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ABSTRACT
Objective  To review biomarker discovery studies using 
omics data for patient stratification which led to clinically 
validated FDA-cleared tests or laboratory developed tests, 
in order to identify common characteristics and derive 
recommendations for future biomarker projects.
Design  Scoping review.
Methods  We searched PubMed, EMBASE and Web of 
Science to obtain a comprehensive list of articles from the 
biomedical literature published between January 2000 
and July 2021, describing clinically validated biomarker 
signatures for patient stratification, derived using statistical 
learning approaches. All documents were screened to 
retain only peer-reviewed research articles, review articles 
or opinion articles, covering supervised and unsupervised 
machine learning applications for omics-based patient 
stratification. Two reviewers independently confirmed the 
eligibility. Disagreements were solved by consensus. We 
focused the final analysis on omics-based biomarkers 
which achieved the highest level of validation, that is, 
clinical approval of the developed molecular signature as a 
laboratory developed test or FDA approved tests.
Results  Overall, 352 articles fulfilled the eligibility criteria. 
The analysis of validated biomarker signatures identified 
multiple common methodological and practical features 
that may explain the successful test development and 
guide future biomarker projects. These include study design 
choices to ensure sufficient statistical power for model 
building and external testing, suitable combinations of 
non-targeted and targeted measurement technologies, the 
integration of prior biological knowledge, strict filtering and 
inclusion/exclusion criteria, and the adequacy of statistical 
and machine learning methods for discovery and validation.
Conclusions  While most clinically validated biomarker 
models derived from omics data have been developed 
for personalised oncology, first applications for non-
cancer diseases show the potential of multivariate omics 
biomarker design for other complex disorders. Distinctive 
characteristics of prior success stories, such as early 
filtering and robust discovery approaches, continuous 
improvements in assay design and experimental 
measurement technology, and rigorous multicohort 
validation approaches, enable the derivation of specific 
recommendations for future studies.

INTRODUCTION
Personalised medicine is a rapidly developing 
area in healthcare research and practice, 

which aims at providing more effective and 
safer therapies tailored to the individual 
patient, by exploiting subject-specific molec-
ular, clinical and environmental data sources 
(box 1).

A central tool in personalised medicine 
and the focus of this study is the machine 
learning (ML) analysis of omics profiling data 
to derive molecular biomarker signatures for 
disease-based or drug-based patient stratifi-
cation.1 The major goals for ML-based omics 
biomarker development are to develop more 
reliable and robust tests for drug response 
prediction, early diagnosis, differential diag-
nosis or prognosis of the future clinical disease 
course.2 Omics-derived biomarker signatures 
may help to guide treatment decisions, and 
to focus therapies on the right populations to 
prevent overtreatment, increase success rates 
and reduce costs.3 As a research and infor-
mation tool, they may enable a better moni-
toring of disease progression and treatment 
success, and guide new drug development 
and discovery.4 In contrast to classical single-
molecule biomarker approaches, omics 
signatures have the potential to provide 

Strengths and limitations of this study

	► This scoping review provides an overview of bio-
marker discovery studies using machine learning 
analysis of omics data which have led to clinically 
validated diagnostic and prognostic tools.

	► The review discusses shared characteristics of suc-
cessful biomarker studies as a guidance for study 
design, discovery and validation method choices for 
future projects.

	► Data extraction and analysis methods focus on de-
riving recommendations to optimise the design of 
prospective studies and improve analysis workflows 
for retrospective studies.

	► The review applied minimum eligibility criteria for 
sample size and statistical validation, but did not 
assess the quality of the included studies.
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more sensitive, specific and robust predictions of disease-
associated outcomes.5

However, while biomarker discovery projects using 
omics data have already led to the successful develop-
ment of clinically validated diagnostic and prognostic 
tests,6–15 many biomarker studies are discontinued after 
early development stages or fail in later clinical valida-
tion stages. Dedicated statistical and ML methodolo-
gies for omics biomarker discovery and validation have 
been published, as well as recommendations for study 
design, implementation and reporting.16 17 The distinc-
tive features and approaches which characterise prior 
successes in translating omics research findings into clin-
ically validated tests have, however, not yet been inves-
tigated in detail. In order to guide future projects on 
suitable method choices, there is a need for dedicated 
studies on the key determinants of previous translational 
successes in ML-based omics biomarker development.

As part of an EU project on ‘Personalised Medicine 
Trials’ (PERMIT18), funded within the H2020 frame-
work, we have therefore investigated the current meth-
odological practices for personalised medicine, covering 
ML approaches for omics-based patient stratification as a 
major focus area. While a broader series of questions was 
established and examined for the overall scoping review,19 
for this manuscript, we focused our analysis on biomarker 
discovery studies that have led to successful, clinically 
validated FDA-cleared tests or laboratory developed tests 
(LDTs), to determine their shared and distinctive char-
acteristics compared with studies with no clinical trans-
lation. In particular, we aimed to address the following 
specific research questions:

	► Which omics-derived biomarker discovery studies 
have led to clinically validated tests for patient stratifi-
cation (LDTs or FDA-cleared tests)?

	► What are the key characteristics shared by successful 
omics biomarker studies and distinguishing them 
from previously published biomarker studies which 
have not yet led to clinically validated tests?

	► Which types of model building and validation 
methods have been used to develop clinically vali-
dated biomarker signatures, and what are the lessons 
learnt and recommended workflows?

	► Which recommendations and guidelines have been 
proposed to address common challenges in biomarker 
development using omics data?

These questions lend themselves to a scoping review, 
because omics-derived biomarker development is still an 
evolving field, and a preliminary assessment of the poten-
tial scope and size of the available biomedical literature on 
these topics is required as a first step for further follow-up 
research. Therefore, the objective of this study was to 
address the above questions by retrieving and examining 
the current literature on biomarker discovery and valida-
tion studies using omics data and ML approaches. While 
the focus on articles describing discovery and validation 
approaches covers relevant aspects for clinical transla-
tion, we point out that other translational and regulatory 
aspects, such as the assessment of the clinical efficacy of 
biomarker-associated treatment decisions, the assessment 
of cost-effectiveness and research ethics, are not addressed 
in the present review, but have been discussed in previous 
dedicated articles.20–24 Our scoping review also does not 
aim at providing a quantitate benchmark evaluation of 
different ML approaches, but relevant studies have previ-
ously been presented for supervised ML,25 unsupervised 
clustering26 and survival prediction27 on multiple omics 
data types.

