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Abstract

In the modern digital world, cryptography finds its place in countless applications.
However, as we increasingly use technology to perform potentially sensitive tasks, our
actions and private data attract, more than ever, the interest of ill-intentioned actors.

Due to the possible privacy implications of cryptographic flaws, new primitives’
designs need to undergo rigorous security analysis and extensive cryptanalysis to fos-
ter confidence in their adoption. At the same time, implementations of cryptographic
protocols should scale on a global level and be efficiently deployable on users’ most
common devices to widen the range of their applications.

This dissertation will address the security, scalability and privacy of cryptosys-
tems by presenting new designs and cryptanalytic results regarding blockchain cryp-
tographic primitives and public-key schemes based on elliptic curves. In Part I, I will
present the works I have done in regards to accumulator schemes. More precisely,
in Chapter 2, I cryptanalyze Au et al. [Au+09] Dynamic Universal Accumulator, by
showing some attacks which can completely take over the authority who manages the
accumulator. In Chapter 3, I propose a design for an efficient and secure accumulator-
based authentication mechanism, which is scalable, privacy-friendly, lightweight on
the users’ side, and suitable to be implemented on the blockchain.

In Part II, I will report some cryptanalytical results on primitives employed or
considered for adoption in top blockchain-based cryptocurrencies. In particular, in
Chapter 4, I describe how the zero-knowledge proof system and the commitment
scheme adopted by the privacy-friendly cryptocurrency Zcash [Zca], contain multiple
subliminal channels which can be exploited to embed several bytes of tagging informa-
tion in users’ private transactions. In Chapter 5, instead, I report the cryptanalysis
of the Legendre PRF [Dam90], employed in a new consensus mechanism considered
for adoption by the blockchain-based platform Ethereum [Woo14], and attacks for
further generalizations of this pseudo-random function, such as the Higher-Degree
Legendre PRF, the Jacobi Symbol PRF, and the Power-Residue PRF.

Lastly, in Part III, I present my line of research on public-key primitives based
on elliptic curves. In Chapter 6, I will describe a backdooring procedure for primes
so that whenever they appear as divisors of a large integer, the latter can be ef-
ficiently factored. This technique, based on elliptic curves Complex Multiplication
theory, enables to eventually generate non-vulnerable certifiable semiprimes with un-
known factorization in a multi-party computation setting, with no need to run a
statistical semiprimality test common to other protocols. In Chapter 7, instead,
I will report some attack optimizations and specific implementation design choices
that allow breaking a reduced-parameters instance, proposed by Microsoft, of SIKE
[Jao+20], a post-quantum key-encapsulation mechanism based on isogenies between
supersingular elliptic curves.
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1.1 Introduction
When we make a phone call, receive an e-mail, or surf the web looking for the best
restaurant in the neighborhood, we are unconsciously using the result of years of
advances in cryptography.

Cryptography, whose name originates from the two ancient Greek words κρυπτ óς
“hidden” and γράϕειν “to write”, consists of all those methods that can hide a certain
piece of information from all but the intended recipients.

The first known use of (a primitive form of) cryptography dates back to a few
millennia when Egyptian scribes started adopting some non-standard hieroglyphs
with the probable intent to confuse and intrigue the reader rather than hide any
meaningful message.

In the successive centuries, cryptography mainly consisted of increasingly more
sophisticated methods to convert written messages into unreadable forms. A classic
example is the famous Caesar’s cipher, named after the Roman emperor Julius Caesar
who used it for his private correspondence: here, a written message is encrypted by
replacing each letter with the one located at some fixed number of positions down in
the alphabet.

However, as we intend it today, cryptography was born between the two world
wars. Arguably, the introduction of electrical and mechanical cipher machines, the ur-
gent need to decrypt enemies’ secret communications while safely exchanging military
information were the elements that accelerated unprecedented progress in this new
rising science. With Claude Shannon’s foundational works “A mathematical Theory
of Communication” [Sha48] and the subsequent “Communication theory of secrecy
systems” [Sha49], cryptography is for the first time formalized from an information-
theory point of view, opening to a more rigorous mathematical treatment of ciphers.

A cipher consists of two sub-primitives: an encryption and a decryption algorithm.
Encryption takes a plaintext and a secret or public key, and returns a ciphertext.
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Decryption, on the contrary, uses a secret key to reveal the original plaintext message
from a given ciphertext.

When encryption and decryption keys coincide, the cipher is said to be a sym-
metric cipher. If instead encryption employs a public key, which differs from the
decryption key to prevent anyone from decrypting messages, we say that the cipher
belongs to the class of public-key or asymmetric cryptosystems: in fact, this classifi-
cation applies to many other primitives as well.

Security of modern ciphers and, more in general, cryptosystems, relies on designs
motivated by some security assumptions, that is, mathematical problems believed to
be hard to be algorithmically solved anytime soon. When the security of a cryptosys-
tem is proven under a particular security assumption, it means that it is formally
proven that in the case there exists an algorithm that can break the cryptosystem,
then this algorithm can be used to solve the underlying mathematical problem di-
rectly.

The art of disproving security assumptions and finding weaknesses in crypto-
graphic designs is called cryptanalysis, which not only works towards lowering the
security of existing cryptosystems using the tools provided by mathematics, com-
puter science, and physics but also forces cryptography to progress into more and
more secure designs.

It turns out that cryptographic systems which resisted for a long time the evolution
of cryptanalysis are the ones on which we can rely to secure today digital world.
However, what can we say about tomorrow?

To give an example, the expected advent of quantum computers might represent a
game-changer for cryptanalysts. Due to the existence of quantum algorithms specif-
ically designed for these machines (but which is not possible to implement yet), the
majority of current well-established public-key cryptosystems might be broken.

On the other hand, cryptographers batten down the hatches by designing new
schemes which appear to be post-quantum resistant, but only with time (and more
cryptanalysis!) we can build confidence in them.

In other words, the future of cryptography, and consequently of our digital world,
will be shaped by the interplay between more and more secure designs and the ad-
vances of cryptanalysis.

1.2 New Challenges
One of the reasons we need encryption is to address a basic form of privacy: just pro-
tecting private information from prying eyes is not enough to guarantee, for example,
that we are communicating with whom we originally intended, or that the communi-
cation itself, by just the fact that it is happening, does not reveal something about
the participants involved. While the first of these problems can be easily addressed
by adopting specialized cryptographic primitives to authenticate exchanged informa-
tion, the second requires a more sophisticated protocol capable of hiding parties’
encrypted messages among random constantly-exchanged ones: a much less trivial
task to implement in practice.

In fact, modern cryptography is not only about encryption, as opposed to how it
was mainly considered in the past: under its hat, we further find signatures schemes,
hash functions, pseudo-random number generators, commitments schemes, accumu-
lators, zero-knowledge proof systems, and many others, each addressing a different
problem of modern society’s complex needs.
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With the advent of technology, increasing computers capabilities, and the giant
steps made by research, it is now possible to pay for groceries using our watches,
video-call a friend thousands of kilometers away from us, or even watch live what is
happening on Mars. All these would not be possible without the development of many
different new cryptographic primitives, which not only prevent our bank information
or family pictures in the cloud to be easily stolen by some ill-intentioned individual,
but prominently contribute to ensure the daily functioning of our entire digital world.

However, the urge for leading-edge cryptographic primitives and protocols be-
comes more and more pressing as we increasingly use technology to perform poten-
tially sensitive tasks: these do not include only financial transactions, private chats,
or video calls, but also schooling, working, access to medical records, voting, and so
on.

The threat represented by the mass adoption of technology is that our actions and
sensitive information may be more easily targeted by attackers who wish to collect,
analyze, and ultimately use this data, mainly for profit but often for reasons we
cannot immediately predict.

It is not a coincidence that we are observing a rising trend of cyber-attacks aimed
at exfiltrating or sabotaging data of companies and individuals, such as financial
transactions, business documents, or even software running on industrial machines.
To make matters worse, such attackers often take advantage of the features and guar-
antees provided by modern cryptography to ensure their goals, possibly undetected.

In this context, wide and cautious use of cryptography is paramount, but it is
not the only mitigation possible. For example, if a certain service provider collects
all its core-business information safely encrypted in a central database, the latter
would represent the single point of failure of the whole organization. If instead mul-
tiple copies of such database are distributed among different servers, the probability
that corruptions will have catastrophic consequences for both the business and its
customers is drastically reduced.

However, in this example, we still have one more subtlety: what if an attacker com-
pletely takes over the company and starts acting maliciously against its customers?
In this situation, the fact that there exist multiple copies of our database becomes
irrelevant, as well as the fact that the information stored is encrypted: the attacker
will have access to the decryption keys, will read all the data in clear, and eventually
will modify it.

How can we possibly address this? A solution is offered by decentralization: to
apply this concept to our example, not only we should distribute the core information
as above, but company operations as well. Moreover, we should do so by ensuring that
even when multiple end-points –or nodes– go malicious, they can agree all together
only on honest activities. This is indeed a fundamental concept of decentralized
networks: each node’s action, to be considered valid, needs to be approved through a
consensus mechanism, which possibly involves all nodes. Thus, as long as most nodes
remain honest, the whole network will continue behaving honestly.

In decentralized networks, another relevant aspect is how nodes can join: if they
need to be authorized, there would be more control on nodes and their actions, but
the authorization process itself may be attacked to allow a large number of malicious
nodes joining. If instead access is permissionless, virtually everyone can join the
network and contribute to its functionalities –thus making it fully decentralized– but
consensus becomes harder to reach due to a more complicated attack model.

At this point, our requirements for a decentralized service provider start getting
so hard to implement in practice that we may wonder if there exists any secure con-
struction which satisfies all of them. Remarkably, the answer is affirmative: Bitcoin
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[Nak08] was the first implementation of a global-scale payment system, which adopts
a permissionless decentralized peer-to-peer network based on the the blockchain tech-
nology and a proof of work consensus mechanism.

As its name suggests, the blockchain consists of one or multiple chains of blocks,
where each block contains some piece of information (in Bitcoin, signed financial
transactions). To provide blocks a chronological order, each new one includes the
hash of the last block it refers to, thus creating multiple linked chains, but where
only the longest is considered as the main one. In the economic context, such a chain
is also called distributed ledger, and each network node keeps a complete and updated
copy of it.

The great innovation introduced by Bitcoin is its consensus mechanism: a node,
to add a new block to the blockchain, needs to include a random value so that the
resulting hash of the block has a certain number of leading zeroes. Since such nonce
can only be found by brute-force, which requires a considerable commitment of nodes’
resources, this process is also called proof of work.

When updating its local copy of the blockchain, an honest node verifies the validity
of new blocks and rejects those that do not have a valid proof of work or contain
incorrect (or contradicting) information for the chains they are linked to (regardless
of the validity of the proof of work). It follows that an attacker who wishes to change
the contents of a block in the past needs to re-compute all subsequent blocks’ proof
of works in order to convince other nodes to accept as valid a different, longer chain,
a goal reachable only if he controls the majority of network resources.

In other words, a proof of work, when implemented and properly incentivized
(cryptocurrencies usually reward coins to nodes which mine valid blocks to the
blockchain), can be effective to ensure, globally, honest network operations.

The increasing adoption of the technology behind Bitcoin, however, revealed some
shortcomings in its original design: first of all, since all on-chain operations need to
be stored in the blockchain in order to be verified by (new) nodes, its size keeps
growing as more and more users operate on it. Secondly, blocks’ information is not
necessarily –intentionally or unintentionally– private, and this may allow attackers to
target users’ privacy by, for example, tracing their on-chain activities, or in the case
of financial applications, by keeping track of coin flows.

While the first of these problems affects scalability of the blockchain technology
(together with some other consensus-related reasons), privacy and security issues,
instead, may reduce the range of its possible applications.

With no surprise, the research community reacted to these problems by proposing
alternative constructions that address one or more of these aspects, with the difficult
task of maintaining their implementations accessible to users and their most common
devices.

However, the delicacy of some applications, the possible relevant economic incen-
tives involved, and the global-scale implications of security and cryptographic flaws
require each new design choice to be motivated by rigorous security analysis and pos-
sibly validated by extensive cryptanalysis. Indeed, blockchain as a tool to build secure
decentralized networks can benefit modern society by reducing, if not eliminating, the
possible impacts of malicious actors. Still, it requires reliable and flexible primitives
and protocols to be safely adopted in those applications that will most benefit from
it.

Security, scalability, and privacy represent some of the biggest challenges of block-
chain technology, and to these aspects, this dissertation is dedicated to a large ex-
tent. I will present new designs and cryptanalytic results regarding blockchain crypto-
graphic primitives and propose and cryptanalyze new public-key cryptosystems based
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on elliptic curves.

1.3 Thesis Overview

1.3.1 Part I: Accumulators

Accumulator schemes allow aggregating many different elements from a particular
set into a short constant-sized digest, called accumulator value. Differently than hash
functions, accumulators further allow to prove if an element is currently accumulated
into a certain accumulator value or not, thanks to special values called witnesses.

Some advantages of accumulators are immediately evident: for example, they can
be directly applied to implement a white or a black-list, where, by just verifying
witnesses with respect to the most updated accumulator value, we can know for
several millions of users (but also billions and more) to which of these two lists they
currently belong, and with no need to store this information in a database.

In this Part, I present the works I have done with my co-authors on accumulator
schemes, aiming at designing an efficient and secure accumulator-based authentication
mechanism that possibly is scalable, privacy-friendly, lightweight on the users’ side,
and suitable to be implemented on the blockchain.

We do so by building upon a combination of previous works, namely Nguyen’s
positive accumulator [Ngu05], Au et al. Dynamic Universal Accumulator [Au+09] and
Damgård and Triandopoulos non-membership proof mechanism [DT08], all defined
over a prime-order bilinear group. While studying these schemes, we found out that
one of the two constructions proposed by Au et al. in [Au+09] has serious security
weaknesses, which allow a complete takeover of the accumulator. In Chapter 2, we
describe such vulnerabilities and we start investigating possible accumulator variants
resistant to specific attacks outside Au et al. original security model, but relevant
in the case the accumulator is used as an authentication mechanism: prevent users
from being able to compute witnesses for arbitrary elements, in the case witnesses
are issued by a central authority. In our authentication mechanism use-case, this
will ensure that users cannot generate on their own valid credentials that were not
previously issued by the authority.

In Chapter 3, we define an accumulator scheme in the Accumulator Manager
setting based on the above works, but immune to the attacks of Chapter 2. We
extend such a scheme by adding support for batch operations, which allow adding
and removing elements in batches to and from the accumulator. We further propose
and show the security of a public batch witness update protocol to enable users to
efficiently update their witnesses by processing some public data distributed on-chain.
These new features are designed with privacy in mind: any operations can be executed
privately using zero-knowledge protocols, thus protecting users’ privacy and making
the resulting scheme suitable as a building block of a blockchain-based anonymous
credentials system.

The contents of Chapter 2 and Chapter 3 are based, respectively, on [BUV21] and
[VB22]. These works were co-authored with Aleksei Udovenko [BUV21] and Alex
Biryukov [BUV21; VB22].

1.3.2 Part II: Blockchain Cryptography

In this Part, I present the research I carried out with my co-authors about the se-
curity of some cryptographic primitives employed, or considered for adoption, in top
blockchain-based cryptocurrencies.
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More precisely, in Chapter 4 we detail some attacks targeting Zcash [Zca], one
of the most advanced privacy-oriented cryptocurrency that, in contrast to Bitcoin
[Nak08], employs encryption, zero-knowledge protocols, and commitment schemes
to hide users’ transaction information and prevent, as much as possible, on-chain
data-mining.

Our attacks, which can be classified in the category of malicious cryptography
[YY04], focus on the zero-knowledge proof mechanisms and commitment scheme em-
ployed by Zcash and exploit malleability of proofs and commitments in order to embed
in transactions arbitrary tagging information.

Indeed, at the time of this research, Zcash zero-knowledge proofs were expensive to
compute. To allow limited-resources devices, such as smartphones, to transfer coins,
developers designed a mechanism where it is possible to delegate proofs generation to
untrusted third-party servers and later securely sign them on users’ devices to make
the corresponding transactions valid.

Within this attack model, we could easily embed 9 bytes of tagging information
in an actual Zcash transaction, a possibility that opened to a wide range of users’
information leakages, from tracking on-chain activities to the total exposure of trans-
actions amounts.

In Chapter 5, we investigate the security of the Legendre PRF [Dam90], a pseudo-
random function proposed at the end of the ’80s, that recently gained new attention
due to the work of Grassi et al. [Gra+16], where it was shown to be very efficient to
implement in a multi-party computation setting.

This relevant property attracted the interest of Ethereum [Woo14], a blockchain-
based cryptocurrency and smart-contract platform, that proposed to use this primi-
tive as the building block of a more efficient Proof of Custody consensus mechanism,
to be possibly implemented in the new release of the protocol called Ethereum 2.0
[Fei19c].

To build confidence around this re-discovered primitive and attract fresh cryptana-
lytical interest, the Ethereum Foundation offered some bounties for breaking concrete
instances of the Legendre PRF at various security levels. In Chapter 5 we detail a
table-based approach that, together with some further optimizations, improved the
best attacks for the Legendre PRF known at that time and allowed us to break the
first two Ethereum challenge instances of assumed security up to 54 bits.

Besides revising the security of the Legendre PRF, we discuss new attacks for other
variants of this PRF described in [Dam90]. These are the higher-degree Legendre
PRF, for which we show the existence of a large class of weak keys, the Jacobi PRF,
which was erroneously believed to have comparable security to the Legendre PRF
but is more efficient to compute, and the Power Residue PRF, which allows a higher
PRF bit-throughput than the single bit provided by the original Legendre PRF.

The contents of Chapter 4 are based on [BFV19], written with Daniel Feher
and Alex Biryukov, while Chapter 5 is based on [Beu+20], a joint work with Ward
Beullens, Tim Beyne and Aleksei Udovenko.

1.3.3 Part III: Public-Key Cryptography

In this Part, I present my line of research on public-key cryptography, with a partic-
ular focus on primitives based on elliptic curves.

In Chapter 6, I describe a backdooring procedure for primes, so that when they
appear as divisors of a large integer, the latter can be efficiently factored. This
technique is based on the theory of Complex Multiplication and generates primes
p associated with elliptic curves over Fp with orders that factor completely over
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a certain input factor base. This construction allows a custom variant of Lenstra’s
Elliptic Curve Factorization Method [Len87] to efficiently factor N = p · q, by building
a proper complex multiplication elliptic curve over a ring bigger than ZN and by
executing some XZ-arithmetic on such curve.

Although different alternative backdooring techniques exist under the same at-
tack model, the above prime generation procedure will ultimately allow to efficiently
generate (non-maliciously) semiprimality certificates. Such certificates are based on a
generalization of a result by Goldwasser and Kilian [GK86] and can prove an integer
to be the product of exactly two primes, with no need to know, nor disclose, any of
its factors.

We will then detail a procedure to compute semiprimality certificates efficiently,
and by restating it in a multi-party computation setting, we will be able to generate
(certifiable) semiprimes with unknown factorization. In contrast to previous work,
we show how to compute in a distributed fashion moduli which are semiprimes by
construction and thus do not require execution of distributed statistical semiprimality
tests, as is common in the other protocols.

The relevance of these results is given by the fact that semiprimes with unknown
factorization provide practical unknown-order groups, which, in turn, can be used
to implement constructions suitable for decentralized applications. Some examples
include: trapdoorless accumulators for stateless blockchains [BBF19], where blocks’
information is accumulated in an accumulator that does not require a trusted central
authority; Verifiable Delay Functions (VDFs) [Wes19; Pie19], which are inherently-
sequential functions that can be used to instantiate a proof of sequential work as al-
ternative to Bitcoin’s prone-to-parallelization proof of work; trustless zero-knowledge
proof systems [BFS20], instantiated using only trapdoor-free parameters.

In Chapter 7, instead, I report the work I have done with my co-author on Su-
persingular Isogeny Key Encapsulation (SIKE), a post-quantum key encapsulation
mechanism whose security is based on the supersingular isogeny problem. In SIKE,
two parties independently pick a random secret isogeny (that is, a surjective mor-
phism of curves which induces a group homomorphism), and use them to compute,
in turn, images of some public points in order to agree on a curve equation, that is
the shared secret. Informally, the security of this scheme relies on the fact that it is
difficult from the domain and codomain of a random isogeny to retrieve its full defini-
tion, which in SIKE would allow recovering the shared secret from parties’ exchanged
information quickly.

Throughout the Chapter, we will describe a meet-in-the-middle approach im-
proved with multiple SIKE-specific optimizations. In these attacks, one party’s full
isogeny definition is retrieved by iteratively expanding all possible (lower-degrees)
isogenies that are compatible with the public domain and codomain of the attacked
isogeny until a match in-the-middle is found.

Our optimizations allowed us to reduce by a few orders the time and space com-
plexity of practical implementation of these attacks, making it feasible for us to suc-
cessfully break a reduced-parameters instance of SIKE, proposed by Microsoft and
called $IKEp182, using the University of Luxembourg High-Performance Computing
Cluster [Var+14].

The contents of Chapter 6 are based on [Vit21], while Chapter 7 is based on
[UV21], a joint work with Aleksei Udovenko.
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tions on Symmetric Cryptology 2020.1 (2020), pp. 313–330. issn: 2519-
173X. doi: 10.13154/tosc.v2020.i1.313-330.

[BFV19] Alex Biryukov, Daniel Feher, and Giuseppe Vitto. “Privacy Aspects
and Subliminal Channels in Zcash”. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. CCS
’19. London, United Kingdom: Association for Computing Machinery,
2019, pp. 1813–1830. isbn: 9781450367479. doi: 10 . 1145 / 3319535 .
3345663.
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Springer Nature. Springer, Heidelberg, 2021-05, pp. 276–298. doi: 10.
1007/978-3-030-75539-3_12.

[VB22] Giuseppe Vitto and Alex Biryukov. “Dynamic Universal Accumulator
with Batch Update over Bilinear Groups”. In: Topics in Cryptology –
CT-RSA 2022. Ed. by Steven Galbraith. Vol. 13161. Lecture Notes in
Computer Science. Reproduced with permission from Springer Nature.
Springer, Cham, 2022, pp. 395–426. doi: 10.1007/978-3-030-95312-
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[UV21] Aleksei Udovenko and Giuseppe Vitto. Breaking the $IKEp182 Chal-
lenge. Cryptology ePrint Archive, Report 2021/1421. https://eprint.
iacr.org/2021/1421. 2021.

[Vit21] Giuseppe Vitto. Factoring Primes to Factor Moduli: Backdooring and
Distributed Generation of Semiprimes. Cryptology ePrint Archive, Re-
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Conferences and Talks

I presented the works I co-authored at the following conferences and workshops:

• ACM CCS 2019, London, UK. With Daniel Feher, I presented [BFV19].

• IACR Transactions on Symmetric Cryptology (ToSC) 2020, Virtual. I presented
[Beu+20].

• CT-RSA 2021, Virtual. I presented [BUV21].

https://doi.org/10.13154/tosc.v2020.i1.313-330
https://doi.org/10.1145/3319535.3345663
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• Euro S&P 2021: Future of PI Workshop, Virtual. I presented [VB22].

• Selected Areas in Cryptography (SAC) 2021, Virtual. I presented [Bir+21].

Implementations

The source-code of the implementation of the accumulator scheme detailed in Chapter 3,
is publicly available on GitHub at:

https://github.com/cryptolu/accumulator

The source-code of the prime backdooring procedure and the distributed semiprime
generation protocol, both detailed in Chapter 6, can be found, respectively, at:

https://github.com/cryptolu/primes-backdoor
https://github.com/cryptolu/semiprimes

https://github.com/cryptolu/accumulator
https://github.com/cryptolu/primes-backdoor
https://github.com/cryptolu/semiprimes
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Part I

Accumulators
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In this Part, I will present the research I have done with my co-authors in regards
to accumulator schemes defined over bilinear groups.

In Chapter 2, we cryptanalyse the two accumulator variants proposed by Au
et al. [Au+09], which we call the α-based construction and the common reference
string-based (CRS-based) construction. We will show that when non-membership
witnesses are issued according to the α-based construction, an attacker with access to
O(log p log log p) witnesses can efficiently recover the secret accumulator parameter α
and completely break its security. Further optimizations and different attack scenarios
allow reducing the number of required witnesses to O(log p), together with practical
attack complexity. Moreover, we will show that accumulator’s collision resistance can
be broken if just one of these non-membership witnesses is known to the attacker. We
then show how all these attacks for the α-based construction can be easily prevented
by using a corrected expression for witnesses instead.

Although outside the original security model assumed by Au et al. but moti-
vated by some possible concrete application of the scheme where the Manager must
have exclusive rights for issuing witnesses (e.g. white/black list based authentication
mechanisms), we will show that if non-membership witnesses are issued using the
alternative CRS-based construction and the CRS is kept secret by the Manager, an
attacker accessing multiple witnesses can reconstruct the CRS and compute witnesses
for arbitrary new elements. In particular, if the accumulator is initialized by adding
m secret elements, the knowledge of m non-membership witnesses allows succeeding
in such attack.

In Chapter 3, instead, we propose a Dynamic Universal Accumulator in the Ac-
cumulator Manager setting for bilinear groups which extends Nguyen’s positive ac-
cumulator [Ngu05], Damgård and Triandopoulos non-membership proof mechanism
[DT08] and Au et al. [Au+09] Dynamic Universal Accumulator, but immune from
the attacks outlined in Chapter 2.

The new features include support for batch addition and deletion operations and a
privacy-friendly batch witness update protocol, where the witness update information
is the same for all users. Together with a non-interactive zero-knowledge protocol,
these will make the proposed scheme suitable as an efficient and scalable Anonymous
Credential System, accessible even by low-resource users.

We show the security of the proposed protocol in the Generic Group Model under
a (new) generalized version of the t-SDH assumption, and we demonstrate its practical
relevance by providing and discussing an implementation realized using state-of-the-
art libraries.
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Chapter 2

Cryptanalysis of a Au et al.
Accumulator
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2.7.1 Collecting Witnesses Issued at Different States . . . . . . . . . . . . . 28
2.7.2 Removing reduction modulo p . . . . . . . . . . . . . . . . . . . . . . . 28
2.7.3 The Random-y Sieving Attack . . . . . . . . . . . . . . . . . . . . . . 29
2.7.4 The Chosen-y Sieving Attack . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.9 Weak Non-membership Witnesses . . . . . . . . . . . . . . . . . . . . 31
2.10 Preventing Witness Forgery in the RS-based Construction . . . . . 32

2.10.1 How to ensure some accumulated elements remain unknown . . . . . . 33
2.10.2 Recovering the RS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1 Introduction
A cryptographic accumulator scheme permits aggregating values of a possibly very
large set into a short digest, which is commonly referred to as the accumulator value.
Unlike hash functions, where, similarly, (arbitrary) long data is mapped into a fixed-
length digest, accumulator schemes permit to additionally show whenever an element
is accumulated or not, thanks to special values called witnesses. Depending on the
accumulator design, we can have two kinds of witnesses: membership witnesses, which
permit to show that an element is included in the accumulator, and non-membership
witnesses, which, on the contrary, permit to show that an element is not included.
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Accumulator schemes that support membership witnesses are referred to as posi-
tive accumulators; the ones that support non-membership witnesses are called nega-
tive, while the ones that support both are called universal accumulators. A common
requirement for the accumulator schemes is the ability to change the set of accumu-
lated elements, hence permitting accumulator updates: when the accumulator allows
to dynamically add and delete elements, it is said to be a dynamic accumulator.

Benaloh and De Mare [Bd94] in 1993 formalized the first accumulator scheme as
a time-stamping protocol. Since then, many other accumulator schemes have been
proposed, and they play an essential role in various protocols from set membership,
authentication to (anonymous) credentials systems and cryptocurrency ledgers. How-
ever, there is only a small set of underlying cryptographic assumptions on which such
accumulator primitives are based. Currently, three main families of accumulators can
be distinguished in literature: schemes designed in groups of unknown order [Bd94;
BP97; CL02; LLX07; San99; Lip12; BBF19], schemes designed in groups of known
order [Ngu05; DT08; Au+09; CKS09] and hash-based constructions [Mer90; BLL00;
BLL02; Cam+08; BC14]. Relevant to this thesis are the schemes belonging to the
second of these families, where the considered group is a prime order bilinear group.
Moreover, when it comes to Dynamic Universal Accumulators (namely those that sup-
port dynamic addition and deletion of members and can maintain both membership
and non-membership witnesses), we are down to just a few schemes.

In this Chapter, we cryptanalyse one of the universal schemes proposed for bi-
linear groups, namely the Dynamic Universal Accumulator by Au et al. [Au+09],
which is zero-knowledge friendly and stood unscathed for 10 years of public scrutiny.
This scheme comes in two variants, which we called the α-based construction and
the RS-based construction, respectively: in the first one, the accumulator manager,
who knows the accumulator secret parameter α, keeps the accumulator updated and
issues witnesses efficiently to users; in the RS-based construction, instead, accumu-
lator operations are executed by users in a decentralized fashion, by using elements
from a special reference string (public) set RS. An important remark is that the
two construction differs only on how non-membership witnesses are defined and are
interchangeable: a witness generated with respect to the α-based construction is valid
for the RS-based construction as well and vice-versa.

For the α-based construction, we show that the non-membership mechanism, de-
signed to allow for more efficiency on the accumulator manager side, has a subtle
cryptographic flaw which enables the adversary to efficiently recover the secret of the
accumulator manager given just several hundred to few thousand non-membership
witnesses (regardless of the number of accumulated elements).

Consequently, the attacker can entirely break the security of the scheme. More-
over, we show that given only one non-membership witness generated with this flawed
mechanism, it is possible to invalidate the assumed collision resistance property of
the accumulator efficiently by creating a membership witness for a non-accumulated
element. Despite the presence of a valid security proof in Au et al. original paper, this
flaw is possible because the provided security reduction covers the non-membership
mechanism of the RS-based construction only and it does not take into account the
non-membership witness definition given for the α-based construction, which results
to be weak.

In the second part of the Chapter we investigate the RS-based variant. Although
this construction looks more appropriate for a decentralized setting, the weaknesses
we point out for the α-based construction make the latter not implementable, and
thus non-membership witnesses should be issued always according to the RS-based
construction definition, regardless if the accumulator is managed by a trusted manager
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Construction Scenario Witnesses Time Attack Result

α-based

Random-y O(log p log log p) O(log2 p) Recovery of α
Random-y O(log p log log p) O((1 + `/ log log p) log2 p) Recovery of α
Chosen-y O(log p) O(` log2 p/ log log p) Recovery of α

Random-y 1 O(1) Break Collision
Resistance

RS-based Random-y m O(m2) Issue Witnesses

Table 2.1: Time and non-membership witnesses required in our attacks on the Au et al.
accumulator scheme for both α-based andRS-based construction. In this table, p denotes
the order of the underlying bilinear group,m denotes the number of (secret) elements with
which the accumulator is initialized, ` denotes the number of accumulations that occurred
in between the issues of non-membership witnesses. In the RS-based construction, the

RS is unknown to the attacker.

(which can still perform operations efficiently, thanks to the knowledge of the trapdoor
α) or publicly by users (through the RS).

Motivated by some concrete applications of the scheme where the Manager must
have exclusive rights for issuing witnesses (e.g. white-/black-list based authentication
mechanisms), we show that an adversary having access to a sufficient amount of
witnesses is able to compute valid witnesses for unauthorized elements even when
the accumulator manager keeps secret all the information needed to compute such
witnesses, i.e. the RS. In particular, if the accumulator is initialized by adding m
secret elements, an attacker that has access to m non-membership witnesses would
succeed in reconstructing the RS and will then become able to issue membership
and non-membership witnesses for any accumulated and non-accumulated elements,
respectively.

A summary of our attacks with complexities under different scenarios can be found
in Table 2.1.

2.1.1 Outline

In Section 2.2 we summarize the notation we will adopt throughout this and the next
Chapter. In Section 2.3 we recall both constructions of Au et al. Dynamic Univer-
sal Accumulator, and we report in Section 2.4 the original security proof and attack
model. We then cryptanalyse the α-based construction: in Section 2.5 we show how
it is possible to break the assumed collision resistance with just one non-membership
witness, while in Section 2.6 we describe our α-recovery Attack, which allows an at-
tacker knowing multiple non-membership witnesses to recover the secret accumulator
parameter α. In Section 2.7 we further improve the α-recovery Attack under differ-
ent attack models, and we discuss the concrete implementation of these attacks in
Section 2.8. In Section 2.9 we address another vulnerability affecting the α-based
construction, which allows an attacker to recover α with just one non-membership
witness, while in Section 2.10 we investigate the security of the alternative RS-based
construction under the assumption that users should not be able to issue witnesses
independently from the Accumulator Manager, a setting outside the original Au et
al. security model, but of relevance for next Chapter.
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2.2 Notation
In this and in next Chapter, we will analyze accumulator schemes based on prime
order bilinear groups G = (p,G1,G2,Gt, e), where the groups G1,G2,GT are of order
p and e : G1 ×G2 → GT is an efficiently computable non-degenerate bilinear map.
Following the notation of [GPS08], we say e to be a Type-I pairing if G1 = G2, while
we will call it Type-III pairing if G1 6= G2 and there are no efficiently computable
isomorphisms between G1 and G2.

In the following, we will denote with uppercase Roman letters (e.g. P ,V ) ele-
ments belonging to G1 and with uppercase Roman letters with a tilde above (e.g.
P̃ , Q̃) elements in G2. The identity points of G1 and G2 are denoted with O and Õ,
respectively.

Sets are denoted with uppercase letters in calligraphic fonts (e.g. ACC,Y) while
accumulator elements are denoted with (eventually indexed) lowercase Roman letters:
y usually denotes the reference element, that is the one we take as an example to
perform operations, while yS denotes an element in the set S. Exceptions are the
membership and non-membership witness, denoted respectively with w and w̄, and
the partial non-membership witness d.

Vectors are denoted with Greek capital letters (e.g. Υ, Ω). The vector operation
〈Φ, Ψ〉 is the dot product, that is, the sum of the products of the corresponding
entries of Φ and Ψ, while a ◦Φ denotes the usual scalar-vector multiplication where
each entry of Φ is multiplied by a.

We also use a convention that sum and the product of a sequence of terms with
starting index greater than the ending one are assumed to be equal to ∑j

i ai = 0 and∏j
i bi = 1 when i > j.

2.3 Au et al. Dynamic Universal Accumulator
In their paper [Au+09], Au and coauthors propose two different constructions for their
Dynamic Universal Accumulator, depending on which information is made available
to the accumulator managers. The first requires the accumulator’s secret parameter α
and is suitable for a centralized entity that efficiently updates the accumulator value
and issues witnesses to the users. The second, instead, requires a reference string RS
and allows to update the accumulator value and to issue witnesses without learning
α, but less efficiently. We will refer to the first one as the α-based construction, while
we will refer to the latter as the RS-based construction.

These two are interchangeable because witnesses can be issued from time to time
with one or the other construction. Moreover, we note that all operations done with
the reference string RS, can be done more efficiently by using α directly: hence, if
the authority which generates α coincides with the accumulator manager, it is more
convenient for the latter to use always the secret parameter α to perform operations
and thus we will refer to the two constructions mainly to indicate the different defining
equations for witnesses (in particular, non-membership witnesses).

2.3.1 The α-based and RS-based constructions

A dynamic universal accumulator consists of 5 main sub-primitives: Generation, Ac-
cumulator Update (Addition, Deletion), Witness Issuing (Membership, Non-Member-
ship), Witness Update (Membership, Non-Membership), Witness Verification (Mem-
bership, Non-Membership). In the case of Au et al. accumulator scheme, these are
detailed as follows, where we differentiate definitions accordingly to the two α-based
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and RS-based constructions (if not explicitly stated, each operation refers to both
constructions).
Generation. Let G be a symmetric bilinear group G = (p,G1,GT ,P , e) such
that e : G1 ×G1 → GT is a non-degenerate bilinear map, (G1,+) is an additive
group generated by P with identity element O, (GT , ·) is a multiplicative group and
|G1| = |GT | = p is prime. The secret accumulator parameter α is randomly chosen
from (Fp)∗. The set of accumulatable elements is ACC = Fp \ {−α}.

- (RS-based construction) Let t be the maximum number of accumulatable elements.
Then the reference string RS is computed as

RS = RSt = {P , αP , α2P , . . . , αtP }

Accumulator updates. Accumulator updates consist of single addition and dele-
tion of elements into and from, respectively, the accumulator.

- (α-based construction) For any given set YV ⊆ ACC let fV (x) ∈ Fp[x] represent
the polynomial

fV (x) =
∏
y∈YV

(y+ x)

Given the secret accumulator parameter α, we say that an accumulator value
V ∈ G1 accumulates the elements in YV if V = fV (α)P .
An element y ∈ ACC \ YV is added to the accumulator value V , by computing
V ′ = (y + α)V and letting YV ′ = YV ∪ {y}. Similarly, an element y ∈ YV is
removed from the accumulator value V , by computing V ′ = 1

(y+α)V and letting
YV ′ = YV \ {y}.

- (RS-based construction) For any given set YV ⊆ ACC such that |YV | ≤ t, let
fV (x) ∈ Fp[x] represent the polynomial

fV (x) =
∏
y∈YV

(y+ x) =
|YV |∑
i=0

cix
i

Then, the accumulator value V which accumulates the elements in YV is computed
using the RS as V =

∑|YV |
i=0 ci · αiP .

Witnesses Issuing. For an accumulated and a non-accumulated element, a corre-
sponding witness (resp. membership, non-membership) has to be issued.

- (α-based construction) Given an element y ∈ YV , the membership witness wy,V =
C ∈ G1 with respect to the accumulator value V is issued as

C =
1

y+ α
V

Given an element y ∈ ACC \ YV , the non-membership witness w̄y,V = (C, d) ∈
G1 ×Fp with respect to the accumulator value V is issued1 as

d =
(
fV (α) mod (y+ α)

)
mod p, C =

fV (α)− d
y+ α

P

1We assume that here fV (α) =
∏

y∈YV
(y + α) is computed over Z. Alternatively, if this com-

putation is done modulo p, then d would be equal to fV (α) mod p for a large fraction of elements
y ∈ ACC \ YV and α can be easily recovered by factoring fV (x)− d over Fp[x].
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- (RS-based construction) Given an element y ∈ YV , let c(x) ∈ Fp[x] be the polyno-
mial such that fV (x) = c(x)(y+x). Then, themembership witness wy,V for y with
respect to the accumulator value V is computed using the RS as wy,V = c(α)P .
Given an element y ∈ ACC \YV , apply the Euclidean Algorithm to get the polyno-
mial c(x) ∈ Fp[x] and the scalar d ∈ Fp such that fV (x) = c(x)(y+ x) + d. Then,
the non-membership witness w̄y,V for y with respect to the accumulator value V
is computed from the RS as wy,V = (c(α)P , d).

Witness Update. When the accumulator value changes, users’ witnesses are up-
dated accordingly to the following operations:

• On Addition: suppose that a certain y′ ∈ ACC \ YV is added into V . Hence the
new accumulator value is V ′ = (y′ + α)V and YV ′ = YV ∪ {y′}.
Then, for any y ∈ YV , wy,V = C is updated with respect to V ′ by computing

C ′ = (y′ − y)C + V

and letting wy,V ′ = C ′.
If, instead, y ∈ ACC \ YV with y 6= y′, its non-membership witness w̄y,V = (C, d)
is updated to w̄y,V ′ = (C ′, d · (y′ − y), where C ′ is computed in the same way as
in the case of membership witnesses.

• On Deletion: suppose that a certain y′ ∈ YV is deleted from V . Hence the new
accumulator value is V ′ = 1

y′+αV and YV ′ = YV \ {y′}.
Then, for any y ∈ YV , wy,V = C is updated with respect to V ′ by computing

C ′ =
1

y′ − y
C − 1

y′ − y
V ′

and letting wy,V ′ = C ′.
If, instead, y ∈ ACC \ YV , its witness w̄y,V = (C, d) is updated to w̄y,V ′ = (C ′, d ·

1
y′−y , where C ′ is computed in the same way as in the case of membership witnesses.

We note that in both cases, the added or removed element y′ has to be public in
order to enable other users to update their witnesses.
Verification. A membership witness wy,V = C with respect to the accumulator
value V is valid if it verifies the pairing equation e(C, yP +αP ) = e(V ,P ). Similarly,
a non-membership witness w̄y,V = (C, d) is valid with respect to V if it verifies
e(C, yP + αP )e(P ,P )d = e(V ,P ).

2.4 Original Security Proof and Attack Scenarios
The security of the above accumulator scheme is intended in terms of collision re-
sistance: in [Au+09], this security property is shown under the t-SDH assumption
[BB08]. Informally, collision resistance ensures that an adversary has a negligible
probability of forging a valid membership witness for a not-accumulated element
and, respectively, a non-membership witness for an already accumulated element.

To ease the discussion on the attacks we will detail in the next Sections, we here
report both Au et al. definition of collision resistance and Boneh and Boyen definition
of t−SDH assumption.
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Definition 2.1. (Collision Resistance [Au+09]) The Dynamic Universal Accu-
mulator outlined in Section 3.2 is collision resistant if, for any probabilistic polynomial
time adversary A that has access to an oracle O which returns the accumulator value
resulting from the accumulation of the elements of any given input subset of (Fp)∗,
the following probabilities

P


(G,α, Q̃)← Gen(1λ) , (y,C,Y)← AO(G, Q̃) :

Y ⊂ (Fp)∗ ∧ V =
(∏

yi∈Y(yi + α)
)
P ∧

y ∈ (Fp)∗ \ Y ∧ e(C, yP̃ + Q̃) = e(V , P̃ )



P


(G,α, Q̃)← Gen(1λ) , (y,C, d,Y)← AO(G, Q̃) :

Y ⊂ (Fp)∗ ∧ V =
(∏

yi∈Y(yi + α)
)
P ∧

y ∈ Y ∧ d 6= 0 ∧
e(C, yP̃ + Q̃)e(P , P̃ )d = e(V , P̃ )


are both negligible functions in the security parameter λ.

Definition 2.2. (t−Strong Diffie-Hellman Assumption [BB08]) Let G be a
probabilistic polynomial time algorithm that, given a security parameter 1λ, outputs a
bilinear group G = (p,G1,G2,GT ,P , P̃ , e). We say that the t−Strong Diffie-Hellman
Assumption holds for G with respect to an α← (Fp)∗ if, for any probabilistic polyno-
mial time adversary A and for every polynomially bounded function t : Z → Z, the
probability

P

(
A(P ,αP ,α2P , ...,αt(λ)P , P̃ ,αP̃ ) =

(
y, 1
y+ α

P

))
is a negligible function in λ for any freely chosen value y ∈ Fp \ {−α}.

We can see that in Definition 2.1, the adversary has access to an oracle O that
outputs the accumulator value V =

(∏
y∈YV (y+ α)

)
P for any chosen input set YV .

Its purpose is to model the information the adversary can eventually get by looking at
the published accumulator states. However, in practice, the adversary has no control
over the values accumulated by the accumulator manager. This oracle does not make
their attacker more powerful when compared to the requirements of the Boneh and
Boyen t−SDH assumption (where the RSt = {P ,αP , . . . ,αtP} is directly given to
the attacker) due to the following:

Lemma 2.1. Having access to the oracle O of Definition 2.1 where sets of size at
most t can be queried is equivalent to the knowledge of the set RSt = {P ,αP , ...,αtP}.

Proof. �� ��⇒ Let y be a generator of (Fp)∗. Then the polynomials

{1, (y+ x), (y+ x) · (y2 + x), . . . ,
t∏
i=1

(yi + x)}

form a basis for the additive vector space of polynomials in Fp[x] with degree lower
equal t and, hence, for any given 1 ≤ i ≤ t, there exists a linear combination of
these polynomials that sums up to xi. It follows that, by iteratively calling O on the
set Yi = {y, y2, . . . , yi}, it is possible to write a linear combination of the VYi values
returned which is equal to αiP .
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�� ��⇐ Suppose the set RSt is known. Then, for any given YV ⊂ (Fp)∗ with |YV | ≤ t,
using the elements RSt, it is possible to compute V as

V =

 ∏
yi∈YV

(yi + α)

P =
|Y|∑
i=0

ci · (αiP )

For completeness, we report Au et al. security proof provided in [Au+09, Theorem
2], restated within our notation.

Theorem 2.1. Let G be a probabilistic polynomial time algorithm that, given a secu-
rity parameter 1λ, outputs a bilinear group G = (p,G1,G2,GT ,P , P̃ , e) and consider
an instantiation of the Dynamic Universal Accumulator obtained using G for the bi-
linear group generation and α ∈ (Fp)∗ as the secret accumulator parameter. Then,
the accumulator is collision resistant (Definition 2.1) if the t−Strong Diffie-Hellman
Assumption (Definition 2.2) holds for G with respect to α.

Proof. We note that a solution (y,C, d) for e(C, yP̃ + Q̃)e(P , P̃ )d = e(V , P̃ ) is also
a solution for the points equation (y + α)C + dP = V . We will then prove the
Theorem considering this last equation only, distinguishing between membership and
non-membership witnesses.

Membership witnesses. By contradiction, suppose there exists a probabilistic poly-
nomial time adversary A that, with respect to an (non-trivial) accumulator state
(V ,YV ), outputs with non-negligible probability a membership witness C ∈ G1
for an element y ∈ (Fp)∗ \ YV . It follows that (y + α)C = V = fV (α)P , where
fV (x) =

∏
yi∈YV (yi+x). Since y /∈ YV , we have that (y+α) - fV (x). Using the Poly-

nomial Extended Euclidean algorithm, A computes g(x) ∈ Fp[x] of degree |YV | − 1
and r ∈ (Fp)∗ such that fV (x) = g(x) · (y + x) + r. Therefore, C = g(α)P + r

y+αP

and using the RS = {P ,αP ,α2P , ...,αq(λ)}, with |YV | ≤ q(λ), can compute g(x)P
and hence 1

y+αP = r−1(C − g(α)P ), contradicting the t−SDH assumption.
Non-membership witnesses. Suppose there exists a probabilistic polynomial time

adversary A that with respect to an (non-trivial) accumulator state (V ,YV ) outputs
with a non-negligible probability a non-membership witness (C, d) ∈ G1 × (Fp)∗ for
an element y ∈ YV . Then (y + α)C = fV (α)P − dP . Now, since (y + x)|fV (x)
we have that (y + x) - fV (x) − d for any d 6= 0. Thus, similarly as done before,
A uses the Polynomial Extended Euclidean algorithm to compute g(x) ∈ Fp[x] of
degree |YV | − 1 and r ∈ (Fp)∗ such that fV (x)− d = g(x) · (y + x) + r. Therefore,
C = g(α)P + r

y+αP and, using the RS, A can compute 1
y+αP = r−1(C − g(α)P ),

contradicting the t−SDH assumption.

We note that this proof doesn’t differentiate among the α-based and the RS-
based construction. However, by assuming fV (x) = g(x)(y − x) + d ∈ Fp[x], which
is equivalent to f(−y) = d ∈ Fp, we infer that non-membership witnesses are de-
fined according to the RS-construction and this proof is referring to the RS-based
construction.

This detail is crucial since in the next Sections we will show that the non-
membership witness definition of the α-based construction is flawed and allows a
probabilistic polynomial-time attacker to recover the secret accumulator parameter
α and thus break collision resistance. This flaw is not present in the non-membership
witness definition of the RS-based construction −which, in fact, fully satisfy the
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above security reduction under the t−SDH assumption− and hence the α-based con-
struction can be easily fixed by using, instead, the non-membership witness defining
equation of the other RS−based variant. In other words, a “fixed” α-based construc-
tion will correspond to a slightly more time-efficient (but asymptotically equivalent)
version of the RS−based construction, where the RS is not directly given to the
attacker but can be computed in polynomial time (Lemma 2.1).

Motivated by this observation and by concrete applications of the scheme where
the attacker cannot arbitrarily query an oracle returning witnesses for any freely
chosen element, we show, in Section 2.10, that even when the accumulator manager
keeps the RS secret, the attacker would be able to efficiently recover the latter by
accessing few non-membership witnesses, thus making him able to issue membership
and non-membership witnesses accordingly to the RS−based defining equations, but
not able to break collision resistance for this variant. We remark that this scenario is
outside Au et al. security model −where such RS is always available to the attacker,
which can further obtain witnesses from the oracle− but becomes relevant in all
those concrete scenarios where the Manager wishes to have exclusive rights for issuing
witnesses (and thus keeps the RS secret), such us authentication mechanisms where
witnesses are used as black-/white-list authentication tokens.

2.5 Breaking Collision Resistance in the α-based Con-
struction

In the α-based construction, the knowledge of a single non-membership witness is
enough to break the (assumed) collision resistance property of the accumulator scheme
when the polynomial fV (x) ∈ Fp[x] is fully known or, equivalently, the set of all
accumulated elements is publicly known (which is typically the case).

