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ABSTRACT In this paper, a kernel minimum error entropy (KMEE) based estimator is proposed for
the estimation of multiple targets’ direction of departure (DOD), the direction of arrival (DOA), and the
Doppler shift with multiple input multiple output radar in the presence of non-Gaussian clutter. Most existing
estimation approaches are based on optimization of a complex cost function which often leads to a sub-
optimum solution. Therefore, for the accurate estimation ofDOD,DOAandDoppler shift, an efficient, kernel
adaptive filter (KAF) based estimation approach is proposed. The proposed estimator utilizes the minimum
error entropy (MEE) criterion and minimizes the error entropy function. The MEE, being an information-
theoretic criterion, optimizes the higher-order statistics of error and thus makes the proposed estimator robust
against the effects of outliers like clutter. The KMEE based estimator without any sparsification suffers from
a linear increase in computational complexity. Thus, subsequently, the computational complexity of the
proposed KMEE based estimator is reduced by incorporation of novelty criterion (NC) based sparsification
technique, and the resulting estimator is called KMEE-NC. The performance of the proposed KMEE-NC
based estimator is compared with the recently introduced sparse estimators based on kernel maximum
correntropy criterion, and kernel minimum mean square error criterion. Additionally, KMEE-NC based
estimator is also compared with other existing conventional estimators. Further, for assessing the accuracy
of the proposed estimator, the modified Cramer-Rao lower bound is derived using the modified Fisher
information matrix.

INDEX TERMS Cramer-Rao, KLMS-NC, KMC-NC, KMEE, KMEE-NC.

I. INTRODUCTION
Accurate estimation of range and velocity of multiple tar-
gets is a crucial problem in radar systems [1], [2]. Multiple
input multiple output (MIMO) radar was introduced with the
intent of improving performance of the radar systems [3], [4].
Diversity in transmitting the orthogonal waveforms from
transmit antennas and collecting the superposition of echoes
at each receiving antenna individually, provides improvement
in the performance of MIMO radar over single antenna radar
system [5], [6]. For instance, in MIMO radar, if the trans-
mitter has N antennas and receiver has M antennas, then,
contrary to a single antenna radar system, NM signals are
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processed at the receiver for detection of targets and esti-
mation of their parameters. Fundamentally, MIMO radar is
used for the estimation of targets’ parameters which describes
the targets’ position and velocity: the direction of depar-
ture (DOD), the direction of arrival (DOA), and Doppler
shift. Accurate estimate of a target’s position and velocity is
essential for applications like target tracking and navigation.
Most conventional estimation techniques for MIMO radar
assume the absence of clutter and thermal noise as Gaussian
distributed [7]–[10]. Also, the previously proposed subspace-
based estimation algorithms (ESPRIT [11] and MUSIC [12])
mostly deal with an additive noise which is assumed to be
Gaussian distributed, and most often with known (up to a
scaling factor) covariance matrix, considered to be the iden-
tity matrix. However, the assumption of clutter being absent
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does not hold for practical radar systems. Hence, estimation
techniques in [7]–[12], when employed in the presence of
non-Gaussian clutter, yield inaccurate estimates of parame-
ters with a very high variance.

For estimation of the aforementioned targets’ parameters
in the non-Gaussian clutter environment, various variants
of maximum likelihood estimator (MLE) are proposed in
[13], [14] and [15]. However, the estimation of DOD, DOA,
and Doppler shift, in the presence of non-Gaussian clutter,
does not have a closed-form solution for optimization ofMLE
cost function [16]. Therefore, in [13] and [14], estimators
based on iterative conditional MLE, and iterative joint MLE
are proposed, respectively. The MLE based solution, pro-
posed in [13] and [14] are based on the conditional likelihood,
and the joint likelihood of the observations, respectively.
Later, in [15], it is mentioned and shown that the estimators
proposed in [13] and [14] are prone to yield suboptimum
estimates of required parameters. Therefore in [15], an itera-
tive ML estimator has been proposed. The proposed estima-
tor is based on the marginal likelihood of the observations
and claimed to perform better than the estimators proposed
in [13] and [14]. However, in [15], as the marginal likelihood
of the observation is considered, the final estimate depends
on the numerical evaluation of integrals, which is compu-
tationally demanding. In addition to need for evaluation of
integrals, as mentioned in Section 3, Remark 4 of [15], for
say, P targets, the estimate of DOD/DOA, is obtained by per-
forming the 2P dimensional grid search algorithm of a highly
non-convex function. Implementing a grid search algorithm
over 2P dimension is computationally complex.
Therefore, in this paper, a kernel minimum error entropy

(KMEE) based estimator is proposed for estimation of mul-
tiple targets’ DOD, DOA, and Doppler shift. Estimation
of targets’ parameters is pursued in the presence of non-
Gaussian clutter and Gaussian distributed thermal noise. The
KMEE is an kernel adaptive filtering (KAF) algorithm which
uses an iterative stochastic gradient descent algorithm for
estimation in a high dimensional reproducing kernel Hilbert
space (RKHS) [17]–[19]. In recent literature, estimation of
target’s range and velocity has been efficiently handled by
the other KAF based estimation algorithm called kernel least
mean square (KLMS) algorithm [20], [21]. However, since
KLMS utilizes mean square error (MSE) criterion [22]–[24],
and is optimum for Gaussian noise, the estimation algo-
rithm proposed in [20] and [21] cannot be used for the
estimation of parameters in MIMO radar system perturbed
by non-Gaussian clutter. In a later attempt to deal with the
effects of non-Gaussian clutter, kernel maximum correntropy
(KMC) based estimator proves to be better than estimator
based on KLMS [25]. Nevertheless, performance of KMC
based estimator may not be good when facing more compli-
cated non-Gaussian clutter [26]. The proposed KMEE based
estimator is found to yield similar MSE as KMC but with
considerably lower computational complexity. The KMEE
based proposed estimator utilizes the minimum error entropy
(MEE) criterion, which being an information-theoretic

criterion (ITC), optimizes the higher-order statistics of error
between the desired and the estimated parameter. For
instance, the Shannon entropy function −y log(y) contains
the higher order term of y, the same can be made explicit by
expanding the log(·) term in−y log(y) with Taylor’s series as
log(y) = (y− 1)− 1

