced in H5 and the fact that each
witness only has elements from the target group, so F -extractability of POK suffices to obtain pkU .
The public key pkU is contained in every language used throughout the system. The user found by
looking up pidU := fID(pkU ) is the correct user.

Assume for the sake of contradiction that S7 aborts in H7 because pidU = ⊥, but S6 would
successfully terminate in H6. The following behavior by U could have caused this:

U proved a faulty statement. The correctness property of POK would cause this to be detected
in H6 by O with overwhelming probability, thus causing an abort.

U changed the commitment comid in the statement. Then the proof of equivalence between
comid and the rerandomized c̃omid would have to be forged, thus breaking the statement of Π.
This would also cause an abort in H7, due to the correctness of POK.

U opened comid to to a different pk′U . In this case, the binding-property of the commitment
scheme COM would be violated. Since we assumed COM to be unconditionally binding, this
cannot occur.

U created its own signature. In case the user U created a signature σ on a new logbook λ′

containing a public key pk′U 6= pkU without knowing the operator’s secret key skO, U would
break the unforgeability of SIG. By requirement on SIG, this is possible only with probability
negligible in κ.

The reverse is also true; if O discards the proof Π in H6, then he does so too in H7, as this part
has not been changed.

Lemma 44 (Indistinguishability of H7 and H8). Let Z be a PPT-environment. Let Z distin-
guish H7 and H8 with probability 1/2 + ε. Then it holds that ε ∈ negl(κ).

Proof. Indistinguishability of those two games trivially follows; the new machine is only accessible
by honest parties, who follow the protocol. Their protocol description in H8 does not include any
access to F (∆)

PUBA. The simulator doesn’t access F (∆)
PUBA either, so the two distributions of H7 and

H8 are statistically close and hence, the best any PPT-environment Z can do is guessing.
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Lemma 45 (Indistinguishability of H8 and H9). Let Z be a PPT-environment. Let Z distin-
guish H8 and H9 with probability 1/2 + ε. Then it holds that ε ∈ negl(κ).

Proof. Indistinguishability of the two games directly follows from the facts that (1) both tasks for
Init and Sign Function Parameter that contain the TSA T are executed with an honest operator O,
and (2) none of the two aforementioned tasks contain any secret inputs of T . Hence, the role of T
can be played by S9, who creates the same message distribution. This implies indistinguishability
based on the fact that in the view of Z, the two games are equivalent.

Lemma 46 (Indistinguishability of H9 and H10). Let Z be a PPT-environment. Let Z dis-
tinguish H9 and H10 with probability 1/2 + ε. Then it holds that ε ∈ negl(κ).

Proof. The rewriting is purely cosmetical, as essentially the same code is executed on different
machines. In H9, the commitment comfp is computed by O, the signature σfp is computed by T ,
and the resp. values are fetched by O prior to a computation with FPPA. In H10, all these steps
are done by the simulator. Since T is honest and its key has thus been created by S10 and the
relevant information for comfp and σfp are leaked by O, the honest code can be executed directly.

Finally, the last change induced is the replaced check with the decommitment information.
Since this is essentially a rewriting, this change is purely cosmetical and hence undetectable.

Lemma 47 (Indistinguishability of H10 and H11). Let Z be a PPT-environment. Let Z
distinguish H10 and H11 with probability 1/2 + ε. Then it holds that ε ∈ negl(κ).

Proof. O is a PPT-machine, which executes code based on the secret input from Z. Knowing this
input from the leak, S11 can execute the code of the honest O by following the protocol. This
trivially leads to statistical indistinguishability.

Lemma 48 (Indistinguishability of H11 and H12). Let Z be a PPT-environment. Let Z
distinguish H11 and H12 with probability 1/2 + ε. Then it holds that ε ∈ negl(κ).

Proof. The major change induced in this game hop has the simulator reporting valid zero-commit-
ments instead of valid commitments on Function Parameters fp. Let Z be an environment that
distinguishes the two games from H11 and H12. We construct an adversary A that breaks the
hiding property of COM′, which we model similar to IND-CPA for encryption schemes. We adapt
the LR-view, stating that the challenger C on the hiding game provides us with an oracle that
accepts two different inputs, but outputs a valid commitment on a fixed one of them.

