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ABSTRACT

Unsupervised anomaly detection is a challenging problem,
where the aim is to detect irregular data instances. Interest-
ingly, generative models can learn data distribution, and thus
have been proposed for anomaly detection. In this direction,
the variational autoencoder (VAE) is popular, as it enforces an
explicit probabilistic interpretation of the latent space. We note
that there are other generative autoencoders (AEs) such as the
denoising AE (DAE) and contractive AE (CAE), which also
model data generation process without enforcing an explicit
probabilistic latent space interpretation. While it is intuitively
straightforward to see the benefit of a latent space with explicit
probabilistic interpretation for generative tasks, it is unclear
how this can be crucial for anomaly detection problems. Con-
sequently, our exposition in this paper is to investigate the
extent to which different latent space attributes of AEs impacts
their performances for anomaly detection tasks. We take the
conventional and deterministic AE that we refer to as plain
AE (PAE) as the baseline for performance comparison. Our
results obtained using five different datasets reveal that an
explicit probabilistic latent space is not necessary for good per-
formance. The best results on most of the datasets are obtained
using CAE, which enjoys stable latent representations.

Index Terms— Anomaly detection, autoencoder, varia-
tional autoencoder, latent representations

1. INTRODUCTION

Anomaly detection is not a trivial task, considering that anoma-
lies are often rare events in data [1]. Unsupervised anomaly
detection, where there are no labelled data for guiding learning
is even more challenging. Therefore, considering that deep
neural networks (DNNs) are power feature extractors [2], var-
ious unsupervised DNN data modeling approaches [1, 3] for
anomaly detection can be found in the literature. Autoencoder
(AE)-based methods that fall into two main categories in the
literature are particularly interesting, since they are easy to
understand and simple to train. The first method employs
AEs for feature extraction, and then performs clustering using
another algorithm, as in [4, 5]. The second method relies on
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small reconstruction errors for data points that come from the
same distribution that the AE was trained on. Other data points
are expected to have high reconstruction errors [6, 7].
AEs can be deterministic or generative as discussed in [8, 9,
10, 11]. Deterministic AEs do not learn data generation pro-
cess, and therefore cannot be sampled from; they essentially
learn a compressed representation for data, while retaining
the important features. An example of a deterministic AE is
the plain AE (PAE) [10]. Generative AEs aim to learn data
generation process based on interesting latent representations.
In this fashion, the latent representations can be sampled from
to generate novel data points. A popular assumption in gener-
ative models is that capturing the distribution of the training
data facilitates the learning of latent representations, which are
more separable [12]. Examples of generative AEs include the
denoising AE (DAE) [13], contractive AE (CAE) [13, 14, 15],
variational AE (VAE) [10] and β-VAE [11], which is simply a
generalization of VAE [10] with β = 1. It is noteworthy that
the work on β-VAE [11] advocated β > 1. Generative AEs
can either provide implicit or explicit probabilistic interpreta-
tion of the data distribution learned, as seen in Fig. 1.
On the one hand, the generative characteristics of DAE [13]
and CAE [14] that provide implicit probabilistic interpreta-
tion are well documented in the literature, but sampling from
them is a difficult task [13, 16, 17]. On the other hand, sam-
pling from β-VAE [11] that provide explicit probabilistic in-
terpretation is straightforward [10, 11], however a concrete
and unanimous account of its generative learning attributes
based on disentangled latent representations is currently lack-
ing in the literature [18, 19, 20, 21]. Another current concern
is how the β hyperparameter, which balances reconstruction
quality and disentangling attribute impacts the performance
of β-VAE [22]. Example, β-VAE with β < 1 can be seen
in [1, 23]. Furthermore, among other works, in [1], PAE (seen
as Conv-AE) outperformed VAE (seen as CVAE) on the Yahoo
dataset. In [3], PAE (seen as LSTM-AE) agained outperformed
VAE (seen as LSTM-VAE) on KPI dataset. This unexpected
observation in [1, 3] leaves to imagination whether VAE is
clearly superior in performance for anomaly detection.
As such, this paper presents a holistic empirical investigation
on how the learning characteristics of aforementioned AEs
impact their performances for anomaly detection. Our mo-
tivation for this study is that an interesting AE has a latent
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Fig. 1: Classification of autoencoders (AE) studied in this
work into generative and deterministic models.

space, which models well the structure of training data. While
the desired structure of the latent space for generative tasks
is clear [11, 19, 20], the attributes of a good latent space for
anomaly detection is tricky. For instance, taking the determin-
istic latent space of PAE as a baseline, does the generative
attributes of AEs, as seen in DAE, CAE and β-VAE, qualify
them as more interesting models for anomaly detection? Im-
portantly, does an explicitly interpretable probabilistic latent
space in an AE, as seen in β-VAE provide performance im-
provement for anomaly detection? Namely, our contributions
are as follows:

1. Study the extent to which the latent space attributes
of popular AEs such as DAE [13], CAE [14] and β-
VAE [11] impact performance for unsupervised anomaly
detection in comparison to the deterministic PAE [10].

