
On the Impact of Flaky Tests in Automated
Program Repair

Yihao Qin∗, Shangwen Wang∗, Kui Liu†‡, Xiaoguang Mao∗, Tegawendé F. Bissyandé§
∗National University of Defense Technology, Changsha, China, {yihaoqin, wangshangwen13, xgmao}@nudt.edu.cn

†Nanjing University of Aeronautics and Astronautics, Nanjing, China, kui.liu@nuaa.edu.cn
‡State Key Laboratory of Mathematical Engineering and Advanced Computing, Wuxi, China

§University of Luxembourg, Luxembourg, tegawende.bissyande@uni.lu

Abstract—The literature of Automated Program Repair is
largely dominated by approaches that leverage test suites not
only to expose bugs but also to validate the generated patches.
Unfortunately, beyond the widely-discussed concern that test
suites are an imperfect oracle because they can be incomplete,
they can include tests that are flaky. A flaky test is one that
can be passed or failed by a program in a non-deterministic
way. Such tests are generally carefully removed from the repair
benchmarks. In practice, however, flaky tests are available test
suite of software repositories. To the best of our knowledge,
no study has discussed this threat to validity for evaluation
of program repair. In this work, we highlight this threat and
further investigate the impact of flaky tests by reverting their
removal from the Defects4J benchmark. Our study aims to
characterize the impact of flaky tests for localizing bugs and
the eventual influence on the repair performance. Among other
insights, we find that (1) although flaky tests are few (≈0.3%) of
total tests, they affect experiments related to a large proportion
(98.9%) of Defects4J real-world faults; (2) most flaky tests (98%)
actually provide deterministic results under specific environment
configurations (with the jdk version influencing the results); (3)
flaky tests drastically hinder the effectiveness of spectrum-based
fault localization (e.g., the rankings of 90 bugs drop down while
none of the bugs obtains better location results compared with
results achieved without flaky tests); and (4) the repairability
of APR tools is greatly affected by the presence of flaky tests
(e.g., 10 state of the art APR tools can now fix significantly
fewer bugs than when the benchmark is manually curated to
remove flaky tests). Given that the detection of flaky tests is still
nascent, we call for the program repair community to relax the
artificial assumption that the test suite is free from flaky tests.
One direction that we propose is to consider developing strategies
where patches that partially-fix bugs are considered worthwhile:
a patch may make the program pass some test cases but fail
some (which may actually be the flaky ones).

Index Terms—Program Repair, Flaky Tests, Empirical Assess-
ment

I. INTRODUCTION

Recent achievements in Automated Program Repair (APR)
[1], [2], [3] constitute significant milestones in software au-
tomation. One of the most successful paradigm in APR is
“generate-and-validate”, where test-based approaches recur-
rently break records on the number of benchmark bugs that
can be automatically repaired [4], [5], [6], [7]. Our work
focuses on this research line in which an APR pipeline relies
on developer-provided test suite to locate buggy program

?Shangwen Wang and Kui Liu are corresponding authors.

elements (e.g., statements) and then deploys various transfor-
mation strategies to generate patches, which will be considered
valid only if, when applied to the program, they let it pass all
previously failing test cases as well as all previously passing
test cases (i.e., the regression tests [8]).

The common (and implicitly-accepted) assumption in the
literature of test-based program repair is thus the execution
of all test cases yield deterministic results [9]. The reality
however is that flaky tests exist. Simply put, these are tests
that sometimes fail, but that may pass if you give it enough
try [10]. Such non-determinism (i.e., random results on the
same configuration [11]) significantly hinders continuous inte-
gration activities and regression testing campaigns in the real-
world. So far, several companies such as Google [12] and
Facebook [13] have reported the influences brought by flaky
tests. According to the statistics, around 1.5% tests in Google
[12] and 4.6% in Microsoft [13] are flaky, which represent a
non-negligible effort in their test activities.

The ultimate goal of APR is to be applied in practice to help
programmers reduce the debugging burden. With SapFix [14],
an industry giant like Facebook is exploring in industrial
setting how automatic fix suggestions can be useful. In the
academic literature, researchers evaluate the performance of
their approaches by relying on various defect benchmarks
that are built via mining real-world repositories for bugs
and associated test cases. Defects4J [15] and BEARS [16]
are major representatives of such benchmarks. While some
recent approaches (e.g., iFixR [17]) investigate bug reports
as a substitute to potentially-unavailable test suites, it is
noteworthy that a large majority of test-based APR heavily
rely on test cases within defects benchmarks. How do flaky
tests therefore impact performance evaluation of APR? To
the best of our knowledge, this question has not been studied
in the literature.

In the Defects4J [15] benchmark, flaky tests have been
manually removed from the test suites that are associated to
their original programs. This creates an artificial scenario that
does not reflect the practical constraints under which an APR
tool would be leveraged in development settings. Our objective
in this work is thus to reconsider APR results when flaky
tests cannot be manually identified. Our empirical study thus
assesses the impact of flaky tests on the repair pipeline. We
first find out all the flaky tests in the defect benchmark of APR

and investigate the proportion of flaky tests within the real-
world test suites. We then re-check their flakiness to see if the
testing results are random, after which we assess the impact of
these flaky tests on spectrum-based fault localization, a widely-
used fault localization technique in APR pipeline. At last, we
assess the impact of flaky tests on the repair performance of
APR tools.

Specifically, to perform this study, we consider all the tests
in Defects4J benchmark that have been annotated as flaky
tests and where excluded from the benchmark. The relevant
flaky test set includes 213 unique tests associated to 387
Defects4J bugs. Actually, when we consider the different
program versions, our study is conducted on a total of 3 940
instances of flaky tests. We run each test in several rounds (10
times) to assess the randomness of their results. For the in-
vestigation about the effect of flaky tests on fault localization,
we leveraged an off-the-shelf spectrum-based localizer (i.e.,
GZoltar [18] with Ochiai [19]). Finally, our study considers
11 APR tools (10 from the RepairThemAll framework [20]
and the recent TBar [4] tool) for comparing repair patches
generated based on fault localization information obtained
with test suites including or excluding flaky tests. The impact
of flaky tests on the patch validation is assessed a series of
comparative trials with/without flaky tests. We mainly find
that:
• Flaky tests are rare in real-world defect benchmarks (e.g.,

only 0.3% test cases associated to Defects4J bugs are
flaky). However they can persist in the test suite for a
long time (over 50% of flaky tests have been flagged
only after over 300 days). Flaky tests are coexistence of
a wide range of real-world bugs as well.

• Most flaky tests (≈98%) will actually lead to determinis-
tic results under certain specific configurations. However,
the JDK version can influence the results.

• Flaky tests can lead to a significant decrease in fault
localization efficacy: when using jdk-1.7, compared with
performance metrics obtained without flaky tests, local-
ization results of 90 (out of 387) bugs are degraded; in no
case we have seen flaky tests help to improve suspicious
locations ranking.

• The repairability performance of APR tools on Defects4J
benchmark is substantially impacted by flaky tests: the
state of the art TBar tool is now able to generate correct
patches for only 17 bugs, going down from the 42 that it
fixed with a curated test suite.

These findings call for more concentrations on impacts
brought by flaky tests in future studies for making APR tech-
niques more practical. According to our experiment results,
we further point out a potential way to alleviate the influences
that is to pay attention to partial fixes.

II. BACKGROUND

A. Automated Program Repair

Automated Program Repair (APR) is an increasing hot topic
in recent years [2], [21]. Given a test suite with passing and

failing tests, APR tools first perform Fault Localization to
rank the buggy program element (e.g., method or statement) at
a top position. In the community, various approaches have con-
tributed on the fault localization: spectrum-based techniques
[22], [23], [24], [25], mutation analysis [26], [27], applying
advanced deep learning techniques [28], [29], and even utiliz-
ing patch generation information for fault localization [30].

With a ranked list of buggy code elements, APR tools adopt
various strategies for Patch Generation, which is conducting
the code transformation to generate patch candidates. Such as
the heuristics-based APR relies on different search strategies
(e.g., genetic programming [31] and random search [32]),
pattern-based APR leverage the pre-defined/manually-mined
code transformation patterns [4], [33], [34], [35], [36]. Con-
straint solving [37], [38] and deep learning approaches [7],
[39], [40] have been explored to synthesizing patches as well.