The adversary A can thus create the transcript from H11, but whenever a commitment comfp
on the FPs fp is required, A sends the two messages (0, fp) to C and obtains a commitment on one
of them.

Note that if the commitment always uses the former entry, A perfectly simulates H12, and if
the commitment always uses the latter entry, A perfectly simulates H11.

It thus follows that the success probability of Z in detecting this game hop is limited by the
probability of A to break the hiding game, which is negligible.

Lemma 49 (Indistinguishability of H12 and H13). Let Z be a PPT-environment. Let Z
distinguish H12 and H13 with probability 1/2 + ε. Then it holds that ε ∈ negl(κ).

Proof. The case here is similar to that from Lemma 47. S13 can execute the code of any honest
user U , since honest user reveal their identity to S13; by leaking the secret input, S13 can follow
the protocol of U from H12. Indistinguishability follows.

Lemma 50 (Indistinguishability of H13 and H14). Let Z be a PPT-environment. Let Z
distinguish H13 and H14 with probability 1/2 + ε. Then it holds that ε ∈ negl(κ).

Proof. The proxy itself has no secrets, so no leaks are required here. Hence, all messages of P depend
only on messages it has seen before. Since S14 can see those messages as well and P is a PPT-
machine, S14 can execute the code of honest proxies, thus causing a statistically indistinguishable
distribution from H13.
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Lemma 51 (Indistinguishability of H14 and H15). Let Z be a PPT-environment. Let Z
distinguish H14 and H15 with probability 1/2 + ε. Then it holds that ε ∈ negl(κ).

Proof. Indistinguishability of H14 and H15 follows from the fact that in both cases the messages de-
pend on exactly the same values. Essentially, the same code is executed, only by different machines;
the game hop is only a cosmetical one.

In more detail, the situation looks as follows:

User Registration, U corrupted, O honest. Here, the definition of F (∆)
PUBA and S15, who calls

F (∆)
PUBA-User Registration with the correct inputs inU , implies correct behavior. The input inU

is correct due to the extractability and the pid is correct as a wrong pid would require the user
to break the Co-CDH assumption by computing the id id of the public key pkU stored in FBB.

Bookkeeping, U corrupted, O honest. In H14, the user holds its own logbook λ with the cor-
responding User History UH. In H15, F (∆)

PUBA executes the same function ∆ on the inputs to
F (∆)
PUBA, that the simulator computed in H14. In H15, the correct – and latest – input is used

by definition of the ideal functionality. The transfer values (α, s,a) are output to U and hence
visible to S15 and the commitment and decommitment on a can be computed directly by S15.
If this value would have been the same in H14 then indistinguishability for any exectution of
the Bookkeeping-task trivially follows; the best any PPT -environment Z could do here is to
guess.
So assume that there is some set of inputs, for which Z can differentiate between H14 and H15

notably better than guessing based on the Bookkeeping task. Since the computation performed
by the simulator in H14 is exactly the same as the one F (∆)

PUBA does in H15 and Z can not lie
about inU (as it is input into FPPA), the only way Z could try to win here is by providing
different input UH. There are different ways Z could achieve that:
– Z provides a wrong proof regarding σ. Then, we could build an environment that either

forges a signature σ and uses an honest witness, or fakes a proof ΠVal and uses a false
witness. The former would contradict our EUF-CMA requirement for SIG, the latter would
contradict the soundness-property required for POK.

– Z provides the correct information of a different corrupted user U ′. We assumed SIG to be
EUF-CMA-secure, thus assuring unforgeability of the signature σ on λ. Hence, S15 would
extract the id pkU of U ′. By a lookup from fID, S15 would get the pid of U ′ and provide
input to F (∆)

PUBA in the name of U ′. Thus, F (∆)
PUBA uses the same UH, that would have been

used by the simulator in H14.
Hence, assuming that F (∆)

PUBA internally updates UH correctly (which we will show for the other
tasks as well), this change can not be used to increase the chance of Z to differentiate.