2 (y− 1)2 + 1
3 (y− 1)3 − · · · . Therefore,

−y log(y) contains higher order statistics, hence, this makes
the estimator based on KMEE criterion robust against the
effects of heavy-tailed non-Gaussian clutter.

The proposed adaptive estimator, unlike conventional non-
adaptive estimators, learns the unknown function and yields
an accurate estimate of the desired parameters. For learning,
the proposed estimator utilizes samples (radar observations).
Therefore, without any sparsification criterion, the com-
putational complexity of the estimators increases linearly
and restricts the practical applicability of the proposed
estimators [27]. In this paper, for reducing the computa-
tional complexity of the proposed estimator based on KMEE,
we use a sparsification technique based on Platt’s novelty
criterion (NC) [28]. Main contributions of the paper are:
• Adaptive estimator based on KMEE is proposed for
the estimation of DOD, DOA, and Doppler shift using
MIMO radar system perturbed by non-Gaussian clutter.

• The computational complexity of the proposed estimator
is reduced via sparsification based on NC.

• Performance of the proposed estimator is compared with
the derived analytical expression for modified Cramer-
Rao lower bound (MCRLB) ofDOD,DOA, andDoppler
shift.

• The presented computer simulations indicate that the
proposed estimator in addition to outperforming the
other ITC based kernel estimators like KLMS-NC [21]
and KMC-NC [25], also outperforms the estimators pro-
posed in [13]–[15] and [16].

Rest of the paper is organized as follows: Section II
describes the signal model for MIMO radar. The proposed
KMEE-NC based estimator is described next in Section III.
Section IV describes the analytical expressions for MCRLB
for estimation of DOD, DOA and Doppler shift. In Section V,
the generalized analytical expression for the variance in the
estimation of DOD, DOA, and Doppler shift of multiple
targets is derived. In Section VI, computational complexity
of the proposed estimator is analyzed. Simulation results are
discussed in Section VII. Finally, Section VIII concludes the
work.
Notations: Scalar variables (constants) are denoted by

lower (upper) case letters. Vectors (matrices) are denoted by
boldface lower (upper) case letters. Superscripts (·)T , (·)H and
(·)∗ denote matrix transpose, matrix complex conjugate trans-
pose and scalar complex conjugate operation, respectively.
tr(·) is the trace of a matrix. E[·] denotes statistical expecta-
tion, and Eα[·] denotes statistical expectation with respect to
the distribution of α, ⊗ denotes Kronecker product. C and R
denotes a set of complex and real numbers, respectively.
Re and Im denotes the real and imaginary part of the complex
number, respectively.
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II. MIMO RADAR SIGNAL MODEL
In this section, the generalized signal model for MIMO radar
is briefly discussed. The considered MIMO radar is assumed
to consist of N transmit antennas, andM receiving antennas.
Let the surveillance environment consist of P targets (iden-
tified by index p) with unknown DODs and DOAs be θ =
[θ1, θ2, . . . , θp, . . . , θP], and φ = [φ1, φ2, . . . , φp, . . . , φP],
respectively. The pth target is assumed to be moving with
a velocity causing a Doppler shift fp. Further, if orthogonal
waveforms are transmitted, then the N × M MIMO radar
signal matrix R(q) for qth pulse after matched filtering in one
coherent pulse interval at the receiver is given by [29].

R(q) =
P∑
p=1

exp(j2π fpq)a(θp)aT (φp)+W(q)+ C(q),

for q ∈ [1, 2, . . . ,Q] (1)

where fp is the Doppler shift for the pth target normalized
to the MIMO radar pulse repetition frequency. a(θp) =
[exp(j 2π sin(θp)

λ
d t1), . . . , exp(j

2π sin(θp)
λ

d tN )]
T is the transmit

steering vector, and

a(φp) = [exp(j
2π sin(φp)

λ
d r1 ), . . . , exp(j

2π sin(φp)
λ

d rM ))]

is the receiving steering vector in which d tn, and d
r
m is distance

of nth and mth antenna from the reference transmit and refer-
ence receive antenna, respectively.W(q) is the N ×M matrix
of samples of thermal noise, and C(q) is the N ×M matrix of
samples of non-Gaussian clutter.

Concatenating R(q) from (1) into NM × 1 vector yields

r(q) = A(θ ,φ)v(q)+ w(q)+ c(q).

for q ∈ [1, 2, . . . ,Q] (2)

For simplicity, after dropping index q, (2) is given by

r = A(θ ,φ)v(f)+ w+ c, (3)

where A(θ ,φ) = [a(θ1, φ1), a(θ2, φ2), . . ., a(θP, φP)],
a(θp, φp) = vec(a(θp)aT (φp)), v(f) = [exp(j2π f1q), . . .,
exp(j2π fpq), . . . , exp(j2π fPq)]T , w = [W(1, 1),
W(1, 2), . . . ,W(N ,M )]T , and c = [C(1, 1),C(1, 2), . . . ,
C(N ,M )]T .