After generating patches, Patch Validation is the final step
to validate the correctness of generated patches. Validating
patches by passing all test suites cannot ensure the correctness
of outputted patches since human-written test suites are not
adequate [41]. This leads to the overfitting problem [42]:
a patch can make the program pass all the tests, but does
not fix its bug. Since then, researchers denote a patch that
can pass all the original test suite as a plausible patch. If
a plausible is indeed semantically equivalent to developer-
provided patch, it is identified as correct patch, otherwise it
is considered as overfitting. Over the years, many methods
have been proposed to alleviate the overfitting problem [43],
[44], [45] and recent studies demonstrate that this direction
still deserves exploration [46], [47], [48].

The fault localization and patch validation highly rely on
the quality of test cases in the buggy programs, which will
further impact the bug-fixing performance of APR systems.

B. Flaky Tests

Flaky tests are tests that provide non-deterministic results:
they can pass or fail even under identical code versions.
Flaky tests are now considered as a pervasive and serious
problem in the community [12], [13] with considerable recent
studies aiming to understand their naturalness, detect them and
mitigate them.

Reproducibility is a primary and difficult problem as re-
ported by Luo et al. [10]. Lam et al. [49] also evaluated the
reproducibility of flaky tests and found that the likelihood to
reproduce the failures of flaky tests on different projects can
range between 17% to 43%. Eck et al. [50] interviewed 21
professional MOZILLA developers and their answers mani-
fested that reproducing the flaky behavior is one of the major
challenges. Another problem is that although researchers have
found ignoring flaky-test failures can induce more crashes
[51], there are still situations where developers choose to
ignore flaky tests. Throve et al. [52] studied 77 commits in
29 Android projects that were relevant to flakiness and found
there were 13% commits that simply skipped or removed the
flaky tests. Lam et al. [49] examined the pull requests at

Microsoft using three datasets. Their study revealed that about
5% of the flaky tests were fixed by only removing the tests.

As the occurrence of flaky tests seems inevitable, efforts
have been made to concentrate on combating flaky tests.
Luo et al. [10] focused on common categorization of flaky-
test fixes by identifying and analyzing the version-control
commits. Their results show that the most common reasons
of flakiness are async wait, concurrency and test order depen-
dency. Palomba and Zaidman [53] investigated 19 532 JUnit
test methods belonging to 18 software systems and found that
the refactoring of test smells induces the fixing of flaky tests.
Based on their prior works, Lam et al. [49] studied the life-
cycle of flaky tests and showed that categorization works on
flaky tests also apply to proprietary projects.

Aiming at detecting flaky tests, PRADET [54] takes as
input a test suite and a reference order, and collects depen-
dency information of tests through dynamic data-flow analysis.
PRADET further filters out all the unproblematic data depen-
dencies with an iterative dependency refinement algorithm.
Bell et al. [55] presented DeFlaker to detect flaky tests by
utilizing lightweight differential coverage tracking to monitor
the coverage of the latest code changes. Contemporary, Lam
et al. [56] introduced a framework called iDFlakies to run test
suite automatically according to user-defined configuration, to
identify flaky tests associated with the related partial classi-
fication and the test order. Instead of dynamic approaches,
Pinto et al. [57] evaluated the performance of five machine
learning classifiers on detecting flaky tests and found them
all performed well. The authors also extracted words which
are apt to appear in flaky tests and aggregated them as the
vocabulary of flaky tests.

Despite huge efforts have been made to alleviate the impacts
from flaky tests, the re-occurrence and repair of flaky tests are
still great challenges. In addition, the impact of flaky tests on
some other fields which deeply depend on regression testing,
such as program repair, has not ever been investigated yet. To
the best of our knowledge, we are the first to focus on the
impact of flaky tests on program repair.

III. STUDY DESIGN

A. Research Questions

In our study, we aim to investigate the following research
questions.
• RQ1. What is the proportion of flaky tests within the

real-world (uncurated) test suites associated to APR
benchmarks? We first aim to understand the occurrence
frequency of flaky tests in real-world defect benchmark.
Specifically, we concentrate on the number of flaky
tests and their lifespans (i.e., the duration between their
occurrences and disappearance).

• RQ2. To what extent the results of the available flaky
tests are indeed random? This question is to check
whether flaky tests’ executions will fail or pass randomly
under specific environments.

• RQ3. What is the impact of flaky tests on the results
of spectrum-based fault localization in program repair?

We try to investigate the influence of flaky tests on the
fault localization for APR. Since the fault localization is
the first step in APR pipeline, investigating the influence
for the fault localization could help exploit the impact of
flaky tests on program repair.

• RQ4. To what extent do flaky tests affect the performance
of APR tools? Finally, we are going to assess the impacts
of flaky tests on APR tools’ effectiveness on generating
valid patches for the given buggy programs.

B. Subject Selection

We focus on Defects4J defect benchmark [15] since (1) all
bugs in this benchmark are from real-world programs and are
carefully curated and (2) this dataset is the most widely-used
one in software testing tasks [21], [30], [46], [58], [59]. In
our study, we use the Defects4J-V1.3.0 since this version has
been widely used in the fault localization and APR research
work.

We next introduce how we create our flaky tests dataset.
Through our manual investigation, we observe that almost
in each bug from Defects4J, some test methods are removed
and annotated as flaky method. Listing 1 gives an example in
which a test method testFindDomainBounds within the test file
TimeSeriesCollectionTests.java is silent. We also note that this
phenomenon has been questioned before1 and the developers
of Defects4J claim that removing these tests is for ensuring
that this framework always returns reliable results.
// Defects4J: flaky method
// public void testFindDomainBounds() {
// TimeSeriesCollection dataset = new

TimeSeriesCollection();
// List visibleSeriesKeys = new java.util.ArrayList();
// Range r = DatasetUtilities.findDomainBounds(dataset,

visibleSeriesKeys,
// true);
// assertNull(r);
//

Listing 1: A Silent Flaky Test in the Bug Chart-1.

We adopt a heuristic approach to collect the flaky tests.
After checking out each bug, we use the string flaky method
for selection. Every test method that is mapped goes through
another manual process to check whether the string is in
the annotation. Finally, we select all test methods that are
annotated as flaky by developers of Defects4J as the flaky
tests dataset for this study.

IV. STUDY RESULTS

We now state the experimental results that are designed for
the research questions in this paper.

A. RQ1: [Prevalence of Flaky Tests]

1) Experimental Object: We first dissect the naturalness
of flaky tests with our flaky test dataset collected from the
benchmark Defects4J. Please note that Defects4J framework
provides a commend defects4j query for reasoning about the
metadata of a specific project. Hence, in our study, we can uti-
lize this commend for obtaining detailed commit information
of each bug.

1https://github.com/rjust/defects4j/issues/355

https://github.com/rjust/defects4j/issues/355

2) Results: Note that in the benchmark Defects4J, a bug
refers to a specific buggy project version in history. If there
is at least one flaky test in the test suite of a buggy program,
we label this bug as a flaky bug. Statistics on flaky bugs and
flaky tests in Defects4J are shown in Table I.
TABLE I: Numbers of flaky bugs and flaky tests in Defects4J.

Project flaky bugs #bugs #flaky tests (unique)† #tests†
Chart 1-26 26 305 (82) 60 820

Closure 1-62,64-92,94-133 131 501 (31) 952 347
Lang 1,3-65 64 864 (32) 119 561
Math 1-102 106 457 (14) 258 005

Mockito 1-38 38 1 237 (74) 44 067
Time 1-20,22-27 26 576 (25) 101 361
Total 387 391? 3 940 (258) 1 536 161

From the results, we find that nearly all bugs are suffering
from flaky tests in that 98.9% (387/391) bugs are actually flaky
bugs. Bugs from four projects (i.e., Chart, Lang, Mockito, and
Time) all contain flaky tests in their test suites.

When looking at the numbers of flaky tests, we note
the proportion of flaky tests compared with the whole tests
is rather low (i.e., ≈0.3%, 3 940/1 536 161). The project in
which the flaky tests occur most frequently is Mockito whose
percentage is around 3% (1 237/44 067).

Finding-1 + Although flaky tests are rare (only take
account ≈0.3% of the number of total test methods), a
large proportion of real-world programs in the Defects4J
dataset (i.e., 98.9%) is affected by flaky tests.

The previous results reveal that a small number of flaky tests
can affect a large amount of bugs in the evolution process of
software, which motivates us to further investigate the lifespan
of each flaky test (i.e., the duration between its occurrence and
disappearance). To calculate the lifespan value, we find out
two timestamps according to the commit information for each
flaky test. One is the first time the test occurs while another is
the first time this test disappears after appearance. We consider
the time between the two timestamps as the lifespan of a flaky
test. Results are shown in Fig. 1.

