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Abstract

Epilepsy is affecting people of all age and gender. The disease is traditionally treated with application

of antiepileptic drugs. The therapy choice mostly relies on the differential diagnosis which is not

always easy to be deducted. The treatment guidelines and antiepileptics are diverged according to

major epilepsy types – generalized and focal epilepsy. However, retrospective studies of antiepileptic

drug effectiveness on the European cohort have shown that pharmacoresponse is patient dependent.

In this thesis the antiepileptic drug prescription trend in this cohort in generalized and focal epilepsy

patients was investigated. Moreover, the use of antiepileptics in the clinics from the EpiPGX database

was compared to the findings of their use in general practices in the UK. To explain the difference in

patient response to therapy AED-target interactions were investigated on the level of databases. In

addition, with the discovery of new genes implicated in epilepsy and success of drugs of other groups

such as quinidine and fampridine in treating the symptoms, the drug-repurposing found its application

in epilepsy. In this thesis, quinidine-KCNT1 and fampridine-KCNA2 interactions were investigated in

order to estimate the feasibility of using public databases to select drug-target interactions for clinical

application. The investigation relied mainly on the ChEMBL database. However, these genes were

not found among antiepileptic drug targets in the database. Quinidine and fampridine were assay

associated with other AED targets. The results suggest that the therapy choice for treatment of rare

forms of epilepsy underlined by channelopathies could be significantly expanded, but that database

approach requires high level of drug-target selection criteria and text mining.
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Abbreviations

Term Abbreviation

Absorption Distribution Metabolism Excretion ADME

Adverse drug reaction ADR

Aldehyde Dehydrogenase 5 Family Member A1 ALDH5A1

Antiepileptic drug AED

Calcium channel CACN

Calcium channel blocker CCB

Central nervous system CNS

Electroencephalogram EEG

GABA analog GA

International League against Epilepsy ILAE

Mode of action MOA

Multiple mechanism MM

Potassium channel KCN

Sodium channel SCN

Sodium channel blocker SCB

Synaptic vesicle A2 binder SV
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1 Introduction

Epilepsy is a disorder of brain function characterized by recurrent epileptic seizures (“Epilepsy” 2020).

Affecting over 50 million people worldwide, epilepsy has been considered one of the most common

neurological disorders and a great concern to the global population (“Epilepsy” 2020). It has been

estimated to be present in the lives of 4 to 10 per 1000 people, and these figures are particularly

elevated in impoverished countries populations (“Epilepsy” 2020) Since people are still stigmatized

and discriminated in certain aspects of everyday life and have difficulties, for instance, to be licensed

to manipulate a motor vehicle in some countries, people tend to hide the fact to be diagnosed with

epilepsy (Driving Regulations Task Force | IBE Epilepsy ). Antiepileptic drugs have been in use since

the middle of the last century. However, epileptogenesis and pathophysiology remain unclarified.

Together with the consequential difficulties of the adequate control of symptoms and a lack of a per-

manent cure, the unknown imposes a great responsibility on the medical and research community.

Efforts are made to define proper disease classifications as it is a significant guideline for treatment

protocol to manage patients.

1.1 Epilepsy classification

The International League Against Epilepsy (ILAE) has established many concepts of epilepsy classi-

fications, each regularly revised and updated due to the progress of the research and gain of clinical

experience, with the purpose of setting a world standard in the disease diagnosis process. A clin-

ically used base definition for having epilepsy suggests a person should fulfill any of the following

criteria: endure at least two unprovoked seizures occurring >24 h apart, or have one unprovoked

seizure with a high probability of reccurrence after two unprovoked seizures over the next 10 years

period, or have an epilepsy syndrome diagnosis (Fisher et al. 2014). After establishing epilepsy as

a diagnosis, the next step is its classification. The latest ILAE Classification of Epilepsies from 2017

provides guidelines in three levels for epilepsy differentiation which would result in having a treatment

choice to start with. The first differentiating feature of the disease is the seizure type (Fisher et al.

2017). According to the Operational classification of seizure types from 2014, a seizure is “a transient

occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in
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the brain” (Fisher et al. 2014). They can occur with focal (used to be known as partial), generalized or

unknown onset depending on the starting point and the spreading manner through the brain (Fisher

et al. 2014). Each group can be further divided into those with motor and nonmotor onset, meaning

a patient can experience motoric impairment from mild to very extreme (Fisher et al. 2017). Further-

more, the important disease feature is also awareness or its absence during the seizure. The second

level of diagnosis is to determine the epilepsy type which can be: generalized, focal, generalized

and focal combined or unknown (Fisher et al. 2017). Generalized epilepsies involve seizures with a

generalized onset, starting at one point and affecting both brain hemispheres from the start simulta-

neously, while focal epilepsies involve unifocal, multifocal and seizures originating and staying within

one hemisphere (Fisher et al. 2017). Moreover, combinatorial epilepsies are reserved for patients

experiencing both types of seizures. Unknown epilepsies are those that clinicians are unable to cate-

gorize as any of the three previously mentioned due to a lack of information. Finally, the third level of

differential diagnosis is epilepsy syndrome diagnosis and has a purpose to help disease management

(Fisher et al. 2017). The epilepsy syndrome combines a group of co-occurring features seizure types,

electroencephalogram (EEG) and imaging features (Fisher et al. 2017).

Generalized epilepsy includes a major common subgroup of Idiopathic Generalized Epilepsy (IGE),

also referred to as Genetic Generalized Epilepsy (GGE) in certain situations (Fisher et al. 2017). The

important feature in idiopathic epilepsy is the genetic background and disease causative gene mu-

tations. However, the genetic driving mechanism is not always identified and, therefore, only when

identification is done and put in the disease context, the suitable term would be GGE for disease

classification (Fisher et al. 2017). Epilepsies with genetic etiology are various and a majority of impli-

cated genes and gene mutations have not yet been described (Fisher et al. 2017). Moreover, most

of the noted mutations are found as de novo. Revealing and understanding the resulting phenotype

is considered as an important puzzle piece of managing patients as it would explain disease with

higher precision in individuals. Consequently, it would guide clinicians in making more effective and

adequate treatment choices. However, as this is mostly in the research phase, medicine is still relying

on disease pathophysiology and more robust disease classification.

Epileptogenesis and pathophysiology are two important aspects of the disease. While epileptogene-

sis as a latent period of chronic processes, triggered by external or internal factors (gene mutations),

leads the brain into increased seizure susceptibility (Pitkänen et al. 2015), the pathophysiology is

explaining consequentially occurred molecular and mechanical changes that characterize epilepsy

(Engelborghs, D’Hooge, and Paul 2001). Common sense would suggest acting on the level of epilep-

togenesis to prevent the disease as the best solution. However, even with many existing definitions

and studies, epileptogenesis is still not well defined which makes its modifications and disease pre-

vention more challenging (Sloviter and Bumanglag 2013). On the other hand, the pathophysiology is
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better understood. The basis for epileptic seizures is a disbalanced transmission in neuronal circuits.

Its predominant factors are channelopathies and shifts in neuropeptide balance toward excitatory

neurotransmission (Berkovic et al. 2006; Mazarati 2009). The epileptogenesis affected channels

are voltage-gated (Na+, K+, Ca+) or ligand-gated channels. The hyperactivation of voltage-gated

channels and subsequentially effect of excitatory neurotransmitters or lack of ligand-gated channels

activation by inhibitory neurotransmitters (gamma-aminobutyric acid, GABA) results in excessive de-

polarization of neuronal membrane altering brain excitability and resulting in a seizure attack (Lerche,

Jurkat-Rott, and Lehmann-Horn 2001) The same voltage-gated channels are widely distributed in dif-

ferent tissues, such as the heart muscle tissue. The ion channels are responsible for maintenance of

the heartbeat by their selective permeability on the cell membrane which results in generation of the

action potential (Grant Augustus O. 2009). Moreover, the best studied acetylcholine (Ach)-activated

K+ channel ligand-gated channels are also found in the cardiac tissue. The excitatory neurotransmitter

Ach binds to the G-protein coupled muscarinic receptor which induces the opening of the potassium

channel. The muscarinic acetylcholine receptors have been found to play a significant role in the

central nervous system (CNS) and generation of epilepsic seizures (Turski et al. 1989). The wide

distribution of the ion channels in different tissues makes them the most common drug targets.

The pharmacological approach orients toward points that underwent the change and are active in the

acute attack. The treatment’s goal is to antagonize the effects of channels and reduce brain hyperex-

citability. Although current studies intensively investigate genetic mutations as key epileptogenesis

factors for purpose of disease development prevention, the antiepileptic drug treatment is the only

available choice at the moment.

1.2 Antiepileptic drugs

The first use of a drug with anticonvulsant effect was mentioned in 1857 (Pearce 2002). Since then

the number of antiepileptics increased significantly. They are roughly divided into well established

antiepileptic drugs and the newer generation. The more precise drug classification by primary mode

of action separates them into five groups: Sodium channel blockers (SCB), Calcium channel block-

ers (CCB), GABA analogs (GA), Synaptic vesicle protein 2A binders (SV) and drugs with multiple

mechanisms of action (MM) (Brodie 2010).

Sodium channel blockers bind to the sodium channels in different conditions. While majority of these

drugs bind to the inactivated channels to prolong their steady state, the newer antiepileptic drug

lacosamide favors slow channel inactivation binding in a different manner according to its different

molecular structure than other classical SCB, and, therefore, limiting rapid sequential action potentials

generation of neuronal membrane (Chong and Bazil 2010) Ethosuximide with its specific binding to the
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Table 1.1: ChEMBL approved drugs with epilepsy as drug indication and their properties. ChEMBL
shows eslicarbazepine, eslicarbazepine acetate, gabapentin and gabapentin encarbil sep-
arately.

Drug Abbrev CHEMBL ID MOA ATC level 3 1st known approval year aLogP MW Molecular species
Barbexaclone BBX CHEMBL3833301 GA Antiepileptics 388
Beclamide BCM CHEMBL64195 MM Antiepileptics 1.93 198 Neutral
Brivaracetam BRV CHEMBL607400 SV2 Antiepileptics 2016 0.90 212 Neutral
Cannabidiol CBD CHEMBL190461 MM Antiepileptics 2018 5.85 314 Neutral
Carbamazepine CBZ CHEMBL108 SCB Antiepileptics 1968 3.39 236 Neutral
Clonazepam CLZ CHEMBL452 GA Antiepileptics 1975 3.04 316 Neutral
Diazepam DZP CHEMBL12 GA Anxiolytics 1963 3.15 285 Neutral
Eslicarbazepine ESL CHEMBL315985 SCB Antiepileptics 2.49 254 Neutral
Eslicarbazepine Acetate ESL CHEMBL87992 SCB Antiepileptics 2009 3.06 296 Neutral
Ethosuximide ESM CHEMBL696 CCB Antiepileptics 1960 0.45 141 Neutral
Ethotoin ETH CHEMBL1095 SCB Antiepileptics 1957 1.30 204 Neutral
Felbamate FBM CHEMBL1094 MM Antiepileptics 1993 0.96 238 Neutral
Fosphenytoin FPHT CHEMBL1201336 SCB Antiepileptics 1996 1.55 362 Acid
Gabapentin GBP CHEMBL940 GA Antiepileptics 1993 1.37 171 Zwitterion
Gabapentin Enacarbil GBP ENC CHEMBL1628502 GA Antiepileptics 2011 2.68 329 Acid
Lacosamide LCM CHEMBL58323 SCB Antiepileptics 2008 0.45 250 Neutral
Lamotrigine LTG CHEMBL741 SCB Antiepileptics 1994 2.01 256 Neutral
Levetiracetam LEV CHEMBL1286 SV2 Antiepileptics 1999 -0.13 170 Neutral
Mephenytoin MPHT CHEMBL861 SCB Antiepileptics 1946 1.47 218 Neutral
Mesuximide MSM CHEMBL697 CCB Antiepileptics 1957 1.33 203 Neutral
Metharbital MTB CHEMBL450 GA Antiepileptics 1982 0.50 198 Neutral
Methylphenobarbital MPB CHEMBL45029 GA Antiepileptics 1.04 246 Neutral
Midazolam MDZ CHEMBL655 GA Hypnotics And Sedatives 1985 4.32 326 Neutral
Oxcarbazepine OXC CHEMBL1068 SCB Antiepileptics 2000 2.64 252 Neutral
Paramethadione PMT CHEMBL1100 SCB Antiepileptics 1949 0.76 157
Perampanel PER CHEMBL1214124 MM Antiepileptics 2012 4.44 349 Neutral
Phenacemide PA CHEMBL918 SCB Antiepileptics 1951 0.42 178 Neutral
Pheneturide PU CHEMBL2107062 SCB Antiepileptics 1.38 206 Neutral
Phenobarbital PB CHEMBL40 GA Antiepileptics 0.70 232 Neutral
Phensuximide PSM CHEMBL797 CCB Antiepileptics 1982 1.16 189 Neutral
Phenytoin PHT CHEMBL16 SCB Antiepileptics 1953 1.97 252 Acid
Pregabalin PGB CHEMBL1059 GA Antiepileptics 2004 1.08 159 Zwitterion
Primidone PRM CHEMBL856 GA Antiepileptics 1954 0.54 218 Neutral
Retigabine RTG CHEMBL41355 GA Antiepileptics 2011 3.59 303 Neutral
Rufinamide RFM CHEMBL1201754 SCB Antiepileptics 2008 0.70 238 Neutral
Stiripentol STP CHEMBL1983350 GA Antiepileptics 2018 2.84 234 Neutral
Sultiame SUL CHEMBL328560 MM Antiepileptics 0.26 290 Neutral
Tiagabine TGB CHEMBL1027 GA Antiepileptics 1997 5.04 376 Zwitterion
Topiramate TPM CHEMBL220492 MM Antiepileptics 1996 -0.40 339 Neutral
Trimethadione TMO CHEMBL695 SCB Antiepileptics 1946 0.37 143
Valproic Acid VPA CHEMBL109 MM Antiepileptics 1978 2.29 144 Acid
Vigabatrin VGB CHEMBL89598 GA Antiepileptics 2009 0.36 129 Zwitterion
Zonisamide ZNS CHEMBL750 MM Antiepileptics 2000 1.85 212 Acid
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T-type calcium channels has been proven to be the important calcium channel blocker among others,

used in absence epilepsy (generalized epilepsy) in younger patients, particularly in combination with

valproate (Glauser et al. 2010).