In the security reduction provided in [Au+09], it is required that given a non-
accumulated element y ∈ ACC \ YV and its non-membership witness w̄y,V = (Cy, d̃y)
with respect to the accumulator value V , the element d̃y ∈ Fp verifies(

fV (x)− d̃y mod (y+ x)
)
≡ 0 (mod p)

which in turn corresponds to d̃y ≡ fV (−y) (mod p), a condition enforced by the
RS−based construction non-membership witness definition.

By using, instead, the defining equation for dy provided in the α-based con-
struction, the partial non-membership witness for y equals dy =

(
fV (α) mod (y +

α)
)
mod p and thus

dy ≡ d̃y (mod p) ⇒
(
fV (−y) mod (y+ α)

)
≡ fV (−y) (mod p)

holds only when fV (−y) < y + α, i.e. with negligible probability if V accumulates
more than one element chosen uniformly at random from Fp.

Now, if dy 6≡ d̃y mod p, we have fV (x) − dy 6≡ 0 mod (y + x), and we can use
Euclidean algorithm to find a polynomial c(x) ∈ Fp[x] and r ∈ Fp such that fV (x)−
dy = c(x)(y + x) + r in Fp[x]. Then, by recalling that Cy = fV (α)−dy

y+α P , under
the t−SDH assumption, the attacker uses the available RS = {P ,αP , . . . ,αtP} to
compute c(α)P and obtains a membership witness with respect to V for an arbitrary
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non accumulated element y as

Cy +
dy
r

(
Cy − c(α)P

)
= Cy +

dy
r

(
Cy −Cy −

r

y+ α
P

)
=
fV (α)

y+ α
P =

1
y+ α

V

thus breaking the assumed collision resistance property. We note that this result
doesn’t invalidate the security proof provided by Au et al. in [Au+09]: indeed, the
reduction to the t-SDH assumption is shown for (non-membership) witnesses gener-
ated accordingly to the RS-based construction only, and thus, collision resistance can
be guaranteed only for this latter construction.

We speculate that this flaw comes from the wrong assumption that(
fV (x) mod (y+ x)

)
≡
(
fV (α) mod (y+ α)

)
(mod p)

which, if true, would have implied security of non-membership witnesses issued ac-
cordingly to the α-based construction as well. The authors also declare [Au+09,
Section 2.2] that by using the secret accumulator value α, the accumulator man-
ager can compute membership and non-membership witnesses in O(1) time: this
clearly cannot be true since, regardless of the variant considered, the evaluation of
the polynomial fV (x) and its reduction modulo a ∼ log p-bits integer requires (at
least) O(deg fV ) time.

In the following Sections we will show that within the α-based construction, an
attacker can efficiently recover the secret accumulator parameter α by accessing mul-
tiple non-membership witnesses, thus making him able to break collision resistance by
computing membership witnesses for non-accumulated elements similarly as above,
but also non-membership witnesses for accumulated elements.

2.6 The α-Recovery Attack for the α-Based Construc-
tion

From now on, we assume the secret parameter α and the accumulator value V along
with the set of currently accumulated elements YV to be fixed.

The following attack on the α-based construction consists of two phases: the
retrieval of the value fV (α) ∈ Z used to compute non-membership witnesses modulo
many small primes, and the full recovery of the accumulator secret parameter α.

2.6.1 Recovering fV (α)

Let dy =
(
fV (α) mod (y + α)

)
mod p be a partial non-membership witness with

respect to V for a certain element y ∈ ACC \ YV , and let d̃y denote the integer
fV (α) mod (y + α). We then have dy = d̃y mod p, and we are interested in how
often dy equals d̃y as integers. Attacker benefits from the cases when y+α < p, since
the reduction modulo p does nothing and dy = d̃y for all such y.

The worst case happens when α is maximal, i.e. α = p − 1. Indeed, in this
case, if y = 0 then y + α < p and dy = d̃y with probability 1; if instead y > 0 and
y 6= p− α = 1 the probability that dy = d̃y is p

y+α and, hence, is minimal when
compared to smaller values of α. Thus, with α = p− 1 the probability that dy equals
d̃y as integers ranges from 1 (when y = 0) to almost 1/2 (when y = p− 1). Assuming
that y is sampled uniformly at random, we can obtain the following lower bound on



2.6. The α-Recovery Attack for the α-Based Construction 25

the probability (for arbitrary α):

P
y∈{0,...,p−1}

y 6=p−α
fV (α)∈Z

(dy = d̃y) ≥
1

p− 1

1 + p
p−1∑
ỹ=2

1
ỹ+ p− 1



=
p

p− 1

 2p−2∑
i=1

1
i
−
p−1∑
i=1

1
i

 =
p

p− 1 (H2p−2 −Hp−1)

=

(
1 + 1

p− 1

)
·
(

ln 2− 1
4(p− 1) + o

(
p−1

))
= ln 2 + 4 ln 2− 1

4(p− 1) + o(p−1)

> ln 2. (2.1)

where Hn denotes the n−th Harmonic number, and the last inequality holds for all
values of p used in practice.

Let us assume that q|(y + α) for a small prime q ∈ Z such that q � y + α. If
dy = d̃y we have fV (α) ≡ dy (mod q) with probability 1, otherwise it happens with
probability 0 since then fV (α) ≡ dy + p (mod q).

If instead q - (y + α), we can assume dy mod q to be random in Z/qZ and thus
fV (α) ≡ dy (mod q) happens with probability close to 1

q .
More formally,

P
(
fV (α) ≡ dy (mod q)

)
> ln 2 · 1

q
+
q− 1
q2 =

(ln 2 + 1)q− 1
q2 (2.2)

while for any other c ∈ Z/qZ such that c 6≡ dy (mod q) we have

P
(
fV (α) ≡ c (mod q)

)
< (1− ln 2) · 1

q
+
q− 1
q2 =

(2− ln 2)q− 1
q2 (2.3)

In other words, the value dy mod q has a higher chance to be equal to fV (α) mod q
compared to any other value in Z/qZ.

We will use this fact to deduce fV (α) modulo many different small primes. More
precisely, suppose that an attacker has access to the elements y1, . . . , yn together with
the respective partial non-membership witnesses

dyi ≡
(
fV (α) mod (yi + α)

)
mod p

If q is a small prime and n is sufficiently large (in Subsection 2.6.3 we provide
a rigorous analysis), fV (α) mod q can be deduced by simply looking at the most
frequent value among

dy1 mod q, . . . , dyn mod q

Once we compute fV (α) modulo many different small primes q1, . . . , qk such that
q1 · . . . · qk > p, we can proceed with the next phase of the attack: the full recovery of
the secret parameter α.

2.6.2 Recovering α

If the discrete logarithm of any accumulator value is successfully retrieved modulo
many different small primes whose product is greater than p, α can be recovered with
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(virtually) no additional partial non-membership witnesses. The main observation
we will exploit is the following:

Observation 2.1. Let q be an integer and let y ∈ ACC \ YV be a non-accumulated
element such that its partial non-membership witness with respect to V satisfies dy =
d̃y. Then dy 6≡ fV (α) (mod q) implies that q - (y + α), or, equivalently, α 6≡ −y
(mod q).

From Equation 2.1, it follows that for any given q ∈ Z and non-accumulated
element y such that (fV (α)− dy) 6≡ 0 (mod q), we have

P
(
α 6≡ −y (mod q) | fV (α) 6≡ dy (mod q)

)
> 1− (1− ln 2)q

q2 − (1 + ln 2)q+ 1 ≈ 1− 1− ln 2
q

By considering all available non-membership witnesses, if q is small and n is
sufficiently larger than q (as we detail in Subsection 2.6.3), we can deduce α mod q
as the element in Z/qZ which is the least frequent −or not occurring at all− among
the residues

−yi1 mod q , . . . , −yij mod q

such that (fV (α)− dyik ) 6≡ 0 mod q for all k = 1, . . . , j.
It follows that, if q1, . . . , qk are small primes such that q1 · . . . · qk > p, from

the values fV (α) mod qi (computed according to Subsection 2.6.1) and the values
α mod qi with i ∈ [1, k], then α ∈ Z can be easily obtained thanks to the Chinese
Remainder Theorem.

2.6.3 Estimating the minimum number of witnesses needed

We now give an asymptotic estimate of the minimum number of non-membership
witnesses required to succeed with a high probability both phases of the above attack.
We will use the multiplicative Chernoff bound, which we briefly recall.

Theorem 2.2. (Chernoff Bound) Let X1, . . . ,Xn be independent random variables
taking values in {0, 1} and let X = X1 + . . .+Xn. Then, for any δ > 0

P
(
X ≤ (1− δ)E[X ]

)
≤ e−

δ2µ
2 0 ≤ δ ≤ 1

P
(
X ≥ (1 + δ)E[X ]

)
≤ e−

δ2µ
2+δ 0 ≤ δ

Proof. See [MU05, Theorem 4.4, Theorem 4.5].

Our analysis will proceed as follows: first, we introduce two random variables to
model, for a given small prime q, the behaviour of the values fV (α) mod q. Then,
we will use Chernoff bound to firstly estimate the probability of wrongly guessing
fV (α) mod q, and then deduce a value for n so that such probability is minimized
for all primes q considered in the attack.

Let q ∈ Z be a fixed prime and let Xg be a random variable which counts the
number of times fV (α) mod q is among the values d1 mod q, . . . , dn mod q. Similarly,
let Xb be a random variable which counts the number of times a certain residue
t ∈ Z/qZ not equal to fV (α) mod q is among the values d1 mod q, . . . , dn mod q.
Then

E[Xg] = n · (ln 2 + 1)q− 1
q2 ≈ (ln 2 + 1)n

q
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E[Xb] = n · (2− ln 2)q− 1
q2 ≈ (2− ln 2)n

q

By applying Theorem 2.2, we can estimate the probability that Xg and Xb crosses
E[Xg ]+E[Xb]

2 = 3n
2q as

P

(
Xg ≤

3n
2q

)
= P

(
Xg ≤

(
1− 2 ln 2− 1

2 ln 2 + 2

)
E[Xg]

)
< e
− n

91q .
= eq,g

P

(
Xb ≥

3n
2q

)
= P

(
Xb ≥

(
1 + 2 ln 2− 1

4− 2 ln 2

)
E[Xb]

)
< e
− n

76q .
= eq,b

and we minimize these inequalities by requiring that

1− (1− eq,g)(1− eq,b)q−1 ≈ eq,g + (q− 1)eq,b
.
= sq

is small for each prime q considered in this attack phase. Thus, if q = max(q1, . . . , qk),
we can bound the sum

k∑
i=1

sqi ≤ qsq = q(e−
n

91q + (q− 1)e−
n

76q ) ≈ e−
n

91q+log q + e
− n

76q+2 log q

which we make small by taking n = O(q log q).
In order to apply the Chinese Remainder Theorem for the full recovery of α we

need that q1 · . . . · qk > p. If q1, . . . , qk are chosen to be the first k primes, we can use
an estimation for the first Chebyshev function growth rate to obtain ln(q1 · ... · qk) =
(1 + o(1)) · k ln k ∼ qk by Prime Number Theorem and thus qk > ln p. We then
conclude that

n = O(log p log log p)

non-membership witnesses are enough to recover fV (α) mod q1 · . . . · qk with high
probability.

We note that by using Chernoff bound in order to estimate the minimum number
of witnesses needed to recover α, it can be shown, similarly as done above for fV (α),
that O(log p log log p) non-membership witnesses are enough to identify with high
probability α mod q1 · . . . · qk = α.

The time complexity is dominated by

(# primes q)× (# witnesses) = O

( log p
log log p

)
×O(log p log log p)

which is equal to O(log2 p).

2.7 Improvements to the α-Recovery Attack
We can improve the α-Recovery Attack outlined in Section 2.6 by detailing variants
under two different attack scenarios, depending on whether the attacker has access
to non-membership witnesses for random-y or chosen-y.2 These improvements will
further reduce the number of non-membership witnesses needed to fully recover the
secret accumulator parameter α to a small multiple of log p.

2We observe that according to Definition 2.1, the attacker has access to an oracle which returns
witnesses for any chosen-y. However, in concrete instances of the accumulator scheme, an attacker
might have access only to witnesses for random values y.
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The main idea behind the improved attack is to keep removing wrong candidates
for α mod q for small primes q (sieving), until only the correct one is left. As in
the previous attack, the full value of α is reconstructed using the Chinese Remainder
Theorem.

2.7.1 Collecting Witnesses Issued at Different States

In the α-Recovery Attack, O(log p log log p) non-membership witnesses issued with
respect to the same accumulator value V are needed in order to fully recover α. In
the following attacks we drop this condition and allow non-membership witnesses to
be issued with respect to different accumulator values f1(α)P = V1, . . . , f`(α)P = V`,
but we require that no deletions occur between the accumulator states V1 and V`. In
this case, since the sequence of elements added must be public to permit witness
updates, we have that the polynomial functions gi,j(x) ∈ Fp such that fj(α) =
gi,j(α)fi(α) for all α ∈ Fp, can be publicly computed for any i, j ∈ [1, `]. It follows
that, given a small prime q, once α mod q and fi(α) mod q for some i ∈ [1, `] are
correctly computed, fj(α) mod q can be computed as gi,j(α)fi(α) mod q for any
j ∈ [1, `] such that j > i.

The requirement that no deletion operation should occur if the collected witnesses
were issued at different states comes from the fact that the accumulator can be
initialized by accumulating some values which are kept secret by the accumulator
manager.

It follows that, whenever the polynomial f1(x) ∈ Fp is publicly known (or, equiv-
alently, the set of all accumulated elements YV1) for a certain accumulator value V1,
we can remove the condition that no later deletion operations occur during attack
execution, since the knowledge of α mod q is enough to compute fi(α) mod q for any
i ∈ [1, `]. Thus any non-membership witnesses issued from V1 on can be used to
recover α.

2.7.2 Removing reduction modulo p

Under some realistic assumptions, we show that it is possible to eliminate with a
high probability the noise given by the reduction modulo p performed by the ac-
cumulator manager when he issues a non-membership witness. That is, we recover
d̃yi = fVj (α) mod (yi + α) for a large fraction of pairs (yi,Vj), given the partial non-
membership witnesses dyi =

(
fVj (α) mod (yi + α)

)
mod p collected with respect to

different accumulator values Vj with j > 1.
Aiming at this, we first observe that from the fact that 0 ≤ y,α < p for any given

y ∈ ACC \ YV , the partial non-membership witness dy for y with respect to V can be
expressed in terms of d̃y in one of the following way:

(1) dy = fV (α) mod (y+ α) = d̃y,

(2) dy =
(
fV (α) mod (y+ α)

)
− p = d̃y − p.

Since p is odd, whenever y+α is even, these two cases can be easily distinguished
modulo 2: indeed, in the first case dy ≡ fV (α) (mod 2), while in the second case
dy 6≡ fV (α) (mod 2).

This observation effectively allows to correctly compute d̃y half of the times given
a correct guess for α mod 2 and fV (α) mod 2. Indeed, given a set of partial non-
membership witnesses dy1 , . . . , dyn with respect to V , each guess of α mod 2 and
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fV (α) mod 2 will split the witnesses in two subsets, namely one where the corre-
sponding elements yi satisfy yi + α ≡ 0 (mod 2) (and thus d̃yi can be correctly
recovered), and the other where this doesn’t happen.

Checking if α mod 2 and fV (α) mod 2 were actually correct guesses can be done
observing how the attacks described in Subsection 2.7.3 and Subsection 2.7.4 (or
in Section 2.6 if witnesses are issued with respect to the same accumulator value)
behaves with respect to the subset of witnesses that permitted to recover the values
d̃yi . In case of a wrong guess, indeed, it will not be possible to distinguish α and
fVi(α) modulo some different small primes q: in this case, the attack can be stopped,
and a new guess should be considered. On the other hand, a correct guess will
permit to correctly recover α and fVi(α) modulo a few more primes q greater than 2.
Since, whenever α mod q and fV (α) mod q are known, d̃y can be correctly recovered,
analogously to the modulo 2 case, for all those y such that y + α is divisible by q,
this implies that it is possible to iteratively recover more and more correct values d̃yi
given the initial set of considered witnesses.

Repeating this procedure for small primes q up to r, it allows to recover d̃yi for
those yi that are divisible by at least one prime not exceeding r. This fraction tends
to 1−ϕ(r#)/(r#) as yi tend to infinity, where ϕ is the Euler’s totient function and
r# denotes the primorial, i.e., the product of all primes not exceeding r. For example,
setting r = 101 allows to recover d̃yi for about 88% of all available witnesses. We
conclude that d̃yi can be recovered for practically all i ∈ [1,n].

In the case where witnesses are issued with respect to different accumulator values
V1, . . . ,V`, as remarked above, the knowledge of α mod q and fV1(α) mod q allows to
compute fVj (α) mod q for all Vj with j > 1, so the modulo p noise reduction can be
easily performed independently on when the witnesses are issued.

2.7.3 The Random-y Sieving Attack

In this scenario, we assume that all elements yi for which the partial non-membership
witnesses dyi are available to the adversary are sampled uniformly at random from Fp.
Furthermore, these witnesses are pre-processed accordingly to the method described
above in order to eliminate the noise given by the reduction modulo p.

Recovering α mod q. Let q be a small prime, i.e. q = O(log p), and let Yα be
the set containing all pairs (yi, d̃yi) such that yi + α ≡ 0 (mod q) for a certain guess
α mod q. If the latter is guessed wrongly, then the values d̃yi modulo q are distributed
uniformly and independently from the values fVi(α) mod q. On the other hand, if
the guess is correct, then d̃yi ≡ fVi(α) (mod q).

Even in the case when fV1(α) mod q is unknown, fVi(α) mod q can be recovered
from the first occurrence of yi in the set Yα and verified at all further occurrences,
since all fVj (α) mod q can be computed for any j ≥ i. It follows that we can easily
distinguish if a guess for α mod q is either correct or not.

The attack succeeds if for every wrong guess α× of α mod q we observe a contra-
diction within the pairs in Yα× . It’s easy to see that if |Yα× | = t, the probability to
observe at least one contradiction is 1− 1/qt−1. Thus, by ensuring a constant number
t of elements in Yα× given each α× 6= α mod q is sufficient to make the probability
of false positives negligible. This requires availability of O(q log q) witnesses in total.

Recovering α. The final step is the same as in the previous attacks: the secret
value α is recovered by repeating the process for different small primes q and apply-
ing the Chinese Remainder Theorem. Furthermore, if for some primes q there are
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multiple candidates of α mod q, such primes can be omitted from the application of
the Chinese Remainder Theorem. In this case, in order to fully recover α ∈ Z, the
maximum prime q that has to be considered must be larger than ln p by a constant
factor. We conclude that O(q log q) = O(log p log log p) witnesses are sufficient for
full recovery of α with overwhelming probability.

The time complexity of the attack is dominated by guessing α mod q for each
q considered. Note that for a wrong guess of α mod q, we can expect on average
a constant amount of witnesses to check before an inconsistency is observed; this
amount is thus enough to identify the correct value. For each such guess, nearly all
accumulator states in history have to be considered in order to take into account all
additions to the accumulator. However, the non-membership witnesses issued in each
state can be classified by guesses of α mod q in a single scan for each prime q.

We conclude that the time complexity is dominated by

(# primes q)× (q guesses of α mod q)× (# of accumulator states)

and by classifying all non-membership witnesses for each prime q

(# primes q)× (# witnesses)

The final complexity is O((1 + `/ log log p) log2 p).

2.7.4 The Chosen-y Sieving Attack

If the adversary is allowed to choose the elements yi for which the partial non-
membership witnesses are issued, no matter with respect to which accumulator state,
the number of required witnesses can be further reduced by a log log p factor.

First, we assume that the adversary chooses the elements yi non-adaptively, i.e.
before the accumulator is initialized. The idea is simply to use consecutive values,
that is y0 = r, y1 = r + 1, . . . , yi = r + i, . . . , for some r ∈ Fp. This choice fills
equally all sets Yα̃ for all α̃ ∈ Z/qZ and small q, where α̃ represents either a correct
guess for α mod q or a wrong guess α×. As a result, t = O(q) elements are enough
to make the size of each set Yα̃ at least equal to t. The full total number of required
non-membership witnesses is then reduced to O(q) = O(log p). The time complexity
then is improved by a factor log log p in the case when ` is small: O(` log2 p/ log log p).

We now consider the case when the adversary can adaptively choose the elements
yi. Note that, on average, we need only 2 + 1/(q − 1) elements in each set Yα× to
discard the wrong guess of α mod q, for all q. The adaptive choice allows to choose
yi such that (yi+ α×) ≡ 0 (mod q) specifically for those α× which are not discarded
yet. Furthermore, the Chinese Remainder Theorem allows us to simultaneously com-
bine such adaptive queries for all chosen primes q. As a result, approximately 2 ln p
witnesses for adaptively chosen elements are sufficient for the full recovery of α. This
improves the constant factor of the non-adaptive attack in terms of the number of
non-membership witnesses required.

We conclude by observing that, as described at the beginning of this section, non-
membership witnesses can be issued with respect to different successive accumulator
values V1, . . . ,V`, within which no deletion operation occurs. If the value fV1(x) ∈
Z[x] is known to the adversary (or equivalently the set of all accumulated elements
in V1), only ln p non-membership witnesses issued for adaptively chosen elements are
sufficient to recover α. In this case, indeed, instead of verifying uniqueness of elements
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Figure 2.1: Attacks experimental success rate as a function of the total number of
available witnesses.

in the set Yα× , we can directly compare our guess to the value fVj (α) mod q given
from fV1(α), thus requiring 1 + 1/(q− 1) elements on average.

2.8 Experimental Results
We implemented the α-Recovery Attack from Section 2.6 and both the random-y and
the non-adaptive chosen-y sieving attacks from Subsection 2.7.3 and Subsection 2.7.4.

For the verification purpose, we used a random 512-bit prime p, and we measured
the success rate of the attacks with respect to the number of available non-membership
witnesses. The α-Recovery Attack applies to a single accumulator state, and for the
sieving attacks, the number of state changes of the accumulator was ten times less
than the number of issued witnesses. The initial state of the accumulator in all
attacks was assumed to be secret. Each attack was executed 100 times per analyzed
number of available non-membership witnesses. The sieving attacks were considered
successful if at most 210 candidates for α were obtained and the correct α was among
them. The results are illustrated in Figure 2.1.

The α-Recovery Attack, while being simple, requires a significant amount of wit-
nesses to achieve a high success rate, more than 20000 ≈ 10 ln p ln ln p witnesses and
finishes in less than 5 seconds. The random-y sieving attack achieves an almost full
success rate with about 6000 ≈ 3 ln p ln ln p available witnesses and completes in less
than 10 seconds. The chosen-y sieving attack requires less than 2000 ≈ 4 ln p wit-
nesses to achieve almost perfect success rate and completes in less than 4 seconds.
All timings include the generation of witnesses. The experiments were performed
on a laptop with Linux Mint 19.3 OS and an Intel Core i5-10210U CPU clocked at
1.60GHz.

2.9 Weak Non-membership Witnesses
In the α-based construction, non-membership witness definition is affected by another
minor design vulnerability: given a non-membership witness w̄y,V = (Cy, dy) with
respect to an accumulator value V , if dy ≡ fV (α) mod p, then Cy = O, i.e. the
identity element of G1.

Those weak non-membership witnesses are issued with non-negligible probability
in the security parameter λ when only one element is accumulated. Assume, indeed,
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that V = (y′ + α)P for a certain element y′ ∈ ACC. Then, for any element y ∈ ACC
such that y′ < y, the corresponding non-membership witness w̄y,V with respect to V
is issued as

dy =
(
y′ + α mod (y+ α)

)
mod p = (y′ + α) mod p

and thus Cy = O. In this case, as soon as the element y′ becomes public (e.g. is
removed), the accumulator secret parameter can be easily obtained as α = (dy −
y′) mod p.

2.10 Preventing Witness Forgery in the RS-based Con-
struction

All the attacks we have presented so far are ineffective when witnesses (more precisely,
non-membership witnesses) are issued according to the defining equations given for
the RS-based construction.

We note that the knowledge of the RS is functionally equivalent to the knowledge
of α when the set of currently accumulated elements is fully known: indeed, besides
accumulator updates, theRS permits to issue both membership and non-membership
witnesses for arbitrary elements using the Extended Euclidean Algorithm, with the
difference that the knowledge of α permits to break collision-resistance, while the
knowledge of the RS does not. Furthermore, despite what we saw in Section 2.5,
witnesses definition in the RS-based construction satisfies the hypothesis for the
t−SDH security reduction provided by Au et al. [Au+09], i.e. collision-resistance is
enforced when the RS is used to issue witnesses.

Depending on the use-case application of the accumulator scheme, the possibility
to publicly issue witnesses for arbitrary elements could be undesirable: for example,
this is relevant when the accumulator scheme is used as a privacy-preserving autho-
rization mechanism, i.e. an Anonymous Credential System. Suppose, indeed, that
in this scenario, the accumulator value V accumulates revoked users’ identities and
the non-revoked ones authenticate themselves showing the possession of a valid non-
membership witness w̄y,V for an identity y, both issued by a trusted Authentication
Authority (i.e., the accumulator manager). If an attacker has access to the RS, he
will be able to forge a random pair of credentials (y′,wy′,V ) and then he could au-
thenticate himself, even if the Authentication Authority never issued the identity y′
nor the corresponding witness. This is especially the case when a zero-knowledge
protocol is instantiated during users’ credentials verification since it is impossible to
distinguish between a zero-knowledge proof for an authorized identity y and a proof
for the never issued, but valid, identity y′.

In the following, we will investigate theRS-based construction under this scenario,
i.e. assuming the accumulator manager to be the only authority allowed to issue
witnesses. We stress that resistance to witness forgeries is outside the security model
provided by Au et al., where the attacker can generate as many witnesses as he
wishes, and the attacks described in the following do not break any security properties
assumed for the RS−based construction by the respective authors. The following
analysis will, however, be relevant to address the security of an accumulator scheme
for bilinear groups built upon Au et al. one that we propose in Chapter 3.

In the next two Sections, we will discuss how witness forgery for never-authorized
elements can be prevented, namely: a) the manager constructs the set YV of currently
accumulated elements in such a way that it is infeasible to fully reconstruct it; b) the
reference string RS is not published, and an attacker cannot reconstruct it.
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2.10.1 How to ensure some accumulated elements remain unknown

Given an accumulator value V , assume YV is the union of the disjoint sets YV0 , whose
elements are used exclusively to initialize the accumulator value from P to V0, and
Yid = YV \ YV0 , the set of currently accumulated elements for which a membership
witness have been issued.

Since the elements in Yid must be public to enable users to update their witnesses3,
the reconstruction of YV = YV0 ∪ Yid can be prevented only if YV0 remains, at least
partially, unknown.

From YV = YV0 ∪Yid and YV0 ∩Yid = ∅, it follows that the polynomial fV (x) can
be written as

fV (x) = f0(x) · fid(x) =
∏

yi∈YV0

(yi + x)
∏

yj∈Yid

(yj + x)

When non-membership witnesses are generated according to theRS-construction,
as soon as an attacker has access to |YV0 | partial non-membership witnesses for the
elements y1, . . . , y|YV0 |, i.e.

dyi ≡ fV (−yi) ≡ f0(−yi) · fid(−yi) (mod p)

he will be able to reconstruct the unknown set YV0 . Indeed, with the knowledge of
Yid, the polynomial fid(x) can be easily obtained and it is then possible to compute
the |YV0 | pairs (

− yi, f0(−yi)
)
=

(
−yi,

dyi
fid(−yi)

)
With these pairs, the attacker is able to uniquely interpolate, using for example La-
grange interpolation, the monic polynomial f0(x) mod p whose roots are the elements
in YV0 .4

The full reconstruction of the set YV can be prevented by initializing the accumu-
lator with several random elements which are more than the total number of issuable
non-membership witnesses: this avoids the possibility to interpolate f0(x), even in
the case when the attacker has access to all issued non-membership witnesses.

We note, however, that this approach has some disadvantages. First, the maxi-
mum number of issuable non-membership witnesses has to be set at generation time
and cannot be increased once the first witness is issued since all further accumulated
elements will be public to allow witness updates. When this number is reasonable big,
let us say 1 billion, the accumulator manager needs to evaluate at least a 1-billion
degree polynomial when issuing any new non-membership witnesses, an operation
that becomes more and more expensive as the number of accumulated elements in-
creases. On the other hand, by decreasing it, the accumulator manager can issue the
non-membership witnesses less expensively, but only to a smaller set of users.

2.10.2 Recovering the RS

Alternatively to the countermeasure proposed in Subsection 2.10.1, it is natural to
wonder if unauthorized witness forgery can be prevented by just keeping the RS
secret from the attacker.

3The very first element for which a membership witness is issued can remain unknown if there are
no other users who need to update their witnesses. In this case, we assume that this element belongs
to Y0.

4Since f0(x) is monic, only deg(f0) evaluations are needed to uniquely interpolate it.
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We will now show that by executing what we will refer to as the Witness Forgery
Attack (Attack 1), an attacker that has access to multiple witnesses can successfully
recover the RS, even if the accumulator manager keeps it secret.

The main observation on which this attack is based on is that given any partial
witness Cy (no matter if it is a membership or a non-membership one) for an element
y with respect to the accumulator value V , it can be expressed as Cy = gy(α)P for
a polynomial gy(x) ∈ Fp[x] which depends on y and fV (x) (i.e. fV (x) = gy(x)(y +
x) + dy for some dy ∈ Fp).

Assume the attacker has access to n ≥ |YV | = m partial non-membership wit-
nesses

Cy1 = g1(α)P , . . . ,Cyn = gn(α)P

with respect to V . From Subsection 2.10.1, we know that he is able to fully recover
the polynomial fV (x), and so he can explicitly compute from the elements y1, . . . , yn
the n polynomials g1(x), . . . , gn(x) in Fp[x], each of degree m− 1. We note that by
randomly choosing m out of these n polynomials, they will be linearly independent
with probability

1
pm2 ·

m−1∏
k=0

(pm − pk) =
m∏
k=1

(
1− 1

pk

)
≈ 1

and so we assume, without loss of generality, that g1(x), . . . , gm(x) are independent.
It follows that for any fixed i ∈ [0, . . . ,m− 1], there exist computable not-all-zero
coefficients a1, . . . , am ∈ Fp such that

xi = a1g1(x) + . . .+ amgm(x)

and so
αiP = a1Cy1 + . . .+ amCym

In other words, the partial reference string

RSm
.
= {P ,αP , . . . ,αm−1P}

can be obtained from these witnesses, which in turn enables the attacker to compute
membership and non-membership witnesses with respect to V for any accumulated
and non-accumulated element, respectively.

We note that it is more convenient to execute the above attack with respect to the
accumulator value V0 and the polynomial fV0(x): any non-membership witness for a
never added element which is issued with respect to a later accumulator value than
V0, can be iteratively transformed back to a non-membership witness for V0 by just
inverting the non-membership witness update formula outlined in Section 2.3. Once
both fV0(x) and RS |YV0 | are computed, the attacker can issue witnesses with respect
to V0 for elements in and not in YV0 and update them with respect to the latest accu-
mulator value as usual. Since it is possible to issue many different non-membership
witnesses for V0, this implies that by updating them, these non-membership wit-
nesses can be used to iteratively expand the previously computed partial reference
string RS |YV0 |.

More precisely, given an accumulator value V we know that

V =

 ∏
yi∈YV \YV0

(y+ α)

V0 = fV (α)P
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Attack 1 The Witness Forgery Attack
Input: n ≥ |YV0 | non-membership witnesses for never accumulated elements, the
accumulator history (accumulator values and added/removed elements)
Output: a non-membership witness for a non-accumulated element or a membership
witness for an accumulated one with respect to V
1: Un-update all non-membership witnesses with respect to V0 inverting witness

update formula and using accumulator history.
2: Interpolate the polynomial fV0(x) =

∏
yi∈YV0

(yi + x) from witnesses.
3: Use Euclidean Algorithm to find gi(x) and dyi such that fV0(x) = gi(x)(yi+ x) +
dyi for every element yi, i = 1, . . . ,n

4: Use linear algebra to write xj as a linear combinations of g1(x), . . . , gn(x) for any
j = 0, . . . , |YV0 | − 1. Obtain RS |YV0 | from witnesses.

5: Use RS |YV0 | and fV0(x) to issue many different non-membership witnesses with
respect to V0. Update them with respect to V .

6: Use the additional non-membership witnesses issued to expand the reference
string to RS |YV |.

7: Issue membership and non-membership witnesses with respect to the accumulator
value V .

where fV (x) can be publicly computed from the published witness update information
if the monic polynomial fV0(x) is recovered by the attacker through interpolation, as
outlined in Subsection 2.10.1.

Once the attacker successfully computes RS |YV0 |, they use it to issue (a multi-
ple of) |YV | − |YV0 | additional non-membership witnesses for random elements with
respect to V0, he updates them with respect to V , and expands its starting set
of elements and witnesses. Then, for each element yi in this bigger set, he com-
putes the corresponding polynomial gi(x) of degree deg(fV )− 1 such that fV (x) =
gi(x)(yi + x) + dyi . At this point and similarly as before, the attacker can explicitly
write a linear combination of computable polynomials which equals xi for any i such
that deg(fV0)− 1 < i ≤ deg(fV )− 1, and thus can expand the previously computed
RSdeg(fV0 )

to RSdeg(fV ). In conclusion, an attacker would be able to forge witnesses
with respect to the latest accumulator value by accessing only |YV0 | non-membership
witnesses. The whole attack is summarized in Attack 1.

Similarly as discussed in Subsection 2.10.1, this attack can be prevented if the
total number of issued non-membership witnesses is less than |YV0 |.

2.11 Conclusions
In this Chapter, we cryptanalysed the Dynamic Universal Accumulator scheme pro-
posed by Au et al. [Au+09], investigating the security of the two constructions
proposed, to which we refer as the α-based and the RS-based construction.

For the first construction, we have shown several attacks which allow us to recover
the accumulator secret parameter α and thus break its collision resistance. More
precisely, if p is the order of the underlying bilinear group, an attacker with access to
O(log p log log p) non-membership witnesses for random elements will be able to fully
recover α, no matter how many elements are accumulated. If, instead, the elements
can be chosen by the attacker, the number of required witnesses reduces down to
just O(log p), thus making the attack linear in the size of the accumulator secret
α. Furthermore, we showed how accumulator collision resistance could be broken in
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the α-based construction given one non-membership witness, and we also described
another minor design flaw.

For the second, i.e., the RS-based construction, we investigated resistance to
witness forgeries under the hypothesis that the accumulator manager has the exclusive
right to issue witnesses (as in authentication mechanisms) and thus keeps the RS
private. We have shown that an attacker that has access to multiple witnesses can
reconstruct the accumulator manager RS, which would then enable him to compute
witnesses for arbitrary elements. In particular, if the accumulator is initialized by
accumulating m secret elements, m witnesses suffice to recover the secret RS.

Although we have shown that the α-based construction of Au et al. Dynamic Uni-
versal Accumulator is insecure, one can still use it by replacing the non-membership
witness defining equation with the one provided in the alternativeRS-based construc-
tion, which ensures collision-resistance instead under the t-SDH assumption. There is
one caveat: knowledge ofRS will enable an attacker to issue witnesses for arbitrary el-
ements. If this needs to be avoided, as is the case for authentication mechanisms, then
the RS should be kept secret and the accumulator adequately initialized. Namely,
the accumulator manager needs to define an upper limit m to the total number of
issuable non-membership witnesses and has to initialize the accumulator by adding
m+ 1 secret elements to prevent Attack 1.
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3.1 Introduction
In the previous Chapter, we have seen that a common requirement for accumulator
schemes is the ability to change the set of accumulated elements: when the accumu-
lator allows to add and delete elements dynamically, it is said to be dynamic.

Whenever addition or deletion operations occur for one or several elements (in the
latter case, these are called batch additions and deletions), already issued witnesses
should be updated to be consistent with the new accumulator value. Ideally, this
should be done using a short amount of witness update data (i.e. whose cost/size is
not dependent on the number of elements involved) and with only publicly available
information (i.e. without knowledge of any secret accumulator parameters). While
there are many constructions that satisfy the public update condition, as regards to
the update cost, Camacho and Hevia showed in [CH10] an impossibility result to
have batch witness updates whose update data size is independent of the number of
elements involved. More precisely, they showed that for an accumulator state which
accumulates n elements, the witness update data size for a batch delete operation
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involving m elements could not be less than Ω(m log n
m ), thus requiring at least

Ω(m) operations to update.
In this Chapter, we propose a Dynamic Universal Accumulator in the accumulator

manager setting, which supports batch operations and public batch witness updates,
as well as privacy-preserving zero-knowledge proof of knowledge for membership and
non-membership witnesses. Its features are manifold:

• Support for Batch Operations: Starting from Nguyen’s positive accumulator
[Ngu05] and Au et al. [Au+09] and Damgård and Triandopoulos non-membership
proof mechanism [DT08], we state a Dynamic Universal Accumulator for bilinear
groups in the accumulator manager setting (i.e. it is managed by a central author-
ity who knows the accumulator trapdoor) and we extend it to fully support batch
addition and deletion operations, as well as membership and non-membership
batch witness updates.

• Batch Witness Update Protocol: we designed a batch witness update pro-
tocol where the batch witness update information published by the Accumulator
Manager after a batch operation is the same for all users. This information can
be pre-processed by third-party servers in order to allow users to update their
witnesses in a constant number of elementary operations, even in the case many
batch operations occurred from their last update. This allows the accumulator to
be used even when only limited-resource devices (ex. smartphones) are available
to users.

• Optimal Batch Update: the number of operations needed to batch update
witnesses equals the lower bound given by Camacho and Hevia [CH10] in the case
of a batch deletion operation. The same complexity holds in the case of either a
batch addition operation and a batch addition & deletion operation, where m new
elements are added and other m elements are deleted, namely O(m) update time
for a batch witness update information size ofm log pq bits, where p is the size of the
underlying bilinear group and q is the bit-size of group elements representations.

• Security: we introduce a weaker definition for collision resistance and a new more
general definition of t−SDH assumption for which we provide in the Generic Group
Model a lower bound complexity of a generic algorithm that solves the correspond-
ing hardness problem. We show that our scheme, along with its public batch up-
date protocol and published information is secure under this more general security
assumption, and we address the relevant attacks detailed in Chapter 2 by showing
that with proper initialization of the accumulator value, a generic algorithm has
a negligible probability to compute elements belonging to a particular reference
string RS, whose knowledge would allow issuing arbitrary witnesses.

• Zero-Knowledge Friendly: zero-knowledge protocols are supported for any op-
eration involving witnesses: we detail an efficient non-interactive zero-knowledge
protocol to show ownership of a valid witness, and the batch witness update pro-
tocol is designed so that the results of a delegated batch witness update pre-
processing can be obtained without letting the third-party servers learn anything
except the publicly available data.

• Implementation: to show efficiency and its practical relevance, we implemented
and benchmarked the proposed accumulator using state-of-the-art libraries for
pairing-friendly elliptic curves. Following feedback received from the community,
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we briefly report benchmarks of third-party implementations of our scheme, which
are already employed in production applications.
Limitations. Our protocol assumes a trusted Accumulator Manager that, by
knowing the secret accumulator parameter α, can forge membership and non-
membership witnesses at will. In practice, the secret α can be secret-shared among
multiple managers, but such scheme’s construction and security analysis is left as
future work. In case of a batch addition and deletion operation where m elements
are added and/or deleted, the batch update data has O(m) size, as in the case
for non-batch operations: this is indeed a theoretical lower bound that cannot
be improved, although our construction provides better constants, detailed at the
end of Subsection 3.4.1, than the non-batch approach. We note, however, that
our protocol supports a delegation technique (not possible for non-batch opera-
tions) which allows users to safely update witnesses in constant time if third-party
servers process, on their behalf, the O(m)-sized public witness batch update data
published by the Accumulator Manager.

It follows that our accumulator is well suited to be the building block of an Anony-
mous Credential System, which originally motivated this work. In these systems, only
the users who were previously authorized by a central authority (the accumulator
manager) can use the issued credentials to authenticate to the third-party verifier (e.g.
some financial service provider, like a bank or an exchange). They do so by proving
ownership of a valid membership or non-membership witnesses in zero-knowledge,
depending on whether the accumulator is used as a white- or black-list. Further-
more, doing so anonymously and unlinkably, even if the verifier colludes with the
accumulator manager. This could be crucial in many applications given current soci-
etal challenges of protecting user privacy on the one hand and government-imposed
know-your-customer regulations on the other hand.

Related Works. Relevant to this Chapter are accumulator schemes designed in
groups of known order [Ngu05; DT08; Au+09], where the considered group is a prime
order bilinear group.

Nguyen in [Ngu05] proposed a dynamic positive accumulator for symmetric bilin-
ear groups, where up to t elements can be accumulated assuming that the t−Strong
Diffie-Hellman assumption holds in the underlying group. Damgård and Triandopou-
los [DT08] extended Nguyen’s scheme, under the same security assumptions, to sup-
port non-membership proofs, thus defining a universal accumulator based on bilinear
pairings. Soon after this work, Au et al. [Au+09] extended Nguyen’s scheme to a
universal accumulator by proposing two possible variants: the more efficient α-based
construction best suitable when a central authority (the accumulator manager) keeps
the accumulator updated, and the alternative more decentralized but less efficient
reference string-based construction, whose non-membership witness definition results
to be equivalent to Damgård and Triandopoulos’ one.

In Chapter 2, although we considered Au et al. α-based construction insecure,
we concluded that in the presence of an accumulator manager, it is possible to safely
use it by replacing the witness defining equations with the one provided in the ref-
erence string-based construction (or equivalently, the Damgård and Triandopoulos’
construction), with the additional care of properly initializing the accumulator value.

The Dynamic Universal Accumulator obtained by combining Nguyen’s positive
accumulator and Au et al. and Damgård and Triandopoulos’ non-membership witness
mechanism will be the starting point of our dynamic universal accumulator scheme,
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which we will further extend to support batch operations and a public batch witness
update protocol.

3.1.1 Outline

In Section 3.2 we define the underlying dynamic universal accumulator, obtained by
combining previous schemes and properly restated in order to address our security
model and new features, among which we have the support for batch addition and
deletion operations, detailed in Section 3.3. In Section 3.4 we describe the public batch
witness update protocol, which allows users to efficiently update their witnesses using
information published by the accumulator manager after each batch operation. The
security of the resulting scheme is addressed in Section 3.5, while in Section 3.6, we
describe how to properly initialize the accumulator so that users will not be able to
compute, using the public information available to them, unauthorized witnesses. In
Section 3.7 we detail a zero-knowledge proof of knowledge protocol to show knowledge
of valid witnesses with respect to a certain accumulator value, while in Section 3.8 we
discuss our and community implementations of the resulting extended accumulator
scheme.

3.2 A Dynamic Universal Accumulator for Bilinear Groups
We now summarize Nguyen’s positive accumulator scheme [Ngu05] (i.e. Membership
Witness, Update and Verification) extended with the non-membership proof system
of Au et al. [Au+09] and Damgård and Triandopoulos [DT08] (i.e. Non-membership
Witness, Update and Verification). We will do so adopting the same notation of
Chapter 2, briefly outlined in Section 2.2.

Due to progress in discrete logarithm computations [Adj+15; KW21], which
weaken the security of efficient implementable elliptic curves provided with a Type-I
pairing, we restate their definitions into a Type-III setting, making it best suitable for
efficient and more secure pairing-friendly elliptic curves. In light of this, we will often
refer, with a bit of abuse of notation, to elements belonging in the defining groups of
the working bilinear group as points, thus stressing the fact that in concrete efficient
implementations they will correspond to elliptic curve points.

In addition, we introduce new concepts (e.g. Accumulator States, Epochs) and
parameters (e.g. batchMax), to make the accumulator definition coherent with the
batch operations and the batch witness update protocol we will describe starting from
Section 3.3.

Bilinear Group Generation.1 Given a security parameter 1λ, generate a bilinear
group G = (p,G1,G2,GT ,P , P̃ , e) where:

• e : G1 ×G2 → GT is an efficiently computable non-degenerate bilinear map;

• (G1,+) is an additive group generated by P with identity element O;

• (G2,+) is an additive group generated by P̃ with identity element Õ;

• (GT , ·) is an multiplicative group generated by e(P , P̃ );

• |G1| = |G2| = |GT | = p is prime;
1We refer, for example, to [Ara+13] for more technical details on how these bilinear groups can

be efficiently generated and implemented.
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Accumulator Parameters. Uniformly sample an α ∈ (Fp)∗ and consider ACC =
(Fp)∗ \ {−α} as the domain of accumulatable elements. Moreover, set a bound
batchMax to the maximum number of batch additions and/or deletions possible in
each epoch (we will provide more details in Section 3.3).

The bilinear group G, the bound batchMax and the point Q̃ = αP̃ are the accu-
mulator public parameters and are available to all accumulator users, while α is the
accumulator secret parameter and is known only to the accumulator manager.

Accumulator Initialization. Select a set YV0 ⊂ ACC and let the initial accumulator
value to be equal to

V0 =

 ∏
y∈YV0

(y+ α)

P
The set YV0 is kept secret and its elements are never removed from the accumulator.2

Accumulator States and Epochs. An accumulator state is a pair (V ,YV ) where
V ∈ G1 is the corresponding accumulator value and YV ⊆ ACC denotes the set of
elements accumulated into V (initialization elements excluded). We call epoch the
period of time during which an accumulator state remains unchanged.

Given an accumulator state (V ,YV ), the accumulator value V is equal to

V =

 ∏
y∈YV

(y+ α)

V0 =

 ∏
y∈YV ∪YV0

(y+ α)

P
and can be computed from YV and V0 if the secret parameter α is known.

Accumulator Update. The accumulator state (V ,YV ) changes when one or more
elements are added or removed from the accumulator. This can be done using the
following single element Addition or Deletion operations.

• Addition: if y ∈ ACC \ YV , the element y is added into the accumulator when
the accumulator value is updated from V to V ′ as

V ′ = (y+ α)V

It follows that YV ′ = YV ∪ {y}.

• Deletion: if y ∈ YV , the element y is deleted from the accumulator when the
accumulator state is updated from V to V ′ as

V ′ =
1

y+ α
V

It follows that YV ′ = YV \ {y}.

Membership Witness. Let (V ,YV ) be an accumulator state and y an element in
ACC. Then wy,V is a membership witness for y with respect to the accumulator value
V if

C =
1

y+ α
V

2Some security properties of the scheme strongly depends on how the elements in YV0 are chosen.
This is addressed in Section 3.6.



42 Chapter 3. A Dynamic Universal Accumulator over Bilinear Groups

and wy,V = C. The accumulator manager issues the membership witness wy,V to
a user associated with the element y, in order to permit him to prove that y is
accumulated into V .3

Non-Membership Witness. Let (V ,YV ) be an accumulator state and y an element
in ACC. Then w̄y,V is a non-membership witness for y with respect to the accumulator
state V if, by letting

fV (x) =
∏

yi∈YV ∪YV0

(yi + x) ∈ Fp[x]

it holds
d = fV (−y) mod p with d 6= 0, C =

fV (α)− d
y+ α

P

and w̄y,V = (C, d). The accumulator manager issues the non-membership witness
w̄y,V to a user associated with the element y, in order to permit him to prove that y
is not accumulated into the accumulator value V .

Witness Update. When accumulator state changes happen, users whose elements
are not involved in the corresponding Addition or Deletion operations, have to update
their witnesses with respect to the new accumulator state to continue being able to
prove statements about their associated elements.

After an accumulator state change, users’ membership and non-membership wit-
nesses are updated according to the following operations:

• On Addition: suppose the accumulator state changes from (V ,YV ) to (V ′,YV ′)
as a result of an Addition operation. Hence, for a certain y′ ∈ ACC \ YV , V ′ =
(y′ + α)V and YV ′ = YV ∪ {y′}.
Then, for any y ∈ YV the membership witness wy,V = C is updated with respect
to the accumulator state (V ′,YV ′) by computing

C ′ = (y′ − y)C + V

and letting wy,V ′ = C ′, while for any y /∈ YV , the non-membership w̄y,V = (C, d)
is updated, if issued, with respect to (V ′,YV ′) by computing

C ′ = (y′ − y)C + V , d′ = d · (y′ − y)

and letting w̄y,V ′ = (C ′, d′).

• On Deletion: suppose the accumulator state changes from (V ,YV ) to (V ′,YV ′)
as a result of a Deletion operation. Hence, for a certain y′ ∈ YV , V ′ = 1

y′+αV and
YV ′ = YV \ {y′}.
Then, for any y ∈ YV ′ , the membership witness wy,V = C is updated with respect
to the accumulator state (V ′,YV ′) by computing

C ′ =
1

y′ − y
C − 1

y′ − y
V ′

3When the accumulator is employed as an authentication mechanism, single additions in place
of batch operations lack users’ privacy and expose to impersonation attacks since the membership
witness C would be equal to the previous accumulator state value, while y can be deduced from the
public witness update information.
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and letting wy,V ′ = C ′, while for any y /∈ YV ′ , the non-membership witness w̄y,V =
(C, d) is updated, if issued, with respect to (V ′,YV ′) by computing

C ′ =
1

y′ − y
C − 1

y′ − y
V ′, d′ = d · 1

y′ − y

and letting w̄y,V ′ = (C ′, d′).