11
6

14 1
6

4 5 5 2 8 0
10
18
28

4 0 1 1 1 1 7 0 4 7 6

0
20
40
60
80
100
120
140

0-
10
0

20
0-
30
0

40
0-
50
0

60
0-
70
0

80
0-
90
0

10
00
-1
10
0

12
00
-1
30
0

14
00
-1
50
0

16
00
-1
70
0

18
00
-1
90
0

20
00
-2
10
0
>2
20
0

#
FL
A
K
Y
T
E
ST
S

DAYS
Fig. 1: The distribution of lifespan of flaky tests.

Among the 258 unique flaky tests, less than 45% (116/258)
exist less than 100 days. As comparison, the lifespan of 112
flaky tests (43.4%) exceeds 300 days which means it takes
a long time for developers to remove the impacts of these

tests. Moreover, the lifespan of a considerable proportion (i.e.,
30.2%, 78/258) of flaky tests is even larger than 1 000 days.
Note that in this figure we only show the number of unique
flaky tests, which leads to the inconsistency with Table I where
a flaky test occurring in diverse bugs is summed for multiple
times.

Finding-2 + A large number of flaky tests (43.4%) remain
in program’s test suites for a long time (more than 300
days). During that time, they will keep affecting all testing
activities.

B. RQ2: [Dissection of Flakiness]

1) Experimental Object: In this RQ, we investigate the
randomness of flaky tests. To achieve so, we decide to run
each of them consecutively for ten times under different
environments. Previous study [10] introduces three platform-
related factors which can affect the running results of flaky
tests (i.e., operating system, jdk version, as well as browser
version). Since our study subjects are not related with browser,
we remove it from our experiment. For the other two factors,
we choose Ubuntu-16.04 and 18.04 as variants for operating
system and adopt widely-used jdk-1.7 and 1.8 as variants
for jdk version. We thus perform this experiment under four
environments which are composed by different combinations
of operating system and jdk version.

2) Results: We define four categories of flaky tests here.
• Pass which denotes the test result is always passing in

the ten times running;
• Fail which denotes the test result is always failing in the

ten times running;
• Random which denotes the test result is sometimes

passing while sometimes failing in the ten times running;
• Timeout which denotes the test result is not returned after

a long-time waiting. This could happen because some
flaky tests are caused by the Async Wait problem in which
a threat may sleep for a long time [10].

Results are listed in Table II. We note that for most
flaky tests, the running results are deterministic under specific
environment settings. For instance, when performing under
jdk-1.7 with Ubuntu-16.04, 98.7% (3 890/3 940) flaky tests
either pass for the ten times or fail for the ten times, while this
figure becomes 98.8% when the environment turns into jdk-
1.8 with Ubuntu-18.04. Flaky tests from Chart project always
fail no matter under what experiment setting.

Finding-3 + A large amount of flaky tests (i.e., ≈
98%) have deterministic results under specific environment
settings. This finding is valid based on a series of 10
consecutive runs per experiment.

We also note that different environment variables contribute
diversely to the randomness of testing results: the results
can diverse a lot under different jdk versions while almost
keeping the same under different operating system versions.
Specifically, comparing the results from jdk-1.7 plus Ubuntu-
16.04 with those from jdk-1.7 plus Ubuntu-18.04, the numbers

TABLE II: Results of 10 times running of flaky tests under diverse environments.
jdk1.7 + ubuntu16.04 jdk1.8 + ubuntu16.04 jdk1.7 + ubuntu18.04 jdk1.8 + ubuntu18.04

Project NFT P F R T P F R T P F R T P F R T
Chart 305 0 305 0 0 0 305 0 0 0 305 0 0 0 305 0 0

Closure 501 418 83 0 0 119 382 0 0 418 83 0 0 119 382 0 0
Lang 864 456 407 1 0 429 434 1 0 455 407 2 0 428 434 2 0
Math 457 279 158 2 18 222 216 1 18 279 158 2 18 220 216 3 18

Mockito 1237 870 339 28 0 550 310 39 338 804 304 129 0 734 478 25 0
Time 576 575 0 1 0 79 497 0 0 573 0 3 0 79 497 0 0
Total 3940 2598 1292 32 18 1399 2144 41 356 2529 1257 136 18 1580 2312 30 18

∗NFT denotes number of flaky tests. P, F, R, T denote Pass, Fail, Random, and Timeout, respectively.

of P and F tests almost keep the same (2 598 vs. 2 529 and
1 292 vs. 1 257), the number of T tests is identical (i.e., 18),
while the number of R tests is the only one that changes
dramatically (i.e., from 32 to 136). From the perspective of
Defects4J project, we note that only results of flaky tests from
Mockito project change notably. To be detailed, the numbers
of P and F tests both drop down mildly while the number of
R tests increases from 28 to 129.

The trend becomes different when it comes to impacts of
jdk version. Take the results from jdk-1.7 plus Ubuntu-16.04
and jdk-1.8 plus Ubuntu-16.04 as comparison. The number
of P tests decreases sharply from 2 598 to 1 399 while the
number of F tests increases significantly from 1 292 to 2 144.
While the number of R tests is stable, the number of T tests
skyrockets from 18 to 356. This tendency is similar when the
operating system changes into Ubuntu-18.04 except that the
number of R tests decreases while the number of T tests keep
consistent. From the perspective of project, besides Mockito,
notable differences can be found in other four projects which
are Closure, Lang, Math, and Time. For instance, in the project
Time, the number of P tests drops dramatically from 575 to
79 while the number of F tests climbs from 0 to 497.

Finding-4 + Some environment variables diversely influ-
ence the results of flaky tests executions. The jdk version
is the major factor that we identified in this study (with
Defects4J) as impacting the testing results. In comparison,
the operating system choice has negligible impact.

Given that some flaky tests tend to have different results
under different jdk versions, we decide to investigate their
change trends (i.e., whether they tend to pass on a jdk version
while fail on another version or vice versa). Note that we
exclude the differences brought by operating system in the
remained part of this paper in that our results reveal that these
impacts are rather tiny. The results are shown in Table III.

We totally conclude ten patterns within which four indicate
the testing result is consistent while the other six illustrate
differences. We note that over 70% (2 765/3 940) tests still
possess consistent testing results under different jdk versions,
among which the number of tests whose results are always
passing is slightly larger than that of tests whose results are
always failing (1 497 vs. 1 248).

When running results are changed, diverse situations may
happen. The dominant change pattern is from passing to failing
(i.e., PF in the table) which takes place ≈86% (1 005/1 175) of
the total number. We also note that the number of tests whose

results alter from failing to passing (i.e., FP in the table) is
rather small (only 8). Such a result shows that for flaky tests
which demonstrate randomness across different jdk versions,
they tend to pass on jdk-1.7 and fail on jdk-1.8 while the
reverse direction is unpopular. There are also some instances
in which R tests become P tests, R tests become F tests, or P
tests change into R tests. Nonetheless, they all occur no more
than 100 times.

Further manual investigation shows that the trend is similar
when the operating system is Ubuntu-16.04. We thus only
illustrate this table here due to space constraint.

Finding-5 + For most of the flaky tests (i.e., over 70%),
their testing results appears to not be influenced by the jdk
version. Those results change when tested on diverse jdk
versions tend to pass on a lower version (i.e., 1.7) while
fail on a higher version (1.8).

C. RQ3: [Impacts on Fault Localization]

We in this RQ investigate the impacts of flaky tests on
the effectiveness of Fault Localization. From this RQ on, we
only perform experiments on Ubuntu-18.04 since the impact
of operating system is neglectable as we have shown.

1) Experimental Object: We choose to utilize a widely-
used off-the-shelf fauilt localization framework, GZoltar [18]
with the latest version (V1.7), for conducting this experiment.
This FL tool has also been integrated into the pipeline of a
large amount of APR tools [4], [5], [37], [60]. To perform
this experiment, we first execute this tool without flaky tests
under jdk-1.7 and 1.8, respectively and record the rankings of
buggy lines. We then re-execute it with flaky tests under the
same environment and make comparison between the results
obtained with and without flaky tests for reporting our findings.
Note that for bugs which possess multiple buggy lines, we
consider their ranking results the same with the top-ranked
buggy line by following previous study [30].