METHODS
We conducted a scoping review following the methodolog-
ical framework suggested by the Joanna Briggs Institute.28 
This framework consists of six stages: (1) identifying 
the research questions, (2) identifying relevant studies, 
(3) study selection, (4) charting the data, (5) collating, 
summarising and reporting results and (6) consultation.

The scoping review approach was considered most 
suitable to respond to the broad scope and the evolving 
nature of the field. Compared with systematic reviews that 
aim to answer specific questions, scoping reviews present 
a general overview of the evidence pertaining to a topic 
and are useful to examine emerging trends, to clarify 
key concepts and identify gaps.29 30 Before conducting 
the review, a study protocol was published on the online 
platform Zenodo.19 Due to the iterative nature of scoping 
reviews, deviations from the protocol are expected and 
duly reported when occurred. We used the Preferred 
Reporting Items for Systematic reviews and Meta-Analyses 
extension for Scoping Reviews checklist to report our 
results31 (online supplemental file 1).

Study identification
Relevant studies and documents were identified, 
balancing feasibility with breadth and comprehensive-
ness of searches. We searched PubMed, EMBASE and 
Web of Science (last search date: 27 July 2021) for articles 

Box 1  What is personalised medicine?

According to the European Council Conclusion on personalised medi-
cine for patients, personalised medicine is ‘a medical model using char-
acterisation of individuals’ phenotypes and genotypes (eg, molecular 
profiling, medical imaging, lifestyle data) for tailoring the right thera-
peutic strategy for the right person at the right time, and/or to deter-
mine the predisposition to disease and/or to deliver timely and targeted 
prevention.116

In the context of the PERMIT project, we applied the following common 
operational definition of personalised medicine research: a set of com-
prehensive methods (methodology, statistics, validation, technology) to 
be applied in the different phases of the development of a personalised 
approach to treatment, diagnosis, prognosis or risk prediction. Ideally, 
robust and reproducible methods should cover all the steps between 
the generation of the hypothesis (eg, a given stratum of patients could 
better respond to a treatment), its validation and preclinical develop-
ment, and up to the definition of its value in a clinical setting.19
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describing supervised or unsupervised ML analyses for 
biomarker discovery or personalised medicine, including 
both discovery and validation methods. The relevance 
of the search methodology was ensured by using a strict 
multistage filtering, considering only articles including 
at least one relevant search term per category from 
four categories of keywords (‘Personalised medicine/
Biomarkers’, ‘Omics’, ‘Machine Learning’ and ‘Valida-
tion’, covering both synonyms for these terms and closely 
related keywords, see figure  1, illustrating the keyword-
based search strategy, and online supplemental file 2 for 
the detailed search queries), and subsequently postfil-
tering the retrieved articles manually to exclude studies 
not involving omics-based biomarker research or lacking 
a description of ML and validation analyses (see sections 
on Eligibility criteria and Study selection). To cover 
only relevant scientific content, the scope was limited to 
journal publications and meeting abstracts from inter-
national conferences and workshops, and no other grey 
literature was included. We restricted inclusion to reports 
published from January 2000 to July 2021 (covering also 
‘online first’ articles with official publication date in the 
future) in English, French, Spanish, Italian and German 
language. Since to the best of our knowledge, the first 
clinically validated FDA-cleared omics-derived biomarker 
signature was published in 2002,32 only few preliminary 
discovery studies were expected to have taken place 
significantly earlier than 2002, and we, therefore, did not 
extent the search further backwards in time than January 
2000.

Eligibility criteria
We included peer-reviewed methodology articles, review 
articles, opinion articles on supervised and unsupervised 
ML methods for omics disease prediction and stratifica-
tion and associated statistical cross-validation (CV) and 
multicohort validation methods (addressing accuracy, 
robustness and clinical relevance). Only approaches 
tested on real-world biomedical omics data were 
reviewed, while studies relying purely on simulated data 
were excluded. We also excluded papers on biomarker 
methods without a demonstrated biomedical applica-
tion, and those with insufficient sample size (ie, removing 
studies covering less than 50 samples per group for the 
main conditions studied, unless a dedicated power calcu-
lation was presented) or statistical validation (ie, lack of 
clear descriptions of CV or external testing methodology, 
performance metrics and test statistics). These exclusion 
criteria were not specified in the generic review protocol, 
but they were agreed among the authors prior to the 
screening process.

To cover both data from original research papers and 
prior systematic reviews, we extracted information from 
three main article types: (1) applied research papers, (2) 
methodology articles with demonstrated applications and 
(3) review articles on methods, applications and valida-
tion approaches.

Apart from these inclusion and exclusion criteria, for 
the final result presentation, the statistical investigations 
covered all selected articles, whereas the detailed discus-
sion of study characteristics focused on the studies that 

Figure 1  Keyword based search strategy for the scoping review. Four categories of keywords were defined to retrieve relevant 
articles from the biomedical literature on machine learning analyses of omics data for personalised medicine, which include 
a validation study (highlighted by the coloured boxes in the centre). For each category relevant keywords were determined, 
including controlled vocabulary terms from the Medical subject Headings (MeSH) thesaurus by the US National Library of 
Medicine (upper and lower boxes with frames coloured according to the corresponding category). As indicated by the keyword 
‘and’ in the centre, a conjunctive search was conducted, that is, every retrieved article had to contain at least one keyword from 
each category. This strategy was adapted for searching the other databases.
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led to clinically validated biomarker signatures tested on 
multiple cohorts with large sample sizes (ie, studies using 
a power calculation to demonstrate the adequacy of the 
chosen sample sizes, or covering hundreds or thousands 
samples per studied subject group).

Study selection
We exported the references retrieved from the searches 
into the online tool Rayyan.33 Duplicates were removed 
automatically using the reference manager Endnote V.X9 
(Clarivate Analytics, Philadelphia, USA) and manually by 
the reviewers. One reviewer loaded the retrieved records 
into the online screening tool Rayyan,33 and two reviewers 
confirmed the eligibility independently by covering both 
the screening for all records and the full-text review for 
the articles preselected by the screening. Disagreements 
were solved by consensus.

