Logical Methods in Computer Science
Volume 17, Issue 3, 2021, pp. 2:1-2:40 Submitted Jul. 05, 2018
https://Imcs.episciences.org/ Published Aug. 10, 2021

A CHARACTERISATION OF OPEN BISIMILARITY
USING AN INTUITIONISTIC MODAL LOGIC

KI YUNG AHN “, ROSS HORNE®, AND ALWEN TIU ©

¢ Department of Computer Engineering, Hannam University, Daejeon, Korea
e-mail address: kya@hnu.kr

® Computer Science, University of Luxembourg, Esch-sur-Alzette, Luxembourg
e-mail address: ross.horne@uni.lu

¢ Research School of Computer Science, Australian National University, Canberra, Australia
e-mail address: alwen.tiu@anu.edu.au

ABSTRACT. Open bisimilarity is defined for open process terms in which free variables may
appear. The insight is, in order to characterise open bisimilarity, we move to the setting
of intuitionistic modal logics. The intuitionistic modal logic introduced, called OM, is
such that modalities are closed under substitutions, which induces a property known as
intuitionistic hereditary. Intuitionistic hereditary reflects in logic the lazy instantiation
of free variables performed when checking open bisimilarity. The soundness proof for
open bisimilarity with respect to our intuitionistic modal logic is mechanised in Abella.
The constructive content of the completeness proof provides an algorithm for generating
distinguishing formulae, which we have implemented. We draw attention to the fact that
there is a spectrum of bisimilarity congruences that can be characterised by intuitionistic
modal logics.

1. INTRODUCTION

This work provides insight into the logical nature of open bisimilarity [San96], but firstly
we recall why open bisimilarity itself is important. An asset of open bisimilarity is that
it defines a congruence relation for open process terms, i.e., process terms containing free
variables. Recall that the original notions of bisimilarity proposed for the 7-calculus (early
and late bisimilarity [MPW92, MPW93]) do not directly define congruence relations for open
process terms. Having a bisimilarity that is a congruence for open process terms improves
compositional reasoning, since, having established an algebraic property, we can apply the
property with confidence, anywhere inside a process, even under constructs such as input
prefixes that bind variables. By providing a notion of bisimilarity that is a congruence for
open process terms, open bisimilarity provides a method for the m-calculus that stays true
to this desirable property of a processes algebra.

Besides improved algebraic properties, open bisimilarity can be used to improve the
efficiency of equivalence checking. For example, open bisimilarity is the notion of bisimilarity

Key words and phrases: bisimulation, modal logic, intuitionistic logic.

|E5| LOGICAL METHODS © K.Y. Ahn, R. Horne, and A. Tiu
IN COMPUTER SCIENCE DOI:10.46298/LMCS-17(3:2)2021 @ Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

2:2 K.Y. AnN, R. HORNE, AND A. T1U Vol. 17:3

implemented in the Mobility Workbench [VM94] — the first toolkit for the 7-calculus; and in
the tool SPEC [TNH16] — an equivalence checker for the spi-calculus, useful for verifying
cryptographic protocols. A reason open bisimilarity is efficient to implement is that it
allows a lazy approach to instantiating variables. When we perform an input action, we are
not required to explore all possible inputs. Instead, we can represent the input value as a
variable symbolically representing all possible inputs. This symbolic approach to inputs can
avoid unnecessarily exploring hyper-exponentially many inputs; instead, exploring only the
state space necessary. This lazy “call-by-need” approach to input transitions is particularly
useful when checking bisimilarity for applied extensions of the m-calculus, where infinitely
many messages may be received for a single input action [BN06, TD10, HM21]. Thus open
bisimilarity has impact beyond the setting of the m-calculus.

The trick for ensuring that open bisimilarity is a congruence, and also for permitting a
lazy approach to inputs is as follows: an open bisimulation is closed under all permitted
substitutions at every step in the bisimulation game. When we move to the setting of
logic, closure under substitutions corresponds to a concept called intuitionistic hereditary,
which can be used to induce an intuitionistic logic [Kri65]. This observation leads us to the
intuitionistic modal logic in this work.

To understand why closing under substitutions results in an intuitionistic modal logic,
firstly consider the setting of a classical modal logic. In a classical setting, the law of
excluded middle holds, hence we expect that <T>tt \% —|<7'>1I is a tautology. That is, any
process can either perform a 7-transition or it cannot perform a 7-transition.

In contrast, now consider the setting of an intuitionistic modal logic. In the intu-
itionistic setting we close under all substitutions, so P &= —|<T>‘U3 now reads, under any
substitution o, process Po cannot perform a 7-transition. Under this interpretation we have
the following.

ab | c(z) (1)t
To see why the above is not satisfiable, observe that, by applying substitution {$;} to
the above process, we reach process ¢b | ¢(x), which is a m-calculus process for which
a communication is enabled on the channel represented by variable c¢. Since we have
demonstrated there is a substitution under which a 7-transition can be performed, process
ab | c(z) cannot satisfy formula —~(7)t in the intuitionistic setting.

As in the classical case, in the intuitionistic case we have the following, since there is a
substitution under which no communication can be performed (the identity substitution).

ab | c(z) = (1)t
Putting the above together, we have the following in our intuitionistic modal logic, since we
have just shown that neither branch of the disjunction is satisfiable.

ab | c(z) = (m) V= (T)t

Notice the above we claimed was a tautology in the classical case, since it is an instance
of the law of excluded middle. Hence the above example demonstrates that, by closing
operators of the modal logic under substitutions, the law of excluded middle does not hold.
The absence of the law of excluded middle is a key criterion for any intuitionistic logic.

Intuitively, the absence of the law of excluded middle for the example above can be
interpreted as follows. For ab | ¢(z), we have not yet decided whether the process can
perform a 7-transition or not perform a 7-transition. It is possible that a and ¢ could be the
same channel but, since they are variables, we have not yet decided whether this is the case.

Vol. 17:3 A CHARACTERISATION OF OPEN BISIMILARITY 2:3

So, inducing the key feature of an open bisimulation, closure under substitutions, in
a modal logic gives rise to an intuitionistic modal logic. Furthermore, we establish in this
work that such an intuitionistic modal logic, called OM, characterises open bisimilarity.
In the tradition pioneered by Hennessy and Milner [HMS85], a modal logic characterises
a bisimilarity whenever, given two processes, they are bisimilar if and only if there is no
distinguishing formula separating them. A distinguishing formula is a formula that holds for
one process but does not hold for the other process. Such distinguishing formulae are useful
for explaining why two processes are not bisimilar, since when processes are not bisimilar
we can always exhibit a distinguishing formula.

As an example of a distinguishing formula, consider the following two processes.

R 2 7.(@b.a(x) + a(x).ab+ 1) + 7.(@b.c(x) + c(x).ab) SE R+7.(ab| c(z))

The above processes are not open bisimilar. Process R satisfies [T] (<T>ﬁ: Y —|<T>1t), where
the box modality indicates that <T>tt \% —|<T>U§ holds for all processes reachable by applying a
substitution and then a 7-transition. However, process S does not satisfy [T] (<T>‘U$ \Y —|<T>'U$),
since there is a 7-transition to process ab | c¢(z) that we just agreed does not satisfy
<T>‘U3 \% —|<T>‘U3. In this example, the absence of the law of excluded middle is necessary in
order for a formula distinguishing these processes to exist in OM.

Modal logics characterising late bisimilarity and early bisimilarity were developed early
in the literature on the m-calculus, by Milner, Parrow and Walker [MPW93], as part of the
motivation for the m-calculus itself. However, proving that a modal logic can characterise
open bisimilarity was an open problem until a solution was provided in the conference
version of this paper [AHT17a]. This extended version includes more details on proofs, new
examples, details on the mechanisation of soundness, and further insight into the spectrum
of bisimilarity congruences that can be characterised by variants of our intuitionistic modal
logic. We also show that soundness and completeness results for OM extend from finite
processes to infinite but finitely branching processes, without changing the logic, since finite
distinguishing strategies are sufficient to distinguish such processes.

A key novelty of this work is the constructive proof of completeness of this logical
characterisation. Due to the intuitionistic nature of the modal logic, the completeness proof
cannot appeal to certain classical principles, such as de Morgan dualities. This forces the
proof to follow a strategy quite different to corresponding completeness proofs for classical
modal logics. The proof directly constructs a pair of distinguishing formulae for every pair
of processes that are not open bisimilar.

Outline. Section 2 introduces the semantics of intuitionistic modal logic OM. Section 3
recalls open bisimilarity and states the soundness and completeness results. Section 4 presents
the proof of the correctness of an algorithm for generating distinguishing formulae, which is
used to establish completeness of OM with respect to open bisimilarity. Section 5 situates
OM with respect to other modal logics in the spectrum of classical and intuitionistic notions
of bisimilarity, highlighting that open bisimilarity is not a canonical notion of bisimilarity
congruence for the 7m-calculus and that other bisimilarity congruences can also be characterised
by intuitionistic modal logics, including a new notion of late bisimilarity congruence, called
intermediate bisimilarity, introduced for this discussion. Section 6 describes how the
proof assistant Abella [BCG'14] was used to mechanically prove soundness of OM with
respect to open bisimulation. The soundness theorem (Section 6) and selected examples
(Section 2 and Section 4) have been mechanised in the Abella theorem prover, and are

2:4 K.Y. AnN, R. HORNE, AND A. T1U Vol. 17:3

P Q

_— ——— & n(m)
T ou=T (progress) m.PZy P ve.P Iy vr.Q
Tz (free output)
Z(z) (bound 01'1tput) S Q v Py Q if = € ba(r)
IE(Z) (IHPUt) vy P z(z) Q m then z fresh for R
Py R Py R P> Q
P:=0 (deadlock) p — p \p
v P (new) P+Q5 R [t=2]P Z» R P I Q)
F'P P Ea‘?tloﬁg PIEy, p Qi PTG P QI
T = matc
PP (par) PIQT (P Q) PlQo P Q%)
'f) + P (ChOICG) P z(z) P/ P z(z) ’ P Ty P/ P z(z) /
P (replication) — — Q - —> Q
P To 0o (P | Q) P e P Q%)

Figure 1: Syntax and semantics of the m-calculus, omitting symmetric rules for choice and
parallel composition, where n(z(y)) = n(z(y)) = n(zy) = {z,y}, bn(z(y)) =
bn(Z(y)) = {y}, n(7) = bn(r) = bn(Zy) = 0, and fn(r) = n(x) \ bn(w). Processes
ve.P, z(x).P and z(z).P bind z in P.

available online.! Section 7 demonstrates an implementation of the algorithm automatically
generating distinguishing formulae, extracted from the proof of Proposition 4.9.

2. INTRODUCING THE INTUITIONISTIC MODAL LOGIC OM

We recall the syntax and labelled transition system of the 7-calculus (Fig. 1). Note all the
atomic symbols z, v, ... are variables. There is no separate syntactic class for channels or
names in this presentation of the m-calculus. Distinctions between the roles of variables
are made by the use of binders: variables may appear as open variables, be bound by an
input binder, or by a new name binder. Notably, the new name binder vz.P indicates any
occurrence of x in P is a ground name that is distinct from any other ground name and
cannot be guessed by an observer unless it is provided explicitly to the observer through
an output action?. Variables may also be bound by an input binder, say z(x).P where
occurrences of variable x in P are treated as placeholders for some message (also represented
by a variable) that will be received when an input on a channel represented by variable z
occurs. Variables that are not bound, i.e., free variables, are critical for this call-by-need
approach to the w-calculus where they are used as symbolic placeholders that range over all
possible ways in which they may be instantiated.

Other features include: the deadlocked process that can do nothing, output prefixes that
output a free variable or extrude a variable bound by a new name binder on a channel, the
silent progress action 7, the match guard that tests for equality, parallel composition, and

lyia https://github.com/alwentiu/abella/tree/master/pic

2An explanation, coming from computational security, is the new name binder represents a nonce selected
from a set of nonces that is exponential in size w.r.t. some sufficiently large parameter, hence cannot be
guessed by an observer.

https://github.com/alwentiu/abella/tree/master/pic

Vol. 17:3 A CHARACTERISATION OF OPEN BISIMILARITY 2:5

non-deterministic choice. We also include a replication operator, which creates unboundedly
many parallel copies of a process.

Transitions are labelled with four types of action ranged over by 7: free outputs, bound
outputs, inputs and internal progress (7). A free output represents sending a free variable,
whereas a bound output represents extruding a bounded name. We employ a late labelled
transition system for the m-calculus, where the variable on the input action is a symbolic
placeholder that need not be instantiated until after an input transition. The action 7
represents some internal communication, resulting from the synchronisation of an input and
output action. We use the notations bn(E) and fn(F) to represent the bound variables and,
respectively, free variables in a given expression E (processes, actions, formulae, etc.). We
assume a-conversion for bound variables.

Histories are used in the definitions of both the intuitionistic modal logic and open
bisimilarity. Histories are lists representing what is known about free variables due to
how they have been communicated previously to the environment. There are two types
of information about variables recorded in a history. Variables x, that were bound by a
new name binder and have been extruded using output action a(x), we call private names,
and denote them in histories by x°. Variables z, symbolically representing the possible
messages received by an input action a(z), are denoted in histories by z’. What matters is
the alternation in the history between variables representing extruded private names and
variables representing symbolic inputs: if an input variable is to be instantiated with a
private name, the private name must have been extruded by an earlier output in the history.
This is reflected in the following definition of a respectful substitution.

Definition 2.1 (o respects h). A history is a (dot separated) list of variables annotated with
o or i. Substitution o respects history h whenever, for all A’ and h” such that h = b/ - 2°-h”,
xo = x, and for all y € fn(h'), we have yo # x. Here fn(h') is all the variables appearing
anywhere in A/

For example, substitution {¥.} respects history =’ -y° - 2%, since input variable z appears
after y was output, hence y was known to the environment at the time z was input. In
contrast, substitution {¥;} does not respect history z* - y° - 2%, since variable x was input
before private name y was output.

Remark 2.2. Note that histories fulfil the role of sets of inequality constraints called
distinctions in the original work on open bisimilarity [San96]. Although distinctions are more
general than histories, it is shown in [TM10] that given a history h and its corresponding
distinction D, the corresponding definitions of open bisimilarity coincide.

Histories effectively form a symbolic constraint system restricting the use of variables.
It is worth noting that the effect of histories can also be achieved by maintaining a set of
fresh name constraints, indicating that a private name output is fresh with respect to the
free variables in the process at the moment the private name was output, as proposed for
symbolic approaches to the -calculus [JVP12]. In order to capture open bisimilarity using
such a symbolic constraint systems, care needs to be taken to ensure that the constraint
system is interpreted intuitionistically.

2.1. The semantics of the intuitionistic modal logic OM. The syntax for modal logic
OM extends intuitionistic logic with equality and modalities, as follows.

2:6 K.Y. AnN, R. HORNE, AND A. T1U Vol. 17:3

PE"% always holds.

P " £ never holds.

PEMz=y iff 2 and y are the same variable.

PEMoLANpy iff PP ¢y and P =" ¢o.

PEPM g1V iff PE" ¢ or PP ¢y,

PE"¢ D ¢1 iff Vo respecting h, Po =" ¢10 implies Po =" ¢q0.

PEM (a)¢ iff 3Q, P % Q and Q =" ¢.

PEM(a(z))e iff 3Q, P2 Q and Q " ¢

()¢ iff 3Q, P2 Q and Q " ¢.

oz} 1) iff Vo respecting h,VQ, Po 2% @ implies Q =" ¢o.

PR 6(2)](1) iff Vo respecting h, VQ, Po a(2), Q implies Q E"7*" ¢o.
(z)]¢ iff Vo respecting h,VQ, Po LLON Q implies @):h”'zi ¢o.

