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The excitation of molecular systems by natural incoherent light relevant, for example, to photosyn-
thetic light-harvesting is examined. We show that the result of linear excitation with natural incoherent
light can be obtained using incident light described in terms of transform limited pulses, as opposed to
conventional classical representations with explicit random character. The derived expressions allow
for computations to be done directly for any thermal light spectrum using a simple wave function
formalism and provide a route to the experimental determination of natural incoherent excitation us-
ing pulsed laser techniques. Pulses associated with solar and cosmic microwave background radiation
are provided as examples. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4940028]

“One of the most important attributes of a stationary random
process is its spectrum.”

L. Mandel and E. Wolf1

I. INTRODUCTION

Light incident on matter can initiate fundamental
dynamics in systems as diverse as semiconductors, quantum
dots, and living organisms. Of particular interest is the
interaction of sunlight with molecules such as photosynthetic
light-harvesting complexes,2 the foremost step responsible for
primary energy production on earth, or sunlight interacting
with visual pigments, initiating the first steps in vision.3

While the development of advanced experiments such as
non-linear spectroscopy4 allows characterizing a system’s
dynamical response upon photoexcitation, the molecular
dynamics measured in this way differs significantly from that
resulting from natural excitation conditions,5–10 a consequence
of the differences in the character of the incident radiation.5,11

Although it is possible to measure molecular dynamics directly
from incoherent excitation,12 technical difficulties are such
that, in practice, experimental data are extremely limited,
and the spectrum is not necessarily that of natural light
(i.e., sunlight and moonlight). At present, the dynamics of
a system excited by thermal light can be best inferred from
appropriate theoretical models,13–15 which require a proper
description of thermal excitation. Two different approaches
are available:16 (i) a full quantum treatment, using a quantized
radiation field (e.g., the P-representation, with the light
represented by a direct product of incoherent mixtures
of coherent states of a single frequency—typically plane
waves), or (ii) a semi-classical approach based on a classical
description of the radiation field. It was recently shown that
the quantum state of light, in first order, can be composed of a
mixture of single pulses.17 We focus here on the semi-classical

a)aurelia.chenu@utoronto.ca
b)pbrumer@chem.utoronto.ca

formalism of thermal excitation and provide a description of
the associated molecular response.

As a proper mixture, thermal light can, in principle,
only be represented statistically, i.e., by a probability
distribution function or, alternatively, as a set of all possible
realizations. The most conventional classical representation,
the collision-broadening model,16 relies on realizations with
stochastic phase jumps to reproduce the random character of
thermal light, with the average time interval between jumps
reproducing the (short) coherence time. Producing such a
set of realizations in the laboratory, so as to reproduce the
spectrum of natural light, is difficult. Here we show, in the
relevant domain of linear excitation, i.e., weak excitation
appropriate to natural incoherent light, that an ensemble
of well defined deterministic realizations can reproduce the
result of thermal-light excitation. Indeed, even realizations
comprised of transform limited pulses are possible, forging
a link with modern pulsed-laser laboratory techniques. The
result provides a route to exploring incoherent excitation with
a wide variety of possible spectral profiles.

This issue was motivated by ongoing interest in excitation
of, for example, photosynthetic pigment-protein complexes
such as the Fenna-Matthew-Olson (FMO) complex18 or
PC645,19 or the LH2 light-harvesting complex.20,21 Since
our focus is on the molecular response to the light, the
relevance and interpretation of the results are independent
of the effects of the system’s environment. Thus, we deal
with a closed molecular system. Further, due the weakness
of the interaction of sunlight with such systems, first order
perturbation theory provides an essentially exact treatment.