Outsource, U corrupted, O honest, P honest. Here, too, indistinguishability trivially follows
from the correctness of inputs; we merely copied the reconstruction of shares for this scenario
from Outsourced Analytics to Outsource. Those are input directly into F (∆)

PUBA, where they are
used later. The shares sh(P)inU

and sh
(O)
inU

are either correct, in which case F (∆)
PUBA will use them

accordingly during Outsourced Analytics. Or they are not, in which case S15 sets inU := ⊥; the
reconstruction H14 would fail during the Outsource-task, which also happens in H15. With the
two parties performing Outsourced Analytics being honest, no further problems arise during
the subsequent execution. The extraction of pkU further removes the ability of Z to cheat by
letting S15 send input to F (∆)

PUBA in the name of the wrong U .
Outsource, U honest, P corrupted, O honest. In this case, it is not possible to cheat without

being detected. By knowing the input Z would have given to P, S15 can mimic the behavior
of an honest dummy proxy and forward it into F (∆)

PUBA.
Outsource, U corrupted, P corrupted, O honest. The correct user U can be determined via

extraction of Π, so no Z cannot use two different users for the two games here. However, in this
task, S15 information-theoretically can not determine the correct input inU , as it only sees one
part sh(P)inU

of the additive sharing—the second part, sh(O)
inU

, is sent between two corrupted parties
and hence not visible for S15. However, in the subsequent Outsourced Analytics execution, S15
learns the shares that U sent to P via simulation of FPPA. There, S15 can reconstruct inU .
Note that there is no difference between S15 learning the input during the Outsource task and
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inserting it into F (∆)
PUBA right away and S15 learning it during the Outsourced Analytics task,

since F (∆)
PUBA allows S15 to update the input inU for all corrupted users before starting the

computation during Outsourced Analytics. Thus, the same input inU is used in both games.
Outsourced Analytics, P corrupted, O honest. Here, S15 still uses the same shares for the

operator in both games and receives (and verifies) all proxy-shares input into FPPA in both
games, there is no direct change here. The only new thing is the equivocation of inU for
corrupted users. This change was already discussed above; the remaining protocol remains
equivalent, since S15 only does in H15 what honest parties would do in H14.

Update, U corrupted, P honest, O honest. The values that determine the messages are still
equivalent in both games. The values for f (P)UI and f (O)

UI were honestly kept by S15, so both just
follow the same protocol. As nothing is done with the output of F (∆)

PUBA, distinguishing here is
not possible.

Update, U honest, P corrupted, O honest. The linking number that was sent as leak by U
to the simulator in H14 trivially equals fLN(ssid) that was kept by S15 in H15. During the
Outsource task, assuming lin is sampled from a sufficiently large space, then the probability
that the mapping lin → ssid is unique becomes overwhelming. During the Update task, this
does not change. If this wouldn’t be the case, Z would have to create a duplicate lin, which,
with Blum coin toss, is possible only with negligible probability. Even then, S15 in H15 would
use the correct linking number lin. Note further that Z has no way on how to lie about ssid .

Update, U corrupted, P corrupted, O honest. Here, the simulator only has to ensure that
the interaction between O and U is canonical. Again, nothing here depends on the output of
F (∆)
PUBA, it is only called to keep the functionality in a consistent space. Hence, the changes

induced here provide no advantage to Z in distinguishing the two games.

Lemma 52 (Indistinguishability of H15 and H16). Let Z be a PPT-environment. Let Z
distinguish H15 and H16 with probability 1/2 + ε. Then it holds that ε ∈ negl(κ).