In each of the above, « is of the form 7 or @b; and z is fresh for h, and o.

Figure 2: Semantics of the modal logic OM.

Definition 2.3. The syntax for modal logic OM is defined by the following grammar.

o= & top
. bottom

; z O z arﬁ intuitionistic logic
| ¢D¢ implies
| x=y equality
di d

: <[7T}>:§ 1am(];n } modalities

T (0):¢

Formulae of the form [a(z)]¢, [a(z)]¢, (a(z))¢, or (a(z))¢, bind variable z in ¢.

The semantics of intuitionistic modal logic OM, presented in Fig. 2, is defined in
terms of the late labelled transition system in Fig. 1 and history respecting substitutions
(Definition 2.1). Satisfaction is defined as follows, by treating all free variables as inputs in
the past.

Definition 2.4 (satisfaction). Satisfaction, written P = ¢, holds whenever P Fmﬁx% 0]
according to the inductive definition in Fig. 2, where fn(P) U fn(¢) C {zo,...,x,}. Note
fn(P) and fn(¢) are simply the free variables in P and ¢ respectively.

Both modalities are closed under all respectful substitutions. However, observe in Fig. 2
there is an asymmetry in the definition of these modalities. In contrast to the box modality,
the definition of the diamond modality need not be closed under all respectful substitutions.

To explain this asymmetry between the box and diamond modalities in the definitions,
observe, for the diamond modality, a transition must be possible regardless of the substitution.
Thus it is sufficient to check the identity substitution. For example, the following is not

satisfiable.

o= yir i ()
To check the above does not hold, it is sufficient to check that [x = y]7 cannot perform a
7-transition. This is reflected in the semantics of the diamond modalities.

Vol. 17:3 A CHARACTERISATION OF OPEN BISIMILARITY 2:7

In contrast, for the box modality there may exist substitutions other than the identity
substitution enabling a transition, hence we should consider all respectful substitutions.
Perhaps the simplest example, requiring closure of box under respectful substitutions, is the

following:
[z =yl7 = [7](z =)

The above satisfaction holds since for any substitution o such that ([z = y]7)o D» 0 it must
be case that xo = yo. Thus for all such substitutions we have 0 = zo = yo holds, as
required. In contrast, observe the above process does not satisfy [T]ff.

Intuitionistic hereditary establishes that all formulae are closed under respectful substi-
tutions. We state this property of OM as a lemma, since it will be used in the completeness
proof later in this paper.

Lemma 2.5 (intuitionistic hereditary). If P =" ¢ holds then P8 ="° ¢6 holds for any 6
respecting h.

The hereditary lemma suggests a Kripke model for OM that satisfies the usual frame
conditions for intuitionistic logic: consider respectful substitutions as a binary relation
between ‘worlds’, where a world is simple a set of equalities between variables. Then it can
be proven that this gives rise to an intuitionistic Kripke frame. The satisfaction relation in
Figure 2 can be reformulated using this notion of worlds explicitly. The interested reader
may consult Appendix A for details of a Kripke semantics for OM. We note that the Kripke
semantics presented there is not needed to prove the main results of this paper; hence can
be safely skipped.

2.2. Checking the law of excluded middle is invalidated. Given the semantics in
Fig. 2, we can now formally check examples from the introduction. We claimed ab | ¢(z) &
<T>U: \% —|<7'>tt, where —¢, as standard, is defined as ¢ D ff. This example demonstrates the
law of excluded middle is invalid. Appealing to the rule for disjunction, observe that we
have the following.

ab | c(z) ¥ (1) and ab | c(z) = ~(1)t
The former can hold only if @b | ¢(x) is guaranteed to make a 7-transition; but such a
transition is only possible under a substitution o such that ac = co, hence @b | c(z) & (7)1t
For the latter, we should consider all substitutions which enable a 7-transition; and, since
such a substitution {%,} exists, ab | c(xz) & —(7)t.

Critically for this work, the above example illustrates that a property typically used
to establish the completeness of open bisimilarity with respect to a classical modal logic
breaks down. In the classical setting, we expect P [~ ¢ if and only if P = —¢. However, as
the above example demonstrates, there are processes, such as ab | ¢(x), that do not satisfy
<T>‘U3, but also do not satisfy —|<7'>tt. Hence in the intuitionistic setting we cannot appeal
to this principle of classical modal logic.

As a further example of this principle, observe the following are both unsatisfiable.

TI#[T](x:y) and Tl#ﬁ[T](x:y)
The former is unsatisfiable since, under the identity substitution, 7 Z» 0, but 0 = = = y.

The latter is also unsatisfiable since, there is a substitution {%;} such that 7{%;} T» 0
still holds and 0 = z{%} = y{%} holds; but clearly 0 = f£{%;} can never hold; hence

T [r](@=y).

2:8 K.Y. AnN, R. HORNE, AND A. T1U Vol. 17:3

As expected for an intuitionistic logic, further classical dualities break, as witnessed by
the following examples of unsatisfiable formulae.

[z =y]r £ ()t D (1) and 0 ~—=(z=y)D(z=1y)
Also de Morgan dualities cannot be applied. For example, classically we have P =
_\([T]ff A <T>tt) if and only if P |= <T>‘U$ \% [T]ff. However in the intuitionistic setting we
have the following.

ab | c(z) =~ ([7] € A (7)tt) but ab | c(z) () V [7] £

Note, in this paper, intuitionistic negation is used only to explain such examples illustrating
the intuitionistic nature of OM. Results in subsequent sections do not depend on intuitionistic
negation. However, related work [HALT18] highlights that intuitionistic negation has a role
when logically characterising open bisimilarity for processes with mismatch (inequality guards,
which can model the else branch of an if-then-else statement). Thus this formulation of
OM is robust for some useful extensions of the w-calculus.

3. OPEN BISIMILARITY, SOUNDNESS AND COMPLETENESS

We recall the definition of open bisimilarity. Open bisimilarity is the greatest symmetric
relation closed under all respectful substitutions and labelled transitions at every step. Notice
we use the history to record whenever a (symbolic) input or private output occurs.

Definition 3.1 (open bisimilarity). An open bisimulation R is a symmetric relation on
processes, indexed by a history h, such that: if P R" Q then, the following hold:

e For all substitutions o respecting h, we have Po R" Qo.
o If P % P’ then there exists Q' such that Q % @’ and P’ R" @', where « is a 7 or ab.

o If P23, P, for x fresh for h and Q, there exists Q' such that Q =), Q' and P' R"*° Q'.
o If P 22, P, for x is fresh for h, there exists Q" such that Q =), Q' and P' R"*" @',

Open bisimilarity, written P ~ @, is defined whenever there exists an open bisimulation R
such that P R*0%n Q, where fn(P) U fn(Q) C {xo,..., 7}

The main result of this paper is that, for finite m-calculus processes open bisimilarity is
characterised by OM formulae. This result is broken into soundness and completeness of
the intuitionistic modal logic characterisation.

Theorem 3.2 (soundness). If P ~ Q then for all OM formulae ¢, P = ¢ iff Q = ¢.

Theorem 3.3 (completeness). If we have that for all OM formulae ¢, P |= ¢ iff Q = ¢,
then P ~ Q).

The proof of soundness has been mechanically checked in the proof assistant Abella
[BCG™14] using the two-level logic approach [GMN12] to reason about the m-calculus
semantics specified in AProlog [NM88]. The proof of soundness proceeds by induction on the
structure of formulae. An explanation of the soundness proof and mechanisation we defer
until Section 6.

The proof of completeness is explained in detail in Section 4. Before providing proofs, we
provide examples demonstrating the implications of Theorems 3.2 and 3.3. Due to soundness,
if two processes are bisimilar, we cannot find a distinguishing formula that holds for one
process but does not hold for the other process. Due to completeness, if two process are not

Vol. 17:3 A CHARACTERISATION OF OPEN BISIMILARITY 2:9

open bisimilar, then we can construct a distinguishing formula that holds for one process
but does not hold for the other process. Thus OM formulae can be used as a certificate
that can be presented as efficiently checkable evidence to explain why two processes are not
open bisimilar.

3.1. Sketch of algorithm for generating distinguishing formulae. The completeness
proof, explained later in Section 4, contains an algorithm for generating distinguishing
formulae for processes that are not open bisimilar. Here, we provide a sketch of the
algorithm executed on key examples.

3.1.1. Example requiring intuitionistic assumptions. The algorithm proceeds over the struc-
ture of a tree of moves that show two processes are not open bisimilar — the distinguishing
strategy. In the base case, we have a pair of processes where, under a substitution, one
process can make a transition, but the other process cannot match the transition. We
provide two examples of applying the base case to obtain formulae.

[x = y|T o 7+ The distinguishing strategy for these processes is as follows: the process
7 leads with transition 7 Z» 0, but [z6 = yf]7 can make a 7-transition only when
z6 = yf. From this distinguishing strategy we generate two formulae, one biased
to each process®. Since process 7 leads in the distinguishing strategy, <’7’>'U: is a
distinguishing formula biased to process 7, as follows.

TE(T)% and [z =ylT £ (1)1

As remarked in the previous section, negating formula <T>ﬂ: does not provide a formula
biased to [z = y]7. To construct a formula biased towards [x = y|7, write down a box
modality [T] followed by the strongest postcondition that holds after a 7-transition is
enabled, i.e. x = y. This gives rise to the following distinguishing formula, as required.

z=ylrE[r](e=y) and T [7](z=y)

[x = y]T # 0: For these processes the distinguishing strategy is ([x = y]7){%z} T 0, but 0
cannot make a 7-transition, under any substitution. To construct a distinguishing
formula biased to [z = y|7, we write down = = y as the weakest pre-condition under
which a 7-transition is enabled, expressed as follows.

[z=ylr=(z=y) D (")& and 0F (z=y) D (r)&

To construct a formula biased to 0, write [7’] followed by ff, which, vacuously, is

the strongest postcondition guaranteed after 0 performs a 7-transition, since no 7-

transition is enabled under any substitution. This gives us the following distinguishing
formula.

0k [r]# and [z =7 [~ [7] £

Now consider the inductive case of an algorithm for constructing distinguishing formulae.

In the inductive cases, two processes cannot be distinguished by an immediate transition.

However, under some substitution, one process can make a 7 transition to a state, say

P’, but, under the same substitution the other process can only make a corresponding

transition to reach states); that are not open bisimilar to P’. This allows a distinguishing

3By “biased”, we mean the formula is satisfied by the process indicated but not by the other process
considered.

2:10 K.Y. AnN, R. HORNE, AND A. TiU Vol. 17:3

formula to be inductively constructed from the distinguishing formulae for P’ paired with
each @Q;.
For example, consider how to construct distinguishing formulae for processes P and @)
below.
P Erz=ylr+74+7T o THTTE2Q -+
\LT T\L
[z =yl 0 T

Observe from the above transitions, that the process P can perform a 7-transition to a
state [z = y|7 that is not bisimilar to any state reachable by a 7-transition from process Q.
Process @Q may perform 7-transitions either to 7 or 0. However we have just seen above that
[x = y|T % 0 and [z = y]T £ T; hence we have a distinguishing strategy.

The distinguishing strategies and distinguishing formulae for the above base cases, enable
us to construct distinguishing formulae for this inductive case. The distinguishing formula
satisfied by P is a diamond modality followed by the conjunction of the distinguishing
formulae biased to [x = y|7 in each base case above, as follows.

P = <T>([T](x =y) A (:C:y D <7’>1I)) and Q@ }~ <T>([T](ﬂs:y)/\ (xzy D <T>tt))

The distinguishing formula satisfied by @) is a box followed by the disjunction of the formulae
not satisfied by [z = y|7 in each of the base cases above, as follows:

P [r]((m)w Vv [r]£) and Q[[r]((r)& V [r]£)
To confirm that the above are indeed distinguishing formulae for P and @, assume for
contradiction that Q = (7)([7](z =y) A (z =y D (7)&)) holds. By definition of diamond
modalities, this holds iff either 0 = [r](z=y) A (z=y D (T)&t) or 7 = [7](z=y) A
(x =y D <T>ﬁ;) holds. Observe that 0 =z =y D <T>ﬁ: holds iff we make the additional
assumption that x and y are persistently distinct, i.e., we have additional assumption
—(z =y). In addition, observe that 7 |= [7](z =y) holds iff we make the additional
assumption that x = y.
Indeed, by these observations, we know that the following hold:

rrr (@ =yVa(e=9) 2 (1) ([fl@=y A (z=y D (r)r))

T+ T.T | <T>([T](az =y)A(z=yD <T>ﬁ:)) D(x=yV-(z=y))
Notice that x = y V —=(x = y) is an instance of the law of excluded middle for equality; hence,
in the classical setting, assuming the law of excluded middle, the formula above biased to @
is also satisfied by P; and vice versa. Indeed there would be no distinguishing formulae for
processes P and (Q; and hence in a classical framework the modal logic would be incomplete
for open bisimilarity.
Similarly, in the intuitionistic setting, we can mechanically prove the following.

TH+TT4+Tjr=ylrE@=yV-(r=y)) D [T] (<T>u" v [T]ﬁ>

THrr+rlz=ylrE[F](NeV[r]#) D (z=yV(z=y))
Since intuitionistic logics do not assume the law of excluded middle, as long as we evaluate
the semantics of OM in an intuitionistic framework, we have distinguishing formulae. We

have formalised in Abella the above four examples of satisfaction involving the law of
excluded middle.

Vol. 17:3 A CHARACTERISATION OF OPEN BISIMILARITY 2:11

3.1.2. Example involving private names that are distinguishable. Respectful substitutions
ensure that a private name can never be input earlier than it was output. Consider the
following processes.

P2 vrazr.a(y).r ~ vzaz.a(y).r=yT=2Q

These processes are not open bisimilar because P can make the following three transition
steps: va.az.a(y).7 al@), a(y).t W, r 7, 0. However, () can only match the first two steps.
At the third step, a base case of the distinguishing formula algorithm for 7 4% "Y' [z = y|7
applies. In this case, any substitution 6 respecting a’-x°-y enabling transition [z = y]76 I» 0
is such that y# = x and x6 = x; hence z6 = y0. Hence we have the following formulae biased
to each process.

[x =y|T):ai'xo'yi [7‘] (r =) and T }:ai'xo'yi <7’>tt
By applying inductive cases of the distinguishing formulae algorithm to the input and output
actions, we obtain the following two distinguishing formulae.

ve.az.a(y).T = <6(ac)><a(y)><7>ﬂ: and vz.az.a(y).[r =yt E [6(:6)] [a(y)] [T] (x=1y)

3.1.3. Ezample involving private names that are indistinguishable. In contrast to the previous
example, consider the following processes where the process on the right extrudes a private
name and then compares it to a free variable.

vr.ar ~ vr.az.fr=al|r

These processes are open bisimilar, hence by Theorem 3.2 there is no distinguishing formula.
The existence of a distinguishing formula of the form <6(w)>(z =aD <T>'U3) is prevented
by the history. For example, both vz.az.[z = a]7 |= (a(z))(z = a D (r)&) and ve.az |
<6(x)>(w =aD <7‘>ﬁ:) hold.

To see why, observe vz.az =% (a(z))(xz = a D (7)t) holds if and only if vz.ax GO
and 0):“i'xo r=a>D <7'>‘U3. By definition of implication, this holds if only if, for all 8 respect-
ing a’ - 2° and such that 26 = af, we have 0):“imo <7'>U:. However, there is no substitution
0 respecting a® - x° such that 6 = af. By the definition of a respectful substitution, § must
satisfy 6 = x and = # af, contradicting constraint 6 = af. Thereby 0):“i'xo r=aD <7'>11:
holds vacuously; hence we have that vz.az = (a(z))(xz = a D (r)tt) holds as required.