II. FORMALISM

Consider the Hamiltonian

H(t) =

α

εα |α⟩⟨α| − d ·
(
E(γ)(t) + E(γ)(t)∗) , (1)

where the system Hamiltonian (first term on the r.h.s.)
is written on the basis of molecular eigenstates |{α}⟩
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with eigenenergies εα, and the second term describes the
interaction with the field in the semi-classical approach. Here,
d =


α µα |α⟩⟨g |n̂α + h.c., with |g⟩ the molecular ground

state, µα is the transition dipole moment operator, oriented
along the unit vector n̂α, and E(γ)(t) denotes the positive
frequency part of one individual field realization. Specifically,
the superscript γ is used throughout the paper to label a
particular realization, either of the field or of the corresponding
molecular excited state arising from E(γ)(t) incident on
the molecule. Hence, this Hamiltonian characterizes the
molecular dynamics upon interaction with one of the field real-
izations.

In the rotating wave approximation and in the limit of
weak-field interaction, first-order perturbation theory provides
a solution for the excited state wave function resulting from
the |g⟩ state excitation as a superposition of eigenstates,

|ψ(γ)(t)⟩ = − i
~

Nα
α=1

µαe−iϵαt/~
 t

0
dτ eiωαgτE(γ)(τ)|α⟩, (2)

where Nα is the number of molecular eigenstates and
ωαg ≡ (ϵα − ϵg)/~ denotes the eigenfrequency, ϵg being the
ground state energy. Here, we assume the excited-state level
splitting to be larger than their spontaneous decay widths
and neglect effects from radiative decay.14 For the sake of
clarity, we consider a scalar field and assume it lies along the
orientation of the transition dipole moment n̂α, taken identical
for all eigenstates.

Considering that the molecule’s response to a stochastic
field is comprised of an ensemble of individual excitation
events, the principle quantity of interest is the excited state
density matrix,

ρtot(t) ≡ |ψ(γ)(t)⟩⟨ψ(γ)(t)|
Γ
, (3)

where ⟨. . .⟩Γ denotes averaging over the ensemble of
realizations. From Eq. (2), the elements of this density matrix
are

ρtot
αβ(t) ≡ ⟨α|ρtot(t)|β⟩

=
µαµ

∗
β

~2 e−iωαβt

 t

0
dτ1 eiωαgτ1

 t

0
dτ2 e−iωβgτ2

×

E(γ)(τ2)∗E(γ)(τ1)


Γ
, (4)

withωαβ = ωα − ωβ. Here and below, we follow the literature
(e.g., Ref. 22 and references therein) in assuming that the
system encounters the radiation field suddenly at t = 0. Work
on the general effect of slow turn-on on realistic systems is in
progress.23,24

Requiring that this density matrix be representative of the
result of thermal-light excitation imposes restrictions on the
fields E(γ)(t) and ensemble ⟨. . .⟩Γ. For the system considered
in Eq. (1), interaction with thermal light would lead to the
excited state described by a density matrix ρtot with elements

ρth
αβ(t) =

µαµ
∗
β

~2 e−iωαβt

 t

0
dτ1 eiωαgτ1

×
 t

0
dτ2 e−iωβgτ2G(1)th

ii (τ1 − τ2), (5)

where the first-order correlation function between the i and j
Cartesian components of the field, for thermal light, is25

G(1)th
i j (τ) = δi j ~

6π2ϵ0c3

 ∞

0
dωω3 n(ω)e−iωτ, (6)

with n(ω) = (e~ω/(kBT ) − 1)−1 being the average photon
number at temperature T and kB the Boltzmann’s constant.

Requiring that Eq. (4) describes the same molecular
dynamics as that resulting from linear thermal-light excitation
then implies that

E(γ)(τ2)∗E(γ)(τ1)

Γ
= G(1)th

ii (τ1 − τ2). (7)

To calculate the left-hand-side, i.e., ensemble-averaged
auto-correlation function of the field, we use the Fourier
representation for the individual realizations given by

E(γ)(t) =
 ∞

0
dωẼ(γ)(ω)e−iωt, (8)

where Ẽ(γ)(ω) denotes the Fourier components. We choose all
individual fields with identical spectral distribution |Ẽ(γ)(ω)|
and only allow differences in the phase factor. This is a
sufficient but not necessary condition, and we could well
reproduce the excitation from different lineshapes.17 The
Fourier coefficients Ẽ(γ)(ω) can therefore be written as
the product of a real function f (ω) defining the spectral
distribution (independent of γ) and a phase factor φ(γ)(ω)
(dependent on γ),