Proof. We claim indistinguishability based on the fact that the two distributions from H15 and H16

are indistinguishable.
First, notice that the binary outcome of a Blum coin toss and a uniformly random bit cannot be

differentiated better that by guessing, so this change doesn’t provide any distinguishing advantage.
To support our claim also regarding the new map fUI we consider all possible corruption cases:

P honest, O honest. In case U is also honest, the functionality F (∆)
PUBA directly obtains input

from the respective parties during the Outsource task, which causes F (∆)
PUBA to load the correct

UH and to use the input inU provided by U . Hence, the simulator has to only remember that
honest parties provided input, not what these inputs were. Thus, inserting the special symbol
⊥ to keep the list size consistent suffices, since those values are never used again.
In case U is corrupted, Z has to send shares sh(P)(·) and sh

(O)
(·) in the name of U to P and O,

respectively. Neither of them are corrupted, so S16 can see both messages. Since neither O nor
P have secret inputs, S16 can follow the honest protocols, thus producing the same distribution.

P corrupted, O honest. If the user U is honest, then S16 has to send messages containing valid
shares of Us input, without actually knowing the input. Thus, S16 distributes zero-shares; the
environment Z can see only the part sent to P, not the one sent toO. Obviously, no environment
Z can distinguish its part of the zero-sharing obtained in H16 from a valid sharing of the
respective user input from H15 better than by randomly guessing. Hence, those distributions
look equivalent. The simulator follows the protocol of O regarding fOI honestly, which causes
no difference in the distributions.
Against a corrupted user U , S16 directly follows the protocol of O. This trivially causes the
same distribution.

Since all possible cases cause indistinguishable distributions, our claim follows.

Lemma 53 (Indistinguishability of H16 and H17). Let Z be a PPT-environment. Let Z
distinguish H16 and H17 with probability 1/2 + ε. Then it holds that ε ∈ negl(κ).
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Proof. Again, indistinguishability follows from the fact that the messages sent are still the same. All
the leaks sent by honest parties to the simulator in H16 are ignored, the messages are independent
of any leaks still sent by the semi-dummy parties: the only change between H16 and H17 is with
respect to inO and inU . Both are input to F (∆)

PUBA directly by the respective dummy party and
used there accordingly. Hence, the change induced by H17 doesn’t change the view of Z at all,
which makes indistinguishability trivial.

Lemma 54 (Indistinguishability of H17 and H18). Let Z be a PPT-environment. Let Z
distinguish H17 and H18 with probability 1/2 + ε. Then it holds that ε ∈ negl(κ).

Proof. We generally assume that parties obtain pairwise shared keys at the beginning of each task
from FKE. This yields a key k, which they use for symmetric encryption with the IND-CPA-secure
symmetric encryption scheme ENC. Assume for the sake of contradiction that there is a PPT
environment Z, which can distinguish between H17 and H18 with advantage 1

2 + ε for ε /∈ negl(κ).
We show that this implies an adversary A on the IND-CPA experiment of ENC:

We adapt the LR-view, that provides the reduction algorithm with an algorithm that on input
m0,m1 either always outputs ENC.Enc(sk,m0), or ENC.Enc(sk,m1).
Z distinguishes H17 and H18, and A can simulate the views correctly, by providing always the

oracle output on input (m0,0), where m0 is the honest transcript; If the adversary outputs H18,
A sends 0 to C. If the adversary outputs H17, A outputs 1 to C.

Note that A has the same success probability as Z, that is, 1
2 + ε. Hence, by our assumption,

it follows that ε ∈ negl(κ), which concludes our proof.

Lemma 55 (Indistinguishability of H18 and H19). Let Z be a PPT-environment. Let Z
distinguish H18 and H19 with probability 1/2 + ε. Then it holds that ε ∈ negl(κ).

Proof. By assumption on the group gp, a public key is uniformly distributed in G1. Any environ-
ment Z distinguishing H18 and H19 based on pkU would violate this assumption. The simulator
now lacks knowledge of the corresponding user id id . However, note that id is never used in H18,
so S19 can create a similar distribution in H19 independently of id .

Lemma 56 (Indistinguishability of H19 and H20). Let Z be a PPT-environment. Let Z
distinguish H19 and H20 with probability 1/2 + ε. Then it holds that ε ∈ negl(κ).