Charting the data and synthesis of results
We designed a data extraction form using Excel (online 
supplemental file 3). General study characteristics 
extracted covered author names, title, citation, type of 
publication (eg, journal article, meeting abstract), study 
population and sample size (if applicable), methodology/
study design and outcome measures (if applicable). 
Specific items associated with the topic of the scoping 
review included the study type (eg, case–control study, 
differential diagnosis study, prognostic study, review—
methods, review—applications, review—validation); the 
article type (journal or conference article), the generic 
ML domain (eg, supervised/unsupervised); and the 
name of specific approaches for outcome prediction and 
for validation. Moreover, to capture key findings related 
to the review questions, relevant sentences were extracted 
from each reviewed article, and if needed, complemented 
by a brief explanatory remark, and by writing out abbrevi-
ations used in the original text.

The reviewers piloted the data extraction form using 
five records from the retrieved article collection. Two 
reviewers (EG, AR) working independently extracted the 
data from the included articles. In the case of disagree-
ments, consensus was obtained by discussion.

In the final full-text review stage, the preselected articles 
were grouped by topic, categorising articles into applied 
versus methodological studies, supervised versus unsu-
pervised analyses and assigning algorithm type identifiers 
to each article (review articles and papers on validation 
methodologies were considered as separate categories 
without a specific algorithm type assignment). The full-
text review and categorisation of articles into different 
publication types was done through independent manual 
inspection by the two reviewers.

While the information on sample sizes and validation 
methods was documented as part of the data extraction 
(online supplemental file 4, a spreadsheet version has 
been made available on the online platform Zenodo34), 
it was not within the remit of this scoping review to assess 

the methodological quality of individual studies included 
in the analysis.

Consultation exercise
The members of the PERMIT consortium, associated 
partners, and the PERMIT project Scientific Advisory 
Board discussed the preliminary findings of the scoping 
review in a 2-hour online workshop.

Patient and public involvement
The European Patients' Forum is a member of PERMIT 
project. Although not directly involved in the conduc-
tion of the scoping review, they received the draft review 
protocol for collecting comments and feedback.

RESULTS
Study selection and general characteristics of reports
We retrieved 1563 abstracts from the literature search. 
After the removal of duplicates, we screened the 
remaining 1475 abstracts for eligibility. A total of 619 
records were excluded, while 856 abstracts were retained 
for the full-text assessment. Finally, we included 352 arti-
cles that passed all filtering criteria in the data extraction 
and analysis (see flow chart in figure 2 and online supple-
mental file 4, providing the reference for each selected 
article, as well as information on the study type and 

Figure 2  Study selection flow diagram. Flow diagram of 
the procedure for the scoping review article identification, 
screening, eligibility assessment and final inclusion, 
according to the PRISMA (Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses) scheme.31 Reasons 
for excluding full-text articles were not mutually exclusive.
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methodology, the outcome measures, the validation type, 
and representative sentences from each article on the 
main study results and key findings; a spreadsheet version 
of this table has been made available on the online plat-
form Zenodo34).

The full-text article review revealed that many studies 
did not meet the pre-defined inclusion criteria: 371 
articles (43%) were removed because of an insufficient 
sample size, and 105 further articles (12%) were excluded 
because they provided insufficient details on the valida-
tion results or methodology (see figure  2). This shows 
that the challenges of recruiting an adequate number 
of participants per study group or conducting sufficient 
omics profiling experiments for robust model building 
and validation are not met in a large proportion of omics 
biomarker studies. Moreover, many studies lack adequate 
documentation for the study design and validation.

For the selected articles that cover primary research on 
omics biomarker studies, the majority (78%) rely entirely 
on an internal validation involving data from only a single 
cohort, whereas studies that use an external validation 
on an independent cohort are still underrepresented 
(only 12% of articles describe both an internal CV and 
an external cohort validation, and an additional 10% 
include an external validation, but do not report internal 
CV results). However, when comparing the numbers of 
published studies over different periods of time during 

the past 20 years, the relative proportion of studies 
including an external validation has increased in recent 
years (see figure 3), suggesting a growing recognition of 
the importance of independent, multicohort validation.

Next, we investigated the countries of origin for the 
selected articles, showing that the USA are contributing 
the largest proportion of validated biomarker studies 
(28%), followed by China (18%), Canada (5%), Germany 
(4%) and the UK and India (both 3%; see also figure 4, 
providing a map visualisation of the country statistics). 
These country representations show limited correlation 
with population sizes and may largely reflect worldwide 
variation in relative biomedical research productivity 
reviewed in previous study.35 Since the most prolific coun-
tries in the development of molecular diagnostics have 
already set up policies and regulations for omics-based 
and ML-based in vitro diagnostics and medical devices 
(eg, see the life cycle regulation of artificial intelligence 
based and ML-based software devices in the USA36), they 
may also provide a role model for countries still in the 
process of establishing similar regulatory frameworks.

When inspecting the representation of study design 
types in the filtered article collection, the great majority 
of documents described diagnostic studies (67%), prog-
nostic and survival prediction studies were covered in 
8% of articles, and studies examining therapy or drug 
response in 7% (see figure 5). Apart from this, 13% of 

Figure 3  Validation methods used in omics biomarker studies. Stacked bar chart of the number of articles retrieved in the 
scoping review for different categories of validation methods used in the underlying biomarker studies (covering time periods 
from 2000 to 2021). The majority of studies use only internal cohort validation approaches, such as CV, training/test set split 
validation, resampling/bootstrapping-based validation, out-of-bag validation (for tree-based classifiers), and combinations of 
CV and test set validation within the same cohort. Studies with an external validation on an independent patient cohort (with 
or without an additional internal CV) are still underrepresented, even in more recent time periods. All filtered full-text articles 
derived from the scoping review except for review articles were included in the analysis.
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articles were reviews on methodologies and applications 
in the field, and 5% of articles described other rare study 
types (eg, tissue-of-origin prediction studies or combina-
tions of different study types).

Since a detailed discussion of all filtered articles is not 
within the scope of the present review, in the following, 

we focus on reviewing representative omics biomarker 
studies which achieved the highest validation level, that 
is, clinical approval of the developed molecular signa-
ture as an LDT or FDA approved test (see the overview of 
studies in table 1 and the FDA web-site37). We investigate 
the shared features of these successful studies, examine 
how they address common shortcomings and missing 
features of other reviewed studies, and summarise the 
lessons learnt.