Witness Verification. A membership witness wy = C for an element y ∈ ACC is
valid for the accumulator state (V ,YV ) if and only if e(C, yP̃ + Q̃) = e(V , P̃ ). When
wy is a valid membership witness for the state (V ,YV ) we assume that y ∈ YV and
hence wy = wy,V .

A non-membership witness w̄y = (C, d) for an element y ∈ ACC is valid for the
accumulator state (V ,YV ) if d 6= 0 and e(C, yP̃ + Q̃)e(P , P̃ )d = e(V , P̃ ). When w̄y
is a valid non-membership witness for the state (V ,YV ) we assume that y /∈ YV and
hence w̄y = w̄y,V .

3.3 Adding Support for Batch Operations
We now describe how the Dynamic Universal Accumulator defined in the previous
Section can be extended to coherently support batch addition and deletions operations
for accumulator updates and user witnesses updates.

We start by defining a family of polynomials which will help us show the correct-
ness of our batch operations compactly with respect to the underlying accumulator
scheme.

Batch Polynomials. Given the secret accumulator parameter α and two disjoint
sets A,D ⊆ Fp where A = {yA,1, . . . , yA,n} and D = {yD,1, . . . , yD,m}, we define the
following polynomials in Fp:

vA(x)
.
=

n∑
s=1

s−1∏
i=1

(yA,i + α)
n∏

j=s+1
(yA,j − x)



vD(x)
.
=

m∑
s=1

 s∏
i=1

(yD,i + α)−1
s−1∏
j=1

(yD,j − x)


vA,D(x)

.
= vA(x)− vD(x) ·

n∏
i=1

(yA,i + α)

dA(x)
.
=

n∏
t=1

(yA,t − x) , dD(x)
.
=

m∏
t=1

(yD,t − x)

Accumulator Batch Update. Several elements are added into or removed from
the accumulator using the following Batch Addition and Batch Deletion operations.

• Batch Addition: if A = {yA,1, . . . , yA,n} ⊆ ACC \ YV , the elements in A are
batch added into the accumulator when the accumulator value is updated from V
to V ′ as

V ′ = dA(−α) · V

It follows that YV ′ = YV ∪A.
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• Batch Deletion: if D = {yD,1, . . . , yD,m} ⊆ YV , the elements in D are batch
deleted from the accumulator when the accumulator state is updated from V to
V ′ as

V ′ =
1

dD(−α)
· V

It follows that YV ′ = YV \ D.

• Batch Addition & Deletion: if A = {yA,1, . . . , yA,n} ⊆ ACC \ YV , D =
{yD,1, . . . , yD,m} ⊆ YV and A∩D = ∅, the elements in A are batch added into the
accumulator and the elements in D are batch deleted from the accumulator when
the accumulator state is updated from V to V ′′ as

V ′′ =
dA(−α)
dD(−α)

· V

It follows that YV ′′ = YV ∪A \D.

Batch Witness Update. When a batch addition or deletion changes the accumu-
lator state, users’ membership and non-membership witnesses are updated according
to the following operation.

• On Batch Addition: suppose the accumulator state changes from (V ,YV )
to (V ′,YV ′) as a result of an Batch Addition operation. Hence, for certain A =
{yA,1, . . . , yA,n} ⊆ ACC \ YV , we have V ′ = dA(−α) · V and YV ′ = YV ∪A.
Then, for any y ∈ YV , the membership witness wy,V = C is updated with respect
to the accumulator state (V ′,YV ′) computing

C ′ = dA(y) ·C + vA(y) · V

and letting wy,V ′ = C ′. While for any y /∈ YV , the non-membership witness
w̄y,V = (C, d) is updated with respect to (V ′,YV ′) by computing

C ′ = dA(y) ·C + vA(y) · V , d′ = d · dA(y)

and letting w̄y,V ′ = (C ′, d′).

Proof. For the ease of notation, we will denote the elements yA,i with yi, the
accumulator value corresponding to

(∏j
i=1(yi + α)

)
V with Vj and, for any y ∈ YV ,

the intermediate membership witnesses wy,Vj with Cj .
We prove the formula by induction on n, the number of batch added elements:�� ��n = 1 We get C1 = V + (y1− y)C, the same formula defined for the membership
witness update after a single addition operation.�� ��n− 1→ n For ease of exposition, we denote vA(y) =

∑n
s=1 bs,n, where

bs,n =
s−1∏
i=1

(yAi + α)
n∏

j=s+1
(yAj − y)
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Using the inductive hypothesis for Cn−1, we have

Cn = (yn − y)Cn−1 + Vn−1

= (yn − y)

(n−1∏
t=1

yt − y
)
C +

n−1∑
s=1

s−1∏
i=1

(yi + α)
n−1∏
j=s+1

(yj − y)

V
+ Vn−1

=

(
n∏
t=1

yt − y
)
C +

n−1∑
s=1

s−1∏
i=1

(yi + α)
n∏

j=s+1
(yj − y)

V + Vn−1

=

(
n∏
t=1

(yt − y)
)
C +

(
n−1∑
s=1

bs,n +
n−1∏
t=1

(yt + α)

)
V

=

(
n∏
t=1

(yt − y)
)
C +

(
n∑
s=1

bs,n

)
V

as required. The induction on d′ in the case of non-membership witnesses is
straightforward.

• On Batch Deletion: suppose the accumulator state changes from (V ,YV ) to
(V ′,YV ′) as a result of a Batch Deletion operation. Hence, for certain D =
{yD,1, . . . , yD,m} ⊆ YV , we have V ′ = 1

dD(−α)V .
Then, for any y ∈ YV ′ , the witness wy,V = C is updated with respect to the
accumulator state (V ′,YV ′) computing

C ′ =
1

dD(y)
C − vD(y)

dD(y)
V

and letting wy,V ′ = C ′. While for any y /∈ YV ′ , the non-membership witness
w̄y,V = C is updated with respect to (V ′,YV ′) by computing

C ′ =
1

dD(y)
·C − vD(y)

dD(y)
· V , d′ = d · 1

dD(y)

and letting w̄y,V ′ = (C ′, d′).

Proof. Similarly as before, we will denote the elements yD,i with yi, the accumula-
tor value corresponding to

(∏j
i=1(yi + α)−1

)
V with Vj and, for any y ∈ YV ′ , the

intermediate membership witnesses wy,Vj with Cj .
We prove the formula by induction on m, the number of batch deleted elements:�� ��m = 1 : We get C1 = 1

y1−yC −
1

(y1−y)(y1+α)
V = 1

y1−y (C − V1), the same formula
defined for the membership witness update after a single deletion operation.�� ��m− 1→ m : Let us denote vD(y) =

∑m
s=1 bs, where

bs =
s∏
i=1

(yi + α)−1
s−1∏
j=1

(yj − y)
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We then have

Cm =
1

ym − y
(Cm−1 − Vm)

=
1

dD(y)
C − 1

dD(y)
·
(
m−1∑
s=1

bs

)
V −

(
1

ym − y

m∏
i=1

(yi + α)−1
)
V

=
1

dD(y)
C − 1

dD(y)
·
(

m∑
s=1

bs

)
V

as required. The induction on d′ in the case of non-membership witnesses is
straightforward.

• On Batch Addition & Deletion: suppose the accumulator state changes
from (V ,YV ) to (V ′′,YV ′) as a result of a Batch Addition & Deletion oper-
ation. Hence for certain disjoint sets A = {yA,1, . . . , yA,n} ⊆ ACC \ YV and
D = {yD,1, . . . , yD,m} ⊆ YV we have V ′′ = dA(−α)

dD(−α) · V .

Then, for any y ∈ YV , the witness wy,V = C is updated with respect to the
accumulator state (V ′,YV ′) computing

C ′ =
dA(y)

dD(y)
·C +

νA,D(y)

dD(y)
· V

and letting wy,V ′ = C ′. While for any y /∈ YV , the non-membership witness
w̄y,V = (C, d) is updated with respect to the accumulator state (V ′,YV ′) by
computing

C ′ =
dA(y)

dD(y)
·C +

νA,D(y)

dD(y)
· V , d′ = d · dA(y)

dD(y)

and letting w̄y,V ′ = (C ′, d′).

Proof. Performing a batch addition and then a batch deletion, the membership
witness wy,V = C for y with respect to the accumulator value V is iteratively
updated to w̄y,V ′′ = (C ′′, d′′) with respect to the updated accumulator value V ′′ =(∏n

i=1(yA,i+α)∏m

i=1(yD,i+α)

)
V as follows

C
Add−→ C ′ = dA(y)C + vA(y)V

Delete−→

C ′′ =
1

dD(y)
C ′ − vD(y)

dD(y)
V ′ =

dA(y)

dD(y)
C +

(
vA(y)

dD(y)
− vD(y)

dD(y)
·
n∏
i=1

(yA,i + α)

)
V

where V ′ = ∏n
i=1(yA,i+α) ·V . The induction on d′ in the case of non-membership

witnesses is straightforward.

3.4 The Batch Witness Update Protocol
Users cannot batch update their witnesses directly using the formula defined in the
previous Section, since they would need the secret parameter α. However, starting
from their definition, the accumulator manager can efficiently compute and publish
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some update information (more precisely, the polynomials dA(x), dD(x) and a points
vector) so that users can update their witnesses without requiring or leaking any
information related to α. This will allow us to define a batch membership and non-
membership witness update protocol for the proposed accumulator scheme.

3.4.1 The Batch Witness Update Information

From now on, we will focus on the Batch Witness Update Addition & Deletion poly-
nomial vA,D(x) only: indeed, the polynomials vA(x) and vD(x) are special cases of
this more general one.

We recall that our main goal is to allow users possessing a witness (C, d) for an
element y with respect to the accumulator value V to compute the quantities

C ′ =
dA(y)

dD(y)
·C +

νA,D(y)

dD(y)
· V , d′ = d · dA(y)

dD(y)

We note that the accumulator manager cannot publish all the polynomials dA(x),
dD(x) and vA,D(x), because their coefficients can leak some information related to
the secret accumulator parameter α. To give an example, suppose that after a batch
addition operation, the accumulator manager publishes the polynomials vA(x) and
dA(x), defined as above, with |A| > 1. Doing simple algebra, we find that the
coefficient of the (|A| − 2)−degree monomial of vA(x) is equal to α+

∑
yA∈A yA : by

extracting the roots of dA(x) in Fp we obtain all the elements in A and hence the
secret parameter α.

Leakages about α can be prevented by requiring the accumulator manager to
publish in place of vA,D(x), the vector of points

Ω = ΩA,D,V = ( c0V , c1V , . . . , cbatchMaxV )

where vA,D(x) =
∑batchMax
i=0 cix

i and ci = 0 if i > max(|A|, |D|).
Users can then update their membership witness wy,V = C to wy,V ′ = C ′ by first

evaluating the two polynomials dA(x) and dD(x) in the element y and then computing

C ′ =
dA(y)

dD(y)
·C +

1
dD(y)

· 〈Υy, Ω〉

where Υy = (1, y, y2, ..., ybatchMax) and 〈·, ·〉 denotes the dot product.
Similarly, a non-membership witness w̄y,V = (C, d) is updated to w̄y,V ′ = (C ′, d′)

by computing

C ′ =
dA(y)

dD(y)
·C +

1
dD(y)

· 〈Υy, Ω〉 , d′ = d · dA(y)
dD(y)

In this scenario, assuming the Discrete Logarithm Problem to be hard in G1 (a
weaker assumption with respect to the generalized t−SDH assumption under which
accumulator collision resistance is shown in Section 3.5), from the published Ω, dA(x)
and dD(x) it is only possible, performing roots extraction on the polynomials, to
compute the respective sets A and D of batch added and batch deleted elements.

It follows that witness update operations can be performed either autonomously by
users or by delegating to third-party servers the computation of (some of) the values
〈Υy, Ω〉, dA(y), dD(y). Indeed, since the required updating values are decoupled from
users’ previous witnesses, third-party servers which are asked to compute such values
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with respect to an element y, cannot impersonate the corresponding user, since they
do not know any previous valid witness for y.

When the computation of the elements 〈Υy, Ω〉, dA(y), dD(y) is delegated, users
are then able to update witnesses in a constant number of elementary operations,
i.e., 2 scalar-point multiplication and 1 point addition4. Delegation thus allows even
resource-constrained devices to be able to keep users’ witnesses updated.

As a side note, if third-party servers are untrusted (e.g. we want to prevent link-
ability attacks from subsequent evaluation requests for the same element y), it is
possible to use Oblivious Polynomial Evaluation techniques such as [NP06], [Haz15]
and [CL01] to delegate the computation of the point 〈Υy, Ω〉 = vA,D(y) ·V and of the
values dA(y) and dD(y), in a way that third-parties will not learn anything about y.
We note, however, that such protocols have time complexity at least proportional to
the degree of the polynomials involved and thus allow users to just save data rather
than time, i.e., users are not required to download the public batch witness update
data (available instead to third-party servers) and can oblivious evaluate vA,D(y) · V ,
dA(y) and dD(y) with time complexities comparable to standard polynomial evalua-
tions.

Improvements With Respect to Non-Batch Operations. Due to the lower
bound showed by Camacho and Hevia in [CH10], in case of a batch addition and
deletion operation where m elements are added and/or deleted, the batch update
data cannot have size less than O(m) (and thus witnesses cannot be updated in time
less than O(m)), as in the case for non-batch operations. Our protocol reaches this
optimal lower bound and provides better constants compared to the naive approach
of iteratively adding and/or deleting each involved element at a time.

In particular, if the bilinear group is implemented using a pairing-friendly elliptic
curve over Fq, for m added and deleted elements, the public batch witness informa-
tion in our protocol would have size |Ω|+ |dA(x)|+ |dD(x)|, i.e. m · (log q+ 2 log p),
while the naive approach consisting in executing m addition operations followed by
m deletion operations5 requires 2m · (log q + log p) data. Furthermore, as regards
time complexities to update witnesses, our protocol requires m+ 2 scalar-point mul-
tiplications, 1 point addition and 2 degree-m polynomials evaluations (possible in 2m
multiplications and 2m additions), while the naive approach requires 2m scalar-point
multiplications, 2m point additions and 2m multiplications.

To summarise, with respect to the naive approach, our protocol provides, approx-
imately, the following improvements:

• 1/4 reduction in witness update data communication;

• 1/2 reduction in running time in order to update witnesses.

3.4.2 Batch Witness Update Among Epochs

We now show how the adoption of the points vector Ω = ΩA,D,V not only permits
the users to batch update their (non-)membership witnesses from the previous accu-
mulator state, but also enables them to directly update from the accumulator state of
any older epoch. This feature doesn’t force users to permanently keep their witnesses

4We note that this is not against the impossibility result of Camacho and Hevia to have batch
witness update data size independent from the number of elements added/deleted, since the pro-
vided values 〈Υy, Ω〉, dA(y), dD(y) are per user and not for all users, similarly as any constant-sized
(updated) witness is.

5Each of these operations send users the element added/deleted and the corresponding updated
accumulator value, i.e. log q + log p data.
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Epoch Accumulator State Witness Update Information

0 (V0, ∅)

1 (V1,YV1) Ω1 dA1(x) dD1(x)
...

...
...

i (Vi,YVi) Ωi dAi(x) dDi(x)

Table 3.1: Data published by the accumulator manager in each epoch.

updated to the latest accumulator state, enabling them to update their witnesses just
right before they want to prove statements about the associated element y.

Before showing how this is possible, we extend our notation to associate accu-
mulator and batch witness update data to a specific epoch. Given an epoch i > 0,
we denote with (Vi,YVi) the corresponding accumulator state, where YV1 = A1 \ D1
and YVi = YVi−1 ∪Ai \ Di for i > 1, with dAi(x) and dDi(x) the addition and dele-
tion batch witness update polynomials, respectively, and with Ωi = ΩAi,Di,Vi . An
overview of the data published by the accumulator manager is given in Table 3.1.

We further denote a membership witness wy,Vi for an element y with respect to
the accumulator value Vi as wy,Vi = Ci and, similarly, a non-membership witness
w̄y,Vi as w̄y,Vi = (Ci, di).

Epoch Witnesses Batch Update. A user who owns a valid non-membership
witness w̄y,Vi = (Ci, di) (resp. a valid membership witness wy,Vi = Ci) with respect
to the accumulator state (Vi,YVi) can update it to w̄y,Vj = (Cj , dj) (resp. wy,Vj = Cj
), for any j > i, as

Cj =
dAi→j (y)

dDi→j (y)
·Ci +

1
dDi→j (y)

· 〈 Υy , Ωi→j(y) 〉 , dj = di ·
dAi→j (y)

dDi→j (y)

where

dAa→b(x) =
b∏

s=a+1
dAs(x) dDa→b(x) =

b∏
s=a+1

dDs(x)

Ωi→j(y) =
j∑

t=i+1

(
dDi→t−1(y) · dAt→j (y)

)
◦Ωt

Proof. We prove the result by induction on j > i.�� ��j = i+ 1 A witness w̄y,Vi = (Ci, di) is updated to w̄y,Vi+1 = (Ci+1, di+1) as

Ci+1 =
dAi+1(y)

dDi+1(y)
·Ci +

1
dDi+1(y)

· 〈 Υy , Ωi+1 〉 , di+1 = di ·
dAi+1(y)

dDi+1(y)

obtaining the same result we get by using the formula for non-membership witnesses
batch update.
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�� ��j ⇒ j + 1: By inductive hypothesis, we assume the formula holds for Cj . Then

Cj+1 =
dAj+1(y)

dDj+1(y)
·Cj +

1
dDj+1(y)

· 〈 Υy , Ωj+1 〉

=
dAi→j+1(y)

dDi→j+1(y)
·Ci +

1
dDi→j+1(y)

·
〈

Υy , dAj+1(y) ◦Ωi→j
〉

+
1

dDi→j+1(y)
· 〈 Υy , dDi→j (y) ◦Ωj+1 〉

=
dAi→j+1(y)

dDi→j+1(y)
·Ci +

1
dDi→j+1(y)

· 〈 Υy , Ωi→j+1 〉

as required, since

Ωi→j+1 =
j+1∑
t=i+1

 t−1∏
h=i+1

dDh(y)
j+1∏
k=t+1

dAk(y)

 ◦Ωt

=

 j∑
t=i+1

 t−1∏
h=i+1

dDh(y)
j+1∏
k=t+1

dAk(y)

 ◦Ωt

+

 j∏
h=i+1

dDh(y)

 ◦Ωj+1

= dAj+1(y) ◦Ωi→j + dDi→j (y) ◦Ωj+1

The proof on dj is straightforward.

3.5 Security Proofs for the Proposed Protocol
We recall that security of accumulator schemes is usually intended as collision re-
sistance: for universal accumulators, this property requires that an adversary forges
with negligible probability in the security parameter λ a valid membership witness
for a not-accumulated element and, respectively, a non-membership witness for an
accumulated element.

Since the outlined Dynamic Universal Accumulator is built on top of Nguyen’s
positive dynamic accumulator [Ngu05] and Au et al. [Au+09] and Damgård and
Triandopoulos’ non-membership proof system [DT08], we might be tempted to gen-
eralize the security proofs provided in [Ngu05; DT08] (reported in Section 2.4) to
show the security of our scheme under the standard t-Strong Diffie-Hellman assump-
tion (Definition 2.2).

However, some technicalities prevent us from doing so straightforwardly: i) in
the proposed protocol, the attacker does not necessarily have access to the RS =
{P ,αP , . . . ,αtP} (needed in [Ngu05; Au+09; DT08] security reductions, see The-
orem 2.1), while he has access to the batch witness update information and valid
witnesses, as regular users do; ii) differently than [Ngu05; Au+09; DT08], we allow
the accumulator manager to initialize the accumulator value to V0 by accumulating
a certain number of secret values.

To show the security of our proposed accumulator scheme, we then need to provide
two slightly more general definitions tailored to the data our attacker would be able
to access. We propose the following.
Definition 3.1. (Collision Resistance) Let A be a probabilistic polynomial time
adversary that has access to an oracle O which replies to:

• “Batch Addition and/or Deletion“ queries that batch add non-accumulated and/or
delete accumulated elements into/from the accumulator (which is initialized to
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V0) and return the resulting updated accumulator value and the corresponding
public batch witness update data;

• “Issue Witness” queries that return, for any input element y, its membership
witness if y is accumulated, or, if not, its non-membership witness with respect
to the latest accumulator value.

Then, the proposed Dynamic Universal Accumulator is collision resistant if the prob-
ability

P


(G,α,YV0 , Q̃)← Gen(1λ) , f(x) =

∏
yi∈YV0

(yi + x),
V0 = f(α) · P , (y,wy, w̄y,Y)← AO(V0, G, Q̃) :

Y ⊆ (Fp)∗ ∧ V =
(∏

yi∈Y(yi + α)
)
· V0 ∧

Ω(y,wy,V , membership) = 1 ∧ Ω(y, w̄y,V , non-membership) = 1


is a negligible function in the security parameter λ, where wy, w̄y denote a membership
and non-membership witness for y, respectively, and Ω(y,w,V , type) = 1 if and only
if w is a valid type witness for y with respect to V .

Proposition 3.1. Collision Resistance of Definition 3.1 is weaker than Au et al.
Collision resistance (Definition 2.1) when deg f > 0, while it is equivalent if deg f =
0.

Proof. In Lemma 2.1 we proved that the oracle O of Definition 2.1 gives the attacker
access to the RSt for some t > 0. By using the Extended Euclidean Algorithm,
the set RSt further allows the attacker to issue valid membership witnesses for ac-
cumulated elements and valid non-membership witnesses for any non-accumulated
element, as originally reported in [Au+09]. In other words, an attacker that success-
fully breaks collision resistance of Definition 2.1, can output in polynomial time using
the RSt a valid membership witness if he forged a non-membership witness for an
accumulated element y, or, similarly, the valid non-membership witness, if he forged
a membership witness for a non-accumulated element y. In fact, the two probabilities
of Definition 2.1 can be combined by equivalently requiring that

P


(G,α, Q̃)← Gen(1λ), (y,wy, w̄y,Y)← AO(G, Q̃) :

Y ⊆ (Fp)∗ ∧ V =
(∏

yi∈Y(yi + α)
)
· P ∧

Ω(y,wy,V , membership) = 1 ∧ Ω(y, w̄y,V , non-membership) = 1


is negligible in the security parameter λ.

Since the public batch update information can be computed in polynomial time
from the RSt (we can compute any element of the form h(α)P , where h(x) ∈ Fp has
degree ≤ t), it immediately follows that Definition 3.1 is equivalent to Definition 2.1
if deg f = 0, i.e. f = 1 and thus V0 = P .

If instead deg f > 0, an attacker that breaks collision resistance of Definition 3.1
by outputting a tuple (y,wy, w̄y,Y), can, before terminating, query in polynomial
time the corresponding oracle O to get |YV0 | + 1 valid non-membership witnesses
for (random) non-accumulated elements, and use Lagrange interpolation to recover
from the d-values the polynomial f(x) ∈ Fp, similarly as done at the beginning of
the Witness Forgery Attack outlined in Attack 1. Once the attacker obtains the
polynomial f(x), he recovers the set YV0 by computing its roots, and can then use
the tuple (y,wy, w̄y,Y ∪YV0) to break collision resistance of Definition 2.1.
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Definition 3.2. (Generalized t−Strong Diffie-Hellman Assumption) Let G be
a probabilistic polynomial time algorithm that, given a security parameter 1λ, outputs
a bilinear group G = (p,G1,G2,GT ,P , P̃ , e). We say that the generalized t−Strong
Diffie-Hellman Assumption holds for G with respect to a uniformly sampled α← (Fp)∗

and a non-zero f(x) ∈ Fp[x] if, for any probabilistic polynomial time adversary A
and for every polynomially bounded function t : Z→ Z, the probability

P

(
A(P ,αf(α)P ,α2f(α)P , ...,αt(λ)f(α)P , P̃ ,αP̃ ) =

(
y, 1
y+ α

P

))
is a negligible function in λ for any freely chosen value y ∈ Fp \ {−α}.

To give confidence in this more general security assumption, we prove the following
Theorem which gives a lower bound on the complexity of a generic algorithm that
solves the Generalized t−SDH Assumption in the Generic Group Model [Sho97].

We briefly recall that in the Generic Group Model [Sho97] elements in the three
groups G1,G2,GT are represented with strings given by (random) unique encoding
functions ξi : Gi → {0, 1}∗. Operations with groups elements (additions, pairings,
isomorphism computations ψ : G2 → G1) are performed by querying different oracles
which communicates with the external world only by using ξi−encoding of group
elements. In other words, an adversary who interacts with these oracles can only test
equality among received encodings in order to understand relations between group
elements.

Theorem 3.1. Let A be an algorithm that solves the corresponding generalized t−SDH
problem in the Generic Group Model, making a total of at most qG queries to the ora-
cles computing the group action in G1,G2,GT , the oracle computing the isomorphism
ψ : G2 → G1 and the oracle computing the bilinear pairing e. If α ∈ (Fp)∗ and the
encoding functions ξ1, ξ2, ξT are chosen at random, then the probability ε that

A
(
p, ξ1(1), ξ1(f(α)), ξ1(α · f(α)), . . . , ξ1(α

t · f(α)), ξ2(1), ξ2(α)
)

outputs
(
y, ξ1

(
1

y+α

))
with y ∈ (Fp)∗ is bounded by

ε ≤ (deg f + t) · (qG + t+ 4)2 + 1
p

Proof. We will essentially go through the original proof of Boneh and Boyen [BB04]
of the generic security of the standard t−SDH assumption (Definition 2.2) by slightly
readapting it to the definition of the generalized t−SDH assumption. The following
game setting and query definitions are due to Boneh and Boyen [BB04] as well.

Let B be an algorithm that maintains three lists of pairs

Lj = {(Fj,i, ξj,i) : i = 0, . . . , τj − 1} with j = 1, 2,T

where F1,i, F2,i and FT ,i are polynomials in Fp[x] verifying degF1,i ≤ deg f + t,
degF2,i ≤ t and degFT ,i ≤ 2t and such that at step τ of the game τ1 + τ2 + τT =
τ + t+ 3. The lists are initialized at step τ = 0 by taking τ1 = t+ 1, τ2 = 2, τT = 0
and letting F1,0 = 1, F1,i = xi · f(x) for 0 ≤ i ≤ t and F2,i = xi with i = 0, 1.
The corresponding ξj,i encodings are set to arbitrary distinct strings in {0, 1}∗. B
then starts a game by providing A the q+ 3 encodings ξ1,0, . . . , ξ1,q,ξ2,0, ξ2,1 and A’s
queries go as follows:
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• Group actions: given an add (resp. subtract) query and two operands ξ1,i, ξ1,j
with 0 ≤ i, j < τ1, B computes F1,τ1 ← F1,i + F1,j (resp. F1,i − F1,j). If
F1,τ1 = F1,l for some l < τ1 then B sets ξ1,τ1 = ξ1,l, otherwise sets ξ1,τ1 to a new
distinct string in {0, 1}∗. The pair (F1,τ1 , ξ1,τ1) is added in L1, τ1 is incremented
by 1 and ξ1,τ1 is returned to A. Operations in G2,GT are treated similarly.

• Isomorphism: given an encoding ξ2,i with 0 ≤ i < τ2, B sets F1,τ1 ← F2,i. If
F1,τ1 = F1,l for some l < τ1, then B sets ξ1,τ1 ← ξ1,l, otherwise sets ξ1,τ1 to a new
distinct string in {0, 1}∗. The pair (F1,τ1 , ξ1,τ1) is added in L1, τ1 is incremented
by 1 and ξ1,τ1 is returned to A.

• Pairing: given two operands ξ1,i, ξ2,j with 0 ≤ i < τ1 and 0 ≤ j < τ2, B
computes the product FT ,τT → F1,i · F2,j ∈ Fp[x]. If FT ,τT = FT ,l for some
l < τT , then B sets ξT ,τT ← ξT ,l, otherwise sets ξT ,τT to a new distinct string
in {0, 1}∗. The pair (FT ,τT , ξT ,τT ) is added in LT , τT is incremented by 1 and
ξT ,τT is returned to A.

A terminates and returns to B a pair (y, ξ1,l) with 0 ≤ l < τ1. To show correctness
of A’s answer, B considers the corresponding polynomial F1,l in L1 and computes the
polynomial

FT ,∗(x) = F1,l · (F2,1 + yF2,0) = F1,l · (x+ y) = f(x) · g(x) · (x+ y)

for a certain polynomial g(x) ∈ Fp[x] of degree ≤ t. If A’s answer is correct, then
FT ,∗(x) = 1 (which corresponds to check, in the current framework, that it results to
be a correct DDH pair when representing ξ1,l with an element of G1). Now, unless
degFT ,∗ ≥ p− 2 (due to Fermat’s Little Theorem), the equation FT ,∗(x) − 1 = 0
admits at most deg f + t+ 1 roots in Fp.

At this point, B chooses a random x∗ ∈ Fp and his simulation is perfect unless
x∗ ← x creates equality relations between simulated elements not revealed to A. Thus
the success probability of A is bounded by the probability that any of the following
conditions holds:

1. F1,i(x∗)− F1,j(x∗) = 0 for some i, j so that F1,i 6= F1,j

2. F2,i(x∗)− F2,j(x∗) = 0 for some i, j so that F2,i 6= F2,j

3. FT ,i(x∗)− FT ,j(x∗) = 0 for some i, j so that FT ,i 6= FT ,j

4. f(x∗)g(x∗)(x∗ + y)− 1 = 0

Now since, for some fixed i, j, the polynomial F1,i − F1,j has degree at most
deg f + t while F2,i − F2,j has degree at most t, they vanishes at x∗ with probability
(deg f + t)/p and t/p, respectively. Similarly, FT ,i − FT ,j being a polynomial of
degree at most 2t, vanishes at x∗ with probability 2t/p. As regards f(x∗)g(x∗)(x∗+
y)− 1, it vanishes at x∗ with probability (deg f + t+ 1)/p. Hence, by summing these
probabilities over all valid pairs (i, j) for the first three cases, A wins the game with
probability

ε ≤
(
τ1
2

)
deg f + t

p
+

(
τ2
2

)
t

p
+

(
τT
2

)
2t
p
+

deg f + t+ 1
p

Given that τ1 + τ2 + τT ≤ qG + t+ 3, we obtain ε ≤ (deg f+t)·(qG+t+4)2+1
p
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We are now ready to prove that breaking collision resistance of our accumulator
scheme in the Generic Group Model cannot be easier than breaking the generalized
t-SDH assumption:

Theorem 3.2. Consider a Generic Group Model instance of the Dynamic Universal
Accumulator outlined in Section 3.2 equipped with the public Batch Witness Update
protocol detailed in Section 3.4. If |YV0 | elements are accumulated to initialize the
accumulator value, then the probability ε that an attacker A breaks collision resistance
of Definition 3.1 in qG queries to the group oracles, is bounded by

ε ≤ (|YV0 |+ t) · (qG + t+ 4)2 + 1
p

where t is the maximum number of elements allowed to be accumulated simultaneously.

Proof. We refer to the proof of Theorem 3.1 for the definition of the game setting
between A and the accumulator manager and the corresponding notation.

Since YV0 contains distinct elements from Fp, then at any epoch all elements in
the batch witness update information Upd sent from the Accumulator manager to A
are of the form ξ1( g(x) · f(x) ) where f(x) = ∏

y∈YV0
(y + x) and g(x) ∈ Fp[x] has

degree ≤ t.
Since any such polynomial g(x) · f(x) can be represented uniquely in the base

{f(x),xf(x), . . . ,xtf(x)}, we can assume A to be slightly more powerful by having
initial access to all the following encodings:

ξ1(1), ξ1(f(α)), ξ1(α · f(α)), . . . , ξ1(α
t · f(α)), ξ2(1), ξ2(α)

We note that accumulator values at different epochs can be obtained in polynomial
time with queries to the group action oracle from the remaining update information,
i.e. the elements added and deleted. All in all, this corresponds to the information
the attacker would have access to under the hypothesis of Theorem 3.1.

Suppose that after qG queries, A terminates and returns the tuple (y,wy, w̄y,Y)
with wy = (ξ1,i, 0) and w̄y = (ξ1,j , d). If the answer is correct and breaks the collision
resistance property of the accumulator scheme, then the corresponding polynomials
F1,i(x), F1,j(x) will satisfy

F1,i(x) · (x+ y) = F1,j(x) · (x+ y) + d

Note, that A can transform the tuple (y, ξ1,i, ξ1,j , d) to the pair (y, d−1(ξ1,i − ξ1,j))
by querying the oracles in polynomial time. This pair, if correct, would then solve
the generalized t−SDH problem since, by letting FT ,∗ = d−1(F1,i − F1,j), it holds
FT ,∗(x) · (x+ y)− 1 = 0 for all x ∈ Fp. Hence A would win in qG queries the game
instantiated in the proof of Theorem 3.2 and, as was shown, this cannot be done with
probability greater than (|YV0 |+t)·(qG+t+4)2+1

p .

Relation with previous security assumptions and proofs The proposed Gen-
eralized t−Strong Diffie-Hellman assumption straightforwardly reduces to the stan-
dard t-SDH assumption (Definition 3.2) in the case when deg f = 0, similarly as
happens in Proposition 3.1 for our definition of Collision Resistance (Definition 3.1)
and Au et al. one Definition 2.1.
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Thus, when deg f = 0 (without loss of generality, f(x) = 1), collision resistance
of the scheme can be shown directly under the standard t-SDH assumption of Def-
inition 2.2, without requiring the Generic Group Model and similarly as done in
Theorem 2.1.

Generalizing definitions and security proofs to allow for deg f > 0, allows us to
address accumulator initialization, which (surprisingly) has a direct connection with
the attacker ability to have access to (any element in) the RSt (which can be (ab)used
to compute witnesses and update the accumulator value), a circumstance that would
be against our will to design an accumulator scheme also suited for authentication
purposes, where only the accumulator manager can update and issue witnesses and
whose construction will be finalized in next Section.

3.6 Accumulator Initialization
Depending on which would be the final application of the proposed accumulator
scheme, it might be necessary to prevent the possibility to forge non-membership
witnesses for never authorized non-accumulated elements, i.e. elements for which the
accumulator manager did not issue witnesses.6 This is relevant, for example, in the
cases when the accumulator is used as an authentication mechanism, and accumulated
elements represent either white-listed or black-listed users who authenticate with
respect to the accumulator value by showing possession of a valid membership or
non-membership witness.

Forging witnesseses in the case when the accumulator manager should be the
only authorized entity to do so is, in fact, what the Witness Forgery Attack Attack 1
outlined in Subsection 2.10.2 does: a set of colluding users who share their non-
membership witnesses can recover the (secret) reference-string sets RSt = {P ,αP , ...,
αtP}t>0, which would enable them to compute membership and non-membership
witnesses with respect to the latest accumulator value. Indeed, the knowledge of the
setRS = RSt results to be functionally equivalent to the knowledge of α: it is possible
to either update the accumulator value (see Lemma 2.1) or issue valid membership
and non-membership witnesses (see the reference string RS-based construction in
Section 2.3).

The Witness Forgery Attack is possible as long as the number of colluding users
is equal or greater to the number of elements added to initialize the accumulator
value. The countermeasure we propose in Section 2.10 consists in setting an upper
limit NMWitnessesMax to the total number of issuable non-membership witnesses and
initialize the accumulator by adding at least NMWitnessesMax + 1 secret elements.

This will clearly prevent the reconstruction of the sets RSs. However, in our
protocol, the attackers have access in each epoch to the witness update information
(see Table 3.1), which in principle could help circumvent the fact that they will not be
able to collect and share enough non-membership witnesses or can be used to directly
compute some elements in RSs.

We will show that this is indeed possible. However, we will prove that a generic
algorithm in the Generic Group Model would compute any element in RSt with neg-
ligible probability by just carefully choosing a few of the elements added to initialize
the accumulator value.

6Membership witnesses for new elements would require an accumulator value update, an operation
that we could assume to be executed by the accumulator manager that has exclusive access to the
public register containing the current accumulator value. When issuing non-membership witnesses,
instead, the accumulator value remains unchanged.
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We start by introducing some theoretical results. The purpose of the following
Proposition is to show some properties on elements that have particular multiplicative
orders in the group (Fp)∗. These properties will be useful to prove the subsequent
Theorem 3.3, which will give us sufficient conditions on the elements we need to add to
prevent the reconstruction of the RS from the publicly available information. Thus,
initializing the accumulator with NMWitnessesMax+ 1 random elements, where some
of them satisfies the hypothesis of Theorem 3.3, will ultimately prevent any, even
partial, successful execution of the Witness Forgery Attack (Attack 1).

Proposition 3.2. Let p ∈ N be a prime such that p− 1 = pe1
1 · ... · penn factorizes

as the product of n > 1 powers of distinct primes pi ∈ N. Let f(x) ∈ Fp[x] be a
polynomial with n ≤ m < p− 1 distinct non-zero roots x1, . . . ,xm ∈ Fp such that the
multiplicative order in (Fp)∗ of xi, for 1 ≤ i ≤ n, is peii . Then

i. The least k > 0 for which there exists z ∈ Fp and g(x) ∈ Fp[x] such that
g(x)f(x) ≡ xk − z mod p is k = p− 1.

ii. The degree of the minimal-degree non-constant monomial of f(x) is s with 0 <
s < m.

Proof. Suppose there exists z ∈ Fp and g(x) ∈ Fp[x] such that

g(x)f(x) ≡ xk − z mod p

Then, each root x1, . . . ,xm of f(x) must be a root for xk − z in Fp, that is

xk1 ≡ · · · ≡ xkt ≡ z mod p (3.1)

Since, by hypothesis (Fp)∗ ' Z/(p− 1)Z ' 〈x1〉 × · · · × 〈xn〉 with n > 1 we have
z ∈

⋂m
i=1〈xi〉 ≤

⋂n
i=1〈xi〉 = 〈1〉. Hence a solution to Equation 3.1 exists only

if z ≡ 1 and the least k for which it holds is k = lcm(ord(x1), . . . , ord(xm)) ≥
lcm(ord(x1), . . . , ord(xn)) = p− 1. Since k ≤ p− 1, we have k = p− 1.

It follows that as long as m < p − 1, there are no z ∈ Fp such that f(x) ≡
xt − z mod p. Hence the degree of the minimal-degree non-constant monomial of
f(x) is s with 0 < s < m.

Theorem 3.3. Let p ∈N be a prime such that p− 1 = pe1
1 · ... · penn factorizes as the

product of n > 1 powers of distinct primes pi ∈N. Let f(x) ∈ Fp[x] be a polynomial
with n ≤ m < p− 1 distinct non-zero roots x1, . . . ,xl ∈ Fp such that the multiplicative
order in (Fp)∗ of xi, for 1 ≤ i ≤ n, is peii .

Let (V,+) be the vector space of polynomials with degree lower equal p− 2 and
B = {1,x, . . . ,xp−2} its (p− 1)−dimensional canonical basis. Then, for every 1 ≤
k < p− 1

rank





1
f(x)
xf(x)

...
xp−m−2f(x)

xk


B


= p−m+ 1
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Proof. The rank is maximum when the row vectors are linearly independent in V,
that is for any a0, . . . , ap−m−2, b, c ∈ Fp such thatp−m−2∑

j=0
ajx

jf(x)

+ bxk + c = 0 (3.2)

we have a0 ≡ · · · ≡ ap−m−2 ≡ b ≡ c ≡ 0.

We will prove the statement by exhaustion on the values of k.�� ��1 ≤ k < m: The dependence relation (Equation 3.2) can be rewritten as

g(x)f(x) = −bxk − c

where g(x) = ∑p−m−2
j=0 ajx

j . By hypothesis f(x) hasm different roots, while −bxk− c
can have at most k < m distinct roots. The equation then holds only if both sides
are equal to the 0 polynomial, that is −bxi − c = 0 and g(x) = 0. This implies
a0 ≡ · · · ≡ ap−m−2 ≡ 0 and b ≡ c ≡ 0 because the elements {1,x, . . . ,xp−m−2} are
linearly independent vectors of V.�� ��k = m: In this case the dependence relation (Equation 3.2) can be rewritten as

g(x)f(x) = −bxm − c

with g(x) defined as in the previous case. By hypothesis f(x) has m distinct roots,
while the right side can have at most m distinct roots. This implies that g(x) =
g(0) = a0 is a constant polynomial or, equivalently, that a1 ≡ · · · ≡ ap−m−2 ≡ 0.
Suppose by contradiction that a0 6= 0, then f(x) = −a−1

0 bxm−a−1
0 c is a contradiction

since, by Proposition 3.2, the degree of the minimal-degree non-constant monomial
of f(x) is s with s 6= m and s > 0. Hence a0 ≡ 0, and then −bxm − c = 0 which
implies b ≡ c ≡ 0.�� ��m < k < p− 1: Let k = m+ k′ with 1 ≤ k′ ≤ p−m− 2. From

g(x)f(x) = −bxm+k′ − c

it follows that deg(g) ≤ k′ and then, if k′ < p −m − 2, we have ak′+1 ≡ · · · ≡
ap−m−2 ≡ 0.

Assume, by contradiction, b 6= 0 and c ≡ 0. In this case the dependence relation
becomes g(x)f(x) = −bxm+k′ , but the right side has only 0 as root while the left
side has, by hypothesis, at least t non-zero distinct roots. This implies, similarly as
before, that g(x) = 0 and b ≡ 0, a contradiction.

Let us therefore assume b 6= 0 and c 6= 0. In this case the dependence relation
can be rewritten as

g′(x)f(x) = xm+k′ − z

where g′(x) = (−b)−1g(x) and z = (−b)−1c 6= 0.
If, by contradiction, g′(x) 6= 0, then, by Proposition 3.2, the least value for m+ k′

such that the dependence relation holds is m+ k′ = p− 1, that is k′ = p−m− 1,
a contradiction to 1 ≤ k′ ≤ p −m − 2. Hence g′(x) = 0, which in turn implies
b ≡ c ≡ 0, a contradiction to our assumption b 6= 0.

It follows that b ≡ 0 and then g(x)f(x) = −c. Since by hypothesis f has m
distinct roots, this equation holds only if c = 0 and g(x) = 0, which, similarly as
before, implies a0 ≡ · · · ≡ ak′ ≡ b ≡ c ≡ 0.
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Corollary 3.1. Let f(x) ∈ Fp[x] be a polynomial satisfying the hypothesis of The-
orem 3.3 and consider a Generic Group Model instance of the proposed Dynamic
Universal Accumulator equipped with the public Batch Witness Update protocol. If
the accumulator value is initialized by adding all the roots in Fp of f(x), then the
probability ε that an attacker A outputs in qG queries to the group oracles the value
ξ1
(
αk
)
for any 1 ≤ k < p− 1 is bounded by

ε ≤ (deg f + t) · (qG + t+ 3)2

p

where t is the maximum number of elements allowed to be accumulated simultaneously.

Proof. The proof proceeds similarly as done in the proof of Theorem 3.2. The only
difference is the condition checked by the accumulator manager to ensure correctness
of A’s output value (ξ1,l). This new check corresponds to verifying the polynomial
equation F1,l − xk = 0 where F1,l = g(x) · f(x) with deg g ≤ t. The accumulator
manager then chooses a random value x∗ ∈ Fp: by Theorem 3.3 the equation F1,l −
xk = 0 vanishes in x∗ with probability 0 for any 1 ≤ k < p− 1, thus A wins the game
with non-zero probability only if some of the following conditions holds:

1. F1,i(x∗)− F1,j(x∗) = 0 for some i, j so that F1,i 6= F1,j

2. F2,i(x∗)− F2,j(x∗) = 0 for some i, j so that F2,i 6= F2,j

3. FT ,i(x∗)− FT ,j(x∗) = 0 for some i, j so that FT ,i 6= FT ,j

From this we conclude,in a similar way as done at the end of the proof of The-
orem 3.2, that A wins the game with the accumulator manager with a probability
ε ≤ (deg f+t)·(qG+t+3)2

p .

We are now ready to define the Accumulator Initialization procedure for our
protocol explicitly:

Accumulator Initialization Set an upper limit NMWitnessesMax to the total num-
ber of issuable non-membership witnesses. Assume p is such that p− 1 = pe1

1 · ... · penn
factorizes as the product of n > 1 powers of distinct primes pi and consider n elements
x1, . . . ,xn ∈ Fp such that the multiplicative order in (Fp)∗ of xi is peii , for 1 ≤ i ≤ n.
Then, the accumulator manager sets

YV0 = {x1, . . . ,xn} ∪ {NMWitnessesMax− n+ 1 random elements in ACC}

so that |YV0 | = NMWitnessesMax + 1 and defines the corresponding initialization
polynomial as f0(x) =

∏
xi∈YV0

(x − xi), where V0 = f0(α)P . He then publishes
(V0, ∅), the accumulator state at epoch 0, and keeps secret and never deletes the
elements in YV0 .

We note that as soon as an epoch changes, the accumulator manager publishes
the corresponding Batch Witnesses Update information: at epoch 1, for example, this
corresponds to the new state (V1,YV1), the updating vector Ω1 and the polynomials
dA1(x) and dD1(x). At this point, the polynomial

fV1(x) = f0(x) · f1(x) =
∏

yi∈YV0

(yi + x) ·
∏

yj∈YV1

(yj + x)
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has |YV0 |+ |YV1 | distinct non-zero roots, n of which are x1, . . . ,xn, and is such that
V1 = fV1(α)P . Even if it is possible to obtain from Ω1, A1 and D1 all the values
αkV1 for 1 ≤ k < p− |YV0 | − 1 (we relax the condition k ≤ batchMax) we still are
under the hypothesis of Theorem 3.3 and Corollary 3.1, which ensure the infeasibility
to obtain any element of the RS. This reasoning can be easily generalized to any
subsequent epoch.

One more question might arise from all these considerations: is it possible to
obtain some elements in the RS combining the vectors Ωi coming from different
epochs? When the accumulator is initialized as described in Theorem 3.3, the answer
is no. To show this, consider, without loss of generality, the m vectors Ω1, . . . , Ωm,
where the j-entry of any Ωi is of the form cjVi. Hence, a linear combination with
coefficients ai,j ∈ Fp of entries of these vectors can be written as

m∑
i=1

|batchMax|∑
j=0

ai,jcjVi =

 m∑
i=1

|batchMax|∑
j=0

ai,jcjfi(α)

 · f0(α)P = g(α) · V0

where g(x) =
∑m
i=1

∑batchMax
j=0 ai,jcjfi(x). In other words, in the luckiest situation,

what we can obtain combining all these vectors is a “basis” made of elements of the
form αkf0(α)P = αkV0 with 1 ≤ k ≤ batchMax which, as we already discussed, does
not permit to obtain any element in RS.

3.7 Zero-Knowledge Proof of Knowledge
We now explicitly show how an interactive zero-knowledge protocol can be instanti-
ated between a Prover and a Verifier to prove the ownership of a valid non-membership
witness w̄y,V for y with respect to the accumulator state (V ,YV ) (the corresponding
protocol to show ownership of a valid membership witness wy,V is similar and will
not be discussed). Although different NIZK protocols for bilinear equations verifica-
tion can be adopted for this purpose (e.g. Groth-Sahai [GS08]), we chose to detail
a construction that doesn’t need a trusted setup (to avoid extra storage needs on
users’ side), and that can be easily implemented in order to provide a reference for
our benchmarks.

To this end, we will then extend the zero-knowledge proof of knowledge protocol
defined by Boneh et al. in [BB04], which proves under the Decision Linear Diffie-
Hellman assumption the knowledge of a pair (y,C) such that (y+α)C = V , in order
to support tuples (y,C, d) which verify (y+ α)C + dP = V .

However, for non-membership witnesses, we need to ensure further d 6= 0 or, equiv-
alently in G1, that has a multiplicative inverse. In this regard, we will then consider,
for a random generator K ∈ G1 and random a, b ∈ Fp, the Pedersen commitments
Ed = dP + aK and Ed−1 = d−1P + bK for d and d−1, respectively. Noticing that
P = dEd−1 − dbK, we then extend the protocol applying EQ-composition to the fac-
tor d among the values Ed and P , thus showing that Ed−1 is a Pedersen commitment
to the multiplicative inverse of the committed value in Ed.

Under the Random Oracle Model, we can make such proof of knowledge non-
interactive and full zero-knowledge by applying the Fiat-Shamir heuristic [FS87]. We
will do so by using a heuristic variant adopted by Boneh et al. in [BB04] in order to re-
duce Prover’s proof size. We assume that calls to the random oracle can be concretely
realized through evaluations to a cryptographic hash function H : {0, 1}∗ → Fp.
Security proofs. By reporting the relative security proofs, we will substantially
replicate the original results of the respective authors: we, therefore, refer to [BB04]
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and [Sch20, Ex. 5.3.4] for the completeness, soundness and (special) honest-verifier
zero-knowledgeness security proofs of Boneh et al. protocol and EQ-composition for
multiplicative-inverse relation, respectively.

3.7.1 The NIZK Protocol

After a Setup phase where parties agree on public parameters, the resulting non-
interactive zero-knowledge Proof of Knowledge consists of 4 main stages: Blinding,
Challenge, Response executed by the Prover, and a proof verification Verify executed
by the Verifier. These are defined as follows.