Ẽ(γ)(ω) = f (ω) eiφ
(γ)(ω). (9)

The field auto-correlation function averaged over the ensemble
of realizations is then


E(γ)(τ2)∗E(γ)(τ1)


Γ
=

∞
0

∞
0

dω′dω f (ω′) f (ω)ei(ω′τ2−ωτ1)

×

ei(φ(γ)(ω)−φ(γ)(ω′))

Γ

. (10)

By choosing the phase factor with a linear dependence on
frequency and interpreting the ensemble averaging as an
integral over the phases, i.e.,

φ(γ)(ω) → γω, (11a)

⟨•⟩Γ → 1
ts

 ∞

−∞
dγ•, (11b)

where ts is a scaling constant with unit of time that can
be chosen arbitrarily without affecting the total molecular
response. Note that this is only one of many possible
representations; any collection of fields that would recover
a delta function δ(ω − ω′) in the last line of Eq. (10), thus
reducing the two frequency integrals to a single one, would
suffice. Requiring that Eq. (10) matches the thermal-light
first-order correlation function [Eq. (6)] then restricts the
lineshape f (ω) so that the electric field for each individual
realization Eq. (8) becomes

E(γ)(t) =


~ ts
12π3ϵ0c3

 ∞

0
dω


ω3n(ω)e−iω(t−γ). (12)



044103-3 A. Chenu and P. Brumer J. Chem. Phys. 144, 044103 (2016)

Using this field as the individual field realizations, the
individual excitation events [Eq. (2)] become

|ψ(γ)(t)⟩ = K
√

ts
Nα
α=1

µαCα(t, γ)e−iϵαt/~|α⟩, (13)

where the complex constant K and coefficients Cα(t, γ) are
provided in the Appendix.

The state |ψ(γ)(t)⟩⟨ψ(γ)(t)| obtained from Eq. (13) repre-
sents one contribution to the total density matrix following
excitation from a single realization of the field. The total
density matrix ρtot is then obtained by averaging over the
ensemble according to Eq. (11b).

It is easy to analytically show that, with this definition
of the field realizations in Eq. (12) and using Eq. (11b),
the density matrix ρtot built from the ensemble of individual
excitation events recovers that obtained directly from thermal
light excitation (5), i.e.,

ρtot(t) = ρth(t). (14)

Specifically, we demonstrate in the Appendix that (4) becomes

ρtot
αβ(t) = K2µαµ

∗
βe−iωαβt

 +∞

−∞
dγCα(t, γ)C∗β(t, γ). (15)

Note that the formulation outlined above is applicable to
alternate incoherent spectral densities with differing n(ω),
e.g., that associated with a wide range of temperatures
(e.g., sunlight at 5777 K to cosmic microwave background
(CMB) at 2.7 K22), perturbed underwater sunlight26 or
excitation from deep-sea hydrothermal vents.27 Below, we
focus on excitation from sunlight at T = 5777 K and comment
on the CMB case.

III. COMPUTATIONAL RESULTS

We compute the molecular response from the total
density operator, constructed as average over the ensemble
of individual responses (15). Here and below, the Hamiltonian
is given by Eq. (1) with parameters that are representative
of a photosynthetic light-harvesting complex: ϵα = 1 eV,
ϵ β = 1.1 eV, ϵg = 0, µα = µβ = 1 e.Å. A sample comparison
of these results, obtained via realizations and those obtained
from direct numerical integration of (5) with the use of
thermal correlation function (6) is shown in Fig. 1, where
perfect agreement is seen. Convergence to ρtot(t) is obtained
using only 20t realizations, where t is in units of fs. As in
Refs. 22, 28, and 29, where the incoherent radiation is modeled
as white-noise, we find that sudden turn-on incoherent
excitation leads to coherent excitation, with the amplitude
of the coherence inversely proportional to the energy splitting
between eigenstates. In this approach, the coherence survives
destructive interference between the individual excitation
events with primary contribution from realizations with
0 ≤ γ ≤ t. Although non-zero, the coherences are of constant
amplitude and quickly, i.e., after a few femtoseconds, become
negligible compared to the linearly growing populations.