GABA analogs exercise their pharmacological effect on different levels. Firstly, barbiturates and ben-

zodiazepines allosterically bind to the GABA(A) receptor and potentiate the response to GABA. Sec-

ondly, valproate increases the neurotransmitter synthesis. Thirdly, vigabatrine acts on the level of

GABA metabolism by reducing its clearance. Lastly, tiagabine temporarily prolongs the effect of the

neurotransmitter by binding to GAT-1 GABA transporter responsible for glial re-uptake (Brodie 2010;

Sills and Brodie 2002). As an element in synaptic vesicles membrane in inhibitory neurons, SV2A is

found to be important in neuronal communication via neurotransmitters (Janz et al. 1999). Further-

more, it has been proven to be altered in epileptogenesis and its levels reduced in pharmacoresistant

epilepsy (Löscher et al. 2016). To target and interfere with SV2A using levetiracetam has shown to

result in antiepileptogenic and disease modifying effect possibly by stabilizing the vesicle structure

(Daniels et al. 2013) to deliver GABA into the synaptic cleft. The antiepileptics with wider range of

mechanism act on sodium channels, glutamate receptors and modulate GABA(A) responses. These

include felbamate, topiramate, valproate, zonisamide, levetiracetam and rufinamide (Brodie 2010).

AEDs such as gabapentin and levetiracetam still do not have clarified mode of action and seem to

have multiple mechanisms.

AEDs are the drugs aiming the brain tissue. As such they are meant to cross the blood-brain barrier.

The blood-brain barrier represents the contact point between the content of the blood vessels and the

CNS tissue. This structure is particularly restrictive compared to other blood-tissue contacts. Among

other regulating factors its tight cell junctions and astrocytes support protect a normal brain function

from different harmful influences and molecules such as xenobiotics, pathogens, or injury (Daneman

and Prat 2015). However, it is an obstacle in the case of drug delivery and distribution to the CNS.

AEDs are mostly small molecules below approximately 300 Da and mostly lipophilic (Table 1.1).

1.3 Therapy design

To choose a treatment a clinician considers the diagnosed epilepsy type and individual patient char-

acteristics, as well as all the aspects of the antiepileptics. The goal is to control seizures in the

most efficient manner with least as possible side-effects and undesired drug interactions (Brodie and

French 2000). A monotherapy as a first choice would be effective in approximately 60% of the pa-

tients, gaining full control of seizures (Kwan and Brodie 2000). The treatment option for patients with

the refractory epilepsy where a monotherapy could not control the disease is a polytherapy. Moreover,

a rational polytherapy suggests use of different mode of action-based combinations of antiepileptics
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(St. Louis 2009). This approach would cover both pathophysiological underlying mechanisms of the

seizure generation (increased excitatory and reduced inhibitory neurotransmission) and with careful

therapy plan following the principles of a good practice (i.e. holding the current AED while titrating

dose of the add-on until reaching the seizure control according to the drug pharmacokinetics), ad-

ditive and supra-additive drug effect would be achieved with minimized side-effects (Czuczwar and

Borowicz 2002; Panayiotopoulos 2005; St. Louis 2009 ). However, a polytherapy should not become

an over-treatment and risk-to-benefit balance should be kept in mind. The monotherapy would be a

treatment of choice when possible and the polytherapy should be well planned.

There are studies that have investigated the effectiveness of different AEDs in mono or polyther-

apy. Moreover, studies have been performed on the European cohort retrospective data (“EpiPGX

– Epilepsy Biomarkers for Clinical Use” 2020) within our research group. The study of Androsova

and colleagues in 2017 provided useful information on adverse drug reactions and AED retention in

mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) patients. The study suggested

equality between the newer and older AEDs with carbamazepine as the most retained drug and the

drug with the highest rate of seizure freedom. On the other hand, its analogue oxycarbamazepine

was found with the highest rate of ADRs incidence (Androsova et al. 2017). Another study on this

dataset performed by Silvennoinen et al. (2019) compared the effectiveness of five commonly used

AEDs in patients with juvenile myoclonic epilepsy (JME). Depending on the gender, the most effec-

tive was valproate which was demonstrated as the AED to avoid in pregnancy or in women planning

it. Lamotrigine or levetiracetam appeared as an alternative for valproate (Silvennoinen et al. 2019).

Beside the studies helping the choice in monotherapy, there are investigations of the AED combina-

tions based on their mode of action. As previously suggested, the combinations of drugs with different

mode of action should be more adequate and rational. A study from 2014 on the American cohort data

showed that different mode of action (MOA) based AED combinations gave better retention results in

the focal epilepsy patients (Margolis et al. 2014). This was the model for the study in our group on

the EpiPGX cohort performed by Hassanin and Krause (2018). The study was further elaborated into

examination of MOA based AED combinations in focal and generalized epilepsy patients by me.

1.4 Drug-target interactions

The studies of effectiveness of MOA-based AED combinations suggested that overall different MOA

combinations are longer retained in patients. The EpiPGX study raised the question of drug-target

interactions and if they could explain the difference in AED-combination success in treatment. Dif-

ferent MOA stands for different group of AEDs, meaning that AEDs act on different set of targets or

epilepsy genes. Polytherapy of right drug combination could be explained by the coverage of the
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genes involved in the disease for more complete synergistical effect. Moreover, with the precision

therapy and knowledge in AED-target interactions, specific gene variants could be targeted with a

suitable drug. The application of the drug synergism has been already tried in the cancer treatment

where therapies rely on it to compensate the individual drug imperfection (Narayan et al. 2020).

In addition to AED-target interactions, interactions of different drugs with the AED-targets would be

useful for expansion of epilepsy treatment options. Many diseases share the targets and disease

underlying defected genes. For instance, neurodegenerative diseases such as Parkinson’s and

Alzheimer’s disease share over 40 genes (Dovrolis et al. 2017). Ion channels were alreadymentioned

as commonly present in different tissues and, therefore, the channelopathies present in epilepsy are,

for example , the cause of different heart conditions as well (“CV Pharmacology Antiarrhythmic Drugs”

2020). Common genes for different diseases indicate the possibility that there are also common drugs.

The drug-repurposing approach has already been tried. This approach uses the pleiotropic effects

of different drugs that act on many different proteins in the organism. One of the interesting exam-

ples is hydroxichloroquine, approved for the first time in 1949 according to the ChEMBL database.

This drug has been indicated in treatment and profilaxys of malaria, and later in the treatment of au-

toimmune diseases rheumatoid arthritis and lupus erythematosus (“Chloroquine DrugBank Online”

2020). Moreover, cloroquine, different form of this compound, has been used as antiprotozoal med-

ication. Recently hydroxichloroquine has been tried in patients with an infectuose disease (Lagier

et al. 2020). The example of potential drug-repurposing for epilepsy is metformin and its effect on

epileptic seizures. Metformin is an antidiabetic drug that has experimentally shown anticonvulsant

and antiepileptic properties (Mehrabi et al. 2018; Yimer et al. 2019).

The concept of drug repurposing or repositioning means to use already approved drug without any

modification and assign a new indication for its use in clinical treatment (Jourdan et al. 2020). In

this approach, already developed drugs are considered by their chemical and biological properties to

select the suitable for a specific disease. The drug application could be adapted in the new indication.

For example, it could be administered via different route and at a new dose. The important elements

in drug-repurposing before conducting the trials in patients are in silico research and analysis such

as data mining, machine learning, approaches that are structure and ligand- based. In this process

crucial segments are to describe the players in the disease, to establish drug-target interactions and

to distinguish necessary properties for a drug to be adequate for achieving the therapeutic effect. With

development of pharmacogenomics it could be possible to match the gene variant to a drug and to

treat it. The drug-repurposing is much less costly and faster than development of a new drug, and

thus, given all the factors it has become very popular (Jourdan et al. 2020).

13



1.5 Gene variants in epilepsy

Gene variants and their effect to the protein phenotype dictates the effect of drugs. Apart from variants

that are not causing any functional change, typical consequence of those that are functional modifiers

for the protein phenotype is loss- or gain-of-function (Vihinen 2020). The loss-of-function mutation re-

duces the function of the protein while the gain-of-function does the opposite. Moreover, the mutation

interferes with the pharmacokinetics and pharmacodynamics of the treatment. Depending on the pro-

tein function modification, groups of AEDs that would have been expected to have a positive effect on

a patient have resulted in symptoms aggravation. Such example is a mutation in the sodium channel

alpha1 subunit encoding gene (SCN1A). Given the channel type, in some patients it was expected

to control the symptoms with an SCB antiepileptic. However, biology turned out to be more complex

than that. Since the variant was a loss-of-function type, the additional blockage of these channels

has only made the disease worse. This distinction in the phenotype caused by the difference in the

variant of the same gene was discovered in the clinics with individual patients (Balestrini and Sisodiya

2018; Hedrich et al. 2019). The evidence-based therapy recommendations would represent more

solid guidelines. With this need developments have been done in the field of pharmacogenomics

with the goal to achieve the precision medicine and application of personalized treatments in epilepsy

patients. Since ion channelopathies are very common epileptogenic cause there have been ideas for

a new project within our group to effectively target this group of gene mutations by precise AED-target

interactions but also by all other drugs that could efficiently target the same targets.

1.6 Databases

A therapy guide that uses AED-target interactions and suggests drugs with different indications for

treatment of epilepsy patients involves quite a few elements to be considered. Public databases that

gather bioactivity data provide the access to centralized and comprehensively structured data for data

mining and modeling. They represent efforts to collect all the scientific data in a meaningful manner.

ChEMBL database gathers many different types of information with focus on both drugs and targets

(Gaulton et al. 2017). Particularly, the database collects a large amount of information regarding

compound chemical properties and activity data for over 13000 drugs, but also accumulates the in-

formation about as many drug targets in detail. The drugs could be distinguished for example by the

development phase and Anatomical Therapeutic Chemical (ATC) drug classification and indications.

Moreover, they have the assigned mechanistic targets which have been well recognized, but also the

targets associated with them through the experimental data. The data is collected and verified with

autocuration, intermediate and expert levels of curation. Moreover, a part of the data curation is man-
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ual processing of assay-to-target relationships. Assigning a target to a drug in an assay is not always

easy. When a single protein is assigned as a target in an assay a certain confidence score of 9 is

attributed, while for yet uncurated data entries this score is 0 (“ChEMBL Data Questions” 2020). For

cell-lines and tissues the level of certainty is described by 1, while for protein complex targets such as

GABA receptors is 7. Assays and bioactivity data offer different type of experimental measurements

such as drug potency, toxicity and effectiveness. Additionally, targets have been characterized by the

type, organism of origin and gene component. The targets related data also assembles known gene

variants. The ChEMBL database is constantly updated and currently in its 27th version released in

May of 2020. It has been already used in different studies to model structure-activity based drug-target

relationships (Bosc et al. 2019).

While the ChEMBL focuses on drug-target relations, the DISEASES database is more concentrated

on disease and the disease related genes (Pletscher-Frankild et al. 2015). The database links dis-

eases to the genes that appear to be changed using the information gathered by automatic text mining

and manual curation of those results. In order to describe the disease causing potential, a confi-

dence score that ranges from 1 to 5 is assigned to genes. The database gathers all genes related or

causative to a disease. Contrary to other disease-gene associations databases the DISEASES is a

public resource.

However, relying on the software that looks for disease and human genes associations in text mining

of abstracts the DISEASES does not distinguish the ADME genes. The ADME genes are genes en-

coding proteins involved in the absorption, distribution, metabolism and excretion processes (Doogue

and Polasek 2013). These genes are responsible for the difference in pharmacokinetics and the con-

sequential pharmacoresponse in patients. The paper of Jing et al. (Li et al. 2011) uses the Phar-

maADME database (“Www.pharmaadme.org - Home” 2020) and lists all the ADME genes.

Another interesting database is PharmGKB that collects knowledge about the effect of genetic vari-

ations on drug response (Whirl-Carrillo et al. 2012). This pharmacogenomic database focuses on

gene-drug associations supported by genotype-phenotype relationships. Furthermore, drugs are as-

sociated with reported variants of the gene with different levels of clinical annotation. The levels go

from 1 for the highest to 4 for preliminary annotations based only on a case report, non-significant

study or experimental assay evidence. PharmGKB is a useful database of variant-drug association

information for personalized medicine.

There have been reports of different drugs with effect on epileptic seizures. Application of quinidine

in a child with migrating partial seizures of infancy (MMPSI) was correlated with reduced frequency

of epileptic seizures (Bearden et al. 2014). Moreover, this severe form of epilepsy has been most

commonly caused by the gain-of-function mutation in KCNT1 gene. This change in potassium chan-

nels would be antagonized with potassium channel blockers. Quinidine is a class 1 antiarrhytmic drug
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with partial antagonist activity on KCNT1 channels and, therefore, could be a good drug candidate for

therapy of MMPSI. Another drug that has been tried in epilepsy patients is 4-aminopyridine, known un-

der names of fampridine and dalfampridine. This drug is a potassium chanel blocker indicated in the

treatment of multiple sclerosis (Judge and Bever 2006). It has been currently experimentally used in

patients to reduce seizures and other epilepsy syndroms (“Experimental Epileptology : Hertie-Institut

Für Klinische Hirnforschung” 2020). In these cases drugs approved for other indications were found

effective to control epilepsy symptoms acting on the level of proteins affected by the gene mutation.