Setup. The Prover and Verifier agree on the public values P ,X,Y ,Z,K ∈ G1 and
P̃ , Q̃ ∈ G2, where X,Y ,Z,K are distinct random generators of G1.

Proof Of Knowledge. The Prover randomly selects σ, ρ, τ ,π ∈ Fp and computes

EC = C + (σ+ ρ)Z, Ed = dP + τK, Ed−1 = d−1P + πK,

Tσ = σX, Tρ = ρY , δσ = yσ, δρ = yρ

A non-interactive zero knowledge Proof of Knowledge of values (y, d,σ, ρ, τ ,π, δσ, δρ)
satisfying

P = dEd−1 − dπK, Ed = dP + τK,

σX = Tσ, ρY = Tρ, yTσ − δσX = O, yTρ − δρY = O,

e(EC , P̃ )ye(Z, P̃ )−δσ−δρe(Z, Q̃)−σ−ρe(K, P̃ )−τ = e(V , P̃ )
e(EC , Q̃)e(Ed, P̃ )

is undertaken between Prover and Verifier as follows:

Blinding. The Prover randomly picks ry, ru, rv, rw, rσ, rρ, rδσ , rδρ ∈ Fp, computes

RA = ruP + rvK, RB = ruEd−1 + rwK,

RE = e(EC , P̃ )rye(Z, P̃ )−rδσ−rδρe(Z, Q̃)−rσ−rρe(K, P̃ )−rv ,

Rσ = rσX, Rρ = rρY , Rδσ = ryTσ − rδσX, Rδρ = ryTρ − rδρY

Challenge. The Prover sets the challenge c ∈ Fp to

c = H(V ,EC ,Ed,Ed−1 ,Tσ,Tρ,RA,RB,RE ,Rσ,Rρ,Rδσ ,Rδρ)

Response. The Prover computes

sy = ry + cy, su = ru + cd, sv = rv + cτ , sw = rw − cdπ,

sσ = rσ + cσ, sρ = rρ + cρ, sδσ = rδσ + cδσ, sδρ = rδρ + cδρ

and sends (EC ,Ed,Ed−1 ,Tσ,Tρ, c, sy, su, sv, sw, sσ, sρ, sδσ , sδρ) to the Verifier.

Verify. The Verifier computes

RA = suP + svK − cEd, RB = swK + suEd−1 − cP ,

Rσ = sσX − cTσ, Rρ = sρY − cTρ, Rδσ = syTσ − sδσX, Rδρ = syTρ − sδρY ,
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RE = e(EC , P̃ )sy · e(Z, P̃ )−sδσ−sδρ · e(Z, Q̃)−sσ−sρ · e(K, P̃ )−sv ·
(

e(V , P̃ )
e(EC , Q̃)e(Ed, P̃ )

)−c

and accepts if c = H(V ,EC ,Ed,Ed−1 ,Tσ,Tρ,RA,RB,RE ,Rσ,Rρ,Rδσ ,Rδρ).

3.7.2 Complexity Analysis

Within this protocol, zero-knowledge proofs for valid non-membership witnesses con-
sists of 5 elements in G1 and 11 elements in Fp, while they consists of 3 elements
in G1 and 6 elements in Fp in the case of membership witnesses. Thus, if elliptic
curves are used to concretely implement the underlying bilinear group (in particular,
we assume elements in G1 are elliptic curve points over Fq) and elliptic curve points
compression is used, zero-knowledge non-membership and membership proofs can be
represented with 5(log q+ 1) + 9 log p bits and 3(log q+ 1) + 6 log p bits, respectively.
In our concrete instance (see Section 3.8) this translates to 4926 bits ≈ 616 bytes
proofs for non-membership witnesses and 3135 bits ≈ 392 bytes proofs for member-
ship witnesses.

As regards computational costs, if the quantities e(Z, P̃ ), e(Z, Q̃), e(K, P̃ ) and
e(V , P̃ ) are pre-computed and stored by both Prover and Verifier, zero-knowledge
proofs of knowledge for non-membership witnesses are computed with 15 scalar-point
multiplications in G1, 7 point additions in G1, 4 exponentiation in GT and 1 pairing.
We note that the Prover can reduce the cost of evaluating e(EC , P̃ ) by computing
and storing the value e(C, P̃ ). Thus, with just 1 pairing per-epoch, the Prover can
compute each e(EC , P̃ ) as e(Z, P̃ )σ+ρ · e(C, P̃ ) with 1 exponentiation and 1 multipli-
cation in GT . Using this optimization, the cost to compute a proof of knowledge of
a membership witness boils down to a total of 9 scalar-point multiplications in G1, 3
point additions in G1, 5 exponentiation in GT and 1 multiplication in GT .

Similarly, the Verifier needs 16 scalar-point multiplications inG1, 9 point additions
in G1, 4 exponentiation in GT and 2 pairings (if computes e(EC , P̃ )sye(EC , cQ̃) as
e(EC , syP̃ + cQ̃)) to verify a non-membership witness zero-knowledge proof, while he
needs 10 scalar-point multiplications in G1, 5 point additions in G1, 3 exponentiation
in GT and 1 pairing to verify a zero-knowledge proof of knowledge for a membership
witness.

3.8 Implementation
To show the efficiency and its practical relevance, we implemented the proposed accu-
mulator scheme by using the RELIC library [Ara+], which implements the arithmetic
of many pairing-friendly elliptic curves. In order to guarantee a security level of 128-
bits, we selected the available pairing-friendly Type-III prime order curve B12-P446.
We then benchmarked the main features of the proposed accumulator, obtaining the
following average results:

• Accumulator Updates: 0.75 seconds to add 1, 000, 000 elements (random ele-
ments generation requires 1.46s); 0.48 seconds to delete 1, 000, 000 elements.

• Witness Issuing: 1.9 milliseconds to issue a membership witness; 229.5 millisec-
onds for a non-membership witness (1, 000, 000 elements accumulated).

• Witness Verification: 2.2 milliseconds to verify a membership witness; 3.2 mil-
liseconds to verify a non-membership witness.
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• Public Batch Witness Update: 37.9 seconds to generate batch update data
corresponding to a 10, 000 elements batch addition operation; 27.1 seconds for a
10, 000 elements batch deletion operation.

• BatchWitness Update: 2.1 seconds to update a membership or non-membership
witness after a batch addition or deletion operation of 10, 000 elements.

• Non-Batch Witness Update: 4.4 seconds to update a membership or non-
membership witness after a batch addition or deletion operation of 10, 000 ele-
ments.

• Zero-Knowledge Proof Creation: 5.2 milliseconds to create a zero knowledge
proof of knowledge of a membership witness; 7.4 milliseconds to create a proof for
a non-membership witness.

• Zero-Knowledge Proof Verification: 6.5 milliseconds to verify a zero knowl-
edge proof of knowledge of a membership witness; 11.2 milliseconds to verify a
proof for a non-membership witness.

These benchmarks came from running our implementation on a standard Intel(R)
Core(TM) i7-3770 CPU @ 3.40GHz desktop provided with 8.00GB of RAM and
running Ubuntu 18.04 x64. No parallelization was used.

Our implementation can be found on GitHub at:

https://github.com/cryptolu/accumulator/

Feedback from the community. We were contacted by a company that imple-
mented our accumulator (including the Public Batch Witness Update and Zero-
Knowledge protocols) as a revocation mechanism for verifiable credentials. Their
implementation, public on GitHub 7, is used already in production applications where
10-20 million entries remain accumulated at any given time, and 1000/600 elements
are added/deleted, respectively, per day. They reported to us that in their imple-
mentation: (i) witness update data generation takes 17s and 99KB/day; (ii) users’
witness update after 1 year offline requires 80s and 36MB of update data; (iii) witness
updates work on IoT; (iv) using the pairing-friendly elliptic curve BLS12-381, RAM
requirements are few megabytes. They added that our scheme “solves their scaling
problem” compared to Hyperledger-Indy8 implementation of [CKS09], which would
take hours/day and larger proof sizes.

3.9 Conclusions
In this Chapter, we presented a Dynamic Universal Accumulator in the Accumulator
Manager setting over bilinear groups, which supports batch operations and batch
membership and non-membership public witness updates.

The proposed accumulator extends previous schemes by adding batch operations,
enabling users to update witnesses in optimal time. Furthermore, since batch update
data is designed to be decoupled from users’ witnesses, our protocol permits (privacy-
preserving) witness updates delegation, thus enabling lightweight users to keep their
witnesses updated with a constant number of elementary operations.

We then showed in the Generic Group Model its security in terms of collision
resistance by introducing a more general version of the t−SDH assumption, for which

7https://github.com/mikelodder7/accumulator-rs
8https://www.hyperledger.org/use/hyperledger-indy

https://github.com/cryptolu/accumulator/
https://github.com/mikelodder7/accumulator-rs
https://www.hyperledger.org/use/hyperledger-indy
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we give an upper bound complexity for a generic algorithm that solves the corre-
sponding problem. We further showed how to initialize the accumulator to be safe
from an attack which would allow forging witnesses for non-authorized elements, an
essential requirement in the case the accumulator scheme is used as an authentication
mechanism under the accumulator manager authority.

We then described how to instantiate a zero-knowledge proof of ownership of a
valid witness for a given accumulator state, and we implemented the accumulator
logic along with batch operations, the public witness update protocol, and the zero-
knowledge proof mechanism to show its practical relevance as an efficient and scalable
privacy-preserving authentication mechanism.
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Part II

Blockchain Cryptography
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In this Part, I will present my works with my co-authors on the cryptanalysis of
primitives adopted, or considered for adoption, by top blockchain-based cryptocur-
rencies.

In Chapter 4, we will focus on the privacy-oriented cryptocurrency Zcash [Zca], by
showing the existence of multiple subliminal channels in both the zk-SNARK protocol
and commitment scheme used for creating shielded transactions, that is transactions
were the sender, the recipients and the amounts transferred are all hidden.

Under our attack model, justified by some design choice developers made in order
to allow limited-resources devices to create such private transactions efficiently, an
attacker can embed certain tagging information up to the channel capacity, with the
consequence of being the only one able to track on-chain users’ activities or reveal
the contents of a shielded transaction.

We will show the practicality of our attacks by illustrating an efficient 70-bits
channel in Zcash Sapling, which we used to embed an all-zero message in a valid on-
chain shielded transaction, and we will discuss some possible countermeasures that
can be efficiently implemented on users’ side.

In Chapter 5, instead, we will cryptanalyze the Legendre PRF, a pseudo-random
function proposed by Damgård [Dam90] relying on the conjectured pseudorandomness
properties of the Legendre symbol with a hidden shift. This function was recently
suggested as an efficient PRF for multi-party computation purposes by Grassi et
al. [Gra+16], and is being considered as the building block of a Proof of Custody
mechanism to be eventually implemented in the upcoming Ethereum 2.0 blockchain
[Fei19c].

Thorought the Chapter, we will describe an improved key-recovery attack on
the Legendre PRF, where we reduce the time complexity from O(p log p/M) to
O(p log2 p/M2) Legendre symbol evaluations when M ≤ 4

√
p log2 p queries to the

PRF are available to the attacker. These improvements allowed us to break three
concrete instances of the PRF proposed by the Ethereum foundation and whose
cryptanalysis will be discussed.

We will then generalize our attack to target the higher-degree variant of the Leg-
endre PRF, for which we show existence of a large class of weak keys, and we will
provide the first security analysis of two additional generalizations of the Legendre
PRF originally proposed by Damgård in the PRG setting, namely the Jacobi PRF
and the power residue PRF.





69

Chapter 4

Subliminal Channels in Zcash

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.1 Introduction to Zcash . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.2 Sapling Transaction Layout . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.3 Subliminal Channels and Attack Scenarios . . . . . . . . . . . . . . . . 72

4.3 The zk-SNARK Subliminal Channels . . . . . . . . . . . . . . . . . . 73
4.3.1 Groth’s NIZK argument . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.2 The Inner Subliminal Channel . . . . . . . . . . . . . . . . . . . . . . 74
4.3.3 The Outer Subliminal Channel . . . . . . . . . . . . . . . . . . . . . . 75
4.3.4 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.5 Adversary Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.6 Countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 The Pedersen Subliminal Channel . . . . . . . . . . . . . . . . . . . . 81
4.5 Implementation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.6 Example of a Tagged Transaction . . . . . . . . . . . . . . . . . . . . . 83
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1 Introduction
Cash-like privacy is one of the critical properties to be implemented in modern
blockchain-based cryptocurrencies. Bitcoin [Nak08], with its pseudonymous trans-
actions, while initially believed to offer payment privacy, was shown to suffer from
transaction graph analysis and linkability issues [Mei+13; RH13], mainly due to
the public nature of its ledger. To address these aspects, there has been a rise of
privacy-preserving cryptocurrencies such as Dash [Das], Monero [Mon], Zcash [Zca],
each using different privacy-enhancing technologies. The simplest one is used by the
blockchain Dash, which uses so-called masternodes with built-in mixers to provide
privacy. Monero’s ring signatures provide another form of transaction mixing, which
does not require central nodes while also hiding the values of transactions. These ring
signatures are a cryptographic primitive which provides a valid signature for a group
of n users where only one user has to use his secret key together with the public keys
of the other members. It follows that, externally, it is impossible to tell which group
member signed the message. For transactions, that means that multiple outputs can
be spent simultaneously without the ability to distinguish which signer used a secret
key and which ones the public keys.
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The last promising technology that is in use for privacy-preserving blockchains is
zk-SNARK, which stands for Zero-Knowledge Succinct Non-interactive ARguments
of Knowledge. This technology offers provable security and requires a Common Ref-
erence String (CRS), which is the central trusted piece of data. In the case of the
Zcash blockchain, the CRS was generated once at the launch of the chain in a dis-
tributed multi-party computation (MPC) with trusted peers. Zcash launched on 28
October 2016 as the first commercial release of zk-SNARKs. Zcash itself is based on
Bitcoin-style UTXO (unspent transaction output) system of tracking coins and has
a public and a private portion. The public part works the same way as in Bitcoin,
while the private part uses zk-SNARKs proofs, and transactions that use such zk-
SNARKs are called shielded transactions. One of the problems with such zk-SNARK
technology was that, in the first version, the creation of a proof took 40 seconds and
1.5GB of memory, so for usability reasons, this blockchain kept transparent Bitcoin-
style transactions as default. In October 2018, Zcash added a new and much faster
zk-SNARK protocol called Sapling [Zca18] in which a proof creation takes 3 seconds
and requires only 40MB of memory.

In this Chapter, we will describe some transaction-tagging attacks for the Zcash
Sapling protocol, based on subliminal channels [Sim85; Sim94; YY04] and which
can be used to weaken users privacy. With a subliminal channel, an attacker can
reveal b bits of arbitrary information out of a cryptosystem, using system parameters
that were not originally designed to exchange such information. This means that
subliminal channels, when they exist, can become a hidden part of the cryptosystem,
and if the attacker controls the affected parameters, he can freely decide whether
to send a secret message or not: in particular, such hidden communication can be
used to reveal secret keys or user IDs. Even worse, to maintain the confidentiality of
the subliminal channel, the attacker can easily use encryption to permit only some
receivers that know a pre-shared secret to retrieve the plaintext message, while the
others cannot even detect if a message was sent. While subliminal channels can be
present in many cryptosystems, it is clear that privacy-focused applications need to
be aware of their existence and properties, due to severe consequences for user privacy
(and coin fungibility, in the case of cryptocurrencies).

In Zcash Sapling we discovered three different subliminal channels: the Inner and
the Outer Subliminal Channels, which can be used assuming that the zk-SNARK
proof generation mechanism (but not the secret master key!) is under the control
of the attacker, and the Pedersen Subliminal Channel, which requires the control of
the randomness source in the commitment scheme adopted to hide values of shielded
inputs and outputs. Such subliminal channels can be exploited, for example, by
closed-source lightweight wallets which are used on mobile devices. Another possible
attack vector is represented by (delegated) computation servers (or hardware devices)
used for zero-knowledge proof generation.

Alongside the descriptions of these subliminal channels, we provide an example
of how an attacker can exploit them to permit external entities, that we will refer
to as Subliminal Verifiers, to distinguish transactions created by the same user and
to de-commit/reveal all shielded transaction amounts. We will then discuss counter-
measures to prevent the exchange of subliminal messages, or alternative methods to
disrupt their contents.

4.1.1 Outline

In Section 4.2 we provide a brief background on Zcash and how shielded transac-
tions are computed. In Section 4.3 we detail the Inner and Outer Subliminal channel
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we found in the zk-SNARK proof system mechanism used to ensure the correctness
of private Zcash transactions, while in Section 4.4 we detail the Pedersen Subliminal
Channel, which affects, instead, the employed commitment scheme. We discuss possi-
ble transaction-tagging and information leakage attacks, and we show their practical-
ity in Section 4.5 by embedding 9 bytes in a real Zcash Sapling shielded transaction,
reported in Section 4.6.

4.2 Preliminaries

4.2.1 Introduction to Zcash

Zcash is a privacy preserving blockchain based on Zerocash [Ben+14], which uses
practical zero-knowledge proofs called zk-SNARKs. Zcash has a public open part,
which exactly mimics Bitcoin’s ledger and is based on unspent transaction outputs
(UTXO), and a parallel hidden part, which employs zero-knowledge proofs and value
commitments in order to transfer coins anonymously. In Zcash, transactions that use
such zero-knowledge proofs are called shielded transactions, in contrast to transparent
transactions, which happen on the public side of the blockchain.

Zcash was launched on 28 October 2016 with the release called Sprout. This
version’s zk-SNARK proof mechanism took 40 seconds and required 1.5GB of memory.
On 29 October 2018 the first major update to Zcash’s proof system called Sapling was
deployed. This update reduced the time to create a zk-SNARK to 3 seconds, while
the memory requirement was reduced to 40MB. Sprout and Sapling addresses and
transactions use completely different elliptic curves and proof protocols, which makes
them incompatible with each other. In this Chapter we will address only Sapling
shielded transactions.

Coins in Zcash are referred to as ZEC, while the smallest possible value is called
Zatoshi, where 1 ZEC = 108 Zatoshi1. Zcash uses a UTXO based ledger both in its
public and shielded setting. In order to create a new output with a specific value,
one must consume previously unspent outputs, where the value sum of these has to
be larger or equal to the value sum of the desired new outputs. The only transaction
that can create new value without consuming a previously unspent output is the
so-called coinbase transaction, which is always the first transaction in a block. Its
base value is fixed by the blockchain protocol, and miners can add an extra value
equal to the sum of fees of all transactions present in the block they are mining. In
a transaction, if the sum of the values from the consumed outputs is larger than the
new outputs, the difference can be claimed in the coinbase transaction by the miner
as the transaction fee. In the rest of the Chapter we will refer to the consumed or
spent outputs as inputs of a transaction, while to the newly created unspent outputs
simply as the outputs of a transaction. Every output is connected to a public key
which is also called address (transparent or shielded). The output can be only spent
with the address’s corresponding private key.

4.2.2 Sapling Transaction Layout

To clarify the context in which the subliminal channels found work and how they
can be exploited to exchange subliminal messages, we will now briefly describe how
transactions are created and stored on the Zcash blockchain.

The input of a Zcash Sapling transaction consists of a sequence of Spend De-
scriptions and Transparent Inputs, while its output consists of a sequence of Output

1At the moment of writing 1 ZEC is exchanged at about 200 USD.
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Spend Description Output Description

Binding Signature

Transparent Input Transparent Output

Committed Input Note Value

Spend DATA

zk-SNARK Proof

Committed Output Note Value

Output DATA

zk-SNARK Proof

Fee

Figure 4.1: Sapling Transaction Layout

Descriptions and Transparent Outputs. It is up to the user to create fully shielded
transactions consisting of only Spend and Output Descriptions, fully transparent ones
or transactions that result from a combination of them.

An example of a Sapling transaction is shown in Figure 4.1, where one Spend
Description, one Transparent Input, one Output Description and one Transparent
Output are included. This simplified layout will guide our description through the
main elements of a transaction. While a Spend Description refers to a previous
transaction note, which is spendable only if the corresponding spending key is known,
an Output Description corresponds to a new one.

Each note contains a note value which accounts for the total amount of ZEC
involved. While in Transparent Inputs/Outputs the note value is publicly readable,
in the case of Spend and Output Descriptions, it is hidden in the form of a Pedersen
Commitment [Ped92]. Note value commitments are included, along with some other
DATA, in the respective descriptions they refer to and allow - thanks to a Binding
Signature - to publicly verify the total transaction balancing value.

Each description is finalized by appending a zk-SNARK proof that assures value
commitment integrity, spend authority (as in the case for Spend Descriptions), double-
spending prevention and other protocol coherence requisites.

4.2.3 Subliminal Channels and Attack Scenarios

The Zcash Sapling protocol introduced many new features. Among these, it imple-
ments the “Decoupled Spend Authority” that, quoting from the official pre-release
note2, enables “enterprises [to] perform an inexpensive signature step in a trusted
environment while allowing another computer, not trusted with the spending key, to
construct the proof. Additionally, hardware wallets can support shielded addresses by
allowing the connected computer to construct the proof without exposing the spending
key to that machine”. We can consider the following two scenarios to motivate why
this could be a security and privacy issue. In the first one, the zk-SNARK proof gen-
eration is delegated to a computation server (or hardware) that can surreptitiously
embed extra tagging information in the generated proofs. Whenever it happens, we
have a subliminal channel that we will refer to as Inner Subliminal Channel. In the
second scenario, lightweight closed source wallets can embed subliminal information
into already generated valid zk-SNARK proofs exploiting their malleability. We will
refer to such channels as Outer Subliminal Channel.

In the Zcash Sapling protocol, we found subliminal channels that exist in both the
zk-SNARK proof generation mechanism and the adopted commitment scheme. More
precisely, we found an Inner Subliminal Channel and an Outer Subliminal Channel,

2https://z.cash/blog/whats-new-in-sapling/

https://z.cash/blog/whats-new-in-sapling/
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described in the following Sections related to the currently implemented zk-SNARK
scheme. We further found another channel that we called Pedersen Subliminal Chan-
nel, which refers to the Pedersen Commitment scheme used.

For each type of subliminal channel found, the techniques to embed a subliminal
message are similar: for this reason, we chose to describe in detail the embedding of
a subliminal message and its retrieval only for the subliminal channels found during
and after the zk-SNARK proof generation.

After describing the computational complexity of the proposed embedding proce-
dures, a concrete attack scenario is discussed, and some countermeasures are proposed
to prevent the use of such subliminal channels. A brief discussion on the effectiveness
and efficiency of these channels to tag real Zcash transactions will then follow.

4.3 The zk-SNARK Subliminal Channels
We now show how Provers compliant with the Sapling zk-SNARK proof generation
protocol can exchange extra b-bits of information with protocol-compliant Verifiers.
Since these bits are exchanged by using parameters employed during the proof gener-
ation that were not intentionally designed for communications, we will refer to these
communication channels as subliminal channels [Sim83; Sim94; YY04] and to the
exchanged messages as subliminal messages.

We will describe in detail two different constructions: the Inner Subliminal Chan-
nel and the Outer Subliminal Channel. In the Inner one, the message is embedded in
the zk-SNARK proof during its generation, while with the Outer Subliminal Channel
a subliminal message is embedded in an already generated valid proof before it is
signed.

When these subliminal channels are used, the resulting proofs will be valid and
indistinguishable from any other valid proof for the same statements if some auxiliary
information remains unknown to the Verifier.

4.3.1 Groth’s NIZK argument

In order to set out the definitions and notations employed in the construction of the
proposed subliminal channels, we briefly recall Groth’s NIZK argument [Gro16] for
arithmetic circuit satisfiability currently adopted by Zcash Sapling. The setting is as
follows:

• Consider a relation generator R that returns relations of the form

R = (p,G1,G2,GT , e, g,h, l, {ui(X), vi(X),wi(X)}mi=0, t(X))

where (p,G1,G2,GT , e) is a bilinear group of order p and g,h are generators,
respectively, of G1 and G2.
The relation defines a language of statements (a1, ..., al) ∈ Zl

p and witnesses
(al+1, ..., am) ∈ Zm−1

p such that with a0 = 1

m∑
i=0

aiui(X) ·
m∑
i=0

aivi(X) =
m∑
i=0

aiwi(X) + h(X)t(X)

for some degree n− 2 polynomial h(x).



74 Chapter 4. Subliminal Channels in Zcash

A Prover that generates a proof π for statement (a1, ..., al) should be able to convince
any Verifier that he knows the corresponding witness (al+1, ..., am) without revealing
any information related to the witness.

In Groth’s scheme, both proof generation and verification are done in the Common
Reference String model: the respective Setup, Prover and Verifier procedures are
defined as follows.

• σ← Setup(R) : pick α,β, γ, δ ← Z∗p and compute

σ1 =

(
gα, gβ, gδ,

{
gx

i
}n−1

i=0
,
{
g
xit(x)
δ

}n−2

i=0
,
{
g
βui(x)+αvi(x)+wi(x)

γ

}l
i=0

)

σ2 =

(
hβ,hγ ,hδ,

{
hx

i
}n−1

i=0

)
The tuple σ = (σ1,σ2) is referred to as Common Reference String.

• π ← Prover(R, σ, (a1, ..., am)) : pick r, s ← Zp and compute π = (A,B,C)
where

A = gα+
∑m

i=0 aiui(x)+rδ , B = hβ+
∑m

i=0 aivi(x)+sδ ,

Ĉ = g

∑m

i=l+1 ai(βui(x)+αvi(x)+wi(x))+h(x)t(x)
δ ,

B̂ = gβ+
∑m

i=0 aivi(x)+sδ , C = Ĉ ·As · B̂r · g−rsδ

• 0/1← Verifier(R, σ, (a1, ..., al), π) : compute

T = g

∑l

i=0 ai(βui(x)+αvi(x)+wi(x))
γ

Parse π = (A,B,C), and accept the proof if and only if

e(A,B) = e(gα,hβ)e(T ,hγ)e(C,hδ)

4.3.2 The Inner Subliminal Channel

Suppose that a Prover, hereafter called “Subliminal Prover”, wishes to send b-bits of
information to a Verifier, that from now on we will refer to as “Subliminal Verifier”.
A Subliminal Prover cannot directly communicate to a Subliminal Verifier, because
otherwise, there is no need to use subliminal channels. When a message is embedded,
the Prover does not know when it will be recovered, and he cannot warn the Verifier
to recover the message from a specific proof rather than another.

To overcome these limitations, in our constructions, the Subliminal Prover and
Verifier share some secret auxiliary information, denoted as aux, that permits the
Verifier to distinguish a proof with a subliminal message from an honest random
proof generated for the same statements.

We let ω : {0, 1}∗ → {0, 1}b and ξ : {0, 1}∗ → {0, 1} b2 be two uniformly distributed
polynomial-time computable functions. The abstract purpose of ω is to obtain the
message to embed from the statements of the proof, while ξ acts as a message extrac-
tor, that is it recovers parts of the embedded message from the proof. To both bind
a subliminal message to some specific information and to permit Subliminal Verifiers
to recognize proofs with subliminal messages embedded, we require that both ω and
ξ take as input the auxiliary information aux.
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In short, for statement (a1, ..., al), we let

M = ω(aux, a1, .., al)

be the message that the Subliminal Prover would like to send to a Subliminal Verifier,
assuming they both know ω, ξ and aux.

As opposed to the Subliminal Prover, the Subliminal Verifier takes as input a
set Ω = {ωi}i∈I , for some index set I. Each function ωi corresponds to a different
method the Subliminal Prover can use to obtain the subliminal message, especially
when the Prover uses a unique ω = ωi associated to a user.

In order to embed and recover the subliminal message M , the Prover and Verifier
procedures are therefore modified as follows:

• π← SubliminalProver(R, σ, (a1, ..., am), ω, ξ, aux) :

• Compute M = ω(aux, a1, .., al) and denote with m1,m2 the first and the last
b
2 bits of M , respectively.

• Randomly select r ← Zp until

ξ
(
aux, a1, ..., al,

(
gα+

∑m

i=0 aiui(x)
)
·
(
gδ
)r)

= m1

• Randomly select s← Zp until

ξ
(
aux, a1, ..., al,

(
hβ+

∑m

i=0 aivi(x)
)
·
(
hδ
)s)

= m2

• With the r, s obtained compute π = (A,B,C), where

A = gα+
∑m

i=0 aiui(x)+rδ B = hβ+
∑m

i=0 aivi(x)+sδ

Ĉ = g

∑m

i=l+1 ai(βui(x)+αvi(x)+wi(x))+h(x)t(x)
δ

B̂ = gβ+
∑m

i=0 aivi(x)+sδ C = Ĉ ·As · B̂r · g−rsδ

• (0/1, M)← SubliminalVerifier(R, σ, π, (a1, ..., al), Ω, ξ, aux) :

• Parse π = (A,B,C), and let

m1 = ξ(aux, a1, ..., al,A) m2 = ξ(aux, a1, ..., al,B)

• If exists an ω ∈ Ω such that ω(aux, a1, ..., al) = (m1||m2), recover M as

M = (m1||m2)

Otherwise, set M =⊥.
• Return (Verifier(R,σ, (a1, ..., al),π) , M )

4.3.3 The Outer Subliminal Channel

In Groth’s original scheme and in its corresponding Zcash Sapling implementation,
a user that possesses, for a certain statement, a valid proof π = (A,B,C) is able
to transform it into a different, but still valid, proof π′ = (A′,B′,C ′) for the same
statement.

The proof can be transformed using the following transformations, which exploit
the multiplicative nature of the proof structure:
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• Select random r̃ ∈ Zp and set

A′ = Ar̃ , B′ = B
1
r̃ , C ′ = C

• Select random s̃ ∈ Zp and set

A′ = A , B′ = B · (hδ)s̃ , C ′ = As̃ ·C

• Select random r̃, s̃ ∈ Zp and set

A′ = Ar̃ , B′ = B
1
r̃ · (hδ)

s̃
r̃ , C ′ = As̃ ·C

It is straightforward to see that if π = (A,B,C) is accepted by a Verifier, then
π′ = (A′,B′,C ′) will be accepted as well: indeed, considering the last transformation
(the other two are special cases of this), we have

e(A′,B′) = e(gα,hβ)e(T ,hγ)e(C ′,hδ) ⇔

e(Ar̃,B
1
r̃ · (hδ)

s̃
r̃ ) = e(gα,hβ)e(T ,hγ)e(As̃ ·C,hδ) ⇔

e(A,B)e(As̃,hδ) = e(gα,hβ)e(T ,hγ)e(As̃,hδ)e(C,hδ) ⇔
e(A,B) = e(gα,hβ)e(T ,hγ)e(C,hδ)

With similar techniques as employed in the Inner Subliminal Channel, we show
how these three transformations can be used to embed a message into a valid proof π,
thus creating another subliminal channel that we will refer to as “Outer Subliminal
Channel”. We will demonstrate it using the third proof transformation, but the
construction easily generalizes the other two transformations. Here we can also take
advantage of parallel computation since the randomized group elements A′ = Ar̃ and
C ′ = As̃ ·C can be computed independently.

We let again ω : {0, 1}∗ → {0, 1}b and ξ : {0, 1}∗ → {0, 1} b2 be two uniformly
distributed polynomial-time computable functions and for statement (a1, ..., al) and
some auxiliary information aux, we let M = ω(aux, a1, .., al) be the subliminal mes-
sage a Subliminal Prover would like to embed into a proof π for statement (a1, .., al).

The new SubliminalProver and SubliminalVerifier procedures are as follows:

• π← SubliminalProver(R, σ, (a1, ..., am), ω, ξ, aux) :

• π̃ = (Ã, B̃, C̃)← Prover(R,σ, (a1, ..., am)).
• Compute M = ω(aux, a1, .., al) and denote with m1,m2 the first and the last
b
2 bits of M , respectively.

• Randomly select r ← Zp until

ξ(aux, a1, .., al, Ãr) = m1

• Randomly select s← Zp until

ξ(aux, a1, .., al, Ãs ·C) = m2

• With the r, s obtained compute π = (A,B,C), where

A = Ãr , B = B̃
1
r · (hδ)

s
r , C = Ãs ·C
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• (0/1, M)← SubliminalVerifier(R, σ, π, (a1, ..., al), Ω, ξ, aux) :

• Parse π = (A,B,C), and let

m1 = ξ(aux, a1, ..., al,A) , m2 = ξ(aux, a1, ..., al,C)

• If exists an ω ∈ Ω such that ω(aux, a1, ..., al) = (m1||m2), recover M as

M = (m1||m2)

Otherwise, set M =⊥.
• Return (Verifier(R,σ, (a1, ..., al),π) , M )

4.3.4 Computational Complexity

We will now discuss the average number of operations required to successfully embed a
b-bits messageM in a valid proof π, using the Inner or the Outer Subliminal Channel,
respectively. Both estimations are done assuming that ξ is uniformly distributed on
{0, 1} b2 .

For the Inner Subliminal Channel, a b-bits message can be embedded with an
average cost of O(2 b2 ) parallelizable step operations, where each step consists of a
scalar-point multiplication, a point addition and one ξ-evaluation. More precisely,
O(2 b2 ) step operations are needed to find r and, similarly, O(2 b2 ) operations are needed
to find s, such that the resulting A,B successfully embed the first and the second half,
respectively, of the subliminal messageM . These complexities derive directly from the
hypothesis that ξ is uniformly distributed and that both G1 and G2 are cyclic groups
of order p with log2(p) >>

b
2 . To give a more concrete example, let us fix a random

value M ∈ {0, 1} b2 and let, as in the case for r, f(i) =
(
gα+

∑m

i=0 aiui(x)
)
·
(
gδ
)i
.

Then, varying i ∈ [0, 2 b2+1 − 1], f(i) will take distinct values and hence, with high
probability, ξ(aux, a1, ..., al, f(i)) will take all possible values in the interval [0, 2 b2+1−
1]. This means that there is a j ∈ [0, 2 b2+1 − 1] such that ξ(aux, a1, ..., al, f(j)) = m

and to find it, an average number of 2
b
2 +1−1

2 ≈ 2 b2 ξ ◦ f -evaluations are needed,
corresponding to an average of O(2 b2 ) step operations overall.

Each step operation cost can be further improved to consists only of a point
addition and one ξ-evaluation: for example, in the case of r, the Subliminal Prover
can iteratively compute the values

Ai =

{
gα+

∑m

i=0 aiui(x) if i = 0
Ai−1 · gδ otherwise

until a preimage Ar for m1 with respect to ξ is found.
With similar arguments, it is easy to prove that, similarly as in the Inner Sub-

liminal Channel, embedding a b-bits message using the Outer Subliminal Channel
requires an average number of O(2 b2 ) point additions and ξ-evaluations.

Note that for both proposed channels, each value r and s can be searched in
parallel: hence, if 2c computation units are available, M could be embedded with an
average number of O(2 b2−c) point additions and ξ-evaluations per unit.
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k

Local Wallet

π

Delegated Prover

Figure 4.2: Delegated proof π signed with user’s secret master key k.

4.3.5 Adversary Assumptions

In a lightweight wallet scenario, where proof generation is delegated to a third-party
Prover, subliminal channels could be maliciously exploited to share a certain amount
of information related to users, thus permitting a wide variety of different activities
such as proof fingerprinting, user-tracing, leak of transaction data and so on. Thus
at stake is privacy and security of the user funds as well as fungibility of the affected
coin.

In our use case, a Subliminal Prover could embed in all generated proofs unique
tracing information related to the user that requests the proof computation, and
later share with some Subliminal Verifiers a certain auxiliary information aux that
permits them to perform tracing analysis only to a particular subset of users the
Prover authorizes them to look at.

This is a realistic setting for an adversary in our case as well: at the time of
writing, the Zcash developers were working on implementing delegated proofs, where
only the secret key and basic signing is done locally, while the rest of the proof
generation is delegated to another system. In this setting, as shown in Figure 4.2, the
adversary would not learn the secret master key of the target (since it is stored only
in the wallet) but could still reveal, using one of the proposed subliminal channels,
some transaction-tagging information.

Furthermore, to remain undetectable, the attacker wishes to hide its malicious
activities and reduce the number of interactions with its target and the environment
to a minimal level: for example, the attacker will not send any, even if encrypted,
message to the external world indicating that he is adopting a subliminal proving
mechanism on the target’s machine, as this would be easily detectable by network
traffic analysis. Within this scenario, our adversary would attack the proving system
once, for example, when the software is installed, and will not require any further
direct interaction as long as the proving system remains malicious.

Aiming at fingerprinting proofs in order to permit later tracing activities, a Sub-
liminal Prover could proceed according to the following steps:

• Associate to each user U a unique random n-bit key kU . Let K = {kU}U be the
set of all user keys.

• For t ∈ N+ let Ht be a t-bits cryptographic hash functions. For example, if
t ≤ 512, Ht(x) could be defined as the last t-bits of BLAKE2b-512(x).

• Let E(M , k) be an easily computable algorithm that takes a plaintext M as in-
put, a key k and returns an output of b-bits. Depending on the security property
required for the subliminal channel, E can differently model a Message Authenti-
cation Code, a Block Cipher, a Public Key Encryption scheme and others. The
following description indeed, easily generalizes to all these cases.
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• When the user U requests a proof π for statement (a1, ..., al), the Subliminal Prover
defines

aux = {E, kU , b,Ht}

ξ(aux, a1, .., al,x) = H b
2
(x)

ω(aux, a1, ..., al) = E(a1 || ... || al, kU )

and executes

π ← SubliminalProver(R,σ, (a1, ..., am),ω, ξ, aux)

Consequently, the Subliminal Verifier can link proofs to users in the following way:

• The Subliminal Verifier receives from the Subliminal Prover the set

aux = {E,Trace, b,Ht}

where Trace ⊆ K is the subset of keys associated to users he wishes to trace.

• The Subliminal Verifier defines

ξ(aux, a1, .., al,x) = H b
2
(x)

and let Ω

Ω = {ωkU (aux, a1, ..., al)}kU∈Trace
= {E(a1 || ... || al , kU )}kU∈Trace

be the set of functions ωkU indexed over the user keys kU in Trace.
He then executes

(0/1,M)← SubliminalVerifier(R,σ,π, (a1, ..., al), Ω, ξ, aux)

• If the recovered message M = (m1 ||m2) 6=⊥, the Subliminal Verifier associates π
to the user U such that, for a certain ωkU ∈ Ω, it holds ωkU (aux, a1, ..., al) =M .

It is straightforward to see how this construction can be easily generalized to allow
different embedding techniques and other malicious activities such as transaction data
leaks and more.

4.3.6 Countermeasures

If ω and ξ have some cryptographic properties, in principle, it should not be possible
without the auxiliary information aux to distinguish a random proof from one with
a subliminal message embedded (even if their definitions become public). Therefore,
as could be the case for a lightweight wallet scenario, if a user delegates heavy cryp-
tographic computations to a third-party entity as a Prover, he cannot know, looking
at the generated proof π, if the Prover embedded a subliminal message or not, no
matter what subliminal channel the Prover might have used.

To eliminate any potentially embedded subliminal message, the user should fur-
ther randomize Prover’s proof π = (A,B,C) using, for example, one of the three
proof transformations discussed at the beginning of the Outer Subliminal Channel
Section.
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Unfortunately, the most expensive transformation

A′ = Ar̃ , B′ = B
1
r̃ · (hδ)

s̃
r̃ , C ′ = As̃ ·C

is the only one that assures the user to fully disrupt all the (eventually) embedded b-
bits. Clearly, the computation of this further transformation should not be delegated
to a third-party, since this could, in turn, use the Outer Subliminal Channel to embed
its own subliminal message.

Alternatively, if two valid proofs π1 and π2 for the same statement are available to
the user, it is possible to combine them into a new valid proof π in a way that would
disrupt a subliminal message, especially if π1 and π2 come from different third-party
Provers. Our proof-combination method requires, however, that the user chooses at
least one of the two randomnesses r, s that the third-party Provers will employ during
the proof generation.

We therefore assume that the user possesses two proofs π1 = (A1,B1,C1) and
π2 = (A2,B2,C2) for the same statement (a1, ..., al) generated accordingly to the
chosen randomnesses s1 and s2, respectively.

He can then compute a new proof π for the same statement as

π = (A,B,C) =

√A1 ·A2,
√
B1 ·B2,

√
C1 ·C2 ·

(
A1
A2

) s1−s2
4


To see that π is still valid, we explicitly write the computations, as reported in

Groth’s original scheme, that generate the group elements of both proofs π1 and π2:

A1 = gα+
∑m

i=0 aiui(x)+r1δ B1 = hβ+
∑m

i=0 aivi(x)+s1δ

A2 = gα+
∑m

i=0 aiui(x)+r2δ B2 = hβ+
∑m

i=0 aivi(x)+s2δ

Ĉ = g

∑m

i=l+1 ai(βui(x)+αvi(x)+wi(x))+h(x)t(x)
δ

B̂1 = gβ+
∑m

i=0 aivi(x)+s1δ C1 = Ĉ ·As1
1 · B̂

r1
1 · g

−r1s1δ

B̂2 = gβ+
∑m

i=0 aivi(x)+s2δ C2 = Ĉ ·As2
2 · B̂

r2
2 · g

−r2s2δ

Hence, using the above formula, the resulting group elements A,B,C of π are

A = gα+
∑m

i=0 aiui(x)+
r1+r2

2 δ B = hβ+
∑m

i=0 aivi(x)+
s1+s2

2 δ

B̂ = gβ+
∑m

i=0 aivi(x)+
s1+s2

2 δ
(
A1
A2

) s1−s2
4

= g
(r1−r2)(s1−s2)

4 δ

C = Ĉ ·A
s1+s2

2 · B̂
r1+r2

2 · g−
r1s1+r2s2

2 δ · g
(r1−r2)(s1−s2)

4 δ

= Ĉ ·A
s1+s2

2 · B̂
r1+r2

2 · g−
r1+r2

2 · s1+s2
2 δ

If we look closely, we notice that π is a proof for statement (a1, ..., al) whose elements
A,B,C are generated using randomnesses s = s1+s2

2 and r = r1+r2
2 and hence it is

valid by construction.
If, on the contrary, π is not accepted as valid, but both π1 and π2 are, it means that

at least one between the randomnesses s1 and s2 is not the one that was effectively
used during the proofs generation: the user can easily spot (in a non-lightweight
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setting) which Prover cheated, recomputing the group elements B1 and B2 from the
Common Reference String and checking which of these is not equal to the one provided
in the proofs π1 and π2.

All these considerations imply that, even in a lightweight scenario, a suspicious
user has to perform some extra elliptic curve arithmetic on its device to prevent
embedding of subliminal messages.

At the same time, to permit users to not blindly trust third-party Provers, the im-
plementation of a delegated proof generation mechanism should either admit further
randomization of proofs, or take into consideration the combination of multiple proofs
at the cost of extra |p|−bits of information exchanged between delegated Provers and
the user.

Other than this, Trusted Execution Environments, like SGX, could help light
clients to mitigate trust issues in the proof delegation.

Systematic adoption of countermeasures to avoid embedding of subliminal mes-
sages is essential and not limited only to the prevention of the malicious activities
we have seen so far. Unfortunately, subliminal channels pose a potential issue re-
lated to Zcash fungibility: if miners are incentivized by some entity to mine first
transactions with a particular subliminal message embedded, and this fact, in turn,
encourages users to consciously embed such message to obtain a quicker transaction
approval, then this gives rise to a certain disparity between Zcash coins (more pre-
cisely, transactions). Moreover, in this hypothetical scenario, users that refuse to
embed a subliminal message in their transactions should pay a higher fee to get the
same level of priority, a win-win situation for miners.

4.4 The Pedersen Subliminal Channel
In the Pedersen Commitment scheme, given a cyclic group G of order p and two
random generators g,h of G for which the discrete logarithm logg(h) is unknown, c
is said to be a commitment of v ∈ Zp for a randomly chosen randomness r ∈ Zp, if
c = gvhr.

One of the main reason why the Pedersen Commitment is employed is because
it is additively homomorphic, that is, given any two commitments c1 = gv1hr1 and
c2 = gv2hr2 for values v1 and v2, respectively, their product c = c1c2 = gv1+v2hr1+r2

is a commitment to the sum v1 + v2 with randomness r1 + r2.
The Pedersen Commitment homomorphic property combined with the adoption

of a binding signature, that binds the note commitment values to the total balancing
value, permits the signer to convince everyone that he is able to open the commitment

c = g
∑

i
vi,IN−

∑
j
vj,OUT h

∑
i
ri,IN−

∑
j
rj,OUT

given by the product of all input committed values gvi,INhri,IN divided by the prod-
uct of all shielded output committed values gvj,OUT hrj,OUT , without revealing any
of the vi,IN , vj,OUT . Since in a Sapling transaction, in turn, c is a commitment to
the resulting transparent value change, this scheme assures at the same time both
confidentially and coherence of a shielded transaction.

Note that the randomness makes any commitment for a value v indistinguish-
able from a random element in G: this remark suggests that a Subliminal Signer, or
an attacker that controls the Signer randomness source, using similar techniques we
have seen in previous Sections, could embed a b-bits subliminal message in any com-
mitments, carefully choosing the randomnesses until the resulting committed value
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satisfies some desired properties related to the message he wishes to embed. We will
refer to this new subliminal channel to as Pedersen Subliminal Channel.

Other than that, if the Signer randomness source is under control of a malicious
party (i.e. it runs a malicious version of the software), with the knowledge of r, a
Subliminal Verifier could partially open a commitment c of v to gv = ch−r: in Zcash
Sapling, v is the number of Zatoshi corresponding to the current shielded note, that
is an integer in the interval [0, 2.1 · 1015].

Since in our scenario v ranges in this bounded interval and in practice most
transactions have note values that lie in the first part of such interval, with the
partially opened commitment gv the Subliminal Verifier could easily mount a rainbow
table attack [Oec03].

Just to give an example, suppose he disposes of 4TB ≈ 8 · (4 · 1012) bits of storage
memory. Since the Jubjub curve used in Zcash Sapling, has a base field of 381-bits,
the attacker can then store ≈ 236 compressed elliptic curve points. Thus, he computes
(eventually in parallel) and stores all the elements gv for v ∈ [0, 236], that is, note
values up to ≈ 840 · 108 Zatoshi. Then, with this table and for note values lower than
this bound, it is straightforward for him to find the discrete logarithm of gv, thus
revealing the shielded value.

It remains to find a way for the attacker to make the Subliminal Verifier aware
that a transaction is weak, in the sense that the randomness used during commitment
generation is deterministic for both attacker and Verifier if some auxiliary information
is known to the latter: note that, in fact, in our adversary assumptions, the attacker
(i.e. the malicious commitment mechanism) could not directly communicate with the
external world once the target is attacked.

To get through this, the attacker could embed in some elements of the transaction
a marker subliminal message, easily recognizable only if some auxiliary information
is known, that makes the Subliminal Verifier aware that the current transaction is
weak.

At first glance, this seems a stronger assumption about our attacker: he has
to control both the randomness source in the commitment scheme and the proof
generation process if he wishes to use, for example, one among the Inner Subliminal
Channel or the Outer one, to embed a subliminal message.

Actually, this extra requirement is not necessary: since all shielded input/out-
put values are committed, and the output values minus the input values have to be
equal to the public balancing value, by only controlling the randomness source of the
commitment scheme, the attacker could embed in only one commitment a subliminal
marker message using the Pedersen Subliminal Channel, hence permitting the Sub-
liminal Verifier to become aware that the transaction is weak and that he can proceed
to the full de-commitment of the shielded values; the value of the commitment that
embeds the marker message can then be easily computed from the balancing value,
once all the others commitments are successfully de-committed using a rainbow table
attack.

4.5 Implementation Results
We implemented the Inner Subliminal Channel and the Pedersen Subliminal Channel
in the Zcash official wallet (v. 2.0.5-2), and we successfully embedded 9 bytes in
a fully shielded transaction with 1 shielded input and 2 shielded outputs (a typical
payment transaction with returned change), i.e. 2 bytes in each proof and 1 byte in
each committed value.
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The proof generation time is proportional to the number of inputs since each
proof is generated independently. We ran our implementation on a standard Intel(R)
Core(TM) i7-3770 CPU 3.40GHz desktop provided with 8GB of RAM and running
Ubuntu 16.4 x64.

The proof generation time took on average 3.0087s, compared to the average time
of 2.8412s needed for a random proof generation. This is just a 6% increase in proof
time, barely noticeable, especially when using hardware wallets.

Considering that we did not implement any algorithmic optimization, this shows
that subliminal channels are a compelling means for tagging transactions, and it would
be prudent from the user’s perspective to implement countermeasures described in
Subsection 4.3.6.

4.6 Example of a Tagged Transaction
To provide a concrete example, we used our implementation to tag a transaction
using the proposed subliminal channels. All proof elements A and B and values
commitment have their last byte set to 0x00, which correspond to the subliminal
message.