Of particular interest is the nature of the realizations
of the field. As expected from the linear phase relationship
between the different modes imposed by (11a), field (8) takes

FIG. 1. Sample of the molecular (a) population ραα (10−9) and (b) coher-
ence ραβ (10−9): the total response, calculated from the sum over single
excitation events (15)—ρtot(t) lines, matches the response to thermal-light
excitation (5)—ρth(t) dots. Note the different amplitudes of coherence vs.
population.

the form of a widely used class of pulses; see, e.g., Ref. 30.
This also appears clearly in Fig. 2, showing that the linear
dependence of the phase on frequency localizes the individual
realizations, forming pulses. In addition, the γω phase factor
acts such that the field realizations only differ from one another
by a time translation, evident from Eq. (12) and the pictorial
representation in Fig. 2. Thus, the averaging process over all
realizations Eq. (11b) becomes equivalent to averaging over

FIG. 2. Illustration of (a) the phase and (b) the real part of electric field’s
positive frequency componentℜ(E (γ)(t)) (12) representing a sample of field
realizations—for γ = {0;50;100;150;200}. Panels in (b), read left to right,
correspond to panels in (a), read similarly. All fields have the same spectral
distribution and coherence time, matching that of blackbody radiation (at
5777 K). The linear phase [Eq. (11a)] here results in localized pulses with
a duration of ∼5 fs and acts such that the field realizations only differ from
one another by a translation in time.
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all times, which recovers the classical time average. Further,
the spectral density of each realization Eq. (12), and hence the
coherence time (here ≈1.3 fs for 5777 K sunlight), is identical
to that of Planck’s radiation law because of the matched
correlation functions [Eq. (7)] and the fact that realizations
differ only through the phase factor φ(γ)(ω).

Figure 3 shows several individual excitation events
corresponding to the particular field realizations sampled
in Fig. 2. Each event corresponds to a response from a
pulsed driving force, i.e., with coherent evolution and constant
population after excitation.13 Although the field realizations
are all identical to within a time factor, the individual
molecular responses are more complex. Specifically, the
field realizations differ by a phase factor, reflected in a
time shift of the individual diagonal elements contributing
to the total populations ρtot

αα(t). On the other hand, the
individual molecular coherence contributions ρtot

αβ(t) present,
in addition to the time translation, variations in amplitude.
Consequently, although the individual molecular responses
are not phase related (because of different onsets), for sudden
turn-on the total contribution can still exhibit some non-
zero oscillatory coherences that survive destructive inter-
ferences.

The above results are representative of pulses associated
with thermal excitation with sunlight. However, a wide
variety of cases may be considered, from ultra-hot thermal
sources, to excitation with thermalheat vents, to studies of the
excitation from the CMB, all represented merely by differing
photon number distribution n(ω), and hence different spectra
and associated pulses. For example, studies of atoms and
molecules in CMB radiation are difficult since the radiation
is extremely weak, (5777/2.7)4 = 2.1 × 1013 weaker than

FIG. 3. Illustration of the individual contributions to the total molecular
response, each corresponds to excitation from the particular field realiza-
tions presented in Fig. 2: (a) population |⟨α |ψ(γ)(t)⟩|2 and (b) coherence
⟨α |ψ(γ)(t)⟩⟨ψ(γ)(t)|β⟩. Panels in (b), read left to right, correspond to panels
in (a), read similarly. Here, ts = 1 fs.