4. COMPLETENESS OF OPEN BISIMILARITY WITH RESPECT TO OM

In order to prove completeness we first provide a direct definition of what it means for
two processes to be not open bisimilar, which we refer to as distinguishability. Since open
bisimilarity is defined in terms of a greatest fixed point of relations satisfying a certain
closure property, distinguishability is defined in terms of a least fixed point satisfying the
dual property. This leads to the direct definition of distinguishability in this section.

Since distinguishability is defined in terms of a least fixed point, there is a distinguishing
strategy, consisting of a finite tree of moves. We inductively define distinguishability in
terms of a family of relations on processes indexed by a history ¢, for n € N. The base case
is when, for some respectful substitution one player can make a move, that move cannot be
matched by the other player without applying an additional substitution. We then define

2:12 K.Y. AnN, R. HORNE, AND A. TiU Vol. 17:3

inductively, the family of relations P " @ containing all processes that can be distinguished
by a strategy with depth at most n, i.e., at most n moves are required to reach a pair of
processes distinguished according to relation 4y, at which point, as just explained above,
there is a process reachable by a respectful substitution that can make a move that the
other process cannot match under the same substitution.

Definition 4.1 (distinguishability). The relation g is the least relation, indexed by a

history, such that P 768 Q@ holds whenever there exist action 7 and substitution o respecting

h such that one of the following holds:

e there exists process P’ such that Po ™ P’ and there is no @’ such that Qa Q', or

e there exist process Q' such that Qo ™% Q’ and there is no P’ such that Po ™ P’.

In both cases, we require that if € bn(x), then z is fresh for Po, Qo and ho.
Inductively, #,41 is the least relation extending 7, such that P " 41 @ whenever for

some substitution o respecting h, one of the following holds, where, in the following, « is 7

or ab and x is fresh for Po, Qo and ho:

e 1P'. Po 2% P’ and V(Q; such that Qo %% QZ, P! Lho Q;, or

e 3P, Po @@, P', and, VQ; such that Qo 22 Q;, P' £ho*° Q;, or

IP'. P @, P’ and, VQ; such that Qo—> Q;, P! 4ho Q. or
e 3Q'". Qo 2% Q' and VP; such that Po %% P;, P; ' @', or

Q. Qo == (@) @', and, VP; such that Po 22" @@, p, , Q' Al P or
3Q". Qo 229y @', and, VP, such that Po 22@, P, @' hoa' P,
The relation ¢, pronounced distinguishability, is defined to be the least relation con-

taining 7, for all n € N, ie. J,cy #n. Define P ¢ @ whenever P 743:3-...1;1 @ where
ftn(P)U(Q) C {x1,...zm}.

It is immediate from the definition that distinguishability is symmetric.
Lemma 4.2. The relations «* and oy, for all n > 0, are symmetric.

It is an established result that, for the version of the m-calculus with replication that we
employ, image finiteness holds.

Lemma 4.3 (image finiteness [San95]). For process P and action 7 there are finitely many
P;, up to a-conversion, such that P Z» P;.

Distinguishability in Definition 4.1 coincides with the negation of open bisimilarity in
Definition 3.1, which relies on the fact that we consider an image-finite process calculus in
this work.

Lemma 4.4. P «# @Q (Def. 4.1) does not hold, if and only if P ~ Q (Def. 3.1) holds.

Proof. In order to establish the forward implication, we construct a relation such that
P R" Q whenever fn(P) Ufn(Q) C fn(h) and there does not exists n such that P %! Q. We
then show that R is an open bisimulation. Symmetry of R is immediate from Lemma 4.2.
Below we consider the remaining cases required to show that R is an open bisimulation.

Case of a respectful substitution: Assume that P R" Q holds and 6 respects h, and
suppose for contradiction that P8 R" Q6 does not hold. Thus there exists n such that
PO A" Qf. In the case n = 0, there exists o respecting hf and action w6 such that either:

POo ™% P’ but there is no Q' such that Qo X% @Q’; or Qo % @’ but there is no

Vol. 17:3 A CHARACTERISATION OF OPEN BISIMILARITY 2:13

P’ such that Pfo Z%% P’. Without loss of generality, consider the former case, where
POo ™% P’ but there is no Q' such that Qo X% (', and observe that, since 6 - o respects
h, by definition, we have P 748 @ holds, contradicting the assumption that P R" Q holds.
A similar argument yields a contradiction in the case that n > 0. Therefore P8 R Q6
holds.

Case of a free transition: Assume that P R" Q and P 2 P’ hold, where o = 7 or
« = Tz. For contradiction, suppose there is no @’ such that Q 2» @’. Thereby P +! Q,
contradicting the assumption that P R" Q; hence there is at least one Q; such that Q % Q;.
By image finiteness, there are finitely many such @; (quotienting by a-conversion). Now,
for contradiction, assume that P’ R" Q; does not hold for all i. Hence for all i there exists
n; such that P’ 7421 Q;. Now let n = max; {n;}, and observe that for all i, P’ £ Q;,
thereby P ! 41 Qi, contradicting the assumption that P RM Q. Thus for some i, we have
P' RM Q;, as required.

Case of a bound output transition: Assume that P R" Q and P @), pr hold, where

z is fresh for P, Q and h. For contradiction, suppose there is no @’ such that Q @), Q.
Thereby P 748 @, contradicting the assumption that P R" Q; hence for some Q; we

have @Q EON Q;. By image finiteness, there are finitely many such @; (quotienting by
a-conversion). Now assume that for all 4, we have P’ R"*° Q; does not hold. Hence for
all i, there exists n; such that P’ " Q;. Now let n = max; {n;}, and observe that for
all 4, P! 2t*° Q;, hence P 742 41 Qi, contradicting the assumption that P R" Q. Thus for
some i, we have P’ R"*° @Q;, as required.

Case of an input transition: This is almost identical to the case for bound output tran-
sitions.

Thus R is an open bisimulation. Now assume P ¢ @ does not hold, hence we have
P R*1¥m @ holds, where fn(P) U fn(Q) C {1,...2,,}; thereby, by definition of open
bisimilarity, P ~ @ holds, as required. The converse direction is immediate from the
definitions. L]

Notice that distinguishability in Def. 4.1 requires that a distinguishing strategy is
finite, and finite distinguishing strategies are sufficient to distinguish processes whose
transition systems are image finite. In a more general setting where we do not have image
finiteness (such as for weak variants of open bisimilarity or where infinitely branching process
are permitted in an extended process language) such a finite notion of distinguishability
would not suffice. In such a setting without image finiteness, in order for the negation of
bisimilarity and distinguishability to coincide, distinguishability must be defined in terms
of transfinite induction. Hence we would be required to extend OM with features offering
additional distinguishing power, for example with least and greatest fixed points as in the
p-calculus [Koz83], or with finitely supported conjunctions as in related work on nominal
transition systems [PBET20]. Here we stick to the setting where we have image finiteness,
hence, by Lemma 4.4, we can rely on finite distinguishing strategies. An investigation of the
more general setting where we cannot rely on image finiteness is proposed as future work.

4.1. Preliminaries. For the completeness proof that follows, we require the following
terminology for substitutions, and abbreviations for formulae. These are mainly standard.

2:14 K.Y. AnN, R. HORNE, AND A. TiU Vol. 17:3

Definition 4.5. Composition of substitutions o and 6 is defined such that x (o - 8) = (z0) 6,
for all z. For substitutions o and 0, ¢ < 6 holds whenever there exists ¢’ such that
o - o’ = 6. For a finite substitution o = {*14,} - - {*4,} formula [¢]¢ abbreviates formula
(xn =2p) D ...(x1=21) D ¢. For finite set of formulae ¢;, formula \/, ¢; abbreviates
¢1 V...V ¢y, where the empty disjunction is ff. Similarly /\; ¢; abbreviates ¢1 A ... A ¢y,
where the empty conjunction is tt.

We require the following technical lemmas. The first unfolds the definition of [a]gb
in Def. 4.5 above. The second is required in inductive cases involving bound output and
input. The third is a monotonicity property for transitions, along with side conditions for
the bookkeeping of bound names that may appear in labels.

Lemma 4.6. If for all 0 respecting h and o < 0, it holds that PO ="% ¢0, then P =" [U}qﬁ
holds.

Lemma 4.7. If o - 0 respects h, then 0 respects ho.

Lemma 4.8 (monotonicity). If P s Q then P8 ™ Q6, for all such that if x € bn(n)
and Yy = x then x = y.

Proof. The proof follows directly by induction on the derivation of rules. We consider two
cases only. Consider the base case for input transitions.
a(x).P al@), p

Clearly, if 20 = x, then we have af(z).P0 = (a(z).P)0 and the following labelled transition
is enabled, as required.

ab(z).Po Y@y py
Consider the inductive case for the following rule.

P
vx.P —>E($) Q

By the induction hypothesis, for all §, we have P6 abzb Q0. Hence if, in addition, 0 = x,

we have P %% Q0 and vx.PO = (va.P)# and so the following labelled transition is enabled,
as required.

PO %9z, (9
va.PO 2@y 0p O

We comment on the generality of the results in this work. Remarkably, monotonicity of
the labelled transitions (Lemma 4.8) is the only property we require of the process model in
order to prove completeness, other than image finiteness (which, as discussed previously,
could even be lifted in an extended logic). Thus it would be possible to make the results of
this paper more abstract, by ranging over any process model where the labelled transition
system satisfies image finiteness (Lemma 4.3), monotonicity of the labelled transition system
(Lemma 4.8), and, furthermore, has the same labels as for the late transition system of
the m-calculus (i.e., of the form 7, Z(z), Tz or z(z), where x and z are variables). When
viewed in terms of Kripke semantics in Appendix A, monotonicity is essentially the first
compatibility condition of Plotkin and Sterling [PS86]; which is the “zig-zag” between the
modal accessibility relation (here defined by the labelled transition along with its history)

Vol. 17:3 A CHARACTERISATION OF OPEN BISIMILARITY 2:15

and the intuitionistic information partial ordering (here defined by substitutions respecting
a history), that is sufficient to guarantee intuitionistic hereditary.

We have chosen to stick a more concrete formulation of the 7-calculus rather than being
more abstract, for two reasons. Firstly, we can clearly provide concrete examples in a single
process language familiar to a large audience. Secondly, results obtained using such a more
abstract approach should be treated with caution, since it does not immediately cover many
richer process calculi, for which the definition of open bisimilarity must be modified. For
example, when extending our results to the 7-calculus with mismatch [HALT18], we require
that the definition of open bisimilarity is extended to allow for the retrospective creation of
fresh private names in the past, when our supply of private names runs out, otherwise open
bisimilarity is not a congruence. Going further, for the applied m-calculus [ABF18] or -
calculi [BJPV11], to define open bisimilarity the labels employed are of a more general form,
so both the labels and the definition of open bisimilarity change in order to conservatively
extend open bisimilarity to these settings while retaining the property that open bisimilarity
is a congruence [HM21]. Thus it is a deliberate choice that, in this paper, we do not provide
results at the maximum level of abstraction or generality that we know how to provide;
instead, we seek to clearly map out the key novel ideas in a widely understood process
language.

4.2. Algorithm for distinguishing formulae. The direct definition of distinguishability
(Definition 4.1) provides us with a tree of substitutions and actions forming a strategy
showing that two processes are not open bisimilar. The following proposition shows that
OM formulae are sufficient to describe such strategies. For any strategy that distinguishes
two processes, we can construct distinguishing formula in OM. A distinguishing formula
holds for one process but not for the other process. In the proof of the following proposition,
at each step we construct two distinguishing formulae, one biased to the process on the left
and another biased to the process on the right, since we cannot simply construct a formula
biased to one process and negate it to obtain a formula biased to the other process, which is
the standard trick used since the early days of classical Hennessy-Milner logics [HM85]. We
discussed in Section 2, why the left biased formula cannot be simply obtained by negating
the right biased formula and vice versa; both must be constructed simultaneously and may
be unrelated by negation.

Proposition 4.9. If P « Q then there exists ¢, such that P |= ¢, and Q |~ ¢r.

Proof. Since o is defined by a least fixed point over a family of relations 4, if P #" Q, there
exists n such that P 742 @, so we can proceed by induction on the depth of a distinguishing
strategy.

In the base case, assume P 746‘ @, hence by definition, for substitution o respecting h,
Po ™ P’ for x € bn(n), x is fresh for Po, Qo and ho, such that there is no @’ such that
Qo ™ Q. Tt is sufficient to consider only this base case without loss of generality, since the
other case is symmetric (@ leads and P cannot follow).

We require the following property concerning substitutions enabling w6-transitions from
Q0, exploiting the observation that necessarily each such § must induce an additional equality
that was not yet enabled by o. There exist finitely many pairs of variables z; and y; in
fn(P) Ufn(Q) U fn(r) such that 2;0 and yjo are distinct, and, for any R and substitution

0 respecting h, if Q0 ™ R there exists j such that zj0 = y;0. To see why, assume for

2:16 K.Y. AnN, R. HORNE, AND A. TiU Vol. 17:3

contradiction that there is some @ respecting h such that Q0 ™ R but there is no « and y
in fn(P) U fn(Q) U fn(n) such that zo and yo are distinct, and 26 = yf. Stated otherwise,
for all z and y in fn(P) U fn(Q) U fn(w) if 26 = yf then xo = yo, which is precisely the
definition of a function, i.e., there is a substitution, say ', defined on the range of # such
that ¢ maps 26 to zo. In that case, 6 - ' = o on fn(P) U fn(Q) U fn(r); and hence, by
Lemma 4.8, Q99’ 09y RO contradicting the initial assumption for the base case that no
transition Qo ™ Q' exists for any Q.

In this case, there are two distinguishing formulae [o] ()t and [r]\/ (z; = y;) biased
to P and @ respectively. There are four cases to check to confirm that these are distinguishing
formulae.

Case P =" []< >ﬂ: : Consider all 8 respecting h such that ¢ < 6. By definition there

exists 0’ such that o - 0" = 0, so since Po ™ P’, by Lemma 4.8, P ™ P’#’. Thereby,
since P'6/ =M & holds, P#):he (m0)t. Hence, by Lemma 4.6, P):h o]<7r>11:.

Case Q £" [J} <7r>tt: For contradiction, assume Q =" [a] <7r>11:. Since o respects h and
o < o, by Lemma 4.6, Q =" []< >tt holds only if Qo =" <7r0>tt holds; which holds
only if there exists Q" such that Qo ™ @', contradicting the assumption no such Q' exists.
Thereby Q " []<7T>ﬂ:.

Case Q =" [7‘(‘] \/j (zj = y;): Consider substitutions é respecting h and @’ such that Q6 ™,
Q'. It must be the case that there exists j such that ;6 = y;0, thereby Q' =" 2,0 = y;0
holds; hence clearly Q' =" V; (z; = y;)6 holds. Hence @ = []\/ (x; = yj).

Case P [£" [«]\/] (zj =y;): Assume for contradiction P =" []\/j (zj = y;). This holds
iff for all processes S and substitutions respecting h, PO ™% S implies S =" V; (5 =y;)0.
Since we know that o respects h and Po ™ P, for some h”, we have P’ =" V; (zj =yj)o.

This holds only if for some j, P’):h” xjo = yjo; hence, x;0 = y;o for some j, which
contradicts the assumption that ;0 and y;o are distinct. Thereby P [£" [r]\/ ;i (@5 =yj)).