The embedded data can be seen by hex-decoding our tagged Zcash transaction to
the JSON format. The resulting JSON can be found in Listing 4.1. We embedded
different parts of the subiliminal message in the following transaction fields:

• the commitment value cv, where 1 byte of the subliminal message is embedded
in its last byte, as the result of applying the Pedersen Subliminal Channel
(Section 4.4);

• the zk-SNARK proof value proof, where 2 bytes of the subliminal message are
embedded in the 48th and 144th byte, respectively, using the Inner Subliminal
Channel (Subsection 4.3.2).

Our test tagged transaction contains two shielded inputs and one shielded output,
and for the ease of readability, we have marked in blue the subliminal message zero
bytes. The transaction can be found on the Zcash testnet with a confirmed status
and can be verified using the hash of the transaction, reported is the txid JSON field
of Listing 4.1.

4.7 Conclusion
In this Chapter we have studied the existence and exploitability of subliminal channels
in the privacy-oriented cryptocurrency Zcash.

We found three subliminal channels in the cryptographic primitives adopted for
creating shielded transactions. These channels can allow a malicious prover to em-
bed tagging information about the user into each transaction, thus invalidating the
purpose of the zk-SNARK information hiding and other privacy features the Zcash
blockchain technology provides (e.g., value hiding, fungibility, etc.). In particular, we
detailed the Inner and Outer Subliminal Channel, which affect the zk-SNARK proof
generation mechanism, and the Pedersen Subliminal Channel, which instead affects
the commitment scheme used to hide transaction values. We discussed different con-
crete attack scenarios, and we showed the practicality of our attacks by tagging, with
a complexity overhead of just 6%, a Zcash transaction with 9 bytes of information.
Countermeasures against these attacks were also discussed.
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Listing 4.1: A valid Zcash Sapling transaction containing the subliminal message
000000000000000000 (highlighted in magenta).

"txid": "20ffc99e4e590688b465773ab7034d0055ef7d849d21320c10671253ed0
db49c",

"overwintered": true,
"version": 4,
"versiongroupid": "892f2085",
"locktime": 0, "expiryheight": 501319,
"vin": [], "vout": [],
"vjoinsplit": [],
"valueBalance": 0.00000000,
"vShieldedSpend": [

"cv": "840de77de2ccce945cf5e605b6e3b3fe34ac1210adb5288555ac151f3
88c3200",

"anchor": "19f636b14e7a7983ba89a14f6c03b5cfe540b867f8c6fe718e8e7
51fadbf3880"

"nullifier": "80dc569355b7eab9c101c7dba7a266982ac9b10c64e113c09a
44f0959e78bc4d",

"rk": "c21c2c6db475d2a4ef8eb3f6219112a339ffb5e3d6303eabf017f9345
da0ff84",

"proof": "a3ab169ed20718a175e421bde1609e8f94e7f65930ce8d5a93459e
164d614285b4dbd9aebbd31492f057f23d9bbb5a008632c4b7e9d8
33181f9bb14b7261e27e7eafc03aa9b6d3374bd9d2169bdcec21f1
143bf1f79ea3ec49e33765648e289010acd6a3b9dabb5e5421a237
bba50ca88ef446f877eb87e0ee2e50907023bf9232ce72df4c4081
873fa42c61188af700a6b76af9d28ddd9df1b026996407073162e2
92ac301eff406a3a4aecfcb35cd801090ec7957f95fbe3d01702e3
c09417",

"spendAuthSig": "b69c1f7f0f7891775cbd1b7bf6ef9335d88e2c31b6dc69c
61624c5940db4a7720054847954fe934646ed9c1a5b768a
c12395f37b58eb308c3485fb5b6437e808"

],
"vShieldedOutput": [

"cv": "e74a704a0190b634e6eaaade90dbac40f2794f3d0821a67c5b90c6fc5
6d10500 ",

"cmu": "1201a0844ab631ab418f429fc3d2ec64e5bafab4afa858d6a29a6b03
02a1a8de",

"ephemeralKey": "f0d7d39f7a748b725108004402d9dcccc095a1c89c4522f
d7f46551adec0babf",

"outCiphertext": "300a380831c98423665517289347d58edc46d019240e33
bd824916061eff80c2745e9f22ccbec2cef151191420bd
21f911dbb5eaa5ec4cd09adaa09658a69a337b6a28cf38
3edbfbfd01789f9911a9a1",

"proof": "b6868e9d4a8ad6677cdd8e5e0a53f5b07fe6bfa246833855e6f2b7
139e4b3b6c46c46c7afe8163806f34f8dd1c98d00087186b68c8a4
311ec81602290bc2f2e13d4bbde46d9baf0ba80ca3bb3986d581c3
d8cb85fa8956541ec74c32ea7f2afb0d3d839fc8fc4ede4314ff71
553307d2046a30ce3e6910f9477fb89f1353a04d126797d1a1d2c2
eda973da208eb3a20095235a7dd26608ca6d3cd6607ec18bf37fb8
5aae651ad49df523ddd1165ae896a2c8dde70e3a8ebeb4507e4d2a
f5b186",
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"cv": "129841260f65ced05c33ffd720ff6d98afdec8f15d1be5c3c6be14181
716d600",

"cmu": "399e239a682b1e072f04b81bf5fff37c06b57c23499bd7394d03fae9
61ffddcb",

"ephemeralKey": "ef61fd9ca8b37702190ba953f259d931ab0099087d3fe4f
8b20cdbb24cb4f657",

"outCiphertext": "206491a259a6b7fe9d49dafa4eddc2e8d1b700d0a06dd5
b58e4d69227f798049c7ccddfbb1be7cb285e75560f629
277ae29eaf47410fac0a57ba705a20a4d926cbd8443ad8
688ec02a563159de96dc21",

"proof": "80716af531c0c68b555d5fef665c83cbbe3ad1134ae876dcc188ba
138af7e4553c2854c6c32412e1191c9b82f1a6b300a50c737ffb62
723a4b56c1bfaef84c8fafd0fe825c11a13b215ede04074f9e5946
0a472fbc2035e546021f5b884118900dde46804895ce78c2b49b9d
8d20b050c3ac6c7a969636855825707971e5b63cedb0ecc144300c
6eea725a7067d38f00b3357681f9d25c2100f1989992e3ec2236f1
8f7e1acd32b750bb25c31eedde336a5ad67acfbb540f009d35d867
7e2d7b"

],
"bindingSig": "ea99c5d837508db138cc2d6388d990a43454cd4ccb444587276c5

23b326205a466e017a30eb0081b1b75405c86332f2d3ee2ecc107
7ac21ce413ca5e2294d306",

"blockhash": "0018a360262860c4059793b72695785a2276ed71192ec39b06af6a
ac3b28ad44",

"confirmations": 1089,
"time": 1558901286,
"blocktime": 1558901286
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5.1 Introduction
The Legendre symbol is a multiplicative function modulo an odd prime number p
that assigns to an element a ∈ Fp the value 1, 0 or −1 depending on whether or not
a is a square. Specifically,

(
a

p

)
=


1 if a = b2 for some b ∈ F×p ,
0 if a = 0 ,
−1 otherwise .

The distribution of Legendre symbols has been a subject of study for number theorists
at least since the early 1900s [Ala96; Ste98; Jac06; Dav31; Dav39]. In particular, it
follows from the Weil bound [Wei48] that the number of occurrences of a fixed pattern
of l nonzero Legendre symbols among the integers 1, 2, . . . , p− 1 modulo p is

p

2l +O(
√
p) ,

as p → ∞. In other words, the distribution of fixed length substrings of Legendre
symbols converges to the uniform distribution.

In 1988, Damgård [Dam90] conjectured pseudorandom properties of the sequence(
k

p

)
,
(
k+ 1
p

)
,
(
k+ 2
p

)
, . . . ,

where k has been sampled from Fp uniformly at random. He proposed to use this con-
struction as a pseudorandom number generator. More recently, Grassi et al. [Gra+16]
have proposed the same construction as a candidate pseudorandom function and have
shown that it can be evaluated very efficiently in the secure multiparty computation
setting. Concretely, the Legendre pseudorandom function Lk(x) is defined by map-
ping the Legendre symbol with a secret shift k to {0, 1}:

Lk(x) =

⌊1
2

(
1−

(
k+ x

p

))⌋
,

where p is a public prime number.
Damgård’s work additionally considers several generalizations of the Legendre

Pseudo Random Generator (PRG) that could be more efficient and/or more secure.
One of these is to replace the Legendre symbols above with Jacobi symbols. In this
case, the public modulus n is taken to be a product ∏i pi of odd primes. We recall
that the Jacobi symbol of a ∈ Fp is defined as(

a

n

)
=
∏
i

(
a

pi

)
.

In his work, Damgård argues that Jacobi symbols are more secure by showing that the
Jacobi generator is strongly unpredictable if the Legendre generator is weakly unpre-
dictable (more details in Section 5.6). He further notes that calculating Jacobi symbols
is more efficient since computing requires computing Legendre symbols modulo each
of the smaller prime factors of the modulus. A second generalization proposed by
Damgård consists in using higher power residue symbols instead of quadratic residue
symbols. Concretely, for a prime p with p ≡ 1 mod r, he proposes to use the r-th
power residue symbol a 7→ a(p−1)/r mod p. This potentially increases the throughput
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of the PRF, because we now obtain log2 r bits of output per PRF call, rather than a
single bit.

Very recently, the Legendre PRF was proposed to be used in the Ethereum 2.0
proof-of-custody mechanism [Fei19b]. In this context, several cryptanalysis bounties
were announced by the Ethereum foundation during the CRYPTO 2019 rump ses-
sion [Fei19a]. Among the proposed challenges, there are concrete instances of the
Legendre PRF with expected security levels ranging from 44 to 128 bits of security.
For each instance, 220 sequential output bits are given, and the goal is to recover the
secret key.

Despite the longevity of Damgård’s pseudorandomness conjecture and the recent
surge of application-oriented interest in the Legendre PRF, relatively few cryptana-
lytic results are available. It is known that, given quantum query access to Lk, the key
k can be recovered with a single query to Lk and in quantum polynomial time [DH00].
No subexponential attacks are known in the classical setting or the setting where a
quantum adversary is only allowed to query Lk classically.

The best cryptanalytic results in the classical setting are due to Khovratovich
[Kho19], who gives a memoryless birthday-bound attack. His attack recovers the key
with a computational cost of O(√p log p) Legendre symbol evaluations when given√
p log p queries to Lk. Khovratovich also considers a higher-degree variant of the

Legendre PRF, where the output is computed as the Legendre symbol of a secret
polynomial in the input. Similar to the Jacobi symbol generalization, the higher-
degree Legendre PRF potentially offers security and efficiency benefits.

5.1.1 Outline

In this Chapter we will cryptanalyse the Legendre PRF by improving upon Khovra-
tovich’s attacks on the one hand and by providing the first security analysis of the
Jacobi and power residue symbol generalizations on the other hand. The main im-
provement stems from the fact that, differently than earlier work, we exploit the
multiplicative property of the Legendre symbol in order to reduce attack complexity.
The practicality of the new attacks is demonstrated by our solution to the first three
concrete Legendre PRF challenges proposed by the Ethereum foundation [Fei19b].
These were expected to correspond to a security level of 44 and 54 bits, but our at-
tacks imply that the actual security levels for these challenges are significantly lower.

After introducing the necessary preliminaries in Section 5.2, we show how the
Khovratovich attack can be significantly improved in the low-data setting. In partic-
ular, for M ≤ 4

√
p queries, the attack described in Section 5.3 recovers the key with a

time-complexity of O(p log2 p/M2) Legendre symbol evaluations and a memory cost
of O(M2). In Section 5.4, the attack from Section 5.3 is generalized to the higher-
degree case. As before, this amounts to a significant improvement in the low-data
setting. In addition, for d ≥ 3 and with M = p queries, we gain a factor of p in
time complexity compared to Khovratovich’s results. Furthermore, in Section 5.4,
a large class of weak keys for the higher-degree Legendre PRF is shown to exist.
For keys in this class, key-recovery requires roughly O(pdd/2ed log p) operations with
only ddlog pe queries to the PRF. This attack requires O(pbd/2cd log p) bits of mem-
ory, but trade-offs are available using Van Oorschot-Wiener golden collision search
[vW99]. We also provide a reduction to the unique k-XOR problem, which results in
further time-memory trade-offs.

The first of Damgård’s generalizations is discussed in Section 5.6. Specifically, it
will be shown that the Jacobi PRF can be broken with cost proportional to the cost of
breaking the Legendre PRF for each of the prime factors of the modulus separately.
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Reference Queries Time Memory

Legendre PRF

Randomized [Kho19] log p `p log p log p
Khovratovich [Kho19] √p log p `

√
p log p log p

Subsection 5.3.1 M M + `p log p/M M log p
Subsection 5.3.3 M M2 + `p log2 p/M2 M2

Subsection 5.3.4 M M2 + p log2 p/M2 M2/ log p

Degree d ≥ 2
Legendre
PRF

Randomized [Kho19] log p `pd d log p d log p
Khovratovich [Kho19] p `pd−1d log p d log p
Section 5.4 M M2 + `pdd2 log2 p/M2 M2

Section 5.5 d log p pdd/2ed log p pbd/2cd log p

r-th power-
residue PRF

Subsection 5.7.2 M M2 + sp log2 p/(M2 log2 r) M2 log r
Subsection 5.7.3 M M + sp log2 p/(Mr log2 r) M log r

Table 5.1: Query, time and memory requirements of previous and new attacks on the
Legendre PRF. The reported time and memory values are asymptotic upper bounds
(O-notation) and assume a machine with word size Θ(log p), ` and s denote the time-
complexity of computing a Legendre and power residue symbol respectively. The attack
strategy for composite moduli from Section 5.6 can be combined with any of the attacks

in this table.

The power residue symbol generalization is analyzed in Section 5.7. Besides the
straightforward generalization of the attack from Section 5.3 to the r-th power residue
symbol PRF, we additionally provide a more efficient attack for the case where r is
large. A summary of our main results can be found in Table 5.1.

Finally, concrete implementation results are provided in Section 5.8. We report on
the specific amount of time and memory necessary to solve the first three Legendre
PRF challenges of the Ethereum foundation. These results showcase the practical
relevance of our attacks.

5.2 Preliminaries
In this Section we formally introduce the Legendre PRF and some related useful no-
tation used in our attacks. Furthermore, in Subsection 5.2.2, we recall how Legendre
and power residue symbols can be computed efficiently, and we briefly report Khovra-
tovich’s attacks on the Legendre PRF and its higher degree variant in Subsection 5.2.3
and Subsection 5.2.4.

5.2.1 The Legendre PRF

Definition 5.1 (Legendre function). For a given odd prime p, we consider the func-
tion

L : Fp → F2

x 7→
⌊1

2

(
1−

(
x

p

))⌋
which maps quadratic residues modulo p to 0 ∈ F2 and quadratic non-residues to
1 ∈ F2.
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Definition 5.2 (Legendre PRF). Let p be an odd prime and let d be a positive integer.
The degree d-Legendre PRF over Fp is a family of functions Lk : Fp → F2 such that,
for each key k ∈ Fd

p,

Lk(x) = L
(
xd +

d−1∑
i=0

ki+1 x
i

)
.

Remark 5.1. For any given field Fp, the Legendre symbol is multiplicative, i.e.(
ab

p

)
=

(
a

p

)(
b

p

)
for all a, b ∈ Fp.

In terms of the Legendre function L, multiplication of inputs corresponds to addition
in F2 of the respective images. Indeed

L(ab) = L(a)⊕L(b) for all a, b ∈ F×p ,

where ⊕ denotes addition in F2.
In our analysis, we will often consider sequential evaluations of a given degree d

Legendre PRF Lk starting from a point a with an additive or multiplicative step b.
We call such vectors L-sequences.
Definition 5.3 (L-sequences). Let p be an odd prime, m a positive integer and
a, b ∈ Fp. For a given Lk over Fp, we define the arithmetic L-sequence of length m
with starting point a and stride b as the Fm

2 -vector

Lk(a+ b [m]) := (Lk(a),Lk(a+ b), . . . ,Lk(a+ (m− 1)b))

Similarly, we define the geometric L-sequence of length m with starting point a and
common ratio b as the Fm

2 -vector

Lk(a · b[m]) := (Lk(a), Lk(a · b), . . . , Lk(a · bm−1 ))

To justify the correctness of our attack, the following property of Lk will be
assumed.
Assumption 5.1. Let p be an odd prime and d a positive integer. Let m = ddlog pe.
For all k ∈ Fd

p, then as p → ∞, there exist at most O(1) keys k′ ∈ Fd
p such that

Lk′([m]) = Lk([m]).

5.2.2 Evaluating Legendre and Power Residue Symbols

Using the law of quadratic reciprocity, which says that for distinct odd prime integers
p and q we have (

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 ,

Legendre symbols (and more generally Jacobi symbols) can be computed at essentially
the same cost as a GCD computation. Using the Euclidean algorithm, the cost of a
Legendre symbol computation is O(log p) arithmetic operations, or O(log2 p log log p)
bit operations. Brent and Zimmerman [BZ10] give an asymptotically better algorithm
with complexity O(log p log2 log p). Power residue symbols can be computed via
modular exponentiation in time O(log p log(p/r) log log p). In the remainder of this
Chapter, we will often refer to the cost of an algorithm in terms of the number of
Legendre symbol computations or power residue symbol computations.
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5.2.3 Previous Attacks on the Linear Legendre PRF

Khovratovich [Kho19] describes a chosen plaintext attack for the linear Legendre
PRF Lk that recovers k ∈ Fp with O(√p log p) queries to Lk. The attack is based
on a memoryless collision search between two specific functions and can be briefly
summarized as follows.

Let m = dlog pe and consider the functions x 7→ Lk(x+ [m]) and x 7→ L0(x+
[m]). Note that the L-sequence Lk(x+ [m]) is available by querying the Legendre
PRF, whereas L0(x+ [m]) does not depend on k. By Assumption 5.1, a collision
between x 7→ Lk(x + [m]) and x 7→ L0(x + [m]) yields k with high probability.
Indeed, let a, b ∈ Fp be such that Lk(a+ [m]) = L0(b+ [m]). We have

L0(a+ k+ [m]) = L0(b+ [m]).

and , by Assumption 5.1, the number of superfluous candidates for k satisfying the
above equality is expected to be at most O(1).

Collisions between x 7→ Lk(x+ [m]) and x 7→ L0(x+ [m]) can be found with a
generic memoryless collision search method [MOM92; vW94] in O(√p) evaluations of
both functions. Since computing each L-sequence requires m = O(log p) calls to Lk,
the overall complexity sums up to O(√p log p) queries to Lk and L0. More generally,
if only M queries to Lk are allowed, a collision can be found with O(p log2 p/M)
queries to L0. This will be discussed in detail in Subsection 5.3.1.

We note that Khovratovich’s original attack builds sequences of length m using
arbitrary evaluations of the Legendre function Lk, rather than consecutive ones. This
difference does not affect the overall attack complexity, but by using L-sequences, we
will be able, in Section 5.3, to reduce attack data complexity.

5.2.4 Previous Attacks on the Higher-Degree Legendre PRF

Khovratovich [Kho19] also presents a generalization of the chosen plaintext attack
from Subsection 5.2.3 to the quadratic case and, ultimately, to arbitrary degrees.

Let k = (k1, k2) ∈ F2
p and consider the associated quadratic Legendre PRF Lk.

Choose any r ∈ (Fp)∗. From the multiplicative property of the Legendre symbol we
get that for any a ∈ Fp and j ∈ Z,

L(r2j k1,rj k2)(a) = L(r
2j)⊕L(k1,k2)(ar

−j) = Lk(ar
−j), 1

since r2j is clearly a quadratic residue modulo p. Let m = 2dlog pe. If we find a
k′ ∈ F2

p and a j ∈ Z such that

Lk′(r · r[m]) = Lk(r
1−j · r[m]),

then we successfully recover k by letting k1 = k′1r
−2j and k2 = k′2r

−j . As for the
linear case, such a collision can be found memorylessly with O(p) queries to Lk and
O(p) Legendre symbol computations.

For the general case, let us consider the degree-d Legendre PRF Lk. Similarly to
the quadratic case, we have for each a ∈ Fp and j ∈ Z that

Lk1rdj , k2r(d−1)j , ..., kdrj (a) = l(rdj)⊕Lk(ar−j).
1This equation, and many other equations in this paper, only holds if none of the involved Legendre

symbols evaluate to zero. Since this does not pose a problem in practice we choose to ignore this
issue for notational convenience.
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By guessing the coefficients k3, . . . , kd, it is possible to attack the remaining coeffi-
cients k1 and k2 using geometric L-sequences of length ddlog pe, similarly as done in
the quadratic case. It follows that k can be recovered using O(pd−2 · p · d log p) =
O(pd−1d log p) Legendre symbol evaluations, given O(p) queries to Lk.

5.3 Improved Attack on the Linear Legendre PRF
In this Section, we show how Khovratovich’s attack (Subsection 5.2.3) on the Legendre
PRF can be improved when the total number of available queries is less than √p.
Although our method requires additional memory in its simplest form, we discuss
several techniques to reduce memory requirements while keeping the same overall
time complexity.

5.3.1 Table-Based Collision Search

We first transform the attack by Khovratovich into a table-based collision search.
Aiming at this, let M be the allowed number of queries to the oracle Lk, where
log p � M <

√
p and let us set m = dlog pe and M̃ = M −m+ 1. The attack then

proceeds as follows:

1. Store in a table T the pairs (Lk(a+ [m]), a) for all a ∈
{
0, . . . , M̃ − 1

}
.

2. Sample b uniformly at random from Fp until (L0(b+ [m]), a) ∈ T for some
a ∈ {0, . . . , M̃ − 1}. For each a corresponding to such collision, a candidate
key2 k̃ is recovered as k̃ = b− a. Candidate keys k̃ can be tested for correctness
by comparing one or more entries of T with the corresponding arithmetic L-
sequences with starting point k̃.

Regarding the time and memory complexity of this attack, we note that the first
step requires M queries to Lk, from which we obtain M̃ arithmetic L-sequences
that are stored using O(M log p) memory. The second step requires O(p log p/M)
evaluations of the Legendre symbol, and no additional memory is needed. Hence, the
overall computational cost of the attack is O(M + p log p/M): this variant of the
attack already reduces the query and time complexities by a log p factor compared to
the memoryless collision search, although a significant amount of memory is employed.

We note that the above attack can be made deterministic by choosing b ∈ {0, . . . ,
bp/M̃c} and considering the sequences v = L0(bM̃ + [m]) in the second step of the
attack. Indeed, it is easy to see that for any k ∈ Fp, the arithmetic L-sequence
at offset M̃

⌈
k/M̃

⌉
will be computed in both steps of the attack and the correct

key is guaranteed to be recovered after at most O(M + p log p/M) Legendre symbol
evaluations.

5.3.2 Expanding the Number of L-Sequences

We now show that the table T can be expanded without increasing the number of
queries M . The key idea is to exploit the multiplicative property of the Legendre
symbol.

Lemma 5.1. Let m be a positive integer and k ∈ Fp. For any b ∈ (Fp)∗ and a ∈ Fp

it holds that

Lk/b(a/b+ [m]) = (L(b), . . . ,L(b))⊕Lk(a+ b[m]).
2By Assumption 5.1, the number of candidate keys would be at most O(1)
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Proof. Immediate by the multiplicative property of L.

Lemma 5.2. Let k ∈ Fp and m ≤ M positive integers. Then from the arithmetic
L-sequence Lk([M ]), it is possible to extract ≈M2/m arithmetic L-sequences of the
form Lk/b(a/b+ [m]) for distinct pairs (a, b) ∈ Fp × (Fp)∗.

Proof. Let b a positive integer such that b ≤ bM/mc. By Lemma 5.1, we get

Lk(a+ b[m]) = (L(b), . . . ,L(b))⊕Lk/b(a/b+ [m])

for any a ∈ [0,M − bm+ 1), thus each b yields a total of M − bm+ 1 L-sequences of
length m. Moreover, since Lk(a− b[m]) is equal to the sequence

Lk(a− b(m− 1) + b[m]) = Lk(a
′ + b[m])

written in reverse order, we can consider negative values for b too, thus doubling the
total number of sequences. Hence, the total number of arithmetic L-sequences of
length m that can be extracted from Lk([M ]) equals

2
bM/mc∑
b=1

(M − bm+ 1) ≈ 2M2

m
−m

M/m∑
b=1

b ≈ 2M2

m
− M2

m
=
M2

m

5.3.3 An Improved Table-Based Collision Search.

We will now use the observations from Subsection 5.3.2 to improve the table-based
collision search from Subsection 5.3.1. As before, let M be the allowed number of
queries to the oracle Lk, where log p � M <

√
p and let us set m = dlog pe. The

improved attack proceeds as follows:

1. Query the sequence Lk([M ]) and from this extract ≈ M2/m sequences of
the form Lk/b(a/b+ [m]), as ensured by Lemma 5.2. Store all of the triples
(Lk/b(a/b+ [m]), a, b) in a table T .

2. Sample c uniformly at random from Fp until (L0(c+ [m]), a, b) ∈ T for some
a and b. For each pair (a, b) corresponding to such collision, a candidate key k̃
is recovered as k̃ = bc− a. As before, the correctness of candidate keys k̃ can
easily be verified.

The first step of the attack requires M queries to Lk and ≈ M/m Legendre
symbol evaluations. Storing the table T requires O(M2) memory. In the second
phase, an average of ≈ mp/M2 samples must be tested before a collision is found.
Hence, the computational cost of this step is dominated by O(pm2/M2) Legendre
symbol evaluations.

It follows that the overall cost of the attack is dominated by the extraction of
O(M2/m) sequences, the evaluation of O(M/m+ p log2 p/M2) Legendre symbols
and a memory requirement of O(M2). For M <

√
p, this is always an improvement

over the attack from Subsection 5.3.1 – possibly after discarding some of the data.

5.3.4 Additional Optimizations

This Section describes several additional optimizations that further reduce the time
and memory complexity of the attack by a factor Ω(log p).
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Using consecutive values of c. The second step of the attack from Subsec-
tion 5.3.3 can be optimized by choosing consecutive values of c rather than uniform
random samples. This approach allows us to reuse most of the Legendre symbol
computations since, for example, L0(c + [m]) and L0(c + 1 + [m]) overlap almost
completely. A priori, this allows reducing the number of Legendre symbol computa-
tions by a factor of Ω(m). However, there is an important caveat: since the guesses
for c are not independent, the expected number of iterations of the second step is
no longer pm/M2. To see why this is the case, recall that for any c, the algorithm
will output the correct key k if there exists (∗, a, b) ∈ T such that k = bc− a. Since
the table contains an entry (∗, a, b) for all sufficiently small values of a and b, it is
clear that if the table contains (∗, a, b) such that k = bc− a it is likely to also contain
(∗, a′ = a+ b, b) such that k = b(c+ 1)− a′. Therefore, if c is a good guess, then
c+ 1 is also likely to be a good guess. Since the “good” values of c are clustered
together in groups of size O(m), we expect the required number of iterations to be
O(pm2/M2), which means that the factor Ω(m) that we saved by using consecutive
guesses for c is lost again. However, we can still use this idea to reduce the memory
complexity of the algorithm: by only storing one entry (∗, a, b) for each cluster of
good c’s, i.e. we only store the triples (∗, a, b) such that |a| < |b|, the size of the table
can be reduced by a factor of Ω(m) without impacting the time complexity of the
attack.

Expanding the number of L-Sequences in the second step. The idea outlined
in Subsection 5.3.2 can be used to create new L-sequences from those computed
during the second step of the attack. Indeed, after computing a large number of w =
Ω(m) consecutive Legendre symbols L0(c+ [w]), it is possible to extract Ω(w2/m2)
arithmetic subsequences of the form L0(c+ c′ + d[m]) such that |c′| < |d|, with no
need to compute additional Legendre symbols. Using the property that

L0(c+ c′ + d[m]) = L0((c+ c′)/d+ [m])⊕L0(d)

we can then do Ω(w2/m2) table lookups. Asymptotically, this allows to amortize
away the cost of computing Legendre symbols, so the time complexity is dominated
by the extraction of O(pm2/M2) subsequences rather than by the computation of
O(pm2/M2) Legendre symbols.

Not storing reverse sequences. Since the sequence a+ b[m] is just the reverse
of the sequence a+ b(m− 1)− b[m], there is some redundancy in the lookup table.
Indeed, for each entry (s, a, b) ∈ T , the reverse sequence corresponding to the entry
(s′, a + b(m− 1),−b) is also stored. If instead, we only store either the sequence
or its reverse (e.g. by storing the lexicographically smallest sequence), then the
memory requirements are reduced by a factor of two without affecting the overall
time-complexity just by looking up either the sequence L0(c+ [m]) or its reverse
in T , depending which comes first lexicographically.

5.4 Application to the Higher-Degree Legendre PRF
In this Section we generalize the attack described in Section 5.3 to Legendre PRFs of
degree d > 1, showing how it is possible to expand the number of L-sequences in the
higher-degree setting as well.
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5.4.1 Expanding the Number of L-Sequences

In order to generalize Lemma 5.2, we need to extend Lemma 5.1 to the higher-degree
case: this is the object of the following Lemma.

Lemma 5.3. For any positive integer m, b ∈ (Fp)∗ and a ∈ Fp, there exists an
invertible affine transformation Ta,b such that, for any k ∈ Fd

p,

LTa,b(k)([m]) = (L(bd), . . . ,L(bd))⊕Lk(a+ b[m]).

Moreover, for any choice of (a, b) ∈ Fp × (Fp)∗, the transformation Ta,b can be effi-
ciently computed.

Proof. Lef f be the monic degree d polynomial with coefficient vector k, and let
Ta,b(k) be the coefficient vector of the monic polynomial f(a+ bx)/bd. Then, by the
multiplicative property of the Legendre symbol, we have that

LTa,b(k)([m]) = (L(bd), . . . ,L(bd))⊕Lk(a+ b[m]).

Furthermore, it is not hard to see that Ta,b is invertible, affine and that it can be
computed efficiently.

Lemma 5.4. Let k ∈ Fd
p and m ≤ M positive integers. Then from the arithmetic

L-sequence Lk([M ]), it is possible to extract ≈M2/m arithmetic L-sequences of the
form Lk′([m]) with k′ as defined in Lemma 5.3 for distinct pairs (a, b) ∈ Fp× (Fp)∗.

Proof. The proof is entirely analogous to that of Lemma 5.2.

5.4.2 An Improved Table-Based Collision Search

The attack proceeds essentially in the same way as described in Subsection 5.3.3 for
the linear case. Let M be the allowed number of consecutive queries to the oracle Lk
and let m = d dlog pe. The attack comprises the following steps:

1. Query the sequence Lk([M ]) and extract ≈ M2/m sequences of the form
Lk′([m]) from it, accordingly to Lemma 5.4. Store all of the triples (Lk′([m]), a, b)
in a table T .

2. Sample k′ uniformly at random from Fd
p until (Lk′([m]), a, b) ∈ T for some a

and b. For each pair (a, b) corresponding to such collision, a candidate key k̃
can be recovered from k, a and b as in Lemma 5.3. By Assumption 5.1, the
number of candidate keys is at most O(1), and, as before, the correctness of
candidate keys can easily be verified.

As in Subsection 5.3.3, the computational cost of the first step is dominated by
the extraction of O(M2/m) sequences. For the second step, at most O(pdm2/M2)
Legendre symbols are expected to be evaluated. Hence, the total computational cost
of the attack consists of O(M2/m) sequence extractions and O(pd d2 log2 p/M2)
Legendre symbol evaluations, and a total of O(M2) memory.

For d ≥ 3, the time complexity is minimized when M = p and consists of
O(pd−2d2 log2 p) Legendre symbol evaluations. Hence, we gain a factor of p in time
relative to the attacks by Khovratovich [Kho19].



5.5. Weak Keys in the Higher-Degree Legendre PRF 97

5.5 Weak Keys in the Higher-Degree Legendre PRF
This section exhibits a large class of weak keys for the higher-degree Legendre PRF.
Our attacks are based on the observation that for some keys, the corresponding monic
polynomial factors as a product of polynomials of lower degree.

5.5.1 A Birthday-Bound Attack for Some Keys

Consider the Legendre PRF of degree d ≥ 2 over Fp for a prime p. Recall that
the key k ∈ Fd

p of the PRF corresponds to the monic polynomial f(x) = xd +∑d−1
i=0 ki+1x

i ∈ Fp[x]. The attack in this section is based on the observation that,
with high probability, the polynomial f has a factor of degree t = bd/2c. In this
case, there exist two monic polynomials g,h ∈ Fp[x] with deg g = t and deg h = d− t
such that f = gh.

Assume that we are given the outputs of the PRF on m = ddlog pe arbitrary
inputs, for example the sequence Lk([m]). Then, by the multiplicative property of
the Legendre symbol3,

Lk([m]) = L(g([m]))⊕L(h([m]))

Hence, the problem of finding the secret key k ∈ Fd
p reduces to a simple collision

search, which we can summarize as follows:

1. Query the sequence Lk([m]) from the PRF. For each monic polynomial g of
degree t, store the pair (Lk([m])⊕L(g([m])), g) in a table T .

2. Sample monic polynomials h of degree d− t until (L(h([m])), g) ∈ T , for some
monic polynomial g of degree t. For each such g, recover a candidate key from
the coefficients of gh. By Assumption 5.1, the number of candidate keys will be
at most O(1).

For t = bd/2c, this attack requires O(pbd/2cd log p) bits of memory, its time com-
plexity is dominated by O(pdd/2ed log p) operations and the attack requires only
m = O(d log p) queries to the PRF (we assume that all Legendre symbols modulo p
are pre-computed in O(p) operations).

Using Van Oorschot-Wiener golden collision search [vW94], an improved time-
memory trade-off can be obtained: givenM bits of memory, the key can be recovered
with a time-complexity of O(d log p

√
p3d/2/M) Legendre symbol evaluations.

Even if the polynomial f does not have a factor of degree exactly bd/2c, it might
still have a factor of large degree t < bd/2c. In this case, the same strategy results in
an attack with time complexity O(pd−td log p) and memory complexity O(ptd log p).
This gives a trade-off between more efficient attacks on a smaller fraction of keys
(when t is large) or less efficient attacks on a larger fraction of the keys (when t
is small). This trade-off is illustrated in Figure 5.1. The figure shows the time-
complexity of the attack for the desired fraction of attackable keys. The construction
of Figure 5.1 is based on the following fact [Tao15]: the fraction of monic degree-d
polynomials whose factorization has exactly ci monic irreducible factors of degree i is
1/
∏d
i=1 ci! i

ci as p → ∞. By summing these probabilities over all integer partitions
of d that allow a (t, d− t) split, we obtain the probability that a uniformly random
key is weak.

3For convenience, we extend our notation for arithmetic L-sequences (Definition 5.3) to arbitrary
functions on Fp. In particular, L(g([m])) = (L(g(0)), . . . ,L(g(m− 1))).
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Figure 5.1: The complexity of the attack, measured as a power of p, as a function of
the degree of f and the desired fraction of keys we want to attack.

We conclude that if the key is chosen uniformly at random, the higher-degree
Legendre PRF has security only up to the birthday bound. To completely prevent
this class of attacks, one can choose the key k such that the corresponding polynomial
f is irreducible.

5.5.2 Reduction to the Unique k-XOR Problem

More generally, the secret polynomial could factor into k polynomials of degree
roughly d/k. For example, if d is divisible by k and f =

∏k
i=1 fi with deg fi = d/k,

we have

Lk([m]) =
k⊕
i=1
L(fi([m])).

That is, it suffices to find a solution to a variant of the k-XOR problem. Specif-
ically, since each list has length pd/k, a unique solution is expected. This makes
Wagner’s approach [Wag02] inapplicable, but some improvements over the attack in
Subsection 5.5.1 are nevertheless possible.

In particular, for k = 4, the algorithm of Chose, Joux and Mitton [CJM02] leads to
a time complexity Õ(pd/2) with only Õ(pd/4) memory. Corresponding time-memory
trade-offs can also be obtained.

Finally, we mention that there exist asymptotically better quantum algorithms
for the unique k-XOR problem. Bernstein et al. [Ber+13] give an Õ(p0.3d) algorithm
requiring Õ(p0.2n) quantum-accessible quantum memory for k = 4. For any k ≥ 3,
Naya-Plasencia and Schrottenloher [NS20] give algorithms running in time Õ(pβkd)
where βk = (k + dk/5e)/(4k) using Õ(p0.2n) quantum-accessible quantum memory.
For k = 3, there is an algorithm using Õ(pd/3) time and Õ(pd/3) quantum-accessible
classical memory.

5.6 Jacobi Symbol PRF
The Jacobi pseudorandom generator was proposed by Damgård [Dam90] as a varia-
tion to the Legendre PRG. As discussed by Damgård [Dam90, §5], it is potentially
more efficient because it can be computed as the exclusive-or of several Legendre
PRGs with a relatively small modulus. In addition, Damgård showed that if the
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Legendre generator is weakly unpredictable, the Jacobi generator is strongly unpre-
dictable. A generator is defined to be weakly unpredictable if, for all polynomials
f , there exist only finitely many integers m ≥ 0 such that the next output bit in
a sequence of length m can be predicted with probability greater than 1− 1/f(m).
Similarly, the generator is strongly unpredictable if the probability of successful pre-
diction exceeds 1/2+ 1/f(m) for only finitely many m. For a more formal definition,
see [Dam90, Section 3] and references therein.

Whereas the unpredictability result of Damgård could be regarded as a positive
result related to the security of the Jacobi PRF, it remains inconclusive concerning
its concrete security. Indeed, strong unpredictability is a weaker property than PRF-
security, and, in addition, it is only an asymptotic notion of security.

The cost of a key-recovery attack on the Jacobi PRF is at least the cost of attacking
a Legendre PRF corresponding to a prime factor of the modulus. In fact, a chosen-
plaintext key-recovery attack on the Jacobi PRF, which nearly attains this lower
bound, is possible, and the Jacobi PRF offers little benefit over the Legendre PRF
for most purposes.

To see this, let n =
∏m
i=1 pi with p1, . . . , pm distinct odd primes. We note that it

may be assumed that the prime factors of n are distinct, since(
x+ k

n

)
=

(
x+ k∏m
i=1 p

ei
i

)
=

m∏
i=1
ei odd

(
x+ k

pi

)
.

The attack is based on the following observation: let λj =
∏m
i=1
i 6=j

pi and denote the

inverse of λj modulo pj by λ′j , then(
λj x+ k

n

)
=

m∏
i=1

(
λj x+ k

pi

)
=

(
λj
pj

)(
k

n/pj

)(
x+ λ′j k

pj

)

Hence, in the chosen-plaintext setting, the key-recovery attack on the Legendre PRF
from Section 5.3 can be used to recover the key modulo pj . The factor

(
k

n/pj

)
is not

known to the attacker, but it is constant, so the cost of the attack is increased by a
factor of at most two. Given the value of the key modulo for each prime factor of
n, the Chinese remainder theorem yields the value of the key modulo n. Hence, key
recovery for the Jacobi symbol costs at most O(mM2 +

∑m
i=1 pi log2 pi/M2) Legendre

symbol evaluations. The same strategy applies to the higher-degree case and can
also be combined with the attacks in Section 5.7 below. Note that a distinguishing
attack on the Jacobi PRF reduces to a distinguishing attack on the Legendre PRF
corresponding to the smallest prime factor of the modulus.

5.7 Attacks on the Power Residue PRF
The MPC protocol of Grassi et al. [Gra+16] for computing the Legendre PRF re-
quires only three rounds of communication, which makes the Legendre PRF superior
among the other PRF constructions investigated by Grassi et al. in terms of latency.
However, since the Legendre PRF only produces one bit of output, it compares less
favorably in terms of throughput than, e.g. MiMC [Alb+16], a block cipher that
outputs full field elements.
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To mitigate this limitation of the Legendre PRF, we can, as proposed by Damgård
[Dam90], consider higher power residue symbols rather than quadratic residue sym-
bols. If r divides p− 1, the r-th power residue symbol of x ∈ Fp is defined as(

x

p

)
r

:= x
p−1
r mod p.

Jointly computing r-th power residue symbols in the MPC setting can be done at
essentially the same cost as computing Legendre symbols with the advantage that
log r bit outputs are produced instead. Therefore, this modification can significantly
increase the throughput of the Legendre PRF at essentially no cost – keeping in mind
that r should not be too large since the corresponding power residue PRF might lose
its security (e.g. r = p− 1). In this Section we detail a key-recovery attack for the
corresponding r-th power residue PRF, with time complexityO(p log2 p/(Mr log2 r)),
given M ≤ √p queries to the PRF.

5.7.1 Power Residue PRF

By generalising the Legendre function and the Legendre PRF to higher power residues,
we obtain the following definitions:

Definition 5.4 (r-th power residue function). Let p be a prime so that p ≡ 1 (mod r)
for a certain integer r > 0 and let g be a generator of (Fp)∗. We define the r-th power
residue function l(r) : Fp → Zr as

l(r)(a) =

{
s if a 6≡ 0 mod p and a/gs is an r-th power mod p
0 if a ≡ 0 mod p

Definition 5.5 (r-th power residue PRF). Let p be a prime congruent to 1 modulo
r. The power residue PRF over Fp is a family of functions L(r)

k : Fp → Zr such that
for each k ∈ Fp,

L
(r)
k (x) = L(r)(k+ x).

5.7.2 Generalising our Attacks to the r-th Power Residue PRF

The attacks described in Section 5.3 and Section 5.4 do not use any properties of the
Legendre symbol other than its multiplicativity. Therefore, they trivially generalize
to any multiplicative function with a hidden shift, including the r-th power residue
function.

Unlike the quadratic case, the r-th power residue function can take r distinct
values, so it suffices to consider L-sequences of length log p/ log r. It follows that
a straightforward generalization of our attack to r-th power residue Legendre PRFs
requires O(p log2 p/(M2 log2 r)) power residue symbol evaluations and O(M2 log r)
memory. However, for large values of r, a better attack exists that we detail in the
next Section.

5.7.3 Attacks for Large r

We first describe a simple attack on the linear r-th power residue Legendre PRF that
requires O(p/r) power residue symbol evaluations. In the following, we denote the
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subgroup of (p− 1)/r-th roots of unity of (Fp)∗ by G. That is,

G = {x ∈ (Fp)
∗ | x(p−1)/r = 1}.

Remark that G is generated by gr, where g is any generator of (Fp)∗.
By querying L(r)

k (0), the attacker immediately learns L(r)(k), the power residue
symbol of k ∈ Fp. We observe that this single query already narrows down the set of
possible values for k to at most (p− 1)/r elements of Fp. Indeed, from Definition 5.4,
k is contained in the coset gsG, where g is any generator of (Fp)∗ and s is equal to
L(r)(k). Therefore, an attacker can go through all of these elements and check each
candidate. Since, on average, only O(1) power residue symbols must be computed
to check the validity of a candidate key, the attack requires O(p/r) power residue
symbols evaluations. The attack requires a generator g, which can be precomputed
in probabilistic subexponential time by factoring p− 1.

We now explain a more general attack, similar to the table-based collision search
from Subsection 5.3.1, that requires O(p log2 p/(Mr log2 r)) power residue symbol
evaluations and O(M log r) memory. A speed-up of a factor r can be obtained by
querying the PRF at more carefully chosen arithmetic L-sequences. By letting m =
dlog p/ log re and M < p/r, the attack proceeds as follows:

1. For M/m distinct values a ∈ G, store each pair (L
(r)
k (a[m]), a) in a table T .

Furthermore, query the PRF to get the value s = L
(r)
k (0).

2. Sample x uniformly at random from the coset gsG until (L(r)
0 (x+ [m]), a) ∈ T

for some value a. For each entry (L
(r)
0 (x+ [m]), a) ∈ T corresponding to such

collision, a candidate key is recovered as k̃ = xa. Again, by (a variant of)
Assumption 5.1, the number of such candidate keys will be at most O(1).

The first step of the above attack uses M = m · (M/m) queries to L(r)
k and needs

O(M log r) memory to store the table T . The key k is found when, in the second
step, the attacker samples an x such that k/x is one of the a-values stored in the
table. On average, |G|/(M/m) = O(pm/(Mr)) iterations of the second step are
required in order to find a candidate key. Since each iteration requires m power
residue symbol computations to evaluate L(r)

0 (x+ [m]), it follows that the total time-
complexity of the attack consists of O(M) storage operations and O(pm2/(Mr)) =
O(p log2 p/(Mr log2 r)) power residue symbol evaluations.

5.8 Implementation Results
In this Section we will discuss our implementation of the attack from Subsection 5.3.3,
and that we applied to the key recovery challenges proposed by the Ethereum foun-
dation [Fei19b]. Using the attack from Section 5.3, we managed to solve three out
of six challenges (including the test instance with a 40-bit prime): a summary of the
instance parameters and the time and memory requirements of the attack is given
in Table 5.2.

The source code of our implementation is publicly available at

https://github.com/cryptolu/LegendrePRF

We compiled our C++ implementation of the attack using Clang 6.0.0 and exe-
cuted it on a Dell C6420 server with two Intel Xeon Gold 6132 CPUs clocked at 2.6

https://github.com/cryptolu/LegendrePRF
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p
Security level4

(bits)
Time

(core-hours)
Memory/

thread (GiB) Key

240 − 87 20 < 0.001 < 1 4e2dea1f3c
264 − 59 44 1.5 3 90644c931a3fba5
274 − 35 54 1500 3 384f17db02976dcf63d
284 − 35 64 221† 3
2100 − 15 80 237† 3
2148 − 167 128 265† 3

Table 5.2: Parameters of the concrete challenges proposed by the Ethereum founda-
tion [Fei19b]. For all instances, the first M = 220 consecutive PRF outputs were given.
For the first three instances, the running time and peak memory usage is given, for the
three hardest instances an estimation of time is provided (marked by †). All experiments
were performed on a Dell C6420 server with two Intel Xeon Gold 6132 CPUs clocked at

2.6 GHz and 128 GB of RAM.

GHz (28 cores) and 128 GB of RAM (all the experiments presented in this Section
were carried out using the HPC facilities of the University of Luxembourg [Var+14]).
The optimizations described in Subsection 5.3.4 allow to significantly reduce the re-
quired memory and the number of evaluations of the Legendre symbol. As a result,
the table lookups are the bottleneck in our implementation. On average, a single
thread required 0.08µs to compute and check a single 64-bit sequence. As discussed
below, we expect to compute p/228 sequences on average before the key is recovered.
Hence, the required core time to solve a challenge with a prime p and 220 bits of PRF
output can be estimated as p/228× 0.08µs. The required memory is 1 GB per server
and an additional 3 GB per thread. The parameters can be modified to reduce the
memory without significantly decreasing the performance.

For the first three instances, we successfully recovered the secret key of the PRF
in a timespan close to our estimation. The corresponding keys are given in Table 5.2.
The third instance was solved in under two hours using a cluster of 40 nodes with
the described configuration. The full attack consisted of two main consecutive steps,
detailed in the following Sections: Processing the PRF output and Random Sampling.

5.8.1 Processing the PRF Output

As a first step, we compute the set T consisting of all arithmetic sequences extracted
from the sequence Lk([220]) given in the challenge. We chose to store sequences
of length m = 64 since this length provides an acceptable rate of false positives and
enables processing sequences as 64-bit words efficiently. As a result, the set T contains
approximately M2/(2m2) = 227 of such words-sequences.

A straightforward way to implement a set is by using a hash table, which has a
constant amortized time-complexity for membership testing. However, this constant
time may be pretty large in practice, especially in the case of large tables, and, in
fact, random memory accesses often represents the main bottleneck. In our case, the
set T is never modified after its creation. To exploit this fact, we sort the elements of
T , and we store them in an array. We then compute membership queries in batches:
first, we collect a large number of membership queries, and we sort them, then, we
scan through the two sorted arrays checking for collisions. We note that the most

4Expected security level (conservative estimate) prior to this work.
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time-consuming aspect of this approach is represented by the sorting step of each
batch of membership queries. The described set T contains 227 64-bit words, and the
corresponding sorted array requires 1GiB of memory, while an extra 1GiB of memory
is used to store information required for the key recovery. We note that the set T and
the extra information are shared among all threads used to parallelize the workload
of the next step.

5.8.2 Random Sampling

The second and main step of the attack consists of sampling sequences L0(c+ [m])
for randomly chosen c, and checking if they collide with an entry of T . Note that the
reversed sequence L0(c+ [m]) is checked instead if it is lexicographically smaller.

For a uniformly chosen c ∈ Fp, we compute a long sequence L0(c + [t]) and
we extract a large amount of m-bit sequences from it. More precisely, for all b ∈
{1, 2, . . . , 28} and a ∈ {0, 1, . . . , t− 1− b(m− 1)}, we extract L0(c+ a+ b[m]). The
upper bound for b is chosen as 28 since it is enough to make the time spent computing
Legendre symbols negligible. Furthermore, all these sequences can be computed on
the fly by storing only the last sequence per pair (b, a). Indeed, for a large enough
i ∈ Z, after expanding the computed sequence L0(c+ [i− 1]) by one Legendre sym-
bol L0(c+ i) we obtain a new sequence L0(c+ i− b(m− 1) + b[m]) for each b. In
other words, we obtain 28 sequences from each single consequent Legendre symbol
computation.