FIG. 4. Real part the field ℜ(E (γ)(t)) (10
A
2 V.m−1) of one of the pulses

that could be used in the laboratory to recreate excitation by the CMB field
amplified by 10A. Here, ts = 1 ps.

sunlight. However, the linear nature of the dynamics allows
us to study the light-molecule interaction in the laboratory by
scaling up the field strength. Current CMB amplifiers22,31 do
not permit such large scale amplification, but the approach
advocated here does, and amplifying the pulses intensity by
10A would correspondingly amplify the population by the
same factor, allowing one to reach measurable quantities (cf.
Ref. 22 for the population of state 65s of Rb, for a possible
application). For example, for 90-dB amplification, such pulse
would exhibit a peak power of 1/2 cϵ0|E(γ)(γ)|2 ∼ 0.6 W.cm−2

per surface area. The power per surface area of the ensemble
of pulses would then be



E(γ)(t)∗E(γ)(t)�

Γ
∼ 3.3 kW.m−2,

which represents, as expected, 109 times that at the surface
of a black-body radiation at CMB temperature, given by
Stefan-Boltzmann law. Specifically, a useful laboratory pulse
for CMB radiation is shown in Fig. 4. Utilizing this
pulse for, e.g., excitation of Rydberg atoms would allow
for studies of, for example, deviations from Markovian
behavior.14

IV. DISCUSSION AND SUMMARY

In general, ensembles can be represented by a wide
variety of realizations, the so-called issue of “unraveling”
the ensemble.32 The particular approach advocated here has
yielded, for the case of thermal light, a representation of the
light consisting of a set of identical deterministic transform-
limited pulses, translated in time from one another. This
result has formal, computational, and practical (experimental)
advantages. Formally, it demonstrates that each individual
realization of the field can be treated deterministically, thus
eliminating any randomness in each realization. Beyond
the fundamental implications, this result also simplifies
computational realizations. Experimentally, using incident
transform limited pulses allows for a direct connection to
well-established pulsed laser techniques. Interestingly, each
successive realization utilizes the same pulse, shifted in
time, considerably simplifying preparation of the incident
pulses.

Carrying out the proposed procedure experimentally
requires irradiation of different molecules, each with a
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different γ value, corresponding, as shown above, to irradiation
at different starting times. The challenge is that different
molecules do not possess a “clock” that makes them aware
of these different starting times. Meeting this requirement
is, however, relatively straightforward. That is, only a small
fraction of the molecular sample is affected by any given
pulse. Therefore, a second pulse is unlikely to excite the same
molecule that was affected by the first pulse. If one now excites
a sample at consecutive times and collects the entire signal
resulting from all excitation events with a single detector, the
detector, in viewing all the excited molecules collectively,
will automatically carry out the required averaging over
realizations and do so with an awareness that the molecules
have been excited at different times.

It is noteworthy that in the particular approach adopted
here, the ensemble average can be performed in many ways.
That is, similar results, fulfilling Eq. (14), can be obtained
with individual realizations that differ from Eq. (12), e.g., non-
pulsed light could be used instead. In particular, the only
requirement to achieve the thermal result is to match the
thermal-light first-order correlation function, which requires
(i) matching the spectral distribution (and hence the coherence
time), and (ii) that the ensemble of field realizations fulfills
ei(φ(γ)(ω′)−φ(γ)(ω))

Γ

∝ δ(ω − ω′). Satisfying these conditions

will reproduce the stochastic character of the first-order
correlation of thermal-light. The latter requirement resembles
the condition that the Fourier components of a stationary
random process belonging to different frequencies are
uncorrelated.1 While the Fourier components of the derived
fields in Eq. (12) are correlated at the level of the individual
realizations, this correlation is lost upon averaging over a
collection of independent realizations. This is in accordance
with the fact that, for a stationary and ergodic ensemble
of random functions, one can replace the auto-correlation
function defined by the time average by that defined as an
ensemble average.33 Our results demonstrate that this not only
holds at the level of the field but also applies to describe linear
excitation of molecules.