Success stories in OMICs-based biomarker signature 
development
Cancer approved omics-derived diagnostic tests (nine studies)
The first and most well-known omics-derived molec-
ular test to receive FDA clearance was MammaPrint, a 
prognostic signature using the RNA expression activity 
of 70 genes to estimate the risk for distant tumours 
metastasis and recurrence in early-stage breast cancer 
patients.6 32 38–41 This test was developed at the Nether-
lands Cancer Institute, using DNA microarray analysis to 
investigate primary breast tumours of 117 patients. Super-
vised ML was applied to the resulting data to identify a 
highly predictive gene signature for a short interval to 
distant metastases in lymph node negative patients.32

A distinctive feature of the development approach 
behind this signature in comparison to other reviewed 
studies was the multistage filtering and CV strategy used 

Figure 4  Map representation of country statistics for the selected articles. The number of articles originating from different 
countries among the studies selected in the full-text review are visualised on a world map representation using a colour gradient 
from blue (1 article) to red (98 articles=maximum contribution by a single country; using a logarithmic colour gradient scale to 
highlight differences over a broad value range).

Figure 5  Representation of study types among the selected 
articles. The percentage of articles describing case–control 
studies, therapy/drug response studies, differential diagnosis 
studies, prognostic and survival prediction studies, as well as 
review studies and other study types is represented as a pie 
chart.
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in the initial discovery study, which may explain the 
repeated confirmation of the signature in later validation 
studies.6 38–41 From 25 k genes represented on the DNA 
microarrays, only those significantly regulated in more 
than 3 tumours out of 78 sporadic lymph-node negative 
patients were preselected, and further filtered by retaining 
only the genes with a minimum absolute correlation 
with the disease outcome of 0.3. The resulting list of 231 
genes, rank-ordered by absolute correlation, was inves-
tigated by sequentially adding the next top five genes 
from the list to a candidate ML classifier and evaluating 
its performance by leave-one-out CV. This procedure was 
repeated as long as the estimated accuracy of the classi-
fier improved, providing a final candidate signature of 70 
genes. The final signature was validated on multiple inde-
pendent test sets, including a set of 19 external samples 
in the original study and several additional validations on 
independent cohorts in follow-up studies.6 38–41

The MammaPrint signature provided the role model 
for the subsequent development of a similar prognostic 
test for colon cancer, ColoPrint.42–47 This test aims at 

detecting the approx. 20% of patients with stage II colon 
cancer expected to experience a relapse and develop 
distant metastases. It uses an 18-gene expression signa-
ture, developed by analysing DNA microarray data in a 
similar manner to the MammaPrint approach. The diag-
nostic approach has been commercialised as an LDT to 
assist physicians in selecting treatment options for colon 
cancer patients. Similar to MammaPrint, the signature 
development was characterised by extensive discovery 
and validation studies, which involved multiple statistical 
reproducibility, stability and precision analyses for inde-
pendent, large-scale patient cohorts.48

Another widely used cancer-related LDT, which 
received clearance by the U.S. Food and Drug Administra-
tion (FDA) in 2013, is the Prosigna Breast Cancer Prognostic 
Gene Signature Assay, previously called PAM50 test.49–53 
This assay assesses mRNA expression for a signature of 
58 genes (50 target genes + 8 endogenous control genes) 
to predict the risk of distant recurrence for hormone-
receptor-positive breast cancer between 5 to 10 years after 
diagnosis (prerequisites are that the patients have been 

Table 1  Examples of clinically approved omics-derived diagnostic or prognostic tests designs applied to personalised 
medicine (synonyms for the same test are separated by the ‘/’-symbol)

Name Test approval type Purpose (data type used for discovery) References

MammaPrint FDA-cleared Assay Breast cancer risk-of-recurrence assessment (DNA 
microarray gene expression data).

6 38–41

ColoPrint LDT Colon cancer development of distant metastasis 
prediction (DNA microarray gene expression data).

42–47

Prosigna assay/PAM50 FDA-cleared Assay Breast cancer risk of distant recurrence prediction (DNA 
microarray gene expression data).

49–53

Oncotype DX LDT Breast cancer risk-of-recurrence assessment (DNA 
microarray gene expression data).

8 56–59

Decipher LDT Prostate cancer metastatic risk prediction (DNA 
microarray gene expression data).

9 64–68

Cancer Type ID LDT Predict tumour type for cancers of unknown / uncertain 
diagnosis (DNA microarray gene expression data).

15 69–71

Afirma Gene Expression 
Classifier

LDT Discriminate between benign and cancerous thyroid 
nodules (DNA microarray gene expression data).

72–77

Foundation One Heme LDT Test for haematologic malignancies, sarcomas or solid 
tumours (RNA and DNA sequencing data).

14 79–81

PGDx Elio Tissue Complete FDA-cleared Assay Test to assess somatic mutations and tumour mutation 
burden for solid tumours (DNA sequencing data).

83 116

AlloMap Heart FDA-cleared Assay Identifying heart transplant recipients with risk of cellular 
rejection (DNA microarray gene expression data).

13 85–87

Corus CAD LDT Identify obstructive coronary artery disease (DNA 
microarray gene expression data).

11 88–91

Vectra DA LDT Multibiomarker blood test for rheumatoid arthritis 
(immunoassay+clinical data, 396 candidate biomarkers 
derived from integrative data analysis).

93–96

Helix Laboratory Platform 
& Health Risk App for Late-
onset Alzheimer’s

FDA-cleared medical 
device

Whole exome sequencing constituent device based for 
reporting and interpreting general genetic health risks 
(DNA sequencing data).