2. Provide extensive empirical results based on F2-score,
along with interesting visualizations of latent representa-
tions for understanding decision making in the models.

The remainder of this paper is organized as follows. Section
2 discusses the background and problem statement. Section
3 presents the proposed analysis. In Section 4, we give the
experiments. The paper is concluded in Section 5.

2. BACKGROUND AND PROBLEM STATEMENT

2.1. Background

2.1.1. Deterministic Plain Autoencoder

Plain autoencoder (PAE)
The PAE is a model that can extract interesting latent repre-
sentations in data by learning to reconstruct the input in the
output layer. Let the encoder and decoder functions of the AE
be parameterized by φ and ψ, respectively. Let the model’s
inputs be xi ∈ Rd : 1 ≤ i ≤ N , and output be ẍi ∈ Rd.
As such, hi = fφ(xi) and ẍi = gψ(fφ(xi)) = gψ(hi). Let
θ = {φ,ψ}. Assuming that the output of the AE are real-
values, and follow multivariate Gaussian distribution, we can
employ the training cost

L(x, ẍ; θ) = argmin
θ

ΣNi=1(xi − ẍi)2. (1)

2.1.2. Generative Autoencoder with Implicit Interpretation

Herein, we discuss generative AEs, DAE and CAE, that do not
have an explicit probabilistic interpretation of the generative
process [13, 16]. However, novel data points can be generated
by sampling from the implicit learnt distribution [13, 16].

Denoising autoencoder (DAE)
Assuming the corruption process x̂i ∼ Λ(x̂i|xi), the DAE
is a regularized AE that tasks the hidden units, hi ∈ Rs, to
learn the reconstruction of corrupted input data, x̂i ∈ Rn
, in the output layer as x̃i ∈ Rn. For a DAE with similar
parameterization as the PAE, the cost function is

L(x, x̃; θ) = argmin
θ

ΣNi=1(xi − x̃i)2. (2)

For sampling from the DAE, Metropolis-Hastings [16] and
Markov chains [13] have been proposed.

Contractive autoencoder (CAE)
The CAE [14] regularizes h in PAE to achieve minimal re-
sponse for small changes in x, δx. CAE simply penalizes
R(h)CAE = ‖δh/δx‖2F , so that the new training cost is

L(x, ẍ; θ) = argmin
θ

ΣNi=1(xi − ẍi)2 + λR(h)CAE , (3)

where λ controls the regularization weight. CAE sampling can
be achieved using Jacobian-based Gaussian noise [15].

2.1.3. Generative Autoencoder with Explicit Interpretation

Generative AEs such as β-VAE [11] aims to explicitly estimate
the conditional probability distribution, p(h|x).

β-Variational autoencoder (β-VAE)
In β-VAE [11], computing p(h|x) requires estimating p(x) =∫
h
p(x|h)dh, which is intractable. For resolving the prob-

lem, a parametric inference model qφ(h|xi) that is an AE
encoder is used for approximating p(h|x). Generally, p(h|x)
is chosen as isotropic unit Gaussian so that the latent space
is well-behaved (continuous) in a probabilistic sense, and fos-
ters disentangled representations. Using the KullbackLeibler
(KL) divergence, R(h)V AE = KL[qφ(h|xi)‖p(h|x)], the
regularized training cost of the β-VAE is given as

L(x, ẍ; θ) = argmin
θ

ΣNi=1

[
(xi− ẍi)2 +β R(h)V AE

]
, (4)

where β ∈ R weights the regularization for R(h)V AE . For
β = 1, we have the conventional VAE [10].

2.2. Problem statement

Given an unlabelled dataset D = {xi}Ni=1, where xi ∈ n|a,
where n and a denote normal and anomalous data, respectively.
Let Dn = {xni}ri=1 : xni ∈ n, Da = {xai}ui=1 : xai ∈ a,
and N = r + u so that D = Dn ∪ Da and ∅ = Dn ∩ Da.
Furthermore, let Dn ∼ pn and Da ∼ pa. For unsupervised



anomaly detection, the AE is typically trained on only Dn.
Supposing the AE is successfully trained onDn, the AE learns
an encoding function that allows mainly the successful recon-
struction of a novel data point xj ∼ pn. It is expected that a
data point xk � pn will incur a high reconstruction loss. As
such, using a suitable reconstruction loss threshold, trec, it
possible to distinguish xj from xk.
Our problem focus is to investigate to what extent the latent
space characteristics of the different AEs discussed in Section
2.1 impact model performance for unsupervised anomaly de-
tection. Specifically, we study in the aforementioned AEs, how
the form of learning xj ∼ pn influences their performances
for detecting xk � pn.