Three additional comments are in order. First, note
specifically that here coherent light is used to generate the
incoherent result. This is distinctly different from previous
work, wherein spectrally incoherent (i.e., non-transform
limited) light is used to study coherent excitation (see
Appendix 10B of Ref. 34 and associated references therein).
Second, our results apply to linear interaction, appropriate
for natural incoherent light. In general, however, one cannot
represent the state of thermal light (i.e., the full density
matrix) with an ensemble of single broadband coherent states
(representative of pulses), because such a representation
already fails for the second-order correlation describing
broadband delayed excitation.11 Third, we emphasize that
the individual realizations have no physical meaning with
respect to excitation with incoherent light. Rather, it is only
the ensemble average that describes the response to incoherent
excitation.

In summary, the implications of these results are two-
fold for the examination of the interaction of matter with
natural incoherent light. Conceptually, linear excitation by

thermal light can be represented by an ensemble average of
deterministic pulse realizations—all effects of incoherence are
recast in the post-excitation averaging. Practically, Eq. (13)
provides a simplified description of the molecular excitation
that allows studies of natural incoherent excitation using
molecules excited by coherent transform limited pulses at
the wave function level; explicit and complicated random
fields (e.g., Refs. 10 and 28) need not be used. In addition,
these results motivate both experimental and computational
studies of natural incoherent excitation using pulsed laser
techniques.
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APPENDIX: DERIVATION AND DETAILS
OF THE FORMALISM

In this appendix, we provide details of the wave function
dynamics after excitation by one realization of the field, Eq. (2)
in the main text.

Taking, as exciting field, the individual realizations
derived in (12) yields

|ψ(γ)(t)⟩ = − i
~


~ ts

12π3ϵ0c3

Nα
α

µαe−iϵαt/~

×
 t

0
dτ eiωαgτp1(τ − γ)|α⟩. (A1)

Here, we have assumed the field to lie along the
orientation of the transition dipole moment n̂α, and we have
defined

pν(τ) ≡
 ∞

0
dωων


ωn(ω)e−iωτ.

Expanding


n(ω) ≡ e−~ω/2kBT(1 − e−~ω/kBT)−1/2 in terms of
power of exponentials yields to a series of terms for which the
integral can be evaluated, i.e.,

p0(τ) =
∞
j=0

(
− 1

2
j

)
(−1) j

 ∞

0
dω
√
ω e−[(1/2+ j)~/kBT+iτ]ω

=

∞
j=0

(
− 1

2
j

) (−1) j√π
2[(1/2 + j)~/kBT + iτ]3/2 .

Note that pν(t) = (−1/i)ν ∂ν

∂tν
p0(t). We therefore take the time

derivative to obtain

p1(τ) = 3
√
π

4

∞
j=0

(
− 1

2
j

)
(−1) j [(1/2 + j)~/kBT + iτ]−5/2 .

We add the integration in time and define
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Cα, j(t, γ) ≡
∞
j=0

(
− 1

2
j

)
(−1) j

 t

0
dτ

eiωαgτ

[(1/2 + j)~/kBT + i(τ − γ)]5/2

=

∞
j=0

(
− 1

2
j

)
(−1) j


2
3

i
�
Jα, j(t, γ) − Jα, j(0, γ)� − 8

3
iω3/2

αg

(
eitωαgF

(
ωαgh j(t, γ)

)
− F

(
ωαgh j(0, γ)

))
, (A2)

with F(x) ≡ e−x
2  x

0 ey
2
dy is the Dawson function and

h j(t, γ) ≡ (1/2 + j)~/kBT + i(t − γ),
Jα, j(t, γ) = eitωαg

2ωαgh j(t, γ) + 1
h j(t, γ)3/2 .

Although Eq. (A2) involves an infinite number of terms, the
sum converges quickly. For example, at room temperature,
results are typically within 2% accuracy with the first three
terms only.

Taking

K = −i


3

64π2ϵ0~c3 , (A3)

the dynamics of system reduces to the expression given in the
main text [Eq. (13)].
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