2) Results: We briefly recall that GZoltar is a spectrum-
based fault localization (SBFL) tool which leverages run-
time information for calculating suspiciousness for program
elements (e.g., statements). In our study, suspiciousness is
calculated by Ochiai algorithm [19] with the idea that a
statement covered by more failing tests and less passing tests
would be more likely to be buggy. Statements are ranked based
on their suspiciousness according to a descending order, that
is, a statement with suspicious value being 1 will always be

TABLE III: Comparison between running results of flaky tests under jdk-1.7 & Ubuntu-18.04 and jdk-1.8 & Ubuntu-18.04.
Project All PP FF RR TT PF PR FP FR RP RF
Chart 305 0 305 0 0 0 0 0 0 0 0

Closure 501 111 75 0 0 307 0 8 0 0 0
Lang 864 426 407 0 0 27 2 0 0 2 0
Math 457 219 158 1 18 58 2 0 0 1 0

Mockito 1237 665 303 1 0 116 23 0 1 69 59
Time 576 76 0 0 0 497 0 0 0 3 0
Total 3940 1497 1248 2 18 1005 27 8 1 75 59

∗For a flaky test, AB denotes its testing result under jdk-1.7 & Ubuntu-18.04 is A while
under jdk-1.8 & Ubuntu-18.04 is B.

ranked at first place. On the contrary, a statement is considered
as not located if the calculated suspicious value is 0.

We consider results obtained without flaky tests as baselines
and make comparisons against them using results where flaky
tests are included, which are shown in Table IV.

Results reveal a number of findings. We first note that flaky
tests can seldom help improve fault localization effectiveness.
Specifically, when executed under jdk-1.7, none of the bugs
experiences an improved location result while 90 of the bugs
get worse fault localization results. With jdk version changing
to 1.8, results of three bugs are improved with more bugs (i.e.,
141) suffering from retrogress at the same time. Three outliers
in jdk-1.8 are Closure-54, Mockito-10, and Time-25 where
taking flaky tests into consideration boosts the performance
of fault localization. For example, in Mockito-10, the ranking
result is improved from 65th to 20th. In order to understand
these special cases, we manually investigate the behind reasons
which are found to be diverse across different cases:

In Mockito-10, the suspiciousness value of the real buggy
statement remains unchanged after considering flaky tests,
which means the flaky tests do not cover the buggy point.
However, the results of flaky tests are passing, leading to the
decrease of suspiciousness value for other statements (cause
they are covered by more passing tests). As a result, the
ranking of the real buggy statement is increased. The situation
is different when it comes to Closure-54 and Time-25 where
failed flaky tests cover the real buggy statements and thus
increase the suspiciousness of them. Hence, their location
results are improved.

We also note that considerable numbers of bugs are not
affected by flaky tests, i.e., results of these bugs are stable
before and after taking flaky tests into consideration (120
under jdk-1.7 and 65 under jdk-1.8). Another interesting
finding is that for bugs whose buggy part cannot be located
without flaky tests, they are still not locatable after including
flaky tests, which demonstrates the uselessness of flaky tests
for fault localization from another perspective.

Finding-6 + Flaky tests hardly ever help improve fault
localization performance while often prevent buggy state-
ments from being precisely located, e.g., location results of
90 out of 387 bugs decrease while none of the bugs gets a
better result.

To better investigate the differences in the fault localization
results with/without flaky tests, we provide the distribution
of rankings for each locable bug (i.e., bugs that can always

be located whatever the environment is) under diverse exper-
imental settings (i.e., with/without flaky tests and the related
JDK version). Results are shown in Figure 2, where white box
denotes results obtained with flaky tests, black box denotes
results obtained without flaky tests, and “Rank” represents the
bug position in the ranked list of suspicious code elements
reported by the fault localization tool. Overall, with the results
(except locating Mockito bugs under JDK-1.8), we note that
fault localization without flaky tests can rank bugs on higher
positions than the fault localizaiton with flaky tests. It indicates
that flaky tests can impact the performance of fault localization
for program repair. Moreover, this phenomenon is independent
with the used JDK version. For instance, for project Chart,
the medium values of the ranking results obtained with and
without flaky tests are 7.5 and 3 respectively under both JDK
versions.

The only exception happens in Mockito project under jdk-
1.8 where the medium values of black and white boxes are
identical while the upper quartile of the black box is larger
than that of the white box, which means the localization
results obtained with flaky tests are better than those obtained
without flaky tests. Such a result is caused by the fact that
there are only locable bugs in this project and the localization
performance improvement of Mockito-10 is significant (i.e.,
the ranking of buggy statement rises 45 positions) while the
performance degradation of other four bugs is insignificant
(i.e., the ranking only drops 1, 1, 10, 12 positions respectively).

Another interesting phenomenon here is that for bugs from
Time project, their localization results are completely the
same whether flaky tests are included under jdk-1.7. This
can be explained by results listed in Table II that under this
configuration (i.e., jdk-1.7 & Ubuntu-18.04), nearly all of the
flaky tests (573/576) in Time project can always pass, which
indicates the flaky tests may have limited influence. Closure
project, which contains a larger number of flaky tests than
Time, also possesses the same trend. Our in-depth analysis
finds that this is due to the technical problem occurred during
the execution of GZoltar on this project: the flaky tests which
should be failing are skipped by GZoltar. Previous question2

indicates that different jdk version does bring impacts on
experimental results.

So far we have only investigated the overall situation of fault
localization results. We have not yet dissected the changes in
the FL results of each locable bug. To achieve so, we define

2https://github.com/GZoltar/gzoltar/issues/6

https://github.com/GZoltar/gzoltar/issues/6

TABLE IV: Fault localization results with flaky tests compared against those obtained without flaky tests.
jdk1.7 + Ubuntu-18.04 jdk1.8 + Ubuntu-18.04

Project #bugs ↑ → ↓ Not located Timeout ↑ → ↓ Not located Timeout
Chart 26 0 5 19 2 0 0 5 19 2 0

Closure 131 0 46 5 80 0 1 16 34 80 0
Lang 64 0 4 22 38 0 0 4 22 38 0
Math 102 0 41 38 5 18 0 39 40 5 18

Mockito 38 0 2 5 31 0 1 1 4 32 0
Time 26 0 22 1 3 0 1 0 22 3 0
Total 387 0 120 90 159 18 3 65 141 160 18

↑ denotes number of bugs whose location results are improved (i.e., rankings of buggy statements are higher),→ denotes
number of bugs whose location results are unchanged, ↓ denotes number of bugs whose location results are decreased
(i.e., rankings of buggy statements are lower), not located denotes those cannot be located both with and without flaky
tests. As shown in Table II, 18 tests are timeout and thus cannot obtain location results.

(a) Chart (b) Closure (c) Lang

(d) Math (e) Mockito (f) Time
Fig. 2: Fault localization results under diverse experimental settings.

a concept disturbance degree here to represent the position
change in the ranking. For example, if the FL results of a bug
is 1st without flaky tests and 10th with flaky tests, then its
disturbance degree is calculated as 9.

We draw the distribution of disturbance degree in Figure 3.
We find that the disturbances are generally limited since the
medium values under both conditions are smaller than 20
(i.e., considering flaky tests may drop less than 20 places
in rankings for buggy statements under most conditions).
Nonetheless, the differences can still be significant under both
jdk versions: under jdk-1.8, nearly a quarter of disturbances
exceed 40, under jdk-1.7, more specifically, the ranking result
of Chart-1 is changed from 10th to 44th. Considering the
fixing attempts made at each suspicious location which utilize
different fixing ingredients (i.e., code used to generate patches)
and diverse repair actions (i.e., add, delete, update, and move),
this would drastically decrease the efficiency of program repair
[21].

Finding-7 + Fault localization disturbances brought by
flaky tests can generally be limited (i.e., less than 20) while
sometimes be rather significant (i.e., larger than 100).

D. RQ4: [Impacts on Repair Performance]

In this RQ, we aim to investigate the impacts of flaky tests
on the repairability of APR tools. We rerun diverse APR tools
which are suggested to be executed under specific jdk versions.

Fig. 3: Distribution of disturbance degree after including flaky
tests.

We thus do not distinguish differences brought by jdk versions
in this RQ.

1) Experimental Object: We choose to use a recently-
proposed framework, RepairThemAll [20], since it integrates
a large number of APR tools (i.e., 11 in total). Besides,
we also execute a state-of-the-art template-based APR tool,
TBar [4], for a more comprehensive assessment. To perform
this experiment, we rerun each tool under Ubuntu-18.04 by
feeding them fault localization results obtained through last
step. Specifically, we feed those whose recommended jdk
version is 1.7 (i.e., tools from Arja system [60] and TBar)
with results obtained under jdk-1.7 while feed those whose
recommended version is 1.8 (i.e., tools from Astor system [61],
Nopol [37], and DynaMoth [62]) with results obtained under
jdk-1.8. Following a recent study [21], we stop each repair
attempt if (1) the first plausible patch (i.e., a patch that can

pass all the tests) is generated or (2) the number of generated
patch candidates (NPC) reach 10 000 but the tool still does
not find a plausible patch. We exclude NPEFix [63] since it
does not require a traditional fault localization step and thus
the disturbance of fault localization results cannot influence it.

