Dynamic Universal Accumulator with
Batch Update over Bilinear Groups *

Giuseppe Vitto, Alex Biryukov

DCS&SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg
name.surname@uni.lu

Abstract. We propose a Dynamic Universal Accumulator in the Ac-
cumulator Manager setting for bilinear groups which extends Nguyen’s
positive accumulator and Au et al. [21] and Damgard and Triandopoulos
non-membership proof mechanism [18]. The new features include support
for batch addition and deletion operations as well as a privacy-friendly
batch witness update protocol, where the witness update information is
the same for all users. Together with a non-interactive zero-knowledge
protocol, these make the proposed scheme suitable as an efficient and
scalable Anonymous Credential System, accessible even by low-resource
users. We show security of the proposed protocol in the Generic Group
Model under a (new) generalized version of the t-SDH assumption and
we demonstrate its practical relevance by providing and discussing an
implementation realized using state-of-the-art libraries.

Keywords: accumulator, universal, dynamic, batch update, privacy-preserving
KYC, anonymous credentials

1 Introduction

A cryptographic accumulator allows to aggregate many different values from a
finite set into a fixed-length digest called accumulator value. Differently than
hash functions, accumulators permit to further verify if an element is either
accumulated or not in a given accumulator value by using the so-called member-
ship and mon-membership witnesses, respectively. Accumulator schemes which
support membership witnesses are referred to as positive accumulators, the ones
that support non-membership witnesses are called negative, while the ones that
support both are called universal accumulators. A common requirement for the
accumulator schemes is the ability to change the set of accumulated elements,
hence permitting accumulator updates: when the accumulator allows to dynam-
ically add and delete elements, it is said to be a dynamic accumulator.
Whenever addition or deletion operations occur for one or several elements
(in the latter case these are called batch additions and deletions), already issued
witnesses should be updated to be consistent with the new accumulator value.

* This work is supported by the Luxembourg National Research Fund (FNR) project
FinCrypt (C17/1S/11684537).

2 Giuseppe Vitto, Alex Biryukov

Ideally this should be done using a short amount of witness update data (i.e.
whose cost/size is not dependent on the number of elements involved) and with
only publicly available information (i.e. without knowledge of any secret accu-
mulator parameters). While there are many constructions that satisfy the public
update condition, as regards to the update cost, Camacho and Hevia showed
in [23] an impossibility result to have batch witness updates whose update data
size is independent from the number of elements involved. More precisely, they
showed that for an accumulator state which accumulates n elements, the witness
update data size for a batch delete operation involving m elements cannot be
less than (2(mlog ™), thus requiring at least £2(m) operations to update.

Our Contributions. In this paper we propose a Dynamic Universal Accumu-
lator in the Accumulator Manager setting which supports batch operations and
public batch witness updates as well as privacy preserving zero-knowledge proof
of knowledge for membership and non-membership witnesses. Its features are
manifold:

— Support for Batch Operations: Starting from Nguyen’s positive accumu-
lator and Au et al. [21] and Damgard and Triandopoulos non-membership
proof mechanism [18], we state a Dynamic Universal Accumulator in the
Accumulator Manager setting (i.e. it is managed by a central authority
who knows the accumulator trapdoor) by using efficient and secure Type-IIT
pairing-friendly elliptic curves and we extend it to fully support batch ad-
dition and deletion operations, as well as membership and non-membership
batch witness updates.

— Optimal Batch Update: the number of operations needed to batch update
witnesses equals the lower bound given by Camacho and Hevia [23] in the
case of a batch deletion operation. The same complexity holds in the case of
either a batch addition operation and a batch addition & deletion operation,
where m new elements are added and other m elements are deleted, namely
O(m) update time for a batch witness update information size of mlogpq
bits, where p is the size of the underlying bilinear group and ¢ is the size of
the underlying base field of the elliptic curve group.

— Batch Witness Update Protocol: we designed a batch witness update
protocol where the batch witness update information published by the Accu-
mulator Manager after a batch operation is the same for all users. This infor-
mation can be pre-processed by third-party servers in order to allow users to
update their witnesses in a constant number of elementary operations, even
in the case many batch operations occurred from their last update. This
allows the accumulator to be used even when only limited-resource devices
(ex. smartphones) are available to users.

— Security: we introduce a weaker definition for collision resistance and a new
more general definition of t—SDH assumption for which we provide in the
Generic Group Model a lower bound complexity of a generic algorithm that
solves the corresponding hardness problem. We show that our scheme along
with its public batch update protocol and published information is secure
under this more general security assumption and we address the relevant

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 3

recent attacks found in [34] by showing that with a proper initialization of the
accumulator value, a generic algorithm has negligible probability to compute
elements belonging to a certain reference string RS, whose knowledge would
allow to issue arbitrary witnesses.

— Zero-Knowledge Friendly: zero-knowledge protocols are supported for
any operation involving witnesses: we detail an efficient non-interactive zero-
knowledge protocol to show ownership of a valid witness.

— Implementation: to show efficiency and its practical relevance, we imple-
mented and benchmarked the proposed accumulator using state-of-the-art
libraries for pairing-friendly elliptic curves. Following feedback received from
the community, we briefly report benchmarks of third-party implementations
of our scheme which are already employed in production applications.

It follows that our accumulator is well suited to be the building block of an

Anonymous Credential System, which originally motivated this work. In these
systems only the users which were previously authorized by a central author-
ity (the Accumulator Manager) can use the issued credentials to authenticate
to the third-party verifier (ex. some financial service provider, like bank or an
exchange). They do so by proving in zero-knowledge ownership of a valid mem-
bership or non-membership witnesses, depending if the accumulator is used as
a white- or black-list. Furthermore, doing so anonymously and unlinkably, even
if the verifier colludes with the accumulator manager. This could be crucial in
many applications given current societal challenges of protecting user privacy on
the one hand and government-imposed know-your-customer regulations on the
other hand.
Limitations. Our protocol assumes a trusted Accumulator Manager that, by
knowing the secret accumulator parameter «, can forge membership and non-
membership witnesses at will. In practice, the secret a can be secret-shared
among multiple managers, but the construction and security analysis of such
scheme is left as future work. In case of a batch addition and deletion opera-
tion where m elements are added and/or deleted, the batch update data has
O(m) size, as in the case for non-batch operations: this is indeed a theoretical
lower bound that cannot be improved, although our construction provides better
constants, detailed at the end of Section 4.1, than the non-batch approach. We
note, however, that our protocol support a delegation technique (not possible
for non-batch operations) which allows users to safely update witnesses in con-
stant time, if third-party servers process, on their behalf, the O(m)-sized public
witness batch update data published by the Accumulator Manager.

Related Works. The first accumulator scheme was formalized by Benaloh
and De Mare [3] in 1993 as a time-stamping protocol. Since then, many other
accumulator schemes have been proposed. Currently, three main families of ac-
cumulators can be distinguished in literature: schemes designed in groups of
unknown order [3,4, 10,15, 6,25, 29, 30], others designed in groups of known or-
der [13,18,21,22] and hash-based constructions [2,7,9,17,28]. Relevant to this
paper are the schemes belonging to the second family, where the considered
group is a prime order bilinear group.

4 Giuseppe Vitto, Alex Biryukov

Nguyen in [13] proposed a dynamic positive accumulator for symmetric bi-
linear groups, where up to ¢ elements can be accumulated assuming that the
t—Strong Diffie-Hellman assumption holds in the underlying group. Damgard
and Triandopoulos [18] extended Nguyen’s scheme, under the same security as-
sumptions, to support non-membership proofs, thus defining a universal accu-
mulator based on bilinear pairings. Soon after this work, Au et al. [21] extended
Nguyen’s scheme to a universal accumulator by proposing two possible variants:
the more efficient a-based construction best suitable when a central authority
—the Accumulator Manager— keeps the accumulator updated, and the alterna-
tive more decentralized but less efficient reference string-based construction. We
note that non-membership witness definition provided in the latter construction
is equivalent to Damgard and Triandopoulos’ one.

Recently, Biryukov, Udovenko and Vitto [34] cryptanalized both Au et al.
variants and found different attacks able to either recover the accumulator se-
cret parameter or issue arbitrary witnesses. While they consider the a-based
construction insecure, they conclude that in presence of an Accumulator Man-
ager, it is possible to safely use the witness defining equations provided in the
reference string-based construction (or equivalently, the Damgard and Trian-
dopoulos’ construction) by properly initializing the accumulator value.

The Dynamic Universal Accumulator obtained by combining Nguyen’s posi-
tive accumulator and Au et al. and Damgard and Triandopoulos’ non-membership
witness mechanism, will be the starting point of our dynamic universal accumu-
lator scheme, which we will further extend to support batch operations and a
public batch witness update protocol.

Another approach on how to build a dynamic positive accumulator based
on bilinear groups is given by Camenisch et al. in [22] where, alternatively to
Nguyen’s construction, a scheme relying on the t—DHE assumption is proposed.

2 Preliminaries: A Dynamic Universal Accumulator for
Pairing Friendly Elliptic Curves

We now summarize Nguyen’s positive accumulator scheme [13] (i.e. Membership
Witness, Update and Verification) extended with the non-membership proof sys-
tem of Au et al. [21] and Damgard and Triandopoulos [18] (i.e. Non-membership
Witness, Update and Verification).

Due to recent progresses in discrete logarithm computations [26, 27, 32], which
weaken the security of efficient implementable elliptic curves provided with a
Type-I pairing, we restate their definitions into a Type-III setting, making it
best suitable for efficient and more secure pairing-friendly elliptic curves. We
note that the full scheme can be easily stated to work with any bilinear group
(and indeed we will later prove security under the Generic Group Model) but,
motivated by its concrete implementation, we decided to define and discuss it
using the concrete group representation given by Type-III elliptic curves.

In addition, we introduce new concepts (e.g. Accumulator States, Epochs) and
parameters (e.g. batchMax), to make the accumulator definition coherent with

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 5

the batch operations and the batch witness update protocol we will describe
starting from Section 3.
We refer to Appendix A for a summary of the notation employed hereafter.

Bilinear Group Generation.! Given a security parameter 1*, generate over a
prime order finite field Fy an elliptic curve E(FF,) with embedding degree k which
has an efficiently computable non-degenerate bilinear map e : G; X Go — Gr
such that

G1 is a subgroup of E(F,).

— Letting d be the cardinality of the automorphisms group of E(F,), G is a
subgroup of E(F ./q) which is the unique degree-d twist of £ over I i a.

— Gr is a subgroup of (F,»)*.

- |G1J = \Gzl = |G| = p is prime.

— P, P,e(P, P) are generators of G1,G2,Gr, respectively.

— There are no efficiently computable isomorphisms between G and Gs.

Then denote as G = (p, G1, G2, Gr, P, P, e) the resulting bilinear group.

Accumulator Parameters. Uniformly sample an « € (Z/pZ)* and consider
ACC = (Z/pZ)* \ {—a} as the domain of accumulatable elements. Moreover, set
a bound batchMax to the maximum number of batch additions and/or deletions
possible in each epoch (See Section 3).