Now consider the inductive cases. Given P, @, if P 742 11 @, up to symmetry of 742 11
there are three cases to consider, for some substitution ¢ respecting h, where « is either 7
or ab, Where x is fresh for Po, Qo and ho:

e Po 2% P’ and for all Q; such that Qo 2% Q;, P’ #h Q.
o Py 0@, P'. and, for all Q; such that Qo 22, (@) Q;, P’ hoe® Q.
o Po 2@y P! and, for all Q; such that Qo 2%y Q;, P’ £hos' Q.

We consider the second case above involving bound output only, the other two cases are
similar — differing only in the accounting for respectful substitutions according to Def. 2.1.

For Po @@, pr , by Lemma 4.3, there exist finitely many); such that Qo (=), Q;.
For each i, since P’ 21'7#” Q;, by the induction hypothesis, there exist gbiL and gzﬁf such that
P =M glg and Q; " ¢Fo and P E T ¢fic and Q; M ¢Fo.

We require the following property, referred to later using {. There are finitely many
pairs of variables x; and y; selected from fn(P) U fn(Q) U {a} such that z;o and yjo are
distinct, and, for any substitution 6 respecting h (note we can apply a-conversion to ensure

that 6 also respects h-x?), such that o < 6, and for any S such that, Q0 a%@), S then either:
for some i, we have S =h0*° gblRG, or there exists some j such that z;0 = y;0.

To see why such pairs of variables z; and y; can be constructed, suppose, for contradiction,
that they cannot be constructed in general. Hence, there would exist substitution p respecting

Vol. 17:3 A CHARACTERISATION OF OPEN BISIMILARITY 2:17

h-x°, where o < p, and process S such that: Qp == ap() S, there is no i such that S =h*=* gbﬁp,
and also there is no pair of variables v and v in fn(P) U fn(Q) U {a} such that uo and vo
are distinct and up = vp. Hence p < o; therefore, there exists p’ respecting hp - x° such that

p-p' = o and hence, by Lemma 4.8, Qo (@), Sp', where Sp’ = Q; for some i. Since, p < o

and o < p, we know o' has an inverse, say o’. Now since, by Lemma 4.8, Qoo’ 222, @, Q.o
we have Qp @y Q,07; and, since Q; =hoe® ¢Fo by Lemma 2.5, we have Q;0’ =" ¢lftp,
ie., S e ¢fp, contradicting the assumption no such i exists.

From the above, it is possible to construct distinguishing formulae [o]{(a(z))A\; ¢F
and [o][a(z)] (\/2 pE v\ jlzj= y])) There are four cases to consider to verify these are
distinguishing formulae.

Case P =" [o](a(x))\; ¢F : Consider all 6 such that o < 6, 6 respects h, and without loss
of generality z is fresh for 0, i.e., for y € dom(#) and x ¢ yf. By definition, there exists 6’
such that o - ¢’ = 6. Now since o - 0’ respects h, by Lemma 4.7, 6’ respects ho hence since

x & dom(0’) and x & fn(hot’), € respects ho - z°. Thereby since §' respects ho - 2° and
also P’ ="7%° ¢Lg holds, by Lemma 2.5, it holds that P'¢’ ="%"%" ¢Fg. The above holds
for all 4, hence it holds that P'¢/ =R A\. ¢26. Now, since Po 222, @@, p' by Lemma 4.8,
since x is fresh, P§ === @), pror holds; and hence P9 =" ((a(z))/\; ¢¥)6 holds. Thereby,
by Lemma 4.6, P =" [o](a(z))\; ngL holds.

Case Q " [o](a(z))\,; ¢F : Assume for contradiction that Q =" [o](a(z))/\; #F holds.

Since o respects h and ¢ < o, by Lemma 4.6, the above assumption holds only if
Qo =" ((a(x)>/\ ¢F)o holds. Now Qo =" (@ (x))\; ¢Fo holds only if there exists Q'

such that Qo 2@y @' and Q' hoe” A\ ¢Lo, which holds only if Q' " ¢Fo for all i.
Notice that Q' = @y, for some k, and therefore Qj, =" ¢ka but it was assumed that
Qr "7 ¢Lo leading to a contradiction. Therefore @ " [o](a(z)) A, ¢F.

Case Q =" [J} [E(ac)] (\/Z oF v \/j (xj = yj)) : Fix Q' and 6 respecting h, such that o < 6,
and Q0 @» Q'. Above, in T, we established that, in this scenario, either: for some /,

we have Q' =0+’ d)fG, or there exists some k such that zp0 = y0. In the case where,
for some k, z30 = y,6, we have Q' E=""*" 21,0 = y,.0 holds. Hence in either case we have

Q' hoe (vi SRV, () = yj))e, by definition of disjunction. Thereby, by definition,
Q =" [o] [a@)] (V, ¢F V V; () = y;)) bolds.

Case P [£" [o] [a(z)] (\/ ol v V;(z; = y])> : Let us assume for contradiction that P ="
o] [a(x)] (\/ AV CTE)) Since o respects h, o < o, and Po &, P/, the previ-
ous assumption can hold only if P’ ho# (\/Z R v V;(z; = yj))a. This holds only if, for

some i, P' "ot pRo or, for some j, P’ =" (zjo = yjo). However, for all 4, P’ phoz®
¢Fo; and also, for all j, we have zjo and y;o are distinct and P’ pho-2? (zjo = y;0),
leading to a contradiction in either case. Thereby P " [o] [a(x)] (\/Z R v V; (@ = y]))

By induction we have established that, for any history h, processes P and @, and any

n, if P " @ then we can construct ¢y, such that P =" ¢y and Q " ¢r; and also we can
construct ¢r such that)):h ¢r and P I;éh ¢r. The result then follows by observing that,

2:18 K.Y. AnN, R. HORNE, AND A. TiU Vol. 17:3

since 7¢ is the least relation containing all ¢, whenever P # @Q); there exists n such that
P 74:511% Q and, where fn(P) Ufn(Q) C {«%,...,2}}; for which, there is ¢’ such that
P %% gp and Q %1 ®n ¢r; and also ¢ such that Q ="1%n ¢r and P %10 ¢p.
Hence, by Definition 2.4, indeed P = ¢, Q = ¢1, Q = ¢r and P [~ ¢g as required. []

4.3. The proof of completeness. Combining Proposition 4.9 with Lemma 4.4 yields
immediately the completeness of OM with respect to open bisimilarity. Completeness
(Theorem 3.3) establishes that the set of all pairs of processes that have the same set of
distinguishing formulae is an open bisimulation. The proof can now be stated as follows.
Proof of Theorem 8.3: Assume that for finite processes P and @, for all formulae
¢, P = ¢ iff Q@ E ¢. Now for contradiction suppose that P ~ @ does not hold. By
Lemma 4.4, P o @ must hold. Hence by Proposition 4.9 there exists ¢y, such that P |= ¢r,
but @ [~ ¢, but we assumed at the beginning that P |= ¢, holds iff @Q = ¢, holds, leading
to a contradiction. Thereby P ~ Q. L]

4.4. Example runs of distinguishing formula algorithm. We provide further examples
of processes that are not open bisimilar that illustrate subtle aspects of the algorithm. In
particular, these examples illustrate various scenarios where postconditions are required.

4.4.1. Multiple postconditions and postconditions in an inductive step. The following example
leads to multiple postconditions. Consider the following distinguishable processes.

[z =y + [w=z]T il T

Observe that clearly 7 D» 0 but ([x = y]7 + [w = z]7)8 T» only if 26 = yf or wh = z6. Thus,
[z =yl + [w = 2|7 = [7]((x = y) V (w = 2)) is a distinguishing formula biased to the left
process, while 7 = <T>'U: is biased to the right.

We consider now an example where postconditions are required in the inductive case
of the distinguishing formulae algorithm. However, firstly observe that @a + bb o¢ Ga are

distinguished since aa + bb b, 0, but process @a can only make a bb transition under a
substitution such that a = b. Hence we have the distinguishing formulae aa + bb = <bb>*d:

and aa = [bb](a = b). Now consider the following.
P £ 7.(aa+ bb) + [z = y]r.aa b 7.(@a +bb) + r.aa = Q

To distinguish these processes, Q I» aa leads, a move which can only be matched by
P T Ga + bb.

To construct formulae distinguishing P from) we use the following ingredients: the
distinguishing formulae constructed for the sub-problem @a + bb # @a; and the observation
that, for substitutions 6 such that z6 = y#f, there is an additional 7-transitions enabled:
PO Iy Ga. These observations lead us to the following distinguishing formula biased to the
process P in the left above, consisting of a box 7 followed by a disjunction comprised of the
distinguishing formula for @a + bb o @a biased to the process @a + bb on the left, and the
postcondition x = y, which must hold after the additional 7 transition is enabled.

7.(aa +) + [¢ = ylraa = [7] ((Bb)e Ve = y)

Vol. 17:3 A CHARACTERISATION OF OPEN BISIMILARITY 2:19

The distinguishing formula biased to the process () on the right above is “diamond 7”
followed by the distinguishing formula for @a + bb ¢ @a biased to the process aa, as follows.

7.(@a + bb) + r.aa = (1) [bb] (a = b)

4.4.2. Formulae generated by substitutions applied to labels. In some cases, substitutions
applied to labels play a role when generating distinguishing formulae. For a minimal example
consider the following distinguishable processes: @a # ab. A distinguishing strategy is where
process ab makes a ab transition, which cannot be matched by aa. However, we do have
transition (aa)o @y o for any substitution such that ac = bo, leading to distinguishing
formula [Eb] (a = b) biased to aa. Notice substitution o is applied to both the process and
the label.

For a trickier example consider the following processes.
vb.ab.a(x).[r = b|Tx # vb.ab.a(zr).Tx

After two actions, the above problem reduces to base case [x = b|Tx %“i'bo‘vi Tx, where Tx

can perform a Tx action, but [z = b]JZz cannot. However, ([z = bjzz){%} z2%}, () does

hold, and furthermore {;,} respects a’ - b° - 2. From these observations we can construct a
distinguishing formula biased to the left as follows.

vbab.a(z).[z = b]zz = [a(b)] [a(z)] [Tz](z = b)

4.4.3. Alternative forms for distinguishing formulae. Note our algorithm copes with sub-
optimal distinguishing strategies. To understand this, consider the distinguishing strategy
for the following processes that are clearly not open bisimilar.

[z=ylr A rlz=yr

There is an obvious optimal distinguishing strategy: 7.[z = y|7 T» [= y]7, which cannot be
matched by [z = y|7. By appealing to the base case of the distinguishing formulae algorithm,
we obtain two distinguishing formulae [T] (x =y) and <T>ﬂ: biased each respective process.

There are however, sub-optimal, distinguishing strategies. Under substitution {%;}, the
process on the left has transition ([z = y]7){%%} I 0, which can be matched, under the
same substitution, by (7.[z = y|T){¥s2} > [y = y]7. Now 0 and [y = y|7 are distinguished,
since [y = y|7 I» 0 whereas 0 is deadlocked. By applying the algorithm in Proposition 4.9,
we obtain the formula x =y D [’7’] <T>‘U3 biased to the process on the right, which is indeed
distinguishing.

As a further example of alternative distinguishing formulae, consider the following
processes.

[=y|lrr+7 b TT+T

The following is a distinguishing formula biased to the left process: [7’] [T] (x = y). However,
this is different from the left-biased formula [7‘] ([T] fV(r= y)) generated by the algorithm.
Thus, there exist alternative distinguishing formulae ...and alternative algorithms. In
particular, the above two examples highlight the open question of whether restricting
ourselves to minimal substitutions in the distinguishing strategy allows us to simplify slightly
the formulae in the inductive case of the distinguishing formula algorithm, thereby avoiding
generating formulae such as r = y D [7‘] <T>tt featuring a prefix x = y D before a box
modality.

2:20 K.Y. AnN, R. HORNE, AND A. TiU Vol. 17:3

4.4.4. A more elaborate example. This example forces the use of postconditions regardless
of whether we construct a distinguishing formula biased to the process on the left or on the
right. Consider the following processes.

PE2r4r(rr4+n)+7r[z=y|(r.lu=v)]T+7.74+7T) QEP+rlr=y|(rm+7T)

The processes above are distinguished by the following strategy. Firstly, the process @
moves, as follows; for which there are three moves P can perform.

7 /¢\

[z =y|(r.7 +7) T.T+T [z =yl(rlu=v]T+7.7+7T)
This leads to three sub-problems, for which we know already the distinguishing strategies
and formulae. Note, to distinguish [x = y|(7.7 + 7) from [z = y|(7.[u = v|T + 7.7 + T), there
is a switch in the process that leads.
From the above strategy, we can construct the following distinguishing formulae.

QE(r)((z=y> (ne)Alr]@=y) A[r]((r)eV[r]f))
P E [7‘] (<7‘>ﬂ: v [T]fﬁ V(z=y2>(r)((u=v> <T>u:) A [7‘] (u="v))))

Notice this example nests a classic example, explained previously, inside itself. The absence

of the law of excluded middle is essential for the existence of distinguishing formulae in this
example.

5. SITUATING OM wITH RESPECT TO OTHER MODAL L0OGICS CHARACTERISING
BISIMILARITIES

Open bisimilarity is not the only bisimilarity congruence. We consider here the relationship
between the intuitionistic modal logic for open bisimilarity presented in this work and
other modal logics. In doing so, we clarify why we introduce OM rather than taking an
intuitionistic variant of an established modal logic. We check that OM has a classical
counterpart characterising late bisimilarity. Also, we note open bisimilarity is not the
only notion of bisimilarity that is a congruence relation. We provide a sharp picture
explaining where open bisimilarity sits in relation to other notions of bisimilarity; notably
the bisimilarity congruences open barbed bisimilarity [SWO01] and a newly introduced late
variant of open barbed bisimilarity which we call intermediate bisimilarity, both of which
can also be characterised by intuitionistic modal logics.

5.1. Why a new modal logic OM, rather than an intuitionistic variant of LM? A
classical logic characterising late bisimilarity, called LM for “(L£) late modality with (M)
match,” was provided by Milner, Parrow, and Walker [MPW93]. £M differs from OM in
two significant ways. Firstly, LM is classical: a classical semantics is induced due to the fact
that all grounded inputs are considered immediately after an input action, where variables
appearing free represent distinct ground names, hence an input is either equal to another
ground message or it is not. Secondly, the late input box modality is defined differently,
involving an existential quantification over substitutions. Moving to an intuitionistic variant
of LM, this gives rise to the following variant of the box input modality.

P E [(z)] ¢ iff Vo respecting h,VQ, Po 222 () = 3x,such that Q }—]w

Vol. 17:3 A CHARACTERISATION OF OPEN BISIMILARITY 2:21

In the semantics of OM, we deliberately use a universally quantified box input modality,
recalled bellow; rather than existentially quantified box input modality used in LM above.

PE [a(az)]qﬁ iff Vo respecting h,VQ, Po aol@), Q= Q |:h”""“"i 0.

Recall from Sec. 6, in the box input modality of OM immediately above, the 2* appended to
the history has the effect of Vx appearing immediately after the implication (made explicit
in Fig. 5).

Hence, due to the differences in quantification for the box input modality, OM is not
quite an intuitionistic variant of LM. The carefully selected box input modality in OM is
necessary for our construction of distinguishing formulae in the completeness proof for the
characterisation of open bisimilarity using OM. To understand why, consider the following
processes that are not open bisimilar.

a(z). 7+ a(x) + a(z).lr =alr A a(z).T+ a(x)

For the above processes, our algorithm for distinguishing formulae, Proposition 4.9, correctly
generates the following OM formula biased to the right:

a(z).7+a(z)+a(z).[z=a]7 £ [a(z)] ((HwV[7]) and a(z).7+a(z) = [a(z)] ((T)&V [7]£)

If we were to use an intuitionistic variant of the input box modality of LM, as suggested
in related work [TM10], both processes satisfy the above formulae modified with a late
box input modality [a(az)]L(<T>tt Vv [7]££). To see why a(z).7 + a(z) + a(z).[r = a]7 =
[a(x)]L(<T>‘d: V [7]£) holds, observe that for the transition a(z).r + a(z) + a(z).[z =
alt al@), [= a]7 there exists {%} such that ([z = a]7){%} | (T)& V [7]£.

