
A First Look at Security Risks of Android TV Apps
Yonghui Liu∗, Li Li∗, Pingfan Kong†, Xiaoyu Sun∗, Tegawendé F. Bissyandé†

∗Monash University, Melbourne, Australia
† University of Luxembourg, Luxembourg

{yonghui.liu, li.li, xiaoyu.sun}@monash.edu, {pingfan.kong, tegawende.bissyande}@uni.lu

Abstract—In this paper, we present to the community the first
preliminary study on the security risks of Android TV apps. To
the best of our knowledge, despite the fact that various efforts
have been put into analyzing Android apps, our community has
not explored TV versions of Android apps. There is hence no
publicly available dataset containing Android TV apps. To this
end, We start by collecting a large set of Android TV apps from
the official Google Play store. We then experimentally look at
those apps from four security aspects: VirusTotal scans, requested
permissions, security flaws, and privacy leaks. Our experimental
results reveal that, similar to that of Android smartphone apps,
Android TV apps can also come with different security issues.
We hence argue that our community should pay more attention
to analyze Android TV apps.

I. INTRODUCTION

Smart TV has become the default TV type nowadays. More
and more users are switching from traditional TVs to Smart
TVs [1], which go beyond conventional TVs by providing
additional programs through internet connectivities such as
allowing users to watch Netflix, YouTube directly over the
TVs. Among various types of Smart TVs in the market,
Android TV, with a lot of benefits extended from the popular
Android ecosystem, has undoubtedly become one of the most
popular ones. Similar to that of Android phones, Android TV
users can also connect to the Google Play store to download
and update apps and utilize Google Assistant to achieve hands-
free tasks.

Unfortunately, while extending the benefits from the An-
droid ecosystem, Android TVs also extend the potential se-
curity flaws appearing in other Android-based devices such
as Smartphones or Smartwatches. For example, the video
and voice features enabled by many Android TVs through
respectively camera and microphone could be exploited by
malicious apps to create a surveillance device for recording the
users’ daily activities. Besides the misuse of existing features,
the customization made for Android TVs can further bring
security risks to the TV users. Indeed, as recently discovered
by Aafer et al. [2], through log-guided fuzzing, they found that
there are 37 unique vulnerabilities available in 11 Android TV
boxes that could lead to high-impact cyber threats.

Despite the continuously growing popularity of Android
TVs and the public reports of the aforementioned potential se-
curity risks, our community has not yet paid enough attention
to the security of Android TVs, including the security analysis
of Android TV apps. Indeed, our lightweight literature search
(over Google Scholar with different combinations of keywords
including Android TV, Smart TV, security, privacy, and vul-

nerability, etc.) finds no paper published in this direction. To
fill the gap, in this work, we conduct an exploratory study on
the security risks of Android TV apps. Through this study,
we aim to understand the status quo of Android TV apps and
their security situations, and subsequently observe actionable
insights towards achieving a better Android TV ecosystem.
Unfortunately, there is no dataset that are mainly made up of
Android TV apps. To that end, we firstly collect Android TV
apps from Google Play to fulfill this research gap. Particularly,
we resort to a crawling process to pinpoint Android TV apps
available on the official Google Play store. Our preliminary
attempt has harvested 3, 163 TV apps spanning over 17 major
categories. We then download those apps and their correspond-
ing metadata to prepare the dataset and thereby support the
subsequent exploratory experiments.

Based on the carefully prepared dataset, we first examine
the harvested Android TV apps from their popularity point of
view. Our empirical study reveals that TV apps are mainly used
for entertainment. Then, to illuminate the security behaviors of
these apps, we investigate them from the presence of malware,
the requested permissions, the possible security flaws, and
the potential privacy leaks. We observe that different kinds
of security issues do exist in the Android TV ecosystem.

To conclude, our work has made the following major
contributions.

• We have collected an amount of 3,163 Android TV apps
from the official Google Play store. The dataset has been
made publicly available at Github [3].

• We have further collected the TV apps’ metadata and
conducted a preliminary investigation about the apps’
category and size distribution, as well as their overall
popularities.