Although ChEMBL database is a very large structure, in order to consider the main important elements

for establishing AED-target interactions for therapy guidelines and drug-AED target interactions for

drug-repurposing, the DISEASESwould have to be consulted. Although automatized text mining itself

has its downsides, the DISEASES provide the descriptor of the epilepsy-gene associations. In addi-

tion, summarized ADME genes list from the study of Jing et al. (Li et al. 2011) would give an insight

about the role of targets in ChEMBL database since drugs undergo the ADME processes. Phar-

mGKB as the database that collects clinically actionable gene-drug associations would give another

perspective to the drug-target interactions in ChEMBL database.

1.7 The context of the master thesis

Figure 1.1: Master thesis overview
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This master thesis represents an integration of two different scientific investigations on the same

topic- AEDs effectiveness in different epilepsies using clinical data, and drug-repurposing based on

drug-AED target interactions (Figure 1.1). The research practical in third semester was performed

on EpiPGX retrospective clinical data to investigate AED combinations effectiveness in focal and

generalized epilepsy patients based on their mode of action, following the work of Margolis et al.

(2014). This retrospective study of the effectiveness of MOA-based AED combinations has been

in preparation for the publication. The EpiPGX data has been previously used by our group in the

examination of AEDs and their combinations by their retention in patients (Silvennoinen et al. 2019;

Hassanin and Krause 2018; Androsova et al. 2017) and my work was an extension of those studies.

The investigation of AEDs effectiveness further steered the question of “what can guide and help the

rational therapy choice” to drug-target interactions in epilepsy as an important feature to describe the

effectiveness of AEDs in the disease treatment. The work on drug-target interactions was proof of

concept of the proposition that a therapy could be guided by association of AEDs and key epilepsy

genes on individual patient basis using public databases. Moreover, use of databases that collect

most of known drug-target interactions could lead to drug-repurposing and expansion of the list of

possibly effective drugs in epilepsy treatment. As every new investigation motivated by new questions,

it demands exploration and understanding of the sources before reaching a translational project end-

product. The drug-target interactions approach was a first investigation of that kind in our group to

use the ChEMBL database to explain drug effectiveness in a disease.

1.8 Aims

At the beginning, the aims of my thesis were to conclude the AED effectiveness using EpiPGX clinical

data and then to investigate drug-target interactions. The drug-target interactions investigation meant

to identify known AED targets and drug-AED target interactions, to rank drug-target interactions, and

to rank AED combinations based on AED-target interactions to provide another dimension to the

findings of the EpiPGX studies.

However, due to the time frame and with the exploration of the data the final and completed aims

are:

• Conclude on EpiPGX data investigations of Silvennoinen et al. (2019); Hassanin and Krause

(2018); Androsova et al. (2017),

• Collect known AED targets,

• Discover if there are other approved drugs that bind the AED targets,
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• Investigate what are the features to distinct the drug-interaction targets that are available in the

ChEMBL database,

• Elucidate if meaningful drug-target interactions information can be found and retrieved using

public databases, and

• Try to reproduce the quinidine-KCNT1 and fampridine-KCNA2 interactions to answer the ques-

tion if a therapy could be guided with the drug-target interactions using public databases.

The final aims were aligned with the first exploration of the resources to set up grounds for a new

project for treating ion channels in the epilepsy.
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AEDs and mechanistic targets interactions in ChEMBL database
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Figure 1.2: AED-mechanistic target interactions network. Number of arrows correspond to the num-

ber of collapsed genes within a target node.
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2 Methods

2.1 Data sources

2.1.1 EpiPGX

As continuance of the MOA-based AED-combinations effectiveness in the research practical project

the investigation of AEDs application in Europe was conducted on EpiPGX retrospective clinical

epilepsy patient data (“EpiPGX – Epilepsy Biomarkers for Clinical Use” 2020). The data was col-

lected in different European clinical centers for purposes of a pharmacogenomic project. The goal of

the EpiPGX project is to make individualized pharmacological treatments for epilepsy patients based

on epilepsy genome-biomarkers. The data covers records for 12829 epilepsy patients with over 40

000 AED trials from 1933 until 2015. The number of patients with AED trials gathers 6109 patients

with focal epilepsy, 2097 with generalized epilepsy, 1756 patients diagnosed with some other form of

epilepsy and 184 with missing diagnosis. AEDs included in the analyses were preselected after the

study of Margolis et al. (2014) with later addition of ethosuximide to the list.

2.1.2 Utilization of AEDs data from General Practice Research Database

The study of Nicholas et al. (2012) investigates the changes in utilization of AEDs by epilepsy pa-

tients in the United Kingdom during 1993–2008 using General Practice Research database (“General

Practice Research Database” 2020). The database provided them with data from 434 UK family prac-

tices for 63586 epilepsy patients and for the AEDs they were treated with after their registration to the

GPRD. The used family practice data is up to standard for research by the policy of GPRD. This study

provides the person-years for used AEDs in this cohort which was used to compare the primary care

therapy trend with the protocols in epilepsy specialized secondary health care units.
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2.1.3 ChEMBL database

The main data source for drug-target interactions study was ChEMBL database (Gaulton et al. 2017)

version 27 published in May 2020. This database as part of EMBL-EBI (“About Us European Bioin-

formatics Institute” 2020) and a wide range of bioinformatics resources is built on variety of data

sources - publicly available chemical structure and bioactivity databases such as PubChem BioAs-

say, BindingDB, together with toxicology data sets, drug/clinical candidate resources, deposited data

sets, scientific literature and patents (Gaulton et al. 2017). Moreover, it covers over 65000 journal

articles (Gaulton et al. 2017).

2.1.4 UniProt KB database

UniProtKB and Retrieve/ID mapping tool was used to retrieve gene names based on target compo-

nent’s accessions from ChEMBL database (Nicholas et al. 2012).

2.1.5 DISEASES database

DISEASES resource was used to describe disease-gene relations in epilepsy (Pletscher-Frankild et

al. 2015). The source is a freely available text mining type of the database with manually curated

disease-gene associations. Based on the source of information, disease-gene data is gathered in

text mining, knowledge and experiments. The knowledge collection relies on Genetics Home Ref-

erence (GHR) and UniProtKB while the experiments collection relies on COSMIC and DistiLD. The

text mining collection can overlap with the knowledge and experiments. The groups have a scoring

system for confidence in disease-gene associations which is also the basis for text mining in STRING

v9.1 and COMPARTMENTS. For purposes of large-scale data analysis with integration of all three

collections, the associations are mapped to a common quality score for inter comparison. This con-

fidence score scale ranges from 1 to 5 and has been used in this study to describe and order the

gene-epilepsy associations. The cut off of confidence score > 2 for gene-epilepsy relations was used

in the later ordering of AED-targets and drug-AED targets interactions. Moreover, in case of multiple

confidence scores for an association, the higher value was used in rankings. “Epilepsy genes” have

been interchangeably used with “AED targets” through the text.

2.1.6 ADME genes

The list of ADME genes from the study of Li et al. (2011) was used to consider assayed AEDs-target

and drug-AED target interactions devoted to ADME processes. The researchers established a list of
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31 core ADME genes and 252 extended ADME genes using PharmaADME database for the purpose

of their study. The list excludes gender related ADME genes.

2.2 EpiPGX data description

2.2.1 Prescription AED trend

The investigation of the prescription AED trend was performed on the EpiPGX data (“EpiPGX –

Epilepsy Biomarkers for Clinical Use” 2020) by consideration of the known prescription time points

for each patient. Some AEDs are more adequate for one epilepsy type than the other, and therefore,

the cohort was divided into focal and generalized epilepsy patient data to potentially give another di-

mension to the prescription distribution. Nitrazepam was found only in one of the diagnosis and, thus,

it was excluded from the analysis. Due to low counts for some AEDs, plots were not scaled for the

benefit of readability. The influence of start years between the two epilepsy types was tested using

a nonparametric two-samples Wilcoxon rank-sum test for comparison of two independent groups of

samples (“Unpaired Two-Samples Wilcoxon Test in R - Easy Guides - Wiki - STHDA” 2020). This

statistical test is used as an alternative for an unpaired two-sample t-test when data does not follow

normal distribution.

2.2.2 Person-years comparison

To investigate the difference in AED application in primary health care units and in the secondary

epilepsy more specialized, EpiPGX data was compared to the UK cohort data (Nicholas et al. 2012).

For the comparison person-years were used, which represent total years of a patient life under a

certain treatment (“Concept: Person Years - Calculating in a Cohort Study” 2020). The time period

of an AED treatment is calculated using the start date and the last visit date for an ongoing trial or

the end date for terminated trials. This period is then transformed into weeks and divided by 52.25

to obtain the values in the “year” unit. Finally, person-years were accumulated for each AED. The

UK cohort data was plotted by the provided AED person-years in the study of Nicholas et al. (2012).

Since the UK cohort study covered the 1993-2008 time period, the EpiPGX data was restricted to the

same period. Due to this time range, the only one barbexaclone trial and three mephobarbital trials

were lost since their start dates were earlier than 1993. Moreover, phenobarbital, phenobarbitone and

primidione were gathered into barbiturates to be compared to the barbiturates group in the findings

of Nicholas.
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2.3 ChEMBL data collection

Figure 2.1: ChEMBL data exploration workflow with AED, drug and target numbers for corresponding

data collections.

The ChEMBL Database version 27 was used to retrieve interactions data for:

1. AEDs and their mechanistic targets,

2. AEDs and their assayed targets,

3. AED-mechanistic targets and all other approved drugs,

4. AED-assayed targets and all other approved drugs.

ChEMBL Database gathers enormous amount of data which can be handled and searched using sev-
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eral programs. In this study SQLite was used since it exists as a package for R program. The database

has a specific scheme available on ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/latest. The

scheme points out several sections: source information, compound information, target information,

experimental data, approved drugs data, drug mechanisms/indications, drug metabolism data and

binding-site information. Each section contains separated tables with corresponding information.

Firstly, all drugs with drug indications containing “epilepsy” were retrieved. At the therapeu-

tic/pharmacological ATC classification level these were drugs with N03 (antiepileptics) and N05

(pshycholeptics) classification. Furthermore, drugs as compounds and molecules have their mol-

regno - internal and CHEMBL ID - external IDs, where the latter are created to be used by users on

the web interface. Internally used by the database, molregnos can be parental or familiar depending

on the form of the compound, meaning one compound can have neutral form as a parental molecule

and many alternative forms such as salts, hydrates, isotopes etc. gathered as a family. More

information on these compounds was found in compound related, MOLECULE_DICTIONARY,

MOLECULE_HIERARCHY and ATC_CLASSIFICATION tables.

Secondly, the corresponding mechanistic and assayed targets for previously gathered AEDs were

collected. The mechanistic targets were retrieved from the DRUG_MECHANISM table which stores

the data only for approved compound forms. However, the approved form of a drug can be a par-

ent or some of the family members which adds the complexity to the data collection process. The

assayed targets were collected via ACTIVITIES and ASSAYS tables where target IDs were retrieved

along with the assay and activity information for interactions with corresponding AEDs. In addition,

details for all targets were completed with the information contained in TARGET_DICTIONARY, TAR-

GET_COMPONENTS and TARGET_SEQUENCES tables.

Lastly, after the mechanistic and assayed targets were known and marked as AED targets, the data

for their interactions with other approved drugs was assembled via ASSAYS and ACTIVITIES tables

using the target ID -> assay ID –> drug ID relation. As these drug-target interactions have not been

yet recognized as mechanistic, they belong to the experimental data in ChEMBL.

One of the available characteristics of targets is target type which can be a single protein, a protein

complex, protein complex group, a protein family, a cell line, a tissue and other. In this analysis of

interest were certainly targets of a single protein as the most reliably described interactions, targets

of protein complex and protein complex group, for instance, in case of the important epilepsy targets

like GABA-A receptors as the only assigned type in some conditions, and protein family. However,

the target count and interpretation of drug-target interactions are difficult task given the complexity

of the last three target types (Table 2.1). Moreover, these targets in ChEMBL have components

which then have the corresponding gene names and UniProt accessions when they are described
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Table 2.1: Example of AEDs with different target types

AED Target ID Target type Uniprot gene name
Levetiracetam 31000 single protein SV2A
Levetiracetam 10511 single protein CACNA1B
Ethosuximide 105707 protein family CACNA1H
Ethosuximide 105707 protein family CACNA1G
Ethosuximide 105707 protein family CACNA1I
Perampanel 104825 protein complex group GRIA4
Perampanel 104825 protein complex group GRIA3
Perampanel 104825 protein complex group GRIA2
Perampanel 104825 protein complex group GRIA1

and known. Since target names in ChEMBL are heterogeneous, based on the AED-target accessions,

gene names were retrieved from the UniProt database using Retrieval/Mapping ID tool on the web

interface. The gene names were referred to as target names in this study.