The bilinear group G, the bound batchMax and the point Q = P are the
accumulator public parameters and are available to all accumulator users, while
« is the accumulator secret parameter and is known only to the Accumulator
Manager.

Accumulator Initialization. Select a set)y, C ACC and let the initial ac-
cumulator value to be equal to Vo = (Hyeyv (y + a)) P. The set Yy, is kept
0

secret and its elements are never removed from the accumulator.?

Accumulator States and Epochs. An accumulator state is a pair (V, Yy)
where V' € G is the corresponding accumulator value and Yy C ACC denotes
the set of elements accumulated into V' (initialization elements excluded). We call
epoch the period of time during which an accumulator state remains unchanged.

Given an accumulator state (V, Yy), the accumulator value V is equal to

V= (HyGyv (y+ a)) Vo = (Hyeyvuyvo (y + a)) P and can be computed from
Yy and Vj if the secret parameter « is known.

Accumulator Update. The accumulator state (V,))y) changes when one or
more elements are added or removed from the accumulator. This can be done
using the following single element Addition or Deletion operations.

! We refer, for example, to [24] for more technical details on how these bilinear groups
can be efficiently generated and implemented.

2 The security of the scheme strongly depends on how the elements in Vv, are chosen.
See Section 6 for a complete discussion.

6 Giuseppe Vitto, Alex Biryukov

— Addition: if y € ACC\ Yy, the element y is added into the accumulator when
the accumulator value is updated from V' to V' as V' = (y +)V It follows
that Yy = Yy U {y}

— Deletion: if y € Yy, the element y is deleted from the accumulator when
the accumulator state is updated from V to V' as V' = y_%aV It follows that

Vv = Vv \{y}

Membership Witness. Let (V, V) be an accumulator state and y an element
in ACC. Then w, v is a membership witness fory with respect to the accumulator
value V if C = y_%aV and wyy = C. The Accumulator Manager issues the
membership witness wy v to a user associated to the element y, in order to
permit him to prove that y s accumulated into V.3

Non-Membership Witness. Let (V,)y) be an accumulator state and y an
element in ACC. Then w, v is a non-membership witness for y with respect to
the accumulator state V' if, by letting fy (z) = Hyieyvuyvo (yi+x) € Z/pZ|z],

it holds d = fy(—y) mod p with d # 0, C = f0=4p and w, y = (C,d).
The Accumulator Manager issues the non-membership witness w, 1 to a user
associated to the element y, in order to permit him to prove that y is not
accumulated into the accumulator value V.

Witness Update. When accumulator state changes happen, users whose ele-
ments are not involved in the corresponding Addition or Deletion operations,
have to update their witnesses with respect to the new accumulator state to
continue being able to prove statements about their associated elements.

After an accumulator state change, users’ membership and non-membership
witnesses are updated according to the following operations:

— On Addition: suppose the accumulator state changes from (V, Yy) to (V/, Yy)

as a result of an Addition operation. Hence, for a certain y' € ACC \ Vv,
V' = +a)V and Yy =Yy U{y'}.
Then, for any y € Yy the membership witness w, v = C is updated with
respect to the accumulator state (V’,Yy+) by computing C' = (v —y)C +V
and letting wy, v = C’, while for any y ¢)y, the non-membership w, v =
(C,d) is updated, if issued, with respect to (V',Jy+) by computing C’ =
' —y)C+V, d=d-(y —y) and letting w, v = (C',d’).

— On Deletion: suppose the accumulator state changes from (V, Yy) to (V', Yy)
as a result of a Deletion operation. Hence, for a certain y' € Yy, V' = 1%
and Yy = Vv \ {y'}.

Then, for any y € Yy, the membership witness w, v = C is updated with
1

respect to the accumulator state (V/, V) by computing C’ = T C— y,l_y %4

and letting w, v+ = C’, while for any y ¢ Yy, the non-membership witness

Yy +a

When the accumulator is employed as an authentication mechanism, single additions
in place of batch operations lack users’ privacy and expose to impersonation attacks
since the membership witness C' would be equal to the previous accumulator state
value, while y can be deduced from the public witness update information.

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 7

Wy, v = (C,d) is updated, if issued, with respect to (V’,Yy) by computing
o d=d- y,l_y = (C",d).

y' -y

Witness Verification. A membership witness w, = C for an element y € ACC
is valid for the accumulator state (V, V) if and only if e(C,yP + Q) = e(V, P).
When w, is a valid membership witness for the state (V,Yy) we assume that
y € Yy and hence wy, = wy v .

A non-membership witness w, = (C,d) for an element y € ACC is valid for
the accumulator state (V,Vy) if d # 0 and e(C,yP + Q)e(P, P)* = ¢(V, P).
When w, is a valid non-membership witness for the state (V,Yy) we assume
that y ¢ Vv and hence w0, = @y, v.

3 Adding Support for Batch Operations

We now describe how the Dynamic Universal Accumulator defined in previous
Section can be further extended to coherently support batch addition and dele-
tions operations both for accumulator and users’ witnesses update.

We start by defining a family of polynomials which will help us show in a
compact way correctness of our batch operations with respect to the underlying
accumulator scheme.

Batch Polynomials. Given the secret accumulator parameter o and two dis-
joint sets A, D C Z/pZ where A = {ya1,...,Yan} and D ={yp1,...,YDm},
we define the following polynomials in Z/pZ:

n

s—1 n
va(@) =Y | [Iwas+0) T (was—
i1

s=1 j=s+1
m s s—1

vp(x) = Z H(y’D,i +a) '] [wp,; — =)
s=1 \i=1 j=1

van() = va(@) —vo(@) [Jwas+a)

(ZlD,t —)

=k

da@) = [Jae —2), dpla) =

t=1 t

1

Accumulator Batch Update. Several elements are added into or removed
from the accumulator using the following Batch Addition and Batch Deletion
operations.

— Batch Addition: if A = {ya1,...,yan} C ACC\ Vv, the elements in A
are batch added into the accumulator when the accumulator value is updated
from V to V' as V' =d4(—a) - V. It follows that Yy = Yy U A.

8 Giuseppe Vitto, Alex Biryukov

— Batch Deletion: if D ={yp1,...,¥p,m} C Vv, the elements in D are batch
deleted from the accumulator when the accumulator state is updated from V'

toV'as V' = dD(l_a) - V. It follows that Yy, = Yy \ D.

— Batch Addition & Deletion: if A = {y41,...,yan} € ACC\ Yy, D =
{yp.1s-- - yp.m} C Vv and AND = (, the elements in A are batch added into
the accumulator and the elements in D are batch deleted from the accumulator
when the accumulator state is updated from V to V" as V" = 322:23 VoIt
follows that Yy = Yy U A\ D.

Batch Witness Update. When a batch addition or deletion changes the ac-
cumulator state, users’ membership and non-membership witnesses are updated
according to the following operation.

— On Batch Addition: suppose the accumulator state changes from (V, Yy)
to (V',Vy) as a result of an Batch Addition operation. Hence, for certain
A={ya1,...,yan} CACC\Yy, wehave V' = dg(—a)-V and Yy = Yy UA.
Then, for any y € Yy, the membership witness w, v = C is updated with
respect to the accumulator state (V’, V) computing C' = d4(y)-C+va(y)-V
and letting w,, y» = C’. While for any y ¢ Yy, the non-membership witness
Wy, v = (C,d) is updated with respect to (V/, Yy+) by computing C’ = d 4(y) -
C+oaly)-V,d =d-da(y) and letting w, v = (C',d’).

Proof. See Appendix D.1. O

— On Batch Deletion: suppose the accumulator state changes from (V, Yy)
to (V',)y/) as a result of a Batch Deletion operation. Hence, for certain
D={yp1,---,yp.m} C Vv, we have V' = m‘/.

Then, for any y € Yy, the witness w,,v = C is updated with respect to
the accumulator state (V’,)y/) computing ¢’ = dpl(y) C - Zigg V and letting
wy, v = C’. While for any y ¢ Yy, the non-membership witness @,y = C is
updated with respect to (V’,Vy/) by computing ¢/ = ——— . C v (¥) |y

dp(y) ~ dp(y)
d=d- #(y) and letting w, v = (C’,d’).

Proof. See Appendix D.1. O

— On Batch Addition & Deletion: suppose the accumulator state changes
from (V,Yy) to (V”,Yy/) as a result of a Batch Addition & Deletion oper-
ation. Hence for certain disjoint sets A = {ya1,...,y4an} C ACC\ Yy and

D={yp1,---,yp,m} € Vv we have V" = ngiZ§ V.

Then, for any y € Yy, the witness w, yy = C is updated with respect to the

. d v .
accumulator state (V/, Vi) computing C’ = dgg; -C+ g‘ﬁg) -V and letting

wy,v» = C'. While for any y ¢ Vv, the non-membership witness @,y = (C, d)
is updated with respect to the accumulator state (V', V) by computing

_ da(y) va,p(y) _ . da() o T _
C' = dg(z) -C+ :itv,iy?; V,d =d- dg(z) and letting w, v = (C’,d").

Proof. See Appendix D.1. O

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 9

4 The Batch Witness Update Protocol

Users cannot batch update their witnesses directly using the formula defined in
previous section, since they would need the secret parameter «. However, start-
ing from their definition, the Accumulator Manager can efficiently compute and
publish some update information (more precisely, the polynomials d4(z), dp(x)
and an elliptic curve points vector) so that users are able to update their wit-
nesses without requiring or leaking (see Section 4.1) any information related to
«. This will allow us to define a batch membership and non-membership witness
update protocol for the proposed accumulator scheme.

4.1 The Batch Witness Update Information

From now on, we will focus on the Batch Witness Update Addition & Deletion
polynomial v 4 p(z) only: indeed, the polynomials v4(x) and vp(z) are special
cases of this more general one.

We recall that our main goal is to allow users possessing a witness (C, d) for
an element y with respect to the accumulator value V' to compute the quantities

p_daly) . van(y) da(y)
=y Yy dn(y)

We note that the Accumulator Manager cannot publish all the polynomials
da(z), dp(z) and va p(x), because their coefficients can leak some information
related to the secret accumulator parameter a. To give an example, suppose
that after a batch addition operation, the Accumulator Manager publishes the
polynomials v4(z) and d4(z), defined as above, with |.4] > 1. Doing simple
algebra, we find that the coefficient of the (|.A| — 2)—degree monomial of v4(z)
is equal to a+ 3, 4 ya @ extracting the roots of da(z) in Z/pZ we obtain all
the elements in A and hence the secret parameter «.

Leakages about a can be prevented by requiring the Accumulator Manager
to publish in place of v4 p(z), the vector of elliptic curve points

d=d

= QA,D,V = (COVvv Cl‘/v BRI CbatchMaxV)
where v p(z) = S oo™ 0t and ¢; = 0 if i > maz(| A, |D]).

