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Learning-Assisted User Clustering in Cell-Free
Massive MIMO-NOMA Networks
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Nam-Phong Nguyen, Ruiqin Zhao, and Symeon Chatzinotas

Abstract—The superior spectral efficiency (SE) and user fair-
ness feature of non-orthogonal multiple access (NOMA) systems
are achieved by exploiting user clustering (UC) more efficiently.
However, a random UC certainly results in a suboptimal solution
while an exhaustive search method comes at the cost of high
complexity, especially for systems of medium-to-large size. To
address this problem, we develop two efficient unsupervised
machine learning based UC algorithms, namely k-means++ and
improved k-means++, to effectively cluster users into disjoint
clusters in cell-free massive multiple-input multiple-output (CFm-
MIMO) system. Adopting full-pilot zero-forcing at access points
(APs) to comprehensively assess the system performance, we
formulate the sum SE optimization problem taking into account
power constraints at APs, necessary conditions for implementing
successive interference cancellation, and required SE constraints
at user equipments. The formulated optimization problem is
highly non-convex, and thus, it is difficult to obtain the global
optimal solution. Therefore, we develop a simple yet efficient it-
erative algorithm for its solution. In addition, the performance of
collocated massive MIMO-NOMA (COmMIMO-NOMA) system
is also characterized. Numerical results are provided to show the
superior performance of the proposed UC algorithms compared
to baseline schemes. The effectiveness of applying NOMA in
CFmMIMO and COmMIMO systems is also validated.

Index Terms—Cell-free massive multiple-input multiple-
output, full-pilot zero-forcing, k-means, machine learning, non-
orthogonal multiple access, power allocation, user clustering.

I. INTRODUCTION

The tremendous growth in the number of emerging applica-
tions will certainly pose enormous traffic demands with ultra-
high connection density for next-generation wireless networks.
It is approximated that more than 20 billion devices were
connected to the Internet in 2020, and this number is predicted
to exceed 35 billion devices by 2025 [1]. The global data
traffic of mobile devices is expected to reach 226 exabytes
per month by 2026 [2], and will further increase over the
next decade. However, traditional orthogonal multiple-access
(OMA) techniques seem to reach their fundamental limits
in the near future, and therefore are no longer suitable to
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meet these requirements. Consequently, it calls for innovative
techniques that utilize radio resources more efficiently to attain
the optimal performance.

Non-orthogonal multiple-access (NOMA) has been envis-
aged as a key enabling technology that significantly enhances
spectral efficiency (SE) and user fairness of traditional wireless
communication systems [3]–[5]. In NOMA, multiple user
equipments (UEs) are allowed to simultaneously transmit and
receive their signals in the same time-frequency resource by
using different signal signatures (i.e., code-domain NOMA)
or power levels (i.e., power-domain NOMA) [6]–[8]1. In
particular, in a downlink system the key benefit of NOMA is
attributed to the fact that UEs with better channel conditions
are able to cancel the interference caused by UEs with
poorer channel conditions using the successive interference
cancellation (SIC) technique. User fairness is then achieved
by allocating a large portion of the total power budget to weak
UEs, which also guarantees the SIC’s feasibility at strong UEs.

Recently, cell-free massive multiple-input multiple-output
(CFmMIMO), which is a scalable version of massive MIMO
networks, has been introduced to overcome the large propa-
gation losses as well as provide better quality-of-experience
services for cell-edge UEs [9]–[11]. CFmMIMO comprises
a large number of access points (APs) that are spatially
distributed over a wide area to coherently serve multiple UEs
in the same time-frequency resources. All APs are coordinated
by a central processing unit (CPU) through fronthaul links.
Each AP performs beamforming based on its local channel
state information (CSI) only, and this feature thus greatly
reduces the complexity in terms of the fronthaul overhead.
Since each UE is coherently served by all APs, the effect
of cell boundaries can be effectively removed. It was shown
in [9] and [12] that CFmMIMO is superior to small-cell
and collocated massive MIMO (COmMIMO) in terms of SE
and energy efficiency (EE), respectively. However, the key
advantages of favorable propagation and channel hardening
properties to multiplex numerous UEs are only achieved in the
case of multiple antennas at APs and/or low propagation losses
[13]. For the aforementioned reasons, it is of pivotal interest
to study the combination of NOMA and CFmMIMO to reap
all their benefits, towards fulfilling the conflicting demands
on high SE, massive connectivity with low latency, and high
reliability with user fairness of future wireless networks [14].