2) Results: Results of the 10 tools within RepairThemAll
framework are listed in Table V. In this table, we adopt
recall as a measurement for repair performance. The value is
calculated as number of generated plausible patches divided
by the total number of bugs. Results without flaky tests are
from the original experiment of RepairThemAll [20] while the
correctness of patches is manually labelled by Tian et al. [47].
Note that in this table we remove results on 4 duplicated bugs
listed in Defects4J-V2.0. In our experiment, we also label the
patch correctness according to the guidance provided by Liu
et al. [21].

We note that all APR tools suffer from decreases of recall.
For instance, without flaky tests, Nopol can generate totally
105 plausible patches while the number drops down to 14
when involving flaky tests. Consequently, the recall of Nopol
decreases 23.51%, which is the largest degree among the 10
tools. For other tools, Arja also experiences a sharp decrease
of 20.41% while Cardumen and jMutRepair only loss slightly
(around 3%) which is mainly because they are unable to fix a
large number of bugs originally. Further investigation shows
that all bugs that are previously fixed but not fixed this time
are due to the existence of flaky test which are always failing.
Another obvious phenomenon is that APR tools can seldom
correctly fix bugs when encountering flaky tests: only 6 correct
patches are generated in our experiment while 6 tools cannot
generate any correct patch at the same time. In comparison,
every tool is capable of correctly fixing bugs and the total
number of correct patches is 36 without flaky tests.

Finding-8 + Flaky tests tend to negatively affect the
performance of APR tools. All 10 tools from RepairThe-
mAll suffer from recall decreases, among which the most
significant one can only plausibly fix 14 bugs while the
original number is 107.

Benchmark overfitting [20] is a phenomenon observed by
Durieux et al. which refers to the repairability of APR tools is
significantly higher for bugs from Defects4J compared to the
other benchmarks (i.e., Bears [16], Bugs.jar [64], IntroClass-
Java [65], and QuixBugs [66]). The authors put forward three
potential reasons for this phenomenon which are technical
problems in APR tools, bug fix isolation in Defects4J, as well
as differences in bug type distribution. We re-calculate the p-
values using results with flaky tests, that is to apply Chi-square
test on the number of patched bugs for Defects4J compared to
the other four benchmarks (the same method as the previous
study [20]), and list the new p-values in Table VI. We find
that this time, all p-values are larger than the significance
level (0.05) except that of DynaMoth. We thus accept the null
hypothesis for most of the tools that is the number of patched
bugs by them is independent of Defects4J. Hence, we propose
another potential reason for benchmark overfitting: it happens

due to the ignorance of flaky tests in Defects4J benchmark.
We can make this hypothesis in that other real-world defect
benchmarks (e.g., Bears) do not deal with flaky tests specially.

Finding-9 + The previously observed benchmark over-
fitting phenomenon does not hold when considering flaky
tests in Defects4J.

We also rerun TBar [4] with flaky tests and demonstrate
results in Table VII. We introduce the concept partial fix here
which is previously proposed by Liu et al. [67]: a patch makes
the buggy program pass a part of previously failed test cases
without causing any new failed test cases is denoted as a partial
fix.

From the results, we note TBar can completely fix only 34
bugs with flaky tests, less than half of the previous number
which is 80. However, it can partially fix much more bugs
this time (i.e., 51 vs. previous value 18). To better understand
the relationship between fixed and partially fixed bugs, we
investigate the overlap between them and demonstrate it in
Figure 4.

A number of findings can be found. We first note a large
proportion of previously fixed bugs (45%, 36/80) are now
partially fixed, while another part of them (41.25%, 33/80) can
still be fixed this time. Manual validation reveals that different
results are caused by the running results of the involved flaky
tests: those whose flaky tests are failed can only be partially
fixed while those whose flaky tests are passing can be fully
fixed. Totally, more than 85% (85/98) bugs that can be fixed
(both fully and partially) before can still be fixed now. We
also note totally 13 (i.e., 11+2) bugs where patched can be
generated before cannot be fixed now. We conclude the reasons
from two aspects as the following: (1) 8 of them are due
to the fact that the fault localization results decrease sharply
so that TBar cannot generate a patch within the pre-defined
NPC constraint (e.g., Chart-1 where the ranking of buggy
statement drops 34 positions); (2) the left 5 (all in project
Math) happen because the flaky tests are Timeout as shown in
Table II (e.g., Math-85). It should be noted here that APR
tools from RepairThemAll do not fail to fix bugs due to
the compromised efficacy of fault localization. This can be
explained by the fact that TBar integrates a large number of
fix patterns so that it generates much more candidate patches
at each suspicious location compared with other tools. Hence,
it is much sensitive to the localization results as revealed by a
previous study [21]. A special case is Math-20 which can be
partially fixed before but completely fixed now. We find the
reason is that the failed flaky tests help improve the ranking of
a non-ground-truth location (i.e., statements not modified by
developer-provided patch) to No.1 and TBar generates a patch
there. Manual validation shows that this patch is plausible but
incorrect (i.e., overfitting).

Finding-10 + With flaky tests involved, a large proportion
(i.e., 45%) of previously fixed bugs are now partially fixed.

TABLE V: Impact on repair performance of APR tools from RepairThemAll framework when flaky tests are considered.
Chart Closure Lang Math Mockito Time Total Recall (%)

Tool no flaky flaky no flaky flaky no flaky flaky no flaky flaky no flaky flaky no flaky flaky no flaky flaky no flaky flaky
Arja 0/9 0/0 1/37 0/2 0/16 0/0 6/22 2/4 0/1 0/0 0/0 0/0 7/85 2/6 21.96 ↓20.41

GenProg-A 0/6 0/0 1/22 0/2 0/2 0/0 2/14 0/1 0/0 0/0 0/0 0/0 3/44 0/3 11.37 ↓10.59
Kali-A 0/6 0/0 2/49 1/4 0/2 0/0 1/13 0/0 0/1 0/0 0/0 0/0 3/71 1/4 18.35 ↓17.31

RSRepair-A 0/8 0/0 1/27 0/2 0/4 0/0 5/22 2/5 0/0 0/0 0/0 0/0 6/61 2/7 15.76 ↓13.95
Cardumen 2/5 0/0 0/0 0/0 0/0 0/0 1/12 0/3 0/0 0/0 0/0 0/0 3/17 0/3 4.39 ↓3.62
jGenProg 0/7 0/0 1/4 0/2 0/0 0/0 2/20 0/5 0/0 0/0 0/0 0/0 3/31 0/7 8.01 ↓6.20

jKali 0/5 0/0 2/11 1/6 0/0 0/0 0/10 0/0 0/0 0/0 0/0 0/0 2/26 1/6 6.72 ↓5.17
jMutRepair 1/3 0/0 1/6 0/3 0/0 0/0 2/10 0/1 0/0 0/0 0/0 0/0 4/19 0/4 4.91 ↓3.88

Nopol 0/7 0/0 1/69 0/11 1/6 0/0 1/22 0/2 0/0 0/0 0/1 0/0 3/105 0/14 27.13 ↓23.51
DynaMoth 0/7 0/0 1/47 0/15 0/2 0/0 1/14 0/1 0/1 0/0 0/1 0/0 2/72 0/16 18.60 ↓14.47

∗x/y means that the APR tool can generate y plausible patches for bugs in this project among which x are correct ones. Data without flaky tests is from a previous study [20].
TABLE VI: Repairability comparison of diverse APR tools
on 5 benchmarks.