• We have conducted a detailed security risk analysis based
on the collected TV apps. Experimental results show that
Android TV apps indeed suffer from various security
flaws and may contain malicious behaviors, including
leaking users’ private information.

II. DATASET AND PRELIMINARY STUDY

In this section, we first discuss the process we have lever-
aged to collect real-world Android TV apps (cf. Section II-A).
After that, we present a preliminary study to have an initial
understanding of those harvested TV apps (cf. Section II-B).

AndroZoo Exclude Non-
Google Play Apps

Exclude Duplicated
Versions

Download TV APKs
from Google Play

15,960,210 Apps 13,202,153 Apps 6,072,676 Apps 3,163 Apps

Fig. 1. Working Process to Collect Android TV apps.

A. Dataset

To help the ensuing exploratory experiments, we need to
prepare a set of Android TV apps. To this end, we resort to
the official Google Play store to collect such a dataset.

Figure 1 illustrates the working process of our approach for
collecting Android TV apps. It unfolds in 4 steps. First, We
obtain a list of Android smartphone apps from the popular An-
droZoo [4] dataset. AndroZoo contains Android smartphone
apps that are collected from Google Play and many other third-
party app markets. Till now, the AndroZoo dataset contains
around 16 million apps. Then, we exclude non Google Play
Apps and only kept 13 million apks. Afterwards, we remove
legacy apk versions of any same app, resulting in 6 million
unique Google Play app apks in the dataset. Finally, for each
of these retained apps, we resort to Python scripts to search
if it has a dedicated TV counterpart version on Google Play.
To this end, we utilize the app’s package name (also known
as app id) as the keyword to conduct the search. We use the
package name since it is used by Google Play as the unique
identifier of any app. We also need to prepare the search
by feeding the Google Play with TV-specific device settings,
e.g., Build.DEVICE, Screen.Density. In this way, the search
results returned by Google Play will only contain an app’s
TV-oriented versions.

Our process eventually identifies 3, 163 Android TV apps,
for which we further write scripts to crawl their metadata from
Google Play, e.g., app category, total installation, etc..

B. Preliminary Study

We now present a preliminary study to have a first look
at the 3 163 TV apps and their metadata. Figure 2 illustrates
the word cloud generated based on the verbal descriptions
of the collected TV apps. Clearly, the most recurrent words
include game, video, audio, music, etc., which suggest the
main service the TV apps provide. Table I groups the collected
TV apps based on their categories. We further confirm that
entertainment, music & audio, game, and video players &
editors are among the most popular app categories on the
Android TVs. More than half of the apps are collected from
these 4 categories. Note that only categories containing at least
10 apps are shown in Table I, while the rest apps are grouped
in “Others” category.

In Table I, the second column presents the number of
apps available in each category. The third column further
shows the number of apps in that category that are marked
as containing advertisements on Google Play. In general,
around one third of TV apps are equipped with advertisements.
Specifically, apps in categories such as Music & Audio, Game,
News & Magazines, and Finance are more likely to include
advertisements to target the Android TV end-users. Indeed,

Fig. 2. Word cloud based on the descriptions of the collected TV apps.

TABLE I
STATISTICS OF THE COLLECTED ANDROID TV APPS.

Category #. of
Apps

#. of Apps
With Ads

Size
(MB)

#. of
Installs

#. of
Ratings

Rating
(Star)

Entertainment 892 216 35.2 2,216,225 35,122 3.6
Music&Audio 484 408 8.7 623,327 12,793 4.0

Game 447 306 26.1 2,694,097 80,260 3.8
Video&Editors 321 63 39.5 17,806,353 48,158 3.8

Tools 223 63 12.4 105,357,326 279,415 3.8
Health&Fitness 144 8 26.9 177,917 4,225 3.6

News&Magazines 108 78 16.5 562,207 12,165 4.0
Education 100 39 25.3 74,444 662 3.8

Lifestyle 100 15 25.8 147,315 4,517 3.9
Business 69 10 18.0 1,822,982 15,078 3.3

Productivity 66 9 18.9 362,851 4,439 3.5
Communication 45 5 22.7 22,798,398 15,530 3.8

Food&Drink 36 20 15.1 871,740 19,826 3.9
Books&Reference 24 11 20.0 366,839 11,593 4.0