Approved drugs with “epilepsy” as drug indication count 43 drugs (Table 1.1). ChEMBL assembles

different drug names - WHO recognized names and commonly preferred names. These names do not

always overlap. WHO in the ATC drug classification employs INN names, except when they are not

assigned in which case either USAN or BAN are usually used (“WHOCC - Structure and Principles”

2020). For example, ATC name “Lamotrigine” instead of preferred name “Erlosamide” was more

used by clinicians. Another example is the case of “Phenytoin” which in ATC classification exists

as “Phenytoin” and “Phenytoin combinations”, differing at the level 5 in the ATC classification, while

in ChEMBL they have the same molregno and the same preferred name “Phenytoin”. On the other

hand, some AEDs, like eslicarbazepine and gabapentin, in the ATC naming system have only one

name while as preferred names have explicit names of two different drug forms (eslicarbazepine and

eslicarbazepine acetate; gabapentin and gabapentin encarbil) and each form has a parent molregno.

Moreover, one would expect one parent molregno for one form and family molregno for the other

form as it is for majority of AEDs. Similar is seen in the other approved drugs data where some drugs

have multiple parent molregno IDs for different forms of the same compound. In the analysis AED

names were chosen according to the rest of the analysis elements. When the drug has many names

but same molregno/CHEMBL ID, the ATC name was used. In the case of many names and different

molregnos for a drug, the ATC name was used to gather and analyze the information for the same

substance in different forms as for the rest of drugs. In addition, few of the AEDs were excluded

from specific parts of the analysis due to the lack of data in experimental section for the mechanistic

targets or in DRUG_MECHANISM table for assayed targets when they did not follow the setup criteria:

AEDs-mechanistic targets and AEDs-assayed targets (Table 2.2).
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Table 2.2: AEDs excluded from the corresponding analyses due to missing data.

No mechanistic targets No assays for mechanistic targets/protein targets
Barbexaclone Barbexaclone
Beclamide Beclamide
Methylphenobarbital Brivaracetam
Pheneturide Fosphenytoin
Phenobarbital Mesuximide
Stiripentol Metharbital
Sultiame Paramethadione

Pheneturide

2.4 Epilepsy genes

Epilepsy targets gathered through assays in ChEMBL represent a collection of all tried out or ob-

served AED interactions with protein targets. An observation of assayed AED targets for the share

of ADME genes and epilepsy genes annotated in DISEASES was done. Moreover, a visualization of

the epilepsy genes by the collections in DISEASES was done as well. In addition, the distribution of

disease-gene confidence scores and their relation between text mining, knowledge, and experiments

collections was done.

2.5 ChEMBL data description

2.5.1 Target and AED/drug counts

The retrieved mechanistic and assayed AED target data was observed for the number of AEDs and

approved drugs associated with the target, and for the share of each target type in these interactions.

The mechanistic targets data considers gabapentin and gabapentin encarbil (prodrug) as different

compounds, as well as eslicarbazepine and eslicarbazepin acetate (prodrug). Similar trend is seen in

the interactions data of all approved drugs with AED targets. Different forms of the same compound

identified with multiple parent molregno IDs were considered as the same compound in the observa-

tions and counted once. All approved drugs were counted for AED target gene components taking

into account the target type.

2.5.2 Assays and Activities

ASSAYS and ACTIVITIES tables in the experimental data contain different parameters to describe

AED-assayed targets interactions and interactions between drugs and AED-assayed or AED-

assigned targets. An assay captures key characteristics of a performed experiment for the assigned
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target, roughly presented in the ASSAY_DESCRIPTION table, while related activity types and values

are stored in the ACTIVITIES table. The same assay can have multiple IDs if it comes from different

publications. Moreover, one assay can have multiple drugs investigated for one target such as

assays collected from DrugMatrix in vitro pharmacology data (“DrugMatrix Database,” n.d.) or The

NCATS Chemical Genomics Center (NCGC) (Kim et al. 2019) database do.

To retrieve assayed targets for approved AEDs and assayed drugs for all AED-targets the starting

criteria were:

• “Homo sapiens” as target organism,

• confidence score above 6,

• assay type Binding (B) and Functional (F),

• maximal phase equal to 4 for drugs for the indication they are approved.

Confidence score is part of manual data curation which reflects the target type assigned to an assay

and the certainty that the target suits the assay. It ranges from 0 (uncurated) to 9 (direct single protein

target assigned with high confidence) (“ChEMBL Data Questions” 2020). A confidence score of 7

means a direct protein complex subunit assigned, while 8 means homologous protein assigned to the

assay (“ChEMBL Data Questions” 2020). The maximal phase of 4 for the drug means the drug has

been approved and prescribable for an indication.

The represented experimental data in ChEMBL was observed for the influence of the first known

approval year for a molecule in any state on the number of performed protein target assays. This

was done for all AEDs with known approval year and an UniProt accession for the target’s gene

components.

2.6 AEDs-target network

The interactions network describes AEDs and their mechanistic assigned targets interactions (Figure

1.2). In this case, to each AED all associated genes were assigned as targets in the network. Inter-

actions of an AED with a target node with multiple arrows indicate a protein family or protein complex

group target type. Arrows represent connections to different genes within such a target. Moreover,

such target nodes represent collapsed a protein family or a protein complex group for the benefit of

better visualization. Single protein targets are connected to an AED with a single arrow.
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2.7 Drugs-targets selection criteria

To describe drug-assayed AED targets and narrow down all found interactions the following criteria

were applied:

• disease-gene confidence score above 2,

• confidence score above 6,

• data validity comment confirming good quality of the activity,

• standard flag set to 1 for curated data,

• pChembl value above 5,

• assay organism to be “Homo sapiens” (e.g. human cell lines).

The confidence score for a disease-gene association was selected to be above 2 to limit the number of

genes associated with epilepsy by the automatic text mining and, therefore, to increase the implication

of assayed AED targets in epilepsy (Pletscher-Frankild et al. 2015). In addition to the standardization

of activity types/values/units, the ChEMBL database provides pChembl value for comparison on a

logarithmic scale of different roughly comparable measurements such as potency, affinity, IC50, ED50,

Ki, Kd (Papadatos et al. 2015). pChembl value is calculated as -Log(molar IC50, XC50, EC50, AC50,

Ki, Kd or Potency). Assays with known pChembl values were chosen with perspective to use it as

a feature in the later ranking of drug-target interactions. Furthermore, the arbitrary cut off > 5 was

used to reduce the data for easier interpretation in the case of all approved drugs and AED targets

interactions.

Data validity comment enables selection of the assays for example with values within the typical range

for the particular drug and activity type (Papadatos et al. 2015). It allows selection of the good quality

data. Moreover, the standard flag feature allows controlling of the selection by the curation status of

the standardized data. The standardized units, relation, value or activity type can be curated or just

imported by default from the published data.

The criteria were selected by investigating AED assays for SLC6A1 (GABA transporter 1), the mech-

anistic target for tiagabine. In addition, the investigation was also performed for CA4 (Carbonic anhy-

drase IV), the mechanistic target for topiramate, as a verification of the criteria selection. The aim was

to obtain selection criteria to scale down the number of interactions drug-AED target interactions which

is able to describe interactions of assayed AEDs for a mechanistic AED target along with preserving

the AED from the mechanistic data.
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2.8 Drug-targets interaction ranking

Figure 2.2: Targets with GABA component with assayed drugs and measured pChembl values for the

interactions. Colours correspond to the target. GABA genes can have multiple pChembl

values recorded from different assays.

The drug-AED target interactions were first ordered by the disease-gene confidence score collected

for epilepsy in DISEASES and afterward by the pChembl values from the ACTIVITIES table in the

ChEMBL database. For drugs with multiple assays and therefore multiple pChembl values an average

of the value was done. For drugs interacting with targets annotated by different IDs but containing the

same gene component, an average pChembl value was done across all targets with the same gene.

(Figure 2.2) The average pChembl value would finally describe a drug-gene interaction.

2.9 Tools used in the analysis

The important tools that were used in this work were R program (R Core Team 2020) with many

different packages such as Drake (Landau 2018), Renv (Ushey 2020), Ggplot2 (Wickham 2016),

Tidyverse (Wickham et al. 2019), RSQLite, Igraph (Csardi and Nepusz 2006), and others. The use

of these was supported and assisted by my supervisors Dr. Roland Krause and Nikola de Lange.
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The analysis was done in RStudio using R program version 4.0.2. The project was developed us-

ing version control by Git and shared GitLab repository. In order to ease the reproducibility of the

project environment, the Renv dependency manager was used as well. This package allows a

user to create a private project library. The packages used in the project are recorded in a lock-

file. The project environment is first initialized with renv::init(), then the renv.lock file is created

using renv::snapshot() and can be updated as the work evolves with the same function. The en-

vironment is set via renv::restore(). This is convenient for collaborations to ensure that everyone

involved in the project is using the same environment. Moreover, it is useful in the case of multiple

projects to individualize and control the environments.

The EpiPGX analysis follows a project structure where data import, processing and modeling are

separated into different R scripts (Grolemund and Wickham 2017). Moreover, R scripts and the

manuscript related Rmd files are in different directories. To construct paths to the files when neces-

sary Here package was useful. It builds a path to the file using only a filename and the directory

where it has been saved. The work on the drug-target interactions follows a similar pattern but within

the Drake setup. Drake allows reproducibility but also to faster handle the analysis of bigger datasets

such as the ChEMBL data collection. This package analyze the workflow and runs only the parts that

are not up-to-date. Drake setup includes the functionalization of the analyses, creation of a Drake

plane and a make file. Data import, wrangling and modeling can be in separate scripts and then

invoiced into a Drake plan. The main used functions are drake_plan() to create a workflow, make()

to run the plan and build the project, and vis_drake_graph() for visualization of the target state. An-

other useful function when it is necessary to move from one setup to Drake is code_to_plan() creates

a relationship of the plan to the R script. Instead of objects, with Drake the work is done with tar-

gets which can be loaded into a manuscript with loadd() or inspected using readd() function. In the

transition of the project setup to the use of Drake environment I was kindly supported by my super-

visor Dr. Roland Krause. In addition, data transformation and analysis was relying on the use of the

Tidyverse package.

ChEMBL database has over 25GB of the data and can be programatically accessed using database

instances. In this project, it was communicated with SQLite as it has a package called RSQLite to

connect to the locally stored SQLite database instance in R to retrieve the necessary data with SQL

queries. To visualize the AED-target interactions ggraph (Pedersen 2020), igraph (Csardi and Nepusz

2006) and qgraph (Epskamp et al. 2012) packages were explored. These visualization packages offer

numerous options and freedom in the network graph creation.

The thesis manuscript is done in R Markdown using the Bookdown package (Xie, Allaire, and Grole-

mund 2018). This setup contributes to the reproducibility of the thesis. The project for drug-target in-

teractions can be found on https://git-r3lab.uni.lu/EpiPGX/drug-target-interactions. The EpiPGX part
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of the thesis can be found on https://git-r3lab.uni.lu/roland.krause/mtle-hs/-/blob/master/multi-drug-

trials/Exploratory.Rmd.
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3 Results

There are generally two parts of the results of this master thesis project. The first part represents the

findings of the investigation of the EpiPGX data. The EpiPGX data was examined to see the AEDs

application in different types of epilepsy. Moreover, I wanted to compare the use of AEDs between

different levels of the European healthcare system. The second part of the results is produced in

the exploratory data analysis for the description of drug-target interactions. Particularly, this EDA

shows the possible interaction selection criteria, challenges presented by the data structure and the

interactions of quinidine and fampridine with potassium channels recognized as AED targets in the

ChEMBL database. Furthermore, these results show the complexity of distinction and interpretation

of meaningful drug-target interactions.

3.1 EpiPGX data findings

The EpiPGX data investigation shows results that were additions to Hassanin and Krause (2018)

and my research practical work. The purpose of my current work was to investigate the treatment

preference for focal and generalized epilepsy and compare to another treatment databases (“General

Practice Research Database” 2020).
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3.1.1 AED trials distribution

Figure 3.1: Number of trials over total cohort of epilepsy patients with recorded AED trials.

From a total of 10146 epilepsy patients with AED trials the majority of patients has tried 1-2 AEDs in

their treatment of the disease. The next big group of patients has tried three or four, after which the

number of patients who has tried more than 4 drugs lowers compared to the majority of the cohort.

However, 32.07% of the cohort has been prescribed with more than three AEDs until they potentially

achieved the control of the symptoms. Moreover, the number of trials for some of them reaches 22,

23, even 30 different AEDs. The trend of multiple treatments per patient could be a reflection of the

specificity of epilepsy diagnosis (Figure 3.1).
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3.1.2 AED prescription trend

Figure 3.2: The prevalance of AED prescriptions by count. For readability reasons plots are not scaled

between generalized and focal epilepsy cohorts.
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Table 3.1: Wilcoxon rank-sum test comparing AED start years between generalized and focal epilepsy
patients

AEDs Statistic p value
PRM 3.03e+03 7.04e-01
PB 3.89e+04 4.78e-04
PHT 7.64e+04 1.70e-01
DZP 1.22e+02 7.28e-01
ESM 3.89e+03 7.87e-14
VPA 1.37e+06 1.77e-09
CBZ 4.43e+05 1.75e-03
VGB 1.26e+04 4.49e-01
TGB 5.86e+02 4.39e-02
GBP 7.89e+03 3.75e-02
CNZ 4.60e+03 3.99e-04
CLB 8.10e+04 4.46e-09
LTG 9.39e+05 5.67e-16
TPM 2.18e+05 4.49e-15
OXC 2.88e+04 6.04e-01
LEV 6.65e+05 9.44e-28
PGB 4.75e+03 3.36e-01
FBM 9.25e+01 8.97e-03
ZNS 3.32e+04 3.50e-03
LZP 3.40e+01 7.75e-01
ESL 7.46e+02 7.12e-01
LCM 1.06e+04 5.13e-04

The prevalence of AED prescriptions reflect realistic events where older generations of drugs are

superseded by the newer (Figure 3.2). The order of the AEDs follows the mean start year in the

cohort. The so-called old-timers, phenobarbital, phenytoin and primidone have lower mean trials

start year compared to the other AEDs. Lacosamide has been presented with the highest mean

trials start year. Valproate with its side effects has been pushed aside by its newer safer alternative

lamotrigine (Silvennoinen et al. 2019). Newer generation AED Levetiracetam has recorded over 300

prescriptions in a year in the treatment of focal epilepsy, more than the older carbamazepine in the

same year, which was typically used in this epilepsy.