99–101

FDA approval status was checked on the web-site by the FDA (37) and reflects the status as of July 2021.
CAD, coronary artery disease; FDA, U.S. Food and Drug Administration; LDT, laboratory developed test.
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treated with hormonal therapy and surgery, and are stage 
I or stage II lymph-node negative, or in stage II with one 
to three positive nodes). The test development started 
with a microarray discovery study and involved a multi-
stage filtering, using consecutive applications of statis-
tical tests and CV to propose a subset of candidate gene 
markers.54 The authors compared the reproducibility 
of classification scores obtained with these markers for 
three centroid-based prediction methods to ensure the 
robustness of the methodology. By further developing the 
approach into a more sensitive PCR-based test, and later 
into an assay using the NanoString nCounter Dx Analysis 
System, the predictive performance was improved in a step-
wise fashion. The original discovery study was character-
ised by significantly larger sample sizes than the majority 
of reviewed biomarker studies, with a training set of 189 
samples, test sets of 761 patients evaluated for prognosis, 
and 133 patients evaluated for prediction of pathologic 
complete response to treatment with taxane and anth-
racycline. These study design features in combination 
with multistage filtering and validation approaches, and 
improved measurement technology during the course 
of the study, may explain the successful progression 
of the PAM50 test to FDA clearance. The test has only 
three genes in common with the MammaPrint approach 
(KNTC2, MELK, ORC6L), which may be explained by the 
different technical and analytical approaches used, but a 
previous comparative evaluation concluded that the tests 
provide broadly equivalent risk information for females 
with oestrogen receptor (ER)-positive breast cancers.55

Among the LDTs for breast cancer prognosis, Onco-
type DX is a further test commonly used in clinical prac-
tice.8 56–59 The underlying gene signature consists of 16 
cancer-associated genes and five reference genes, and 
is therefore often also referred to as ‘21-gene assay’. 
Its main application is to predict risk of recurrence in 
oestrogen-receptor positive tumours. The relevance 
of this prognostic tool for treatment selection may be 
explained by the strong association of the provided recur-
rence score with the probability of positive treatment 
response to chemotherapy.60 Oncotype DX was developed 
using a consecutive refinement procedure, starting with 
the reverse transcription–polymerase chain reaction 
(RT-PCR) assessment of 250 candidate genes across 447 
patients from three distinct studies to identify the 21-gene 
signature after multiple filtering steps. A recurrence score 
algorithm built using the signature as input was clinically 
validated on 668 independent patients.61 The selection of 
the 16 cancer-related genes included in the assay involved 
scoring the performance of the candidate features in all 
three studies and the consistency of the primer/probe 
performance in the assay.62 Thus, particular strengths 
of the development process for this LDT include the 
consideration of both technical robustness and statis-
tical robustness of the assay across distinct cohorts. The 
Oncotype DX signature shares one gene with MammaPrint 
(SCUBE2), and nine genes with the Prosigna PAM50 test 
(BIRC5, CCNB1, MYBL2, MMP11, GRB7, ESR1, PGR, 

BCL, BAG1). However, an independent clinical validation 
of Oncotype DX and the PAM50 signature for estimating 
the likelihood of distant recurrence in ER-positive, node-
negative, post-menopausal breast cancer patients treated 
with endocrine therapy suggested that the PAM50 signa-
ture provided more prognostic information than Oncotype 
DX.63

While the first validated omics biomarker signatures 
were developed for breast cancer, similar diagnostic and 
prognostic tools have followed for other cancer types. One 
of these is the Decipher Prostate Cancer Test,9 64–68 which 
differs from other omics-derived diagnostic tools by being 
provided together with a software platform and database, 
the Decipher Genomic Resource Information Database 
(GRID), that captures 1.4 million expression markers per 
patient to facilitate personalised care. The test itself uses 
22 preselected RNAs to predict clinical metastasis and 
cancer-specific mortality for patients who have undergone 
radical prostatectomy. An initial discovery study by the 
Mayo Clinic (Rochester, Minnesota, USA) investigated a 
cohort of 545 such patients, split into a training (n=359) 
and a validation cohort (n=186). Similar to other LDTs, 
the discovery started with a genome-wide profiling and 
used both statistical and ML analyses for filtering. First, 
t-tests were applied (reduction from 1.4 mil. to 18 902 
differentially expressed RNAs), then regularised logistic 
regression (reduction to 43 candidate markers), and 
finally a random forest-based feature selection (reduction 
to final set of 22 RNAs). Apart from testing the signature 
in the validation cohort, further external validations were 
performed in subsequent studies.9 64–68 Overall, distinc-
tive strengths of the used approach include the improved 
interpretability of the test results through supporting 
analyses on the GRID platform, and the robustness of 
the discovery and validation approach, involving large 
sample sizes and several complementary statistical and 
ML assessments.

While most diagnostic tests in oncology have been 
designed for specific cancer types, a dedicated LDT has 
also been developed for cancers of unknown or uncer-
tain diagnosis. The Cancer Type ID test by bioThera-
nostics distinguishes between 50 different tumour types 
using a 92-gene RT-PCR expression measurement signa-
ture.15 69–71 This signature was derived from analyses of a 
microarray data collection covering 446 frozen tumour 
samples and 112 formalin-fixed, paraffin-embedded 
(FFPE) samples of both primary and metastatic tumours. 
Modelling steps involved k-nearest neighbour clustering 
and classification, and a genetic algorithm to explore the 
search space of possible feature subset selections. After 
successful CV (84% accuracy) and external validation 
(82% accuracy on 112 independent FFPE samples), the 
microarray-based signature was further developed to use 
more sensitive RT-PCR measurements. Testing the new 
approach on an independent validation set provided an 
increased accuracy (87%). Distinctive characteristics of 
the development process that may have contributed to 
the positive validation include the efficient and extensive 
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exploration of the search space of possible gene subset 
selections via a genetic algorithm, the large sample sizes 
used for discovery and validation, and the transfer of 
the assay from microarrays to the more sensitive RT-PCR 
platform.

The first omics-derived biomarker signatures addressed 
only the most frequent cancer types, but more recent 
applications in oncology focus on the diagnosis of less 
common malignancies, such as thyroid cancer. Typi-
cally, deciding whether a thyroid nodule is benign or 
cancerous is possible via a fine needle aspiration (FNA) 
biopsy, without requiring more complex measurements 
or analyses. However, while direct FNA-based diagnosis is 
feasible in most cases, indeterminate results can occur.72 
To help prevent unnecessary surgeries for the corre-
sponding patients, a molecular signature and LDT known 
as the Afirma Gene Expression Classifier (GEC) has been 
developed to discriminate benign from cancerous thyroid 
nodules.72–77 The original discovery study behind the GEC 
signature used mRNA expression analysis in 315 thyroid 
nodules, covering 178 retrospective surgical tissues and 
137 prospectively collected FNA samples. Two ML classi-
fiers were trained separately on surgical tissues and FNAs, 
assessing the test set performance on 48 independent, 
prospective FNA samples (50% of which had indetermi-
nate cytopathology). Discriminative features were selected 
using a linear modelling approach implemented in the 
software Limma, and a linear support vector machine was 
applied for model building and performance estimation 
via 30-fold CV. The successful CV results were confirmed 
on multiple distinct cohorts.72 75–78 While the internal 
validation used in the initial study cannot address cohort-
specific biases, the combined use of established feature 
selection and modelling approaches, and the subsequent 
external validation across multiple cohorts with large 
sample sizes may account for the successful translation of 
this signature.