Tool Bears
(251)

Bugs.jar
(1,158)

Defects4J
(387)

IntroClassJava
(297)

QuixBugs
(40) p-value

ARJA 12 (4%) 21 (1%) 6 (1%) 23 (7%) 4 (10%) 0.053
GenProg-A 1 (<1%) 9 (<1%) 3 (<1%) 18 (6%) 4 (10%) 0.138

Kali-A 15 (5%) 24 (2%) 4 (1%) 5 (1%) 2 (5%) 0.060
RSRepair-A 1 (<1%) 6 (<1%) 7 (1%) 22 (7%) 4 (10%) 0.915
Cardumen 13 (5%) 12 (1%) 3 (<1%) 0 (0%) 4 (10%) 0.195
jGenProg 13 (5%) 14 (1%) 7 (1%) 4 (1%) 3 (7%) 0.857

jKali 10 (3%) 8 (<1%) 6 (1%) 5 (1%) 2 (5%) 0.860
jMutRepair 7 (2%) 11 (<1%) 4 (1%) 24 (8%) 3 (7%) 0.067

Nopol 1 (<1%) 72 (6%) 14 (3%) 32 (10%) 1 (2%) 0.058
DynaMoth 0 (0%) 124 (10%) 16 (4%) 6 (2%) 2 (5%) 0.016

TABLE VII: Repair performance of TBar with and without
flaky tests.

no flaky flaky
Project Fixed Partially fixed Fixed Partially fixed
Chart 9/14 0/4 1/4 0/13

Closure 7/11 1/5 6/8 1/8
Lang 5/14 0/3 1/4 3/8
Math 19/36 0/4 7/13 7/20

Mockito 1/2 0/0 1/2 0/0
Time 1/3 1/2 1/3 1/2
Total 42/80 2/18 17/34 12/51

∗A/B where A indicates the number of correct patches and B
denotes the number of plausible patches.

V. DISCUSSION

A. Implications
Should program repair care flaky tests? The answer is

obviously positive according to our findings: (1) flaky tests
can exist in a large amount of real-world bugs, (2) flaky tests
can negatively affect the fault localization results, and (3)
APR tools’ performances can be greatly compromised when
encountering flaky tests. Such results indicate that if APR
techniques are going to be applied in practice, the impact
brought by flaky tests is a big challenge that must be dealt
with.

How to alleviate the impact from flaky tests? Given
that there is currently no APR tools designed specially for
addressing the problem brought by flaky tests, our results point
out a way for alleviating the impact from flaky tests currently
that is to pay attention to partial fix. Theoretically, a patch
may be reasonable if it can pass the other previously failed
tests whatever the result would be on the flaky test that would
always fail. Our experimental results show the effectiveness
of this strategy: if we pay attention to partial fixes, we can
preserve 45% of the plausible patches. This inspires us that
in practice, each patch that can partially fix a bug should be
noticed since it may provide practical guidance for fixing the

2

15

36

Fixed without
flaky tests

Partially fixed
without flaky tests

Fixed with
flaky tests

Partially fixed
with flaky tests

11

33

1

Fig. 4: Overlaps in fixed and partially fixed Defects4J bugs
of TBar.

bug. Nevertheless, this strategy could only be applied to the
situation where reasonable patched can be generated within
the time limits (or NPC limits). According to our analysis in
Section IV-D2, some bugs cannot be fixed or partially fixed
due to the decrease of fault localization results. Hence, how
to mitigate the effects of flaky tests on fault localization still
needs more exploration.

B. Threats to Validity

Threats to external validity. Our external validity is mainly
challenged by flaky test dataset we used: in this study, we only
focus on flaky tests from six projects in Defects4J benchmark.
Such tests may not represent in the wild flaky tests well and
could either underestimate or overestimate the impacts of flaky
tests on program repair. Nevertheless, this threat is mitigated
considering that this benchmark is the most widely-used in
software testing tasks. There are also a number of on-hand
results on this benchmark from previous studies that we can
make comparison with. Expanding the flaky tests scale and
executing FL and APR tools on other bugs will increase the
time-consuming and thus are considered as our future work.

Threats to internal validity. A major threat to internal
validity lies in the selection process of flaky tests: we rely
on the manual labels from the developers of Defects4J for
identifying flaky tests. Such a method could in theory cause
false positives (non-flaky tests labelled as flaky) and false
negatives (flaky tests labelled as non-flaky). This, however,
is mitigated in that (1) we believe tremendous efforts have
been made by the developers of Defects4J to ensure a stable
dataset in that a script named fix test suite is dedicated to
identify and remove flaky tests, and (2) the users of Defects4J
benchmark also continuously report reproducible results which
are further utilized for annotating flaky tests3. Furthermore, it

3https://github.com/rjust/defects4j/issues/340

https://github.com/rjust/defects4j/issues/340

is unrealistic for us to rerun each test. We thus consider this
identification method as reasonable.

Threats to construct validity. For our experiments, we run
flaky tests, FL tool (i.e., GZoltar-V1.7), as well as 11 APR
tools under various configurations. It is certainly error-prone
to conduct such a large-scale study, e.g., we have reported
that due to the technical problem, fault localization results
of Closure project are identical under jdk-1.7 no matter flaky
tests are included or not. Such results may bring threats to
our results and findings. We alleviate this via re-checking our
experiment results for several times and proposing reasonable
explanations for each phenomenon we observed. We also note
that 10 times of running may not fully expose the flakiness
of flaky tests as previous studies choose to execute 100
times [57]. It thus brings threats to the results illustrated in
Table II. However, after randomly selecting 100 tests that
have determined results and running consecutively 100 times
under jdk-1.7 and Ubuntu-18.04, we find that their results are
still consistent. Moreover, we release all the experimental data
in this study for the convenience of the community to make
further review.

VI. RELATED WORK

This empirical study focuses on the impact of flaky tests in
Automated Program Repair. Results reveal that the ignorance
of flaky tests may cause bias in the evaluation of performances
of APR techniques. There are also some works in the literature
that point out potential biases in APR research field.

Traditionally, a patch passing all the test cases was con-
sidered as correct. Long et al. [41] first questioned the ratio-
nality of this criterion since developer-provided tests are not
adequate for using as specifications of program behaviours.
Their investigation shows that patches passing all the tests
can simply delete some statements or change the condition in
an if statement to true or false, thus still being faulty. This
is the well-known overfitting problem which is a direction
in APR deserving more in-depth exploration [46], [47]. Af-
ter that, APR tools tended to highlight precision (i.e., the
proportion of real correct patches compared against all the
generated ones) as a metric of their effectiveness [6], [68].
Nonetheless, how to determine the correctness of patch is
still a challenging task. Some researchers manually checked
the semantic equivalence between the generated patch and
the ground-truth (i.e., developer-provided patch) [60], [69],
while others used an independent test suite generated by test
generation tools for assessment [70]. Le et al. [48] assessed the
reliability of these two methods and found that a notable part
of patches passing the independent test suite are still incorrect
while manual validation can suffer from subjectivity. Wang
et al. [71] further dissected the differences between machine-
generated patches and ground-truth to provide guidance for
future manual assessment. Liu et al. [21] concluded totally
ten common code change patterns from correct patches for
further easing this process.

As the first step in APR pipeline, the results of fault
localization (FL) step can exert impacts on repair effectiveness.

Liu et al. [67] first reported that current APR techniques are
configured with diverse FL settings and thus it is biased to
directly compare their repair performances. Their experiments
illustrate that precise FL results can help boost the effective-
ness of APR tools to a large extent, which is further confirmed
by a recent large-scale empirical study [21] that demonstrates
if given the ground-truth locations, APR will generate more
correct patches and increase the efficiency at the same time
compared with receiving location results from FL tools.

Benchmark overfitting is another recently-observed phe-
nomenon. Wang et al. [72] found that in the community-
adopted Defects4J, bugs from Mockito project are not complex
than other bugs with respect to some features of the patches
like lines of code, number of chunks, etc. However, state-
of-the-art APR tools such as SimFix [5] and CapGen [6]
tend to achieve poor performances on these bugs. Durieux
et al. [20] assessed the repairability of 11 APR tools on
5 defect benchmarks. Their results indicate that APR tools
tend to perform better on Defects4J (i.e., they can generate
more patches that pass the test suite). Our study points out a
reasonable explanation for this phenomenon that is Defects4J
removes all the flaky tests.

A recent study [73] pointed out that an APR tool may fail
to fix a bug due to some reasons not related to its repairability
such as the incorrect operation from the performers of the
experiment. This finding calls for more attention to establish
unbiased evaluation of APR techniques.

VII. CONCLUSION

In this paper, we report on an exploratory study concern-
ing the impacts of flaky tests in automated program repair.
Through extensive experiments, we show that (1) flaky tests
are quite common in real-world bugs, (2) flaky tests can
negatively influence the capability of fault localization tools,
and (3) flaky tests can lead to the sharp decrease of repair
performance of APR tools. Further investigation shows that the
observed degradation in repairability can be caused by (1) the
decrease of fault localization performance and (2) the failing
tests in the regression test. Such findings call for more in-depth
analysis for better applying APR techniques for solving real-
world defects. We call on a community effort for exploring
this direction, even though we find paying attention to partial
fixes may alleviate the problem brought by flaky tests.
Artefacts: All data in the study are publicly available at:

http://doi.org/10.5281/zenodo.4139498.