In addition, besides the time frame an important weight in the prescription choice has the epilepsy

type. Vigabatrin and tiagabine with 548 and 185 recorded prescriptions have been prevalently given

to patients with focal epilepsy compared to 43 and 1 recorded trials in the generalized epilepsy cohort,

respectively. Ethosuximide has been tried 3 times more in the generalized epilepsy cohort than in the

focal where the number of prescriptions lowers over time. As expected, there has been a statistically

significant difference in ethosuximide prescriptions over time between generalized and focal epilepsy

(p-value of 7.87e-14). Similar significance in time difference can be seen in the prevalence between

the two diagnoses of other AEDs specific to the diagnosis, meaning that with time prescription trend

shifts (Table 3.1).
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3.1.3 Difference in general and clinical practice

Figure 3.3: In the UK cohort ESM, OXC, PGB, TGB, ZNS, SUL, RFM, FPHT, STP, MSM, BCM, LCM

were prescribed < 1% and not presented.

A different trend of treating protocols can be noticed between specialized clinics and general family

practices. Moreover, although the EpiPGX cohort covers a larger region of the continent had 66264

person-years, where territorially smaller the UK cohort had 282080 person-years in total (Figure 3.3).

The most prescribed and used AED in the primary health care units in the UK was carbamazepine

(100296 person-years, 27.77%), followed by valproate (93051 person-years, 25.76) and phenytoin

(73154 person-years, 20.25) (Figure 3.3). The relatively newer AEDs (year of UK license in the paran-

theses) oxcarbazepine (2000), pregabalin (2004), tiagabine (1998), zonisamide (2005), rufinamide

(2007), lacosamide (2008) were used less than 1% of treated follow-up in the UK cohort according

to the study of Nicholas et al. In the EpiPGX cohort the most used was lamotrigine (13512.1 person-

years, 20.01%), followed by valproate (11343.6 person-years, 16.88%), levetiracetam (9861.4 person-

years 14.67%) and carbamazepine (9440.8 person-years, 14.05%). Interestingly, levetiracetam was

used for 8313 person-years in the primary health care units, 2.30% of total AEDs person-years, while

in the secondary health care units it was used for 9861.4 person-years, covering 14.67% of the total-

ity.
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The presented AEDs are drugs present on the market. Some of the patients do not respond well to

the treatment and have tried many AEDs until reaching the control of the symptoms. The AEDs and

their mechanism of action were then explored in the ChEMBL database.

3.2 ChEMBL exploratory data analysis

This section shows results that are proof of concept of whether a database approach can help therapy

protocols using AED-target interactions, but also to find drug candidates through drug-AED target in-

teractions for drug-repurposing. Moreover, this new project is done to see if the discovery of quinidine

or fampridine as AEDs could be reproduced from databases alone.

3.2.1 AEDs and assayed targets
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Figure 3.4: The number of assays for AEDs with known first approval year for any indication and with

known gene components of assayed targets.

Among AEDs with known first approval year in at least one state for any indication the earliest released

AED was mephenytoin (1946), while the latest approved were cannabidiol and stiripentol (2018) (Fig-

ure 3.4). Mephenobarbital, phenobarbital and sultiame, although studied and found in the experimen-

tal data, are not presented due to unknown first approval year. In addition, eslicarbazepine acetate

and gabapentin are the forms of these compounds assayed with AED targets. The number of assays
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performed for each AED differs. Typically, older AEDs such as those before the year of 2000 have

more experimental data than the newer. The AED with the most performed assays is topiramate,

followed by diazepam and zonisamide. However, AEDs with highest number of recorded activities

for these assays are phenytoin with 1051267 times measured assay endpoints, followed by oxcar-

bazepine with 886012 and carbamazepine with 831541 activities. ChEMBL database gathers over

40 different standard activity types that have been measured multiple times for AEDs and targets in

different assays. AEDs approved after the year of 2000 have less than 50 assays.

3.2.2 Targets and AEDs distributions

Figure 3.5: Epilepsy genes coverage: (left) Epilepsy genes source overlap in DISEASES database;

(right) genes in ChEMBL, DISEASES and ADME
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epilepsy for total list of interactions and relations of confidence scores between three type

of data collections. In the plot b) the rug shows density of confidence scores.

Epilepsy-gene interactions are one layer of information in understanding the disease and therapy

choices. There are 7275 epilepsy genes in DISEASES database of which 13 are gathered in the

experiments collection, 222 in the knowledge collection and 7258 in the text mining collection (Figure

3.5). Notably, the largest group is obtained with text mining and contains most of the genes from the

other two collections as well. Moreover, this group has lower confidence scores ranging from 0.5 to

3.748 (Figure 3.6). Similarly, the genes gathered in experiments have been related to epilepsy with

scores ranging from 0.743 to 2.999. On the other hand, the knowledge collection has confidence

scores of 4 and 5. The confidence scores are mostly distributed around a value of 1.

From the assayed AED targets in ChEMBL database, 251 overlap with DISEASES gene list while 44

can be found in ADME gene list (Figure 3.5). From 44 18 are considered as core metabolic genes,

while the rest is recognized in the extended list. As for the epilepsy-gene association, genes found as

components of assayed AED targets in ChEMBL database are associated with epilepsy with minimum

of 0.513 to 5 confidence score.
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Figure 3.7: Mechanistic targets and the number of AEDs according to the target type.

There are 16 mechanistic AED targets counted by the ID. These have 80 genes. In particular, the

much high number of considered epilepsy genes compared to the number of targets is contributed to

by the protein complex group and protein family target types as more complex. Single protein type

counts for 8 which are considered as mechanistic targets for 7 AEDs. Then, protein complex group

type accounts for 5 targets involved in the mechanism of action of 10 AEDs. Finally, protein family

target type appears in 3 targets and is connected to 20 AEDs. When the AED-target IDs interactions

are as well considered in AED-target types relations the protein family target type counts the highest

number of assigned AEDs, followed by the protein complex group and the single protein. In this case,

some AEDs are assigned to multiple targets and counted repeatedly in different target types. For

example, topiramate acts on three targets: GABA-A receptor, Glutamate receptor ionotropic AMPA

and Glutamate receptor ionotropic kainate types. Each of these targets has many gene components.

In this case topiramate has been counted three times (Figure 3.7). Moreover, topiramate has been

assigned to a protein family target and two single protein targets and has been reported in those

groups of target types as well. This shows the coverage of target types in the AED-mechanistic targets

interactions by a single drug and contributes to the complexity of interpretation of interactions.

40



perampanel
methylphenobarbital

stiripentol
ethotoin

phensuximide
tiagabine

cannabidiol
eslicarbazepine

mephenytoin
rufinamide

levetiracetam
retigabine

pregabalin
sultiame

vigabatrin
felbamate

lacosamide
midazolam
topiramate

zonisamide
trimethadione

clonazepam
phenacemide
ethosuximide

gabapentin
phenobarbital

oxcarbazepine
primidone
diazepam

lamotrigine
phenytoin

carbamazepine
valproic acid

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135

Number of targets

A
nt

ie
pi

le
pt

ic
 d

ru
gs

 (
W

H
O

 n
am

es
)

Target type
PROTEIN COMPLEX GROUP
PROTEIN FAMILY
SINGLE PROTEIN

Target types: Single protein, protein family, protein complex group
ChEMBL database − Number of assayed targets per antiepileptic drug

Figure 3.8: Distribution of assayed targets with the target type feature across AEDs with experimental

data in ChEMBL.

Assays experimentally connect AEDs to 266 possible targets (Figure 3.8). Surprisingly, the predomi-

nant target type is the single protein, while protein family and protein complex group types cover 1-2

targets per AED. The confidence in assigned targets in these assays for AED-target interactions goes

from 4 and 5 for protein family and protein complex group, to 9 and 8 for the single proteins. Valproic

acid was displayed as the AED with the highest number of possible target interactions, followed by

carbamazepine and phenytoin. One of the 137 assayed targets is ALDH5A1 that represents also the

only target considered as mechanistic for the therapy effect of valproic acid. Perampanel was the

drug with only one drug-target interaction in the experimental data. Moreover, this target was a single

protein encoded by GRIA1 gene, which is also one of the gene components of the mechanistic target

for this drug. Compared to the number of mechanistic targets, a much higher number of assayed

targets shows more possibilities and additional space for drug repurposing.
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Table 3.2: Top targets with highest number of assayed drugs. ADME genes are colored in grey

Uniprot gene names Target-epilepsy confidence score Total drugs per target
KCNH2 2.19 630
TDP1 1.08 627
CYP3A4 2.22 612
CYP2D6 1.96 609
CYP2C19 2.31 608
CYP2C9 2.28 608
CYP1A2 1.69 607
MAPK1 1.68 595
EGFR 1.71 554
DRD1 2.28 552
MAPK14 2.32 550
PRKCA 1.39 550
FYN 1.82 549
LCK 1.40 548
MAPK3 2.00 548

3.2.3 Drugs and AED assayed targets
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Figure 3.9: Count of drug-assayed AED genes interactions. The graph presents targets with 10 and

more drugs for purpose of readability. Colors identify mechanistic, ADME devoted targets

as well as targets with GABA gene components due to their complexity. Although the

readability is very low, the graph should convey the distribution trend.

From 266 AED assayed targets 235 were found experimentally associated with other approved drugs

(Figure 3.9). The target types in these targets are single protein and protein complex, where protein

complex describes targets with GABA gene components. When GABA targets are distinct, the rest

of the genes represent single protein targets with only one target ID. The gene displayed as AED

target with the highest number of drug-target interactions is KCNH2 with 630, followed by TDP1 with

627 (Table 3.2). There is a plateau-like part of the distribution with approximately 400-550 recorded

drug-target interactions. The 84 targets are diverse, gathering different neurotransmitter and neu-
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ropeptide receptors (Table 6.2 in the Appendix). This share of the AED assayed, autonomic nervous

system (ANS) related targets consists of adrenergic, adenosine, muscarinic acetylcholine, histamine,

dopamine, serotonin, opioid and neuropeptide Y receptors. From the 81 genes, two have not been

found as related to epilepsy yet according to the DISEASES database. The confidence score for

epilepsy-gene associations for the rest of them seems to largely sit below 2.5 and to belong to the

text mining generated epilepsy gene collection.

3.3 Drug-target interactions ranking

The ranking of drug-AED target interactions was performed using assay pChembl values and confi-

dence scores for gene-epilepsy relation. This section shows the complexity of the process to describe

the drug-target interactions driven by the data structure. Furthermore, it presents the findings of quini-

dine, fampridine interactions with potassium channel AED assayed targets in the ChEMBL database.

Additionally, few other interactions of the most druggable AED assayed target are shown.

3.3.1 Drug-assayed AED targets interactions
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ues were not presented in the distribution plot.
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Table 3.3: GABRG2-drug interactions

Gene Conf.score Epilepsy-gene Drug Conf. score drug-target Avg. pChembl value
GABRG2 5 Flumazenil 7 9.12
GABRG2 5 Flunitrazepam 7 8.85
GABRG2 5 Lindane 7 7.72
GABRG2 5 Zolpidem 7 6.88
GABRG2 5 Chlordiazepoxide 7 6.32
GABRG2 5 Zaleplon 7 6.17
GABRG2 5 Propofol 7 5.10

Ranking of drug-target interactions was performed for all drugs and AED assayed targets. With the

interactions selection criteria the number of 235 assayed targets was reduced to 50. Moreover, it

means that 233 assayed genes was reduced to 49. To explain the complexity of the data in the

ChEMBL database a GABA gene was taken as a representative since these genes belong to the

protein complex group target type (Figure 3.10). GABRG2 gene is a component of eight targets

which all have different drug interactions. While they essentially interact with the GABRG2 gene,

some drugs establish the interaction through many of the targets and for each have multiple assays

and activities recorded. For instance, zolpidem interacts with six of them and while for four of them

has a single pChembl value, for two of them has three and two values recorded. The second example

is chlordiazepoxide that has two pChembl values per interaction with three targets and three values

for the fourth target. The last of them is flumazenil with four pChembl values for in total of three targets

to characterize the flumazenil-GABRG2 interaction.

In order to summarize the description of GABRG2-drug interactions, when needed pChembl values

were considered as the average of all existing values for the gene-drug interaction across all targets

with the gene as a component. Particularly, the values seem to be grouped per drug and less different

than between the drugs. The values were approximately around 6.30 in the case of chlordiazepoxide,

9.12 for flumazenil, 7.72 for lindane and 6.88 for zolpidem (Table 3.3). This distribution seemed to

allow the use of average pChembl value for drug-gene interaction for purpose of ordering them. In

the case of drug-gene interactions with a single value of pChembl, the averaging was not performed.