Most omics-based diagnostic tests identified in our study 
rely purely on gene expression profiling data. However, 
more recently, first multiomics signatures for diagnostic 
purposes have been developed. One of the first LDTs 
that integrated information from both RNA and DNA 
sequencing was the FoundationOne Heme assay.14 79–81 
This assay aims to detect haematologic malignancies, 
sarcomas, paediatric malignancies or solid tumours 
(including among others leukaemias, myelodysplastic 
syndromes, myeloproliferative neoplasms, lymphomas, 
multiple myeloma, Ewing sarcoma, leiomyosarcoma and 
paediatric tumours). The test identifies four types of 
genomic alterations (base substitutions, insertions and 
deletions, copy number alterations, rearrangements) 
and reports microsatellite instability and tumour muta-
tional burden to facilitate clinical decision making. This 
approach was originally developed and evaluated using 
reference samples of pooled cell lines in order to model 
the main characteristics that determine the test accu-
racy, including mutant allele frequency, indel length and 
amplitude of copy change.79 A first validation using 249 

independent FFPE cancer samples, which had already 
been characterised by established assays, confirmed the 
accuracy of the test. External validation studies on inde-
pendent cohorts corroborated the utility of the test for 
further diagnostic applications.14 82 The study results 
highlight the potential of integrating diverse biological 
data sources in order to obtain more robust and reliable 
predictions, a strategy that may be promising in particular 
for complex disorders that involve very heterogeneous 
phenotypes.

A common limitation of genomic profiling approaches 
for diagnostic testing is that most analyses have to be 
performed in centralised specialty laboratories, which 
limits a wider use and results in long waiting times. To 
address this shortcoming, the Elio Tissue Complete 
assay, an in vitro diagnostic test cleared in 2020 by the 
FDA for assessing somatic mutations and tumour muta-
tion burden (TMB) in solid tumours, has been developed 
as an integrated DNA-to-report approach to enable a 
decentralised evaluation in all diagnostic labs with next 
generation sequencing (NGS) technology.83 The analyt-
ical performance of the test was assessed by comparing it 
with the FoundationOne test (see above) using a concor-
dance analysis on 147 tumour specimens. It provided a 
positive percent agreement (PPA) above 95% for single 
nucleotide variants (SNVs) and insertions/deletions, and 
80%–83% PPA for copy number alterations and gene 
translocations.83 The test has recently also been applied 
to investigate the response to immune checkpoint inhib-
itors (ICIs) in metastatic renal cell carcinoma, using a 
retrospective evaluation of SNVs, TMB, microsatellite 
status and genomic status of antigen presentation genes.84 
While no correlation between treatment response and 
TMB was observed, one-third of patients with progressive 
disease following ICI therapy displayed loss of heterozy-
gosity of major histocompatibility complex class I genes 
vs 6% of disease control patients, suggesting that loss 
of antigen presentation may restrict ICI response.84 In 
summary, the Elio Tissue Complete assay provides an 
example of how integrating NGS analyses with bioinfor-
matics in a combined DNA-to-report approach could 
help to broaden the access to genomic diagnostics for 
both clinical and research applications.

Non-cancer approved omics-derived diagnostic tests (four 
studies)
While most clinically approved omics-derived diagnostic 
tests have been developed in the field of oncology, one 
of the first LDTs that received FDA clearance for a non-
cancer disease was the AlloMap Heart test.13 85–87 It uses 
a gene expression signature of 11 target genes and 9 
control genes in peripheral blood from heart transplant 
recipients to estimate the risk for acute cellular cardiac 
allograft rejection. The development process involved 
statistical analyses of leucocyte microarray profiling data 
from 285 samples, and subsequent RT-PCR validation 
and bioinformatics postprocessing.13 Prior knowledge 
from database and literature mining was included in the 
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analysis by mapping the data to known alloimmune path-
ways. This allowed the researchers to narrow down 252 
candidate marker genes. An RT-PCR validation on 145 
samples confirmed 68 of these candidate genes, which 
distinguished rejection samples from quiescent samples 
according to a t-test (p<0.01). Six genes were eliminated 
due to significant variation in gene expression with 
sample processing time. Next, the investigators averaged 
correlated gene expression levels to create robust meta-
level features, called ‘metagenes’, and added 20 of these 
features as new variables. A linear discriminant analysis 
was applied, providing a prediction model using four 
individual genes and three metagenes, which aggregate 
information from 11 original genes. Finally, bootstrap 
validation procedures and external test set validations 
were performed to confirm the accuracy of this signature. 
Overall, distinctive aspects of the development approach 
for the AlloMap signature include the knowledge-based 
gene discovery, a comprehensive RT-PCR validation of 
candidate genes, and the robust bootstrap and external 
validation analyses.

The first clinically validated LDT for a cardiovascular 
indication derived from omics data was the Corus coro-
nary artery disease (CAD) test, developed to identify CAD 
in stable non-diabetic patients.11 88–91 In contrast to most 
other omics-based tests, Corus CAD is not a pure molec-
ular signature test, but takes the clinical covariates gender 
and age into account. The initial discovery study used a 
retrospective microarray analysis of blood samples from 
195 diabetic and non-diabetic patients from the Duke 
University CATHGEN registry. After ranking the studied 
genes by the statistical significance of group differences 
and prior biological knowledge on their disease relevance, 
88 genes were selected for RT-PCR validation. Because 
diabetes status as a clinical covariate was significantly 
associated with the observed gene expression alterations, 
and the identified CAD-associated genes did not overlap 
between diabetic and non-diabetic patients, the authors 
decided to limit follow-up work to non-diabetic patients. 
In a prospective clinical trial, microarray profiling was 
conducted on blood samples from 198 patients, and top-
ranked genes were further validated using RT-PCR for 640 
blood samples. After multiple filtering steps, taking into 
account statistical significance in t-tests, biological rele-
vance, gene correlation clustering and cell-type analyses, 
a final signature of 23 genes was derived, composed of 20 
CAD-associated genes and 3 reference genes.92 To maxi-
mise the predictive performance, the final prediction 
algorithm was optimised to adjust for differences asso-
ciated with age and gender. Compared with most other 
reviewed studies, the Corus CAD approach stands out by 
taking clinical covariates into account in the final predic-
tion model, including an intermediate critical review and 
adjustment of the inclusion criteria (limiting the focus to 
nondiabetic patients), and integrating complementary 
filtering and validation analyses on large sample sizes.