Personalization 22 8 9.3 452,820 3,735 3.7
House & Home 11 0 32.0 15,278 51 3.3

Finance 10 8 11.8 164,200 4,829 3.9
Others 61 24 15.3 84,193,442 2,038,839 3.9
Totals 3,163 1,291 25.2 12,382,322 88,898 3.8

Fig. 3. Distribution of Android TV App size

around 84.3% of Music & Audio apps and 68.5% of Game
apps have been embedded with advertisements. The fourth
column breaks down the average size of the collected TV apps.
In general, the average size of all apps is 25.2 MB. Figure 3
further illustrates the size distribution of those apps. Clearly,
over half of the collected TV apps are larger than 13 MB.

We further study the popularity of the collected TV apps
from two aspects: (1) Apps installation and (2) Apps User
rating.

Apps Installation Analysis We now analyze the number
of installations for these apps (cf. column 5 in Table I) to
learn the scale of potential users. Since the TV apps are
downloaded from Google Play, we only take into account
the installation statistics recorded on Google Play. We cal-
culate the accumulated installs count for each of these apps,
as shown in Figure 4. The accumulated trend displays the
general dissemination of application installs for all the 3, 163
applications, among which the majority of them have been
installed over 5, 000 times. Specifically, 25.6% (811 apps)
of them have collective install counts as high as 100, 000,
and approximately 12% (384 apps) of these apps have over 1

Fig. 4. Distribution of App Installs

Fig. 5. Distribution of App Rating

million installs, among which 0.3% (10 apps) of them even
have over 1 billion downloads. These pieces of evidence show
that the harvested TV apps are unlikely to be toy apps but
popular real-world apps.

User Rating Analysis We then seek to understand how
users feel about these Android TV apps by collecting the
average ratings for these apps from Google Play Store. We
group these apps based on their average rating score (cf. last
column in Table I). The distribution of average app ratings
is further shown in Figure 5. We find that more than half
of the total apps (56.2% of them) are rated higher than four
stars. Also, 956 apps are rated 3+ stars. Since the rating is
not an obligation, 227 apps do not have enough user rating to
compute an average score (marked as N.A).

III. SECURITY ANALYSIS

We now look into the harvested Android TV apps from
the security point of view. Specifically, in this section, we
first send the apps for scrutinizing under VirusTotal to collect
their malicious status (cf. Section III-A). Then we investigate
the apps’ requested permissions which the Android ecosystem
manages with great caution in order to protect user privacy (cf.
Section III-B). After that, we leverage state-of-the-art tools to
explore the security flaws and privacy leaks in those collected
TV apps, which are detailed in Section III-C and Section III-D,
respectively.

A. VirusTotal Analysis

To understand whether the harvested TV apps are malicious
or not, we resort to the API [5] provided by VirusTotal to
upload and scan all the collected apps. VirusTotal is a website
that provides public services for analyzing suspicious files
(including Android APKs) to detect malware. Particularly,
each file will be scanned by over 60 anti-virus products such
as Kaspersky when uploading to VirusTotal. In this work, we

label a TV app malicious as long as any anti-virus product
considers it as such. Based on generated VirusTotal results,
we find that 89 apps are labeled as malicious by at least one
anti-virus vendor, showing a quite low malicious rate among
all the harvested apps. However, it is worrisome that about
one third (30 apps) of the flagged malicious TV apps belong
to the Game category. This evidence suggests that, although
generally speaking, Android TV apps have not yet been the
primary target of attackers, the existence of malicious apps
(especially being popular in a certain category) do suggest
that there are interests and incentives for attackers to exploit
this direction.

B. Requested Permission Analysis

We now investigate how Android TV apps request sensitive
permissions. Among different asset documents included in
an Android app, we extracted the declared permission from
AndroidManifest.xml. It is the configuration file liable for
defining app features such as permissions. We perform this
task by resorting to Android Asset Packaging Tool 2 (AAPT)
[6]. App permission framework is a frontline component
of the Android ecosystem to keep the privacy of Android
users secure. Each Android application has to declare the
permissions in the AndroidManifest.xml file in case they want
to get access to sensitive user data (such as location and audio).
Android Developer Guide [7] suggests that permissions can be
categorized into different levels grounded on their riskiness,
i.e., normal, signature and dangerous.