1This paper will focus on power-domain NOMA; henceforth, we refer to
it as NOMA.
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A. Related Work

Despite its potential, there are only a few research works
investigating the benefit of NOMA in CFmMIMO systems
in the literature. NOMA for downlink CFmMIMO was first
studied in [15], where the closed-form expression of the
achievable sum rate was derived. Numerical results showed
the superior performance of NOMA compared to OMA. The
authors in [16] investigated the impact of NOMA in the uplink
CFmMIMO system and derived a closed-form approximation
for the sum SE (SSE). Simulation results demonstrated that
CFmMIMO-NOMA is capable of utilizing the scarce spectrum
more efficiently. In [17], different types of precoding tech-
niques such as maximum ratio transmission (MRT), full-pilot
zero-forcing (fpZF), and modified regularized ZF (mRZF)
at APs were considered in downlink CFmMIMO-NOMA. It
was shown that downlink CFmMIMO-NOMA with mRZF
and fpZF precoders significantly outperforms the OMA with
MRT in terms of the achievable sum rate. These existing
works mainly focused on characterizing the performance anal-
ysis in CFmMIMO-NOMA, but did not show how UEs are
paired/grouped.

To be spectrally-efficient, it is crucial to group a suffi-
ciently large number of UEs with distinct channel conditions
that performs NOMA jointly [3]–[5], [18]. In the context
of CFmMIMO-NOMA, the authors in [19] proposed three
distance-based pairing schemes including near pairing, far
pairing, and random pairing to group UEs into disjoint clusters.
It is not surprising to see that the close pairing, where two UEs
with the smallest distance between them are paired, provides
the worst performance, which is also aligned with the NOMA
principle [3], [4]. Another interesting study is to group a
large number of UEs into one cluster [20], referred to as user
clustering (UC), in which a low complexity suboptimal method
based on the Jaccard distance coefficient was developed to find
the most dissimilar UEs in the CFmMIMO-NOMA system.
Nevertheless, the UC algorithms in the above-cited works were
developed based on the distances among UEs only, without
considering any learning features.

Recently, unsupervised machine learning (ML) techniques
have been considered as an effective means for different
optimization targets, which exploit adaptive learning features.
In this regard, the authors in [21] proposed a kernel-power-
density based algorithm to cluster multipath components of
MIMO channels into disjoint groups. A cluster-based geomet-
rical dynamic stochastic model was introduced in [22], where
scattered nodes were grouped into different clusters according
to the density of nodes in MIMO scenarios. In [23], a clustered
sparse Bayesian learning algorithm was developed for channel
estimation in a hybrid analog-digital massive MIMO system
by using the sparsity characteristic of angular domain channel.
The authors in [24] proposed a clustering scheme for machine-
to-machine communications in a hybrid time-division multiple
access-NOMA system in order to increase the battery lifetime
of machines, using the popular k-means algorithm [25]. This
work was extended in [26] to improve the network sum
throughput by considering an enhanced k-means algorithm.
Further, the k-means algorithm was used to cluster UEs in

mmwave-NOMA [27] and CFmMIMO [28]. Although these
works demonstrated the effectiveness of applying unsupervised
ML to clustering tasks for various wireless communication
systems, its application for UC in CFmMIMO-NOMA has not
been previously studied.

On the other hand, the k-means has also been considered
as the most well-known data clustering algorithm due to its
simple implementation, that allows to provide more insight
into the underlying nature and structure of the data. There are
several variants of the k-means algorithm based on choosing
different representative points for the clusters, including the k-
medoids [29], k-medians [30], k-modes [31], and employing
feature transformation techniques, including weighted k-means
[32] and kernel k-means [33]. Different from the k-means
algorithm where the representative point for each cluster is
the mean of all the points within each cluster, the repre-
sentative point for each cluster in the k-medoids, k-medians,
and k-modes algorithms is the actual data point inside each
cluster, the median of each cluster, and the mode of each
cluster, respectively. Although the k-medoids and k-medians
are more robust to outliers than the k-means, their computa-
tional complexity is much higher and therefore not suitable
for large datasets. Moreover, the k-modes is designed to
handle categorical data, and thus not appropriate for numerical
data. Given that the k-means algorithm considers all features
equally important, the weighted k-means introduces a feature
weighting mechanism, where different features are assigned
different weights [32]. In [33], the kernel functions are applied
in the k-means in order to find non-linearly separable clusters.
However, both the weighted and kernel k-means algorithms
are computationally more expensive than the k-means.