Users can then update their membership witness w, v = C to wy,v = C’ by
first evaluating the two polynomials d 4(z) and dp(z) in the element y and then
computing

da(y) 1
= O —— (1, 2
o) < ae T
where 7, = (1,y,9?, ..., y***™) and (-, -) denotes the dot product.

Similarly, a non-membership witness w,, = (C,d) is updated to wy,y =

(C',d") by computing

C/

p_daly) 1 ;o daly)
¢ ~ dp(y) C+do(y) T @), d=d

10 Giuseppe Vitto, Alex Biryukov

In this scenario, assuming the Discrete Logarithm Problem to be hard in
G1 (a weaker assumption with respect to the t—SDH assumption under which
accumulator collision resistance is shown), from the published 2, d4(z) and
dp(z) it is only possible, performing roots extraction on the polynomials, to
compute the respective sets A and D of batch added and batch deleted elements.

It follows that witness update operations can be performed either autonomously
by users or by delegating to third-party servers the computation of (some of)
the values (Y, 2), da(y), dp(y). Indeed, since the required updating values are
decoupled from users’ previous witnesses, third-party servers which are asked
to compute such values with respect to an element y, cannot impersonate the
corresponding user, since they don’t know any previous valid witness for y.

When the computation of the elements (1, 2), da(y),dp(y) is delegated,
users are then able to update witnesses in a constant number of elementary
operations, i.e., 2 scalar-point multiplication and 1 point addition*. Delegation
thus allows even resource-constrained devices to be able to keep users’ witnesses
updated.

As a side note, if third-party servers are untrusted (e.g. we want to prevent
linkability attacks from subsequent evaluation requests for the same element y),
it is possible to use Oblivious Polynomial Evaluation techniques such as [14],
[31] and [8] to delegate the computation of the elliptic curve point (¥, 2) =
vap(y) -V and of the values d4(y) and dp(y), in a way that third-parties will
not learn anything about y. We note however that such protocols have time
complexity at least proportional to the degree of the polynomials involved and
thus allow users to just save data rather than time, i.e., users are not required
to download the public batch witness update data (available instead to third-
party servers) and can oblivious evaluate v4 p(y) -V, da(y) and dp(y) with time
complexities comparable to standard polynomial evaluations.

Improvements With Respect to Non-Batch Operations. Due to the
lower bound showed by Camacho and Hevia in [23], in case of a batch addition
and deletion operation where m elements are added and/or deleted, the batch
update data cannot have size less than O(m) (and thus witnesses cannot be
updated in time less than O(m)), as in the case for non-batch operations. Our
protocol, that reaches this optimal lower bound, provides, however, better con-
stants with respect to the naive approach of iteratively adding and/or deleting
each involved element at a time.

In particular, for m added and deleted elements, the public batch witness
information in our protocol would have size |£2| + |da(z)| + |dp()|, i.e. m -
(log g + 2logp), while the naive approach consisting in executing m addition
operations followed by m deletion operations requires® 2m - (log ¢ + logp) data.

4 We note that this is not against the impossibility result of Camacho and Hevia
to have batch witness update data size independent from the number of elements
added/deleted, since the provided values (Yy, 2), da(y), dp(y) are per user and not
for all users, similarly as any constant-sized (updated) witness is.

5 Each of these operations send users the element added /deletad and the corresponding
updated accumulator value, i.e. log g + logp data.

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 11

Epoch | Accumulator State |Witness Update Information
0 (Vo,0)
1 Vi, %) 2 da(z) dp,(x)
{ (Vivyvi) 2 d»Ai (I) dDi (l’)

Table 1. Data published by the Accumulator Manager in each epoch.

Furthermore, as regards time complexities to update witnesses, our protocol
requires m + 2 scalar-point multiplications, 1 point addition and 2 degree-m
polynomials evaluations (possible in 2m multiplications and 2m additions), while
the naive approach requires 2m scalar-point multiplications, 2m point additions
and 2m multiplications.

To summarise, with respect to the naive approach our protocol provides,
approximately, the following improvements:

— 1/4 reduction in witness update data communication;
— 1/2 reduction in running time in order to update witnesses.

4.2 Batch Witness Update Among Epochs

We now show how the adoption of the elliptic curve points vector {2 = 24 p v
not only permits the users to batch update their (non-)membership witnesses
from the previous accumulator state, but also enables them to directly update
from the accumulator state of any older epoch. This feature doesn’t force users
to permanently keep their witnesses updated to the latest accumulator state,
enabling them to update their witnesses just right before they want to prove
statements about the associated element y.

Before showing how this is possible, we extend our notation to associate
accumulator and batch witness update data to a specific epoch. Given an epoch
i > 0, we denote with (V;,)y;) the corresponding accumulator state, where
Vv, = A1\ Dy and Yy, = Yy, UA; \ D; for i > 1, with d4,(x) and dp, (x) the
addition and deletion batch witness update polynomials, respectively, and with
£2; = 024, p, v, An overview of the data published by the Accumulator Manager
is given in Table 1.

We further denote a membership witness wy,y, for an element y with respect
to the accumulator value V; as wy,v, = C; and, similarly, a non-membership
witness Wy, v, as Wy.v, = (Cy,d;).

Epoch Witnesses Batch Update. A user who owns a valid non-membership
witness w,, v, = (C;,d;) (resp. a valid membership witness w, y, = C;) with
respect to the accumulator state (Vj,My;) can update it to w, v, = (Cj,d;)
(resp. wy,v;, = C;), for any j > i, as

0= W oy Y e o)Y, di=d;
’ d'Dz‘aj(y) dpiﬁj(y) < y _U(y)> j

12 Giuseppe Vitto, Alex Biryukov

where
b b
da, @)= [[da(@ do,_,(@)= [] do.(2)
s=a+1 s=a+1
J
Qi_’j (y) - Z (d’Diﬁt—l (y) ' dAtaj (y)) © Qt
t=i+1
Proof. See Appendix D.2. O

5 Security Proofs for the Proposed Protocol

Security of accumulator schemes is usually intended as collision resistance: for
universal accumulators, this property requires that an adversary forges with
negligible probability in the security parameter A a valid membership witness
for a not-accumulated element and, respectively, a non-membership witness for
an accumulated element.

Since the outlined Dynamic Universal Accumulator is built on top of Nguyen’s
positive dynamic accumulator [13] and Au et al. [21] and Damgard and Trian-
dopoulos’ non-membership proof system [18], we might be tempted to generalize
the security proofs provided in [13, 18] to show security of our scheme under the
standard t—Strong Diffie-Hellman assumption.

However, there are some technicalities which prevent us to do so straightfor-
wardly: i) in the proposed protocol, the attacker doesn’t necessarily have access
to the RS = {P,aP,...,a'P} (needed in [13,21,18] security reductions, see
Theorem 4 in Appendix B), while he has access to the batch witness update
information and valid witnesses, as regular users do; ii) differently than [13, 21,
18], we allow the accumulator Manager to initialize the accumulator value to Vo
by accumulating a certain number of secret values.

To show security of our proposed accumulator scheme we then need to provide
two slightly more general definitions, tailored to the data our attacker would be
able to access. We propose the followings.

Definition 1. (Collision Resistance) Let A be a probabilistic polynomial time
adversary that has access to an oracle O which replies to:

— “Batch Addition and/or Deletion” queries that batch add non-accumulated
and/or delete accumulated elements into/from the accumulator (which is
initialized to Vi) and return the resulting updated accumulator value and the
corresponding public batch witness update data;

— “Issue Witness” queries that return, for any input element y, its member-
ship witness if y is accumulated, or, if not, its non-membership witness with
respect to the latest accumulator value.

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 13

Then, the proposed Dynamic Universal Accumulator is collision resistant if the
probability

(Gva’yvové) — Gen(l)\)) flz) = Hyieyvo (yi + @),
Vb:f(a)'P7 (y7wyawyay)<_“40(vb7@7@) :
Y C(Z/p2)" A V= (Meyi+a) Vo A

2y, wy,V, membership) =1 A §2(y,w,,V,non-membership) =1

is a negligible function in the security parameter A\, where wy, W, denote a mem-
bership and non-membership witness for y, respectively, and £2(y,w,V, type) = 1
if and only if w is a valid type witness for y with respect to V.

Proposition 1. Collision Resistance of Definition 1 is weaker than Au et al.
Collision resistance (Definition 8 - Appendix B) when deg f > 0, while it is
equivalent if deg f = 0.

Proof. See Appendix B.1. O

Definition 2. (Generalized t—Strong Diffie-Hellman Assumption) Let G
be a probabilistic polynomial time algorithm that, given a security parameter 17,
outputs a bilinear group G = (p, G1, G2, G, P, P, e). We say that the generalized
t—Strong Diffie-Hellman Assumption holds for G with respect to a uniformly
sampled o + (Z/pZ)* and a non-zero f(x) € Z/pZx] if, for any probabilistic
polynomial time adversary A and for every polynomially bounded function t :
7 — 7, the probability

P (A(P, af(@)P,a’f(a)P, ..., at(’\)f(a)R P, aP) = (y, ; _il_ aP))

is a negligible function in A for any freely chosen value y € Z/pZ \ {—a}.

To give confidence in this more general security assumption, we prove the
following Theorem which gives a lower bound on the complexity of a generic
algorithm that solves the Generalized t—SDH Assumption in the Generic Group
Model [5].

We briefly recall that in the Generic Group Model [5] elements in the three
groups G1,Ga, G are represented with strings given by (random) unique en-
coding functions §; : G; — {0, 1}*. Operations with groups elements (additions,
pairings, isomorphism computations ¥ : Go — G;) are performed by query-
ing different oracles which communicates with the external word only by using
&;—encoding of group elements. In other words, an adversary who interacts with
these oracles can only test equality among received encodings to understand
relations between group elements.

Theorem 1. Let A be an algorithm that solves the corresponding generalized
t—SDH problem in the Generic Group Model, making a total of at most qg

14 Giuseppe Vitto, Alex Biryukov

queries to the oracles computing the group action in G1,Ga, G, the oracle com-
puting the isomorphism 1 : Go — G1 and the oracle computing the bilinear
pairing e. If o € Z/pZ* and the encoding functions &1, &a, & are chosen at
random, then the probability € that

A(p, & (1), &(f(@), &(a- fla)),...,&(a" - f(@),&(1),&(a)
outputs (y,§1 (w%a)) with y € Z/pZ* is bounded by

< (deg f+1) - (g +1+4)* +1
- p

Proof. We will essentially go through the original proof of Boneh and Boyen [12]
of the generic security of the standard t—SDH assumption, by slightly readapting
it to the definition of the generalized t—SDH assumption. The following game
setting and query definitions are due to Boneh and Boyen [12] as well.