Proof. Indistinguishability easily follows from the fact that in H19, the only corrupted party is P
and the only value depending on the proxy is lin. Hence, πVerify only aborts, iff P sent a wrong
linking number lin. This is still the case in H20, thus making indistinguishability trivial.

Thus, we can now finally prove our final security statement:

Corollary 57 (System Security). For all environments Z who statically corrupted a subset
U ′ ⊆ U and the proxy P, it follows that

πPUBA
(FPPA,FBB,FKE,FCRS) ≥UC F (∆)

PUBA

We have shown in Lemma 38 to Lemma 56, that for an honest operator, the simulator SSysSec
acting in the ideal world can provide a view for Z that is indistinguishable from a real execution
of the protocol:

viewZ,A,πPUBA ≈c viewZ,SSysSec,F(∆)
PUBA

Thus, by combining Corollaries 37 and 57, our main claim follows:

Corollary 58 (Security). Assuming that SIG is an EUF-CMA-secure structure preserving sig-
nature scheme, SIG′ is an EUF-CMA-secure signature scheme, POK is a trapdoor dual-mode
NIZKPoK scheme, gp = (G1,G2,GT, e, p, g1, g2) is a pairing-group where the Co-CDH assumption
is hard, COM and COM′ are unconditionally hiding (and computationally binding) homomorphic
commitment scheme, where images of COM can efficiently be inverted, then for all environments
Z who do not corrupt the operator O and the proxy P at the same time, it holds that

πPUBA
(FPPA,FBB,FKE,FCRS) ≥UC F (∆)

PUBA

It follows that our protocol πPUBA is at least as secure as the ideal functionality F (∆)
PUBA.



Acronyms

BB Bulletin Board
BBA Black-Box Accumulator
BK Bookkeeping
CRS Common Reference String
EUF-CMA Existential Unforgeability under Chosen Message Attacks
FP Function Parameter
ID Identity
IF Ideal Functionality
IND-CPA Indistinguishability under Chosen Plaintext Attacks
KE Key Exchange
lb logbook
LR Left-Right
MPC Secure Multi-Party Computation
NGO Non-Government Organization
NIZK Non-Interactive Zero-Knowledge
NIZKPoK Non-Interactive Zero-Knowledge Proof of Knowledge
NP Nondeterministic Polynomial Time
OA Outsourced Analytics
OI Outsourced Information
OS Outsource
OTP One-Time Pad
pid Party Identifier
PKI Public-Key Infrastructure
PPA Privacy-Preserving Analytics
PPT Probabilistic Polynomial-Time
PUBA Privacy-preserving User-data Bookkeeping & Analytics
Reg Registration
RSS Robust Secret Sharing
SFP Sign Function Parameter
sid Session Identifier
ssid Subsession Identifier
Tr Transfer
TSA Trusted Signing Authority
TTP Trusted Third Party
UC Universal Composability
UH User History
UI Update Information
Upd Update
UReg User Registration
Val Validate
ZK Zero-Knowledge
ZKPoK Zero-Knowledge Proof of Knowledge

Symbols

A: The adversary in the Universal Composability model. A party that can (statically) corrupt any
subset of parties that does not contain both a proxy and the operator. Once corrupted, a party
acts entirely on behalf of the adversary, which also means that all secrets of that party are
leaked. We want security for the non-corrupted party despite the existing corruption scenario.
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a: Part of the result of a (direct two-party) computation between a user and the operator. It
represents a vector of Zp elements that should be added to the User History.

α: Part of the result of a (direct two-party) computation between a user and the operator. It
contains a permutation that should be applied to the User History.

c: A ciphertext from a One-Time Pad encryption. We denote by cx the One-Time Pad encryption
of a value x, which hides the value of x completely.

COM: An unconditionally hiding and computationally binding commitment scheme.
Com: The function that computes a commitment to a given value.
com: The message that is output from COM.Com(x) and that is sent directly to the receiver. We

use the short-hand notation as comx as the commitment message that commits to a message x.
In our case, x can be a vector, despite comx being a single message.

crs: The Common Reference String, namely a string set up by a common party that follows a
given distribution; a common set-up assumption in the UC-framework.