From (1) and (3), the unknown parameters of interest
θp, φp, and fp of pth target are exponentially related to r.
Additionally, from (1) and (3), it is explicit that, the unknown
parameters are easily estimated if the unknown inverse rela-
tionship between θp, φp, fp and r is known. Therefore, in the
following section, estimation of DOD, DOA, and Doppler
shift is performed using a KMEE based adaptive estimator.
The proposed estimator is based on the optimization of
entropy of the error between the true and estimated parameter
set. Moreover, as optimization of entropy leads to the mini-
mization of higher-order statistics of error, the proposed esti-
mator provides robustness against the non-Gaussian clutter,
which in turn reduces the effect of outliers introduced by the
clutter non-Gaussianity.

III. PROPOSED ESTIMATOR BASED ON KMEE-NC
This section discusses the proposed estimation technique
based on KMEE along-with the sparsification technique
incorporated to reduce the computational complexity of
the proposed estimator. In this work, estimation of the
set of DODs (θ = [θ1, θ2, . . . , θp, . . . , θP]), DOAs
(φ = [φ1, φ2, . . . , φp, . . . , φP]), and Doppler shifts
f = [f1, f2, . . . , fp, . . . , fP] for P different targets are done
individually and individual parameter set is represented by2.
2 can be either θ , φ or f depending upon which set of
parameter have to be estimated. This makes the considered
estimation problem P dimensional i.e 2 ∈ RP. As the
proposed estimation algorithm is adaptive and works in two
phases: training and testing, the training and testing data is
obtained by measuring MIMO radar return given in (3) for K
(number of iterations) different values of θ , φ, and f. For this,
the range in which unknown θp ∈ (−π2 ,

π
2 ), φp ∈ (−π2 ,

π
2 ),

and fp ∈ (−0.5, 0.5) [15] are expected to take the value,
are uniformly divided into K different values. Consequently,
the MIMO radar measurements for any k th value of unknown
parameter set given the value of other two parameter set are
given by

rθk |φ,f = A(θk ,φ)v(f)+ wk + ck , (4)

rφk |θ ,f = A(θ ,φk )v(f)+ wk + ck , (5)

rfk |θ ,φ = A(θ ,φ)v(fk )+ wk + ck . (6)

After measuring the MIMO radar return, the MIMO radar
return xk (which can be either rθk |φ,f, rφk |θ ,f or rfk |θ ,φ at
k th instant, corresponding to the estimation of θk , φk or fk ,
respectively) is mapped into a high dimensional RKHS (H ),
via an implicit mapping function 8(·) : CN

−→ H , such
that xk is mapped in H as 8(xk ). If �k−1 is an unknown
explicit weight vector in H , then the unbiased estimate of
the unknown parameter set gk = 2̂k is given by

gk = 〈�k−1,8(xk )〉H = 8
H (xk )�k−1, (7)

where 〈·, ·〉H is the inner product operator in H .
Main objective of an estimator based on MEE is to find the

optimum �o such that the cost function
(
ξ -entropy1

)
of the

error minimizes [26], [30] i.e

�o = arg minHξ (ek )
�

,

where Hξ (ek ) is the ξ -entropy cost function, ek = dk − gk ,
dk is the desired or true value of parameter set i.e. dk = θk,
φk , or, fk .
Since, minimizing Hξ (ek ) analytically is difficult, Hξ (ek )

can be minimized iteratively using the weight update
equation as

�k = �k−1 − η
∂

∂�k−1
(Ĥξ (ek )), (8)

1The term ξ -entropy is used to generalizes the entropy function. However,
in this work the most commonly used Shannon entropy (−y log y) is used,
the other types of entropy is described in [26].
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where η is the learning parameter,

Ĥξ (ek ) =
1
L

k∑
u=k−L+1

ξ [p̂e(e(k, u))]

is the sample estimate of Hξ (ek ). The p̂e(e(k, u)) is the esti-
mated probability density function (PDF) [31] of ek and
e(k, u)s are the L most recent errors at k th instant.
Theoretically, iterative minimization of Ĥξ (ek ) guarantees

the convergence of the estimate gk to the actual value of
parameters. Hence, the ensemble average of the estimated
parameters equates to the actual value of the parameters,
and this makes the proposed estimator unbiased [26], [32].
Substituting Ĥξ (ek ) into (8), and using

p̂e(e(k, u)) =
1
L

k∑
i=k−L+1

κd (e(k, u)− e(k, i)),

(where κd (x, y) = exp
(
−
‖x−y‖2

σ 2d

)
and σd is the kernel

width), yields

�k = �k−1η
∂

∂�k−1

(
1
L

k∑
u=k−L+1

×ξ

[
1
L

k∑
i=k−L+1

κd (e(k, u)− e(k, i))
])
. (9)

Because of the outer summation, evaluating (9) is
computationally inefficient. For an on-line adaptation of �,
the instantaneous ξ -entropy could be used by dropping
the outer summation in (9), this, yields the weight update
equation as

�k =�k−1−η
∂

∂�k−1

(
ξ

[
1
L

k∑
i=k−L+1

κd (e(k, k)−e(k, i))
])
,

= �k−1 −
η

L
ξ ′
[
1
L

k∑
i=k−L+1

κd (e(k, k)− e(k, i))
]

×

k∑
i=k−L+1

κ ′d (e(k, k)−e(k, i))
(
∂e(k, k)
∂�k−1

−
∂e(k, i)
∂�k−1

)
,

= �k−1 +
η

L
ξ ′
[
1
L

k∑
i=k−L+1

κd (e(k, k)− e(k, i))
]

×

k∑
i=k−L+1

κ ′d (e(k, k)− e(k, i))(8(xk )−8(xi)).