As described above, the computed sequences are accumulated and checked in
batches for a collision with the set T . Each batch is sorted using base-28 radix sort,
and collisions are checked using a linear scan through the sorted batch and the sorted
array of T . In the case of a collision, a key candidate is recovered and checked against
extra bits from the given PRF output.

We note that this step can be efficiently parallelized, since each thread could
start with a uniformly random a ∈ Fp and proceed as described above. After a
predetermined amount of steps, a new value for a can be chosen to ensure sufficiently
uniform coverage of the possible offsets of the sequences.

5.8.3 Concurrent work

Some days after this work first appeared on IACR ePrint Archive, Kaluđerović et
al. [KKK20] solved the next Legendre PRF challenge. Their attack uses similar ideas
to our attack but with an improved complexity of O(M2/ log p+ p log p log log p/M2)
operations on a machine with word size Θ(log p).

5.9 Conclusions
In this Chapter we presented multiple attacks on the Legendre PRF and its general-
izations.

Regarding the Linear Legendre PRF, we proposed an attack of particular interest
in the low-data setting. Specifically, given M ≤ 4

√
p queries, our attack recovers

the key using O(p log2 p/M2) Legendre symbol evaluations, and we demonstrated its
practical relevance by solving the first two Legendre PRF challenges set out by the
Ethereum foundation [Fei19b].

We have then shown that the techniques used to attack the linear Legendre PRF
yield improved attacks on the higher-degree Legendre PRF variant as well. Further
attacks on the higher-degree case were given by showing a large class of weak keys
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that can be recovered from the PRF output using O(pdd/2ed log p) operations and
O(pbd/2cd log p) bits of memory. Further improvements to the memory usage, based
on a reduction to the unique k-XOR problem, were also discussed. These weak-key
attacks can be prevented by choosing a key corresponding to a monic irreducible
polynomial.

In addition to the above, we provided the first security analysis of the Jacobi and
power-residue generalizations of the Legendre PRF. These extensions were first sug-
gested – for the Legendre pseudorandom generator – at CRYPTO 1988 by Damgård
[Dam90]. We demonstrated that the key of a Jacobi PRF can be recovered with
time-complexity proportional to the time-complexity of key-recovery on the Legendre
PRF for each of the prime factors of the modulus separately a result which eliminates
the potential efficiency benefits offered by Jacobi symbols.

We then focused on the r-th Power Residue PRF: the low-data attack for the
Linear Legendre PRF equally applies in this setting, but we provide an additional
attack that performs better for large power residue symbols. Specifically, for r-th
power residue symbols and given M ≤ √p queries, our key-recovery attack requires
O(p log2 p/(rM log2 r)) power residue evaluations and O(M) memory.
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This part presents my research on public-key primitives based on elliptic curves.
In Chapter 6, I will describe a technique to backdoor a prime factor p of a com-

posite odd integer N , so that an attacker knowing a possibly secret factor base B,
can efficiently retrieve p from N .

Such a method builds upon Complex Multiplication theory for elliptic curves
in order to generate primes p associated to B-smooth order elliptic curves over Fp.
When such primes p divide an integer N , the latter can be efficiently factored using a
generalization of Lenstra’s Factorization Method [Len87] over rings bigger than ZN ,
and with no knowledge other than N and B.

I will then formalize semiprimality certificates that, based on a result by Gold-
wasser and Kilian, allow to prove semiprimality of an integer with no need to reveal
any of its factors. I will show how the prime generation procedure can efficiently
produce semiprimality certificates, ultimately allowing to sketch a multi-party dis-
tributed protocol to generate semiprimes with unknown factorization, particularly
relevant in the setting of distributed RSA modulus generation.

I will discuss implementations of all proposed protocols and address the security of
semiprimality certificates by showing that semiprimes generated within these methods
result at least as secure as random semiprimes of the same size.

In Chapter 7, I will report how, together with my co-author, we successfully broke
Microsoft’s $IKEp182 challenge [Mic21b]. The latter is a reduced-parameters instance
of SIKE (Supersingular Isogeny Key Encapsulation) [Jao+20], an alternative candi-
date of the ongoing 3rd round of NIST Post-Quantum Cryptography Standardization
process [Nat22], and its security relies on the hardness to find a (smooth-degree)
isogeny between two, a starting and a final, isogenous curves.

Through the Chapter we will detail a meet-in-the-middle attack, improved with
multiple SIKE-specific optimizations, to recover a secret 2e-degree isogeny. On top
of an efficient isogeny-tree exploration based on optimal strategies, we will take ad-
vantage of a 2-bit leak from the knowledge of the secret isogeny final curve, and an
extra 1-bit space-time complexity reduction given by the fact that the starting curve
is defined, by specification, over a prime order field.

These, combined with a sort & merge approach and ad-hoc elements encoding
that enabled us to use cheaper and more readily available disk-based space in place
of RAM, allowed us to break, using the University of Luxembourg High-Performance
Computing cluster [Var+14], the $IKEp182 challenge in less than 10 core-years and
by using 256TiB of high-performance network storage, a requirement that can be
further reduced to 70TiB.
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6.1 Introduction
In this Chapter, we will detail a technique to backdoor a prime factor of an odd
composite integerN so that third parties knowing some (secret) auxiliary information,
i.e., a factor base, can efficiently retrieve it from N .
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More precisely, we will use the Complex Multiplication theory to build primes p
and elliptic curves over Fp, such that the orders of the latter are B-smooth (that is,
factor as products of elements in B), and can be explicitly represented as a function
of the field characteristic, i.e. #E(Fp) = p+ 1± a where 4p = a2 + |D|b2 with D a
negative discriminant. over a ring containing

In the following Sections, we will describe a generation procedure for such primes
p so that, with no knowledge of any of the factors of N , we will be able to construct a
curve equation E(ZN ) along with multiple random points P on it, so that the order
of E(Fp) (the modulo p component of E(ZN )) is B-smooth for a certain factor base
B. This will ultimately allow us to efficiently factor N by computing in projective
coordinates some multiple [∏pi∈B pi] ·P of the point P , similarly as done in Lenstra’s
Elliptic-Curve factorization Method (ECM) [Len87]. While, in ECM, random curve
equations E(ZN ) and points P ∈ E(ZN ) are generated until a curve of smooth order
is found, in our construction, we will be able to deterministically construct from N a
B-smooth order elliptic curve in short Weierstrass form defined over a ring containing
ZN , together with multiple points on it.

Although different backdooring techniques exist in literature within our attack
model1, our methods show that large semiprimes N , employed by the RSA encryp-
tion scheme [RSA78], can be maliciously generated to be still vulnerable to a gener-
alization of Lenstra’s ECM, an attack that is usually not considered of interest for
cryptographically sized N due to its negligible success probability. Furthermore, the
insights provided by our prime generation procedure will ultimately allow us to sketch
a distributed protocol to generate semiprimes.

Recent protocols for the multi-party generation of semiprimes [Che+21; Del+21;
Che+20] build on the seminal work of Boneh and Franklin [BF97], by extending it
to different security assumptions and adding several algorithmic optimizations. In-
formally, in these protocols, parties jointly generate some (random) candidate primes
p, q, securely multiply them as N = p · q and run a distributed statistical semiprimal-
ity test until they are confident enough that N is a semiprime.

In contrast to these, our sketched multi-party protocol outputs integers which are
guaranteed to be a product of two unknown primes (and thus there is no need to
run a semiprimality test such as the one detailed in [BF97]), thanks to semiprimality
certificates that can be publicly verified.

Semiprimality certificates are based on a generalization of a theorem by Gold-
wasser and Kilian [GK86], which provides a sufficient condition for an integer N to
have at most m distinct prime factors. Such a condition requires the existence of an
elliptic curve over ZN so that some points on it have particular small prime order. It
follows that when we require an integer N to be the product of two distinct primes,
as happens for RSA moduli, such result can be used to ensure semiprimality for N
in case we find (or we construct) a semiprimality certificate for it, with the latter
consisting in an elliptic curve over ZN and some points on it satisfying the theorem
assumptions. Remarkably, such certificates prove semiprimality of N with no need
to publish nor know any of its factors.

Our semiprime generation protocol uses our prime backdooring procedure to con-
struct elliptic curves with (partially random) orders that satisfy the assumptions of
the Goldwasser-Kilian generalized criterion. We then retrieve N from this informa-
tion, and we test if all conditions of the theorem match: when this happens, N is

1A standard one consists in fixing half of the bits of p to a certain secret value c and then use
Coppersmith’s method [Cop96] to efficiently find a small root of the polynomial f(x) = 2log2(p)/2x+ c
modulo a divisor of N = p · q.
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a semiprime by construction and its semiprimality can be publicly verified from the
certificate.

We can then apply standard MPC arithmetic to perform all the computations
involved (mainly multiplications and additions, but also scalar-point multiplications
that we address with an ad-hoc technique) to make this protocol distributed, and we
show its correctness and feasibility by implementing it using state-of-the-art MPC
libraries.

Lastly, we analyze if and how knowledge of a semiprimality certificate for N gen-
erated within our framework may reduce its bit-security with respect to factorization.
We investigate some possible attacks based on generic discrete-logarithm finding al-
gorithms in groups of unknown order, and attack variants that require just a few
operations to compute a factor of N if any multiple of the order of the curve provided
in the certificate is known. In all cases, semiprimality certificates generated according
to our protocol are easier to attack using generic factorization algorithms, and thus
we don’t expect a decrease in terms of bit-security unless other more specific attacks
are found.

We were, however, able to factor a 3599-bits semiprimeN , generated by Don Reble
[Don05] in 2005 and which remained unfactored until now. Such semiprime comes
with a semiprimality certificate that, contrary to ours, includes an extra divisor of
the full curve order that makes it vulnerable to one of our attack variants that factors
N in just a few operations.

Related Works In a later stage of the (independent) development of the results
reported in this Chapter, we found out that Aikawa et al. in [ANS19] use similar
observations to factor integers N where one of its primes is of the form 4p = 1+ |D|b2.
These primes, indeed, correspond to anomalous elliptic curves modulo p for which a
multiple of the order, i.e., N , is known, thus allowing an attacker to factor N with
just 1 scalar-point multiplication. Aikawa et al. work extends the applicability of the
methods described by Shirase [Shi17], whose manuscript, in turn, is based on Cheng’s
[Che02a; Che02b] ideas, to a bigger class of discriminants D.

In addition to this, Aikawa et al. generalize their factoring method for anomalous
curves to allow p be of the form 4p = a2 + |D|b2, but requiring associated curves to
have smooth order rather than a multiple of N . In contrast to our results, however,
they do not provide an actual method to construct such vulnerable elliptic curves
efficiently, and the probability to randomly hit any of them exponentially decreases
with the size of p. Furthermore, their method works in multiple quotients of the ring
ZN [x] to carry out arithmetic operations on the constructed curve, while we use a
more efficient approach based on XZ-arithmetic.

On a more practical side, Sedlacek et al. in [Sed+19] generated millions of RSA
keys using different software libraries and hardware and tested them against Cheng’s
and Shirase’s attacks, looking for prime factors p of the form 4p = 1 + |D|b2.

As regards semiprimality certificates, to our knowledge, Don Reble, with his
short online post [Don05], was the first one to publicly propose the idea of prov-
ing semiprimality of an odd integer N , that he calls interesting semiprimes, using
the Goldwasser-Kilian Theorem. Except for another similar certificate generated by
Broadhurst [Dav05] soon after, we did not find any formal treatment of these concepts.

6.1.1 Outline

In Section 6.2 we provide the necessary theoretical background to characterize orders
of some elliptic curves in terms of the field characteristic on which are defined, while
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in Section 6.3 we provide the first sketch of our prime generation procedure. In
Section 6.4 we address some technicalities related to the practical implementation
of our idea, which we formalize in Section 6.5 and Section 6.6, where we detail how
it is possible to retrieve a factor of a backdoored integer. In Section 6.7 we discuss
implementations of both our prime generation procedure and factorization attack,
and we detail a full example on a 1024-bits modulus. In Section 6.8 we formalize the
concept of a semiprimality certificate for an integer N by generalizing the Goldwasser-
Kilian Theorem, and we show how they can be efficiently computed by properly
generating the prime factors of N . In Section 6.9 we propose a distributed protocol for
generating certifiable semiprimes with unknown factorization, and we discuss how we
overcome some practical issues to implement it in practice. Lastly, in Section 6.10, we
address the security of semiprimality certificates generated according to our protocol,
and we describe how we factored a public 1084-digits semiprime.

6.2 Preliminaries

6.2.1 Curves of Prescribed Order

Our construction relies on the theory of Complex Multiplication (CM) to build elliptic
curves of a prescribed order. An elliptic curve E is said to have complex multipli-
cation, if its endomorphism ring End(E) is strictly larger than Z2: this is always
the case for elliptic curves defined over finite fields, where the endomorphism ring is
isomorphic to an order in either a quaternion algebra (in this case, the curve is said
to be supersingular) or an imaginary quadratic field (in this case, instead, the curve
is said to be ordinary) [Sil09, V - Theorem 3.1].

A field K is said quadratic field if [K : Q] = 2, and discriminants of quadratic
fields are said fundamental. An integer d ∈ Z is a fundamental discriminant if it
satisfies either d ≡ 1 (mod 4) and d is square-free, or d = 4D with D square-free and
D ≡ 2, 3 (mod 4).

Of interest for this Chapter are ordinary elliptic curves whose endomorphism rings
are isomorphic to orders in an imaginary quadratic field.

Definition 6.1 (Order). For a quadratic field K, let OK denote the ring of integers
of K. A subring O ⊂ OK is said to be an order if it is a free Z-module of rank 2
containing an integral basis of K.

In particular, given a quadratic field K of fundamental discriminant d, we will
denote it as K = Q(

√
d), and an integral basis for it is given by (1,ω) with ω = d+

√
d

2 ,
thus OK = Z[ω].

Every order of a quadratic field is associated to a discriminant, characterized by
its residuosity modulo 4.

Definition 6.2 (Discriminant). A D ∈ Z is said to be a discriminant if D is not a
perfect square and D ≡ 0, 1 (mod 4).

Fundamental discriminants of quadratic fields and discriminants of orders are
related by the following result.

Proposition 6.1 ([Coh00, Proposition 5.1.3]). If K is a quadratic field of fundamen-
tal discriminant d, then every order O of K has discriminant D = df2, where f ∈N

is the conductor of O. Conversely, if D is a discriminant, then D can be written
2The multiplication by [n] : E → E map which sends P 7→ nP , is an endomorphism of E for any

n ∈ Z.
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uniquely as D = df2, with d a a fundamental discriminant, and there exists a unique
order O of Q(

√
d) of discriminant D.

The following result from CM-theory, also known as CM Algorithm, relates spe-
cific short Weierstrass curve equations over Fp to their cardinality, thus providing a
practical method for computing elliptic curves over finite fields of a given order.

Theorem 6.1 ([Bro06, Theorem 3.6]). Let D be a square-free negative discriminant
not equal to −3,−4, and let p be an odd prime so that 4p = a2 + |D|b2 for certain
a, b ∈ Z. Then, the elliptic curve

E(Fp) : y2 = x3 − 3kc2x+ 2kc3

where

• j is a root of the Hilbert Class Polynomial HD(x) ∈ Z[x] modulo p,

• k = j
j−1728 ,

• c is a random non-zero element in Fp

has either p+ 1 + a or p+ 1− a points, depending on the residuosity of c modulo p,
and j-invariant equal to j.

Here the Hilbert Class Polynomial HD(x) is a polynomial with roots exactly the
j-invariants of elliptic curves over C whose endomorphism ring equals an order with
discriminant D in an imaginary quadratic field. It can be proven that HD(x) is
irreducible, is defined over Z[x], and there exist efficient algorithms to compute it:
we refer to [Bro06, Section 3.3] for more technical details on this.

We recall that given an elliptic curve E : y2 = x3 + ax+ b, a (quadratic) twist of
E over Fp is given by Ẽ : y2 = x3 + c2ax+ c3b, where c is a quadratic non-residue
modulo p. If E(Fp) has trace of Frobenius t, then Ẽ(Fp) has trace −t for any chosen
quadratic non-residue c, namely #E(Fp) = p+ 1− t and #Ẽ(Fp) = p+ 1 + t. If
instead, c is a square modulo p, then E is isomorphic to Ẽ through the change of
variable (x′, y′) = (x/c,

√
cy/c2) and hence #E(Fp) = #Ẽ(Fp). It follows that in

the statement of Theorem 6.1, the value c chosen determines one of these two different
curve twists.

It is possible to characterise the cases D = −3,−4 as well, which correspond to
curves with j-invariants j = 0, 1728, respectively.

Theorem 6.2 ([Bro06, Theorem 3.6]). Let D ∈ {−3,−4} and let p be an odd prime
so that 4p = a2 + |D|b2 for some a, b ∈ Z. Then, the elliptic curve

E(Fp) :

{
y2 = x3 + c3 if D = −3
y2 = x3 + c2x if D = −4

with c a random non-zero element in Fp, has either p+ 1 + a or p+ 1− a points,
depending on the residuosity of c modulo p, and j-invariant equal to 0 if D = −3, or
1728 if D = −4.

In the case D = −4, we have a more general result that characterize entirely the
number of points of the curve E(Fp) : y2 = x3− kx, regardless of −k being a square,
as required instead by Theorem 6.2.

We recall that, by Fermat’s Theorem on Sums of Two Squares [Dud78, Lemma
18.4], an odd prime p can be written as p = a2 + b2 if and only if p ≡ 1 (mod 4). It
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Algorithm 2 Modified Cornacchia Algorithm ([Coh00, Algorithm 1.5.3])
Input: an odd prime p, a negative discriminant D with |D| < 4p.
Output: if exists, an integer solution to x2 + |D|y2 = 4p, otherwise None.
1: Compute k =

(
D
p

)
. If k = −1, return None.

2: Compute, e.g. using Shank’s algorithm, an x0 so that x2
0 ≡ D (mod p) and

0 ≤ x0 < p. If x0 6≡ D (mod 2), set x0 = p− x0. Set a = 2p, b = x0, l =
⌊
2√p

⌋
.

3: If b > l, set r = a mod b, a = b, b = r. Go to Step 3.
4: If |D| - (4p − b2) or c = (4p − b2)/|D| is not a perfect square, return None.

Otherwise, return (x, y) = (b,
√
c).

follows that any decomposition of a prime p into a sum of two squares a2 + b2, is in
bijection with a decomposition of 4p as (2a)2 + |D| · b2 with D = −4: the following
result, in fact, generalizes Theorem 6.2 for the case D = −4.

Theorem 6.3 ([Was08, Theorem 4.23]). For an odd prime p, let k 6≡ 0 (mod p) and
consider the elliptic curve E(Fp) : y2 = x3 − kx. Then

1. If p ≡ 3 (mod 4), E is supersingular and #E(Fp) = p+ 1.

2. If p ≡ 1 (mod 4), let p = a2 + b2 where a, b are integers with b even and
a+ b ≡ 1 (mod 4). Then

#E(Fp) =


p+ 1− 2a if k is a fourth power modulo p
p+ 1 + 2a if k is a square but not a fourth power modulo p
p+ 1± 2b if k is not a square modulo p

6.2.2 Cornacchia’s Algorithm

The above characterizations for the orders of elliptic curves over Fp require the knowl-
edge of a specific decomposition for 4p, namely 4p = a2 + |D|b2, with D a negative
discriminant and a, b ∈ Z.

In 1908, Giuseppe Cornacchia proposed an algorithm to solve the Diophantine
equation x2 + dy2 = p with p prime and 0 < d < p: a proof of correctness of his
algorithm can be found, for example, in [Bas04]. It is possible to slightly modify
the original Cornacchia’s algorithm to find a solution to our case of interest as well,
namely finding solutions to the equation 4p = x2 + |D|y2 for a negative D so that
D ≡ 0, 1 (mod 4). For completeness, we report in Algorithm 2 such modified version
of his algorithm, taken from [Coh00, Algorithm 1.5.3].

In the following Sections, we will often refer to a pair (a, b) satisfying 4p = a2 +
|D|b2 as the Cornacchia decomposition of p for the discriminant D.

6.3 The Idea
Given a square-free integer N that decomposes as a product of primes of approxi-
mately the same size as N = p1 · . . . · pn, and an elliptic curve E defined over ZN , we
clearly have that E(ZN ) = E(Fp1)× . . .×E(Fpn) as groups. We are interested in
generating primes p so that whenever they divide a square-free integer N as above,
we can explicitly write a curve equation E over ZN with no need to know any factor
of N , and so that #E(Fp) is smooth or factors in a chosen factor base B. We will
do so using the results and the explicit curve equations provided by Theorem 6.1,
Theorem 6.2, Theorem 6.3.
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It will then follow that, if we are able to get a (non-trivial) point P on one of
such E(ZN ), by computing

(∏
pi∈B p

`
i

)
·P for some fixed exponent l, we might reveal

a factor of N , similarly as happens in Lenstra’s elliptic-curve factorization method
[Len87], with probability depending on the size of N and its prime factors. Such
probability is high if N is a cryptographically-sized semiprime, a condition we will
assume from this point on.

Taking into account all the different sub-cases of the above results, we can sketch
a procedure to generate such primes p as follows:

1. Set a factor base B and a discriminant D.

2. Generate a random integer t (i.e., a candidate for the order of E(Fp)) which
factors completely in B.

3. Use Algorithm 2 to find a pair (a, b) so that’ 4t = a2 + |D|b2. If no solution
exists go to step Step 2.

4. Check if p = (a±2)2+|D|b2

4 is prime. If yes, output p. If p is not prime and
D 6= −4, go to Step 2.

5. If D = −4 check if p = |D|a2+(b±2)2

4 is prime. If yes, output p, otherwise go to
Step 2.

We note that Step 4 is justified from the fact that, from Theorem 6.1, Theorem 6.2,
we require the order of the curve E(Fp) to be t = p+ 1± a: thus, if 4t = a2 + |D|b2,
then 4p = (a± 2)2 + |D|b2. Similarly, Step 5 addresses the simmetry induced for the
caseD = −4, where for a prime p = a2 + b2 we can express 4p as either (2a)2 + |D| · b2

or |D| · a2 + (2b)2.
Although this procedure looks quite simple, it has some not trivial aspects that

need to be addressed when implementing it in practice. In particular, the probabil-
ity that a random B-smooth integer t so that 4t admits a Cornacchia decomposition
should not be negligible, and such decomposition should allow generating many can-
didate primes. Furthermore, when we attack an integer N that has at least one of its
factors generated as above, to write a curve equation to work with, we should be able
to extract roots of the Hilbert Class Polynomial modulo N , and once we compute
the full curve equation E(ZN ), we should be able to pick, for any choice of the curve
twist, random points over it. All these aspects will be addressed in the next Section.

6.4 Addressing Technicalities

6.4.1 Cornacchia’s Decompositions for Random Curve Orders

From the Sum of Two Squares Theorem [Dud78, Theorem 18.1], we know that an
integer can be written as the sum of two squares if it is not divisible by any factor pki ,
with pi prime, pi ≡ 3 (mod 4) and k odd. For the caseD = −4, this theorem provides
an easy condition to generate random curve candidate orders t, since if t = a2 + b2

then 4t = (2a)2 + |D|b2. Unfortunately, this does not generalize straightforwardly
to other values of D, and elements in the factor base B needs to be carefully chosen
if we wish to decompose with non-negligible probability a random B-smooth t using
Algorithm 2.

We will exploit the following observation to generate a factor base that will al-
low us to efficiently generate curve candidate orders along with their Cornacchia’s
decompositions.



116 Chapter 6. Backdooring and Distributed Generation of Semiprimes

Observation 6.1. If p1, . . . , pn are positive integers that split in Z[
√
D] as pi = πiπ̄i,

then p1 · . . . · pn splits as (π1 · . . . · πn) · (π̄1 · . . . · π̄n)
.
= π · π̄.

Its main insight is that, when we multiply by its conjugate a given πi = a +
b
√
D ∈ Z[

√
D], we get pi = πi · π̄i = a2 + |D|b2 ∈ Z, which automatically ensures a

Cornacchia decomposition for pi as 4pi = (2a)2 + |D|(2b)2.
In fact, we can efficiently compute Cornacchia’s decompositions for random B-

smooth values, without running Algorithm 2 every time. To show this, we define our
factor base B to contain tuples (pi,πi) ∈ Z×Z[

√
D] so that pi = πi · π̄i. If in Step 2

of our sketched prime generation procedure we compute in parallel the products∏
j

pij = a2 + |D|b2 ,
∏
j

πij = a+ b
√
D

from the two coordinates of the latter, we immediately get a solution (a, b) to∏j pij =
x2 + |D|y2.

In our case of interest, however, we look for a B-smooth value t constrained to a
Cornacchia decomposition for 4p: by expanding their relations, if p = a2 + |D|b2, then
4p = (2a)2 + |D|(2b)2, and from t = p+ 1± 2a we then have t = (a± 1)2 + |D| · b2.
It follows, in turn, that if the t generated in Step 2 are of the form t = a2 + |D|b2, the
expression for p in Step 4 can be simplified by checking primality of p = (a± 1)2 +
|D|b2 (and p = |D| · a2 + (b± 1)2 in Step 5). Since such p, t values are constrained
by t = p+ 1± 2a or t = p+ 1± 2b, for p to be prime we necessarily require t to be
even.

To address this, we include in the factor base a pair (e, v) ∈ Z×Z[
√
D] where e

is even and decomposes in Z[
√
D] as v · v̄. We can set

e = (D mod 2) + |D| , v = (D mod 2) +
√
D

that is, e is equal to 1 + |D| if D is odd or to |D| otherwise.
We note that, regardless of the parity of D, when D is negative e ≡ 0 (mod 4)

and the minimum value for such e is 4: hence, for all negative discriminants D, by
including such tuple in the factor base B, and by requiring a random B-smooth value
t̃ to always have (at least) e as a factor, we can efficiently compute, as above, a
Cornacchia’s decomposition for the generated curve orders candidates.

In order to be able to exploit all the 4 orders characterization provided by The-
orem 6.3, we need to write p as a sum of two squares. If t is generated as above
as t = a2 + |D|b2, then t = a2 + (2b)2 = a2 + b̃2, and p would then be of the form
p = (a± 1)2 + b̃2 or p = a2 +(b̃± 1)2. Thus, in the case D = −4 we proceed as above,
ensuring t to be even, but once t = a2 + |D|b2 is generated, we absorb

√
|D| = 2 into

the value b̃ = 2b and we check p accordingly.

6.4.2 Roots of the Hilbert Class Polynomial HD(x) modulo N

When D 6= −3,−4, we need to compute a root of the Hilbert Class Polynomial HD(x)
modulo p, with p|N , in order to compute the j-invariant of a curve with desired order
(Theorem 6.1). Since, at this point, no factor of N is known, we lift the problem to
ZN (using the correspondence given by the Chinese Remainder Theorem), and we
compute HD(x) modulo N instead.

We have different possibilities for computing HD(x) ∈ ZN [x]: it is well known
that HD(x) can be expressed as an irreducible polynomial in Z[x] and we can thus
compute it in Z[x] first, using for example, the techniques outlined in [Bel+08],
and then reduce modulo N its coefficients. Unfortunately, this approach quickly
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becomes infeasible as |D| increases, since the sizes of the coefficients of HD(x) ∈ Z[x]
would grow exponentially. Another possibility consists in computing HD(x) directly
with the coefficients reduced modulo N : Sutherland in [Sut11] describes a method to
compute HD(x) mod N for any integer N , which runs in O(|D|1+ε) time and requires
O(|D|1/2+ε logN) space.

Once HD(x) ∈ ZN [x] is computed, it is generally hard to find a root modulo N
without knowing at least a factor of N .

Clearly, when the Hilbert Class Polynomial HD(x) ∈ Z[x] has degree 1, a root
modulo N can be trivially computed: there are only 13 negative discriminants D for
which this is the case [Cox13, Theorem 7.30], namely

D ∈ {−3,−4,−7,−8,−11,−12,−16,−19,−27,−28,−43,−67,−163}

WhenHD(x) has degree higher than 1, we can get around the problem of explicitly
finding a root j modulo N by simply defining our elliptic curve over the ring

ZN (j) ' ZN [x]/HD(x)

rather than ZN . Hence, when using Theorem 6.1, the coefficients of the resulting
Weierstrass curve can be easily computed by inverting j − 1728, and all arithmetic
operations on the curve can be carried on ZN (j) similarly as for ZN : if some inver-
sions fail, then a root j (or a factor of N) can be explicitly computed.

6.4.3 Picking Random Points on Curves over ZN (j)

Once we obtain a short Weierstrass curve equation E over ZN (j) ' ZN [x]/HD(x),
computed according to either Theorem 6.1, Theorem 6.2 or Theorem 6.3, we need at
least one point on it to be able to run our attack against the modulus N .

At first glance, this might look hard since we need to extract square roots modulo
N to obtain the Y -coordinate corresponding to some (random) X-coordinate on the
curve. Indeed, an oracle returning square roots modulo N can be used to factor N effi-
ciently. We can, however, bypass this problem by adopting, instead, XZ-arithmetic:
Bernstein and Lange collected in [BL] many efficient XZ-arithmetic formulas that
work in our ring ZN (j) as well.

More concretely, for a random X-coordinate PX ∈ ZN , we consider the XZ-point
P = (PX : 1), and we compute Q =

(∏
pi∈B p

`
i

)
· P using XZ-arithmetic formulas.

If P ∈ E(ZN (j)), and the order of E(Fp) is B-smooth, we can then attempt a
factorization for N . If, instead, P /∈ E(ZN (j)), the obtained point Q does not help
in factoring N : we then need to pick another PX ∈ ZN and try the above again, until
we are confident enough to have picked at least one point on the curve.3

When a point P lying on E(ZN (j)) is effectively picked, we need to check if the
corresponding XZ-point Q = (QX ,QZ) gives rise to a non-trivial factorization of N .
Given the canonical projection π : ZN (j)→ Fp(j)×Fq(j), we have that if the order
of E(Fp) is B-smooth, then π(QZ) = (0, Q̃q), that is Q is projected to the identity
element (0 : 0) (in XZ-coordinates) of E(Fp(j)): if Q̃ 6= 0, we can then reveal a
factor for N as follows.

From the fact that ZN (j) ' ZN [x]/HD(x), we can see the Z-coordinate of Q as
a polynomial QZ(x) ∈ ZN [x] of degree less than deg(HD(x)): if j is the j-invariant
of E(Fp), it then must be a root of both HD(x) and QZ(x) modulo p, since, as we

3We recall that if an X-coordinate does not lie on a curve, it then lies on its quadratic twist. So,
for a random PX ∈ ZN , the probability that the XZ-point P = (PX : 1) ∈ E(ZN (j)) is 1

2 .
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already saw, π(QZ) = (0, Q̃)q. In other words the resultant4 over Fp of these two
polynomials satisfies

Res(HD(x),QZ(x)) ≡ 0 (mod p)

If Q̃q 6= 0, that is Q is not projected to the identity element of E(Fq(j)), we might
then reveal a factor for N as

gcd(Res(HD(x),QZ(x)), N ) = p

Picking points in affine XY -coordinates It is possible to construct XY -points
lying on E(ZN (j)) with no need to extract square roots modulo N . By taking
advantage of the free choice of the twisting coefficient and, for D = −4, of the
curve parameter, we can explicitly write a solution to the curve equation associated
with a certain discriminant. The drawback of this approach is that we will then be
able to pick points on a particular curve twist only (if D 6= −4). Thus, to backdoor
semiprimes successfully, we need to generate primes associated with curves isomorphic
only to such reachable twist.

On the other hand, the main advantage of using XY -arithmetic in place of XZ,
is that we can use standard formulas to compute points additions, rather than differ-
ential addition formulas, the only available for XZ-points. Indeed, given two points
P ,Q in XZ-coordinate, we can compute P +Q only if we know the XZ-coordinates
of P ,Q,P −Q (hence the adjective differential). In contrast, scalar-point multipli-
cations [k] · P , the only operation relevant for our attacks, can be executed using
Montgomery Ladder by only knowing the XZ-coordinates of P . The possibility to
execute additions between arbitrary points is of relevance for sketching distributed
protocols to generate semiprimes, based on the prime backdooring idea detailed in
previous Sections: we will address this in Section 6.9.

Assuming N = p · q, where p is a backdoored prime, we can construct, for each
possible discriminant, points in affine XY -coordinates lying on the curves built ac-
cording to the above Theorems, as follows.

• D 6= −3,−4. We have, for a given k, the curve E(ZN (j)) : y2 = x3 −
3kc2x+ 2kc3. We generate a random x ∈ ZN (j) and we consider the point
P = (x2,x3): it lies on E if 2c− 3x2 = 0, that is if we set c = 3

2x
2. It follows

that with this approach, only one twist can be selected, namely the one given
by the residuosity of 3

2 modulo p.

• D = −3. In this case, we work with the curve E(ZN (j)) : y2 = x3 + c3.
If we set c = 2, then the points P = (1, 3) and Q = (2, 3) are both points
on E. Again, only one twist can be reached, depending on whether c = 2 is
or is not a quadratic residue modulo p. These two points seems to be all the
non-trivial (i.e. points of order not equal 2, 3, 6) solution to the Diophantine
equation x3+c3

y2 = 1.

• D = −4. Here we have E(ZN (j)) : y2 = x3 − cx for an arbitrary c ∈ ZN (j):
we can iteratively hit all the 4 possible orders given by Theorem 6.3 by picking
random x,w ∈ ZN (j) and letting c = x2 − xw2. It follows that P = (x,xw) is
on E.

4The resultant of two polynomials defined over an integral domain F[x] is zero if and only if they
share a common root in the closure F.
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An alternative approach, described in [ANS19], allows to work with all discrimi-
nants and twists by using standard formulas for XY -coordinates. Given an elliptic
curve equation y2 = f(x), with deg f = 3, we pick a random PX ∈ ZN and we set
τ = f(PX). We then consider the quotient of the polynomial ring ZN [x, y] given by

Rj,τ = ZN [x, y]/(HD(x), y2 − τ )

and the elliptic curve E(Rj,τ ) : y2 = f(x). It follows that P = (PX , y) ∈ E(R) and
we can perform scalar-point multiplications and additions over E(Rj,τ ) as usual, by
working with the point P . Indeed, if for a certain scalar k ∈ ZN we have [k] ·P = O
in E(Rj,τ ), then [k] ·P = O in E(ZN ) if

√
τ ∈ ZN and j is a root of HD(x) modulo

N . As happens for random points in XZ-coordinates, we cannot be sure that PX is
the X-coordinate of a point in E(ZN ), and we then need to select multiple points
(and thus work on different rings Rj,τ ) until we are confident enough to have picked
one lying on E(ZN ). Clearly, the arithmetic in Rj,τ is slower than the one we have
in ZN (j) or ZN .

6.5 The Prime Generation Procedure
In light of the considerations outlined in Section 6.4, we can now formally state our
prime generation procedure, previously sketched in Section 6.3.

Input: a negative discriminant D, the bitsize of the output prime p, the factor base
size n+ 1.
Output: a b-bits prime p, the factor base B.

1. Set B = ∅. Generate n tuples (pi, vi), where pi ∈ Z are prime odd integers
decomposing as pi = a2

i + |D|b2
i and vi = ai + bi

√
D ∈ Z[

√
D], and add them

to the factor base B. Only if D = −4, ensure that for all (pi, vi) ∈ B, pi ≡ 1
(mod 4).

2. Set p0 = (D (mod 2)) + |D| and v0 = (D (mod 2)) +
√
D, and add (p0, v0) to

B.

3. Randomly pick elements (p1, v1), . . . , (pm, vm) from B, for some m > 0, so that

b− 2 < log2

(
p0 ·

m∏
i=1

pi

)
< b

Set t = p0 · p1 · . . . · pn and v = v0 · v1 · . . . · vn = a+ b
√
D ∈ Z[

√
D], for some

a, b ∈ Z.

4. If D 6= −4, check if p = (a± 1)2 + |D|b2 is prime. If yes, return (p,B). If p is
not prime, go to Step 3.

5. If D = −4, check if p = (a± 1)2 + (2b)2 or p = a2 + (2b± 1)2 is prime. If yes,
return (p,B), otherwise go to Step 3.

We note that, in Step 1, one can either use Algorithm 2 over some pi ∈ Z in
order to compute the corresponding vi, or we can generate random ai, bi ∈ Z, set
pi = a2

i + |D|b2
i and vi = ai + bi

√
D, and test if such pi are primes. Although

primality for elements in B is, in general, not required, we experimentally observed
that backdoored primes p are generated faster when B contains only odd primes
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and the even element p0, probably because this choice reduces the probability that
p is divisible by small factors, e.g. 2, 3: we therefore generate B to contain, besides
p0 = (D mod 2) + |D|, only odd primes which factors in Z[

√
D].5

Since the factor base B, once generated, can be used to generate multiple primes
p, the running time of the above algorithm is dominated by the search for primes in
Step 4. Assuming that the computed values p behave like random b-bits odd integers,
we then expect to find a prime after O(b) loops.

6.6 Factoring Backdoored Integers
Let p be a prime generated with respect to a factor base B and a negative discriminant
D, using the prime generation procedure outlined in Section 6.5. If p is a factor of an
integer N , we say that N is backdoored since, by knowing B and D, it would be then
possible to recover the (secret) factor p from N . We note that in case of semiprimes
N = p · q, as in the case of RSA moduli, we will obtain a full factorization for N ,
regardless of the choice of the other prime q.

To recover p from B, D and N = p · q, we run the following attack.

Input: a backdoored N , a negative discriminant D, the factor base B = {p0, . . . , pn}.
Output: a factor p of N .

1. If D 6= −3,−4:

(a) Compute the Hilbert Class Polynomial HD(x) ∈ Z[x] and let ZN (j) =
ZN [x]/HD(x);

(b) Compute k = j
j−1728 ∈ ZN (j);

(c) Pick a random c ∈ ZN and consider the curve E : y2 = x3 − 3kc2x+ 2kc3

over ZN (j).

2. If D = −3, pick a random c ∈ ZN and consider the curve E : y2 = x3 + c3 over
ZN .

3. If D = −4, pick a random c ∈ ZN and consider the curve E : y2 = x3− cx over
ZN .

4. Pick a random PX ∈ ZN and set the XZ-point P = (PX : 1). For i ∈ [0,n]
compute, using XZ-arithmetic formulas over the curve E(ZN (j)), the point

Q =

 ∏
pi∈B

p`ii

 · P
where `i =

⌊
logpi N

⌋
or is a fixed constant.

5. LetQ = (QX : QZ) and considerQZ as a polynomial residue in ZN [x]/HD(x).
If degHD = 1 and p = gcd(QZ ,N) 6= 1,N , output p. If degHD > 1 and
p = gcd(Res(HD,QZ),N) 6= 1,N , output p.

6. If D = −3 go to Step 2; if D = −4 go to Step 3, otherwise go to Step 1c.
5This fact should explain the title of this Chapter.
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We note that, if the factor base B used to backdoor such semiprimes N contains
all primes less than a certain bound B, then anyone would be able to factor such
N , if correctly guesses the discriminant D used. Indeed, as we already discussed
in Subsection 6.4.2, D cannot be too big, because, otherwise, the computation of
HD(x) ∈ ZN (x) and the corresponding induced arithmetic in ZN (j), would result
too expensive to carry out. If, instead, the factor base B is partially secret and
contains, for example, many public small elements and few secret big factors, when
backdoored B-smooth curve orders are generated to be multiple of at least one of
such secret big factors, then N can be easily factored only by those who fully know
B.

Question 6.1. For a given discriminant D, are backdoored integers N distinguishible
from non-backdoored ones when the factor base is (partially) secret?

6.7 Implementation
We implemented both the prime generation procedure from Section 6.5 and the fac-
torization attack detailed in Section 6.6 in SageMath [The21]. Our implementations
is available on GitHub at

https://github.com/cryptolu/primes-backdoor

The first script gen_prime.sage generates, for a given input negative discriminant
D and bitsize b, a random b-bits prime p admitting a Cornacchia’s decomposition
with respect to D, and so that one among the curve orders built according to either
Theorem 6.1, Theorem 6.2, Theorem 6.3 is B-smooth, with B containing the first
suitable primes up to a certain (input) bound. Optionally, this script can output safe
primes rather than just primes.

The second script is attack.sage and takes as input an integer N and a discrim-
inant D. It attempts the attack from Section 6.6 on N , by building a proper elliptic
curve E(ZN ) and by computing [

∏
pi∈B p

`
i ] · P for a random point P = (PX : 1) in

XZ-coordinates. In order to compute scalar-point multiplications, the implemented
XZ-arithmetic uses Montgomery Ladder [Mon87a], differential doubling xECDBL and
differential addition xECADD formulas reported, respectively, in [IT05, Algortihm 3,
A.3, A.5]

We employed these two scripts to backdoor and later factor the modulus we report
in next Section to show an attack example.

6.7.1 A Full Attack Example

Suppose we have just generated the following 1024-bits RSA modulus

N = 1082180552862206588923056869667964500056560938535618805733037577
7987085250271575089671738060141633228263541675150587071017957746
4401193642824027551121223839066820321283484303809645541513752756
2375368600562485065579283057884522870169988126683487852422820449
46059872302424866654255328887383184108204782014745221

using some shady closed-source software found online. We suspect it has been some-
how backdoored and we would like to check it against the attack outlined in Section 6.6.

https://github.com/cryptolu/primes-backdoor
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We start iterating through all possible discriminants up to a certain bound, and we
are now working with D = −107. We then compute the Hilbert Class Polynomial

H−107(x) = x3 + 129783279616000 · x2 − 6764523159552000000 · x+
337618789203968000000000

we set ZN (j) ' ZN [x]/HD(x), and we obtain k = j
j−1728 ∈ ZN (j) as

k = 4726139324787666693409668442793131931699906612249830924688631641
6582630761369931328038057379788474287067646810022008153836239429
8484445303207371515261890383308740374138417052518390519213493529
7494970512387206697075802585797084355334253393883165856783597576
2903719991735189385314911683973277579929826214339265 · j2 +
2583537491239223892487049209941342381846842377666674250844657890
2594914239801368468661938589106476414429773665900324611328681406
3216001393443334210956044247665422546554517302456749285442094780
3357476124489494165071306819849051585970711489381922793715839533
6053394777415390378101995856411577845170181322448460 · j +
9212513408993014331330914229672994221445107757139420073648550381
9829429407445297523207900627240286581400025862242937369247372782
0051692220181932959624105835644432609167110193260413277951994679
5422007512423650127543123961310572988163750176113813086872521983
3752831277333619845321557325730801766122633293130521

We pick a random c ∈ ZN , and we define the curve E(ZN (j)) : y2 = x3 +Ax+B,
where A = −3kc2 and B = 2kc3. In our case, these values result to be

A = 3279951309784236959499117781788286211933356244286192266784940511
3187078887404552457048484113576047349441615936062819720658260243
6582918492949905396314203212027061815963064338782746734177580622
5822328868108150569296366025810345296827955146103616653045074629
9534241540719385571206289276833390071482099227029218 · j2 +
1072490830759782407512762639192204658787521479618456076641734751
4263839708807499199577270220385771722815115894036430807970281451
0166667790343423279033188777287190801104917972949118291714832737
2037621437797843747062445549154291869052543365174755329650596023
8322506931903643799306056637988949354676289576418014 · j +
8191609719221406503598190374000736415659026686437111316694625200
7078036445238420174861210541799540635864308874516665460699328870
5239340463153087566698150625199250395141425416658589321540290967
9444892014323281276904686618422283304484702505802910707165360184
996600187282021979728700446903734598874041233975421

B = 3764328167990845151878724024698369978854803969739625869359597208
5905148999384434036900954279833932856853154808273310674121027808
7396839284458397608707532457609382704422614143853293195820528050
0439625570418922078267092166327050359066036383880754279658083043
4422155103586357147978131797490769219422563399764351 · j2 +
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3262653447647306785386446080403995227114255565616672380196449403
1024106902209803033453332461881918667711556083623533461422654959
3792885724743131088094681213733581292166083595187928876253687304
9095442724469339531437048360583829746124195639834937008781570602
03556078782669987700140365720355713277916839557377 · j +
2018795241502790638992891359044332014944796462925554884532218825
0621303983018012881560334277312163158865434906328628967724430342
3320213147586043433031814108287949381589352802976017014977188595
9631941924718987065447165460405727671206401862381437942561798873
8224774811104681656315004660545607528945470056490699

We then generate a random XZ-point P , such as

P = (8213386275212893523422589925016418544419737470205998350360334737
0808767534383777287476917389728832143388717551366443350710748972
8296742138840551867446825330731012264696794180986410728293491261
0291403743233581891418089798305128319217013949654585856460461999
7038845984468294788908126257842582603983571770616926 : 1)

and we compute, using XZ-arithmetic, the point Q =
(∏

pi∈B p
`i
i

)
· P (we set `i = 2

for all i), using a factor base B containing all primes pi of the form pi = a2
i + |D|b2

i ,
with 0 ≤ ai, bi < 28 for all i > 0, and the element p0 = 1 + |D| = 108, for a total of
3468 elements. The point we obtained is

Q = (3334865467748334343639894300160440235886887518672853874459405696
8719290118711278258807199398809005158186948035620772961751563376
2706996270205017622286574518199041218858476896561736506760289222
2256335448803735205405855804928111263260919442420055411327737604
1123202890611012269825315652821463899656889556404699 · j2 +
7689906496380455394710073476559716024060279315781229737459270757
6165068330085838625826113344480718245990636552041750959731233848
0120583814043481344311982524250512505605731260851632209268820236
2576881492202790768389151183200638927786236249286044394287764324
3130905343548520132640854211289509954654637153474435 · j +
4341739768034604549684210759110205599852863952934796949072689306
7887581314535106909712596558876103170603523713782394697183794701
9939538310680675972092802552957068857743927536560104426449684823
4551848767427822472868352428331808410226656539924457619689237192
0484484129148865961043236956468241684045930313667134 :
6182115395610171116512648228653716984299018809622163408323488022
3747963736328129953987803673817505657490758028191686833721668265
1985531279611320317042940952094637566917286537698227463197105211
9851638154161505731219857960441019048586916736917847617758681237
3538524310238956155534423748883822485996691191966528 · j2 +
6402009202641366184445716387547812503451800342832070085814782172
1045658180999154912720749680122919636483991211256021777435098242
5447566664816238132859917296717348772694071282964657256505160564
7719118092023190756122053168335796400776095296010210293202661114
9676923234595697323298973117308194412478184695042548 · j +
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6284204000085662559475394410903505368358675525673969202322254516
5932319072858457336136561642390220796754839533092659821878136511
3496334139269070887399905672636002062797294444432263179246792405
5348804177040071434741535302088386805117988777028638124379958729
5814437072069872663260291675394395512596307506337294)

We let Q = (QX ,QZ) and we consider QZ as an element in ZN [x]/HD(x), rather
than ZN (j). We then compute the resultant r = Res(QZ ,HD(x)), corresponding to

r = 8093552098721637783664885262489676950910732180486184398613457277
8161130529101813682566827712716322500418635723978421813953799097
7555032254069388900963857213765315555138571357726228685587307731
3207614875084243580647912417966546016482829794924406950417339410
1556250503142950724934058250886283951545363758603886

Unexpectedly, by computing p = gcd(r,N) we obtain

p = 1006989116827285328968241453344410115896197116072181096042529972
7500040856155399910408097910806556095082529154204912221872656086
515020034916524535013055607

which confirms our suspicions! The attack leads to full factorization of N as

N = 1006989116827285328968241453344410115896197116072181096042529972
7500040856155399910408097910806556095082529154204912221872656086
515020034916524535013055607 · 91635850106302409143158545020798409
6049550676398490431302221858607413434626065849874619277159618017
5665775150505169330955024838846917582563246839347729083

We note that both factors of N are safe primes.

6.8 Certifiable Semiprimes
We can use the prime backdooring procedure from Section 6.5 to sketch a multi-party
computation (MPC) protocol which outputs semiprimes of unknown factorization, a
particularly useful application in the setting of distributed generation of RSA moduli.
We will take advantage of a generalization of a Theorem by Goldwasser and Kilian,
which provides a criterion for an integer N to be semiprime given partial knowledge
of the order of an elliptic curve modulo N . When we port this idea into the MPC
setting, parties will jointly construct a curve modulo N by backdooring part of its
order according to this theorem, and where N , once revealed, can be certified to be
semiprime, thanks to a semiprimality proof that can be publicly checked without
knowing any of the factors of N .

6.8.1 Preliminaries

In this Section we provide the theoretical results to formalize semiprimality certificates
for odd integers. We start by stating Goldwasser-Kilian Theorem, initially thought
of as a tool to prove the primality of a certain integer N .

Theorem 6.4 (Goldwasser-Kilian [GK86]). Let N > 1 and let E be an elliptic curve
defined over ZN . Suppose there exist distinct primes p1, . . . , pk and finite points
P1, . . . ,Pk ∈ E(ZN ) such that [pi] · Pi = O for all 1 ≤ i ≤ k and

∏k
i=1 pi > ( 4√N +

1)2. Then N is prime.
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Proof. See [Was08, Theorem 7.3].