Dec: Decryption function; given a key, it decrypts a given cipher text and outputs a message.
∆: A function that is to be computed in the context of Secure Multi-Party Computation.
ENC: An IND-CCA secure symmetric encryption scheme. We use this in the background, to ensure

confidentiality between messages. At the beginning of each task, each set of participating parties
obtains a shared key from FKE.

Enc: Encryption function; given a key, it encrypts a given message and outputs a cipher text.
ε: The advantage of an environment Z in distinguishing two games better than by guessing. That

is, the environment distinguishes with success probability 1/2 + ε.
ExtractWit: A function that can extract the witness from a Zero-Knowledge proof. This only works

with a corrupted Common Reference String, if it was created such that the party calling this
function knows a secret trapdoor, which is thus a handle that a simulator can use in the ideal
world, but no party can exploit in the real world.

F : An Ideal Functionality in the Universal Composability model.
fp: The function parameters, that is, the set of parameters that define the computation.
Gen: Key generation function. On input 1κ, it generates the key of a symmetric scheme or the key

pair of an asymmetric scheme.
id : The ID of the user, namely a bit of information that uniquely identifies him and as such, is

created honestly during User Registration, but then never revealed directly to any other party,
only as part of Zero-Knowledge proofs to stop non-participants from performing computations.

in: Additional, unauthenticated input from a privacy-preserving computation.
K : The maximum number of functions that can be computed in an Secure Multi-Party Compu-

tation protocol instance.
k : A running variable between 1 an K defining the current function to be computed.
κ: The security parameter of the protocol, influencing both efficiency of the scheme, and its security

level.
k: The key of a symmetric encryption scheme.
L: A (in our case usually NP) language.
L: Number of function parameters (for a given task), that is, |fFP(task)|.
`: Running variable for the function parameters.
λ: The logbook, that is, the amount of information the user stores regarding its current state.
lin: The linking number, which is stored in a token. If it is 0, it means that no outsourcing-triplet

has been started by that user. Otherwise, it is some Zp-element which is shared with proxy and
operator and used for connecting subsequent executions of Outsource, Outsourced Analytics
and Update that belong to the same user.

LSER: The list of serial numbers of invalidated User Histories. This is used to ensure history fresh-
ness, as the serial number is updated after each interaction and no token is processed unless it
contains a serial number that is not yet in this list.

m: The number of entries in a User History.
O: The operator of the system.
oa: The one-time pad sent by the user during Outsource, which hides the add vector.
oα: The one-time pad sent by the user during Outsource, which hides the shift permutation.
oOUT: The one-time pad sent by the user during Outsource, which hides the unauthenticated output.
os: The one-time pad sent by the user during Outsource, which hides the set vector.
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oUNV: The one-time pad sent by the user during Outsource, which hides the unveil of the addition
vector.

out: Additional, unauthenticated output from a privacy-preserving computation.
P: The proxy that aids a user in computationally heavy or time-consuming tasks, which is assumed

to be provided by privacy groups that do not collude with the operator.
Π: A Zero-Knowledge proof following [GS08].
π: A protocol, that is, a guideline on which messages are exchanged and how they are created.
pid : The identifier of a party, that is, of a Turing machine. This uniquely defines the identity of a

party in the context of UC.
pk: The public key of a Public-Key Encryption scheme that can be used to encrypt messages.
POK: A trapdoor dual-mode Non-Interactive Zero-Knowledge Proof of Knowledge scheme based

on a Common Reference String. Dual-mode allows that the CRS can be chosen such that the
scheme is either F -extractable or simulatable.

Prove: A function that takes as input a statement stmt and a witness wit and outputs a Non-
Interactive Zero-Knowledge Proof of Knowledge that successfully verifies stmt , but leaks no
information on wit .

Rrnd: The function that rerandomizes a commitment and the corresponding unveil information.
Knowing the contents of the commitment, this can easily be realized by computing a new
commitment.