According to the average pChembl value, drug-GABRG2 interactions displayed flumazenil as top

positioned, followed by flunitrazepam. The lowest positioned was propofol with a pChembl value of

5.10. The data curation for the interaction of GABRG2 with propofol has been done by an expert. In

the case of zolpidem, the lowest pChembl value was done by an expert while the rest of them were

autocurated and data for the other five drugs was autocurated.
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Table 3.4: Fampridine-KCNH2 target interaction

Drug CHEMBL ID Conf.score Epilepsy-gene Data validity comment Curation pChembl value Confidence score
CHEMBL284348 2.19 Outside typical range Expert 8
CHEMBL284348 2.19 Outside typical range Autocuration 9

Table 3.5: Amiodarone-KCNH2 target interaction

Drug CHEMBL ID Target CHEMBL ID Assay type Curation pChembl value Avg. pChembl Confidence score
CHEMBL633 CHEMBL240 B Autocuration 6.00 6.76 9
CHEMBL633 CHEMBL240 F Autocuration 7.52 6.76 9

3.3.2 Specific drug-AED assayed targets examples

KCNH2 gene has been associated with epilepsy by text mining with a confidence score of 2.19. Since

this gene has been seen as the target with the highest number of drug interactions it was investigated

for certain drugs. The gene was assay associated with 15 AEDs and as previously displayed with

633 other approved drugs. After the interaction selection criteria were applied, KCNH2 was targeted

by 70 approved drugs. According to clinical annotations about gene variant-drug interactions in the

PharmGKB database KCNH2 was found associated with nitrendipine (level 3 evidence), amiodarone,

dysopiramide, and quinidine (all with level 4 of evidence). Nitrendipine was not found in the drug-

assayed AED targets data gathered in ChEMBL. Furthermore, disopyramide was excluded by the

drug-interactions selection criteria due to pChembl value below 5. However, amiodarone and quini-

dine were present in the selected drug-target interactions. Dronedarone, structurally related to amio-

darone, had also interaction with KCNH2 in this data. Additionally, 4-aminopyridine, also known as

fampridine in the ATC classification and the ChEMBL database, was found associated with KCNH2

among other drugs.

After the selection, there were two activities for Amiodarone-KCNH2 interactions in the experimental

data (Table 3.5). These belong to assays with binding and functional assay type with maximum of

confidence in target assignment. With the average pChembl value was 6.76 this interaction was

positioned as 19th out of total of 70 drug-KCNH2 interactions. Dronedarone had only one binding

interaction described with pChembl value of 6.5, with confidence score of 9 for the assigned target.

Quinidine-KCNH2 interaction was displayed with four activities from assays investigating drug-target

binding with 9 and 8 confidence score for the assay assigned target (Table 3.6). The average pChembl

Table 3.6: Quinidine-KCNH2 target interaction

Drug CHEMBL ID Target CHEMBL ID Assay type Curation pChembl value Avg. pChembl Confidence score
CHEMBL1294 CHEMBL240 B Expert 6.49 6.1 9
CHEMBL1294 CHEMBL240 B Autocuration 6.49 6.1 9
CHEMBL1294 CHEMBL240 B Autocuration 5.57 6.1 9
CHEMBL1294 CHEMBL240 B Autocuration 5.84 6.1 8
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value for the interaction of 6.1 placed quinidine as 36th drug associated with KCNH2 gene.

Although present, all fampridine-KCNH2 interactions assay data was characterized by activity values

annotated as outside of typical range by expert and autocuration data processing, and therefore, they

were presented in the data with no pChembl value. The confidence score of target assignment in the

assay was 8 and 9 (Table 3.4).
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4 Discussion

Studies have been done on the matter of AED effectiveness in mono and polytherapy. The EpiPGX

retrospective clinical data was utilized for exploration of the AED usage in several levels (Silvennoinen

et al. 2019; Hassanin and Krause 2018; Androsova et al. 2017). In these studies, their effectiveness

has been compared in certain epilepsy types. The difference in the retention of AEDs have been

related to gender, their MOA and ADRs. However, they have not compared the AEDs usage between

two major epilepsy types and two levels of the healthcare system. Moreover, these studies have not

addressed the AED-target interactions behind the AED effectiveness as a feature to guide therapy

with higher precision. In addition, the drug-repurposing for AED targets has not yet been explored on

a larger scale.

Here I show the trend of AEDs usage in time and in generalized and focal epilepsy patients. I also

show what AED and AED target-related data could be gathered using public databases and more

importantly how easily it could be employed for clinical use.

4.1 Drug usage in EpiPGX data

AEDs are traditionally used drugs in the treatment of epilepsy. The EpiPGX powerfully gathers

epilepsy patient data from multiple clinical centers in Europe over a period of around 80 years. Be-

side AED trials, the patient’s data documents also all other known applied drugs in these patients

and non-pharmacological treatments in treating epilepsy. Many patients with recorded AED trials

were treated with over 10 drugs in the process of finding the best protocol that would obtain the best

possible control of the disease symptoms without excessive manifestation of adverse drug reactions.

This could be due to the epilepsy types found in these patients which were typically characteristic and

demanding for therapy optimization. Although the patients were mostly diagnosed with two major

epilepsies, focal and generalized, generalized epilepsy is known to be largely genetically underlined,

caused by different gene variants. This contributes to the complexity of diagnose making and adds

another layer in therapy choice. The AEDs are currently divided into drugs adequate for treatment of

focal and those that are more suited for treatment of generalized epilepsy. Some AEDs have been
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recognized as better or worse for epilepsy caused by a specific gene mutation. After the group of

AEDs is chosen, elements for fine tuning of the treatment could lay in the match of the drug with the

genetic feature of the disease.

The real-world EpiPGX data shows the change in therapy protocols over time. Ethosuximide is an

AED used in treatment of childhood absence epilepsy (Glauser et al. 2010). The prescription of

ethosuximide has been displayed with an increasing trend over time in the generalized epilepsy pa-

tients, meaning, the success in the first trials could have led to later increased application in younger

patients with this epilepsy type. Moreover, better understanding of the epilepsy and effects of etho-

suximide led to categorization of this drug. On the other hand, there were also trial records of this

drug in the focal epilepsy patients. However, these patients were trying approximately 10 drugs in

average. Ethosuximide was part of the process of therapy optimization by try-out. Vigabatrin and

tiagabine are drugs dedicated for treatment of focal epilepsy and can even worsen the symptoms of

the generalized type (Panayiotopoulos et al. 1997; Genton 2000). Nevertheless, there are cases of

patients with generalized epilepsy who have tried these two AEDs. As in the case of Ethosuximide,

these patients were part of those who have tried in average around 10 AEDs. In addition, according to

patient records they have been most likely specific cases where the correct diagnosis was not made

at the early stage of the therapy plan.

Another effect of drugs development and medical progress is the superseding of older AEDs char-

acterized with plenty of ADRs by newer promising safer drugs. For instance, valproate was pushed

aside by lamotrigine that has a better side effect profile in female patients planning or carrying preg-

nancy (Silvennoinen et al. 2019). Furthermore, therapy trend differs between different levels of the

health care system from the perspective of older versus newer drug generations. Generally, clinical

practice seems to outreach at a moment established protocols and try new available drugs in the

secondary health care units such as those used in the data gathering of the EpiPGX project. Com-

pared to it, general doctors in the primary health care units tend to prescribe commonly used drugs

while the new AEDs are reaching them later. Moreover, different countries have different pace of

approving medicines. For example, levetiracetam as an interesting new generation drug with not so

well-established mechanism of action yet, has been readily applied in the specialized clinics. Accord-

ing to family practices in the UK, this AED has been reaching general practice in a slower dynamic. In

addition to its yet unknown MOA, it was licensed in the UK from 2000 (Nicholas et al. 2012) while the

first known approval year for this compound according to ChEMBL is 1999 which contributes to the

latency in drug acceptance as common therapy choice. Another example is lamotrigine which despite

the better ADR profile takes fourth place in the UK family practices data after valproate compared to

the first place in the EpiPGX data. However, this analysis does not consider the epilepsy type or

gender distribution. The difference in drug retention could be due to higher response rate in use of
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valproate as reported in the study of Silvennoinen et al. (2019).

These events show the need to understand and establish the disease diagnosis on the genomic level

in each patient rather than only applying AEDs according to the general epilepsy type in order to aim

the key targets at the very beginning of the treatment. There are around 500 epilepsy-related genes

that underline major epilepsy types (Wang et al. 2017). The individualized approach to every patient

would shorten the period of searching for the optimal therapy and number of drug trials per patient.

Although larger data collection because it covers family practices all over the UK compared to the

EpiPGX data that covers only specialized clinics in the Europe, the UK data shows much lower use

of newer AEDs. The patient-individualized approach would potentially ease the use of newer drugs

in the general practices.

4.2 How hard is it to get meaningful data out of ChEMBL

Many different databases that gather drug and target interactions are publicly available for use. How-

ever, the ChEMBL database seem to be the one that covers most of them in addition to the enormous

scientific literature coverage. Beside the information about the mechanism of action there are estab-

lished and characterized drug-target interactions by the experimental data and activity information for

different assays. ChEMBL shows for AEDs the targets that are considered to be the point of mecha-

nism of their action, and all other targets that have been assigned as the point of interaction in different

performed assays.

The assay’s information seemed exploitable for the distinction of AEDs and drugs that interact better

with the gene of interest from those interacting poorer. Yet, the assays data seemed to be different

from drug to drug. Some AEDs such as brivaracetam were not found to have any for the protein-type

of targets, although they had a known mechanistic target while others like barbexaclone or beclamide

simply lacked both assay and mechanistic target data. Another example is levetiracetam for which

the most interesting to investigate and the most reported mechanistic target is SV2a together with

CACNA1B (Abou-Khalil 2008). Nevertheless, the experimental data in ChEMBL reports only activities

for targets such as EHMT2, ABCB1, ABCB11, ABCC2, ABCC3 and ABCC4, which prevents the

characterization of levetiracetam-SV2a interaction and its comparison to the brivaracetam-SV2a. The

rest of the AEDs seemed to have different number of assays and recorded activities due to the year

of their appearances on the market. The older AEDs have been much more investigated so far than

the AEDs that have appeared after the year of 2000. ChEMBL gathers the first approval year for the

compound known in any state for any indication. However, lamotrigine, that was on the market in the

UK in 1991 (“Lamotrigine (CHEBI:6367)” 2020) while ChEMBL reports the first ever known approval

year as 1994, represents one of the data inconsistencies.
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The assays offer all possible targets for AEDs, associated in literature and in databases such as Drug-

Matrix in vitro pharmacology data (“DrugMatrix Database,” n.d.). There were few mechanistic AED

targets among the assayed. Although the ADME assay type was excluded, some ADME genes were

still found in the drug-assayed AED targets interactions data. From the 39 overlapping genes between

the ADME, DISEASES and ChEMBL experimental data, CYP2C9, UGT2B7, ALDH5A1, CYP3A4,

CYP2C19, ABCB1 were found with epilepsy-gene association confidence score over 2 in the text

mining collection. However, only ALDH5A1 was found as pathogenic and causative epilepsy gene

(“ALDH5A1[gene] EPILEPSY - ClinVar - NCBI” 2020). The ALDH5A1 encodes succinic semialdehyde

dehydrogenase (SSDH) which is involved in the degradation of GABA. The most common disorder of

GABAmetabolism is caused by SSDH deficiency and patients with mutation in this gene can manifest

seizures (Lorenz et al. 2006). Moreover, this gene is considered as mechanistic target interaction

for valproate. In addition, it was the only approved compound for this target. Polymorphism in CYP

genes and UGT2B7 was found associated with the response-rate to valproate but not as causative

epilepsy genes (Feng et al. 2018).

AEDs and their interactions with assayed targets indicate for some drugs a high off-target effects. On

the other hand, this opens the possibility that other AED interactions within the organism contribute to

the control of the disease. Moreover, this high number of experimentally associated targets enlarges

the space for drug repurposing which becomes more and more necessary and popular as the devel-

opment of new compounds stagnates. Nevertheless, the line is thin between the contribution to the

desired and to the side effects. Valproate appeared as one with the highest number of possible target

interactions and was recently reported as the drug with considerable ADRs incidence (Silvennoinen

et al. 2019). However, lamotrigine, the safer alternative to valproate, shares 95 assayed genes with

it. The two drugs could be further investigated for responsible drug-target interactions for the differ-

ence in their profiles. Generally, the high number of target interactions could contribute to the rational

polytherapy guidelines in treating epilepsy where low dosage of few drugs lowers the manifestation

of side effects.

The assays data indicated high druggability of AED assayed targets whether through binding or func-

tionality assays. The odd distribution of drugs per target perhaps could be explain by the composition

of this group. The big share of assayed AED targets with over 400 different drug interactions each

was mostly composed of neurotransmitter receptors which are typically the G-protein coupled recep-

tors (GPCR) (Levitan et al. 2002). GPCRs represent 50-60% of known drug targets which makes

them the most common (Lundstrom 2009). Numerous drugs have been developed based on GPCRs.

In addition, their bioassay activity data was assembled using databases that provide information from

high-throughput drug screening such as PubChem (Y, T, and Sh 2017). The odd distribution of num-

ber of drugs per target would have to be considered and normalized in the statistical testing and
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ranking of the drug combinations.

The other important portion of the assayed but also mechanistic AED targets represent the channel

proteins. Calcium and sodium channels are also recognized in the drug-target interactions. Whether

the channel endures loss or gain of function modification depends on the gene variant itself. The

knowledge of the gene variant and its effect would be a significant additional layer of information in

the drug-interactions mining. Moreover, it would be an inevitable parameter to make the choice of

right drugs in their repurposing to epilepsy.

KCNH2, also known as hERG1, emerged in data as the AED assayed target with the highest num-

ber of associated drugs. The gene encodes 4 alpha protein subunits of the potassium voltage-gated

channes which are considered as very complex. This gene is abundantly expressed in different tis-

sues (“KCNH2 Gene - GeneCards KCNH2 Protein KCNH2 Antibody” 2020). In the heart muscle

tissue, it is involved in the muscle recharging after the impulse with purpose to preserve the regular

cardiac rhythm. The mutations in this gene that alter function of the potassium channels are sug-

gested as cause of different arrythmia syndromes like short QT syndrome (SQTS) (Sun et al. 2011).