Also, note the formula [a(a:)]L((x =a A [r]#) V (r)~(z = a)) fails in intuitionistic
LM for both processes, despite being distinguishing for these processes in classical LM.

Although, if we use triple negation the formula becomes distinguishing in intuitionistic LM,
as follows:

a(x).m+a(z) E [a(x)]L((x =a A [7]f) V (T)~—=(z = a)) (5.1)

5.1.1. Example where box input is necessary. Notice, for the above example processes,
formula (a(z))(z = a D (7)t% A [7|(z = a)) is a distinguishing formula biased to the left, in
both intuitionistic LM and OM, since the diamond input modalities are the same in both
intuitionistic modal logics. For a more sophisticated example where box input modalities are
necessary, regardless of the bias, consider the follow processes that are not open bisimilar.

P £ a(z) +a(z).(a(y) + a(y).7) + a(z).[r = v](a(y) + a(y).7 + a(y).ly = w]7)

Q £ P+ a(x).[r = v)(aly) + aly).T)
Consider the distinguishing strategy. The first move must be made by @, which can be
matched by P in three ways.

Q a(z) P a(z)
Va() / WN
[z =2](a(y) +aly)r) 0~ a(y)+aly)r [z=02](aly)+aly).m+a(y).ly = w|7)
Each of the processes reachable by a a(x)-transition from P are not open bisimilar to
the process reachable from @ indicated above. The interesting case is the third process
reached from P above. After applying substitution {%;}, the process on the right leads the
distinguishing strategy.

2:22 K.Y. AnN, R. HORNE, AND A. TiU Vol. 17:3

[v = v](a(y) + a(y).T) [v =v](a(y) + a(y).T + a(y).ly = w]r)
0 /a(y) a(y) \ [va(i’)
T Y =w|T

The necessity of box input modalities is due to the switch from @ leading initially to the
other process leading for the second input in the distinguishing strategy. From the above
distinguishing strategy the following formula biased to P can be constructed.

PE= [a(:v)] ([a(y)]ff V{ay)eV (z=vD (ay)(y=w D (T)&A [7‘] (y=w))))

For a formula biased to @ we obtain the following.

QE (a(@))(z=v D (ay)® A [a(y)](z =v) A [aly)] ({(T)& V [7]£))
Neither of the above formulae would be distinguishing if, instead of the open box modalities
of OM, the late box modalities of LM were employed.

5.1.2. Discussion on intuitionistic LM. We have formalised the intuitionistic variant of LM
in Abella. The language of formulae for LM replaces the “basic” box input modality of OM
with the following “late” box input modality:

Type Di n— (n—0) =0

The clauses for the satisfaction relation (encoded as the predicate satLM) are those for OM
(Figure 5) without the “basic” box operator, but with the following clause for satLM :

satLM P (iX A) := V Q, {oneb P (dn X) Q} = 3 z, sat (Q z) (A z).

The example involving triple negation above (5.1) has been verified using this formalisation
of intuitionistic LM.

Related work [TM10] suggested that intuitionistic LM characterises open bisimilarity.
Unfortunately, the completeness proof in that work is flawed since they appeal to classical
principles that are not valid in the intuitionistic setting. This oversight is rectified in the
current paper, by a more direct construction in the completeness proof and by the careful
choice of input modalities in OM, explained in this section. Note however the example above
involving triple negation, suggests the problem of whether intuitionistic LM characterises
open bisimilarity remains an open problem. To offer an intuition for triple negation: it
can be regarded as an explicit test that variables are “not equal yet,” in contrast to single
negation indicating that variables are never going to be equal.

5.2. What about the classical counterpart to OM? A criteria an intuitionistic modal
logic is expected to satisfy is that, when the law of excluded middle is induced, we obtain a
meaningful classical logic [Sim94]. Fortunately, this criteria holds for OM — the classical
counterpart to OM characterises late bisimilarity. For convenience we, recall a definition of
late bisimilarity.

Definition 5.1 (late bisimilarity). A late bisimulation R is a symmetric relation, such that,
whenever P R Q:

o If P % P’ then there exists Q' such that Q 2» Q' and P' R Q.

o If P 2@y P/ then there exists @' such that Q @), Q' and P' R Q.

o If P 2%, P’ then there exists @' such that Q LION Q' and, for all z, P' R Q.

Late bisimilarity ~p, is the greatest late bisimulation.

Vol. 17:3 A CHARACTERISATION OF OPEN BISIMILARITY 2:23

Pl & and PErz==z always hold.
PEror D¢ iff PELo = PFEL o

Pk <a>q§ iff 3Q, P% Q and Q 1. ¢.

P (a(2)e iff 3Q, P D Qand, Wy, Q{%} E=p 6%}
PEp [a(z)]¢ iff VQ,P Y Q= Vz,Q [¢

Figure 3: Semantics of “classical OM”, where « is 7, ab or a(z).

A direct semantics of classical OM, in the style of Milner, Parrow and Walker [MPW93],
is presented in Fig. 3. Observe histories are not employed in the classical semantics since
inputs are instantiated eagerly, immediately after performing an input transition (see the
clauses for the input labelled transitions). Also, missing operators (conjunction, disjunction,
and [a} ¢) are derivable using classical negation; whereas in an intuitionistic modal logic
they have independent interpretations. Classical OM characterises late bisimilarity.

Corollary 5.2 (characterisation). P ~p Q if and only if, for all OM formulae ¢, we have
P ¢ iff Q L ¢, according to the classical semantics for OM in Fig. 3.

Proof. Observe that the definition of <a(x)>gz5 in Figure 3 coincides with the late modality

<a(m)>L¢ in LM. Also observe that, classically, ~[a(z)] ¢ is the “basic” diamond modality
of Milner, Parrow and Walker [MPW93]; hence classical OM is classical LM extended with
“basic” modalities. That original paper on modal logics for the m-calculus establishes that,
classical LM characterises late bisimilarity, and also LM extend with basic modalities has
the same expressive power at LM.]

Historically, Milner, Parrow and Walker emphasised late equivalence (the greatest
congruence contained in late bisimilarity) rather than late bisimilarity in the original paper
on the m-calculus [MPW92]. This is because late equivalence is closed under input prefixes.
Late equivalence can be defined by restricting to late bisimulations closed under substitutions;
and its characterisic modal logic can be defined in a simlar way, as follows.

Definition 5.3. P is late equivalent to (), written P ~p @, whenever there exists a late
bisimulation R such that for all o, Po R Qo. Define P |=; ¢ whenever for all o, Po =, ¢o.

Quantifying over all substitutions, combined with the distinct name assumption, means
that we check late bisimilarity with respect to all combinations of equalities and inequalities
between free variables. As such, late equivalence is not a bisimilarity; but is a late bisimulation.
Using the above, we obtain a characteristic logic for late equivalence, using OM formulae.

Corollary 5.4. P ~p, Q if and only if, for all ¢, P =, ¢ iff Q =, ¢.

Proof. This follows immediately from Corollary 5.2 and the following facts. For a fresh
for P, Q and ¢, a(x1)...a(zy).P ~p a(xy)...a(xy,).Q if and only if P ~f, Q, and P |=; ¢
if and only if a(z1)...a(zn).P Er (a(z1))...{a(z,))¢ where fn(P) U n(Q) U fn(¢) C
{xlw'wxn}' []

As for open bisimilarity, [x = y|r and 0 are not late equivalent. This is because

([z = y]7){%} and 0{%;} are clearly not late bisimilar. Two distinguishing formulae in this
logic are defined as follows: P |=; =y D <7’>tt and Q =, [T]ff.

2:24 K.Y. AnN, R. HORNE, AND A. TiU Vol. 17:3

The point is, if we take OM and induce the law of excluded middle, we obtain a logic,
defined by k=, , characterising late equivalence. If we then, in addition, enforce the distinct
name assumption, we obtain a logic, defined by F=r, characterising late bisimilarity.

5.3. A sharpened picture of the spectrum of bisimilarity congruences. We empha-
sise here that open bisimilarity is not the only bisimilarity congruence. A notable, strictly
coarser, bisimilarity congruence for the 7-calculus is open barbed bisimilarity [SWO01]. Notions
of open barbed bisimilarity are, by definition, the greatest bisimilarity congruences. We
give the strong formulation of open barbed bisimilarity here, consistent with the rest of the
paper (of course, the weak formulation of open barbed bisimilarity is coarser).

Definition 5.5. Process P has a barb z, written P |z, whenever P &, plor P %% P

or P, P/ An open barbed bisimulation R is a symmetric relation such that, whenever

P R @ we have:

e If P Z» P’ then there exists @’ such that Q T» Q" and P’ R Q.
o If P|x then QQ|=x.
e For contexts C{ - }, we have C{P} RC{Q }.

Open barbed bisimilarity ~ is the greatest open barbed bisimulation.

Unlike open bisimilarity, open barbed bisimilarity is incomparable with late bisimilarity.
A key example that holds for open barbed bisimilarity, but not for late bisimilarity is the
following.
vkak.(a(z).P+a(z)) =~ vkak.(a(x).]r =k]|P+ a(z).P+ a(z))

There is however a (minimal) refinement of open barbed bisimilarity forbidding the
above property, defined as follows.

Definition 5.6. An intermediate bisimulation R is a symmetric relation indexed by a set
of variables, such that, whenever P R€ Q the following hold:

If {z,y} N E =0 then P{%,} RE Q{%:}.

If P % P’ then there exists Q' such that Q@ % @’ and P’ R¢ Q'.

If P 22, P’ then there exists Q' such that Q =), Q' and P' R¢* Q'.

o If P 2%, P’ then there exists Q' such that Q a@), Q' and, for all z, P’ R¢ Q.
Intermediate bisimilarity ~; is the greatest intermediate bisimulation.

Intermediate bisimilarity, a secondary contribution of this paper, defined above, sits
between open bisimilarity, late equivalence and open barbed bisimilarity. Intermediate bisim-
ilarity is a congruence, hence is sound with respect to open barbed bisimilarity. Strictness of
this inclusion follows since vk.ak.(a(z).7 + a(x)) and vk.ak.(a(z).[x = k|7 + a(z).7 + a(z))
are distinguished by intermediate bisimilarity, as witnessed by the following strategy.

vk.ak.(a(z).T + a(x)) A1 vk.ak.(a(z). T + a(x))
va(k) va(k)
a(x).m + a(z) ~r* a(x).[r = k|7 + a(x).7+a(z)
a(z) a(z) Ya(x)
- 0 [z = k]T

Observe that, there are two cases to check at this point: either we apply substitution
{k,}, in which case we have 0 #;* [k = k]7{%4}; or we apply any other substitution for

Vol. 17:3 A CHARACTERISATION OF OPEN BISIMILARITY 2:25

x, say o, in which case [zo = k|7 is deadlocked, hence 7 #;* [zo = k]r. In contrast, as
remarked previously, these processes are open barbed bisimilar.

Intermediate bisimilarity is strictly coarser than open bisimilarity. To see why, observe
the following processes are equivalent according to intermediate bisimilarity.

vk.ak.a(z).(T + 7.7 + 7.[vr = K|T) ~1 vk.ak.a(z).(T + T.7)

In contrast, for open bisimilarity, there is a distinguishing strategy for the same pair of
processes, as witnessed by the following formula in OM.

vk.ak.a(z).(t + 7.7 + 7.[x = k|7) | {a(k)){(a(2)){T)(x =k D (1) A [T](z = k))

The difference is, when constructing an open bisimulation, we can proceed with the first 7
transition without deciding whether x = k or x # k. In contrast, intermediate bisimilarity
forces this decision immediately after x is input.

It is important to note that we are not advocating that intermediate bisimilarity should
be used in preference to open bisimilarity. What we are emphasising here is that open
bisimilarity does not hold a canonical status as a bisimilarity congruence sound with respect
to late bisimilarity. Indeed, there is a spectrum bisimilarities between open bisimilarity and
open barbed bisimilarity.

A picture of part of the spectrum surrounding open bisimilarity is provided in Fig. 4.
To complete the picture in Fig. 4, note that related work [HALT18] introduced a modal
logic characterising open barbed bisimilarity called intuitionistic /M — the intuitionistic
counterpart to a classical modal logic characterising early bisimilarity. That paper emphasises
the merits of open barbed bisimilarity due to its more objective definition, and, more
importantly still, its coarser granularity suitable for verifying privacy properties. Open
barbed bisimilarity can be used to verify properties of protocols that make use of else
branches to maintain the privacy of honest participants; whereas open bisimilarity fails to
verify such scenarios, instead discovering spurious attacks. This is due to the intuitionistic

early bisimilarity
classical FM [MPW93]

PN

late bisimilarity barbed equivalence [MS92]
classical OM, Fig. 3 early equivalence

N

late equivalence [MPW92]

open barbed bisimilarity [SWO1]
intuitionistic FM [HALT18]

/

intermediate bisimilarity

T

non-classical open bisimilarity [San96]
intuitionistic OM, Fig. 2

classical

Figure 4: The line between classical and non-classical notions of bisimilarity.

2:26 K.Y. AnN, R. HORNE, AND A. TiU Vol. 17:3

nature of open bisimilarity, which, as we have seen, assumes the absence of the law of
excluded middle everywhere; whereas open barbed bisimilarity verifies more properties
since it induces the law of excluded middle for private names only. Related work [Hor18],
elaborates on this perspective, making a case for why variants of open barbed bisimilarity
and FM are, respectively, the notions of bisimilarity congruence and intuitionistic modal
logic suited to the applied m-calculus; rather than open bisimilarity and OM.

5.4. Related work: an alternative logic formalised in Nominal Isabelle. Parrow et
al. [PBE*15] provided a general proof of the soundness and completeness of logical equivalence
for various modal logics with respect to corresponding bisimulations. The proof is parametric
on properties of substitutions, which can be instantiated for a range of bisimulations.
Moreover, their proof is mechanised using Nominal Isabelle. The conference version [PBET15]
sketches how to instantiate their abstract framework for open bisimilarity for a fragment of
the m-calculus without input prefixes. A forthcoming journal version [PBE*20] generalises
their methodology such that open bisimilarity with input prefixes may also be handled.

Stylistically, our intuitionistic modal logic is quite different from an instantiation of the
abstract framework of Parrow et al. for open bisimilarity. Their framework, is classical and
works by syntactically restricting “effect” modalities in formulae, depending on the type of
bisimulation. Their effects represent substitutions that reach worlds permitted by the type
of bisimulation. In contrast, the modalities of the intuitionistic modal logic OM in this
paper are syntactically closer to long established modalities for the m-calculus [MPW93];
differing instead in their intuitionistic interpretation. An explanation for the stylistic
differences is that for every intuitionistic logic, such as the intuitionistic modal logic in this
work, there should be a corresponding classical modal logic based on an underlying Kripke
semantics. Such a Kripke semantics would reflect the accessible worlds, as achieved by the
syntactically restricted effect modalities in the abstract classical framework instantiated for
open bisimilarity.