(10)

From (7) and (10), utilizingMercer’s theorem
(
κσ (xj, xk )=

〈xj, xk 〉H
)
[32], estimate of2 at k th instant is given by

gk =
k−1∑
j=1

γ j(k)κσ (xj, xk ), (11)

where κσ (xj, xk ) = exp
(
−
‖xj−x∗k‖

2

σ 2

)
is the RKHSMercer’s

kernel function in which σ is the kernel width, γ j(k) =
γ j(k − 1)+

∑
l
ζl(k), and

ζl(k)

=



η

L
ξ ′
[
1
L

k∑
i=k−L+1

κd (e(k, k)− e(k, i))
]

×

k∑
i=k−L+1

κ ′d (e(k, k)− e(k, i)),

if l = k

−
η

L
ξ ′
[
1
L

k∑
i=k−L+1

κd (e(k, k)− e(k, i))
]

×κ ′d (e(k, k)− e(k, l)), for k − L < l < k.

(12)

As shown in (11), in evaluating gk , there is a temporal
increase in MIMO radar observation. Consequently, as k
(index for number of radar observation) increases, com-
putational complexity of the estimator increases linearly.
This, in turn, restricts the practical viability of the estimator.
To circumvent this, we use Platt’s NC [28]. According to the
criterion the newly arrived MIMO radar observation xk [32]
will only be used for learning and store in the dictionary
Dk (the Dk is defined as dictionary in matrix form which
stores the MIMO radar observation used for the learning of
an estimator) if it satisfies following conditions

||ek ||2 ≥ δe,

min︸︷︷︸
0≤s≤S

||D s
k − xk ||2 ≥ δd ,

where S is the size (number of samples) in the dictionary Dk ,
D s
k represent the past MIMO radar observation, stored in Dk

at sth column. The ‖ · ‖2 is the l2 norm in Euclidean space,
and δe and δd are the parameters used to make the estimator
sparse. A reasonable default value for δe is the square root of
the steady state MSE and a reasonable δd is around one tenth
of the kernel width (σ ).

The other sparsification techniques available are approx-
imate linear dependency criterion, coherence criterion, sur-
prise criterion, and data quantization. However, in this work,
the most common and simple, NC has been used to highlight
the importance of NC.

Algorithm-1, describes the pseudo-code of the proposed
estimator based on KMEE-NC. In Algorithm-1, | · |, is the
cardinality (number of elements in a vector), and Dk repre-
sents the dictionary used for training of estimator.

IV. MODIFIED CRAMER-RAO LOWER BOUND
FOR DOD, DOA, AND DOPPLER SHIFT
In this section, an analytical expression is derived for
MCRLBs over the variance of the unbiased estimate of DOD,
DOA, and Doppler shift. Conventionally, Cramer Rao lower
bound (CRLB) is defined as the lower bound on the vari-
ance of an unbiased estimator. However, for non-Gaussianity,
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Algorithm 1 Estimation of DOD, DOA, and Doppler Shift
Using Sparse Estimator Based on KMEE-NC
1: Inputs: xk = rθk |φ,f, rφk |θ ,f, rfk |θ ,φ∀ k, dk =

θk |{φk , fk}, φk |{θk , fk}, fk |{θk ,φk} ∀ k
2: Initialize constants δe, δd , D1 = {x1}, η, γ 1(0), K (maxi-

mum number of iterations), L (error length).
3: while k ≤ K do

4: gk =
∑|D j

k |

j=1 γ j(k)κσ (D
j
k , xk )

5: ek = gk − dk
6: for l = 1 : L do
7: Compute ζl(k) according to (12)
8: end for
9: γ j(k) = γ j(k − 1)+

∑
∀l
ζl(k)

10: if mini ‖D
(i)
k − xk‖2 ≥ δe and ||ek ||2 ≥ δd then

11: Dk := Dk ∪ (xk )
12: end if
13: k = k + 1
14: end while

the Fisher information matrix and hence the corresponding
CRLB is difficult to obtain in close form. Therefore, in this
section, the modified form of Fisher information matrix
information, which in comparison to the Fisher information
matrix, is used. For the modified CRLB (MCRLB), the PDF
of the radar observation is assumed to beGaussian, and subse-
quently averaged it to obtain theMCRLBs in close form [33].
The obtained MCRLBs are an alternative to CRLBs for the
non-Gaussian case and effectively provide a means to assess
the performance of the proposed estimator dealing with clut-
ter non-Gaussianity [34].

In this work, the non-Gaussian clutter c in (3) ismodeled by
a spherically invariant random process (SIRP) [35]. The SIRP
is mathematically described by a local Gaussian distribution
with variance modulated by an independent scalar random
process [36], [37]. Hence, the clutter c can be mathematically
modeled as [13]–[15]

c ∈ CNM×1
=
√
αz, (13)

where α is a Gamma random variable with shape and size
parameter as ν (reflects the non-Gaussianity of the clutter)
and µc (the average power of the clutter), respectively. Since,
α is a Gamma distributed, c follows K-distribution with
parameters ν and µc. The z is a complex correlated multi-
dimensional Gaussian vector with a normalized covariance
matrix 6z = E[zzH ] = ρ|i−j| ∀ i, j ∈ [1, 2, . . . ,NM ] and
zero mean vector, i.e z ∼ CN NM(0,6z).