Antiarrhythmics are the group of drugs usually used to prevent and treat abnormal cardiac rhythm. In

the case of KCNH2 gain-of-function mutations, the caused channel hyperactivation and cell excitation

are treated with drugs such as amiodarone and sotalol that slow down the conduction of impulse in

all heart cells (“CV Pharmacology Antiarrhythmic Drugs” 2020). These antiarrhytmics belong to the

class 3 and are known as potassium channel blockers. Because of the expression of KCNH2 in the

brain and the fact that both arrhythmia and epilepsy belong to ion channelopathies there have been

studies to find the connection of KCNH2 mutations to idiopathic epilepsy and some of them report it

exists (Partemi et al. 2013). But so far, they only report the loss-of-function mutations in KCNH2 to

be related to epilepsy. In this case, amiodarone or other potassium channel blockers would only ag-

gravate the symptoms. However, other hERG type potassium channels such as KCNH1 and KCNH5

are connected to epilepsy when carrying a gain-of-function variants (Niday and Tzingounis 2018).

Furthermore, dronedarone which was found to have an interaction with KCNH2, has been reported

rather as a channel opener acting on KCNH1 in cancer tissue (Meléndez et al. 2020). This represents

a difference compared to the action of it’s analogue amiodarone. Aside the action type, although dis-

tributed in the brain, both amiodarone and dronedarone are not very lipophilic drugs, meaning the

blood-brain barrier represents an issue for their distribution in therapeutic concentration (Brien et al.

2011; Iram et al. 2016).

Drugs with experimentally reported efficacy in treatin epilepsy seizures have been found among ap-

proved drugs that are associated with AED-targets. Interactions of fampridine with potassium chan-

nels was explored in the retrieved ChEMBL assay data because of his current trials in epilepsy pa-

tients (“Experimental Epileptology : Hertie-Institut Für Klinische Hirnforschung” 2020). This licensed

51



drug has been found effective in reduction of currents through potassium channels induced by gain-

of-function variants. Fampridine is indicated in treatment of multiple sclerosis as a neurofunctional

modifier to ease the mobility in these patients (“Dalfampridine” 2020). The group investigates its ability

to modify epilepsy symptoms by acting on the mutation effect on the KCNA2 channel protein subunit

(“Experimental Epileptology : Hertie-Institut Für Klinische Hirnforschung” 2020). However, this gene

has not been found among the ChEMBL AED assayed or mechanistic targets. Additionally, the only

interaction of this drug with a potassium channel protein was with KCNH2 and was not well described

in the ChEMBL data due to estimation of measured activities as outside of typical range. Similarly,

experimentaly reported interaction of quinidine with KCNT1 was not found among drug-AED target

interactions. Moreover, the KCNT1 target was not among any AED targets. However, quinidine had

described interactions with KCNH2 and one of them was curated by expert. Furthermore, the other

channels involved in epilepsy channelopathies are also widely distributed in different tissues, equally

as the potassium channels. In addition to the necessity to match the drug action type to the channel

phenotype, the drug tissue distribution complicates the distinction of epilepsy relevant interactions as

brain tissue and CNS differs from the rest. Although some drug-target interactions were found, it was

not for the reported targets. Moreover, the available activity information related to these interactions

was not sufficient to estimate all of them in detail. Fampridine-KCNH2 interaction did not have the data

to enable its comparison with other drugs targeting this gene. As partial potassium channel blocker,

quinidine would be inadequate for treatment of loss-of-function phenotype of KCNH2. According to

this, it seems that the AED assayed targets data lacks the reported epilepsy related genes and their

interactions. To use the drug-target interactions for drug-repurposing and later clinical application re-

quires a lot of further discussion and additional information on the level of gene mutation phenotype

and chemical properties of drugs.

Generally, blood barrier is specific by her low permeability achieved by her highly lipophilic nature,

and by requirements to allow a drug crossover and drug distribution in the brain tissue. In order to

transfer this border a drug molecule has to be small and lipophilic enough for the efflux process or

to be a candidate for one of the available transporters which are GLUT1, MCT1, LAT1, CAT1, CNT2

for mediated transport (Pardridge 2012). In order to undergo the efflux a molecule needs to have

a logP between 1.5-2.7 (Pajouhesh and Lenz 2005). The molecular weight should be significantly

reduced compared to other group of drugs, within 400- 600 Da or even below that range. Most of

the CNS licensed drugs have logP around 2.5. and mean weight around 310 MW (Pajouhesh and

Lenz 2005). AEDs in the ChEMBL database have a logP from -0.4 to 5.85, and a molecular weight

between 129.16 and 387.52 Da. Amiodarone although with a logP of 6.94 has a molecular weight of

645.32 Da. Dronedarone weights 556.77 Da and has logP of 7.05. Low distribution of these drugs

in the brain tissue could be because they are not sufficiently small for the active efflux. On the other
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hand, fampridine is a very small molecule with only 94.12 Da which helps its transfer even with a

lower logP of 0.66. Finally, there is room for fine adjustments of different compound properties beside

the solubility and molecular weight, to achieve a certain therapeutic concentration in the tissue.

GABA genes in the AED mechanistic data shows single protein target type, but also a protein com-

plex group of targets that considers many GABA gene components in one target. The assays follow

this pattern as well. The protein complex target type challenges the interpretation of the drug-target

interactions. Moreover, it makes difficult to distinguish and know with certainty which of the gene

components are actually interacting and with which strength. The drug-target interaction could be

misinterpreted for the therapy guidelines.

ChEMBL data base enables large-scale data mining. The indicator is the number of drug-AED target

interactions. Additionally, the database provides a lot of compound and target related properties. The

choice of the parameters to be included in the selection criteria depends on what is considered to

have the greatest impact on the drug-target interaction that would significantly contribute to achieve

an optimal performance in therapy. Here only few of them were used as proof of concept. The number

of binding drugs was reduced using available pChembl value, target type, target confidence scores in

assays and disease associations, and data quality parameters in the databases. They could be also

ranked by the values of the important features. However, remains the question if the result matches

the reality. The outcome list of ranked interactions should be verified by, for instance, comparison to

previous rankings of AEDs in the clinical data studies.

4.3 Master thesis work reflection

During the master thesis internship, I have experienced to work on two different projects. The first

project has started during the research practical in the third semester. This project involved the inves-

tigation of the effectiveness of AED combinations based on their mode of action. The outcome in the

AED combinations study raised a question if the retention of these combinations could be explained

by the specific AED-target interactions and if the target interactions underline the distinction of better

from less retained therapies. Moreover, this question was supported by the idea of treating epilepsy

by treating distinct genes causing channelopathies. To transit from one project to the other meant

adaptation and further starting research. It also meant to join the two for the thesis. The drug-target

interactions and the approach exploiting different databases were the first of this kind in our team.

The drug-interactions project would be a proof of concept for the later ion channelopathies project

in which the sodium, calcium and potassium channel loss and gain of function mutations would be

specifically targeted.
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The reproducibility was very important and equally applied as much as possible in both projects.

Therefore, both projects were done with the utilization of the GitLab repository. The emphasis in

this type of work should be on the good project structure as this enables easier team collaborations

and faster analyses. The Git version control allowed me to follow my progress and track changes

through commits history. It also allowed discussing different issues with the team members using

the Issues section. The opportunity to diverge the work into different branches to separate the work

of different investigators was also useful. This was performed by my supervisor Dr. Roland Krause.

After the progress was found as desired branches would be converged into the same. Moreover, the

EpiPGX study involved dealing with personal patient data which meant that data confidentiality had to

be respected. For this purposes, Boxcryptor and ownCloud were used. The encrypted EpiPGX data

was stored in ownCloud and accessed using the Boxcryptor. The reproducibility benefits also from

the writing of the manuscript in R Markdown (Xie, Allaire, and Grolemund 2018). It allows to visualize

the included results while explaining them, it also enables to use the inline code to retrieve the impor-

tant values directly from the dataframes within the text which in case of any changes in the analysis

updates the used values in the comments. Furthermore, it eases the figure and table referencing,

content table and reference list updating.

The analysis in R demanded different environment managers. Specifically, Renv, Drake and Here

packages were the one I got familiar with. Renv enabled that each team member easily run the

analysis regardless of the R version and package versions on their computers. Drake (Landau 2018)

came at the timewhen the amount of ChEMBL data was extremely slowing down the analysis, bringing

the machine to the memory vector exhaustion which was highly inconvenient in the search of proper

SQL queries. Since the ChEMBL data segregates different information into tables, in order to retrieve

the full information on interactions meant to use join statements. Also, in the starting exploration

numerous columns had to be retrieved in order to decipher whether the assaysmatched the target and

the compound information correctly. Drake enabled faster analysis run. However, it was not possible

to employ code_to_plan() for some parts of the previously written code. Furthermore, here package

that solves all path dependencies makes the sourcing process easier. For AED-target interactions

network ggraph (Pedersen 2020), igraph (Csardi and Nepusz 2006) and qgraph (Epskamp et al. 2012)

were the choice. To organize the nodes on the layout as necessary to achieve good readability was

challenging. For example, the functions in igraph packages are numerous and while some allow

high flexibility the rest have some options fixed. This represented an issue in the layout adjustment

and was solved with the use of qgraph (Epskamp et al. 2012). The RSQLite was another important

package since it allowed the search of the ChEMBL database using the SQL statements. Within all

the data transformation and manipulations the Tidyverse (Wickham 2019) was largely used, while

data visualization relied on ggplot2 (Wickham 2016).
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As for the analysis itself, the interest in drug-target interactions was essentially the interest in drug-

gene associations. The complexity of the data structure made the interpretation problematic. The

pChembl value itself although created to ease the activities comparison does not account for the

drug action type on the target. Much other available information in this database, its interrelation and

meaning has not been clarified yet. Given the shift from one project to another and the complexity

of this database and the amount of information it gathers, the internship time frame was sufficient to

start the exploration analysis and to get familiar with the database. Nevertheless, it was not enough

to do it in sufficient detail nor to reach a ready-to-use product for therapy choice and much less to

suggest other drugs that could be efficient in epilepsy treatment.

4.4 Limitations

While this thesis shows the difference in AEDs usage between different epilepsies and healthcare

system, and important aspects of the database approach in drug-target interaction mining, it also has

limitations. Some limitations are data related.

The EpiPGX data is very valuable as it covers the main epilepsy clinical centers in Europe and over a

large period of time. However, it is retrospective clinical data, meaning, it was not possible to account

for epilepsy misdiagnosis. Moreover, the comparison of AED use in primary and secondary health

care system does not consider the patient gender, age, epilepsy type or AEDs mode of action which

were previously shown to play an important role in the AEDs retention (Silvennoinen et al. 2019;

Hassanin and Krause 2018; Androsova et al. 2017) .

The ChEMBL database was chosen to investigate drug-target interactions because of its broadness

and diversity. However, this results in complexity of the data and its structure in the database.

From the beginning, it has been shown as rather difficult to establish drug-target interactions due

to the complexity of the drugs and target data structure. Compounds as a group are convoluted

due to different molecular forms and their properties. Their interrelations are captured in the

MOLECULE_HIERARCHY table as parent molecule and its family members manner. Moreover, it

can be noted that some compounds for their forms have many main IDs (parent molecule molregno)

while for others the same forms are related as parent-family member molecules. Among AEDs this

happens with eslicarbazepine and gabapentine molecules and their acetate salts. For both of these

AEDs, one was a prodrug and the other was an active drug form. This raises the question of why

acetate forms are in some cases, for example, for desmopressin, related to the neutral parental

form, while in other cases are considered as equal to the main molecule form. In addition, beside

the chemical nature these also have the bioactivity captured in the ASSAYS and ACTIVITIES tables.

Bioactivity is very important feature as it is the connection between the drugs and the targets in the
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database. On the other hand, targets are unique by molregno ID but their gene components happen

to overlap between differently identified targets, which makes the interpretation of the interactions

challenging when the goal is to describe a specific drug-gene interaction. GABA receptors, one of

the main players in epilepsy, are particularly vague for interpretation. This complexity is a result of

the assays and the uncertainty about which subunit of the protein complex interacts with the tried

drug (Gaulton et al. 2012). The solution for that here was the retrieval of the drug-gene interactions

across all target IDs containing the same gene and involved in assays with the same drug. However,

to just average the pChembl values can oversee some aspects of the assay information, such as,

the difference in confidence given by the data curation or the fact that the assay does not specifically

suggest the specific and direct interaction with this protein.

The assays data gathers numerous activity types to describe drug binding or function. Although

activity types are standardized, the entries are not very well curated yet as, for example, drug potency

exists as “Potency” and “potency”. In this work I have not looked into individual activity types. Since

they are so different, I rather chose the intercomparable parameter, which is the pChembl value. The

pChembl value is calculated for few of the activity types measured in binding and functional assays.

However, the variety in activity types might still contain some useful information for a finer distinction

of the drug-target interactions. In addition, the confidence scores for the assigned targets in assays

might change due to the manual curation process that is still ongoing.

The lack of certain interactions has been noted and it shows that the experimental data in ChEMBL

does not contain all the reported scientific information. As it was previously discussed and shown,

KCNA2 and KCNT1 targets have been reported as involved in epilepsy (Corbett et al. 2016; Bearden

et al. 2014; Møller et al. 2015) but not found in the relation with AEDs in this database. However, the

other databases such as PharmGKB do not suggest any drugs for these targets as well. Furthermore,

drug-target interactions in ChEMBL are represented in different extent. While some are better studied

others are supported with less data due to different factors, possibly related to a shortcoming of the

literature but also to the autocuration data process. It seems that to capture all recently discovered

epilepsy genes and their drug interactions a manual text mining would be required. The inequality

of data quantity would need to be considered in the case of ranking the AED combinations. The

inequality of available interactions related information would favor some interactions over others.