S: The simulator, that is, the entity responsible for providing a protocol transcript that is indis-
tinguishable for all considered environments from only interacting with the Ideal Functionality,
in the context of simulation-based security frameworks such as Universal Composability.

s: Part of the result of a (direct two-party) computation between a user and the operator. It
represents a vector of Zp elements (or ⊥) that the User History should be set to (except for the
slots marked with ⊥).

ser : The serial number of a token, that is, a number that uniquely identifies a current token. It is
used to ensure history freshness, as it is opened before any values inside the token are used or
updated. The update of the serial number happens in such a way, that only the user learns the
value, yet the operator blindly signs it after ensuring that it is truely random.

Sgn: A function that signs a given message.
sh: A robust share of a message. We use the notation sh

(P )
x to denote a share on the value

x, that is held by party P . For each share sh
(P )
x , there is a complementary sh

(P ′)
x held by

party P ′. They are of the following form: sh
(P )
x := (x(P ), comx(P ′) , unvx(P )) and sh

(P ′)
x :=

(x(P
′), comx(P ) , unvx(P ′)), that is, each parties share contains the (information-theoretically se-

cure) additive share, the (computationally hiding) commitment on the other part of the share,
and the unveil information on the commitment on the own additive share, despite not knowing
the commitment information.

sid : The identifier of a session, that is, of a protocol execution. In UC, this ID is hardwired into
any message, to avoid transfering messages to other sessions. Parties / Turing Machines can
not lie about this value.

SIG: A signature scheme which we assume to be EUF-CMA secure.
σ: The signature of a User History, which is blindly performed by the operator, after ensuring that

it has been updated honestly.
σfp: A signature from T on (task , fp) such that O can use fp as Function Parameters for a com-

putation with k .
SimProof: A function that can simulate a valid proof without knowing the witness. This only works

with a corrupted Common Reference String, if it was created such that the party calling this
function knows a secret trapdoor, which is thus a handle that a simlulator can use in the ideal
world, but no party can exploit in the real world.

sk: The signing key, which can be used to compute a signature of a given message.
ssid : The identifier for individual sub-session. If a protocol can be split into distinct phases, like a

Commitment can be split into Commit and Unveil phase, the subsession ID allows to identify
the subsession a given message belongs to.

stmt: The statement of a Zero-Knowledge proof, that is, the argument that is to be proven without
revealing any further information.
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T : A third party that signs valid operator function parameters if they meet certain security re-
quirements.

task : The task of the Ideal Functionality or protocol; can be one of {UReg, BK(·), OA(·)}.
td : The trapdoor of a trapdoor One-Way Function, that is, a value for which the function can be

efficiently inverted. We use it for a dual-mode Zero-Knowledge scheme, where the trapdoor can
be used to either extract the witness, or to forge proofs.

U : The user of the system, who collects data in a privacy-preserving way on an embedded device
such as a smartphone.

UH: The User History, that is, the set of authenticated data.
uh: A single (Zp) element from the User History.
UI: The Update Information to update a User History. Contains a permutation α, a direct update

s, and an additive increment a.
Unv: The function that verifies a given unveil, that is, it returns 1 if and only if the unveil infor-

mation open a given commitment to the correct value.
unv: The message that is output from COM.Com(x) and that is kept by the committer during the

commit phase. It is only sent to the receiver during the unveil phase, where the receiver then
only accepts if COM.Unv(x, comx, unvx) = 1.

Vfy: A function that verifies a given signature over a message or a given Zero-Knowledge proof
over a statement.

vk: The verification key of a signature scheme. It can be used to verify the integrity of signed data.
wit: The witness of a Zero-Knowledge proof. That is, in an NP relation L, the value such that

(stmt ,wit) ∈ L.
Z: The environment, that is, the whole world surrounding this protocol execution in the Universal

Composability model.
Z : The maximum number of parties during an outsourced computation with more than one user.
z : A running variable between 1 and Z defining the current user during an outsourced computation

with more than one user.
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