Let B be an algorithm that maintains three lists of pairs

Lj = {(Fj,iygj,i) : iZO,...,Tj - 1} Wlthj = 1,2,T

where Fy ;, F»; and Fp; are polynomials in Z/pZ|x] verifying deg F ; < deg f+t,
deg F» ; <t and deg Frr; < 2t and such that at step 7 of the game 7 + 7o+ 70 =
T+41t+3. The lists are initialized at step 7 = 0 by taking m, =t+1, 2 =2, 70 =0
and letting F1 o =1, F1; = 2'- f(z) for 0 < i <t and Fy,; = 2* with i =0, 1.
The corresponding &; ; encodings are set to arbitrary distinct strings in {0, 1}*.
B then starts a game by providing A the g 4+ 3 encodings &1.0, - . .,&1,4,£2,0,§2,1
and A’s queries go as follows:

— Group actions: given an add (resp. subtract) query and two operands &1 ;, &1 5
with 0 < 1,5 < T1, B computes F17.,—1 — Fl,i + Flyj (resp. Flﬂ' — FL]’). If
Fi . = Fy,; for some [< 71 then B sets &, = &1, otherwise sets & -,
to a new distinct string in {0,1}*. The pair (F1,r,,&1,~) is added in Ly, 7y
is incremented by 1 and & -, is returned to A. Operations in Gg, Gr are
treated similarly.

— Isomorphism: given an encoding & ; with 0 <14 < 1o, B sets Fy ,, + Fy,;. If
Fi, = Fy for some [< 71, then B sets &, + &1,1, otherwise sets &; -, to
a new distinct string in {0, 1}*. The pair (Fi ,,,&1,~) is added in Ly, 7 is
incremented by 1 and &; ,, is returned to A.

— Pairing: given two operands & ;,&2; with 0 <4 < 7 and 0 < j < 7, B
computes the product Fr,, — Fi;- F>; € Z/pZ[z]. If Fr,, = Fr, for
some | < 77, then B sets {7, < &7,1, otherwise sets {7 -, to a new distinct
string in {0,1}*. The pair (Fr ., &r) is added in Ly, 7p is incremented
by 1 and {7, is returned to A.

A terminates and returns to B a pair (y,&1,;) with 0 < [< 7. To show
correctness of A’s answer, B considers the corresponding polynomial F; in L
and computes the polynomial

Fr.(z)=Fi - (Fo1 +yFao) = Fip - (x+y) = f(z) - g(z) - (x+y)

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 15

for a certain polynomial g(x) € Z/pZ[x] of degree < t. If A’s answer is correct,
then Fr,(z) = 1 (which corresponds to check in the current framework that it
results to be a correct DDH pair when representing &; ; with an element of G1).
Now, unless deg Frr. > p — 2 (due to Fermat’s Little Theorem), the equation
Fr.(x) —1 =0 admits at most deg f + ¢ + 1 roots in Z/pZ.

At this point, B chooses a random z* € Z/pZ and his simulation is perfect
unless z* < x creates equality relations between simulated elements not revealed
to A. Thus the success probability of A is bounded by the probability that any
of the following conditions holds:

1. Fyi(z*) — F1,j(z*) = 0 for some ¢,j so that Fy ; # F} ;
2. Fy(z*) — Fy j(x*) = 0 for some 4, j so that Fy; # F ;
3. Fr;(z*) — Fr j(z*) = 0 for some ¢, j so that Fr; # Fr;
4. f(a")g(a")(@" +y) —1=0

Now since, for some fixed ¢, j, the polynomial F} ; — F ; has degree at most
deg f + ¢ while F5; — F5 ; has degree at most ¢, they vanishes at x* with prob-
ability (deg f + t)/p and t/p, respectively. Similarly, Frr; — Fr ; being a poly-
nomial of degree at most 2¢, vanishes at z* with probability 2¢/p. As regards
f(x*)g(z*)(z*+y)—1, it vanishes at z* with probability (deg f+t+1)/p. Hence,
by summing these probabilities over all valid pairs (¢, j) for the first three cases,
A wins the game with probability

d t t 2t d t+1
6§<7-1> eg f + +(TQ>+(TT>+ eg f+1t+
2 D 2)p 2)p p

2
Given that 71 + 72 + 7 < qo + t + 3, we obtain ¢ < (4% f+t)‘('§)c+t+4) +1

O

We're now ready to prove that breaking collision resistance of our accumu-
lator scheme in the Generic Group Model cannot be easier than breaking the
generalized t-SDH assumption:

Theorem 2. Consider a Generic Group Model instance of the Dynamic Uni-
versal Accumulator outlined in Section 2 equipped with the public Batch Witness
Update protocol detailed in Section 4. If |Vv,| elements are accumulated to ini-
tialize the accumulator value, then the probability € that an attacker A breaks
collision resistance of Definition 1 in qa queries to the group oracles, is bounded

by

< (Vv +1) - (qg +t+4)*+1
- D

where t is the mazximum number of elements allowed to be accumulated simulta-
neously.

Proof. We refer to the proof of Theorem 1 for the definition of the game setting

between A and the Accumulator Manager and the corresponding notation.
Since Yy, contains distinct elements from Z/pZ, then at any epoch all ele-

ments in the batch witness update information Upd sent from the Accumulator

16 Giuseppe Vitto, Alex Biryukov

manager to A are of the form &;(g(x) - f(x)) where f(x) = Hyey‘/o (y + x) and
g(x) € Z/pZ[zx] has degree < t.

Since any such polynomial g(z) - f(z) can be represented uniquely in the
base {f(x),zf(z),...,x'f(z)}, we can assume A to be slightly more powerful
by having initial access to all the following encodings:

&(1),6(f(a)), &1l f(a)), ... &(a" - f(a)),6(1), &2(a)

We note that accumulator values at different epochs can be obtained in poly-
nomial time with queries to the group action oracle from the remaining update
information, i.e. the elements added and deleted. All in all, this corresponds
to the information the attacker would have access to under the hypothesis of
Theorem 1.

Now, suppose that after gg queries, A terminates and returns the tuple
(y, wy, Wy, Y) with w, = (£1,4,0) and w, = (&1,5,d). If the answer is correct
and breaks the collision resistance property of the accumulator scheme, then the
corresponding polynomials F ;(z), F1 ;(z) will satisfy

Fii(z) - (x+y)=Fi () (v +y)+d

Note, that A can transform the tuple (y, &1,4, &1,5, d) to the pair (y,d ' (&1,,—&15))
by querying the oracles in polynomial time. This pair, if correct, would then solve
the generalized t—SDH problem since, by letting Fr, = d~!(F; ;—F} ;), it holds
Fr.(z) - (x+y)—1=0for all x € Z/pZ. Hence A would win in g queries the

game instantiated in the proof of Theorem 2 and, as was shown, this cannot be
(Vv l+8)-(ga+t+4)>+1 0
- .

done with probability greater than

Relation with previous security assumptions and proofs. The proposed
Generalized t—Strong Diffie-Hellman assumption straightforwardly reduces to
the standard ¢-SDH assumption (see Appendix B, Definition 2) in the case when
deg f = 0, similarly as happens for Definition 1 of Collision Resistance and Au
et al. Collision Resistance Definition 3 (See Proposition 1 and Appendix B.1).

Thus, when deg f = 0 (without loss of generality, f(z) = 1), collision resis-
tance of the scheme can be shown directly under the standard ¢-SDH assumption
of Definition 4 without requiring the Generic Group Model and similarly as done
in [21,18]: a summary of all relevant definitions and a proof showing standard
collision resistance under t—SDH assumption can be found in Appendix B.

Generalizing definitions and security proofs to allow for deg f > 0, will ulti-
mately permit us to address accumulator initilization, which (surprisingly) has
a direct connection to the attacker ability to have access to (any element in) the
RS: (which can be (ab)used to compute witnesses and update the accumulator
value), a circumstance that would be against our will to design an accumula-
tor scheme suited also for authentication purposes, where only the accumulator
manager can update and issue witnesses and whose construction will be finalized
in next Section.

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 17

6 Accumulator Initialization

Depending on which would be the final application of the proposed accumulator
scheme, it might be necessary to prevent the possibility to forge non-membership
witnesses for “never authorized” non-accumulated elements, i.e. elements for
which the Accumulator Manager did not issue witnesses.® This is relevant, for
example, in the cases when the accumulator is used as an authentication mech-
anism and accumulated elements represents either white-listed or black-listed
users which authenticate with respect to the accumulator value by showing pos-
session of a valid membership or non-membership witness.

Forging witnesseses in the case when the Accumulator Manager should be the
only authorized entity to do so is, in fact, what the Witness Forgery Attack out-
lined by Biryukov, Udovenko and Vitto in [34] does: a set of colluding users who
share their non-membership witnesses can recover the (secret) reference-string
sets RSs = {P,aP, ...,a° P}¢s0, which enable them to compute membership and
non-membership witnesses with respect to the latest accumulator value. Indeed,
the knowledge of the set RS = RSy results to be functionally equivalent to the
knowledge of a: it is possible to either update the accumulator value (see Lemma
1) or issue valid membership and non membership witnesses (see the reference
string RS-based construction in [34, 21]).

The Witness Forgery Attack is possible as long as the number of collud-
ing users is equal or greater to the number of elements added to initialize the
accumulator value. In fact, the countermeasure proposed in [34] is to set an
upper limit NMWitnessesMax to the total number of issuable non-membership
witnesses and initialize the accumulator by adding at least NMWitnessesMax + 1
secret elements.

This will clearly prevent the reconstruction of the sets RS, but in our pro-
tocol the attackers have access in each epoch to the witness update information
(see Table 1), which in principle could help circumventing the fact that they will
not be able to collect and share enough non-membership witnesses or can be
used to directly compute some elements in RS;.

We will show that this is indeed possible, but we will prove that a generic
algorithm in the Generic Group Model would compute any element in RS; with
negligible probability just by carefully choosing few of the the elements added
to initialize the accumulator value.

We start by introducing some theoretical result. The purpose of the following
Proposition is to show some properties on elements that have particular multi-
plicative orders in the group (Z/pZ)*. These properties will be useful to prove the
subsequent Theorem 3, which will give us sufficient conditions on the elements
we need to add to prevent the reconstruction of the RS from the publicly avail-
able information. Thus, initializing the accumulator with NMWitnessesMax + 1

5 Membership witnesses for new elements would require an accumulator value update,
an operation that we could assume to be executed by the Accumulator Manager that
has exclusive access to the public register containing the current accumulator value.
When issuing non-membership witnesses, instead, the accumulator value remains
unchanged.

18 Giuseppe Vitto, Alex Biryukov

random elements where some of them satisfies the hypothesis of Theorem 3 will
ultimately prevent any, even partial, successful execution of the Witness Forgery
Attack [34].

Proposition 2. Let p € N be a prime such that p—1 = p7* - ... - p factorizes
as the product of n > 1 powers of distinct primes p; € N. Let f(x) € Z/pZ|z)]
be a polynomial with n < m < p — 1 distinct non-zero roots x1, ..., T, € Z/pZ

such that the multiplicative order in (Z/pZ)* of z;, for 1 <i <mn, is pj'. Then

i. The least k > O for which there exists z € Z/pZ and g(x) € Z/pZ[x] such
that g(z)f(z) = 2% — 2 mod p is k =p — 1.

ii. The degree of the minimal-degree non-constant monomial of f(x) is s with
0<s<m.