In total, we are able to observe 1, 103 unique permis-
sions requested by the collected TV apps. Among such
unique permissions, 299 (27.1%) of them contain the “tv”
keyword (hereinafter referred to as TV-specific permis-
sions). Interestingly, only 5 out of the 299 TV-specific
permissions are provided by the original Android Open
Source Project (cf. Table II). All the remaining permissions
are customized ones provided by third-party vendors, e.g.,
com.mitv.patchwall.permission.MANAGE MEDIA by MI TV,
com.amazon.tv.permission.LAUNCHER SETTINGS by Ama-
zon TV.

TABLE II
TV-SPECIFIC PERMISSIONS

Permissions Count
com.android.providers.tv.permission.WRITE EPG DATA 171
com.android.providers.tv.permission.READ EPG DATA 170

com.android.providers.tv.permission.ACCESS ALL EPG DATA 4
android.permission.BIND TV INPUT 2

com.android.providers.tv.permission.ACCESS WATCHED PROGRAMS 1

Figure 6 illustrates the distribution of the number of per-
missions declared by each Android TV app. Around half of
the studied TV apps have declared more than 10 permissions.
The average number is 9.5, as highlighted by the

⊕
sign.

Table III further summarizes the total permissions (17 permis-
sions) requested by at least 10% of all apps. A number of 6
permissions highlighted in Table III are labeled as dangerous
permissions that require the users to give the consents at run-
time. These permissions are required to read from and write

Fig. 6. Distribution of the Number of Permissions

TABLE III
POPULAR PERMISSIONS IN ANDROID TV APPS

Permissions in Android TV Apps #Apps Protection Level
INTERNET 3,081 Normal

ACCESS NETWORK STATE 2,981 Normal
WAKE LOCK 2,476 Normal

READ EXTERNAL STORAGE 1,831 Dangerous
FOREGROUND SERVICE 1,551 Normal

WRITE EXTERNAL STORAGE 1,504 Dangerous
ACCESS WIFI STATE 1,477 Normal

RECEIVE BOOT COMPLETED 1,449 Normal
RECEIVE 1,419 Signature

BIND GET INSTALL REFERRER SERVICE 1,331 Normal
BILLING 1,258 Normal

RECORD AUDIO 560 Dangerous
SYSTEM ALERT WINDOW 496 Signature

VIBRATE 477 Normal
READ PHONE STATE 422 Dangerous

ACCESS COARSE LOCATION 377 Dangerous
ACCESS FINE LOCATION 355 Dangerous

Fig. 7. AndroBugs Critical Issue for Android TV Apps

to external storage, record audio, access to phone state, and
access the approximate and precise location of the device [7].
As shown in the table, 3,081 apps (97.4%) have requested the
‘Internet’ permission, indicating a uniquely high demand for
internet access from the TV apps. Also, we found that fewer
Android TV apps require the location of end-users compared
with mobile Android apps. For instance, only around 11%
of Android TV Apps have requested permissions “ACCESS -
COARSE LOCATION” and “ACCESS FINE LOCATION”,
while previous studies [8] suggested that the percentages for
the mobile Android apps are 25% and 26%, respectively.

Declaration of Duplicated Permissions. As revealed by
Li et al. [9], [10], smartphone apps may contain duplicated
permission declarations, i.e., the same permission is declared
twice in the same configuration file. Such duplication is
often the indicator for app repackaging, this is because the
opportunists often directly append needed permissions with-
out even checking whether they have been already declared
or not. In this work, we further check if such permission
duplication also happens in Android TV apps. In our explo-
ration, we find that there are 119 apps that have declared the
same permission more than once. In total, a number of 14
distinct permissions involve duplication issues. Permissions
INTERNET, WAKE LOCK, ACCESS NETWORK STATE,
SYSTEM ALERT WINDOW, and READ PHONE STATE
are the most recurrent ones. This evidence suggests that
app repackaging attack is probably already happening in TV
platforms and requires attention.