Subsequently, the thermal noise process vector w, in (3),
is modeled by independent and identically distributed (i.i.d)
additive white Gaussian noise process with zero mean and
�2
w variance, i.ew ∼ CN NM(0, �2

wI), where I is the identity
matrix.

In (3), z and w are consider to be independent and it is also
assume that they satisfy the circularity condition. Therefore,
the composite covarince matrix of equivalent perturbation

(c+ w) is given by

6 = µc6z +�
2
wI,

where, µc = E[α]
Since the estimation of 2 is performed in a high-

dimensional spaceH , therefore, the analytical expression for
MCRLB on the variance of the estimate of2 is also derived
in H . Subsequently, mapping the MIMO radar signal model
given in (3) into H via 8(·), yields

8(r) = 8(s+ w+ c), (14)

where s = A(θ ,φ)v(f)
The first order Taylor series approximation of (14) yields

8(r) = 8(s)+ O8(s)(w+ c), (15)

where O8(s) is the Jacobian matrix.
From the set of unknown parameter (2 = [21,22, . . . ,

2p, . . . ,2P]), which is either the set of DODs, DOAs, or
Doppler shifts (i.e. 2 = [θ1, θ2, . . . , θp, . . . , θP], 2 =

[φ1, φ2, . . . , φp, . . . , φP] or 2 = [f1, f2, . . . , fp, . . . , fP] ),
from (15), the MCRLB for 2p is given by

MCRLB(2p) = O8(s)H [I−1(2)]ppO8(s), (16)

∀ p ∈ [1, 2, . . . ,P]

where I(2) is the modified Fisher information matrix for
the MIMO radar signal model described in (3), subsequently,
I(2) is given by

I(2) = Eα
[
I(α;2)

]
. (17)

Due to the complex non-Gaussian mathematical represen-
tation of the PDF of c, the PDF of r is difficult to obtain
in the close form. Alternatively, for given α, the PDF of r
(P(r|α;2)) would be Gaussian. Consequently, the elements
of Fisher information, for given α is given by

[I(α;2)]ij = −Er|α

[
∂2 lnP(r|α;2)

∂2i∂2j

]
,

∀ i, j ∈ [1, 2, . . . ,P] (18)

where

P(r|α;2) =
1

πNM |6α|
exp

(
− (r− s)H6α−1(r− s)

)
and 6α = α6z +�

2
wI

As shown in (18), I(α;2) is the Fisher information of r for
a particular case (when α is considered to be deterministic).
Therefore, to find the Fisher information matrix of r for
the generalized case (when α is random), the I(α;2) needs
to be statistically averaged over α. The Fisher information
matrix, obtained by statistical averaging of I(α;2) over α is
termed as modified Fisher information matrix and is given
by (17). Consequently, the CRLB corresponding to the mod-
ified Fisher information matrix (I(2)) is termed as modified
CRLB.
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Solving (18) for s = A(θ ,φ)v, yields

[I(α;2)]ij = 2
[
∂(A(θ ,φ)v)H

∂2i
6α
−1 ∂(A(θ ,φ)v)

∂2j

]
. (19)

With the composite form of 6α (6α = α6z + �
2
wI),

solving (19) is hard, as6α−1 is difficult to obtain. Therefore,
in this work to derive the MCRLB, as per [33], the hypoth-
esis that the clutter power is much greater than the thermal
noise i.e. (E[α]�> �2

w) is considered. The aforementioned
assumption simplifies 6α as 6α = α6z. Hence, (19) is
given by

[I(α;2)]ij =
2
α

[
∂(A(θ ,φ)v)H

∂2i
6−1z

∂(A(θ ,φ)v)
∂2j

]
. (20)

Invoking the trace identity, (20) is expressed as

[I(α;2)]ij =
2
α
tr
[
∂(A(θ ,φ)v)

∂2j

∂(A(θ ,φ)v)H

∂2i
6−1z

]
. (21)

As mentioned in Section II, for 6z = ρ
|k−l|, using

6−1z

=


0, if |k − l| > 1
1/(1− ρ2), if k = l = 1 or k = l = NM
(1+ ρ2)/(1− ρ2), if k = l and 2 ≤ k ≤ NM − 1
−ρ/(1− ρ2), if |k − l| = 1


the elements of I(α;2) after using tr[BC] =

∑NM
k=1

∑NM
l=1

[B]k,l[C]l,k , is given by

[I(α;2)]ij =
2
α

NM∑
k=1

NM∑
l=1

[D]k,l[6−1z ]l,k , (22)

where D = ∂(A(θ ,φ)v)
∂2j

∂(A(θ ,φ)v)H
∂2i

.

Substituting (22) in (17), yields

[I(2)]ij = Eα
[
2
α

] NM∑
k=1

NM∑
l=1

[D]k,l[6−1z ]l,k . (23)

In (23), since α is Gamma distributed, Eα
[
2
α

]
=

2ν
µc(ν−1)

.