Proof. See Appendix D.3. O

Theorem 3. Let p € N be a prime such that p — 1 = p{* - ... - p factorizes as
the product of n > 1 powers of distinct primes p; € N. Let f(x) € Z/pZ|x] be a
polynomial with n < m < p — 1 distinct non-zero roots x1,...,x¢ € Z/pZ such
that the multiplicative order in (Z/pZ)* of x;, for 1 <i <mn, is pi*.

Let (V,+) be the vector space of polynomials with degree lower equal p—2 and

B = {1,z,...,2P72} its (p — 1)—dimensional canonical basis. Then, for every
1<k<p-1
_) -
f(x)
zf(z)
rank . =p—-m-+1
aP="m 2 f(x)
L :L‘k 4B
Proof. See Appendix D.3. O

Corollary 1. Let f(x) € Z/pZ|x] be a polynomial satisfying the hypothesis of
Theorem 8 and consider a Generic Group Model instance of the proposed Dy-
namic Universal Accumulator equipped with the public Batch Witness Update
protocol. If the accumulator value is initialized by adding all the roots in Z/pZ
of f(x), then the probability € that an attacker A outputs in qc queries to the
group oracles the value & (ozk) forany 1 <k <p—1 is bounded by

GS(&gf+U'@G+t+3P
P

where t is the mazimum number of elements allowed to be accumulated simulta-
neously.

Proof. See Appendix D.3. O

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 19

We are now ready to explicitly define the Accumulator Initialization proce-
dure for our protocol:

Accumulator Initialization. Set an upper limit NMWitnessesMax to the total
number of issuable non-membership witnesses. Assume p is such that p — 1 =
pit - ... - pS factorizes as the product of n > 1 powers of distinct primes p;
and consider n elements x1, ..., %, € Z/pZ such that the multiplicative order in
(Z/pZ)* of z; is pi*, for 1 <i < n. Then, the Accumulator Manager sets

Vv, ={x1,...,2,} U {NMWitnessesMax — n + 1 random elements in ACC}

so that |Vy,| = NMWitnessesMax + 1 and defines the corresponding initialization
polynomial as fy(z) = Hwieyvo (x — x;), where Vp = fo(a) P. He then publishes
(Vh, 0), the accumulator state at epoch 0, and keeps secret and never deletes the
elements in Yy, .

We note that as soon as an epoch changes, the Accumulator Manager pub-
lishes the corresponding Batch Witnesses Update information: at epoch 1, for
example, this corresponds to the new state (Vi, Yy,), the updating vector 24
and the polynomials d 4, () and dp, (x). At this point, the polynomial

@) = folw)- @) = [Wi+ J] w+2

Yi€Vv, Y €Vvy

has | Vv, | + |Vv, | distinct non-zero roots, n of which are z1,...,z,, and is such
that V1 = fy, (a)P. Even if it is possible to obtain from (21, A; and D; all the
values ofVj for 1 < k < p— |Vy,| — 1 (we relax the condition k < batchMax)
we still are under the hypothesis of Theorem 3 and Corollary 1, which assure us
the infeasibility to obtain any element of the RS. This reasoning can be easily
generalized to any subsequent epoch.

One last question arises with regard to all these considerations: is it possi-
ble to obtain some elements in the RS combining the vectors 2; coming from
different epochs? When the accumulator is initialized as described in Theorem
3, the answer is no. To show this, consider, without loss of generality, the m
vectors {21,..., {2, where the j-entry of any (2; is of the form c;V;. Hence a
linear combination with coefficients a; ; € Z/pZ of entries of these vectors can
be written as

m |batchMax| m |batchMax|

S0 aeVi= Y. DY aijeifia) | - fo@)P =g(a) Vo
i=1 7=0 =1 7=0

where g(z) = Y, Z?fghMHX a; j¢jfi(z). In other words, in the luckiest sit-
uation, what we can obtain combining all these vectors is a “basis” made of
elements of the form ozk'fo(a)P = ofV} with 1 < k < batchMax which, as we

already discussed, does not permit to obtain any element in RS.

20 Giuseppe Vitto, Alex Biryukov

7 Zero-Knowledge Proof of Knowledge

We now explicitly show how an interactive zero-knowledge protocol can be in-
stantiated between a Prover and a Verifier to prove the ownership of a valid non-
membership witness w, v for y with respect to the accumulator state (V,Yy)
(the corresponding protocol to show ownership of a valid membership witness
wy,v is similar and will not be discussed). Although different NIZK protocols for
bilinear equations verification can be adopted for this purpose (e.g. Groth-Sahai
[20]), we chose to detail a construction which doesn’t need a trusted setup (to
avoid extra storage needs on users’ side) and that can be easily implemented in
order to provide a reference for our benchmarks.

To this end, we will then extend the zero-knowledge proof of knowledge
protocol defined by Boneh et al. in [12], which proves under the Decision Linear
Diffie-Hellman assumption the knowledge of a pair (y, C) such that (y+a)C =V,
in order to support tuples (y, C,d) which verify (y + a)C +dP = V.

However, for non-membership witnesses we need to further ensure that d # 0
or, equivalently in G7, that has a multiplicative inverse. In this regard we will
then consider, for a random generator K € G; and random a,b € Z/pZ, the
Pedersen commitments Eq = dP + aK and E ;-1 = d~'P + bK for d and d~ !,
respectively. Noticing that P = dFE4;-1 — dbK, we then extend the protocol
applying EQ-composition to the factor d among the values E4 and P, thus
showing that E;-1 is a Pedersen commitment to the multiplicative inverse of
the committed value in Ey,.

Under the Random Oracle Model, we can make such proof of knowledge

non-interactive and full zero-knowledge by applying Fiat-Shamir heuristic [1].
We will do so by using an heuristic variant adopted by Boneh et al. in [12] in
order to reduce Prover’s proof size. We assume that calls to the random oracle
can be concretely realized through evaluations to a cryptographic hash function
H:{0,1}* = Z/pZ.
Security proofs. By reporting the relative security proofs, we will substantially
replicate the original results of the respective authors: we therefore refer to [12]
and [33, Ex. 5.3.4] for the completeness, soundness and (special) honest-verifier
zero-knowledgeness security proofs of Boneh et al. protocol and EQ-composition
for multiplicative-inverse relation, respectively.

The resulting protocol is the following.

Setup The Prover and Verifier agree on the public values P, X,Y,Z, K € G;
and P,Q € Ga, where XY, Z K are distinct random generators of G;.

Proof Of Knowledge The Prover randomly selects o, p, 7,7 € Z/pZ and com-
putes

Ec=C+(c+p)Z, E;=dP + 7K, Eg1 =d 'P+ 1K,
T, =0X, T, = pY, bo = Yo, dp =Yp

A non-interactive zero knowledge Proof of Knowledge of values (y, d, o, p, 7,7, 65, 0,)
satisfying
P=dE; . —drK, E;=dP + 7K,

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 21

o X =1y, pY =1T,,

yIy —6,X =0, yI, —0,Y = O,

PV (7. D)0 —0re(Z.O)"Pe A\—T _ e(V, P)
e(Ec, P)’e(Z, P) (Z,Q) (K, P) (Fo. O)e(Ea D)

is undertaken between Prover and Verifier as follows:

Blinding (P) The Prover randomly picks 7y, 7w, 7, Tw, To, Tps 75, T's, € L/DZ,
computes

Rpa=r,P+r,K, Rp=ryE;-1 + 1, K,
Rg = e(Ec, P)"ve(Z,P)™"5 " e(Z,Q) " "re(K, P)"™,

R, =71, X, R,=r,Y, Rs, =ry/ 5 —rs, X, Rs, =ryT, —15,Y

Challenge (P) The Prover sets the challenge ¢ € Z/pZ to
c=H(V,Ec,Eq, Eq-1,T5,T,, Ra, Rp, R, Ry, Ry, Rs,,, Rs,)
Response (P) The Prover computes
Sy =1y + cy, Su = Ty + cd, Sy =Ty + CT, Sw = T — cdm,
Se =T + o, s, =1, + Cp, S5, =15, + s, 85, =15, + o,
and sends (Ec, Eq, Eg-1,T5,T,, ¢, 8y, Su, 50, Sw, S0, Sp, 86,5 55,) to the Verifier.
Verify (V) The Verifier computes

Ry =8,P+ s, K —cEy, Rp = sywK + sy Fy-1 — cP,

o

R, = s, X — 1, R,=s,Y — I,

P Ré(, = SyTg — 85 X, R(;p = SyTp — 85

RE _ 6(E07P)Sy -e(Z,]5)755075@ ,e(Z’ Q)*Safsp . e(K,]5)731, ’ (e(Ecei?‘;e]:;‘d P))

and accepts if c = H(V, Ec, Eq, E4-1,T5,T,, Ra, Rp, Rg, Ry, Ry, R5,, R5,).

Complexities and possible optimizations for the above NIZK protocol are
discussed in Appendix C.

22 Giuseppe Vitto, Alex Biryukov
8 Implementation Results

To show efficiency and its practical relevance, we implemented the proposed
accumulator scheme by using the RELIC library [35]. In order to guarantee
a security level of 128-bits, we selected the available pairing-friendly Type-III
prime curve B12-P4/6. We then benchmarked the main features of the proposed
accumulator, obtaining the following average results:

— Accumulator Updates: 0.75 seconds to add 1,000,000 elements (random
elements generation requires 1.46s); 0.48 seconds to delete 1,000, 000 elements.

— Witness Issuing: 1.9 milliseconds to issue a membership witness; 229.5 mil-
liseconds for a non-membership witness (1,000,000 elements accumulated).

— Witness Verification: 2.2 milliseconds to verify a membership witness; 3.2
milliseconds to verify a non-membership witness.

— Public Batch Witness Update: 37.9 seconds to generate batch update data
corresponding to a 10, 000 elements batch addition operation; 27.1 seconds for
a 10,000 elements batch deletion operation.

— Batch Witness Update: 2.1 seconds to update a membership or non-
membership witness after a batch addition or deletion operation of 10,000
elements.

— Non-Batch Witness Update: 4.4 seconds to update a membership or non-
membership witness after a batch addition or deletion operation of 10,000
elements.

— Zero-Knowledge Proof Creation: 5.2 milliseconds to create a zero knowl-
edge proof of knowledge of a membership witness; 7.4 milliseconds to create
a proof for a non-membership witness.

— Zero-Knowledge Proof Verification: 6.5 milliseconds to verify a zero
knowledge proof of knowledge of a membership witness; 11.2 milliseconds to
verify a proof for a non-membership witness.

These benchmarks came from running our implementation on a standard
Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz desktop provided with 8.00GB of
RAM and running Ubuntu 18.04 x64. No parallelization was used.