We can slightly restate Goldwasser-Kilian Theorem to provide a condition that,
when true, will ensure N has at most a certain number of distinct prime factors.

Theorem 6.5. Let N > 1 and let E be an elliptic curve defined over ZN . Suppose
there exist distinct primes p1, . . . , pk and finite points P1, . . . ,Pk ∈ E(ZN ) such that
pi · Pi = O for all 1 ≤ i ≤ k and

∏k
i=1 pi >

(
2m√N + 1

)2
. Then N can have at most

m− 1 distinct prime factors.

Proof. We will adjust to our needs the proof of Theorem 6.4, that is [Was08, Theorem
7.3]. Let q be a prime factor of N so that N = qs · d for some s > 0 and gcd(q, d) = 1.
Since Pi is a finite point in E(ZN ) ' E(Zqs)×E(Zd) it is a finite point modulo qs
and, in turn, modulo q as well. Then pi ·Pi (mod q) = O ∈ E(Fq), which implies that
Pi (mod q) has order pi in E(Fq) for all 1 ≤ i ≤ k. It follows that ∏k

i=1 pi | #E(Fq)
and by Hasse bound

(
2m√
N + 1

)2
<

k∏
i=1

pi ≤ #E(Fq) < q+ 1 + 2√q = (
√
q+ 1)2

So q > m
√
N for any prime q dividing N , hence N cannot have more than m− 1

distinct prime factors.

Corollary 6.1. Let N > 1 be a composite non-square integer and let E be an elliptic
curve defined over ZN . Suppose there exist a prime s >

(
6√N + 1

)2
and a finite

point P ∈ E(ZN ) so that [s] · P = O in E(ZN ). Then N is semiprime.

We note that in Corollary 6.1 we require s to be prime: its primality can be
certified using Theorem 6.4, factoring the orders of elliptic curves built over Zs and
explicitly construct, when possible, points of prime order satisfying the assumption of
Theorem 6.4. It follows that Theorem 6.4 can be used, in turn, to prove the primality
of the orders of the points employed to prove the primality of a certain integer: this
process ultimately results in a chain of primality proofs which reduces the problem
of certifying primality of s to certifying primality of (much) smaller integers. Such
certificate chains are commonly known as Atkin-Goldwasser-Kilian-Morain primality
certificates [GK86; AM93].

6.8.2 Certificates for Semiprimes for which a Factorization in Known

From Corollary 6.1 follows that, if we know (or we construct!) a tuple (N , E(ZN ), P ,
s) whose elements satisfy its assumptions, then such tuple is, in fact, a semiprimality
certificate for N .

A naive approach to compute such certificates when the factors of N = p · q are
known, consists in generating a random curve E(ZN ) for which we can factor its
order, in turn obtained by computing the orders of the two curves E(Fp), E(Fq)
using, for example, the Schoof–Elkies–Atkin (SEA) algorithm [Sch95; Elk98; Atk88;
Atk99]. Indeed, if |E(ZN )| is divisible by a prime s > ( 6√N + 1)2, or by multiple
primes pi so that ∏i pi > ( 6√N + 1)2 (Theorem 6.5), we can pick random points
Q ∈ E(ZN )6 and check if P = [|E(ZN )|/s] ·Q 6= O. When this holds, it follows
that [s] · P = O ∈ E(ZN ) and thus (N , E(ZN ), P , s) is a semiprimality certificate
for N .

6Equivalently, we can work, thanks to the Chinese Remainder Theorem, over E(Fp)×E(Fq).
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This approach has two main drawbacks: the first is that partial factoring the order
|E(ZN )| until enough divisors {pi}i so that ∏i pi > ( 6√N + 1)2 are found, is often
expensive or even impractical depending on the size of N . Secondly, if a certain pi
divides |E(Fp)| but not |E(Fq)|, it cannot belong to a semiprimality certificate since
any point Pi of order pi will leak a factor of N , similarly as we describe in Section 6.6:
from the condition [pi] · Pi = O ∈ E(ZN ), we must have Pi to correspond to the
identity element of E(Fq) when its projective coordinates are reduced modulo q, and
thus the Z-coordinate of Pi shares a factor with N .

In other words, each element pi published in a semiprimality certificate should
divide both orders |E(Fp)| and |E(Fq)|: on this regards, we note that to reduce
certificate sizes, we simply avoid publishing multiple points Pi, each of size at least
2 logN , along with their order pi, and we publish instead a single point P of order
s > ( 6√N + 1)2 with s prime, as done in the formulation of Corollary 6.1. Indeed, if
s is prime, by Cauchy’s Theorem we know that both curves E(Fp) and E(Fq) have
a point of order s, and thus, by Chinese Remainder Theorem, it exists a point P in
E(ZN ) of order s. In fact, E(ZN ) will contain a subgroup isomorphic to Zs ×Zs

and, to avoid leaking factors of N as showed above, we look for points P of order s
in correspondence to elements (a, b) ∈ Zs ×Zs with a, b 6= 0.

How can we then efficiently generate big certifiable semiprimes? In [Don05;
Dav05], we found concrete instances of semiprimality certificates presumably gen-
erated according to observations similar to the above7. In a private conversation,
Reble confirmed to us that his certificate [Don05] for a semiprime N of 1084 digits
was generated from its prime factors and added, in regards to its generation: “I knew
the factors. I sought a pair of primes such that the Goldwasser-Kilian test almost
worked for that product”. Shortly after [Don05] became public, Broadhurst generated
a semiprimality certificate for a 5061-digits integer [Dav05] consisting of a single el-
liptic curve point P and a 1690-digits prime s, for which a primality proof is known.
We note that both [Don05; Dav05] employ the elliptic curve E(ZN ) : y2 = x3 +A ·x,
whose order is characterized by Theorem 6.3.

In a more general fashion, we can efficiently compute semiprimality certificates
for an integer N by generating both its prime factors according to the backdooring
procedure of Section 6.5, and ensuring that the candidate curve orders are divisible by
a prime s > ( 6√N + 1)2 which admits a Cornacchia decomposition for the employed
D. This can be achieved by slightly change our prime generation procedure, adding
such prime s to the factor base B (Step 1), and requiring t to always be a multiple of
s and the even element p0 (Step 3). From the full knowledge of |E(Fp)| and |E(Fq)|,
where the curve E is retrieved from N as in Section 6.6, we can then randomly pick
and re-scale points in E(ZN ) as above, until we find one of order s (and Z-coordinate
not equal to 0 when seen modulo p and modulo q).

6.9 Distributed Computation of Certifiable Semiprimes
In this Section we investigate how we can possible have a multi-party computation
protocol to jointly compute an integer N of unknown factorization and a semipri-
mality certificate for it. Our goal is to port our prime generation procedure, slightly
restated as described at the end of Subsection 6.8.2, in a distributed setting, so that
parties generate two candidate prime curve orders tp, tq for E(Fp) and E(Fq), re-
spectively, both divisible by a public prime s > ( 6√N + 1)2. Parties then opens

7We were not able to find more details about how these certificates were generated, except a short
discussion on their validity with respect to (a generalization of) Goldwasser-Kilian Theorem.
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N = p · q and multiple points Qi = [ tptq
s2 ] · Pi for random Pi ∈ E(ZN ). If for some i,

we have Qi 6= O and [s] ·Qi = O, we then output N and the semiprimality certificate
(N ,E, s,Qi).

The whole procedure is sketched as follows, where we employed the notation [ · ]
to denote secret values.

Input. The bitsize bits, a negative discriminant D.
Output. A semiprimality certificate for a bits-bits integer N .

1. Parties publicly agree on two integers sa, sb so that s = s2
a + |D| · s2

b is a prime
of bits/3 bits.

2. Each party i randomly picks 4 values [ai,1], [bi,1], [ai,2], [bi,2] of bits/12 bits
each.

3. Parties jointly compute the 4 values:

[a1] =
∑
i

[a1,i] , [b1] =
∑
i

[b1,i] , [a2] =
∑
i

[a2,i] , [b2] =
∑
i

[b2,i]

4. Parties compute the 4 values

[pa] = sa · [a1] +D · sb · [b1]

[pb] = sa · [b1] + sb · [a1]

[qa] = sa · [a2] +D · sb · [b2]

[qb] = sa · [b2] + sb · [a2]

5. If D 6= −4, for each choice of v1, v2 ∈ [−1, 1], parties jointly open the 4 values

Nv1,v2,0 =
(
([pa] + v1)

2 + |D| · [pb]2
)
·
(
([qa] + v2)

2 + |D| · [qb]2
)

6. For each choice of v1, v2 ∈ [−1, 1], parties may8 further open the values

Nv1,v2,0 =
(
[pa]

2 + (2 · [pb] + v1))
2
)
·
(
[qa]

2 + (2 · [qb] + v2)
2
)

Nv1,v2,1 =
(
([pa] + v1)

2 + |D| · [pb]2
)
·
(
[qa]

2 + (2 · [qb] + v2)
2
)

Nv1,v2,1 =
(
[pa]

2 + (2 · [pb] + v1))
2
)
·
(
([qa] + v2)

2 + |D| · [qb]2
)

7. For each opened value Nv1,v2,v3 :

7.1. Let Nv1,v2,v3 = N . If either N is a perfect square, has small prime factors
or s < ( 6√N + 1)2, parties skip to the next choice of Nv1,v2,v3 .

7.2. Depending on the discriminant D, parties publicly agree on one or multiple
curves {E`(ZN [x]/HD(x))} along with a point P` ∈ E` on it9, until are

8Different trade-offs are possible depending on the employed MPC arithmetic protocol, the overall
network communication and the number of openings parties execute out of the 16 available.

9It may be needed to test multiple random points P`, depending on the curve arithmetic used,
before being sure to have picked at least one point on E`.
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confident enough to have picked a curve representative for each reachable
order (cf. Theorem 6.1, Theorem 6.2, Theorem 6.3).

7.3. For each P` ∈ E`, parties jointly compute and open the point

Q` =
[
([a1]

2 + |D| · [b1]
2) · ([a2]

2 + |D| · [b2]
2)
]
· P`

If Q` 6= O and [s] ·Q` = O ∈ E`, return the semiprimality certificate
{N ,E`,Q`, s}.

8. Go to Step 2.

6.9.1 Practical Considerations

Although there exist many protocols that, depending on the most suitable security
scenario, can efficiently perform in MPC the standard arithmetic operations needed
in the first part of our sketched protocol, execution of Step 7 is not trivial and may
represent the main bottleneck for implementing it in full. Difficulties mainly reside
in the opening of the points Q`, which involves a scalar-point multiplication [k] · P`,
for a secret k shared among parties.

Although protocols like [ST19; FN20] allow distributed computation of [k] · P`
when P` belongs to a curve defined over a finite field of known characteristic, in
our case we work, instead, over a ring (either ZN or ZN (j) ' ZN [x]/HD(x)) and
the order of P` is (and should remain!) unknown. In other words, these protocols
cannot be employed, at least not straightforwardly, and we are not aware of designs
that can be used in our case of interest (and which are eventually able to work with
XZ-coordinates).

We can however bypass this limitation: instead of directly opening the point
Q` = [k] ·P`, where k = ([a1]2 + |D| · [b1]2) · ([a2]2 + |D| · [b2]2), we additively secret
share among all parties the secret [k] over a field Fr, with r a public prime much
greater than the expected value for k.

Once [k] is additively shared, each party i possesses a share ki ∈ Fr satisfying
(
∑
i ki) (mod r) = k. Thus, for each publicly agreed point P`, party i locally com-

putes P̃` = [ki] ·P` and publishes this point to other parties. Assuming n parties are
involved in the distributed computation, they can then compute in clear Q̃` =

∑n
i=1 P̃`

and the set of elliptic curve points

Q` = { Q̃`, Q̃` − [r] · P`, Q̃` − [2 · r] · P`, . . . , Q̃` − [n · r] · P` }

It follows that the point Q` = [k] ·P` is inQ`, and parties can then check the condition
[s] ·Q` = O ∈ E` at the end of Step 7, by checking if O is in the the set of points
{ [s] · Q̃ | Q̃ ∈ Q` }.

There is one last subtlety we need to address: the public computation of the
point Q̃` =

∑n
i=1 P̃` cannot be done in XZ-coordinates, since addition formulas are

defined in terms of differential addition and to compute any sum P +Q we need the
X-coordinate of the point P −Q, which in our case is unknown.

We can address this problem mainly in two ways. The first approach consists in
working over the rings Rj,τ we defined at the end of Section 6.4.3, that, regardless
of the discriminant D chosen, allows us to pick random points P` ∈ E(Rj,τ ) in
XY -coordinates and thus use standard formulas for points addition. Unfortunately,
although this approach allows us to generalize the construction to all possible curve
twists and negative discriminant D, in practice, it results expensive in terms of ring
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arithmetic, and parties need to work on a different ring Rj,τ for each choice of the
point P` in Step 7.

Alternatively, we can explicitly construct random XY -points P` with coordinates
in ZN as we detail in Section 6.4.3: although the arithmetic would result faster, within
this approach, we will be able to work only with one curve twist for each factor of N
when D 6= −4, and thus we need, on average, four times as many iterations of the
protocol before returning a semiprime certificate. However, the case D = −4 suits
best our needs: first, the corresponding Hilbert Class Polynomial has degree 1, thus
a root j for HD(x) can be easily obtained modulo N ; secondly, in Section 6.4.3, we
show how it is possible to explicitly construct points in XY -coordinates over ZN for
all the curve orders characterized by Theorem 6.3. It follows that when D = −4,
we can work exclusively over ZN and perform point additions with standard affine
XY -coordinates formulas.

Assuming the inputs from parties to be random, the algorithm terminates when:
i) N is a product of two primes; ii) the random curve modulo N selected matches the
curve twists with orders divisible by s; iii) the elliptic curve arithmetic does not fail
modulo N . If at each round of the protocol, in Step 5 and Step 6 m different integers
are opened in total, then a semiprime is returned in approximately 1

m · (
bits

2 )2 =
O(bits2) rounds execution.

6.9.2 Implementation

To show its practicality, we implemented the protocol outlined in Section 6.9 for
the case D = −4 in SageMath [The21] and MP-SPDZ [Kel20], a multi-protocol
framework for multi-party computations based on SPDZ [Dam+12; Dam+13]. Our
implementation can be found at

https://github.com/cryptolu/semiprimes

and further algorithmic optimizations are left as future work.
In order to allow parties to open points Q` in Step 7, we additively secret share

the value k = ([a1]2 + |D| · [b1]2) · ([a2]2 + |D| · [b2]2) over a prime order field Fr of
bit-size double as N , we compute the set Q`, and we check the value of [s] ·Q` as
detailed in previous Section.

The SageMath script generateN.sage automates the execution of the MP-SPDZ
multi-party computation script semiprimes.mpc, which performs the required dis-
tributed arithmetic operations over parties’ secret values, the retrieval of the opened
moduli and parties’ additive shares, the elliptic curve arithmetic and the final checks
on the returned semiprimality certificate.

As a proof of concept, we report a 128-bits semiprime generated, using our imple-
mentation, in 1300 ≈ 642

4 rounds (to reduce communication, we did not implement
Step 6). The generation involved two parties, both running on a standard desk-
top, who communicated using the MP-SPDZ semi protocol for semi-honest Oblvious
Transfer based computations modulo a prime. The semiprimality certificate returned
is

N = 4612132704453273089086099686651695598292733
E(ZN ) : y2 = x3 + 2092114744917372487215365929537329924536903 · x

Q = (3579289806919941214432256472872861931429711 :
1415443712262662994926349760625171068664853)

s = 538606233865081

https://github.com/cryptolu/semiprimes
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where, in fact, N = 556886529430039208669 · 8281997248476609399457.

6.10 Security of Semiprimality Certificates
In this Section we briefly investigate the security of semiprimality certificates for
integers N generated according to Subsection 6.8.2 or Section 6.9, that is containing
elliptic curves whose orders modulo each prime factor of N are characterized by either
Theorem 6.1, Theorem 6.2 or Theorem 6.310. We will detail and compare three kinds
of attacks: a generic point order-finding algorithm based on Baby-step Giant-step
algorithm combined with a twisting attack, a brute-forcing approach exploiting some
leakage provided by semiprimality certificates, and factorization.

6.10.1 Baby-step Giant-step and the Twisting Attack

Since semiprimality certificates (N ,E,Q, s) are generated using a variant of the prime
generation procedure of Section 6.5, our factorization attack detailed in Section 6.6
will retrieve a factor of N = p · q with high probability, as soon as we compute (a
multiple of) the order of a random point P in either E(Fp) or E(Fq). While in
Section 6.6, we assume the order of at least one of the curves E(Fp), E(Fq) to be
B-smooth for a certain factor base B, in the case of semiprimality certificates we have
that |E(Fp)| = s · kp and |E(Fq)| = s · kq for certain random integers kp, kq.

Thus, as we already discussed in Subsection 6.4.3, given a curve E(ZN ) =
E(Fp) × E(Fq) and a random P ∈ E(ZN ) (in XZ-coordinates) on it, the point
P̃ = [s] · P ∈ E(ZN ) would be such that [kp] · P̃ = (Op, P̃q) and [kq] · P̃ = (P̃p,Oq),
where Op and Oq represents the identity elements of E(Fp) and E(Fq), respectively.
In other words, if we are able to find a multiple of either kp or kq, we will be able to
factor N as long as P̃q or P̃p, respectively, are non-trivial.

To find such multiple, we can apply the Baby-step Giant-step algorithm to find
the order of P̃ = [s] · P , where P 6= Q is a random point in E(ZN ) expressed in
XZ-coordinates (as usual, we compute the orders of different points P̃ , until we are
confident enough to have picked one lying on E(ZN )).

Assuming p ≈ q, we have ln(kp) ≈ ln(kq) ≈ lnN
6 : since P̃ generates a group

of order at most kpkq, we have that a successful execution of the Baby-step Giant-
step algorithm would require on average exp

(
lnN

6

)
scalar-point multiplications and

exp
(

lnN
6

)
space to return a (big) divisor k of kpkq which, for simplicity, we can safely

assume to be k = kpkq.
However, when we try to compute, for multiple P ∈ E(ZN ) = E(Fp)×E(Fq),

the point [k · s] ·P , we obtain [k · s] ·P = (Op,Oq), which does not help us in factoring
N , unless we factor k itself. Indeed, by factoring k, we will be able to find a multiple
k̃ of kp which is not a multiple of kq, or vice-versa, and so that [k̃ · s] ·P 6= (Op,Oq).

Although factoring k is asymptotically easier than running the Baby-step Giant-
step algorithm to find it, we now show a technique which finds with overwhelming
probability a factor of N knowing only such k and none of its factors. We call this
method “twisting attack”. Let c ∈ ZN a random integer so that its Jacobi symbol(
c
N

)
= −1: since N = p · q is a semiprime, it follows that c is a quadratic residue in Fp

and not in Fq, or the opposite. Hence, the quadratic twist Ẽ(ZN ) = Ẽ(Fp)× Ẽ(Fq)
of E(ZN ) through c would be isomorphic to either E(Fp)× Ẽ(Fq) or Ẽ(Fp)×E(Fq).
It follows that, given its size, s will not divide |Ẽ(Fp)| and |Ẽ(Fq)| with overwhelming

10There might exist, indeed, other curve equations for which the order can be characterized in a
way that allow efficient generation of semiprimality certificates.
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probability and thus, when we pick a random point P ∈ Ẽ(ZN ), we will have that
[s · k] · P is not equal to O ∈ Ẽ(ZN ) but decomposes either as (Op, ·) or (·,Oq). We
can then easily retrieve a non-trivial factor of N by applying the greatest common
divisor to the Z-coordinate of [s · k] · P .

As a side note, we observe that the twisting attack can be applied to target either
pseudo super anomalous curves or super anomalous curves [KK00], that is elliptic
curves E(ZN ) with order equal N (super anomalous curves further require that if
N =

∏
i pi, then each curve E(Fpi) has order pi, that is anomalous). For these

curves, indeed, the ring characteristic trivially reveals the full curve order modulo N
and hence, by working with twists of E(ZN ) as above, we can factor N , and directly
work over the corresponding sub-curves.

Another example of the applicability of this method is given by [NF19], where a
class of parameters for Demytko’s Elliptic Curve Cryptosystem [Dem94] is shown to
be weak, allowing an attacker to ultimately factor a public RSA modulus N . Here,
the authors recover the order of an elliptic curve modulo N , which is factored with
Lenstra’s ECM to factor N and break the cryptosystem ultimately. With a twisting
attack, instead, the knowledge of the curve order would suffice to factor N , allowing
the attacks by [NF19] to remain feasible even with bigger key-sizes where the ECM
approach becomes unpractical.

6.10.2 Curve Order Leakage Exploitation

Even though the methods of Subsection 6.10.1 will be used in Subsection 6.10.4
to quickly factor Reble’s semiprimality certificate [Don05], much better asymptotic
alternatives to the Baby-step Giant-step approach are possible for recovering the
curve order.

We note, indeed, that a semiprimality certificate (N ,E,Q, s) leaks 11
12 of the bits

of the order of the curve E(ZN ). This immediately follows from Hasse’s bound [Sil09,
V.I - Theorem 1.1]: by denoting with #E(ZN ) the order of E(ZN ) ' E(Fp)×E(Fq),
we have that

|#E(ZN )−N − 4
√
N − p− q− 1| ≤ 2p√q+ 2q√p+ 2(√p+√q)

Since s ≈ 3√N , and s2 divides #E(ZN ) by construction, we obtain∣∣∣∣∣#E(ZN )

s2 − N − 4
√
N

s2

∣∣∣∣∣ ≤ 2p√q+ 2q√p
s2 ≈ 12√

N

Thus, using the above notation, we have kpkq = N−4
√
N

s2 + t with |t| ≈ 12√N .
In this setting, such t can be found, to the best of our knowledge, either memory-

less using a brute-forcing approach or with a time-space trade-off using Baby-step
Giant-step. In the case of brute-force, each guess of t is verified by picking multiple
points P ∈ E(ZN ) and checking if

[
N − 4

√
N + s2 · t

]
· P = O ∈ E(ZN ). To use

Baby-step Giant-step, instead, we set R = [4
√
N −N ] · P and Q = [s2] · P , con-

strained by the relation [t] ·Q = R, and we then search for the discrete-logarithm of
R in base Q. Once t is correctly retrieved, we can compute the full order of E(ZN )
and factor N , similarly, as we do in Subsection 6.10.1.

It follows that the average time complexity of brute-force consists of exp
(

lnN
12

)
guesses for t, while the Baby-step Giant-step would require exp

(
lnN
24

)
time given

exp
(

lnN
24

)
space.
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6.10.3 Comparison to Factorization

How do these two attacks compare with respect to directly factoring N? The fastest
known general-purpose factoring algorithm is the General Number Field Sieve (GNFS)
[LL93] which allows to factor an integer N with complexity

exp
((

3

√
64
9 + o(1)

)
(lnN)

1
3 (ln lnN)

2
3

)
A semiprimality certificate (N ,E(ZN ),Q, s) generated as in Subsection 6.8.2 or

Section 6.9, will have s ≈ lnN
3 .

The Baby-step Giant-step attack outlined in Subsection 6.10.1 would require,
on average, exp

(
lnN

6

)
time (assuming constant table look-ups) to find the order

of the point [s] · P , where P is randomly picked from E(ZN ). Instead, the curve-
order finding method of Subsection 6.10.2 which exploits the leakage provided by the
certificate requires a time-space trade-off of exp

(
lnN
12

)
.

It follows that factoring N using the GNFS factorization algorithm is easier in
terms of asymptotic time complexity as long as N > ≈ 23550 (under the unrealistic
assumption to have access to ≈ 2148 memory units with constant-time look-ups).
Thus, at least with respect to the two attacks outlined above, the structure induced
by our semiprimality certificate generation methods does not seem to decrease the
bit-security of returned semiprimes when these are of a cryptographic size.

6.10.4 Cryptanalysis of Reble’s Semiprimality Certificate

As we already briefly discussed in Subsection 6.8.2, in 2005 Don Reble published a
semiprimality certificate for a 1084-digits integer N [Don05]. His certificate consists
of a tuple (N ,A, s, t,Z) where: i) s is a prime greater than ( 6√N + 1)2; ii) t is an
integer of size approximately 3√N ; iii) A ∈ ZN and E(ZN ) : y2 = x3 + A · x; iv)
Z ∈ E(ZN ) is so that [2st] · Z = O ∈ E(ZN ); v) [2t] · Z and [st] · Z are both not
equal to O.

It follows that Q = [2t] ·Z is such that [s] ·Q = O, and thus N is semiprime. For
completeness, we report the relevant values of such certificate:

N = 2354024638195369096484615970884339820364456147543619758078791036
6016835505494573077342501320913482376791383651754310523953671977
8522630598306091311778015170184734195517820836859704827368514883
2466980967826424129426918703837554365381987202581644055207294439
2812834659892991483861033331192664713921736184439296656941684194
9144589355450831214521115967827260963610250123042880750137421428
7948209489922794049174568735277898089123328514098559487995775109
5300647425162891558424879373241151669954799924038445682294400677
7458824969177192912226967635528307876492581854466547687556545067
7122533240801191691993850537069266814811421303138978077711478017
7004871146513516017647370512958483733151403979970908037943150798
5695354618849164417252142747095137525007700363418270382794214457
6309122358369456491588427467710775884280408394754494151594511691
9834042566389996135670147270228034728379156641389487953023534102
0154105768197033084151473179374226307186150307934745502893756679
4023056085249684891705541856417002502945739752918768387923426402
567816291222511465758828944973345013184363023296235457948241
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A = 5421560585366176057536517656540827541348280606463315054449398318
4301833635136210016598760938722311811647182817835804813625008105
7773954633314443563489145697020716748588555381562127528942341868
6965349501417292764025522504282905939725077989940637806955237317
8674315151381910120677670928102238213257684049745773977644827206
9645008166677142960459788718162659436622279702820662483265681021
8030023490532460195292703337710694953830717161684810215998702451
3518430482442521180768217033043668300078406219820843085440423824
7676742946705423758189631678146072276526459754971947491683633684
6696696127030983119227169596167266712055532287744558983685737494
0944134005538676908227180504504115642839824594982481783096906620
4162023068382112282498719629195618182388184559051503256367664066
5799529828756719532492719192969311734841900338405934436753313040
6039881394710806359572947380521405825006200952774556404488943147
4255872994702520699433479013172787548986648323838337027155387658
8656939010395067827348354880845222975715375243269936234055702863
59414942260683044570070721448137577484661026699816478612597

s = 2892843421621080369061524652473406314562559144101567516298556775
6555278474752546432692199987512881223864606750731693606113599430
8876064606177963915153101486156446026954889034721931204780489345
4433778350500993413376794661644857620913328971255920678525805161
6195330150089251887798277052468044803057553860325613357766189149
096689330965055007155182525149515525889989

t = 7032361011798923293905924993164512235984326943449241327719159587
7834782378359181617852483666894698095646842012107118775002443342
2438801771087852206517746924932705142830765836952506541400693749
5014985645561297450677685295272162306321861055508578946764087780
3479093810669778258714223797265597975421417188175765418254215675
6291757336604687303080348589058320621801

Unfortunately, this certificate is vulnerable to the twisting attack outlined in
Subsection 6.10.1, since k = 4 · t, due to its size, seems to correspond to |E(ZN )|/s2.
In fact, if we attempt to compute [k · s] · P for some random point P on the curve
twist ∈ Ẽ(Zn) given by a c so that

(
c
N

)
= −1, we quickly obtain the factors p, q of

N as:

p = 1172099004417660448565648228536973281006084638621927208553640587
2537609480115115853954545591430322476416636182723320762797474855
5580785918469406861654147386441510559363392715817728672245699385
2220897470944544069812169358671313601174219473974189972313862484
2602143272810739524721078379484990634492214867537275015315432399
1759587128290262415063090969439615092699624981254513801117217086
8141811887426807668730547668092106611507194249190161039457888471
6528402831014158285785393084402661789426579443047023707509873739
4801950735228563440292113831261
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q = 2008383787822540136524745465239928851194366489773705129233016204
5380798470479675536247380536948166923633549587172195553982382784
5656971407635199873386941295582613528886860458159891305742279812
7722805049596292046411280454085657817522487377359818642415050009
1924032169570267927231676027462963367585262136306234249532368804
0923768261759594342438464082084477170767532502558171140259680357
8858496569181968805082442912752580054356634628497892919177981124
1094865466976201603650414220042746338725436438268060349137796843
612740293263057965991981090181

By computing Cornacchia’s decomposition for p, q with respect to D = −4 (since
E has j-invariant equal to 1728) we can quickly identify, using Theorem 6.3, the
correct orders of Z ∈ E(Fp) and Z ∈ E(Fq), and thus further factor t as t = tp · tq
with

tp = 2025859740035366583299148867281061389693809275572522171119624428
7139044037931765677434976670591368387076935494601580248333303781
38966164902722910241116345513026043355952676540270569

tq = 3471297085787466893618869109715472318064748471202786932785885022
3000688837691708183343393107050884105199661059646641809694147278
8287215322127563236918821757826297680215636403433729

6.11 Conclusions
In this Chapter we described a technique to construct primes p for which we can
explicitly construct an elliptic curve E(Fp) such that its order completely factors
over a certain factor base. We showed how this method could be used to backdoor
one or more factors of an integer N so that an attacker can quickly factor it. To show
the practicality of our methods, we implemented our procedures, and we detailed a
complete attack example on a 1024-bits RSA modulus, previously backdoored with
our implementation and factored in just a few seconds.

We then formalized semiprimality certificates that, based on a result by Gold-
wasser and Kilian, allow proving semiprimality of an integer with no need to share
any of its factors, and we discussed how such certificates could be possibly computed.
We described how our prime backdooring procedure could be used to construct prime
factors of a semiprime N so that it is easy to compute semiprimality certificates for
it, and we ported this construction in the MPC setting by sketching a protocol that
allows distributed generation of certifiable semiprimes.

Lastly, we analyzed the security of semiprimality certificates, and we provided
different attacks. We concluded that, compared to generic factorization algorithms,
the expected bit-security of semiprimes built according to our protocols is the same
as the security provided by random semiprimes of the same size.
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7.1 Introduction
Under the threat of quantum computers appearing in the near future, public-key
cryptography has to evolve to keep modern communication protocols secure. To fos-
ter the evolution, NIST organizes a competition for Post-Quantum Cryptography
Standardization (PQC) [Nat22]. SIKE [Jao+20] (Supersingular Isogeny Key Encap-
sulation) is one of the alternative candidates of the ongoing 3rd round. It is based
on the SIDH protocol (Supersingular Isogeny Diffie-Hellman) developed by De Feo
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and Jao [JD11], following and improving the ideas of the constructions proposed by
Rostovtsev and Stolbunov [RS06; Sto10]. Isogeny-based cryptography only recently
started to develop rapidly.

In particular, for a specially shaped prime p, the security of SIKE relies on the
hardness of finding an isogeny between two given supersingular elliptic curves de-
fined over the finite field Fp2 . The classic meet-in-the-middle attack (MitM, also
known as bidirectional search), applied in the isogeny setting by Galbraith [Gal99], re-
quires O(p1/4) time and memory/storage. Adj, Cervantes-Vazquez, Chi-Domínguez,
Menezes and Rodríguez-Henríquez [Adj+19] observed that large amounts of storage
are likely impossible to be achieved in practice due to fundamental physical con-
straints. They thus applied the classic low-memory van Oorschot-Wiener (vOW)
golden collision search [vW99] to the isogeny setting by using less memory at the
expense of more time, and conjectured that this attack represents the main threat to
SIKE. Improved analysis of the application of van Oorschot-Wiener to SIKE with fur-
ther optimizations was given by Costello, Longa, Naehrig, Renes and Virdia [Cos+20].
Based on this analyses, Longa, Wang and Szefer [LWS21] estimated the real costs of
mounting such attack at various security levels, concluded that previous security es-
timates were conservative, and proposed to revise parameters in order to improve
efficiency. For example, they propose to replace SIKEp434 with SIKEp377, which is
40% faster, while still targeting to satisfy NIST Level 1 security requirements.

In order to motivate security analysis of SIKE, Microsoft recently published two
challenges [Mic21b] with reduced-size instances of SIKE: $IKEp182 and $IKEp217,
with bounties of $5000 and $50 000, respectively. In this Chapter, we will describe
how we managed to break the first of these two instances using the HPC facilities
of the University of Luxembourg [Var+14]. While the classic security of $IKEp182
via the meet-in-the-middle attack is only about 45 bits, such amount of memory (245

storage units ≥ 256TiB) is not trivial to manage efficiently. Nonetheless, we chose to
stick to MitM instead of vOW due to the large overheads introduced by the latter,
where, for example, a single step requires computing expensive isogenies (which can
instead be amortized in MitM), and large penalties are paid to reduce the memory
usage. Our implementation is mainly written in SageMath [The21] and C++, using
parts of the SIDH library by Microsoft Research [Mic21a].

7.1.1 Our Approach

At the high level, we used the classic meet-in-the-middle approach for solving the
isogeny path problem, in which the hardness of SIKE lies. We developed and applied
several optimizations, which can be summarized as follows:

• 2-bit leak from the knowledge of the final curve. In [Cos+20], it was noted
that the final curve (i.e., the image of the initial curve through a secret 2e-isogeny)
fully leaks the last 4-isogeny. This effectively reduces the set of j-invariants that
can be reached from the final curve by a factor of 4. In addition, we show how
to express this reduced set in the same form as the set of j-invariants reached
from the initial curve. This simplifies the MitM application to SIKE by unifying
the representation of sets arising from the initial and the final curves. In the case
of $IKEp182, both sets have 244 elements after applying this and the following
optimization.

• 1-bit conjugation-based reduction. In SIKE, the initial Montgomery curve
is y2 = x3 + 6x2 + x, and by being defined over Fp, all the curves 2e-isogenous
over Fp2 to it (through SIKE isogenies), have j-invariants which can be grouped
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in conjugate pairs. It is thus sufficient to search for a collision of, e.g. the real
part of the j-invariants in the middle to halve the set size arising from the initial
curve. Recovering the full colliding j-invariant from such partial collision is easy
since paths to conjugate elements are element-wise conjugates. This technique was
discovered and applied in the vOW setting in [Cos+20].

• Efficient tree exploration and optimal strategy. A direct application of
meet-in-the-middle with the (optimized) arithmetic from SIKE, would recompute
a lot of intermediate steps repeatedly (simply speaking, computing each entry in
the middle would require following a full path from the root of a full binary tree to
its leaf). However, these computations are not identical and can not be avoided by
simply storing some intermediate values. We show how to explore the tree more
efficiently and adapt the optimal isogeny evaluation strategy of [DJP11] to this
case.

• Disk-based storage and sorting. It is much more feasible to obtain and use a
large amount of disk-based storage than a similar amount of RAM memory. How-
ever, the classic meet-in-the-middle formulation uses a (hash-)table where most
queries follow a random access pattern suitable for RAM. When disk storage is
used, latency represents the bottleneck of using hash-tables and limits the appli-
cation of parallelization. To counter this, we follow an alternative approach to
implement the MitM attack: we generate the two large j-invariants sets arising
from the starting and the final curves, and we intersect them using sorting and
merging techniques, which, instead, require mostly a sequential access pattern.

• Storage-collision trade-off and compression. Truncating intermediate en-
tries (j-invariants representations) permits reducing storage requirements at the
cost of allowing false-positive collisions. By omitting all the auxiliary information
(e.g. the path in the set to an entry), we can reduce the storage further at the
cost of an extra recomputation step, where the two sets are recomputed (fully
memoryless and in parallel) in order to retrieve the relevant auxiliary information
for collisions found in the previous step. Furthermore, the resulting sets become
dense due to the truncation of entries and can be compressed (when sorted) by
storing the differences between successive elements. In our case, we used 64-bit
entries, which already at 32GiB of sorted data (232 truncated entries) have the
expected difference of about 32 bits. This reduces the total storage requirements
down to approximately 244 × 2× 4 bytes = 128 TiB.

7.1.2 Outline

In Section 7.2 we provide the theoretical background required to state the SIKE
key-encapsulation protocol and the security assumptions on which it relies, while in
Section 7.3 we describe how a Meet-in-the-Middle approach can be applied to SIKE
to recompute one party’s secret isogeny and ultimately recover parties’ exchanged
secret. In Section 7.4 we detail how we can efficiently generate isogeny trees, walked
during the execution of the Meet-in-the-Middle, that, together with some further op-
timizations we discuss in Section 7.5, will allow us to reduce by a few orders the overall
time and space complexity of the attack. In Section 7.6 we provide full cryptanalysis
of Microsoft’s $IKEp182 challenge, which we solve by implementing our optimized
Meet-in-the-Middle attack, while in Section 7.7 we briefly discuss how our techniques
might be applied to solve the next bigger unsolved $IKEp217 challenge.
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7.2 Preliminaries

7.2.1 The Supersingular Isogeny Graph

In this Section we will briefly recall some standard algebraic facts relevant to our
attack. We start by defining the main subject of this Chapter: isogenies.

Definition 7.1. An isogeny of elliptic curves φ : E → E′ defined over Fq is a
surjective morphism of curves that induces a group homomorphism E(Fq)→ E′(Fq).
When such map exists, E and E′ are said to be isogenous over Fq.

An isogeny of elliptic curves φ : E → E′ defined over Fq can be represented as a
non-constant rational map fixing the identity, i.e.,

φ : (x, y) 7→
(
a(x)

c(x)
, b(x)
d(x)

y

)
with a(x), b(x), c(x), d(x) ∈ Fq[x] and gcd(a(x), c(x)) = gcd(b(x), d(x)) = 1. The
degree of φ is defined as max(deg a(x), deg c(x)) and φ is said to be separable if(
a(x)
c(x)

)′
6= 0. For every separable degree-d isogeny φ : E → E′, there exists a dual

degree-d isogeny φ̂ : E′ → E so that the maps φ ◦ φ̂ = [d]E and φ̂ ◦ φ = [d]E′ are the
multiplication-by-d endomorphisms on E and E′, respectively.

If d is composite, it is possible to decompose a degree-d isogeny, or simply a d-
isogeny, into a composition of isogenies of prime order. We note that this property
allows, in practice, to compute efficiently high (smooth) degree isogenies. More pre-
cisely, if d = pe0

0 · . . . · penn and φ is a d-isogeny, then there exists pi-isogenies φpi , with
i ∈ [0,n] so that

φ =

e0︷ ︸︸ ︷
φp0 ◦ . . . ◦ φp0 ◦ . . . ◦

en︷ ︸︸ ︷
φpn ◦ . . . ◦ φpn

It is well known that separable isogenies φ : E(Fq)→ E′(Fp) (up to isomorphism)
are in bijections with subgroups G of E(Fp) so that ker(φ) = G and φ is a |G|-isogeny:
in such case, the curve E′ is isomorphic to the group quotient E/G.

In the following, we will consider only separable isogenies over Montgomery elliptic
curves.

Definition 7.2 (Montgomery Elliptic Curves). An elliptic curve over a finite field
Fq is said Montgomery of parameters A,B ∈ Fq if it has equation EA,B : By2 =
x3 +Ax2 + x with B(A2 − 4) 6= 0.

The j-invariant of a Montgomery elliptic curve EA,B(Fp) is equal to j(EA,B) =
256(A2−3)3

A2−4 . Hence, the Fp-isomorphism class1 of EA,B(Fp) depends only on A2.
Through a simple change of variables, Montgomery curves EA,B are isomorphic

over Fq to only one of the following two quadratic twists

EA,B '
{
y2 = x3 +Ax2 + x if B ∈ Fq is a square (7.1)
uy2 = x3 +Ax2 + x otherwise (7.2)

where u is a non-square of Fq.
Supersingular elliptic curves (i.e. curves with trace congruent to 0 mod p), have

their j-invariant defined over Fp2 [Sil09, V - Theorem 3.1.a]: in fact, any supersingu-
lar curve is isomorphic to an elliptic curve defined over Fp2 , and we can thus consider

1Two elliptic curves are Fp-isomorphic if they have the same j-invariant.
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only supersingular curves over Fp2 . Moreover, the property of being supersingular is
invariant under isogeny, and is induced by curves’ j-invariants: if there is a supersin-
gular curve with j-invariant equal to j, then j is said to be a supersingular j-invariant
and all curves having j as j-invariant are supersingular too.

Definition 7.3 (Supersingular Isogeny Graph). For p, ` distinct primes, the degree-`
supersingular isogeny graph over Fp2 is the graph where vertexes are curves’ represen-
tatives of Fp2-isomorphism classes, and two vertexes are connected by an (undirected)
edge if and only if there exists a separable `-isogeny between them.

By Hasse’s bound, supersingular curves E over Fp2 have #E(Fp2) = p2 + 1− t
number of points, where the trace t can be equal only to 0,±p,±2p. Since by Tate’s
Isogeny theorem [Tat66], two curves are isogenous over Fq if and only if have the same
number of points over Fq, it follows that separable `-isogenies over Fp2 partition the
`-degree Supersingular Isogeny graph over Fp2 into multiple connected subgraphs,
each connecting curves’ representatives of same trace.

In [AAM19, Theorem 6] is proved that the two subgraphs associated to traces 2p
and −2p are isomorphic, which in turn are isomorphic to the `-degree supersingular
isogeny graph built considering Fp-isomorphism classes instead. This fact suggests
that we can equivalently (in terms of security) work in any of these two O(p) size
subgraphs induced by supersingular curves with traces in ±2p (equivalently, by curves
of cardinality (p± 1)2), moving between neighbour representatives using `-isogenies.
Interestingly, from the fact that for a curve E(Fp2) and an ` - p, we have E[`] '
Z` ×Z` [Sil09, III - Theorem 6.4b], it follows that supersingular curves E belonging
to classes in these two subgraphs, decomposes as, depending on E cardinality, E '
Zp±1 ×Zp±1. In particular, curves coincide with their (p± 1)-torsions, which imply
that the latter are Fp2-rational.

By adopting Montgomery curves, it is possible to simplify this setting further. If,
for a supersingular j-invariant j0, we have j0 = j(EA,1), then clearly its quadratic
twist satisfies j0 = j(EA,u). However, if we exclusively use the efficient Montgomery
x-coordinate only arithmetic [Mon87b; CS18] (which employs the curve A-coefficient
only), the twist selected becomes irrelevant2, since it affects only the y-coordinate,
and we can then represent Montgomery curves EA,B simply as EA.

It follows that, in practice, by using Montgomery curves and x-coordinate arith-
metic only, the two isomorphic supersingular isogeny subgraphs corresponding to the
traces ±2p, coincide, and vertexes can be denoted with just supersingular j-invariants
rather than with isomorphism class curve representative.

Definition 7.4 (Supersingular Isogeny Graph - Revisited). For p, ` distinct primes,
the degree-` supersingular isogeny graph over Fp2 is the graph where vertexes are
supersingular j-invariants, and two vertexes (j1, j2) are connected by an (undirected)
edge if and only if there exists a separable `-isogeny between two Montgomery curves
EA1 and EA2 so that j1 = j(EA1) and j2 = j(EA2).

Definition 7.5 (J dA-set). Let EA be a supersingular Montgomery elliptic curve over
Fp2 and let d be so that #EA(Fp2) = d · r with gcd(d, r) = 1. The J dA-set is then

J dA =
{
j(EA′) ∈ Fp2 | ∃ a separable d-isogeny φ : EA → EA′

}
i.e., the set of j-invariants of curves d-isogenous to EA.

2In [Cos20] it was noted that, in fact, it is possible to build isogeny-based schemes over Mont-
gomery curves which are “twist-agnostic”, that is can work independently of curves’ quadratic twist
chosen.
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We note that due to the existence of dual isogenies, edges in an isogeny graph are
undirected. In the case of supersingular curves, the degree-` isogeny graph over Fp2

has approximately
⌊
p+1
12

⌋
vertexes [Sch87, Theorem 4.6] and each vertex has exactly

` + 1 neighbours (counting multiplicities), with edges corresponding to an isogeny
with kernel being a distinct order-` subgroup of the torsion Z`×Z`. In other words,
the degree-` supersingular isogeny graph is a connected (`+ 1)-regular graph which
results to be Ramanujan (see [Piz90; Piz98]). It follows that random length-e walks
in the supersingular isogeny graphs correspond to `e-isogenies between supersingular
elliptic curves.

By exploiting the correspondence between order-` kernels and `-isogenies, a walk
in the supersingular isogeny graph starting from a curve E, can be expressed in terms
of a linear combination of two independent generators of the torsion E[`].

Definition 7.6 (Walk). Let E0 be a supersingular elliptic curve over Fp2, ` a prime
distinct from p and let (P0,Q0) be two independent generators of E0[`e] = Z`e ×Z`e.
Two values a, b ∈ Z`e not simultaneously divisible by `, define a separable `e-isogeny
φ = φe−1 ◦ . . . ◦ φ0 : E0 → Ee over Fp2 (i.e., a walk in the supersingular isogeny
graph), where, for i ∈ [0, e − 1], φi : Ei → Ei+1 is an `-isogeny with ker(φi) =
〈[`e−1−i] · ([a]Pi + [b]Qi)〉 and (Pi+1,Qi+1) = (φi(Pi),φi(Qi) ). We will often refer
to such φ as the isogeny arising from [a]P + [b]Q.

Remark 7.1. If ` - a, then 〈[a]P + [b]Q〉 = 〈P + [s]Q〉, with s = a−1b ∈ Z`e, and
such subgroups give rise to `e distinct isogenies. If instead a = ` · c, kernels can
be written as 〈[s`]P +Q〉, with s = b−1c ∈ Z`e and there exists at most `e−1 such
distinct subgroups. This brings the total number of walks that can be traversed from
a starting curve E0 to `e−1(`+ 1), which in turn correspond to all walks obtained by
iteratively exploring all `+ 1 neighbours of E0 up to depth e (with no backtracking).
Kernels of the form 〈P + [s]Q〉, with s ∈ Z`e, will be the ones employed by SIKE
(Subsection 7.2.2): we note that this choice restricts the possible isogeny-paths that
can be walked since only ` out of `+ 1 neighbours of E0 can be explored.

The main observation that ensures correctness of Definition 7.6 is that the order of
φi([a]Pi+ [b]Qi) decreases by ` with respect to the order of [a]Pi+ [b]Qi: indeed, from
ker(φi) = 〈[`e−1−i] · ([a]Pi+ [b]Qi)〉 we must have [`e−1−i] ·φi([a]Pi+ [b]Qi) = OEi+1

and since P0,Q0 both have order `e, by induction, we can conclude that φi([a]Pi +
[b]Qi) has order `e−1−i.

The difficulty to obtain the scalar s from two curves E and E′ isogenous through
the `e-isogeny arising from P + [s]Q, is one of the different (formulations of) problems
which are believed to be hard in the supersingular isogeny setting.

Problem 7.1 (Path-finding). Given two supersingular Montgomery curves EA and
EA′ over Fp2 so that, for an ` - p prime and e > 0, there exists a separable `e-isogeny
φ : EA → EA′ over Fp2 (equivalently j(EA′) ∈ J `

e

A ), find a sequence of groups
{Ki}i∈[1,e] such that

• φi is a separable `-isogeny defined over Fp2 with ker(φi) = Ki;

• φ = φ1 ◦ . . . ◦ φe up to isomorphism.

We note that a solution to Problem 7.1 for an `e-isogeny arising from P + [s]Q
can be efficiently mapped bit-by-bit to the corresponding generating secret value s,
for example, by checking the visited curves’ j-invariants.
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7.2.2 The SIKE Protocol

Supersingular Isogeny Key Encapsulation (SIKE) [Jao+20] is a post-quantum key
encapsulation mechanism (KEM) based on the difficulty to find a length-e path be-
tween two `e-isogenous elliptic curves (Problem 7.1). It is based on the Supersingular
Isogeny Diffie-Hellman (SIDH) [JD11] key exchange.

In SIKE, p has the form p = 2eA3eB − 1 with 2eA ≈ 3eB and the working field is set
to be Fp2 = Fp(i) = Fp[x]/(x2 + 1). The parameters eA and eB are chosen so that the
Montgomery curve E = E6 over Fp2 is supersingular with (p+ 1)2 rational points and
torsions E[`eAA ] = Z`

eA
A
×Z`

eA
A

= 〈PA,QA〉 and E[`eBB ] = Z`
eB
B
×Z`

eB
B

= 〈PB,QB〉.
To avoid some technicalities introduced by adopting efficient 2-isogeny computation
formulas, the order-2 point (0, 0) is not allowed to be into any 2-isogeny kernel in a
path arising from PA + [s]QA with s ∈ Z2eA : thanks to a result of Renes [Ren18,
Corollary 2], this is guaranteed by choosing the generators PA,QA of the torsion
E[2eA ] so that [2eA−1]QA = (0, 0).

Once the public parameters (p,E(Fp2),PA,QA,PB,QB) are generated, two par-
ties, Alice and Bob, can agree on a common secret as follows:

• Alice picks secret sA ←$ Z2eA and computes the 2eA-isogeny φA : E → EA
arising from 〈PA+ [sA] ·QA〉. She then sends to Bob EA and the points φA(PB),
φA(QB).