TABLE IV
CRITICAL VULNERABILITIES FOUND BY ANDROBUGS

Type Detailed Vulnerability Descriptions Count

SSL Security

SSL Connection 2,817
Verifying Host Name in Classes 553
SSL Certificate Verification 228
Verifying Host Name in Fields 51

WebView WebView RCE Vulnerability 1,545
Implicit Intent Implicit Service 1,436

AndroidManifest

ContentProvider Exported 480
“intent-filter” Settings 56
Critical Use Permission 37
System Use Permission 32

Command Runtime Command 278
Runtime Critical Command 32

Encryption Base64 String Encryption 275
Fragment Fragment Vulnerability 230

Permission App Sandbox Permission 199
KeyStore KeyStore Protection 173

Others 70
Total 8,492

C. Security Flaw Analysis

To understand the potential security vulnerabilities in these
Android TV apps, we resort to AndroBugs Terminal Frame-
work [11] to analyze these apps. The AndroBugs reports [12]
list vulnerabilities found in such apps together with their
severity levels, i.e., either critical, warning, notice or info.

On average, AndroBugs reports at least 50 vulnerabilities
for each Android TV app. Among all the 3, 163 TV apps,
2, 997 apps were asserted to contain critical security bugs.
Figure 7 demonstrates the number of critical vulnerabilities
detected for each app. Over half of those apps contain at least
3 critical issues, and the average number of critical issues is
2.8, as highlighted by the

⊕
sign. This evidence shows that

most Android TV apps are flawed by security vulnerabilities.
We further investigate the critical vulnerabilities. Table IV

summarizes the types and the detailed descriptions of such
critical vulnerabilities. Vulnerabilities with few counts are
grouped into the “Others” category. The vulnerability types
appear in Table IV in descending order of counts. Now we
discuss below 3 most recurrent vulnerability types in Android
TV apps:

• SSL Security: In total 3,687 (43%) vulnerabilities belong
to this type. These vulnerabilities are closely related to the
apps’ accessing mechanism to the internet. Application
might utilize SSL [13] erroneously such that malicious
substances may be able to caught an app’s information
over the network. For instance, Android TV apps may
suffer from man-in-the-middle attacks if they access the
internet without solid encryption (e.g., when not using
HTTPS [14]).

• WebView: In total, 1,545 (18%) vulnerabilities belong to
this type. It is a common kind of vulnerability that can
be exploited by attackers to execute Java code in the host
apps, which can further allow attackers to get access to
the command-line tools and pose further security threats
to users. For instance [15], a remote attacker may utilize
a WebView to execute dynamic HTML content (written

in JavaScript) and invoke Java Runtime.exec() API to run
commands like id or rm.

• Implicit Intent: In total 1,436 (17%) vulnerabilities
belong to this type. The Android ecosystem uses the
Intent mechanism to encourage functionality reuse [16].
However, attackers may exploit implicit Intents to access
private information or to bring damage to the user data.

Such high number of vulnerabilities detected in the An-
droid TV apps calls for attention and action from both the
researchers and developers.

D. Privacy Leaks Analysis

To understand the potential privacy leaks existing in An-
droid TV apps, we resort to the FlowDroid tool [17] to analyze
these apps. FlowDroid reveals the data flows from sensitive
sources to unsafe sinks. Since dataflow analysis are both time
and memory intensive. We set a timeout of 2 hours with 32
GB memory limit. FlowDroid was successfully run on 2, 448
Android TV apps. In total 1, 673 apps are found with leaks.
Figure 8 demonstrates the number of leaks detected per app.
Over half of these apps (889 apps) are detected with at least
5 leaks, and over 25% of those apps contain at least 11 leaks.
To our great concern, we observe that leaks in both Health
& Fitness and Lifestyle category are twice as much the total
average number. This observation suggests that data related to
users’ daily lives may be at stake.