Our implementation can be found on GitHub at:

https://github.com/cryptolu/accumulator/

Feedback from the community. We were contacted by a company that im-
plemented our accumulator (including the Public Batch Witness Update and
Zero-Knowledge protocols) as a revocation mechanism for verifiable credentials.
Their implementation, public on GitHub’, is used already in production appli-
cations where 10-20 millions entries remain accumulated at any given time and
1000/600 elements are added/deleted, respectively, per day. They reported to us
that in their implementation (i) witness update data generation takes 17s and
99KB/day; (ii) users’ witness update after 1 year offline requires 80s and 36MB

" https://github.com/mikelodder7/accumulator-rs

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 23

of update data; (iii) witness updates work on IoT; (iv) using the pairing-friendly
elliptic curve BLS12-381, RAM requirements are few megabytes. They added
that our scheme ”solves their scaling problem” compared to Hyperledger-Indy®
implementation of [22], which would take hours/day and larger proof sizes.

9 Conclusions

We presented a Dynamic Universal Accumulator in the Accumulator Manager
setting stated for efficient Type-III pairing-friendly elliptic curves, which sup-
ports batch operations and batch membership and non-membership public wit-
ness update.

The proposed accumulator extends a combination of previous schemes by
adding batch operations, enabling users to update witnesses in optimal time.
Furthermore, since batch update data is designed to be decoupled from users’
witnesses, our protocol permits (privacy-preserving) witness updates delegation,
thus enabling lightweight users to keep their witnesses updated with a constant
number of elementary operations.

We then showed in the Generic Group Model its security in terms of collision
resistance by introducing a more general version of the t—SDH assumption for
which we give an upper bound complexity for a generic algorithm that solves
the corresponding problem. We further showed how to initialize the accumulator
in order to be safe from an attack which would allow to forge witnesses for
non-authorized elements, an essential requirement in the case the accumulator
scheme is used as an authentication mechanism under the Accumulator Manager
authority.

We then described how to instantiate a zero-knowledge proof of ownership of
a valid witness for a given accumulator state and we implemented the accumu-
lator logic along with batch operations, the public witness update protocol and
the zero-knowledge proof mechanism in order to show its practical relevance as
an efficient and scalable privacy-preserving authentication mechanism.

References

1. Fiat, A. and Shamir, A. How to prove yourself: Practical solutions to identification
and signature problems. In Conference on the Theory and Application of Crypto-
graphic Techniques, 186-194 (1986)

2. Merkle, R. C. A certified digital signature. In Advances in Cryptology — CRYPTO
1989, 218--238 (1989)

3. Benaloh, J. and de Mare, M. One-way Accumulators: A Decentralized Alternative
to Digital Signatures. In EUROCRYPT, 274-285 (1993)

4. Baric, N. and Pfitzmann, B. Collision-free Accumulators and Fail-stop Signature
Schemes Without Trees. In EUROCRYPT, 480-494, (1997)

5. Shoup, V. Lower Bounds for Discrete Logarithms and Related Problems. In EU-
ROCRYPT, 256-266, (1997)

8 https://www.hyperledger.org/use/hyperledger-indy

24

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Giuseppe Vitto, Alex Biryukov

Sander, T. Efficient Accumulators Without Trapdoor. In ICICS, 252-262 (1999)
Buldas, A., Laud, P. and Lipmaa, H. Accountable Certificate Management Using
Undeniable Attestations. In ACM CCS, 9-17 (2000)

Chang, Y.-C. and Lu, C.-J. Oblivious Polynomial Evaluation and Oblivious Neural
Learning. In Advances in Cryptology — ASIACRYPT 2001, 369-384 (2001)
Buldas, A., Laud, P. and Lipmaa, H. Eliminating Counterevidence with Appli-
cations to Accountable Certificate Management. Journal of Computer Security,
10:2002, (2002)

Camenisch, J. and Lysyanskaya, A. Dynamic Accumulators and Application to
Efficient Revocation of Anonymous Credentials. In CRYPTO, 61-76 (2002)
Boneh, D., Boyen, X., Shacham, H. Short Group Signatures. In Advances in Cryp-
tology — CRYPTO 2004, Springer LNCS, 41-55 (2004)

Boneh, D., Boyen, X. Short Signatures Without Random Oracles. In Advances in
Cryptology - EUROCRYPT 2004, Springer Berlin Heidelberg, 56-73 (2004)
Nguyen, L. Accumulators from Bilinear Pairings and Applications. In CT-RSA,
Springer LNCS, 3376, 275-292 (2005)

Naor, M. and Pinkas, B. Oblivious polynomial evaluation. Siam Journal On Com-
puting. 35, 1254-1281 (2006)

Li, J., Li, N. and Xue, R. Universal Accumulators with Efficient Nonmembership
Proofs. In ACNS, Springer LNCS, 4521, 253-269 (2007)

Boneh, D. and Boyen, X. Short signatures without random oracles and the SDH
assumption in bilinear groups. Journal of Cryptology, 21(2), 149-177, (2008).
Camacho, P., Hevia, A., Kiwi, M. A. and Opazo, R. Strong Accumulators from
Collision-Resistant Hashing. In ISC, Springer LNCS, 4222, 471-486 (2008)
Damgard, I. and Triandopoulos, N. Supporting Non-membership Proofs with
Bilinear-map Accumulators. JACR Cryptology ePrint Archive, 538 (2008)
Galbraith, S. D.; Paterson, K. G. and Smart, N. P. Pairings for cryptographers.
Discrete Applied Mathematics, 156(16), 3113-3121 (2008).

Groth, J., Sahai, A. Efficient Non-interactive Proof Systems for Bilinear Groups.
In Advances in Cryptology - EUROCRYPT 2008, Springer, 415-432 (2008)

Au, M. H., Tsang, P. P., Susilo, W. and Mu, Y. Dynamic Universal Accumulators
for DDH Groups and Their Application to Attribute-Based Anonymous Credential
Systems. In CT-RSA, Springer LNCS, 5473, 295-308 (2009)

Camenisch, J., Kohlweiss, M and Soriente, C. An Accumulator Based on Bilinear
Maps and Efficient Revocation for Anonymous Credentials. In PKC 2009, Springer
LNCS, 5443, 481-500 (2009)

Camacho, P. and Hevia, A. On the impossibility of batch update for cryptographic
accumulators. In International Conference on Cryptology and Information Security
in Latin America, 178-188 (2010)

Aranha, D. F., Fuentes-Castaneda, L., Knapp, E., Menezes, A. and Rodriguez-
Henriquez, F. Implementing pairings at the 192-bit security level. In International
Conference on Pairing-Based Cryptography, 177-195 (2012)

Lipmaa, H. Secure Accumulators from Euclidean Rings without Trusted Setup. In
ACNS, Springer LNCS, 7341, 224-240 (2012)

Adj, G., Menezes, A., Oliveira, T. and Rodriguez-Henriquez, F. Computing Dis-
crete Logarithms in Fgze.137 and Fge.163 Using Magma. In International Workshop
on the Arithmetic of Finite Fields, 3-22 (2014)

Granger, R., Kleinjung, T. and Zumbrégel, J. Discrete logarithms in the Jacobian
of a genus 2 supersingular curve over GF(2%¢7). In NMBRTHRY list, 30, (2014)

28.

29.

30.

31.
32.
33.
34.

35.

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 25

Boneh, D. and Corrigan-Gibbs, H. Bivariate polynomials modulo composites and
their applications. In International Conference on the Theory and Application of
Cryptology and Information Security, 42—62 (2014)

Baldimtsi, F., Camenisch, J., Dubovitskaya, M., Lysyanskaya, A., Reyzin, L.,
Samelin, K. and Yakoubov, S. Accumulators with Applications to Anonymity-
Preserving Revocation. In EuroS&P 2017, 301-315 (2017)

Boneh, D., Biinz, B. and Fisch, B. Batching techniques for accumulators with
applications to IOPs and stateless blockchains. Cryptology ePrint Archive, Report
2018/1188, (2018)

Hazay, C. Oblivious polynomial evaluation and secure set-intersection from alge-
braic PRFs. Journal Of Cryptology. 31, 537-586 (2018)

Kleinjung, T., and Wesolowski, B. Discrete logarithms in quasi-polynomial time in
finite fields of fixed characteristic. ITACR Cryptology ePrint Archive, 751 (2019)
Schoenmakers, B. Cryptographic Protocols. Lecture Notes, 108-109 (2019)
Biryukov, A., Udovenko, A. and Vitto, G. Cryptanalysis of a Dynamic Universal
Accumulator over Bilinear Groups. Topics in Cryptology — CT-RSA 2021, 276-298
(2021)

Aranha, D. F. and Gouvéa C. P. L. RELIC is an Efficient LIbrary for Cryptography.
https://github.com/relic-toolkit/relic

Appendix

A Notation

Following the notation of [19], an efficiently computable non-degenerate bilinear
map e : Gy X Gy — Gr is said to be a Type-I pairing if G; = G5, while
it’s called Type-III pairing if G; # G2 and there are no efficiently computable
isomorphisms between G and G5. We will denote with uppercase Roman letters
(e.g. P, V) elements belonging to G; and with uppercase Roman letters with a
tilde above (e.g. P7C~2) elements in G5. The identity points of G; and Go are
denoted with O and O, respectively.

Sets are denoted with uppercase letters in calligraphic fonts (e.g. ACC,Y)
while accumulator elements are denoted with (eventually indexed) lowercase Ro-
man letters: y usually denotes the reference element, that is the one we take as
an example to perform operations, while ys denotes an element in the set S. Ex-
ceptions are the membership and non-membership witness, denoted respectively
with w and w, and the partial non-membership witness d.

Vectors are denoted with capital Greek letters (e.g. 7, 2). The vector opera-
tion (@, ¥) is the dot product, that is the sum of the products of the correspond-
ing entries of @ and ¥, while a o @ denotes the usual scalar-vector multiplication
where each entry of @ is multiplied by a.

We also use a convention that sum and the product of a sequence of terms
with starting index greater than the ending one are assumed to be equal to
>7a;=0and [[]b; =1 when i > j.

B Collision Resistance Under Standard t—SDH
Assumption

We here report both Au et al. definition of collision resistance (slightly restated)
and Boneh and Boyen definition of t—SDH assumption.

Definition 3. (Collision Resistance [21]) The Dynamic Universal Accumu-
lator outlined in Section 2 is collision resistant if, for any probabilistic polynomial
time adversary A that has access to an oracle O which returns the accumulator
value resulting from the accumulation of the elements of any given input subset
of (Z/pZ)*, the following probabilities

(G, , Q) ¢ Gen(1Y) (y,wy, V) + A°(G, Q)
P ey A V= (Teyw+a) P A
y € (Z/pZ)*\Y N 2y, wy,V, membership) =1

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 27

(G,a,Q) Gen(1*), (y,1y,Y) + A°(G, Q)
P yeam A V= (Teym+a) P A
yey N 2y, Wy, V, non-membership) = 1

are both negligible functions in the security parameter A, where w,, W, denote a
membership and non-membership witness fory, respectively, and 2(y,w,V, type)
is equal to 1 if and only if w is a valid type witness for y with respect to V.