6. MECHANISING THE SOUNDNESS PROOF IN ABELLA

Abella [BCGT14] is a proof assistant based on intuitionistic logic that supports both inductive
and coinductive reasoning over logical specifications of operational semantics for languages
that contain binding structures, such as the w-calculus. In particular, Abella is well-suited
for reasoning involving operational semantics specified in the higher-order logic programming
language AProlog [MN12]. The formalisation of the modal logic OM in this section is built
on top of existing work on the formalisation of the w-calculus and bisimulation based on the
higher-order abstract syntax (HOAS) approach [BGM*07, TM10,BCG*14]. We present the
coinductive definition of open bisimilarity (Section 6.1) and the semantics of the modal logic
OM (Section 6.2) formalised in Abella, leading up to our mechanised proof of the soundness
theorem (Theorem 3.2).

Interestingly, the proof of soundness (Theorem 3.2) is quite abstract since it can be
proven without defining a specific language of process terms and their labelled transition
system rules, since the proof only looks at the labels and makes the implicit assumption that
transitions satisfy monotonicity. Thus although it is not required for the main theorems
of this paper, we none-the-less, for a self-contained presentation also recall an established
AProlog specification of the 7-calculus at the end of this section (Section 6.3), which can be
used as the basis of tooling.

Vol. 17:3 A CHARACTERISATION OF OPEN BISIMILARITY 2:27

1 Specification "finite-pic". / load the finite pi-calc. spec. in Fig.6

2

3 CoDefine bisim : p— p— prop / open bisimulation

4 by bisim P Q

5 := (V AP, {one P A P}—3dQ, {one Q A Qr A bisim P; Q)

6 AN (V XM, {oneb P (dn X) M} >3 N, {oneb Q (dn X) N} AV z, bisim (M z) (N z))
7 A (VX M, {oneb P (up X) M} =+ 3 N, {oneb Q (up X) N} AV z, bisim (M z) (N z))
8 AN NVAQ, {one Q A Q}—> 3P, {one P A P> A bisim @ Pp

9 AN (VY XN, {oneb Q (dn X) N} -3 M, {oneb P (dn X) M} AV z, bisim (N z) (M z))
10 A (V X N, {oneb Q (up X) N} =+ 3 M, {oneb P (up X) M} AV z, bisim (N z) (M 2)).
11

12 Kind o’ type. % syntaz of the modal logic

13 Type tt, ff o.

14 Type Y, A, D o/ 3o =0

15 Type = n—n—o.

16 Type O, < a—o —o.

17 Type Of O OoF O+ n— (n—=o) =0

=
[ee]

Define sat : — 0o = pro /4 semantics of the modal logic
p prop g

=
el

20 by sat P tt

21 ; sat P (Y AB) := sat P AA sat PB

22 ; sat P (A AB) :=sat P AV sat P B

23 ; sat P O AB) := sat P A—+sat P B

24 ; sat P (=X Y) =X =Y

25 ; sat P @ X A) :=VP, {one P XP}—>sat P A

26 ; sat P (O X A) := 3P, {one P X P} A sat P; A

27 ; sat P (@'X A) :=V Q, {oneb P (up X) Q} =+ V z, sat (Q z) (A z)

28 ; sat P ©TX A) := 3 Q, {oneb P (up X) QX A V z, sat (Q z) (A z2)
basic input modality (see Section 5.1 for related discussion)

N
o
BN

sat P (O¥X A) :=V Q, {oneb P (dn X) Q¥ = VY z, sat (Q z) (A z)
% late imput modality (see Section 5.1 for related discussion)
2 5 sat P (OYX A) :=3Q, {onebP (dn X) Q¥ A V z, sat (Q z) (A z).

w W
= o

Figure 5: A coinductive definition of open bisimulation and an inductive definition of the
modal logic OM in Abella.

6.1. Coinductive definition of open bisimulation in Abella’s reasoning logic. Open
bisimulation relation bisim is coinductively defined in Fig. 5. The relation bisim is an Abella
encoding of the open bisimulation relation R in Definition 3.1 from Section 3. Lines 5, 6,
and 7 correspond to the latter three of the four bullet items in Definition 3.1, which state
the closure property under every pairwise bisimulation step where P leads and Q follows.
Lines 8, 9, and 10 are symmetric cases where Q leads and P follows. Curly braces (e.g.,
{one P A P}) are used for referring to the object logic proposition (i.e., AProlog proposition)
from the reasoning logic of Abella. The AProlog relation one : p—a—sp—o (see Section 6.3
for further details), when applied to three arguments, becomes an object logic proposition
one P A P : o. In order refer to such AProlog propositions from Abella’s reasoning logic,

2:28 K.Y. AnN, R. HORNE, AND A. TiU Vol. 17:3

we use curly braces to convert a AProlog proposition (o) into a reasoning logic proposition
(prop). For instance, {one P A P} : prop. Abella’s reasoning logic is richer than the object
logic. It supports coinductive definitions, which we used to define bisim. It also supports
nominal quantification (V), which will be discussed shortly, in addition to universal (V) and
existential (3) quantifications.

The first bullet item in Definition 3.1 states that open bisimulation must be closed
under all substitutions that respect the history. In the definition of bisim, Abella guarantees
this closure property under respectful substitutions for free. Let us first demonstrate how
histories are being handled in the relation bisim, in order to explain how the closure property
under respectful substitutions is ensured in Abella. Consider a trivial bisimulation over
identical processes, illustrated using both Abella and mathematical notations as follows:*

VX,VZ,Vy, bisim O 0 E 0 in-zo-yi 0
Vx,Vz, bisin (2(y).0) (x(y).0» f z(y).0 T2 z(y).0
Vx, bisim (v2.22.2(y).0) (vz.Zz.2(y).0) veTza(y).0 ~% vzZza(y).0

Even for identical processes without nondeterministic constructs, the bisimulation tree
has at least two branches for each node because either one of the two sides may take a
leading step to be followed by the other side. Here, let us focus on the leftmost branches
where the left process leads. The environment of quantified variables for the Abella relation
bisim grows after each bisimulation step. Growing the environment exactly corresponds to
growing the history. The bound output step extends the environment with Vz in Abella,
which corresponds to extending the history with z°. The input step extends the environment
with Vy in Abella, which corresponds to extending the history with y*. These quantified
variables come from the definition of bisim in Fig. 5, more specifically, from lines 6 and 7.

Recall the definition of respectful substitution (Definition 2.1) from Section 2. An input
variable in the history adds no restriction to the respectfulness of a substitution. An extruded
private name in the history adds a restriction such that respectful substitutions should
not unify the output variable with any variable that precedes the output variable. The
nabla quantifier (V) in Abella coincides with such a notion of restriction. Nabla quantified
variables are guaranteed to be fresh names with respect to all the previously introduced
names. For instance, consider the environment Vx,Vz,Vy,---. Abella ensures that z cannot
occur free in x, hence, x cannot be unified with z; however, y can be unified with z because
y is introduced after z.

Intuitively, universal quantification represents all possible substitutions over universally
quantified variables. For example, consider V x, pred x. Proving this in Abella means
that the predicate pred holds for all possible substitutions over x. Together with nabla
quantification, the notion of all possible respectful substitutions can be represented by the
environment of quantified variables in Abella. In summary, the list of universal and nabla
quantified variables before the bisim relation in Abella not only transcribes the history but
also represents all possible respectful substitutions.

4Here, mathematical notations of process terms are used on the left side, instead of the actual AProlog
embeddings, as well as on the right side. The embeddings of process terms are provide in Section 6.3.

Vol. 17:3 A CHARACTERISATION OF OPEN BISIMILARITY 2:29

6.2. Embedding of OM in Abella and the soundness proof. The latter part of Fig. 5
is an embedding of the syntax and semantics of OM introduced earlier in Section 2.1. Recall
the stylistic difference between Abella and mathematical notations for the process syntax —
prefixes of free actions, bound output actions, and input actions are defined as three different
syntactic constructs in the Abella definitions (see Fig. 5). There are similar stylistic difference
regarding OM formulae in the Abella embedding (Fig. 5) and the notation in Section 2.1.
There are three formulae constructs for each kind of modality. For instance, 0, ol and
Ot are the three different syntactic constructs of the box modality for free actions, bound
output actions, and input actions, respectively. Similarly, there are three constructs for the
diamond modality.?

Recall that histories on the bisimulation relation are transcribed as universal and nabla
quantified variables in Abella and that closure under respectful substitutions holds for free in
Abella. Similarly, histories in the semantics of OM are handled in exactly the same manner
in Abella and enjoy the closure properties regarding respectful substitutions. For example,
Vx,Vz,Vy, sat (P x y z) ¢ corresponds to Vo respecting x' - 2° -3¢, P(x,y,z2) E* *"Y" ¢.
The relation sat in Fig. 5 is an embedding of OM () in Abella. There is no explicit
handing of substitutions in the semantics of the definition of the sat relation because they
are handled by Abella automatically.

We mechanised the proof of soundness of open bisimilarity with respect to OM by
proving the following theorem.

Theorem bisim_sat : V P Q F, form F —
bisim P Q — ((sat P F—+sat Q F) A (sat Q F—sat P F)).

In the above, form: o’—prop is an inductive predicate for well-formed OM formulae, defined
as follows:

Define form : o’ — prop

by form tt
; form ff
; form (Y A B) := form A A form B
; form (A A B) := form A A form B
; form O A B) := form A A form B
; form (=X Y) := form A
; form (O X A) := form A
; form (X A) := form A
; form (OTX A) :=V w, form (A w)
; form ©TX A) := VYV w, form (A w)
; form (OYX A) :=V w, form (A w)
i form VX A) =V w, form (A w).

The predicate form is a trick used to guide the induction in Abella by the structure of
formulae (instead of by the structure of sat, which is not stratified [MT04], due to the
presence of implication). Thereby the proof of theorem bisim_sat below is established by
induction on the structure of the modal formulae and by case analyses on the definition of
the satisfiability relation sat.

5In the Abella proof scripts, O, 0O and OY are represented using keywords boxAct, boxOut and boxIn,
respectively.

2:30 K.Y. AnN, R. HORNE, AND A. TiU Vol. 17:3

Theorem soundness: V P Q,
bisim P Q -V F, form F— (sat P F—sat Q F) A (sat Q F—sat P F).

The soundness theorem is a simple corollary of bisim_sat, since form F is a tautology. Due
to the adequacy of this embedding, this concludes the mechanisation of the soundness of
open bisimilarity with respect to OM (Theorem 3.2).

We have not yet discussed the AProlog embedding of the labelled transition system
because specific details of the transition system do not affect the soundness property. During
the proof of bisim_sat, the transition relations (one and oneb) are never inspected, nor are
processes inspected. The only specific details of the labelled transition system, which are
evident in the definitions of bisim and sat, are the transition labels up and dn. Thus, the
minimal definitions that are required in the specification finite-pic of the soundness proof
are:

kind n type. /7 names

kind p type. / processes

kind a type. / actions (transition labels)
type up, dn n—n— a.

type one p— a — —o0. J one step free transtition
type oneb p— (n—a) = (n—=p)—>o. % one step bound transition
one PAQ :— -+ - . /4 arbitrary transition definition suffice
oneb PAQ :- -+ --- . 74 arbitrary transition definition suffice

Additional details of the processes syntax and the transition relations are irrelevant to the
soundness property. Recall that both the bisimilarity (bisim) and modal logic satisfaction
(sat) is defined in terms of single step transition relations one and oneb. The soundness
property could be understood in term of the question of whether the use of transition
relations in bisim match well with the use of those relations in sat. Regardless of how we
specify the process syntax and the transition relations, bisim_sat continues to hold in Abella
without any modification to our proof script. This indicates that our soundness result (and
also completeness, for similar reasons) is independent of the terms of the processes calculus,
relying only on the form of the transition labels and monotonicity of the labelled transition
system. Note, the style of embedding for the labelled transition system, which relies on
Abella’s logical quantifiers for implicitly embedding histories, already assumes monotonicity
of labelled transitions (Proposition A.3) due to the intuitionistic nature of Abella.

6.3. Specification of the syntax and labelled transition systems of the m-calculus
in AProlog. Despite the abstract nature of our soundness result, discussed above, in order
to check specific examples of bisimilarity and satisfaction in Abella, an embedding of the
syntax and labelled transition system of the m-calculus in Fig. 1 is required. Fig. 6 is a
transcription of the syntactic constructs and transition rules into AProlog. This embedding
of the m-calculus labelled transition system and bisimulation originates form the work of Tiu
and Miller [TM10], where they provide rigorous adequacy result for their logical embedding,
which has an obvious direct transcription into AProlog. By adequacy we mean that standard
definitions and the logical embedding prove the same theorems.

Each syntactic category is declared as a type (e.g., n, p, and a) using the kind keyword.
Syntactic constructs are defined as constants in A\Prolog where some of which may require
multiple arguments to construct the desired syntactic category. For instance, plus needs two

Vol. 17:3 A CHARACTERISATION OF OPEN BISIMILARITY

1 sig finite-pic. / file: finite-pic.sig

2

3 kind n type. / names

4

5 kind p type. / processes

6 type null p- /i deadlock

7 type taup pP—p. /X progress action
8 type plus, par p—>p—p. / choice, par

9 type match, out n—n—p—p. % match, output action
10 type in n— (n—p) = p. % input action

11 type nu (n—p) —=p. % nu

=
w N

kind a type. / actions (transition labels)

14 type tau a.

15 type up, dn n—n—a.

16

17 type one pP— a — p —o. J one step free transition

-
<3

type oneb p—~>@—=a) = (—=>p)—o. / one step bound transition

NN
= o ©

module finite-pic. / file: finite-pic.mod

N
N

2:31

23 oneb (in X M) (dn X) M. % bound input

24 one (out X YP) (up X Y) P. J free output

25 one (taup P) tau P. 7 tau

26/ match prefiz

27 one (match X X P) AQ :- one P A Q. oneb (match X X P) A M :- oneb P A M.
28/ sum

29 one (plus P Q) AR :- one P AR. oneb (plus P Q) A M :- oneb P A M.

30 one (plus P Q) AR :- one Q AR. oneb (plus P Q) A M :- oneb Q A M.
31/ par

w
N

one (par P Q) A (par Py Q) :- one P AP. oneb (par P Q) A (z\par (M z) Q)
one (par P Q) A (par P Q) one Q A Q. oneb (par P Q) A (z\par P (N z))
% restriction

one (nu z\P z) A (nu z\Q z) - pi z\ one (P z) A (Q 2).

oneb (nu z\P z) A (y\nu z\Q z y) :- pi z\ oneb (P z) A (y\Q x 2).

% open (bound output)

oneb (nu x\P x) (up X) Q :- pi y\ one (P y) (up X y) Q y).

% close

one (par P Q) tau (nu z\par (M z) (N z)) :- oneb P (dn X) M, oneb Q (up X)
one (par P Q) tau (nu z\par (M z) (N z)) :- oneb P (up X) M, oneb Q (dn X)
% comm (interaction)

one (par P Q) tau (par (M Y) T) :- oneb P (dn X) M, one Q (up X Y) T.

one (par P Q) tau (par R (M Y)) :- oneb Q (dn X) M, one P (up X Y) R.

B OBA B D DWW W W W W W
2 @ M B O © ® N & G B Q

= =2

oneb P A M.
oneb Q A N.

Figure 6: A\Prolog specification of the syntax and transitions of the m-calculus. (Adopted
from one of the examples distributed with Abella. The adequacy for this AProlog

embedding has been justified by Tiu and Miller [TM10].)

2:32 K.Y. AnN, R. HORNE, AND A. TiU Vol. 17:3

process arguments to construct a process, as its type (p—p—p) suggests. The table below
summarises the process syntax in AProlog and the notations used in the previous sections.