Therefore, (23) is given by

[I(2)]ij =
2ν

µc(ν − 1)

NM∑
k=1

NM∑
l=1

[D]k,l[6−1z ]l,k . (24)

Solving (24) for 2 = [θ1, θ2, . . . , θp, . . . , θP], 2 =

[φ1, φ2, . . . , φp, . . . , φP] or 2 = [f1, f2, . . . , fp, . . . , fP],
yields the element of I(2) for DOD, DOA, or Doppler shift,
respectively. Subsequently, I−1(2) is obtained and from (16),
using 8(s)H8(s) = 〈8(s),8(s)〉H = NM , the MCRLB for
pth target on the variance of DOD, DOA, or Doppler shift is
given by

MCRLB(2p) = NM [I−1(2)]pp ∀ p ∈ [1, 2, . . . ,P] (25)

V. ANALYTICAL EXPRESSION FOR OVERALL VARIANCE
OF ESTIMATOR BASED ON KMEE
In this section, we derive the generalized analytical expres-
sion for the variance in the estimation of DOD, DOA, and
Doppler shift of multiple targets. The variance �2

2p
in the

estimation of2p (where2p is either θp, φp, or fp) of pth target
with estimator based on KMEE is given by

�2
2p
= MCRLB(2p)+ SEMSE , (26)

where SEMSE is the steady state excess mean square error of
estimator based on KMEE

As shown in (26), the variance of the proposed estimator
is given by the minimum achievable variance (MCRLB) plus
excess mean square error yield by the proposed estimator in
steady-state defined by SEMSE . In (26), if SEMSE is nill/zero,
the estimator variance reaches the MCRLB; however, this
is the ideal case. Therefore, the variance for the proposed
estimator is given by MCRLB plus SEMSE .

The SEMSE as per [38], is given by

SEMSE = lim
k→∞

E
[
‖ea(k)‖2G(k)

]
, (27)

where ‖ea(k)‖2G(k) is the l2 norm in H given the L×L Gram
matrix G(k) = 8H (xk )8(xk ) and ea(k) = 8H (xk )�̃k−1 is
the a priori error vector, i.e. �̃k−1 = �o−�k−1 is the weight
error vector in H at k th iteration.

Using the energy conservation relation as per [26], we get

E[
∥∥∥�̃k

∥∥∥2
G(k)

] = E[
∥∥∥�̃k−1

∥∥∥2
G(k)

]− 2ηE[eHa (k)hφ(e(k))]

+η2E[hφ(eH (k))G(k)hφ(e(k))], (28)

where, from (10), hφ(e(k)) = 1
Lφ
′

[
1
L

∑k
i=k−L+1 κd (e(k, k)−

e(k, i))
]∑k

i=k−L+1 κ
′
d (e(k, k)− e(k, i))(8(xk )−8(xi))

In (28), E[eHa (k)hφ(e(k))] can be define as

E[eHa (k)hφ(e(k))] = γ
2
k hG(γ

2
k )

where γ 2
k = E[‖ea(k)‖2G(k)]

Further, in (28), E[hφ(eH (k))G(k)hφ(e(k))] can be simpli-
fied as

E[hφ(eH (k))G(k)hφ(e(k))] = hI (γ 2
k )E[‖8(xk )‖

2
G(k)], (29)

hI (γ 2
k ) =

∑L
i=1 E[hiφ(e(k))

2
]

The γ 2
k can be further simplified as

γ 2
k = E[‖ea(k)‖2G(k)] = E[eHa (k)G(k)ea(k)]

= E[�̃H
k−18(xk )G(k)8H (xk )�̃k−1]

= E[�̃H
k−1‖8(xk )‖

2
G(k)�̃k−1]

= NML(µc +�2
w)E

[ ∥∥∥�̃k−1

∥∥∥2
G(k)

]
, (30)

where E[‖8(xk )‖2G(k)] = NML(µc +�2
w)
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Solving for (30), yields

E[
∥∥∥�̃k

∥∥∥2
G(k)

]

= E[
∥∥∥�̃k−1

∥∥∥2
G(k)

]− 2ηNML(µc +�2
w)

×E
[ ∥∥∥�̃k−1

∥∥∥2
G(k)

]
hG
(
NML(µc +�2

w)

×E
[ ∥∥∥�̃k−1

∥∥∥2
G(k)

])
+ NMLη2

×hI
(
NML(µc +�2

w)E
[ ∥∥∥�̃k−1

∥∥∥2
G(k)

])
×(µc +�2

w) (31)

For steady state analysis taking lim
k→∞

to both sides of (31),

yields

lim
k→∞

E[
∥∥∥�̃k

∥∥∥2
G(k)

]

= lim
k→∞

E[
∥∥∥�̃k−1

∥∥∥2
G(k)

]− 2ηNML(µc +�2
w)

× lim
k→∞

E
[ ∥∥∥�̃k−1

∥∥∥2
G(k)

]
hG
(
NML(µc +�2

w)

× lim
k→∞

E
[ ∥∥∥�̃k−1

∥∥∥2
G(k)

])
+ NMLη2

×hI
(
NML(µc +�2

w) limk→∞
E
[ ∥∥∥�̃k−1

∥∥∥2
G(k)

])
×(µc +�2

w). (32)

Since lim
k→∞

E[
∥∥∥�̃k

∥∥∥2
G(k)

] = lim
k→∞

E[
∥∥∥�̃k−1

∥∥∥2
G(k)

], (32) is

given by

lim
k→∞

E
[ ∥∥∥�̃k−1

∥∥∥2
G(k)

]
=
η

2

hI
(
NML(µc +�2

w) limk→∞
E
[ ∥∥∥�̃k−1

∥∥∥2
G(k)

])
hG
(
NML(µc +�2

w) limk→∞
E
[ ∥∥∥�̃k−1

∥∥∥2
G(k)

]) . (33)

Representing SWEP = lim
k→∞

E
[ ∥∥∥�̃k−1

∥∥∥2
G(k)

]
as the steady

state weight error power, (33) is given by

SWEP =
η

2

hI
(
NML(µc +�2

w)SWEP
)

hG
(
NML(µc +�2

w)SWEP
) . (34)