Definition 4. (t—Strong Diffie-Hellman Assumption [16]) Let G be a prob-
abilistic polynomial time algorithm that, given a security parameter 1*, outputs
a bilinear group G = (p,G1,Ga,Gr, P, P,e). We say that the t—Strong Diffie-
Hellman Assumption holds for G with respect to an « < (Z/pZ)* if, for any prob-
abilistic polynomial time adversary A and for every polynomially bounded func-

tiont : Z — 7, the probability P (A(P, aP,a?P,...,a!™M P, P, a}5) = (y, ﬁP))
is a negligible function in X for any freely chosen value y € Z/pZ \ {—a}.

We can see that in Definition 3, the adversary has access to an oracle O that
outputs the accumulator value V = (Hyeyv (y+ a)) P for any chosen input set

Yy . Its purpose is to model the information the adversary can eventually get by
looking at the published accumulator states, although in practice the adversary
has no control over the values accumulated by the Accumulator Manager. This
oracle doesn’t make their attacker more powerful when compared to the require-
ments of the Boneh and Boyen t—SDH assumption (where the RS is directly
given to the attacker) due to the following:

Lemma 1. Having access to the oracle O of Definition 8 where sets of size at
most t can be queried is equivalent to the knowledge of the set RS = {P,aP,...,a'P}.

Proof. Let y be a generator of (Z/pZ)*. Then the polynomials {1, (y +
z),(y+x)-(y*+2),..., Hf.:l(yi +)} form a basis for the additive vector space
of polynomials in Z/pZ[x] with degree lower equal ¢ and, hence, for any given
1 <4 < t, there exists a linear combination of these polynomials that sums up
to at. Tt follows that, iteratively calling O on the set V; = {y,vy?,...,y'}, it is
possible to write a linear combination of the Vy, values returned which is equal
to ot P.

Suppose the set RS is known. Then, for any given Yy C (Z/pZ)* with

|[Vv| < t, using the RS, it is possible to compute V = (Hyieyv (yi + a)) P =
Sy (o'P). O

Theorem 4. Let G be a probabilistic polynomial time algorithm that, given a
security parameter 1*, outputs a bilinear group G = (p, G1,Ga,Gr, P, P, e) and
consider an instantiation of the Dynamic Universal Accumulator obtained using
G for the bilinear group generation and o € (Z/pZ)* as the secret accumula-
tor parameter. Then, the accumulator is collision resistant (Definition 3) if the
t—Strong Diffie-Hellman Assumption (Definition 4) holds for G with respect to
Q.

28 Giuseppe Vitto, Alex Biryukov

Proof. We note that a solution (y,C,d) for the pairing equation e(C,yP +
Q)e(P,P)? = ¢(V,P) is also a solution for the elliptic curve points equation
(y+a)C+dP = V. We will then prove the Theorem considering this last equa-
tion only, distinguishing between membership and non-membership witnesses.

Membership witnesses. By contradiction, suppose there exists a probabilistic
polynomial time adversary A that with respect to an (non-trivial) accumulator
state (V,)y) outputs with a non-negligible probability a membership witness
C € G, for an element y € (Z/pZ)*\ Yy . It follows that (y+«)C =V = fy(a)P
where fv(z) =[], cy, (vi +2). Since y ¢ Yy, we have that (y + a) t fv(z).
Using the polynomial extended Euclidean algorithm, A computes g(z) € Z/pZ[z]
of degree |[Vy| — 1 and r € (Z/pZ)* such that fy(x) = g(z) - (y + =) + r.
Therefore, C' = g(@)P + ;1P and using the RS = {P,aP, 2P, ..., 01N},
with [Vy| < ¢(A), can compute g(z)P and hence ﬁP = r1C - g(a)P),
contradicting the t—SDH assumption.

Non-membership witnesses. Suppose there exists a probabilistic polynomial
time adversary A that with respect to an (non-trivial) accumulator state (V, Vy)
outputs with a non-negligible probability a non-membership witness (C,d) €
G1 x (Z/pZ)* for an element y € Yy. Then (y + a)C = fy ()P — dP. Now,
since (y + z)|fy(x) we have that (y + z) 1 fy(x) — d for any d # 0. Thus,
similarly as done before, A uses the polynomial extended Euclidean algorithm
to compute g(x) € Z/pZlx] of degree |Yy| — 1 and r € (Z/pZ)* such that
fv(z) —d = g(z) - (y + x) + r. Therefore, C' = g(a)P + 17 P and, using

the RS, A can compute y_%aP = r1(C — g(a)P), contradicting the t—SDH

assumption. O

B.1 Reduction Among Collision Resistance Definitions

Proposition. Collision Resistance of Definition 1 is weaker than Au et al. Col-
lision resistance (Definition 3) when deg f > 0, while it is equivalent if deg f = 0.

In Lemma 1 we proved that the oracle O of Definition 3 gives the attacker
access to the RSy for some ¢t > 0. By using Extended Euclidean Algorithm, the
set RS, further allows the attacker to issue valid membership witnesses for accu-
mulated elements and valid non-membership witnesses for any non-accumulated
element, as originally reported in [21]. In other words, if an attacker successfully
breaks collision resistance of Definition 3, he can output in polynomial time us-
ing the RS; a valid membership witness if forged a non-membership witness for
an accumulated element y, or, similarly, the valid non-membership witness if he
forged a membership witness for a non-accumulated element y. In fact, the two
probabilities of Definition 3 can be combined, by equivalently requiring that

(G0, Q) Gen(1%), (Y, wy, @y, Y) A%(G, Q)
P Y C (Z/pZ)* A V= (Tyeyita) - P A
2(y, wy, V,membership) =1 A §2(y,w,,V,non-membership) =1

is negligible in the security parameter .

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 29

Since the public batch update information can be computed in polynomial
time from the RS; (we can compute any element of the form h(a)P, where
h(z) € Z/pZ has degree < t), it immediately follows that Definition 1 is equiva-
lent to Definition 3 if deg f = 0, i.e. f =1 and thus V = P.

If instead deg f > 0, an attacker that breaks collision resistance of Definition
1 by outputting a tuple (y,w,,wy,Y), can, before terminating, query in poly-
nomial time the corresponding oracle O to get |Vy,| + 1 valid non-membership
witnesses for (random) non-accumulated elements and use Lagrange interpola-
tion to recover from the d-values the polynomial f(z) € Z/pZ, similarly as done
at the beginning of the Witness Forgery Attack outlined in [34] and briefly dis-
cussed in Section 6. Once the attacker obtains the polynomial f(x), he recovers
the set Yy, by computing its roots and can then use the tuple (y, wy, Wy, YUVy;)
to break collision resistance of Definition 3.

C Complexity analysis of the proposed NIZK protocol

Within the NIZK protocol described in Section 7, zero-knowledge proofs for
valid non-membership witnesses consists of 5 elements in G; and 11 elements
in Z/pZ, while they consists of 3 elements in G; and 6 elements in Z/pZ in the
case of membership witnesses. Thus, if elliptic curve points compression is used,
zero-knowledge non-membership and membership proofs can be represented with
5(log g+1)+91log p bits and 3(log g+1)+6log p bits, respectively. In our concrete
instantiation (see Section 8) this translates to 4926 bits ~ 616 bytes proofs for
non-membership witnesses and 3135 bits &~ 392 bytes proofs for membership
witnesses.

As regards computational costs, if the quantities e(Z, }5), e(Z,Q)7 e(K,]5)
and e(V, P) are pre-computed and stored by both Prover and Verifier, zero-
knowledge proofs of knowledge for non-membership witnesses are computed with
15 scalar-point multiplications in G, 7 point additions in Gy, 4 exponentiation
in Gr and 1 pairing. We note that the Prover can reduce the cost of evaluating
e(Ec,]5) by computing and storing the value e(C,]5) Thus, with just 1 pairing
per-epoch, the Prover can compute each e(E¢, P) as e(Z, P)*** - e(C, P) with 1
exponentiation and 1 multiplication in Gp. Using this optimization, the cost to
compute a proof of knowledge of a membership witness boils down to a total of
9 scalar-point multiplications in G4, 3 point additions in GG, 5 exponentiation
in Gy and 1 multiplication in Gr.

Similarly, the Verifier needs 16 scalar-point multiplications in G1, 9 point
additions in G4, 4 exponentiation in G and 2 pairings (by merging the term
e(Ec, P)*ve(Ec,cQ) in e(Ec,s,P 4 ¢Q)) to verify a non-membership witness
zero-knowledge proof, while he needs 10 scalar-point multiplications in Gp, 5
point additions in 1, 3 exponentiation in Gr and 1 pairing to verify a zero-
knowledge proof of knowledge for a membership witness.

30 Giuseppe Vitto, Alex Biryukov

D Remaining Proofs

D.1 Batch Witness Updates

When a batch addition or deletion changes the accumulator state, users’ mem-
bership and non-membership witnesses are updated according to the following
operation.

— On Batch Addition: suppose the accumulator state changes from (V, Yy)
to (V',Vy) as a result of an Batch Addition operation. Hence, for certain
A={ya1,...,yan} CACC\Vy, wehave V' = dg(—a)-V and Yy = Yy UA.
Then, for any y € Yy, the membership witness w, v = C is updated with
respect to the accumulator state (V/, Yy) computing C' = d4(y)-C+va(y)-V
and letting w,, y» = C’. While for any y ¢ Yy, the non-membership witness
Wy, v = (C,d) is updated with respect to (V/, Yy) by computing C’ = d 4(y) -
CHuvaly)-V,d =d-da(y) and letting @,y = (C’,d").

Proof. For the ease of notation, we will denote the elements y4,; with ¥;, the
accumulator value corresponding to (Hf (i + a)) V with V; and, for any

y € Vv, the intermediate membership witnesses w, v, with Cj;.
We prove the formula by induction on n, the number of batch added elements:
. We get Cy =V + (y1 — y)C, the same formula defined for the mem-

bershi witness update after a single addition operation.
(01 nb Let by = [T (9 + @) [['on a4y -). Using the inductive hy-

pothesis for C),_1, we have

On—(yny)cn—l+vn—l—<ﬁ >C+<Zb +H yt+04>

t=1

which is equal to ([T}, (v —v)) C + (3._, bs) V as required. The induction
on d’ in the case of non-membership witnesses is straightforward. O

— On Batch Deletion: suppose the accumulator state changes from (V,Vy)
o (V',Vy/) as a result of a Batch Deletion operation. Hence, for certain
D={yp1,---,yp,m} C Vv, we have V' = mv.
Then, for any y € Yy, the witness wy,v = C is updated with respect to
the accumulator state (V’, Yy) computing ¢/ = L+ —~C — v2W) 17 and letting

do (y) dp(y)
wy,v» = C'. While for any y ¢ Yy, the non-membership Witness Wy,y = C'is
updated with respect to (V’, V) by computing C’ = dD(y) -C - Zzgg -V,

d=d- W and letting wy, v = (C’,d).