AProlog syntax mathematical notation

null 0

nu x\P x (or nu P) vz.P (P z) corresponds to P
taup P T.P

out x z P zz.P

in x z\P z (or in x P) x(z).P (P z) corresponds to P
match x y P [z =y]P

par P Q PlQ

plus P Q P+Q

Fig. 6 has few stylistic differences from Fig. 1. Firstly, distinct constants are used for
actions and their related processes (e.g., a tau action for taup prefixed process) because the
constants cannot be overloaded as in mathematical notation. Secondly, the action prefix 7.P
in Fig. 1, where 7 ranges over several different types of action (progress, free out, and input),
is transcribed as three distinct process syntactic constructs (taup, out, and in). Thirdly, free
and bound actions are distinguished by their types instead of using different notations (zz
and Z(z)) as in Fig. 1. That is, bound actions (e.g., up x : n—a) are partially applied free
actions (e.g., up x z : a) using the same constants. Fourthly, two different sets of transition
relations are defined: one relating a process (p) to another process (p) via a free action (a)
and oneb relating a process (p) with a bound process (n—p) via a bound action (n—a).

One advantage of using AProlog [MN12] is that we can rely on its native support for
a variant of HOAS, known as A-tree syntax [MP99], for handling bound variables and
afn-equivalence automatically. For instance, consider the rule for name extrusion from both
Fig. 6 and Fig. 1:

A
oneb (nu z\P z) (up X) Q :- ﬁ T #z
pi z\one (P z) (up X z) (Q z) vz P &), Q

There is no need to explicitly state and keep track of the side conditions such as x # z
and z ¢ n(m) in AProlog definitions. For example, consider pi z\one (P z) (up X z) (Q
z) from above. Here, it is guaranteed that z does not to occur free in the logic variables P,
X, and Q. This guarantee comes from the scoping of variables: the scopes of P, X, and Q go
beyond the scope of z, which is limited only to one (P z) (up X z) (Q z). Had z freely
occurred in any of P, X, or Q, the scope of z would have been violated. Hence, X cannot be
unified with z.

7. DISTINGUISHING FORMULAE GENERATION ALGORITHM IMPLEMENTATION

Our completeness proof in Section 4 is constructive in the sense that it follows the structure
of an algorithm (Section 4.2) to build a pair of formulae for a pair of distinguishable
processes. That is, one can find distinguishing formulae for any given pair of processes when
they are actually distinguishable, guided by the steps described in our completeness proof
(Section 4.3). These steps can be automated by writing a program that implements this
algorithm. We first implemented the distinguishing formulae generation algorithm using

Vol. 17:3 A CHARACTERISATION OF OPEN BISIMILARITY 2:33
|. & PiCalcOpenBisim X | +
€ 3> C Y @ localhost:8888/notebooks/pwd,/PiCalcOpenBisim.ipynb # 0O & o o g @ w
: Jupyter PiCalcOpenBisim Last Checkpoint: 2417t 3 (autosaved))k Logout
File Edit View Insert Cell Kernel Help Trusted |Haske\| o
B+ = @ B 4+ 4% MRun B C M Code v |2
In [25]: 1 - runBisimExperiment history leftProces rightProcess -
2 runBisimExperiment h prL prR =
3 seguence . map (display . html) §
4 map (texParen . show)
5 [text "h="¢> texHistory h
6 , text "\\mathsf{L}\\!:" <> pPrintTeX prL
7 , text "\imathsf{R}\\!:" <> pPrintTeX prR
8 , text $ "\\mathsf{L}"
9 + (it bisimResult then “\\sim" else “\\not\\sim")
18 + “\\mathsf{R}"
11 + "V\ggquad{}\\text{" + (if bisimResult then " else "non-"} + “bisimilar}”
12 1
13 + [texParen § "\\phi L="+ppTeXstring fL+"\\;,~\\phi R="+ppTeXstring fR
14 | (fL,fR) ¢« forest2df bisimForest]
15 + [texForest bisimForest]
16 where
17 bisimResult = bisim h prL prR
18 bisimForest = bisim® h prL prR
In [26]: 1 - runBisimExperiment history leftProces rightProcess
2 x=sn "x"
3 y=smn"y"
4 runBisimExperiment [ALL x, ALL y] (tau .+ taup tau) (taup $ (x= y) tau)
h=y.x
L:z0+ nr0
R:z[x = y]z0
L~R non-bisimilar

b =(n)l7]lL. pg=Izllx=ylz)T
dr=(tH)T . ¢r=Irllrllx =y
¢p = [TH7IL v (2)T) . g = (z}lx = yD)T Al7l(x = ¥))

s Lih=pxe=[-1— 0
s Rih=yx, o= —-t— [x=ylz0

e Rih=y.x, e=[x.)] —-1—= 0

s Lih=yx.e=[-1— 0
s Rih=yx' o= —-t—= [x=y]z0
o Lih=y.x,o=[] —-r— 0
o Rih=y.x", o=[(x,»)] -r— 0
o L:ih=y. X', o=[(x,)] —-t— 0

s Rih=yx'o=[—-t— [x=yc0
s lih=yx,e=[] —-t—= 0
s Rih=yx.o=[xy] -1— 0
s Llih=yx,e=[-1= 0
e Lih=y.x,6=[—-t= 0
e Rih=y-x', o=[x.»)] -1— 0
o Lih=y-x.o=[x.] -t—= 0

Figure 7:

Screenshot of our distinguishing formulae generation algorithm running in Jupyter.

2:34 K.Y. AnN, R. HORNE, AND A. TiU Vol. 17:3

Haskell [AHT17b], accompanying the conference publication [AHT17a] of our work. Here,
we provide pointers to our current implementation and describe continuing work to make it
more accessible to those who are not accustomed to Haskell development tools including the
GHC compiler.

Our current implementation is available online from a public GitHub repository®. This
repository contains an example notebook and some utility shell scripts, which utilize a Docker
container published on DockerHub to run the example notebook. All the necessary software
dependencies, including Jupyter and Haskell, to run our implementation is contained in a
Docker image so that it does not interfere with your own system. Anyone with access to
an Internet-connected machine with a properly working Docker system can easily run our
implementation with a single shell script command, although it would initially require some
download time and disk space for a sizable (<10GB) Docker image to start running.

Figure 7 is a screenshot of a web browser connected to a Jupyter server running on
the same machine (i.e., localhost). The Haskell source code documented in our technical
report [AHT17b] is executed via [Haskell, a Haskell language kernel for the Jupyter notebook
environment. Some additional features are the enhanced output exploiting Jupyter notebook’s
ability to render HT'ML and also some LaTeX via MathJax. In addition to the plain text
output, which you can still use inside the Jupyter notebook, we provide LaTeX output that
looks the same as the notation used in this article.

In Figure 7, we define the function runBisimExperiment and demonstrate it used on a
pair of non-bisimilar processes, discussed previously in Section 3.1.1. We are providing
the implementation as a Haskell library so that one can build programs that automate
tasks related to bisimulation. The function runBisimExperiment is defined in terms of more
primitive definitions provided in our implementation. This function is applied to three
arguments: the initial history, the left processes, and the right process. The free variables of
the two processes must be closed by the initial history, either as input (using A11) as output
(using Nab). In the example run, we closed the two free variables x and y as inputs in the
initial history [A11 x, A11 yl. To provide processes, one should build them as Haskell values
representing abstract syntax trees, whose data type is defined as follows:

import GHC.Generics (Generic)
import Unbound.Generics.LocallyNameless -- using unbound-generics lLibrary

type Nm = Name Tm
newtype Tm = Var Nm deriving (Eq, Ord, Show, Generic)

data Pr = Null | TauP Pr | Out Tm Tm Pr | In Tm PrB | Match Tm Tm Pr

| Plus Pr Pr | Par Pr Pr | Nu PrB deriving (Eq, Ord, Show, Generic)
type PrB = Bind Nm Pr
instance Eq PrB where (==) = aeq; instance Ord PrB where compare = acompare

instance Alpha Tm; instance Alpha Pr; instance Subst Tm Pr

For instance, the procsseses 7.0 + 7.7.0 is written as (Plus (TauP Null) (TauP(TauP Null)))
and the process 7.[x = y|7.0 is written as (TauP(Match (Var x) (Var y) (TauP Null))) using the
data type definition above. We additionally provide shorthand definitions below to reduce
keyboard strokes and to make it look closer to the notations used in this article.

(.\) = bind; infixr 1 .\ ; (.+) = Plus; infixl 6 .+ ; (.|) = Par; infixl 5 .|

Shttps://github.com/kyagrd/ihaskell-picalc

https://github.com/kyagrd/ihaskell-picalc

Vol. 17:3 A CHARACTERISATION OF OPEN BISIMILARITY 2:35

o = Null ; taup = TauP ; out x y = Out(Var x)(Var y) ; inp = In . Var ; nu = Nu
x .=y = Match (Var x) (Var y) ; tau = TauP Null ; tautau = TauP (TauP Null)

Using these shorthand definitions, we can write 7.04-7.7.0 and 7.[z = y|7.0 as (tau .+ taup tau)
and (taup $ (x.=y) tau).
As a result of running the function runBisimExperiment, it displays the following:

the initial history and the two processes,

the result of bisimilarity test,

a pair of distinguishing formulae (for non-bisimilar processes), and

a set of trees consisting of all transitions in a distinguishing strategy.

The first two items are self explanatory from its rendered output. Let us explain few
additional details on the last two items above.

Our implementation handles a subset of OM-formulae (Defintion 2.3) that is sufficient to
generate distinguishing formulae for any pair of non-bisimilar processes. The distinguishing
formulae constructed during our completeness proof contain a limited form of implication
(x = y) D ¢, where the left side of the implication connective is always an equality. For more
compact output, our implementation uses a notation that abbreviates this form of implication.
For instance, [m = y]qﬁ abbreviates (r = y) D ¢. More generally, [a:lzyl, e ,:L‘n:yn]qﬁ
abbreviates (r1=y1) D -+ D (zn,=yn) D ¢. This abbreviation is also used in the screenshot
of Figure 7.

The tool can also displaying multiple pairs of distinguishing formulae and displaying the
entire bisimulation tree, which can be useful since the first distinguishing formula generated
is not necessarily the most insightful. A single pair of distinguishing formulae is enough to
witness distinguishability (or, non-bisimilarity) and the entire bisimulation tree is rarely
required to generate a pair of distinguishing formulae. Our Haskell source code conceptually
computes over the structure of the entire bisimulation tree in order to generate distinguishing
formulae. However, only part of the tree that is needed for the formulae construction would
actually be computed, thanks to Haskell’s lazy evaluation, unless the entire tree is needed
elsewhere. Further details of our algorithm implementation can be found in the technical
report on our initial implementation [AHT17b].

8. CONCLUSION

The main result of this paper is a sound and complete logical characterisation of open
bisimilarity for the m-calculus. To achieve this result, we introduce modal logic OM,
defined in Fig. 2. The soundness of OM with respect to open bisimilarity, Theorem 3.2, is
mechanically proven in Abella as explained in Section 6. The details of the completeness,
Theorem 3.3, are provided in Section 4.

Intuitionistic modal logic OM satisfies the following established criteria for an intuition-
istic modal logic [Sim94]:

e Intuitionistic OM is a conservative extension of intuitionistic logic. Removing modalities,
we obtain a standard semantics of intuitionistic modal logic without any new theorems.

e Intuitionistic OM satisfies intuitionistic hereditary. Every operator is closed under an
accessible world relation, as given by our Kripke semantics in the Appendix, and also as
captured by the notion of respectful substitution in the body of the paper.

2:36 K.Y. AnN, R. HORNE, AND A. TiU Vol. 17:3

e The law of excluded middle is invalidated. As demonstrated in Examples 3.1.1 and 4.4.4,
the absence of the law of excluded middle is essential for the existence of distinguishing
formulae in OM for processes that are not open bisimilar but are late equivalent.

e As explored in Corollary 5.4, if we induce the law of excluded middle, we obtain a classical
modal logic (characterising late equivalence).

e In contrast to classical modal logics, diamond and box modalities have independent
interpretations, not de Morgan dual to each other.

A more direct proof theory for OM is left as an open problem. A proof system can be
used to confirm criteria such as: if ¢ V ¢ has a proof, then either ¢ has a proof or ¥ has a
proof. A sound and complete proof system would be a step towards addressing the following,
more philosophical, criterion for an intuitionistic modal logic [Sim94]:

There is an intuitionistically comprehensible explanation of the meaning of
the modalities, relative to which IML is sound and complete.

Previous work on intuitionistic modal logic for program analysis [PS86,S194] was moti-
vated by topological interpretations of liveness properties. The intuitionistic information
partial ordering in that work is quite different from in OM, where the intuitionistic infor-
mation partial ordering is given by the instantiation of inputs. We expect creative use of
intuitionistic information partial orderings will lead to further useful intuitionistic modal
logics.

The main novelty of this paper is the completeness proof, Proposition 4.9, involving an
algorithm constructing distinguishing formulae for processes that are not open bisimilar. To
use this algorithm, firstly attempt to prove that two processes are open bisimilar. If they
are not open bisimilar, after a finite number of steps, a distinguishing strategy, according
to Def. 4.1, will be discovered. The strategy can then be used to inductively construct two
distinguishing formulae, one biased to each process. A key feature of the construction is the
use of preconditions and diamond for the leading process, e.g., t =y D <7T>ﬁ:, and box and
postconditions for the following process, e.g., [7’[‘] (r = y). Interesting examples involving
postconditions are provided in Section 4.4.

The logic OM is suitable for formal and automated reasoning. It has natural encodings
in Abella for mechanised reasoning, used to establish Theorem 3.2. In addition, our
distinguishing formulae generation algorithm is implemented in Haskell, as explained in
Section 7 and a companion report [AHT17b]. We envision that OM and related intuitionistic
modal logics characterising bisimilarity congruences have a role in symbolic model checking.

ACKNOWLEDGMENTS

We are grateful to Sam Staton for providing an example that helped us discover the
completeness proof. We also appreciate the comments of the anonymous reviewers. The
authors receive support from MOE Tier 2 grant MOE2014-T2-2-076. The first author
receives support from NRF grant 2018R1C1B5046826 funded by Korea government (MSIT).
The second author receives support from Singapore NRF grant NRF2014NCR-NCR001-30.

Vol. 17:3

[ABF18]

[AHT17a]

[AHT17b]

[BCG'14]

[BGM*07]

[BJPV11]

[BNO6]

[GMN12]

[HALT18]

[HMS5]
[HM21]
[Hor18]

[JVP12]

[Koz83]
[Kri65]
[MN12]
[MP99]
[MPW92]
[MPW93]
[MS92]

[MT04]

A CHARACTERISATION OF OPEN BISIMILARITY 2:37

REFERENCES

Martin Abadi, Bruno Blanchet, and Cédric Fournet. The applied pi calculus: Mobile values, new
names, and secure communication. J. ACM, 65(1):1:1-1:41, 2018. doi:10.1145/3127586.

Ki Yung Ahn, Ross Horne, and Alwen Tiu. A Characterisation of Open Bisimilarity using an
Intuitionistic Modal Logic. In Roland Meyer and Uwe Nestmann, editors, 28th International Con-
ference on Concurrency Theory (CONCUR 2017), volume 85 of Leibniz International Proceedings
in Informatics (LIPIcs), pages T:1-7:17, Dagstuhl, Germany, 2017. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs. CONCUR.2017.7.

Ki Yung Ahn, Ross Horne, and Alwen Tiu. Generating witness of non-bisimilarity for the
pi-calculus. CoRR, abs/1705.10908, 2017. URL http://arxiv.org/abs/1705.10908.