ACKNOWLEDGEMENTS

This work was supported by the Project 1015-YAH20102,
the Open Project Program of the State Key Labora-
tory of Mathematical Engineering and Advanced Comput-
ing, the National Natural Science Foundation of China
(Grant No.61672529 and No.61802180), the Natural Science
Foundation of Jiangsu Province (Grant No.BK20180421),
the National Cryptography Development Fund (Grant
No.MMJJ20180105) and the Fundamental Research Funds for
the Central Universities (Grant No.NE2018106).

http://doi.org/10.5281/zenodo.4139498

REFERENCES

[1] C. Le Goues, M. Pradel, and A. Roychoudhury, “Automated program
repair,” Communications of the ACM, vol. 62, no. 12, pp. 56–65, 2019.

[2] M. Monperrus, “The living review on automated program repair,” in
HAL/archives-ouvertes. fr, Technical Report, 2018.

[3] K. Liu, L. Li, A. Koyuncu, D. Kim, Z. Liu, J. Klein, and T. F.
Bissyandé, “A critical review on the evaluation of automated program
repair systems,” Journal of Systems and Software, 2020.

[4] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “TBar: Revisiting
template-based automated program repair,” in Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and
Analysis. ACM, 2019, pp. 31–42.

[5] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program
repair space with existing patches and similar code,” in Proceedings of
the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis. ACM, 2018, pp. 298–309.

[6] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-aware
patch generation for better automated program repair,” in Proceedings
of the 40th International Conference on Software Engineering. ACM,
2018, pp. 1–11.

[7] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “Coconut:
combining context-aware neural translation models using ensemble for
program repair,” in Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2020, pp. 101–114.

[8] Z. Yu, M. Martinez, B. Danglot, T. Durieux, and M. Monperrus,
“Alleviating patch overfitting with automatic test generation: a study
of feasibility and effectiveness for the nopol repair system,” Empirical
Software Engineering, vol. 24, no. 1, pp. 33–67, 2019.

[9] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A
survey,” IEEE Transactions on Software Engineering, vol. 45, no. 1, pp.
34–67, 2019.

[10] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2014.
New York, NY, USA: Association for Computing Machinery, 2014, p.
643–653.

[11] M. Fowler, “Eradicating non-determinism in tests,” Website, 2020, https:
//martinfowler.com/articles/nonDeterminism.html.

[12] J. Micco, “The state of continuous integration testing at google,” 2017,
https://bit.ly/2OohAip.

[13] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta,
“Root causing flaky tests in a large-scale industrial setting,” in Proceed-
ings of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ser. ISSTA 2019. New York, NY, USA:
Association for Computing Machinery, 2019, p. 101–111.

[14] A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao,
A. Mols, and A. Scott, “Sapfix: Automated end-to-end repair at scale,”
in 2019 IEEE/ACM 41st International Conference on Software Engi-
neering: Software Engineering in Practice (ICSE-SEIP). IEEE, 2019,
pp. 269–278.

[15] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing
faults to enable controlled testing studies for java programs,” in Pro-
ceedings of the 23rd International Symposium on Software Testing and
Analysis. ACM, 2014, pp. 437–440.

[16] F. Madeiral, S. Urli, M. Maia, and M. Monperrus, “BEARS: an
extensible java bug benchmark for automatic program repair studies,” in
Proceedings of the 26th International Conference on Software Analysis,
Evolution and Reengineering. IEEE, 2019, pp. 468–478.

[17] A. Koyuncu, K. Liu, T. F. Bissyandé, D. Kim, M. Monperrus, J. Klein,
and Y. Le Traon, “iFixR: Bug report driven program repair,” in Proceed-
ings of the 27the ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ACM,
2019, pp. 314–325.

[18] J. Campos, A. Riboira, A. Perez, and R. Abreu, “GZoltar: an
eclipse plug-in for testing and debugging,” in Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineer-
ing. ACM, 2012, pp. 378–381.

[19] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. 42, no. 8, pp. 707–740, 2016.

[20] T. Durieux, F. Madeiral, M. Martinez, and R. Abreu, “Empirical review
of java program repair tools: A large-scale experiment on 2,141 bugs and

23,551 repair attempts,” in Proceedings of the 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 2019, pp. 302–313.

[21] K. Liu, S. Wang, A. Koyuncu, K. Kim, T. F. Bissyandé, D. Kim, P. Wu,
J. Klein, X. Mao, and Y. L. Traon, “On the efficiency of test suite based
program repair: A systematic assessment of 16 automated repair systems
for java programs,” in Proceedings of the 42nd International Conference
on Software Engineering. ACM, 2020, pp. 615–627.

[22] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault localization,”
in Proceedings of the 39th International Conference on Software Engi-
neering. ACM, 2017, pp. 609–620.

[23] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The dstar method for
effective software fault localization,” IEEE Transactions on Reliability,
vol. 63, no. 1, pp. 290–308, 2013.

[24] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of
spectrum-based fault localization,” in Testing: Academic and Industrial
Conference Practice and Research Techniques-MUTATION. IEEE,
2007, pp. 89–98.

[25] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-
based software diagnosis,” ACM Transactions on software engineering
and methodology (TOSEM), vol. 20, no. 3, pp. 1–32, 2011.

[26] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating
faulty programs for fault localization,” in 2014 IEEE Seventh Inter-
national Conference on Software Testing, Verification and Validation.
IEEE, 2014, pp. 153–162.

[27] M. Papadakis and Y. Le Traon, “Metallaxis-fl: mutation-based fault
localization,” Software Testing, Verification and Reliability, vol. 25, no.
5-7, pp. 605–628, 2015.

[28] Z. Zhang, Y. Lei, X. Mao, and P. Li, “Cnn-fl: An effective approach for
localizing faults using convolutional neural networks,” in 2019 IEEE
26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2019, pp. 445–455.

[29] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical
study of fault localization families and their combinations,” IEEE
Transactions on Software Engineering, 2019.

[30] Y. Lou, A. Ghanbari, X. Li, L. Zhang, H. Zhang, D. Hao, and
L. Zhang, “Can automated program repair refine fault localization? a
unified debugging approach,” in Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM,
2020, pp. 75–87.

[31] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automatic software repair,” IEEE Transactions on
Software Engineering, vol. 38, no. 1, pp. 54–72, 2012.

[32] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of
random search on automated program repair,” in Proceedings of the
36th International Conference on Software Engineering. ACM, 2014,
pp. 254–265.

[33] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “AVATAR: fixing
semantic bugs with fix patterns of static analysis violations,” in Proceed-
ings of the 26th IEEE International Conference on Software Analysis,
Evolution and Reengineering. IEEE, 2019, pp. 456–467.

[34] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in Proceedings of the 35th Inter-
national Conference on Software Engineering. IEEE, 2013.

[35] A. Koyuncu, K. Liu, T. F. Bissyandé, D. Kim, J. Klein, M. Monperrus,
and Y. L. Traon, “FixMiner: mining relevant fix patterns for automated
program repair,” Empirical Software Engineering, vol. 25, no. 3, pp.
1980–2024, 2020.

[36] K. Liu, D. Kim, T. F. Bissyandé, S. Yoo, and Y. Le Traon, “Mining
fix patterns for findbugs violations,” IEEE Transactions on Software
Engineering, 2018.

[37] J. Xuan, M. Martinez, F. Demarco, M. Clement, S. L. Marcote,
T. Durieux, D. Le Berre, and M. Monperrus, “Nopol: Automatic repair
of conditional statement bugs in java programs,” IEEE Transactions on
Software Engineering, vol. 43, no. 1, pp. 34–55, 2017.

[38] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “S3: syntax-
and semantic-guided repair synthesis via programming by examples,”
in Proceedings of the 11th Joint Meeting on Foundations of Software
Engineering. ACM, 2017, pp. 593–604.

[39] Z. Chen, S. J. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk,
and M. Monperrus, “Sequencer: Sequence-to-sequence learning for end-
to-end program repair,” IEEE Trans. on Software Engineering, 2019.

https://martinfowler. com/articles/nonDeterminism.html
https://martinfowler. com/articles/nonDeterminism.html
https://bit.ly/2OohAip

[40] K. Liu, A. Koyuncu, K. Kim, D. Kim, and T. F. Bissyandé, “LSRe-
pair: Live search of fix ingredients for automated program repair,” in
Proceedings of the 25th Asia-Pacific Software Engineering Conference
ERA Track. IEEE, 2018, pp. 658–662.