For inflammatory diseases, a first omics-derived signa-
ture recently received approval for measuring rheumatoid 

arthritis (RA) inflammatory disease activity, the Vectra 
DA multibiomarker test.93–97 It uses blood serum samples 
and multispot 96-well immunoassay plates to assess serum 
concentrations of 12 protein biomarkers associated with 
the pathobiology of RA. The original Vectra DA score, 
which combines these measurements into a composite 
score between 1 and 100, was assessed via multivariate 
regression and displayed a high predictive power in esti-
mating a standard RA score, the Disease Activity Score in 
28 joints using the C reactive protein level (DAS28-CRP), 
in both seropositive (area under the receiver operating 
characteristic curve (AUC): 0.77, p<0.001) and sero-
negative (AUC: 0.70, p<0.001) patients.97 This score 
was later adjusted for age, gender and adiposity (based 
on leptin concentration), and validated in two cohorts 
against DAS28-CRP as a prognostic test for radiographic 
progression during the next year. The results showed that 
the new adjusted score was the most accurate indepen-
dent predictor of progression, with the rate of progres-
sion increasing from  <2% in the low1–29 adjusted score 
category to 16% in the high45–100 category.95 Overall, 
the Vectra DA approach illustrates the utility of omics-
based biomarker signatures for prognostic applications 
in inflammatory disorders, and further highlights the 
benefit of integrating omics signatures with information 
from clinical covariates.

For neurodegenerative disorders, clinically approved 
diagnostic and prognostic omics-derived tests are still 
lacking. However, recently the Helix Genetic Health Risk 
App for Late-onset Alzheimer’s Disease (AD) was cleared 
by the FDA for over-the-counter use. It detects clinically 
relevant variants in genomic DNA isolated from human 
saliva of individuals≥18 years in order to report and inter-
pret genetic health risks, and evaluates the information of 
variants with established genome-wide significant associa-
tions to AD. When tested on 99 human saliva samples, the 
accuracy was 100% with a lower 95% CI bound of 96.3%.98 
The approach uses a whole exome sequencing (WES) 
constituent device, the Helix Laboratory Platform,99–101 
as a qualitative in vitro diagnostics approach covering 
measurements for approximately 20k genes. The Helix 
Laboratory Platform has received FDA clearance through 
a new regulatory approval pathway established by the FDA 
for WES devices (Regulation 21 CFR 866.6000). Due to 
the generic applicability of the WES profiling assay used 
by this platform, called Exome+, the assay has also been 
applied to find statistically significant gene-based associ-
ations for several other phenotypes in large-scale cohort 
studies99 and to identify carriers of autosomal dominant 
diseases by population-based genetic screening.101 Thus, 
the Helix Laboratory Platform provides a first example for 
a new approval pathway for omics-based diagnostic tests, 
in which a clinically approved genomic testing device is 
not anymore linked to a single diagnostic application or 
a specific disease type. Instead, the market authorisation 
for diagnostic tests is obtained separately from the device 
and facilitated and accelerated by the prior approval 
of the constituent measurement device. For the future 
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development of omics-derived biomarker signatures, this 
may allow researchers to focus on demonstrating the clin-
ical utility of a new signature, while the analytical validity 
of the underlying testing device has already been estab-
lished previously.

DISCUSSION
Statement of principal findings
The scoping review of articles on patient stratification 
using omics data revealed common limitations in the 
study design for many published biomarker development 
projects, such as insufficient and imbalanced sample sizes 
per study group and inadequate validation methods, but 
also identified multiple studies that have led to validated 
diagnostic and prognostic tests. These success stories 
were investigated in more detail to identify common char-
acteristics in the study design, discovery and validation 
methods, which may have supported the clinical transla-
tion of the initial findings. Figure 6 outlines key shared 
aspects that are possible determinants of the study success 
and could help to guide future biomarker investigations. 
In particular, they cover the following main features:
1.	 A sample size selection, study group and replicate de-

sign that provides adequate statistical power for the 
ML analyses.

2.	 The application of robust statistical filtering and eval-
uation schemes (including multiple layers of statistical 
and ML-based feature selection, combined statistical 
and biological filters, robust validation schemes that 
involve multiple CV, bootstrapping and external valida-
tion analyses, using multiple suitable and complemen-
tary performance metrics, and providing information 
on the statistical variation and confidence intervals for 

the performance estimates, see figure  7 for an over-
view of recommended generic steps for robust model 
building and evaluation).

3.	 Clarity of the study scope and goals (involving clear 
inclusion and exclusion criteria, primary and second-
ary outcomes, and decision processes to make neces-
sary adjustments due to new knowledge gained during 
the project, such as the adjusted inclusion criteria in 
the Corus CAD study and the progression from non-
targeted microarray technology to higher-sensitivity 
RT-PCR in the case of the Prosigna test and the Cancer 
Type ID test).

4.	 Completeness and reproducibility of the study docu-
mentation (covering details on used instruments, pa-
rameters and settings, reproducible methods descrip-
tions and information on data provenance).

5.	 Interpretability and biological plausibility of the cre-
ated predictive models (including explainable and 
justifiable predictions, human-interpretable model 
descriptions, and biologically plausible models that 
agree with the current mechanistic understanding of 
the studied disorder).

6.	 Integration of prior biological knowledge into the pre-
dictive feature selection, model building and validation 
procedures (eg, using public data on disease-associated 
molecular pathways and networks; complementary 
clinical and real-world data, and relevant multiomics 
data).