Fig. 8. Distribution of the Count of Leaks Found by Flowdroid

TABLE V
TOP 10 SOURCES FOUND BY FLOWDROID

Sources count
android.database.Cursor.getString 22,055

android.location.Location.getLongitude 4,436
android.location.Location.getLatitude 4,435

android.content.pm.PackageManager.queryIntentServices 3,021
java.net.HttpURLConnection.getInputStream 1,391

android.content.pm.PackageManager.queryIntentActivities 1,232
android.content.pm.PackageManager.queryBroadcastReceivers 515

java.util.Locale.getCountry 308
android.app.Activity.findViewById 146

java.net.URL.openStream 135

Table V lists the top 10 recurrent sources (APIs) found by
FlowDroid. We can see that the most leaked source is from
the database. This is no surprise since database often contain
large scale information. Based on the second and third most
recurrent sources, we find that that attackers care about the
geographical location of the Android TV app users. Unlike
mobile devices, Android TVs’ geographical locations are often
fixed and reveal people’s home address. Attackers may exploit
this information to know much more of the users or even pose
physical threat.

Table VI lists the top 10 most recurrent sinks found by
FlowDroid. From the first, second and fourth sinks, we under-
stand that sensitive private information is often documented
with the built-in Logcat functionality that are normally used by
developers to do debug. Users’ data have certain chance leaked
from there, and attackers can extract the user’s sensitive data
by analyzing the Log information on the corresponding device.
The Bundle object is another place the sensitive information
would go. It is used to carry information across activities,
processes and configuration changes. Much information in
Bundle objects can be exploited by attackers.

TABLE VI
TOP 10 SINKS FOUND BY FLOWDROID

Sinks count
android.util.Log.d 2,567
android.util.Log.w 977

android.os.Bundle.putString 863
android.util.Log.v 842

java.lang.String.replace 678
android.content.Intent.setComponent 579

android.content.SharedPreferences$Editor.putString 536
android.util.Log.i 402

android.content.Context.registerReceiver 303
android.content.Context.bindService 276

TABLE VII
TOP 10 SOURCE-SINK CATEGORY PAIRS FOUND BY FLOWDROID

Source Sink
DATABASE INFORMATION

−→

LOG
LOCATION INFORMATION LOG
DATABASE INFORMATION NETWORK
NETWORK INFORMATION LOG

UNIQUE IDENTIFIER LOG
DATABASE INFORMATION FILE
LOCATION INFORMATION NETWORK
NETWORK INFORMATION FILE
NETWORK INFORMATION NETWORK
ACCOUNT INFORMATION LOG

The SuSi [18] tool further puts the sources and sinks
into different categories. Table VII summarized the top 10
source-sink category pairs.We are not surprised to see that the
most recurrent pair has the databse information as source and
the log information as sink, each corresponding to the most
recurrent sources and sinks reflected in Table V and Table VI,
respectively. Our concern for the leak of user’s geographical
location is worsened since we see that this information is also
logged often. The fact that lots of sensitive information is
finally leaked in the log or over network calls for more security
examination for Android TV apps.

IV. RELATED WORK

Past studies have extensively explored Android apps from
different aspects. A huge number of studies have been focused
on analyzing the metadata of mobile app [19], [20]. Wang et
al. [21] conducted an extensive study on 6 million Android
apps downloaded from 17 different app markets to understand
catalog similarity across app stores. Chen et al. [22] collected
223 pairs of Android Smartphone and Smartwatch app pairs

and investigate them from both non-code and code aspects to
understand the relationship between them. Large-scale studies
have been performed on analyzing mobile apps from security
and privacy aspects [23], [24]. Researches have attempted to
detect Android security vulnerabilities either through static
analysis [17], [25], [26], dynamic analysis [27], [28], or
resorting to machine learning models [29]–[32]. Moreover,
recent researches have revealed issues (e.g. outdated, over-
privileged) appeared in an extensive number of third-party
library in Android apps. [9], [33]. To the best of our knowl-
edge, the existing works are mainly targeting smartphone apps.
Android TV apps have not yet been well investigated. As our
future work, we plan to go beyond this work by inventing
better approaches for improving the security and reliability of
Android TV apps.