David Baelde, Kaustuv Chaudhuri, Andrew Gacek, Dale Miller, Gopalan Nadathur, Alwen Tiu,
and Yuting Wang. Abella: A system for reasoning about relational specifications. Journal of
Formalized Reasoning, 7(2):1-89, 2014. doi:10.6092/issn.1972-5787/4650.

David Baelde, Andrew Gacek, Dale Miller, Gopalan Nadathur, and Alwen Tiu. The Bedwyr
System for Model Checking over Syntactic Expressions, pages 391-397. 2007. doi:10.1007/978-3-
540-73595-3_28.

Jesper Bengtson, Magnus Johansson, Joachim Parrow, and Bjérn Victor. Psi-calculi: a framework
for mobile processes with nominal data and logic. Logical Methods in Computer Science, 7(1),
2011. doi:10.2168/LMCS-7(1:11)2011.

Sébastien Briais and Uwe Nestmann. Open bisimulation, revisited. Electr. Notes Theor. Comput.
Sci., 154(3):109-123, 2006. doi:10.1016/j.t¢s.2007.07.010.

Andrew Gacek, Dale Miller, and Gopalan Nadathur. A two-level logic approach to reasoning
about computations. Journal of Automated Reasoning, 49(2):241-273, 2012. doi:10.1007/s10817-
011-9218-1.

Ross Horne, Ki Yung Ahn, Shang-Wei Lin, and Alwen Tiu. Quasi-open bisimilarity with mismatch
is intuitionistic. In Proceedings of LICS ’18: 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science, Ozford, United Kingdom, July 9-12, 2018 (LICS ’18), page 10, 2018.
doi:10.1145/3209108.3209125.

Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32(1):137-161, 1985. doi:10.1145/2455.2460.

Ross Horne and Sjouke Mauw. Discovering epassport vulnerabilities using bisimilarity. Logical
Methods in Computer Science, 17(2):24:1-24:52, 2021. do0i:10.23638/LMCS-17(2:24)2021.

Ross Horne. A bisimilarity congruence for the applied pi-calculus sufficiently coarse to verify
privacy properties. arXiv, (arXiv:1811.02536), 2018. URL https://arxiv.org/abs/1811.02536.
Magnus Johansson, Bjérn Victor, and Joachim Parrow. Computing strong and weak bisimu-
lations for psi-calculi. The Journal of Logic and Algebraic Programming, 81(3):162-180, 2012.
doi:10.1016/j.jlap.2012.01.001.

Dexter Kozen. Results on the propositional mu-calculus. Theoretical Comput. Sci., 27(3):333-354,
1983. doi:10.1016,/0304-3975(82)90125-6.

Saul A Kripke. Semantical analysis of intuitionistic logic I. In Studies in Logic and the Foundations
of Mathematics, volume 40, pages 92-130. Elsevier, 1965. doi:10.1016,/S0049-237X(08)71685-9.
Dale Miller and Gopalan Nadathur. Programming with Higher-Order Logic. Cambridge University
Press, 2012. do0i:10.1017/CB09781139021326.

Dale Miller and Catuscia Palamidessi. Foundational aspects of syntax. ACM Computing Surveys,
31(3), 1999. doi:10.1145/333580.333590.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, Parts I and II.
Information and Computation, 100(1):1-77, 1992. doi:10.1016,/0890-5401(92)90008-4.

Robin Milner, Joachim Parrow, and David Walker. Modal logics for mobile processes. Theoretical
Computer Science, 114(1):149-171, 1993. doi:10.1016/0304-3975(93)90156-N.

Robin Milner and Davide Sangiorgi. Barbed bisimulation. In W. Kuich, editor, Automata,
Languages and Programming, pages 685-695, 1992. doi:10.1016/S0049-237X(08)71685-9.
Alberto Momigliano and Alwen Tiu. Induction and co-induction in sequent calculus. In Stefano
Berardi, Mario Coppo, and Ferruccio Damiani, editors, Types for Proofs and Programs, pages
293-308, Berlin, Heidelberg, 2004.

https://doi.org/10.1145/3127586
https://doi.org/10.4230/LIPIcs.CONCUR.2017.7
http://arxiv.org/abs/1705.10908
https://doi.org/10.6092/issn.1972-5787/4650
https://doi.org/10.1007/978-3-540-73595-3_28
https://doi.org/10.1007/978-3-540-73595-3_28
https://doi.org/10.2168/LMCS-7(1:11)2011
https://doi.org/10.1016/j.tcs.2007.07.010
https://doi.org/10.1007/s10817-011-9218-1
https://doi.org/10.1007/s10817-011-9218-1
https://doi.org/10.1145/3209108.3209125
https://doi.org/10.1145/2455.2460
https://doi.org/10.23638/LMCS-17(2:24)2021
https://arxiv.org/abs/1811.02536
https://doi.org/10.1016/j.jlap.2012.01.001
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1016/S0049-237X(08)71685-9
https://doi.org/10.1017/CBO9781139021326
https://doi.org/10.1145/333580.333590
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0304-3975(93)90156-N
https://doi.org/10.1016/S0049-237X(08)71685-9

2:38

[NMSS]

[PBET15]

[PBET20]

[PS86]

[San95]

[San96]
[S194]

[Sim94]
[SWO1]
[TD10]
[TM10]

[TNH16]

[VMO4]

K.Y. AnN, R. HORNE, AND A. TiU Vol. 17:3

Gopalan Nadathur and Dale Miller. An Overview of AProlog. In Appears in the Fifth International
Conference Symposium on Logic Programming, 15-19 August 1988, Seattle, Washington, pages 810—
827. MIT Press, 1988. URL http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/
iclp88.pdf.

Joachim Parrow, Johannes Borgstrom, Lars-Henrik Eriksson, Ramunas Gutkovas, and Tjark
Weber. Modal logics for nominal transition systems. In CONCUR 2015, volume 42 of LIPIcs,
pages 198-211, 2015. doi:10.4230/LIPIcs. CONCUR.2015.198.

Joachim Parrow, Johannes Borgstrom, Lars-Henrik Eriksson, Ramunas Gutkovas, and Tjark
Weber. Modal logics for nominal transition systems. arXiv, 2020. URL https://arxiv.org/abs/
1904.02564.

Gordon Plotkin and Colin Stirling. A framework for intuitionistic modal logics. In Proceedings of
the 1986 Conference on Theoretical aspects of reasoning about knowledge, pages 399-406, 1986.
doi:10.1017,/S0022481200028826.

Davide Sangiorgi. On the proof method for bisimulation. In Jifi Wiedermann and Petr Hajek,
editors, Mathematical Foundations of Computer Science, pages 479-488, Berlin, Heidelberg, 1995.
Springer Berlin Heidelberg. doi:10.1007/3-540-60246-1_153.

Davide Sangiorgi. A theory of bisimulation for the m-calculus. Acta Informatica, 33(1):69-97,
1996. doi:10.1007/s002360050036.

Bernhard Steffen and Anna Ingolfsdottir. Characteristic formulas for processes with divergence.
Information and Computation, 110(1):149 — 163, 1994. doi:10.1006/inco.1994.1028.

Alex K. Simpson. The proof theory and semantics of intuitionistic modal logic. PhD thesis,
University of Edinburgh, UK, 1994.

Davide Sangiorgi and David Walker. On barbed equivalences in pi-calculus. In Kim Guldstrand
Larsen and Mogens Nielsen, editors, CONCUR 2001 - Concurrency Theory, 12th International
Conference, Aalborg, Denmark, August 20-25, 2001, Proceedings, volume 2154 of Lecture Notes in
Computer Science, pages 292-304. Springer, 2001. doi:10.1007/3-540-44685-0_20.

Alwen Tiu and Jeremy Dawson. Automating open bisimulation checking for the spi calculus. In
Computer Security Foundations Symposium (CSF), 2010 238rd IEEE, pages 307-321. IEEE, 2010.
doi:10.1109/CSF.2010.28.

Alwen Tiu and Dale Miller. Proof search specifications of bisimulation and modal log-
ics for the m-calculus. ACM Transactions on Computational Logic, 11(2):13:1-13:35, 2010.
doi:10.1145/1656242.1656248.

Alwen Tiu, Nam Nguyen, and Ross Horne. SPEC: An equivalence checker for security protocols.
In Atsushi Igarashi, editor, Programming Languages and Systems, pages 87-95, Cham, 2016.
Springer. doi:10.1007/978-3-319-47958-3_5.

Bjorn Victor and Faron Moller. The mobility workbench - A tool for the pi-calculus. In David L.
Dill, editor, Computer Aided Verification, 6th International Conference, CAV ’94, Stanford,
California, USA, June 21-23, 1994, Proceedings, volume 818 of Lecture Notes in Computer
Science, pages 428-440. Springer, 1994. doi:10.1007/3-540-58179-0_73.

http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/iclp88.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/iclp88.pdf
https://doi.org/10.4230/LIPIcs.CONCUR.2015.198
https://arxiv.org/abs/1904.02564
https://arxiv.org/abs/1904.02564
https://doi.org/10.1017/S0022481200028826
https://doi.org/10.1007/3-540-60246-1_153
https://doi.org/10.1007/s002360050036
https://doi.org/10.1006/inco.1994.1028
https://doi.org/10.1007/3-540-44685-0_20
https://doi.org/10.1109/CSF.2010.28
https://doi.org/10.1145/1656242.1656248
https://doi.org/10.1007/978-3-319-47958-3_5
https://doi.org/10.1007/3-540-58179-0_73

Vol. 17:3 A CHARACTERISATION OF OPEN BISIMILARITY 2:39

APPENDIX A. A KRIPKE SEMANTICS FOR OM

To provide another explanation for why OM is intuitionistic, we provide here a reformulation
of the semantics of OM in Figure 2 in terms of an intuitionistic Kripke semantics.

In the following, we denote with £ (possibly with subscripts) a finite binary relation
between variables. We write fn(€) to denote the set of variables occurring in £, and we write
E* to denote the reflexive-symmetric-transitive closure of £. That is, £* is an equivalence
relation on variables. Given a substitution ¢ and a relation &£, we write o IF £ iff zo = yo
for every (z,y) € £.

A world is a triple (P, h,E) of process P, history h and a binary relation £ on variables
such that

e fn(P) C fn(h), and fn(€) = fu(h);
e there exists a substitution o respecting h such that o I+ &£.
Let us denote with W the set of worlds. Define a relation < on worlds as follows:

(Pl,hl,gl) j (Pg,hg,gg) iff P1 = PQ, h1 = hg, and 5ik Q 5;

It is easy to see that < is a partial order on W (reflexive, anti-symmetric and transitive),
so the pair (W, <) forms an intuitionistic Kripke frame. A Kripke model for OM is then
a triple (W, <,w) where w € W. In the following, we fix the Kripke frame to (W, <) so it
will be implicitly assumed in the definition of the satisfiability relation. Given a world (h, &)
and a substitution o, we say that o respects (h,) iff o respects h and o I £.

We write P “:h’g ¢ when ¢ is true in the world (P, h, E). The complete definition of this
satisfaction relation is given in Figure 8. In the figure, the relation [P T Q]™¢ is defined as

[P Z» Q"€ iff Vo.s.t. o respects (h,E) and bn(r) ¢ fn(o), we have Po ™% Qo.
Lemma A.1. If [P} % Q)" and (Py,h1,&) = (P, ha, &) then [Py T Q)2:%2,
Proof. By the definition of <X, we have P = P», hy = hg and & C &. The lemma then
follows from the fact that if o respects (h, &) then it also respects (h,&1). []
Lemma A.2. For every world (P,h,E), o, m and Q such that o respects (h,E), dom(o) C
fn(h), and Po I @Q, where bu(w) & fn(h) U fn(o), there exists Q' and 7’ such that T = w'o
and Q = Q'c and [P ™ Q']"<.

Proof. By structural induction on the derivation of Po Z» (). We show here an interesting
case where match is involved, e.g., when P = [x = y|R, and zo = yo = u, so Po = [u = u|Ro.
Ro 5 Q)

[u=ulRo 5 Q
By the induction hypothesis, we have Q" and 7 such that [R Z» Q']"*¢. To show [[z = y|R >

Q'€ we need to show that for every @ that respects (h,E), we have [z = y0] RO 0 Q0.
This is constructed as follows:

RO ™% Q0
(20 = yO] RO =% Q'O

The premise follows from [R ™ Q]™€. Tt remains to show that this application of the match
rule is valid, i.e., that x6 = yf. Since zo = yo, and since (P, h,) is a world (which means
fn(P) C fn(h) = n(€)), and o respects (h,E), it follows that (x,y) € €. Therefore any 6
respecting (h, £) would satisfy z6 = y6. (]

2:40 K.Y. AnN, R. HORNE, AND A. TiU Vol. 17:3

P =" always holds.

PE"M s=y iff (z,y)€&

PEM ingy iff P ¢y and PE" ¢,.

P " ¢1ver iff P 6 or P o

P ¢ o ¢y iff V(P K,EN) > (P h,E). PEYE ¢ implies P =" ¢
PE" (o) iff 3Q, P& Q]“ and Q =" ¢.

P "¢ (a(2))¢ iff 3Q, [P Q]hfandQ\W &

P " (a(2))e iff 3Q, [P s QI and Q |="75 ¢.

PE" [a]lp iff V(P W.E)z (P,h, &), VQ, [P’ 2 Q"€ implies Q ="

P " [a(z)]¢ iff Y(P,W,E)>(PhE), VQ, [P’ 2=, Q)P € implies @ =" 5’ ¢.
P " [a(2)]¢ iff V(P I .E) > (P,h,E), VQ, [P “Ds Q€ implies Q =" ¢,

Figure 8: An alternative semantics of OM. In the figure, £, denotes € U {(z, z)}.

The following results, easy to establish by induction, show that we can translate between
the Kripke semantics in Figure 8 and the semantics in Figure 2.

Proposition A.3 (Monotonicity). If (P, h1,&1) = (Pa, hg, &) and Py [¢ then
I)

Proof. By induction on the definition of P; “:hl’gl ¢ and Lemma A.1.]
Proposition A.4. P H:h’g ¢ if and only if Po =" ¢o for every o that respects (h,E).
Proof. This follows from the definition of =" and [="¢, and Lemma A.2.]

As a consequence of the result above, we obtain the following precise relationship between
our two equivalence presentations of the semantics of OM.

Corollary A.5. P ”:h’id ¢ if and only if P =" ¢, where id is the identity relation on fn(h).

Proof. This is a consequence of Proposition A.4 and Lemma 2.5. []

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	Outline

	2. Introducing the intuitionistic modal logic OM
	2.1. The semantics of the intuitionistic modal logic OM
	2.2. Checking the law of excluded middle is invalidated.

	3. Open bisimilarity, soundness and completeness
	3.1. Sketch of algorithm for generating distinguishing formulae

	4. Completeness of open bisimilarity with respect to OM
	4.1. Preliminaries
	4.2. Algorithm for distinguishing formulae
	4.3. The proof of completeness
	4.4. Example runs of distinguishing formula algorithm

	5. Situating OM with Respect to Other Modal Logics Characterising Bisimilarities
	5.1. Why a new modal logic OM, rather than an intuitionistic variant of LM?
	5.2. What about the classical counterpart to OM?
	5.3. A sharpened picture of the spectrum of bisimilarity congruences
	5.4. Related work: an alternative logic formalised in Nominal Isabelle

	6. Mechanising the Soundness Proof in Abella
	6.1. Coinductive definition of open bisimulation in Abella's reasoning logic
	6.2. Embedding of OM in Abella and the soundness proof
	6.3. Specification of the syntax and labelled transition systems of the -calculus in Prolog

	7. Distinguishing formulae generation algorithm implementation
	8. Conclusion
	Acknowledgments
	References
	Appendix A. A Kripke semantics for OM