Using (27) and (30), SEMSE is given by

S2EMSE = NML(µc +�2
w)SWEP. (35)

VI. COMPUTATIONAL COMPLEXITY ANALYSIS OF
ESTIMATOR BASED ON KMEE-NC
In KAF based on-line learning algorithms, most of the
computational time consuming part is the calculation of
the prediction error (ek = gk − dk ). As the calculation

2Please note, because of the need to evaluate theoretical expectation E,
the obtained expression for variance is only for theoretical importance and
cannot be simulated.

of prediction error depends on the evaluation of gk =∑k−1
j=1 γ j(k)κσ (xj, xk ), the time taken to compute gk , mostly

affect the computational complexity of KMEE algorithm.
Consequently, the computational complexity of estimator
based on KMEE is given by O(k). Thus, it can be observed
that the complexity grows unboundedly, which is an unde-
sirable feature of estimator based on KMEE. Furthermore,
since no sparsification criterion is applied, the number of
terms under the summation for calculating gk is equal to iter-
ation number k , which increases linearly upto K . However,
as mentioned in Section III, with KMEE-NC, gk is given by

gk =
∑|D j

k |

j=1 γ j(k)κσ (D
j
k ), xk , where |Dk−1| is the cardinality

of Dk−1 (dictionary containing input observations satisfying
NC criterion at iteration k). In comparison to KMEE, at each
iteration the number of terms (|Dk−1|) under summation is
less than k , this reduces the computational complexity of

KMEE-NC and is given by O(|DKMME−NC
k−1 |).

Similarly, the computaional complexity of the other exist-
ing KAF based estimators KLMS-NC and KMC-NC is
given by O(|DKLMS−NC

k−1 |) and O(|DKMC−NC
k−1 |), respectively.

Furthermore, since max |DKMEE−NC
k−1 | < K , employing

NC for sparsification, reduces the number of computations
as compared to KMEE. The computational complexity of
KMEE-NC based estimator in comparison to KLMS-NC
and KMC-NC is further reduced by incorporating the MEE
criterion. Therefore, for KMEE-NC, KMC-NC, and KLMS-
NC, the relation: max |DKMME−NC

k−1 < max |DKMC−NC
k−1 | <

max |DKLMS−NC
k−1 | < K holds true.

VII. SIMULATION RESULTS AND DISCUSSION
In this section, we present and discuss simulation results
performed to validate performance of the proposed estimator
based on KMEE-NC. For evaluating the average normalized

mean square error
(
NMSE = 1

Kte

∑Kte
k=1

∥∥∥2k
−2̂

k
∥∥∥2∥∥2k

∥∥2 , where

Kte is the number of MIMO radar observations used for

testing
)

performance of the proposed estimator, the signal

to clutter ratio
(
SCR = vHAH (θ ,φ)A(θ ,φ)v

µctr(6z)

)
, and clutter to

noise ratio
(
CNR = µctr(6z)

NM�2
w

)
, both are fixed at 30 dB. The

simulations are performed to estimate the DOD, DOA, and
Doppler shift of four different targets (i.e P = 4) illumi-
nated by the MIMO radar with N = 4, and M = 3 [15].
To compare performance of the proposed estimator with other
sparsified version of kernel based estimators (KLMS-NC and
KMC-NC) and estimators proposed in [13]–[15] and [16],
variance in estimation of parameters of first target is evaluated
in the SCR range from −30 dB to 30 dB with an increment
of 2 dB. The reported simulation results are obtained by
ensembeling of 100 Monte Carlo runs. The free parameter
values of KMEE-NC, KMC-NC, and KLMS-NC for the
estimation of DOD, DOA, and Doppler shift are summarized
in Table 1, Table 2, and Table 3, respectively. The value of
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FIGURE 1. (a) Average normalized MSE, and (b) Dictionary size in the
estimation of DOD using estimators based on KMEE-NC, KMC-NC, and
KLMS-NC.

TABLE 1. Parameters values used for estimation algorithms based on
KMEE-NC, KMC-NC, and KLMS-NC for estimating Doppler shift via
simulations.

TABLE 2. Parameters values used for estimation algorithms based on
KMEE-NC, KMC-NC, and KLMS-NC for estimating DOA via simulations.

free parameters mentioned in Table 1, Table 2, and Table 3 are
obtained by cross-validation [32], [39], to achieve a desirable
average NMSE convergence speed with minimum average
NMSE value.

FIGURE 2. (a) Average normalized MSE, and (b) Dictionary size in the
estimation of DOA using estimators based on KMEE-NC, KMC-NC, and
KLMS-NC.

TABLE 3. Parameters values used for estimation algorithms based on
KMEE-NC, KMC-NC, and KLMS-NC for estimating Doppler shift via
simulations.

A. ESTIMATION OF DOD AND DOA
Simulations using estimators based onKMEE-NC,KMC-NC,
and KLMS-NC to estimate DOD and DOA of four different
targets are performed by dividing the interval of true values
of DOD and DOA, i.e., (−π2 ,

π
2 ) into K = 55503 parts.

Subsequently, the MIMO radar observations corresponding
to K = 5550 true values of DOD and DOA are obtained
by using (4) and (5), respectively. The starting Ktr = 5000
pair of DOD and DOA true values and respective MIMO
radar observations i.e. (dk , rθk |φ,f) or (dk , rφk |θ ,f) are used
to train the estimators. The rest Kte = 550 pairs are used
for testing performance of the estimators and evaluating the
average NMSE.