V. CONCLUSION

In this work, we present the first study towards understand-
ing and characterizing Android TV apps. We collected 3,163
Android TV apps and analyzed their metadata. Particularly,
we investigate these apps from a security perspective. Our
observation has revealed the presence of malware among
Android TV apps. We also found suspicious repackaged apps.
Furthermore, we find that many Android TV apps suffer from
security vulnerabilities. Many Android TV apps also leak
users’ sensitive information, including their home addresses.
Such findings call on actions for our community to pay more
attention to Android TV apps, especially from the security
perspective.

ACKNOWLEDGEMENTS

This work was supported by the Australian Research Coun-
cil (ARC) under a Discovery Early Career Researcher Award
(DECRA) project DE200100016, and a Discovery project
DP200100020.

REFERENCES

[1] Number of smart TV users in the United States from 2016 to
2022 (in millions)*, 2021. [Online]. Available: https://www.statista.
com/statistics/718737/number-of-smart-tv-users-in-the-us/

[2] Y. Aafer, W. You, Y. Sun, Y. Shi, X. Zhang, and H. Yin, “Android
smarttvs vulnerability discovery via log-guided fuzzing,” in USENIX
Security, 2021.

[3] First Look at Security Risks of Android TV
Apps, 2021. [Online]. Available: https://github.com/DannyGooo/
Android-TV-apps-found-in-Google-Play-Store

[4] L. Li, J. Gao, M. Hurier, P. Kong, T. F. Bissyandé, A. Bartel, J. Klein, and
Y. Le Traon, “Androzoo++: Collecting millions of android apps and their
metadata for the research community,” arXiv preprint arXiv:1709.05281,
2017.

[5] VirusTotal API v3 Overview, 2021. [Online]. Available: https:
//developers.virustotal.com/v3.0/reference

[6] AAPT2, 2021. [Online]. Available: https://developer.android.com/studio/
command-line/aapt2

[7] Android Developer Guide, 2021. [Online]. Available: https://developer.
android.com/reference/android/Manifest.permission

[8] Y. Hu, H. Wang, L. Li, Y. Guo, G. Xu, and R. He, “Want to earn a
few extra bucks? a first look at money-making apps,” in 2019 IEEE
26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2019, pp. 332–343.

[9] L. Li, D. Li, T. F. Bissyandé, J. Klein, Y. Le Traon, D. Lo, and
L. Cavallaro, “Understanding android app piggybacking: A systematic
study of malicious code grafting,” TIFS, 2017.

[10] L. Li, T. F. Bissyandé, and J. Klein, “Rebooting research on detecting
repackaged android apps: Literature review and benchmark,” IEEE
Transactions on Software Engineering (TSE), 2019.

[11] “Androbugs, open source repository,” 2021. [Online]. Available:
https://github.com/AndroBugs/AndroBugs Framework

[12] Y.-C. Lin, “Androbugs framework: An android application security
vulnerability scanner,” Blackhat Europe, vol. 2015, 2015.

[13] Security SSL, 2021. [Online]. Available: https://developer.android.com/
training/articles/security-ssl

[14] Y. Desmedt, “Man-in-the-middle attack,” in Encyclopedia of cryptogra-
phy and security. Springer, 2011, pp. 759–759.

[15] D. R. Thomas, A. R. Beresford, T. Coudray, T. Sutcliffe, and A. Taylor,
“The lifetime of android api vulnerabilities: case study on the javascript-
to-java interface,” in Cambridge International Workshop on Security
Protocols. Springer, 2015, pp. 126–138.

[16] C. W. Enumeration, “Use of implicit intent for sensitive communication,”
2017.

[17] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” Acm Sigplan Notices, vol. 49, no. 6, pp. 259–269, 2014.

[18] SuSi, 2021. [Online]. Available: https://github.com/
secure-software-engineering/SuSi/tree/develop/SourceSinkLists/
Android%204.2/SourcesSinks

[19] Y. Hu, H. Wang, R. He, L. Li, G. Tyson, I. Castro, Y. Guo, L. Wu, and
G. Xu, “Mobile app squatting,” in Proceedings of The Web Conference
2020, 2020, pp. 1727–1738.

[20] L. Li, T. Bissyandé, and J. Klein, “Moonlightbox: Mining android api
histories for uncovering release-time inconsistencies,” in ISSRE. IEEE,
2018, pp. 212–223.