Proof. Similarly as before, we will denote the elements yp ; with y;, the ac-
cumulator value corresponding to (szl(yi + a)_1> V with V; and, for any
y € Yy, the intermediate membership witnesses wy, v, with Cj.

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 31

We prove the formula by induction on m, the number of batch deleted ele-
ments:

: We get C; = ——C — (yl_y)1(y1+a)V = —L—(C — V1), the same

y1i—y y1—y
formula defined for the membership witness update after a single deletion

operation.
(=1 =} Let by = 10y (35 + @) TE= (3 —). Then

1
ynz *y

1 1 m—1 o 3
:dD(y)C_ dp(y) (; bs) V- ((ym 97 [Jwi + o) > 1%

i=1

Cm (Cmfl - Vm)

which is equal to #(y)C - #(y) (321 bs) V as required. The induction on

d’ in the case of non-membership witnesses is straightforward. O

— On Batch Addition & Deletion: suppose the accumulator state changes
from (V,Yy) to (V”,Yy/) as a result of a Batch Addition & Deletion oper-
ation. Hence for certain disjoint sets A = {ya1,...,y4an} C ACC\ Yy and

D={yp1,---,Yp,m} C Vv we have V" = 325:3; V.
Then, for any y € Yy, the witness w, y = C is updated with respect to the

accumulator state (V', Vi) computing C’ = Z;‘Eg; -C+ ”27’;?751)’) -V and letting
wy, v+ = C'. While for any y ¢ Yy, the non-membership witness @, v = (C,d)
is updated with respect to the accumulator state (V’,)y/) by computing

_ da(y) va,p(y) _ da(y) ; - _
C' = dﬁ(Z) -C+ 2‘;?;)’ V,d =d- dg(Z) and letting w, v = (C',d').

Proof. Performing a batch addition and then a batch deletion, the membership
witness wy, vy = C for y with respect to the accumulator value V' is iteratively

updated to w, v~ = (C”,d") with respect to the updated accumulator value
Vi — (%) V as follows
C ﬂi} Cl :dA(y)C+UA(y)V De_le§e

"o 1 ’ UD(y) r_ d.A(Z/) ’U_A(y) B U’D(y) . n o
"= dD(y)C dp(y)V dD(y)C+ (d@(y) (1) g(yA,z +)) 1%

where V' = [['_,(ya; + @) - V. The induction on d’ in the case of non-
membership witnesses is straightforward. O

D.2 Epoch Witnesses Batch Update

A user who owns a valid non-membership witness @, v, = (C;, d;) (resp. a valid
membership witness wy,v, = C;) with respect to the accumulator state (V;, Vv,)
can update it to w, v, = (C},d;) (resp. wy v, = C;), for any j > i, as

C; = - Cy + Yy, 2ini()) . dy=d;-

32 Giuseppe Vitto, Alex Biryukov

where
b b
da, ()= [da@) dp,_ (@)=][] do.(@)
s=a-+1 s=a-+1

"Qi—>j (y) = Z (dD'iAM—l (y) ' dAtaj (y)) © '-Qt

t=i+1

Proof. We prove the result by induction on j > i.
A witness w,,v, = (Cj,d;) is updated to wy v,,, = (Cit1,diy1) as

da, 1 da.
At (y) . Ci + . < Tq/ , Qi+1 > , di+1 _ di . Aita (y)
dDi+1 (v)

Cit1=
T dp, (y) dp,,, (y)

obtaining the same result we get by using the formula for non-membership wit-
nesses batch update.
j = j + 1:| By inductive hypothesis, we assume the formula holds for C;. Then

da;.. () 1
Oy q =29+ cr—Y ir . a
ok dp, . (y) ! dp, ., (y) (7, 1)
d'AiHj 1(2/) 1
:dD ; (y) Gt dp (y) ' < Ty ’ d-Aj+1 (y) o Q’L*)j >
i—j+1 i1
1
— (7 L ,
" dp, ;41 (Y) (Ty, dp.; (y) © 21)
d-A' j+1 (y) 1
= i—j Cz—l— AT , Qz)
dDi—»j+1(y) dDi—»_;’_H(y) < Yy _>]+1>

as required, since

L /e i+l
Qi1 = Y < [T do.tw) 11 dm(v)) o

t=i+1 \h=i+1 k=t+1
J t—1 j+1 i
- (Z < H dp,, (y) H da,, (y)> © Qt) + < H dp, (y)) o241
t=i+1 \h=i+1 k=t+1 h=it1

=da;,,(y) o 2isj+dp,,,(y) o254

The proof on d; is straightforward. O

D.3 Accumulator Initialization

Proposition. Let p € N be a prime such that p—1 = p{* - ... - &~ factorizes as
the product of n > 1 powers of distinct primes p; € N. Let f(z) € Z/pZ|z] be a
polynomial with n < m < p — 1 distinct non-zero 1oots x1,...,%Tn € Z/pZ such

that the multiplicative order in (Z/pZ)* of x;, for 1 <i <mn, is p;*. Then

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 33

i. The least k > 0 for which there exists z € Z/pZ and g(x) € Z/pZ|x] such
that g(x)f(z) = 2% — 2 mod p is k =p — 1.

ii. The degree of the minimal-degree non-constant monomial of f(x) is s with
0<s<m.

Proof. Suppose there exists z € Z/pZ and g(z) € Z/pZ|x] such that

g(@)f(z) = 2" =2 mod p
Then, each root 21, ..., T, of f(z) must be a root for ¥ — 2 in Z/pZ, that is
=z modp (1)

Since, by hypothesis (Z/pZ)* ~ Z/(p — 1)Z ~ (x1) X --- X (xp) with n > 1
we have z € (2, (z;) < i, (x;) = (1). Hence a solution to (1) exists only if
z = 1 and the least k for which it holds is k = lem(ord(z1),...,ord(z,,)) >
lem(ord(zy),...,ord(zy,)) =p—1. Since k <p—1, we have k =p — 1.

It follows that as long as m < p — 1, there are no z € Z/pZ such that
f(x) = 2 — 2z mod p. Hence the degree of the minimal-degree non-constant

monomial of f(z) is s with 0 < s < m. O
Theorem. Let p € N be a prime such that p—1 = p{* - ... - pir factorizes as
the product of n > 1 powers of distinct primes p; € N. Let f(x) € Z/pZ|z] be a
polynomial with n < m < p — 1 distinct non-zero roots x1,...,x: € L/pZ such

that the multiplicative order in (Z/pZ)* of z;, for 1 <i <m, is p;*.
Let (V,4) be the vector space of polynomials with degree lower equal p—2 and

B ={1,z,...,2P72} its (p — 1)—dimensional canonical basis. Then, for every
1<k<p-1
f(x)
zf(x)
rank . =p—-m-+1

=2 ()

k
L €z 15

Proof. The rank is maximum when the row vectors are linearly independent in
V, that is for any ao, ..., ap—m—2,b,¢ € Z/pZ such that

p—m—2
3 4l f(a) | +bak e=0 2)
=0
we have ag = - = ap_m—2=b=c=0.

We will prove the statement by exhaustion on the values of k.

The dependence relation (2) can be rewritten as g(z) f(z) = —ba* —

¢ where g(x) = E?;Sn_z ajz?. By hypothesis f(z) has m different roots, while

34 Giuseppe Vitto, Alex Biryukov

—bx¥ — ¢ can have at most k < m distinct roots. The equation then holds only
if both sides are equal to the 0 polynomial, that is —bz* — ¢ = 0 and g(z) = 0.
This implies ag = -+ = ap—m-2 = 0 and b = ¢ = 0 because the elements
{1,2,...,2P~™=2} are linearly independent vectors of V.

In this case the dependence relation (2) can be rewritten as g(x) f(z) =
—bz™ — ¢ with g(x) defined as in the previous case. By hypothesis f(x) has

m distinct roots, while the right side can have at most m distinct roots. This
implies that g(z) = ¢(0) = ag is a constant polynomial or, equivalently, that
a1 = -+ = @p_m—2 = 0. Suppose by contradiction that ag # 0, then f(z) =
—aalbxm — aglc is a contradiction since, by Proposition 2, the degree of the
minimal-degree non-constant monomial of f(z) is s with s # m and s > 0.
Hence ag = 0, and then —bx™ — ¢ = 0 which implies b = ¢ = 0.

Letk:m—i—k’ with 1 < k¥ < p—m — 2. From g(z)f(x) =

—bz™ k" — ¢ it follows that deg(g) < k' and then, if k¥’ < p —m — 2, we have

Ap'41 = " =Ap—m—-2 = 0.
Assume, by contradiction, b # 0 and ¢ = 0. In this case the dependence
relation becomes g(z)f(z) = —bz™* % but the right side has only 0 as root

while the left side has, by hypothesis, at least ¢ non-zero distinct roots. This
implies, similarly as before, that g(z) = 0 and b = 0, a contradiction.

Let us therefore assume b # 0 and ¢ # 0. In this case the dependence relation
can be rewritten as ¢/(z)f(z) = ™% — z where ¢/(z) = (=b)"'g(z) and z =
(=b)~tec #0.

If, by contradiction, ¢'(x) # 0, then, by Proposition 2, the least value for
m + k' such that the dependence relation holds is m + kK’ = p — 1, that is
k' =p—m —1, a contradiction to 1 < k' < p —m — 2. Hence ¢'(z) = 0, which
in turn implies b = ¢ = 0, a contradiction to our assumption b # 0.

It follows that b = 0 and then g(x)f(x) = —c. Since by hypothesis f has m
distinct roots, this equation holds only if ¢ = 0 and g(z) = 0, which, similarly
as before, implies ag = - - =ap =b=c=0. O

Corollary. Let f(x) € Z/pZ[z] be a polynomial satisfying the hypothesis of The-
orem & and consider a Generic Group Model instance of the proposed Dynamic
Universal Accumulator equipped with the public Batch Witness Update protocol.
If the accumulator value is initialized by adding all the roots in Z/pZ of f(x),
then the probability € that an attacker A outputs in qg queries to the group
oracles the value & (ak) forany 1 <k <p—1 is bounded by

o (degf+1) (96 +1+3)°
N p
where t is the mazimum number of elements allowed to be accumulated simulta-

neously.

Proof. The proof proceeds similarly as done in the proof of Theorem 2. The
only difference is the condition checked by the Accumulator Manager to ensure

Dynamic Universal Accumulator with Batch Update over Bilinear Groups 35

correctness of A’s output value (&1,;). This new check corresponds to verifying
the polynomial equation Fy ;—a* = 0 where Fy ; = g(x)- f(x) with deg g < t. The
Accumulator Manager then chooses a random value x* € Z/pZ: by Theorem 3
the equation F7y ; — 2% = 0 vanishes in 2* with probability 0 for any 1 < k < p—1,
thus A wins the game with non-zero probability only if some of the following
conditions holds:

From this we conclude, in a similar way as done at the end of the proof

of Theorem 2, that A wins the game with the Accumulator Manager with a
< (deg f+t)(ac+t+3)*
—_— p .

probability e
O