3. PROPOSED ANALYSIS

3.1. Quantitative evaluation

We study the classification performance of the different AEs
in Section 2.1 using different unlabelled datasets. The AEs
will be trained on only normal (i.e. non-anomalous) data
points. Afterwards, the AEs will be tested using arbitrary data
points. Given that the AE is trained on Dn, we expect an AE,
which successfully learnt xj ∼ pn to make fewer mistakes
in identifying novel data points xk ∼ pn. That is, the AE
will have a higher recall than precision. As such, we evaluate
performance metrics including recall = TP/(TP+FN) and
precision = TP/(TP +FP ); where TP , FN and FP refer
to true positive, false negative and false positive, respectively.
We also evaluate the F1-score and F2-score using

Fβ-score = (1 + β2)
Precision×Recall

β2 × Precision+Recall
, (5)

where β = 1 and β = 2 for F1-score and F2-score, respec-
tively. Note that F2-score gives more weight to recall than
precision, and thus is particularly more useful for anomaly
detection as seen in other works [24, 25]. As such, F2-score
will be the main evaluation metric in this work.

3.2. Qualitative evaluation

The trained AE models are also evaluated by inspecting their
latent representations. For anomaly detection tasks, we expect
that the latent representations of good models will form more
distinct clusters. For visualization, the t-distributed stochastic
neighbor embedding (t-SNE) [26] technique is employed for
projecting the latent representations into two-dimensional data.

4. EXPERIMENTS

For experiments, we use five different datasets that include
BreastW, Ionosphere, Thyroid, Cardio, and Wisconsin breast
Cancer (WBC), which are all obtained from [27]. We note
that other works have employed similar datasets as in [28].
Table 1 shows the statistics of the different datasets. The
AE models, PAE, DAE, CAE and β-VAE, are trained on the

Dataset # Instances # Dimension Anomalous ratio

BreastW 683 9 35%
Ionosphere 351 33 36%

Thyroid 3772 6 2.5%
WBC 278 30 5.6%
Cardio 1831 21 9.6%

Table 1: Datasets statistics

Model Recall Precision F1-score F2-score

PAE 94.64% 94.90% 94.74% 94.67%
DAE (σ = 0.05) 99.00% 96.42% 97.66% 98.45%
DAE (σ = 0.1) 98.79% 96.47% 97.61% 98.31%

CAE (λ = 10−4) 99.16% 95.66% 97.37% 98.44%
CAE (λ = 10−3) 99.41% 99.45% 97.90% 98.80%
β-VAE (β=0.1) 89.67% 95.87% 92.41% 90.69%
β-VAE (β=1.0) 92.97% 96.09% 94.48% 93.56%
β-VAE (β=5.0) 92.59% 94.52% 93.49% 92.94%

Table 2: Anomaly detection results on breastW dataset

Model Recall Precision F1-score F2-score

PAE 95.71% 93.28% 94.41% 95.18%
DAE (σ = 0.05) 96.27% 93.68% 94.93% 95.72%
DAE (σ = 0.1) 96.03% 95.02% 95.45% 95.78%

CAE (λ = 10−4) 96.59% 95.72% 96.13% 96.40%
CAE (λ = 10−3) 97.38% 94.23% 95.75% 96.72%
β-VAE (β=0.1) 54.92% 88.72% 67.65% 59.37%
β-VAE (β=1.0) 54.68% 87.18% 66.96% 58.98%
β-VAE (β=5.0) 56.51% 88.52% 68.70% 60.79%

Table 3: Anomaly detection results on ionosphere dataset

datasets. All AEs have two hidden layers with five and four
hidden units, consecutively. For each dataset, we collect all
the normal data instances, out of which 80% data instances
are randomly selected for training and the other 20% used for
testing. All the anomalous data instances are collected and
only used for testing. For choosing the model hyperparameters
and reconstruction loss threshold, trec, 15% of the training
data is used as validation data. All models are trained for
30 epochs using mini-batch gradient descent with an initial
learning of 10−3, which is annealed during training. The
DAEs are corrupted with Gaussian noise of zero mean (i.e.
µ = 0) and standard deviation of σ = 0.05 or σ = 0.1.
Contracting penalties of λ = 10−4 and λ = 10−3 as in (3)
for the CAE model are used. For determining trec, we use the
mean reconstruction loss on the validation data added to its
standard deviation. Furthermore, following the work [28], the
experiments are repeated ten times for all the datasets, and the
average recall, precision, F1-score and F2-score results for
the different models are reported.
The results of the different AEs are given in Tables 2 to 6.
Considering the F2-score as the main performance metric, it
is seen that the CAE gives the best performance on most of
the datasets, which can be attributed to its more stable latent
representations discussed in Section 2.1.2. The PAE, DAE and
VAE give competitive performance on the datasets. In Table 3,
the VAE gives clearly poor results for the ionosphere dataset.
We conjecture that the thyroid dataset may be particularly