[21] H. Wang, Z. Liu, J. Liang, N. Vallina-Rodriguez, Y. Guo, L. Li,
J. Tapiador, J. Cao, and G. Xu, “Beyond google play: A large-scale
comparative study of chinese android app markets,” in Proceedings of
the Internet Measurement Conference 2018, 2018, pp. 293–307.

[22] X. Chen, W. Chen, K. Liu, C. Chen, and L. Li, “A comparative study of
smartphone and smartwatch apps,” in Proceedings of the 36th Annual
ACM Symposium on Applied Computing, 2021, pp. 1484–1493.

[23] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein, “Auto-
mated testing of android apps: A systematic literature review,” IEEE
Transactions on Reliability, vol. 68, no. 1, pp. 45–66, 2019.

[24] L. Li, T. F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel, D. Octeau,
J. Klein, and L. Traon, “Static analysis of android apps: A systematic
literature review,” Information and Software Technology, vol. 88, pp.
67–95, 2017.

[25] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “Iccta: Detecting
inter-component privacy leaks in android apps,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, vol. 1, 2015,
pp. 280–291.

[26] X. Sun, L. Li, T. F. Bissyandé, J. Klein, D. Octeau, and J. Grundy,
“Taming reflection: An essential step toward whole-program analysis of
android apps,” TOSEM, vol. 30, no. 3, pp. 1–36, 2021.

[27] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smartphones,”
ACM Transactions on Computer Systems (TOCS), vol. 32, no. 2, pp.
1–29, 2014.

[28] F. Dong, H. Wang, L. Li, Y. Guo, T. F. Bissyandé, T. Liu, G. Xu, and
J. Klein, “Frauddroid: Automated ad fraud detection for android apps,”
in ESEC/FSE, 2018.

[29] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and
K. Ren, “Android hiv: A study of repackaging malware for evading
machine-learning detection,” TIFS, 2019.

[30] Y. Liu, C. Tantithamthavorn, L. Li, and Y. Liu, “Deep learning for
android malware defenses: a systematic literature review,” arXiv preprint
arXiv:2103.05292, 2021.

[31] Y. Zhao, L. Li, H. Wang, H. Cai, T. F. Bissyandé, J. Klein, and J. Grundy,
“On the impact of sample duplication in machine-learning-based android
malware detection,” TOSEM, vol. 30, no. 3, pp. 1–38, 2021.

[32] X. Yang, D. Lo, L. Li, X. Xia, T. F. Bissyandé, and J. Klein, “Char-
acterizing malicious android apps by mining topic-specific data flow
signatures,” Information and Software Technology, 2017.

[33] L. Li, T. F. Bissyandé, J. Klein, and Y. Le Traon, “An investigation into
the use of common libraries in android apps,” in SANER, 2016.

https://www.statista.com/statistics/718737/number-of-smart-tv-users-in-the-us/
https://www.statista.com/statistics/718737/number-of-smart-tv-users-in-the-us/
https://github.com/DannyGooo/Android-TV-apps-found-in-Google-Play-Store
https://github.com/DannyGooo/Android-TV-apps-found-in-Google-Play-Store
https://developers.virustotal.com/v3.0/reference
https://developers.virustotal.com/v3.0/reference
https://developer.android.com/studio/command-line/aapt2
https://developer.android.com/studio/command-line/aapt2
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/reference/android/Manifest.permission
https://github.com/AndroBugs/AndroBugs_Framework
https://developer.android.com/training/articles/security-ssl
https://developer.android.com/training/articles/security-ssl
https://github.com/secure-software-engineering/SuSi/tree/develop/SourceSinkLists/Android%204.2/SourcesSinks
https://github.com/secure-software-engineering/SuSi/tree/develop/SourceSinkLists/Android%204.2/SourcesSinks
https://github.com/secure-software-engineering/SuSi/tree/develop/SourceSinkLists/Android%204.2/SourcesSinks

	Introduction
	Dataset and Preliminary Study
	Dataset
	Preliminary Study

	Security Analysis
	VirusTotal Analysis
	Requested Permission Analysis
	Security Flaw Analysis
	Privacy Leaks Analysis

	Related Work
	Conclusion
	References