As shown in Fig. 1a, and Fig. 2a, the estimator based
on KMEE-NC converges to a lower average NMSE of the

3As convergence is observed with minimum 5000 training samples [32]
tested over 550 testing samples, K = 5550 is chosen.
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FIGURE 3. (a) Average normalized MSE, and (b) Dictionary size in the
estimation of Doppler shift using estimators based on KMEE-NC,
KMC-NC, and KLMS-NC.

TABLE 4. Computational complexity comparison of estimators based on
KLMS-NC, KMC-NC, and KMEE-NC corresponding to Fig. 1b.

order 10−2 as compared to the estimator based onKLMS-NC.
Further, as reported in Fig. 1a, and Fig. 2a, the estimator
based on KMEE-NC yields estimates with average NMSE
equal to the estimator based onKMC-NC.However, as shown
in Fig. 1b, and Fig. 2b, and quantified in Table 4, the computa-
tional complexity (dictionary size) obtained in the estimation
of DOD and DOA, using an estimator based on KMEE-NC is
lower than the estimator based on KMC-NC and KLMS-NC.
Additionally, from Fig. 1b, and Fig. 2b, we can also observe

that the relation: max |DKMME−NC
k−1 < max |DKMC−NC

k−1 | <

max |DKLMS−NC
k−1 | < K mentioned in Section VI is ver-

ified by the simulations. The lower average NMSE and
lower dictionary size obtained by the estimator based on
KMEE-NC, validate the superiority of the proposed estimator
over other kernel based estimation techniques (KMC-NC and
KLMS-NC).

FIGURE 4. Comparative performance of the estimators for estimation of
(a) DOD, (b) DOA, and (c) Doppler shift of the first target.

B. ESTIMATION OF DOPPLER SHIFT
Similar to DOD/DOA, simulations to estimate normalized
Doppler shift for P = 4 using estimators based on
KMEE-NC, KMC-NC, and KLMS-NC are performed by
dividing the interval of true values of normalized Doppler
shift i.e (−0.5, 0.5) into K = 5550 parts. The MIMO radar
observations corresponding to K = 5550 true values of
Doppler shift are obtained by using (6). Out of the 5550
pair of Doppler shift and MIMO radar observations i.e.
(dk , rfk |θ ,φ), 5000 are used to train the estimators. Subse-
quently, the averageNMSE in estimating normalizedDoppler

125328 VOLUME 9, 2021



U. K. Singh et al.: KMEE Based Estimator for MIMO Radar in Non-Gaussian Clutter

shift are evaluated using the remaining 550 pairs of Doppler
shift and MIMO radar observations (dk , rfk |θ ,φ).

In the estimation of theDoppler shift, as depicted in Fig. 3a,
average NMSE of the estimator based on KMEE-NC con-
verges to the order of 10−2 which is lower than average
NMSE achieved by the estimators based on KLMS-NC.
Further, as reported in Fig. 3a, the performance of the esti-
mator based on KMEE-NC coincides with the performance
of estimator based on KMC-NC. However, similar to Doppler
shift estimation, estimator based on KMEE-NC offers a gain
over KMC-NC and KLMS-NC in terms of computational
complexity, as shown in Fig. 3b.

C. COMPARATIVE PERFORMANCE OF ESTIMATORS
For assessing accuracy of the proposed estimation technique
compared to existing kernel based estimators and conven-
tional estimators, variance of the estimators is compared with
the respective MCRLBs. For this, simulations are performed
to evaluate variance in the estimation of DOD, DOA, and
Doppler shift of the first target, i.e., p = 1.
As shown in Fig. 4a in the estimation of DOD, the vari-

ance obtained with KMEE-NC in comparison to KLMS-NC
and conventional estimators proposed in [13]–[15] and [16],
termed respectively as IMLE [13], IMLE [14], IMLE [15],
andAMLE, is closer to the achievableMCRLB. Furthermore,
it is also observed that the variance of the estimator
based on KMEE-NC and KMC-NC is coinciding. However,
as depicted in Fig. 1b, Fig. 2b, and Fig. 3b, KMEE-NC
utilizes much lower radar observations than KMC-NC,
which results in lower computational complexity. More-
over, as shown in Fig. 4a, particular to DOD estimation,
KMEE-NC has lower variance than KMC-NC in the SCR
range of 10 dB to 20 dB. Similar to DOD estimation, par-
ticular to Doppler shift estimation, as shown in Fig. 4c,
KMEE-NC yields lower variance than KMC-NC in the SCR
range of 0 dB to 10 dB.

VIII. CONCLUSION
In this paper, an estimator for DOD, DOA, and Doppler shift
for multiple targets using MIMO radar in the presence of
non-Gaussian clutter is proposed. The effect of non-Gaussian
clutter is handled by introducing the adaptive estimator based
on KMEE. The KMEE optimizes the MEE criterion in
RKHS, which, yields accurate estimates of parameters by
compensating the effect of non-Gaussian clutter. The practi-
cal viability of the proposed KMEE based estimator is limited
by its high computational complexity/dictionary size. Thus,
the computational complexity/dictionary size is reduced by
incorporation of sparsification technique based on NC. The
performance of the proposed algorithm is compared with
the derived MCRLB for DOD, DOA, and Doppler shift.
Accuracy of the proposed estimator is validated through
computer simulations over realistic MIMO radar systems.
The obtained simulation results reveal the viability of the
proposed KMEE-NC based estimator over other kernel based
adaptive estimators and conventional estimators.

In future, the utility of the proposed KMEE-NC based
estimator can be explored for nested MIMO radar in the
presence of clutter.
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