The obvious limitation of this work for drug-repurposing or therapy guidelines using AED-target inter-

actions is that it has not looked into the gene variants and their phenotypes. The ChEMBL database

contains information for annotated variants in assays. However, it does not put the type of protein

modification into a perspective. The PharmGKB associates drugs with the gene variants and pro-

vides the variant type but not the phenotype. Moreover, it gathers less data compared to ChEMBL. A

solution for this could be the use of another source that presents phenotype, and to bring this layer
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of information to the drug-target interactions gathered in ChEMBL. This aspect of drug-target interac-

tions has been shown as crucial when it comes to therapy of rare forms of epilepsies (Hedrich et al.

2019).

The text mining and data autocuration has been present in all the databases. As it exists in ChEMBL

and PharmGKB, it exists also in the DISEASES database. The automatic text mining process can

have a certain percent of error and confidence scores cannot be as reliable as with themanual abstract

curation (Pletscher-Frankild et al. 2015). Although this could be solved by selection criteria of epilepsy-

gene confidence score of 4 and 5, genes such as KCNA2 would be lost since they have been less

studied. The strict exclusion of the epilepsy-gene associations would give more certain predictions

but not the revealing ones. The same applies to the selection criteria for drug-target interactions.

Although autocuration lowers the confidence in the data quality, it is necessary nowadays with the

fast progress of research and growth of available information in science.

To sum this up, these data quantity and quality aspects are some examples that show the limitations of

the database approach itself in the drug-target interactions mining. Additionally, due to the exploratory

nature of the project, my work has limitations related to the time frame and experience. However, my

thesis integrates different aspects involved in a project of this kind, such as bioinformatics and biology

data interpretation. I have tried to contribute to both. The data interpretation emphasizes points to

be considered in the new project of ion channel treatments or in any other drug-repurposing related

project. The bioinformatics leaves the code to comprehensively and programmatically access the

ChEMBL database, integrate it with the DISEASES, and sort the interactions by certain selection

criteria. The fact that my thesis was written completely in R distinguishes it from some others. All the

figures presenting the results are generated within the project setup and numerical values used in the

text are mostly derived directly from the code. This makes the thesis reproducible.

4.5 Outlook

This work definitely shows that there is more to the effectiveness of drugs in any treatment and es-

pecially in brain disorders such as epilepsy. So far, AEDs have been used mostly according to the

major epilepsy type and recognized pathophysiology. However, treating patients with precision using

a pharmacogenomic approach needs finer investigation and distinction of the AED-target interactions.

The drug-repurposing would need even higher level of data mining considering drug pharmacokinet-

ics and pharmacodynamics. Therefore, the database approach could be refined with the inclusion

of drug chemical properties and gene variants phenotype as features for drug-target interactions se-

lection. In addition, this work shows drugs and AEDs on the level of involved genes, but it would be

more precise to see their positioning on the level of gene variants for the purpose of treatment of rare
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epilepsy forms and drug-repurposing. Moreover, since previous findings indicate that better disease

control is achieved by different MOA-based AED combinations than with the same MOA-based, it

would be interesting to see how this is achieved on the level of AED-target interactions. In this work,

the AED-targets are collected but the AED-target interactions in different MOA-based combinations

have not been investigated. Since the AED-gene variant requires more detailed time-consuming work,

the contribution to the AED polytherapy therapy guideline might be done in the meantime. After the

formation of different MOA-based AED combinations is done, they could be ranked according to the

epilepsy-gene association strength, the number of covered genes, and AED-gene interaction char-

acterization. The epilepsy-gene association strength could be described by the confidence scores

from the DISEASES and AED-gene interactions would be characterized by the binding drug affinity

captured in pChEMBL value in ChEMBL database. The ranking would be then validated by result

comparison with the EpiPGX study. This could be done for epilepsy and epilepsy subtypes, the focal

and generalized.

4.6 Conclusion

The application of AEDs has been the only option in treating patients with epilepsy. The traditional

therapy cannot always achieve a response in patients with rare forms of the disease underlined by

the gene variants. Only some of them have been discovered and annotated in different pharmacoge-

nomic projects and clinics. The prescription of AEDs in general is different in patients with focal and

patients with generalized epilepsy. The AED-target interactions could explain this difference on the

mechanistic level. In addition, the difference is reflected in AEDs retention in family general practices

and specialized clinics. With AED-target interactions included in the therapy protocols and guidelines,

the control of symptoms would be achieved faster and in a less painful manner for patients.

My thesis shows the entanglement of the information retrieved from the ChEMBL database and the

starting elements in drug-target interactions mining. It also points out some of the important features

for the selection of meaningful interactions and lack of information reported in the literature. Different

drugs associated with the same potassium channel protein subunit act with a different mechanism.

In general, the gene variant phenotype must be matched to the drug mechanism of action for every

type of target. Moreover, the structural drug analogs have been reported for exhibiting opposite ef-

fects. However, this approach with proper selection criteria and integration of databases could be

appropriate to investigate and compare drug-AED target interactions for different drugs targeting the

same gene. Nevertheless, to go from the database search to a clinical application in epilepsy patients,

drug-target interactions mining requires a significant amount of discussion and work.
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Table 6.1: AED assayed targets found in ADME genes list

Gene Type
ABCB1 core
ABCB11 extended
ABCC1 extended
ABCC2 core
ABCC3 extended
ABCC4 extended
ALDH1A1 extended
ALDH5A1 extended
AOX1 extended
ARSA extended
CES1 extended
CES2 extended
CYP1A1 core
CYP1A2 core
CYP2A6 core
CYP2B6 core
CYP2C19 core
CYP2C8 core
CYP2C9 core
CYP2D6 core
CYP2E1 core
CYP2J2 extended
CYP3A4 core
NR1I2 extended
NR1I3 extended
PPARG extended
SLC22A1 core
SLC22A5 extended
SLC22A8 extended
SLCO1B1 core
SLCO1B3 core
SLCO2B1 extended
UGT1A1 core
UGT1A10 extended
UGT1A3 extended
UGT1A4 extended
UGT1A6 extended
UGT1A8 extended
UGT1A9 extended
UGT2A1 extended
UGT2B10 extended
UGT2B15 core
UGT2B4 extended
UGT2B7 core
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Table 6.2: Assayed AED targets with 400-550 assayed drugs.
TID Uniprot gene name Target-epilepsy confidence score DISEASE source collection Target name in ChEMBL Number of approved drugs per target Number of assays per gene

11755 FYN 1.819 Text mining Tyrosine-protein kinase FYN 549
10140 LCK 1.400 Text mining Tyrosine-protein kinase LCK 548
11639 MAPK3 2.004 Text mining MAP kinase ERK1 548

72 DRD2 2.378 Text mining Dopamine D2 receptor 545 1272
107 HTR2A 2.187 Text mining Serotonin 2a (5-HT2a) receptor 533 713
15 CA2 2.266 Text mining Carbonic anhydrase II 531 1708
108 HTR2C 2.099 Text mining Serotonin 2c (5-HT2c) receptor 531 684
129 OPRM1 2.163 Text mining Mu opioid receptor 531 842
19 ESR1 1.602 Text mining Estrogen receptor alpha 530 1076
86 MAOA 1.952 Text mining Monoamine oxidase A 530 726
130 DRD3 2.225 Text mining Dopamine D3 receptor 529 788
188 ERBB2 1.273 Text mining Receptor protein-tyrosine kinase erbB-2 529 685
121 SLC6A4 2.240 Text mining Serotonin transporter 529 858

10979 FLT1 1.192 Text mining Vascular endothelial growth factor receptor 1 528 602
43 ADRB2 1.656 Text mining Beta-2 adrenergic receptor 527 785
127 HRH1 1.633 Text mining Histamine H1 receptor 527 671
25 NR3C1 1.741 Text mining Glucocorticoid receptor 527 1111
61 CHRM1 1.440 Text mining Muscarinic acetylcholine receptor M1 525 636
155 SLC6A3 2.137 Text mining Dopamine transporter 525 751
136 OPRD1 1.925 Text mining Delta opioid receptor 524 735
100 SLC6A2 1.728 Text mining Norepinephrine transporter 524 792
47 CHRM2 1.340 Text mining Muscarinic acetylcholine receptor M2 523 598
90 DRD4 2.251 Text mining Dopamine D4 receptor 523 728
93 ACHE 2.368 Text mining Acetylcholinesterase 522 1076
137 OPRK1 2.011 Text mining Kappa opioid receptor 521 734
52 ADRA2A 1.563 Text mining Alpha-2a adrenergic receptor 520 614
219 CHRM3 1.364 Text mining Muscarinic acetylcholine receptor M3 520 565
219 CHRM3 2.999 Experiments Muscarinic acetylcholine receptor M3 520 565
214 CHRM4 1.208 Text mining Muscarinic acetylcholine receptor M4 520 552

11272 SIGMAR1 1.250 Text mining Sigma opioid receptor 520 614
10627 HTR6 1.253 Text mining Serotonin 6 (5-HT6) receptor 519 588
126 PTGS2 2.136 Text mining Cyclooxygenase-2 519 1134
227 HTR2B 1.722 Text mining Serotonin 2b (5-HT2b) receptor 518 557
218 ADRA2C 1.533 Text mining Alpha-2c adrenergic receptor 517 583
50 ADRB1 1.551 Text mining Beta-1 adrenergic receptor 517 631
215 CHRM5 0.908 Text mining Muscarinic acetylcholine receptor M5 516 550
96 PTGS1 1.249 Text mining Cyclooxygenase-1 515 865
249 EDNRA 1.236 Text mining Endothelin receptor ET-A 514 542
174 ESR2 1.346 Text mining Estrogen receptor beta 514 790
103 ADRA1D 1.691 Text mining Alpha-1d adrenergic receptor 513 569
216 ADRA2B 1.643 Text mining Alpha-2b adrenergic receptor 512 546
216 ADRA2B 4.000 Knowledge Alpha-2b adrenergic receptor 512 546
134 AVPR1A 1.148 Text mining Vasopressin V1a receptor 512 537

10142 MC4R 1.430 Text mining Melanocortin receptor 4 512 571
12592 MMP9 2.002 Text mining Matrix metalloproteinase 9 512 520

87 CNR1 2.755 Text mining Cannabinoid CB1 receptor 511 696
235 ELANE 0.889 Text mining Leukocyte elastase 511 519
3 PDE5A 1.708 Text mining Phosphodiesterase 5A 511 603

10692 AGTR2 1.295 Text mining Angiotensin II type 2 (AT-2) receptor 510 529
11624 CASP1 1.934 Text mining Caspase-1 510 526
10494 CTSG 0.731 Text mining Cathepsin G 510 516

24 HMGCR 1.044 Text mining HMG-CoA reductase 510 586
252 ADORA2A 2.388 Text mining Adenosine A2a receptor 509 583
280 ADORA3 2.355 Text mining Adenosine A3 receptor 509 554
226 ADRB3 1.384 Text mining Beta-3 adrenergic receptor 509 569
102 HRH2 1.340 Text mining Histamine H2 receptor 509 522

13000 MMP1 0.905 Text mining Matrix metalloproteinase-1 509 513
251 PTAFR 0.807 Text mining Platelet activating factor receptor 509 514
250 TACR1 1.566 Text mining Neurokinin 1 receptor 509 528
114 ADORA1 2.497 Text mining Adenosine A1 receptor 508 560

10034 BDKRB2 0.859 Text mining Bradykinin B2 receptor 508 520
11575 CCR2 1.538 Text mining C-C chemokine receptor type 2 508 515
10580 CCR5 1.397 Text mining C-C chemokine receptor type 5 508 526
20073 CYP2A6 1.481 Text mining Cytochrome P450 2A6 508 511
11003 MC3R 1.230 Text mining Melanocortin receptor 3 508 532
11006 MC5R 1.151 Text mining Melanocortin receptor 5 508 528
10475 NPY1R 1.550 Text mining Neuropeptide Y receptor type 1 508 521
12088 PTPRC 1.595 Text mining Leukocyte common antigen 508 512
248 TBXAS1 0.704 Text mining Thromboxane-A synthase 508 524
119 CALCR 1.058 Text mining Calcitonin receptor 507 510

10472 CCKAR 0.751 Text mining Cholecystokinin A receptor 507 512
10579 CCR4 C-C chemokine receptor type 4 507 518
11574 CXCR1 0.703 Text mining Interleukin-8 receptor A 507 518
10773 CXCR2 0.978 Text mining Interleukin-8 receptor B 507 510
20056 CYP2E1 1.401 Text mining Cytochrome P450 2E1 507 510
179 CYSLTR1 Cysteinyl leukotriene receptor 1 507 521

10477 NPY2R 1.627 Text mining Neuropeptide Y receptor type 2 507 515
12579 PPP3CA 1.226 Text mining Serine/threonine protein phosphatase 2B catalytic subunit, alpha isoform 507 513
12579 PPP3CA 4.000 Knowledge Serine/threonine protein phosphatase 2B catalytic subunit, alpha isoform 507 513
10184 TACR2 0.911 Text mining Neurokinin 2 receptor 507 510
100334 VIPR1 0.995 Text mining Vasoactive intestinal polypeptide receptor 1 507 510
103711 GMNN 0.745 Text mining Geminin 484 736
103668 LMNA 1.534 Text mining Prelamin-A/C 420 462
102672 EHMT2 1.440 Text mining Histone-lysine N-methyltransferase, H3 lysine-9 specific 3 418 441
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