Strengths and limitations
The majority of methodological recommendations 
derived from the study relate to the early planning and 
study design for biomarker discovery projects, involving 
considerations associated with the choice of the study 

Figure 6  Characteristics of successful omics-based studies. Six main categories of design and implementation aspects 
that characterise successful omics-based biomarker development studies were identified (starting from the centre left in the 
figure and proceeding clockwise): (1) adequacy of the study design and sample size selection; (2) rigour and robustness of 
the statistical evaluation; (3) clarity of scope and goals; (4) completeness and reproducibility of the study documentation; (5) 
interpretability and biological plausibility of the created predictive models; (6) integration of prior biological knowledge into the 
model building and validation procedures.
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group, sampling and blocking design, the measurement 
technology, and the input and output variables.16 17 These 
recommendations are therefore mainly applicable to 
prospective studies. For retrospective biomarker investi-
gations of already collected data, the suggestions derived 
from the review are limited to guidance on improving 
analysis workflows, for example, for filtering and eval-
uation analyses, the integration of prior knowledge 
from multiomics data and public annotation databases, 
and the choice of robust and interpretable modelling 
approaches for the generation of biologically plausible 
and reproducible prediction models. While the focus of 
the review on studies that have already led to validated 
biomarker models and that fulfil minimum require-
ments for sample size and statistical model assessment 
helps to ensure the quality of the selected articles, no 
further quality evaluation was performed. The reader 
should also note the generic limitations of ML methods 
which can affect all biomarker studies: These include the 
necessity for a representative coverage of the relevant 
outcomes in the training and validation groups, a suffi-
ciently comprehensive and sensitive coverage of infor-
mative predictor variables in the data for the outcomes 
of interest, which may not be achievable for omics data 
from tissues and body fluids with limited disease rele-
vance or measurement sensitivity, and a sufficient data 
quality in terms of the influence of systematic biases and 
noise. Moreover, for multiomics biomarker analyses, in 
addition to adequate pre-processing and ML approaches, 
suitable strategies and methods for the integration of 
diverse omics data are also needed. These multiomics 
data integration strategies were not within the scope of 
the present review, but have been reviewed in previous 
publications.102–104 Finally, more recent methodological 
developments in the ML and CV analysis of omics data, 
such as meta-learning105 and bolstered CV,106 have only 
limited coverage among the articles that passed the eligi-
bility criteria, and will therefore require further dedi-
cated study in the future.

Discussing important differences in results
Previous reviews of ML approaches using omics data for 
patient stratification have focused on domain-specific 
analyses for specific types of diseases, or specific types of 
ML methodologies.107–115 By contrast, this scoping review 
focuses on disease-agnostic workflows with generic appli-
cability across complex human disorders involving multi-
factorial molecular alterations. The coverage of statistical 
and ML approaches for stratification does not aim to 
provide a detailed discussion of specific algorithms, 
statistical methods or scoring metrics, but rather at iden-
tifying key determinants of success for generic analysis 
and validation workflows in biomedical stratification 
studies. Therefore, the results describe general workflow 
characteristics that distinguish omics biomarker studies 
with clinical translation from other studies, and cover 
associated disease-agnostic recommendations for future 
studies, whereas method recommendations specific to 
particular disease types or ML analysis types are covered 
elsewhere in domain-specific reviews.107–115

Meaning of the study: implications for clinicians and policy-
makers
The previous clinical translation successes in omics-
based biomarker development reviewed in this study, 
which have mostly been achieved in the field of oncology, 
highlight the potential for developing similar biomarker 
signatures for further disease indications. In contrast to 
conventional statistical biomarker discovery approaches, 
which focus on identifying single-molecule markers, 
systems-level analysis of omics data using multivariate ML 
approaches can identify multifactorial signatures which 
are robust against noise in individual gene or protein 
measurements, and more biologically insightful by 
reflecting disease-associated cellular process alterations 
in a more comprehensive fashion.

This scoping review has identified common charac-
teristics of omics studies which have led to clinically 
validated diagnostic and prognostic tests. Thus, the 
conclusions drawn on recommended practices for 

Figure 7  Recommended generic workflow for biomarker development using machine learning analysis of omics data. The 
machine learning analysis of omics data for biomarker discovery and validation should ideally involve dedicated quality control 
and preprocessing analyses, a dimension reduction using unsupervised feature selection (eg, a variance filtering) or data 
transformation approaches (eg, using a principal components analysis), a cross-validation on the discovery cohort, and an 
external validation on a distinct validation cohort.
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sample size selection, biological data filtering and ML, 
and the implementation of adequate validation schemes 
may help to guide clinical researchers on study design 
choices and the selection of analysis methodologies. 
Additionally, the scoping review results can help to raise 
awareness of common pitfalls, such as issues associated 
with batch effects, biases, confounding factors, lack of 
statistical power and multiple hypothesis testing, and 
thus contribute to preventing these failure causes in 
biomarker development. For policy-makers and funding 
bodies, findings on the distinctive characteristics of 
studies with successful clinical biomarker translation, 
for example, concerning the specific requirements for 
robust CV and external result validation methods, may 
provide relevant information for the design of public and 
private funding schemes for biomedical research. Risks 
in funded research projects may be addressed upfront 
through appropriate guidelines and regulations for the 
study design and validation (eg, recommendations on 
power calculations and specific validation and documen-
tation requirements). Finally, the scoping review results 
can guide clinicians involved in biomarker discovery on 
how to make better use of available public knowledge and 
data sources, for example, cellular pathway and molec-
ular interaction databases, that may allow them to exploit 
prior knowledge effectively, and create more robust and 
interpretable biomarker models.

Unanswered questions and future research
Since the recommendations and guidelines identified 
from the reviewed articles are mostly derived from estab-
lished biomarker discovery and validation approaches, 
new methodologies and upcoming trends could only 
be covered to a limited extent and may lead to changed 
recommendations in the future. In particular, in the 
reviewed patient stratification studies, some of more 
recently introduced ML concepts (eg, transfer learning, 
distance metric learning, semisupervised learning, 
structured ML, meta learning, multiview learning and 
generative models), data processing techniques (eg, 
new dimension reduction approaches, outlier removal 
methods, data augmentation techniques) and model 
validation methods (eg, bootstrapping or bolstered CV, 
uncertainty quantification), are still underrepresented 
among the eligible studies reviewed, and may provide 
suitable topics for follow-up research.

Overall, while the currently available literature on vali-
dated stratification biomarkers already provides ample 
information on common pitfalls and established prac-
tices, the development of widely accepted standard guide-
lines on methodologies for omics biomarker discovery will 
require further knowledge exchange and deliberation 
among stakeholders in the field. In particular, integra-
tion of domain-specific expertise in discussions involving 
clinicians, experimental and data scientists, and regula-
tory and legal experts is required as a follow-up effort 
to derive comprehensive methodological guidelines for 
future biomarker development.

Correction notice  This article has been corrected since it was first published. The 
author byline section has been updated.
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