Model Recall Precision F1-score F2-score

PAE 53.94% 79.61% 63.77% 80.87%
DAE (σ = 0.05) 93.01% 53.57% 67.86% 80.94%
DAE (σ = 0.1) 95.70% 52.83% 67.95% 82.19%

CAE (λ = 10−4) 93.66% 50.90% 65.71% 80.00%
CAE (λ = 10−3) 93.33% 55.70% 69.46% 81.91%
β-VAE (β=0.1) 95.16% 55.36% 69.68% 82.85%
β-VAE (β=1.0) 94.95% 51.99% 67.13% 81.41%
β-VAE (β=5.0) 92.80% 52.71% 67.09% 80.39%

Table 4: Anomaly detection results on thyroid dataset

Model Recall Precision F1-score F2-score

PAE 82.39% 75.85% 78.87% 80.92%
DAE (σ = 0.05) 85.74% 75.41% 80.14% 83.36%
DAE (σ = 0.1) 85.23% 72.55% 78.16% 82.19%

CAE (λ = 10−4) 86.35% 75.10% 80.18% 83.68%
CAE (λ = 10−3) 86.48% 75.15% 80.27% 83.84%
β-VAE (β=0.1) 85.23% 77.21% 80.72% 83.29%
β-VAE (β=1.0) 83.92% 76.05% 79.48% 82.02%
β-VAE (β=5.0) 85.23% 77.25% 80.85% 83.40%

Table 5: Anomaly detection results on cardio dataset

Model Recall Precision F1-score F2-score

PAE 78.10% 67.03% 71.82% 75.36%
DAE (σ = 0.05) 77.62% 68.00% 72.04% 75.17%
DAE (σ = 0.1) 78.10% 69.32% 72.75% 75.69%

CAE (λ = 10−4) 80.48% 60.83% 69.03% 75.37%
CAE (λ = 10−3) 79.52% 70.55% 74.01% 77.00%
β-VAE (β=0.1) 77.14% 69.85% 72.09% 74.64%
β-VAE (β=1.0) 76.67% 66.95% 70.66% 73.92%
β-VAE (β=5.0) 78.10% 65.43% 70.73% 74.82%

Table 6: Anomaly detection results on WBC dataset

Fig. 2: Latent representations for the AE models trained on
ionosphere dataset using t-SNE projecation

amenable to the Gaussian prior on the VAE latent structure,
and hence the interesting result. Fig. 2 and Fig. 3 show the

Fig. 3: Latent representations for the AE models trained on
thyroid dataset using t-SNE projecation

latent representations of the different AEs on the ionosphere
and thyroid datasets, respectively. It is seen in Fig. 2 that for
the PAE, DAE and CAE, the anomalous latent representations
(i.e. purple points) concentrate on the extreme ends on the
latent space, and thus facilitate anomaly detection. In contrast,
for the VAE, the anomalous latent representations spread out in
the centre of the latent space, and thus make anomaly detection
difficult. We hypothesize that such failure of the VAE could
be related to the restriction of latent space continuity imposed
by the Gaussian prior distribution; see Section 2.1.3. In Fig.
3, the latent representations of all the AEs have decent latent
spaces, though there is some overlap of the normal (i.e. yellow
points) and anomalous latent representations.

5. CONCLUSION

Autoencoders (AEs) with different formulations, and thus
learning attributes are popular for anomaly detection. The
variational autoencoder (VAE) with a continuous latent space
and explicit probabilistic interpretation has attracted attention
for anomaly detection. Interestingly, unclarity for the opera-
tion and performance of VAE can be found in the literature. As
such, this paper investigates the extent to which VAE compares
with other AEs such as the plain autoencoder (PAE), denoising
autoencoder (DAE) and contractive autoencoder (CAE) using
five different datasets. We find that the explicit probabilistic
interpretation and continuous latent space attributes of VAE
does not often translate to better performance in comparison
to PAE, DAE and CAE. Instead, the CAE with more stable
latent representations gives the best performance on most of
the datasets, while VAE clearly fails on one of the datasets.
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