• Bob picks secret sB ←$ Z3eB and computes the 3eB -isogeny φB : E → EB
arising from 〈PB + [sb] ·QB〉. He then sends to Alice EB and the points φB(PA),
φB(QA).

• Alice computes the 2eA-isogeny φÃ : EB → EBA arising from 〈φB(PA) + [sA] ·
φB(QA)〉 and sets the common secret to j(EBA).

• Bob computes the 3eB -isogeny φB̃ : EA → EAB arising from 〈φA(PB) + [sB ] ·
φA(QB)〉 and sets the common secret to j(EAB).

It is easy to see that since separable isogenies correspond to curve quotients, in
this setting, they commute, and so j(EBA) = j(EAB). For more details and proof of
correctness of the above protocol, we refer to [JD11; Jao+20].

7.2.3 Efficient Isogeny Computation

This Section provides an overview of how isogenies, and thus walks in the isogeny
graph, can be practically and efficiently computed.

We will focus on `-isogenies with ` = 2, 3, relevant for SIKE and our attacks.
Proofs that the following formulas define isogenies can be found, for example, in
[CH17; Ren18].

Proposition 7.1 (2-isogeny). Let EA,B be a Montgomery supersingular elliptic curve
over Fp2 with p 6= 2 and let R = (xR, yR) ∈ E(Fp2) be an order 2 point not equal to
(0, 0). Then

φ : EA,B −→ EA′,B′

(x, y) 7−→ (f(x), yf ′(x))

with
f(x) = x

x · xr − 1
x− xr
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is a separable 2-isogeny between Montgomery elliptic curves with ker(φ) = 〈R〉 and
(A′,B′) = (2(1− 2x2

r),Bxr).

Remark 7.2. The 2-isogeny defined in Proposition 7.1 fixes the point (0, 0), and thus
cannot belong to its kernel.

Proposition 7.2 (3-isogeny). Let EA,B be a Montgomery supersingular elliptic curve
over Fp2 with p 6= 2 and let R = (xR, yR) ∈ E(Fp2) be an order 3 point. Then

φ : EA,B −→ EA′,B′

(x, y) 7−→ (f(x), yf ′(x))

with
f(x) = x

x · (xR − 1)2

(x− xR)2

is a separable 3-isogeny between Montgomery elliptic curves with ker(φ) = R and
(A′,B′) = (−6x3

R +Ax2
R + 6xR,Bx2

R).

7.2.4 Walk structure induced by SIKE 2-isogenies
The structure induced by the 2-isogeny formulas adopted by SIKE is relevant for the
attack we will outline in the following Sections.

It is easy to see that in the Fp2-isomorphism class of a supersingular j-invariant
j0, we have (at most) 6 distinct Montgomery curves: if ±A satisfy the equation
j0 = 256(x2−3)3

x2−4 , then also

±B =
3x̃+A√
x̃2 − 1

±C =
3z̃ +A√
z̃2 − 1

do, where x̃, z̃ = 1/x̃ are roots of x2 +Ax+ 1 = 0.
When these 6 coefficients are all distinct, a 2-isogeny as in Proposition 7.1 can walk

in the supersingular isogeny graph to only 2 of the possible 3 neighbour j-invariants
j1, j2, j3, and whose values depend on the A-coefficient of the curve to which we are
applying the isogeny.

As already noted in Remark 7.2, by using SIKE 2-isogenies, we cannot have 〈(0, 0)〉
as kernel: this practically correspond to the fact that if a curve EB, with j(EB) = j0,
is pushed through a 2-isogeny to EA′ , then EA′ will not be pushed back to EB by any
of the 2-isogeny induced by an order-2 subgroup of EA′ distinct from 〈(0, 0)〉.

In the Fp2-isomorphism class of EA′ , however, there will be 4 curves E±B′ ,E±C′
which can be pushed back to a curve in the isomorphism class of EB (i.e., j0), but not
to the curve EB itself, because, otherwise, there will be a 2-isogeny that will move
EB back to EA′ , a circumstance prevented by not allowing 〈(0, 0)〉 to be an isogeny
kernel.

It follows that each of the 4 curves E±B′ ,E±C′ can be pushed to only one of the
two isomorphic curves E±A3, which will eventually be pushed further to nodes j3, j2
distinct from j(EA′) = j(E±B′) = j(E±C′) = j1.

This example is illustrated (with same notation) in Figure 7.1.
3Since, in SIKE, Fp2 = Fp(i), the map (x, y) 7→ (−x, iy) is an isomorphism between E∗ and E−∗.
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Figure 7.1: The different j−invariants reached by pushing curve’s A-coefficients
through 2-isogenies defined by Proposition 7.1. Here ±A,±B,±C are the 6 roots sat-
isfying j0 = (x2−3)3

(x2−4) (resp. ±A′,±B′,±C ′ and j1), and define 6 Montgomery curves
isomorphic over Fp2 . The two edges associated to a certain coefficient represent isoge-

nies with kernels order-2 subgroups not equal to 〈(0, 0)〉.

7.3 The MitM Attack for Solving the Isogeny Path Prob-
lem

7.3.1 High-level Description

In this Section we will provide an overview of the meet-in-the-middle attack to solve
the path-finding Problem 7.1. In terms of path search on a graph between two nodes,
this approach is also known as bidirectional search.

In order to find a path of length e between two curves EA and EB in the su-
persingular isogeny graph (i.e., an `e-isogeny between EA and EB), an attacker can
explore all length-be/2c paths starting from EA and all length-de/2e paths starting
from EB (intuitively, this corresponds to exploring the subgraph spheres centered in
EA and EB with radius be/2c and de/2e, respectively) looking for a non-trivial inter-
section: since isogenies are defined up to isomorphisms, we can identify the curve(s)
in-the-middle by computing their j-invariants.

The full path can then be reconstructed either by iteratively applying the same
attack on the two found half-length sub-paths or by simply storing the paths starting
in EA or EB associated with j-invariant in the middle and concatenating them once
a collision is found.

Problem 7.2 (Meet-in-the-Middle). Given two `e-isogenous curves EA(Fp2) and
EB(Fp2) for some ` - p prime and e > 0, the Meet-in-the-Middle (MitM) problem
asks to find the intersection

J `be/2c
A ∩J `de/2e

B

7.3.2 Application to SIKE

In SIKE, MitM can be applied to attack either Alice’s or Bob’s public key: indeed,
from Alice’s public key, we can easily recompute the curve EA that is 2eA-isogenous to
the starting curve E, and, similarly, Bob’s public key reveals the curve EB that is 3eB -
isogenous to the starting curve E. Explicitly finding the secret isogeny φA : E → EA
or φB : E → EB, allows the attacker to reapply it to the other party’s public key to
ultimately obtain the shared secret key.
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As already noted in Remark 7.1, in SIKE not all (`+ 1)`e−1 isogenies are possible,
because isogeny kernels are restricted to the shape 〈P + [s]Q〉, which excludes in the
first `-isogeny step the kernel

〈
[`e−1]Q

〉
, leaving only `e isogenies.

In Subsection 7.5.1, we show that the isogeny formulas of Subsection 7.2.3 can
be used to walk from the curve EA towards the starting curve E, by moving to an
isomorphic curve EA′ and defining kernels as P ′ + [s′]Q′ with 〈P ′,Q′〉 = EA′ [`

e].
This refines the meet-in-the-middle Problem 7.2 into generating and intersecting

the leaves of the two “trees” of j-invariants spanned by walks from the bases (P ,Q) ∈
E(Fp2) and (P ′,Q′) ∈ EA′(Fp2). The meet-in-the-middle trees structure for ` = 2 is
illustrated in Figure 7.2.

Definition 7.7 (SIKE-tree). Given a curve E defined over Fp2 and a basis (P ,Q)
for its torsion E[`e], the tree spanned by (P ,Q) of depth d ≤ e is the directed graph
consisting of all length-d walks from E arising from [`e−d] · (P + [s]Q) with s ∈ Z`e,
i.e. all length-d walks from E excluding those arising from [` · a]P + [b]Q for any
a, b ∈ Z`e.

Remark 7.3. Since two different kernels may lead to the same image curve, the
graph spanned by the `e-torsion generators (P ,Q) may not always correspond to a
tree. However, we assume this does not happen for simplicity of analysis, although
such cases do not pose a problem in practice.

In SIKE, a party computes a full `e-isogeny using an `e-torsion basis (P ,Q). In
other circumstances, like in tree computation or in the meet-in-the-middle attack,
we need to compute only the initial part of such full walks: thus, to keep Defini-
tion 7.6 consistent, such full torsion basis needs to be re-scaled, so that the path
length matches the desired one.

For a walk of length i, the re-scaling is done as

(P ′,Q′) = ([`e−i]P , [`e−i]Q)

so that all length-i walks arising from P ′ + [t]Q′ with t ∈ [0, `i] will match the first i
steps of length-e walks arising from P + [s]Q with s ∈ [0, `e].

It follows that, to succeed in a meet-in-the-middle attack, it is crucial to generate
trees (more precisely, their leaves) from curves.

Problem 7.3 (Tree generation). Given a supersingular curve E defined over Fp2 and
an `e-torsion basis (P ,Q) for it, compute the set of j-invariants of curves appearing
as leaves in the depth-d ≤ e tree spanned by (P ,Q).

7.4 Tree Generation Strategy
In this Section, we address how it is possible to generate leaves of the tree spanned
by some torsion generators.

If in SIKE, a MitM attack relative to one party, e.g. Alice with her full torsion
E[`eA ], succeeds, then the shared secret can be efficiently computed from the data she
exchanged with Bob. It thus suffices to run the attack only on one full torsion and, for
the sake of simplicity, we will hereafter address only the case ` = 2, i.e. attack E[2eA ].
In this setting, we can take advantage of efficient 2-isogeny computation formulas and
simpler tree generation and exploration formulation. However, we remark that the
following discussion can be generalized to the E[3eB ] torsion as well.
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Figure 7.2: Example of 2-isogeny trees starting from the two 2e-isogenous curves E
and EA. Red nodes in the middle denote curves with same j-invariant, whose respective
path in the tree (in red) connect EA to EB . Edge labels are assigned arbitrarily in order

to identify the paths.

A straightforward approach for generating a tree is to enumerate all possible
s ∈ [0, 2e − 1] and compute the respective isogeny’s image curve, similarly as done
in SIKE for a given private key s. In fact, such walk computation is performed
as a single step in the low-memory van Oorschot-Wiener collision search applied to
SIKE [Adj+19; Cos+20; LWS21]. However, many intermediate curves will be visited
multiple times for different s. More precisely, if two different s0 and s1 share the same
k least significant bits of their binary representations, then the first k steps in the
walks arising from P + [s0]Q and P + [s1]Q will be (partially) identical. To better
understand the complexity of such a naive approach, a depth-e tree has 2e+1 − 1
nodes and 2e+1− 2 edges, while here we would walk through e2e edges, a logarithmic
slowdown (in the tree size) with respect to other tree exploration techniques. In
addition, lower-depth edges are typically more expensive to compute due to the scalar
multiplication required to obtain an order-2 point (e.g. in SIKE isogeny evaluation
algorithms), increasing the performance gap further.

We also note that, although s0 and s1 share the first k bits, the initial kernel
generator points pushed through the two walks differ, and therefore the computations
done on the shared sub-walks are not fully identical and cannot be trivially avoided
by adopting caching techniques in concrete implementations.

A better and more natural way to explore the tree is through a depth-first traversal,
which also avoids a large memory footprint.

To better explain how it works, we will label tree nodes with the Ai coefficients
of the corresponding curve EAi . Given a path from the starting node A0 to the
current node Ai, made of a composition of 2-isogenies, we explore the node Ai by
generating its 2 children nodes, each identified by an order-2 point on EAi with
nonzero x-coordinate (as we noted in Subsection 7.2.2, the remaining third order-2
point corresponding to (0, 0) is automatically excluded, and this corresponds to the
edge pointing backwards from a node towards the root). However, to the best of our
knowledge, all known generic ways to iteratively compute coordinates of these order-2
kernel generators in a walk require extracting an expensive square root in Fp2 .
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Our goal is to avoid this heavy operation while maintaining 2 different order-2
kernels at each step (one for each possible child direction) on the way through the
tree exploration. In addition, we want to take advantage of the efficient formulas
for 2-isogenies, so we need to ensure that (0, 0) never appears as one of the kernel
generators, similarly as in [Ren18, Corollary 2].

Our solution is based on a modified isogeny evaluation algorithm from SIKE. For
a depth d node Ai, we store a basis P ′,Q′ of EAi [2e−d], with the constraint that
[2e−d−1]Q′ = (0, 0). The children nodes are then reached by the two isogenies cor-
responding to the order-2 points [2e−d−1]P ′ and [2e−d−1](P ′ +Q′), respectively, for
which it is ensured that none of them equals (0, 0), thus allowing efficient SIKE arith-
metic implementation. As scalar multiplication by a large power of 2 is expensive (it
is comparable to the field square root cost), we offset such operations by selectively
pushing through isogenies few intermediate points, as done in SIKE, with the addi-
tional effort of ensuring they form a good basis. Finally, the optimal strategy - a
trade-off between the number of point doublings and isogeny evaluations - can be
computed using dynamic programming, similarly to how it was done in the SIDH
paper by Jao, De Feo and Plût [JD11; DJP11], in order to compute the full walk
up to a certain depth. Our general approach is easily parallelizable by distributing
subtree generation tasks among available workers.

7.4.1 Maintaining Torsion Basis for Efficient Isogeny Computations

We now describe a method that allows us to maintain, during path traversals, a basis
suitable for the efficient arithmetic formulas used by SIKE, i.e., the ones detailed in
Subsection 7.2.3.

Proposition 7.3. Let A ∈ Fp2 and e ≥ 2. Let P ,Q ∈ EA(Fp2) be a basis of
EA[2e] with [2e−1]Q = (0, 0). Then, for a 2-isogeny φ : EA → EA′ arising from
[2e−1](P + [s]Q) with s ∈ [0, 2e − 1],

1. if kerφ =
〈
[2e−1]P

〉
, then P ′,Q′ ∈ EA′(Fp2) is a basis of EA′ [2e−1] with

[2e−2]Q′ = (0, 0), where

P ′ = φ(P ),
Q′ = φ([2]Q);

2. if kerφ =
〈
[2e−1](P +Q)

〉
, then P ′,Q′ ∈ EA′(Fp2) is a basis of EA′ [2e−1] with

[2e−2]Q′ = (0, 0), where

P ′ = φ(P +Q),
Q′ = φ([2]P ).

Proof. Since P ,Q are distinct generators and both have order 2e, it follows that the 3
order 2 points [2e−1]P , [2e−1]Q, [2e−1](P +Q) generates the 2+ 1 distinct subgroups
of E[2] = Z2 ×Z2. Since [2e−1]Q = (0, 0), the order-2 point [2e−1](P + [s]Q)
appearing as a kernel for φ can only be equal to either [2e−1]P or [2e−1](P + Q).
If kerφ =

〈
[2e−1]P

〉
we immediately have φ([2e−1]P ) = OEA′ = [2e−1]P ′ and since

φ([2e−2]P ) 6= OEA′ , P
′ = φ(P ) must then be a generator of E[2e−2]. Since 2-

isogenies formulas arising from P + [s]Q have the property to fix the point (0, 0) (see
Remark 7.2), we then have φ([2]Q) has order 2e−1 and is such that [2e−2]φ([2]Q) =
φ((0, 0)) = (0, 0).
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Similarly, if kerφ =
〈
[2e−1](P +Q)

〉
, then P ′ = φ(P + Q) has order 2e−1.

It follows that φ([2e−1]P ) + φ([2e−1]Q) = OEA′ , i.e. [2e−2]Q′ = φ([2e−1]P ) =
−φ([2e−1]Q) = (0, 0).

For P ′ and Q′ to form a basis, we further need to show that 〈P ′〉 ∩ 〈Q′〉 = OEA′ .
Let us assume, by contradiction, that there exists a non-trivial R ∈ 〈P ′〉 ∩ 〈Q′〉: we
then have, for certain s, t 6= 0, that R = [s]P ′ = [t]Q′ and thus [s]P ′ − [t]Q′ =
OEA′ . If kerφ =

〈
[2e−1]P

〉
, we then have that [s]P − [t]Q is in kerφ and thus

[2e−1]P = [s]P − [2t]Q. Since P ,Q form a basis for EA[2e], this in turn implies
s = t = 0, a contradiction. A similar contradiction is reached also for the case
kerφ =

〈
[2e−1](P +Q)

〉
.

Our formulation can be used to straightforward map isogenies used to traverse tree
nodes to binary strings: using a bit, we can represent the relation between the kernel
used to walk a certain step and the (current) torsion generators (e.g. we associate
“0” if kerφ =

〈
[2e−d−1]P̃

〉
and “1” if kerφ =

〈
[2e−d−1](P̃ + Q̃)

〉
), as illustrated in

Figure 7.2.
This allows us to easily reconstruct later from such binary strings4 the full se-

quence of j-invariants traversed, which in turn can be easily mapped back to the
value s whose walk arising from P + [s]Q traverses the same j-invariants.

7.4.2 Optimal Strategies for the Doubling/Isogeny Evaluation Trade-
off

During the evaluation of the isogeny walk arising from P + [s]Q, the order-` kernel
for the next step can be obtained with a scalar multiplication as [`e−1](P + [s]Q).
To compute such kernels more efficiently, we can store some intermediate values
[`e0−1](P + [s]Q) with e0 < e, and later push all such points through isogenies and
scalar multiplications. Indeed, this allows to compute the kernel of the next-step
`-isogeny with just e − 1 − e0 point multiplications by ` for the maximum e0 for
which [`e0−1](P + [s]Q) is stored, while storing and pushing smaller multiples will be
helpful in later steps. It is then clear the relevance of finding good trade-offs between
the number of multiplications by ` and the number of isogeny evaluations needed
to traverse a walk. Indeed, depending on the implementation adopted, these two
operations have different costs.

In the extended version of [JD11], i.e.[DJP11], De Feo, Jao and Plût describe
how to derive an optimal evaluation strategy for the best trade-off between scalar
multiplications and isogeny evaluations, using the dynamic programming paradigm.

We now provide a brief overview of how optimal evaluation strategies are found
in [DJP11]. Given a K0 ∈ EA[`e], let φi : EAi → EAi+1 , with i ∈ [0, e− 1], be the
sequence of isogenies on the length-e walk defined by K0, and, for i ∈ [1, e− 1], let
Ki = φi−1(Ki−1): the goal is to compute kerφi =

〈
[`e−1−i]Ki

〉
for all i ∈ [0, e− 1] in

a minimum overall cost in terms of scalar multiplications and isogeny evaluations.
Aiming at this, we construct a directed graph with nodes{

[`i]Kj | j ∈ [0, e− 1], i ∈ [0, e− 1− j]
}

,

connected by two types of edges, namely:

• multiplication by [`] edges of cost Cmult, connecting [`i]Kj to [`i+1]Kj , for i+
j + 1 ≤ e− 1;

4With some abuse of notation, we will often refer to such binary strings as paths.
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Figure 7.3: An example of evaluation strategy graph. Multiplication by [`] edges
( −→) and isogeny evaluation edges (−→ ) transform K0 ∈ E[`6] to the leaf values
{[`6−i−1]Ki}i∈[0,5], needed to compute the walk arising from K0. In bold, an optimal

evaluation strategy assuming Ceval = 1.5 ·Cmult (verified experimentally).

• isogeny evaluation edges of cost Ceval, connecting [`i]Kj to [`i]Kj+1 (through
an `-isogeny φj), for i+ j + 1 ≤ e− 1.

A strategy for evaluating all the kerφi =
〈
[`e−1−i]Ki

〉
can then be described by

a tree subgraph in this graph, rooted in K0 and consisting of directed paths towards
the goal leaf nodes [`e−1−i]Ki for i ∈ [0, e− 1]. The cost of a strategy is then the sum
of the edges’ costs, counting only once edges traversed by multiple paths. It is then
clear that the best strategies are those in which paths to leaves overlap as much as
possible. An example of such a graph along with an optimal strategy is illustrated in
Figure 7.3

In [DJP11], it is shown that there exist minimal-cost strategies with recursive
structures. The problem is decomposed into two subproblems: the subgraph induced
after following a multiplication edges and the subgraph induced after following e− a
isogeny evaluation edges. This is possible because, in paths towards leaves, the order
of any two consequent edges can be swapped (if it does not break strategy consis-
tency), since multiplication commutes with isogenies and such swaps do not change
the overall strategy cost. An optimal strategy can thus be obtained by evaluating
all possible choices of a and solving the induced subproblems recursively. Since the
subproblems are fully characterized by their size (and are independent of the root
kernel chosen), their solutions can be cached and reused (dynamic programming).

7.4.3 Application to Tree Generation

In order to make path computations faster, we are interested in applying best strate-
gies during tree generation.

Unfortunately, we cannot use them straightforwardly: indeed, the tree generation
and a simple isogeny evaluation differ because, in the former, each isogeny evaluation
edge creates ` new exploration nodes deeper in the tree. However, all the ` induced
sub-trees differ only by curves and generators, so all can follow the same sub-strategy.
Effectively, an isogeny evaluation edge multiplies the number of nodes being explored
in the isogeny tree by `. To account for this, we can then set the weight of an isogeny
evaluation edge φj to `j+1. At the same time, we assign to multiplication edges
[`i]Kj → [`i+1]Kj a weight of `j , since in this case, the overall number of nodes being
explored does not change.
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Algorithm 3 Tree generation (` = 2)
Input: A0 ∈ Fp2 , (P0,Q0) a basis of EA0 [2e] with [2e−1]Q0 = (0, 0)
Output: j-invariants of curves 2e-isogenous to EA0 through isogenies with kernel
〈P0 + [s]Q0〉 for some s ∈ [0, 2e − 1]
Remark: x-coordinate only arithmetic may be directly implemented (details omit-
ted).
1: function recurse(d, path, Ad, L)
2: if d = e then
3: output (path, j(EAd))
4: return
5: (P ,Q, i)← arg max(P ,Q,i)∈L i

6: (P ′,Q′)← ([2e−1−i]P , [2e−1−i]Q); add tuples ([2i′−i]P , [2i′−i]Q, i′)
7: to L according to the optimal strategy (depends on d, i′)
8: for b ∈ {0, 1} do
9: K ← (P ′ + [b]Q′) ∈ EAd

10: (φ,Ad+1)← φ : EAd → EAd+1 is a 2-isogeny with kerφ = 〈K〉
11: L′ ← ∅
12: for (P ,Q, i) ∈ L, i ≤ e− 1 do
13: if b = 0 then
14: (P ,Q)← (φ(P ),φ([2]Q)) . Proposition 7.3
15: else
16: (P ,Q)← (φ(P +Q),φ([2]P )) . Proposition 7.3
17: L′ ← L′ ∪ {(P ,Q, i+ 1)}
18: recurse(d+ 1, path||b, Ad+1, L′)

19: recurse(0, (), A0, {(P0,Q0, 0)})

Once weights are assigned, the dynamic programming approach can be applied to
find the best strategies for these new graphs. However, in contrast to best strategies
for single paths, sub-problems are not fully characterized by their size: edge weights
depend, indeed, on where we currently are in the strategy graph. Therefore, we have
to solve all sub-problems separately.

Alternatively, we can observe that the cost of a sub-problem of height e rooted
at [`i]Kj can be obtained by multiplying by `j the cost of solving a pure instance
(i.e., rooted at [`0]K0) of height e− i− j. This reduces the dynamic programming
dimension back to 1.

7.4.4 Full Algorithm

We sketch the full attack pseudo-code for the case ` = 2 in Algorithm 3.

7.5 Further Optimizations

7.5.1 Final Curve 2-bit Leak
In SIKE, the shared secret key is (computed from) the j-invariant of the image curve
EAB of the isogeny resulting from composing Alice and Bob walks in their respective
torsions. To allow this, each party publishes intermediate image curves EA and
EB along with images of others’ party torsion basis through their secret isogeny
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(Subsection 7.2.2). For example, Alice, who computes her 2eA-isogeny φA : E → EA,
provides Bob with a basis (φA(PB),φA(QB)) for the 3eB -torsion of EA, and the
coordinates of such basis leak the final curve itself, i.e. the value A ∈ Fp2 . As was
further noticed in [Cos+20], the final value A leaks the j-invariant of the curve visited
two 2-isogeny steps before reaching the final curve during her walk: more concretely,
it can be shown that the order-4 points Q̃ = (1,±

√
A+ 2) lie in the kernel of the dual

of the isogeny φ : E6 → EA, and we can thus easily obtain the j-invariant j′ = j(EA′)
of the curve EA′ = EA/

〈
Q̃
〉
visited two steps before the end.

We note, however, that, since j-invariants of Montgomery curves are characterized
by A2, the A-value of the curve effectively visited two steps before the end remains
undetermined: indeed, by solving the equation j′ · (A′2 − 4)− 256(A′2 − 3)3 = 0 we
obtain (at most) 6 solutions for A′, and all of them correspond to Montgomery curves
isomorphic to the curve visited 2 steps before EA.

We can use 4-isogeny formulas from [Jao+20], in order to detect which coefficients
A′ can be pushed directly to the final curve EA through the 2-isogeny formulas from
Proposition 7.1. For an order 4 point (xk, yk) ∈ EA′ defining the isogeny φ : EA′ →
EA, we have that A = 4x4

k − 2. It then suffices to check for which of the 6 candidate
values for A′, the point on EA′ with x-coordinate (−i)n · 4

√
A+2

4 , with n ∈ [0, 3], has
order 4.

Since Fp2 = Fp(i), the map (x, y) 7→ (−x, iy) defines an isomorphism between EA′
and E−A′ , thus the order-4 point in EA′(Fp2) with x-coordinate (−i)n 4

√
(A+ 2)/4

and n ∈ [0, 3], corresponds to an order-4 point in E−A′(Fp2) with x-coordinate
(−i)m 4

√
(A+ 2)/4, where m = n+ 2 (mod 4).

From Subsection 7.2.4 and Figure 7.1, we know that there are 4 coefficients
±B′,±C ′ out of 6, each corresponding to a curve with j-invariant equal to the j-
invariant of the curve visited two step before EA, that satisfy the final 4-isogeny with
respect to EA: it is then enough to pick any of the 2 remaining coefficients ±A′, and
set the updated final curve to EA′ : in this way, all isogenies from this curve defined
as in Proposition 7.1, will (have at least a) walk towards the starting curve E6. This
allows us to save a factor of 4 in the tree generated from the final curve if traversals
are matched in-the-middle looking at j-invariants.

Alternative expression for A′ Interestingly, by considering the walk structure
induced by SIKE 2-isogenies (Subsection 7.2.4), the relation between such A′ and the
final curve coefficient A is very easy to express.

Lemma 7.1. Let EB be a Montgomery supersingular elliptic curve over Fp2 with
p 6= 2, and let K0,K1 ∈ EB(Fp2) be two order 2 points distinct from (0, 0). By
applying the 2-isogeny formulas from Proposition 7.1 to the groups generated by K0
and K1, we obtain, respectively, two isogenies φ1 : EB → EA,φ2 : EB → EA′ such
that

(A− 2)(A′ − 2) = 16.

Proof. Let x̃, z̃ = 1/x̃ be the roots of x2 + Bx + 1 = 0. Then x̃, z̃ are the x-
coordinates of K0 and K1. By applying the 2-isogeny formulas from Proposition 7.1
on these two points, we then obtain A = 2− 4x̃2 and A′ = 2− 4z̃2. It then immedi-
ately follows that (A− 2)(A′ − 2) = (−4)2 · x̃2z̃2 = 16.

Let us now consider the last 3 traversed nodes in Alice’s walk, i.e. the j-invariant of
EA′ , followed by a middle node j′, and the final j(EA). Then there exists a B ∈ Fp2
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so that j(EB) = j′, which is pushed, depending on the kernel chosen, through 2-
isogenies to −A and A′ (cf. Figure 7.1). Note that we use −A instead of A, since
otherwise we would select the ±B from the original path, which only has a backwards
edge towards j(EA′) (i.e., an isogeny with the kernel 〈(0, 0〉). From Lemma 7.1, we
then conclude that

A′ = 2− 16
A+ 2 (two final 2-isogenies)

This equation assumes that the last two steps consist of a sequence of two 2-isogenies.
If a 4-isogeny is used instead (as in the case of SIKE challenges), this decomposes,
according to specification [Jao+20], into a sequence of two 2-isogenies followed by a
sign flip of the pushed curve coefficient. We then need to flip the sign of the coefficient
of the final curve to match the assumptions of Lemma 7.1, thus obtaining

A′ = 2 + 16
A− 2 (one final 4-isogeny) (7.3)

7.5.2 Storing Conjugation Representatives

In SIKE, the starting curve is chosen to be E6(Fp2), and since A = 6 ∈ Fp, the
Frobenius map π : (x, y) 7→ (xp, yp) defines an automorphism for E6(Fp2). As al-
ready noticed in [Cos+20], this implies that for any kernel 〈R〉 ⊂ E6, j(E6/ 〈R〉)p =
j(E6/π(〈R〉)), that is pairs of conjugate kernels give rise to paths to curves having
conjugate j-invariants. By recalling that π fixes Fp, from the above we further eas-
ily obtain that if EA is isogenous to E6, then EĀ is isogenous to E6 as well, since
j(EA) = j(EĀ).

We take advantage of this fact to approximately halve the time complexity of the
meet-in-the-middle-attack. It is indeed sufficient to explore non-conjugate subtrees
starting from E6, and store the norm of j-invariants in the middle to detect inter-
sections of j-invariants. It can be shown that at any (non-trivial) depth of the tree
expanded from E6, there exist exactly two curves with their A-coefficients in Fp, while
all the other nodes are conjugate pairs (each arising from two conjugate subtrees).
This means that at a certain depth e > 0, we have exactly 2e−1 + 1 different norms
for j-invariants, which can be computed by exploring just 2e−1+1

2e ≈ 1
2 of the tree

expanded from E6.
If the j-invariants found in the intersection during the meet-in-the-middle attack

have the same norm but are conjugates, we need to retrieve the correct “conjugate
path” on the tree from E6, in order to solve Problem 7.1. From the above properties,
the sequence of j-invariants on the path from E6 to a curve with j-invariant j′, is an
element-wise conjugate of the sequence towards a curve of j-invariant j′: it is then
enough for a kernel P + [s]Q going to j′, to suitably flip bits in s, so that the resulting
path walks step-by-step over nodes with conjugate j-invariants.

As a final note, SIKE works in the quadratic extension Fp2 = Fp(i), so elements
can be seen as complex numbers over Fp. Conjugates can be then obtained by simply
changing the sign to elements’ imaginary parts, and, in place of expensive to compute
norms, we can store as a unique representative of a conjugation class just real parts
of j-invariants in the middle.

7.5.3 Set Intersection

A standard way to implement the final stage of our meet-in-the-middle attack, i.e.,
finding elements common to the two trees j-invariant norm datasets, is by using
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Figure 7.4: Performance comparison between FastHash and SortMerge over 64-bit in-
teger arrays of total size 2L.

hash-tables: we fill one of such tables with entries from the first dataset, and we then
lookup every element in the second one. In theory, the amortized cost of a hash-table
lookup would be O(1). However, in practice, random memory accesses get slower
and slower as the table size grows and memory latency starts dominating execution
time.

An alternative approach is to sort the two datasets and perform a linear-time
merge operation by keeping common elements only, an operation requiring sequential
memory accesses. The drawback of this approach is that the sorting step has quasi-
linear complexity O(n logn) in the (biggest) dataset size n, and to complete it, we
need memory access patterns that are not necessarily sequential.

In order to compare these two approaches, we implemented a simple hash-set for
64-bit integers with linear scanning and double-sized buffer (i.e., to store n elements,
the structure allocates memory for 2n elements). In the following, we will refer to
such a custom hash-set with the name FastHash. In our experiments, it outperforms
the default C++ unordered_set (compiled on g++ 9.3.0) more than a few times.
We then implemented the sort and merge approach (denoted SortMerge).

In Figure 7.4, we provide different benchmarks for both FastHash and SortMerge
at different array sizes 2L.

More precisely, in Figure 7.4a we compare the time to intersect two unsorted
64-bit integers arrays, assuming no preprocessing of the input datasets. Here, the
FastHash-based approach first inserts all 2L elements of the first dataset and then
performs lookups of the 2L elements of the second dataset. In SortMerge, instead,
the two datasets are first sorted (using C++ sort()) and then merged using a two-
pointers linear scan. Although FastHash outperforms the sorting approach on up to
230 ≈ 109 entries, the advantage ratio decreases quickly from an initial value of 4 (for
L = 8) to a ratio close to 1 for L = 30. In particular, a sharp advantage drop is
visible after L = 18, which is likely related to the dataset not fitting the CPU cache
(experiments were run on an Intel® Core™ i5 10210U 1.6-4.2 GHz).

In Figure 7.4b, we compare the two methods under some allowed precomputations.
For FastHash this means that only lookups are counted (insertions are excluded from
time computation), while for SortMerge we consider two cases: i) the first dataset is
pre-sorted, that is, the timings include sorting the second dataset only and merging
(in green); ii) both datasets are pre-sorted, that is the timings include only merging
(in blue). We can see that the pure merging cost remains constant for any array size
and is negligible compared to both FastHash lookups and sorting.
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Figure 7.5: Performance comparison between FastHash and SortMerge running in par-
allel over k 64-bit integers chunks, each of size 230 bytes (extrapolated using timings from

Figure 7.4b).

Parallelization When dataset sizes are large, efficient parallelization techniques
are a requirement. The most straightforward approach for parallelizing intersection
finding, consists in splitting the input datasets A and B in k (equally sized) chunks
(A0, . . . ,Ak) and (B0, . . . ,Bk), and then intersect all k2 distinct pairs Ai ∩Bj inde-
pendently in parallel. Clearly, this parallelization comes at the cost of k times more
work than standard lookups/merges but can be acceptable if k is small.

An advantage of this approach is that each chunk can be preprocessed indepen-
dently so that each of the k2 chunks intersection takes preprocessed data as input.
From Figure 7.4 it is clear that already for k = 2, SortMerge (which requires an amor-
tized number of 2 sorting and k merges/intersections per chunk) outperforms the
FastHash hash-set approach (which requires 1 chunk insertion and k chunks lookups
per chunk). In Figure 7.5, we illustrate how these two approaches perform, for dif-
ferent values of k, on k chunks each of size 1GiB.

7.5.4 Storage-Collisions Trade-off and Compression

Real parts (or, in general, norms) of j-invariants belong to Fp: in our meet-in-the-
middle attack, each tree has only approximately 2eA/2 ≈ p1/4 leaves. Therefore, the
chance of having multiple collisions is negligible.

However, we would like to reduce storage requirements as much as possible. This
can be done by reducing the number of bits we use to represent j-invariants while
allowing only a reasonable amount of false-positive collisions. More concretely, if
we use n bits to represent j-invariants, we then expect to observe approximately
(p1/4)2/2n collisions.

In addition, paths associated with j-invariants in the middle (useful to test full
isogenies associated with collisions quickly) may be omitted too. This comes at the
cost of an extra (memoryless) tree exploration, required to recover full j-invariants
associated with a colliding representation5 and the respective paths in the trees.

In some cases, it is possible to reduce memory requirements further. Suppose
the n-bit j-invariant representations are uniformly distributed. In that case, we can
compress sorted chunks of 2m such elements by noticing that two consecutive elements
are expected to differ, on average, by 2n−m, i.e., on their least significant n −m
bits. We can then store only such reduced differences, reserving 1 flag bit in order

5Since just a few false-positive collisions are expected, recovering full 2 log p-sized j-invariants is
useful to immediately detect their correct conjugate branch in the tree expanded from E6.
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to distinguish between a small difference from an n-bit full representation, in case
two elements differ by more than 2n−m (in practice, a larger difference is allowed to
capture more small elements). This, in fact, reduces memory requirements from n2m
bits to at most ≈ (n−m+ 1)2m bits, with different implementation-specific wordsize
trade-offs in the middle.

We note that by requiring chunks to be sorted, this compression technique goes
towards the SortMerge intersection finding approach we detailed in Subsection 7.5.3:
indeed, merges can be performed equivalently by using two additional n bits regis-
ters, in which we store the n bits values to compare, obtained by iteratively adding
differences to each dataset’s first uncompressed element.

7.6 Cryptanalysis of the $IKEp182 Challenge
In this Section we will detail how all the above ideas allowed us to break the $IKEp182
challenge [Mic21b], a small parameters specification-compliant SIKE instance gener-
ated by Microsoft in a live event during the 3rd NIST PQC Standardization confer-
ence.

In $IKEp182, the field characteristic is equal to p = 291357 − 1. According to
the specification, we have Fp2 = Fp(i) = Fp[x]/(x2 + 1), #E6(Fp2) = (p+ 1)2 and
E6[291] = 〈PA,QA〉, E6[357] = 〈PB,QB〉 with

PA = (0x05a324935a4d7b75024fdc3601fe8b5888cea9f88212b2 +

0x02357bdd576772bf2a93e3d680ed7306e16eafc6aff904 · i,
0x242a9e09aa8e6995e4fdce9f68e8c2c902154c332de68a +

0x011b23646f8884b7a9faa5159ef13842880ed0f9f43dcd · i)
QA = (0x27b8def415bae0506a9607fff7704832151cdcbc93cb22 +

0x085c86f386b94b8c413f5e49736f26de95103a9b65f31a · i,
0x16af6790fb0f5cfd0e124033bb7619e2f75a25cae5f42b +

0x172567b99058dd9d5b99ce5ea4bacd685f57c8326011a3 · i)
PB = (0x02ca3bc7e98f88b3ca3239c276eb7a224c51f61bc8c5ed,

0x262a38701d1b61dd8875909ff268a50d912f620db980a1)

QB = (0x02dcff7123e2380f552f5bff91da77ae62e9556b866d8f,
0x06aeb7c764aa40913b3fc784d569833d4226cc4a53432f · i)

Our meet-in-the-middle attack will target the 291 torsion and will recover Alice’s full
91-steps walk in the Supersingular 2-Isogeny Graph. After a quick Setup, the full
attack will consist of 5 main stages: Trees Expansions, k-way Merge, Compression,
Sieving and Final Trees Expansions.

Setup. In the first step of the SIKE protocol (Subsection 7.2.2), Alice sends to
Bob a compressed representation of the points φA(PB), φA(QB), consisting of the
following 3 x-coordinates
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xφA(PB) = 0x17d02d323c815eee1ec75f1c675609b0bea78064cb8cc1 +

0x12fa80de8027f68c3f780b5bcd519e8205606ac249025d · i
xφA(QB) = 0x272c54d49af950b0829072753e3525091aaf87085bd7b2 +

0x23efe3c087965a49fcc5161e6453dbe632d7dec90bab12 · i
xφA(QB)−φA(PB) = 0x22c38abb1427245de1e049408dab87ed9ba54efeb4a4e4 +

0x0c5d768e87a762b6a460b941bcc5537ba0f73ce8b9f955 · i

Such representation is justified by the use of efficient implementations which ex-
ploits x-only arithmetic: we refer to [Jao+20] for more details.

If we denote the tuple (xφA(PB),xφA(QB),xφA(QB)−φA(PB)) as (xP ,xQ,xQ−P ) we
obtain [CLN16, Section 6] the A coefficient of the Montgomery curve EA on which
the points φA(PB), φA(QB) lie, as

A =
(1− xPxQ − xPxQ−P − xQxQ−P )2

4xPxQxQ−P
− xP − xQ − xQ−P

= 0xc0cbda5ef968048cd2c1b125774f1417125b9b02b6f91 +

0x1e8121a2a60fd266d321bb9db8d9e3111e3095c08e0bc6 · i

To take advantage of the final 2-bit leak described in Subsection 7.5.1, we com-
puted the coefficient A′ such that j(EA′) lies on the (secret) traversed path 2 steps
before the final curve, and the SIKE-tree arising from A′ does not go towards the
final curve EA. This can be achieved by using (7.3), i.e., A′ = 2 + 16/(A− 2), to
obtain:

Ã′ = 0x164db610b03a9b3c38e59bf29485a60462d1cd9f22d95e +

0x1a8d75d6d0285807042e900df3c2cf74b4eb160d50a92e · i
j(EA′) = 0xe48a8271ea06ec4193db09970a23bea55c777ef2fb5be +

0x56910191b4835901ef45e4b857817391ad1213080afa9 · i

This Setup phase was implemented in SageMath [The21].

Trees Expansions. We set A′ = Ã′, and we proceed by attacking the 89-steps
path in the isogeny graph between j(E6) and j(EA′). Note that there may be no
path in the SIKE-tree (Definition 7.7) between the exact curves (as we might chose
a different representative curve), but there must exist a path in the isogeny graph
between j(E6) and j(EA′), and the SIKE-trees arising from E6 and EA′ must contain
paths following this path by j-invariants (from the opposite endpoints). In order to
meet in the middle, we generate in a depth-first manner the SIKE-tree expanded from
E6 (up to the depth 45) and the SIKE-tree expanded from EA′ (up to the depth 44),
employing the optimal strategies detailed in Subsection 7.4.2.

We note that, as discussed in Subsection 7.5.2, it suffices to explore only half of
the conjugate sub-branches of the tree expanded from E6: this results in an almost
equal number of leaves in-the-middle generated from both trees, with a total of 244 + 1
leaves for the tree expanded from E6, and 244 leaves for the one expanded from EA′ .
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Once the depth-first generation reaches a leaf, we compute the corresponding
j-invariant, and we store the least significant 64 bits of its real part. In our imple-
mentation, multiple jobs explore in parallel distinct branches of each tree: when a
job collects 2GiB of 64-bit j-invariant representations (which correspond to 228 j-
invariants visited), this chunk is sorted in memory, written to disk, and then the job
terminates. On the University of Luxembourg High Performance Computing (HPC)
facilities [Var+14], each of these jobs took approximately 17 minutes to complete on
a single core of an Intel® Xeon® E5-2680v4 @ 2.4GHz with 4GiB of RAM reserved.
This sums up to a total of approximately 4.2 core-years and 256TiB of disk space
needed to explore both trees and store the truncated j-invariants.

We note that, by utilizing the Merge and Compression earlier, i.e., on the fly after
a sufficient amount of chunks is generated, the storage requirement could be reduced
to close to 128TiB.

k-way Merge. We employed our custom k-way merge implementation optimized
for 64-bit unsigned integers, to merge the 2GiB sorted chunks generated from each
tree: on a single core of an Intel® Xeon® E5-2680v4 @ 2.4GHz and 4GiB of RAM, we
needed approximately 2.5 core hours to merge 256 2GiB chunks into a single 512GiB
sorted chunk. We note that to keep memory requirements close to the ones needed to
store all j-invariants representations, chunks can be merged in parallel while running
the depth-first expansions as soon as enough new 2GiB chunks from a specific tree
are generated. The practicality of running multiple such merges in parallel depends,
however, on storage architecture, cluster load and maximum disks I/O throughput:
on the University of Luxembourg HPC cluster, we were able to run 4 nodes in parallel,
running 28 merge jobs each, without degrading too much I/O performances. This
merging stage took, overall, approximately 54 core days.

Compression. Since 512GiB chunks contain already 236 64-bit elements each, at
this point we ran single-core jobs to merge 4 chunks directly in compressed form (Sub-
section 7.5.4), using 32 bits (including 1 flag bit) to encode elements differences. This
resulted in a compression factor very close to 1

2 . In the same configuration as above
(and under the same limitations), we needed roughly 5 core hours to complete one of
such merge-to-compressed jobs (we ran only 2-3 nodes concurrently, each executing
28 such jobs), for a total of 27 core-days to complete all jobs.

We then finally obtained 64 1TiB compressed chunks from each tree, for a total
of 128TiB disk space used (all previous sub-chunks were deleted).

Sieving. At this point, we proceed with finding elements shared by chunks from
different trees. Since chunks are sorted already, we can use the parallel version of
SortMerge with parameter k = 64 detailed at the end of Subsection 7.5.3. This stage
consists in merging tuples of (compressed) 1TiB chunks and storing only the common
elements. When running in a single thread on the full data, this stage only requires a
sequential read of the 128TiB of data. However, the heap operations in k-way merge
dominate the performance and can not be parallelized. In our implementation, a
sieving job consisted in merging at the same time 4 chunks from the first tree with
4 chunks from the second tree, where elements are iteratively decompressed, and
only collisions are stored. On a single-core, it took approximately 1.1 core days to
complete, for a total of 280 core-days for 256 such jobs. This trade-off results in 2PiB
of data read, which is acceptable to allow sufficient parallelization.
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We expected and we actually found 16 777 119 ≈ 244·2/264 = 224 = 16 777 216
64-bit collisions among the two trees: once such collisions are safely stored, we can
delete all the 128 1TiB chunks from previous stages.

Final Trees Expansions. With the collisions just found, we rerun the tree explo-
rations, similarly as in the first stage of the attack, but this time we store only full
j-invariants in the middle that have the least 64 bits of their real part matching any
of the collisions found, and their paths in the respective trees.

During tree explorations, we regularly check if were found j-invariants from dif-
ferent trees that share the same real part: if yes, we stop tree traversals, and we
reconstruct Alice’s full walk from E6 to EA (and thus her secret) using the paths
associated to the matching j-invariants, with special care in case the two result to be
conjugate (Subsection 7.5.2).

In our case, the colliding conjugate j-invariants in-the-middle obtained by ex-
panding the trees from E6 and EA′ were, respectively,

j0 = 0x0008132653e4d53cb9cc0defb36a0141d900adbb128a24f0 +

0x0001049f06c78aaed22786dfcff5b202ce3a50429f369b86 · i
j1 = 0x0008132653e4d53cb9cc0defb36a0141d900adbb128a24f0 +

0x0027910d1a0d795d077f40d1480a4dfd31c5afbd60c96479 · i

Using the (implementation-dependent) path information we stored, we then re-
construct, in linear time, Alice’s private key as

sA = 0x59d64d476da9487be414734

which allowed us to easily compute Alice’s and Bob’s shared secret from Bob’s public
key exchanged, as

j(EAB) = 0x7a470546a24124f06f49bcbb855a6e3c1402ba1004bfc +

0x1a88f02557168dd75b64f8407a368aa4ff2bc03121fbaf · i

whose value is a correct pre-image for the publicly released SHA512 hash of the
challenge shared secret [Mic21b].

We found the solution to the challenge after exploring approximately 44% of the
tree expanded from E6 (only conjugate-unique sub-branches) and 63% of the tree
expanded from EA′ (success probability of ≈ 28%).

This brings the total cost of our attack to approximately 8.5 core years and 256TiB
of disk memory.

We note, however, that we decided to employ compression only after we started
the above attack in order to reduce the amount of not fully parallelizable disk reads
needed for the parallel SortMerge. Thus, in fact, the whole attack can be executed
in 8.5 core years with just slightly more than 128TiB of disk memory available.
The storage requirement can be reduced further by sacrificing parallelization and
performing the main steps for a single part of the second tree at a time. In our case,
we used 4-chunk groups (4TiB) on each side, so only 64 + 4 = 68TiB of storage is
sufficient for the (less-parallel) attack.



158 Chapter 7. Breaking the $IKEp182 Challenge

7.7 The $IKEp217 challenge
A natural question is whether the $IKEp217 challenge, the bigger among the toy in-
stances proposed by Microsoft, is practically reachable for attacking using our method.

In $IKEp217, the prime p is equal to 2110367 − 1, so that eA = 110, leading to
192PiB storage requirement if our attack on $IKEp182 is applied directly and 64-bit j-
invariant representations are stored (which may produce a large number of collisions,
namely 2107−64 = 243).

On the University of Luxembourg HPC cluster, the main limitation is the I/O
performance, which is about 20GiB/s6. Even if arbitrarily storage is available, this
maximum throughput limits the time needed to solve the instance since all the data
must be read/written at least once. To read the 192PiB of data on the ULHPC
cluster, one would need at least 116 days. Since full attack performs several I/O
rounds, this would likely take more than a year.

On the other hand, an attacker with a custom highly-parallelized supercomputer
may perform the attack much faster. Precise trade-off analysis and parameter selec-
tion are left as future work.

7.8 Conclusions
In this Chapter we showed how the Microsoft $IKEp182 challenge can be broken in
practice using a Meet-in-the-Middle approach and multiple SIKE-specific optimiza-
tions. In particular, we detailed a tree exploration strategy to compute efficiently
j-invariants of curves appearing as leaves of the trees expanded by one SIKE party’s
initial and final curve (i.e., the domain and codomain of a 2e-isogeny). In doing so, we
took advantage of several optimizations, such us computing only one sub-branch per
conjugate class for the tree expanded from the initial curve and a 2-step j-invariant
leakage in the tree expanded from the final curve, which allowed us to reduce further
time and space complexity of our attack by a factor of 8. We then discussed possible
approaches to deal with practical challenges arising when implementing such improved
MitM attack (e.g., space requirements, parallelization, set intersection, etc.), and we
reported the details of running our implementation against the $IKEp182 challenge
instance, where we were able to recover the corresponding secret shared successfully.

6https://hpc-docs.uni.lu/filesystems/gpfs/

https://hpc-docs.uni.lu/filesystems/gpfs/
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