[41] F. Long and M. Rinard, “An analysis of the search spaces for generate
and validate patch generation systems,” in Proceedings of the 38th
International Conference on Software Engineering. IEEE, 2016, pp.
702–713.

[42] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems,” in Proceedings of the 24th International Symposium on
Software Testing and Analysis. ACM, 2015, pp. 24–36.

[43] H. Ye, M. Martinez, and M. Monperrus, “Automated patch assessment
for program repair at scale,” CoRR, vol. abs/1909.13694, 2019.

[44] Q. Xin and S. P. Reiss, “Identifying test-suite-overfitted patches through
test case generation,” in Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM,
2017, pp. 226–236.

[45] B. Yang and J. Yang, “Exploring the differences between plausible
and correct patches at fine-grained level,” in Proceedings of the 2nd
International Workshop on Intelligent Bug Fixing. IEEE, 2020, pp.
1–8.

[46] S. Wang, M. Wen, B. Lin, H. Wu, Y. Qin, D. Zou, X. Mao, and
H. Jin, “Automated patch correctness assessment: How far are we?”
in Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering. ACM, 2020.

[47] H. Tian, K. Liu, A. K. Kaboré, A. Koyuncu, L. Li, J. Klein, and
T. F. Bissyandé, “Evaluating representation learning of code changes
for predicting patch correctness in program repair,” in Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering. ACM, 2020.

[48] X.-B. D. Le, L. Bao, D. Lo, X. Xia, S. Li, and C. Pasareanu, “On
reliability of patch correctness assessment,” in Proceedings of the 41st
International Conference on Software Engineering. IEEE, 2019, pp.
524–535.

[49] W. Lam, K. Muşlu, H. Sajnani, and S. Thummalapenta, “A study
on the lifecycle of flaky tests,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, ser. ICSE ’20.
New York, NY, USA: Association for Computing Machinery, 2020,
p. 1471–1482. [Online]. Available: https://doi.org/10.1145/3377811.
3381749

[50] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, “Understanding
flaky tests: The developer’s perspective,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2019. New York, NY, USA: Association for
Computing Machinery, 2019, p. 830–840. [Online]. Available: https:
//doi.org/10.1145/3338906.3338945

[51] M. T. Rahman and P. C. Rigby, “The impact of failing, flaky, and
high failure tests on the number of crash reports associated with
firefox builds,” in Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2018. New York,
NY, USA: Association for Computing Machinery, 2018, p. 857–862.

[52] S. Thorve, C. Sreshtha, and N. Meng, “An empirical study of flaky tests
in android apps,” in 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 09 2018, pp. 534–538.

[53] F. Palomba and A. Zaidman, “Notice of retraction: Does refactoring
of test smells induce fixing flaky tests?” in 2017 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2017,
pp. 1–12.

[54] A. Gambi, J. Bell, and A. Zeller, “Practical test dependency detection,”
in 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST), 2018, pp. 1–11.

[55] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“Deflaker: Automatically detecting flaky tests,” in 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), 2018, pp.
433–444.

[56] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “idflakies: A framework
for detecting and partially classifying flaky tests,” in 2019 12th IEEE

Conference on Software Testing, Validation and Verification (ICST),
2019, pp. 312–322.

[57] G. Pinto, B. Miranda, S. Dissanayake, M. d’Amorim, C. Treude, and
A. Bertolino, “What is the vocabulary of flaky tests?” in Proceedings of
the 17th International Conference on Mining Software Repositories, ser.
MSR ’20. New York, NY, USA: Association for Computing Machinery,
2020, p. 492–502.

[58] M. Zhang, X. Li, L. Zhang, and S. Khurshid, “Boosting spectrum-based
fault localization using pagerank,” in Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2017, pp. 261–272.

[59] K. Liu, D. Kim, A. Koyuncu, L. Li, T. F. Bissyandé, and Y. Le Traon,
“A closer look at real-world patches,” in Proceedings of the 34th Inter-
national Conference on Software Maintenance and Evolution. IEEE,
2018, pp. 275–286.

[60] Y. Yuan and W. Banzhaf, “Arja: Automated repair of java programs via
multi-objective genetic programming,” IEEE Transactions on Software
Engineering, vol. 46, no. 10, pp. 1040–1067, 2020.

[61] M. Martinez and M. Monperrus, “ASTOR: a program repair library for
java (demo),” in Proceedings of the 25th International Symposium on
Software Testing and Analysis. ACM, 2016, pp. 441–444.

[62] T. Durieux and M. Monperrus, “DynaMoth: dynamic code synthesis
for automatic program repair,” in Proceedings of the 11th International
Workshop in Automation of Software Test. ACM, 2016, pp. 85–91.

[63] T. Durieux, B. Cornu, L. Seinturier, and M. Monperrus, “Dynamic
patch generation for null pointer exceptions using metaprogramming,” in
Proceedings of the 24th International Conference on Software Analysis,
Evolution and Reengineering. IEEE, 2017, pp. 349–358.

[64] R. Saha, Y. Lyu, W. Lam, H. Yoshida, and M. Prasad, “Bugs.jar: A large-
scale, diverse dataset of real-world java bugs,” in Proceedings of the 15th
IEEE/ACM International Conference on Mining Software Repositories.
ACM, 2018, pp. 10–13.

[65] T. Durieux and M. Monperrus, “Introclassjava: A benchmark of 297
small and buggy java programs,” KTH Royal Institute of Technology,
Tech. Rep., 2016.

[66] D. Lin, J. Koppel, A. Chen, and A. Solar-Lezama, “QuixBugs: a multi-
lingual program repair benchmark set based on the quixey challenge,”
in Proceedings Companion of the 2017 ACM SIGPLAN International
Conference on Systems, Programming, Languages, and Applications:
Software for Humanity. ACM, 2017, pp. 55–56.

[67] K. Liu, A. Koyuncu, T. F. Bissyandé, D. Kim, J. Klein, and Y. L.
Traon, “You cannot fix what you cannot find! an investigation of fault
localization bias in benchmarking automated program repair systems,”
in Proceedings of the 12th IEEE International Conference on Software
Testing, Verification and Validation. IEEE, 2019, pp. 102–113.

[68] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang,
“Precise condition synthesis for program repair,” in Proceedings of
the 39th IEEE/ACM International Conference on Software Engineering.
IEEE, 2017, pp. 416–426.

[69] X. Liu and H. Zhong, “Mining stackoverflow for program repair,” in
Proceedings of the 25th IEEE International Conference on Software
Analysis, Evolution and Reengineering. IEEE, 2018, pp. 118–129.

[70] M. Soto and C. Le Goues, “Using a probabilistic model to predict bug
fixes,” in Proceedings of the 25th International Conference on Software
Analysis, Evolution and Reengineering. IEEE, 2018, pp. 221–231.

[71] S. Wang, M. Wen, L. Chen, X. Yi, and X. Mao, “How different
is it between machine-generated and developer-provided patches? an
empirical study on the correct patches generated by automated program
repair techniques,” in Proceedings of the 13th International Symposium
on Empirical Software Engineering and Measurement. IEEE, 2019,
pp. 1–12.

[72] S. Wang, M. Wen, X. Mao, and D. Yang, “Attention please: Consider
mockito when evaluating newly proposed automated program repair
techniques,” in Proceedings of the 23rd Evaluation and Assessment on
Software Engineering. ACM, 2019, pp. 260–266.

[73] B. Lin, S. Wang, M. Wen, Z. Zhang, H. Wu, Y. Qin, and X. Mao,
“Understanding the non-repairability factors of automated program
repair techniques,” in Proceedings of the 27th Asia-Pacific Software
Engineering Conference, 2020.

https://doi.org/10.1145/3377811.3381749
https://doi.org/10.1145/3377811.3381749
https://doi.org/10.1145/3338906.3338945
https://doi.org/10.1145/3338906.3338945

	Introduction
	Background
	Automated Program Repair
	Flaky Tests

	Study Design
	Research Questions
	Subject Selection

	Study Results
	RQ1: [Prevalence of Flaky Tests]
	Experimental Object
	Results

	RQ2: [Dissection of Flakiness]
	Experimental Object
	Results

	RQ3: [Impacts on Fault Localization]
	Experimental Object
	Results

	RQ4: [Impacts on Repair Performance]
	Experimental Object
	Results

	Discussion
	Implications
	Threats to Validity

	Related Work
	Conclusion
	References