B. Motivation and Main Contributions

In CFmMIMO-NOMA systems, the effect of network in-
terference is increasingly abnormal and acute as the APs
become denser. Most existing works on CFmMIMO-NOMA
systems [15]–[17] focused on the performance analysis while
they neglect the importance of UC, which has been shown
to significantly improve the performance of NOMA-based
systems [3], [4], [34]. A direct application of random UC
schemes [4], [18] to CFmMIMO-NOMA systems would result
in poor performance, even worse than the traditional linear
beamforming without NOMA. In addition, a joint UC and
beamforming design [5], which clusters UEs by means of the
tensor model, is not very practical for CFmMIMO-NOMA
due to excessively high complexity in terms of computational
and signalling overhead. Although the k-means algorithm has
been widely adopted for different clustering tasks [24]–[28], its
main drawback is sensitivity to the initialization of centroids.

Taking into account all these issues, in this paper we devise
novel UC algorithms along with an efficient transmission
strategy such that the SSE of CFmMIMO-NOMA systems is
remarkably enhanced. In particular, our main contributions are
summarized as follows:
• We propose two efficient unsupervised ML-based UC

algorithms, including k-means++ and improved k-
means++, to effectively cluster UEs into disjoint clusters
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in CFmMIMO-NOMA. The proposed k-means++ algo-
rithms further address the limitation of k-means due to
the randomness of initial centroids. In addition, they are
able to ensure the maximum number of UEs per cluster,
which can not be achieved by the conventional k-means.

• By adopting the fpZF precoding at APs, we formu-
late optimization problems for both CFmMIMO-NOMA
and COmMIMO-NOMA systems by incorporating power
constraints at APs, necessary conditions for implementing
SIC at UEs, and the minimum SE requirement at UEs;
these belong to the difficult class of nonconvex opti-
mization problems. Towards appealing applications, two
low-complexity iterative algorithms based on the inner
approximation (IA) method [35] are developed for their
solutions, which are guaranteed to converge to at least a
locally optimal solution.

• Extensive numerical results are provided to confirm the
effectiveness of the proposed UC algorithms on the SSE
performance over the current state-of-the-art approaches,
i.e., close-, far- and random-pairing schemes [19], and
Jaccard-based UC scheme [20]. They also show the
significantly achieved SSE gains of CFmMIMO-NOMA
over COmMIMO-NOMA.

C. Paper Organization and Notations

The remainder of this paper is organized as follows. Section
II describes the system model. In Section III, two unsupervised
ML-based UC algorithms are presented. The proposed iterative
algorithms for CFmMIMO-NOMA and COmMIMO-NOMA
are introduced in Sections IV and V, respectively. Numerical
results are given in Section VI, while Section VII concludes
the paper.

Notations: Bold uppercase letters, bold lowercase letters,
and lowercase characters stand for matrixes, vectors, and
scalars, respectively. | · |, (·)H , (·)T , (·)∗, and || · ||2 correspond
to the cardinality, the Hermitian transpose, the transpose,
the conjugate, and the l2−norm operators, respectively. E[·]
represents the expectation operation. CN (µ, σ2) stands for
circularly symmetric complex Gaussian random variable (RV)
with mean µ and variance σ2.

II. SYSTEM MODEL

A. System Description

We consider an CFmMIMO-NOMA system, where the
set M , {1, 2, · · · ,M} of M APs is connected to the
CPU through perfect wired fronthaul links to serve the set
N , {1, 2, · · · , N} of N UEs via a shared wireless medium,
as shown in Fig. 1. Each AP is equipped with K antennas,
while each UE has a single antenna. APs and UEs are assumed
to be randomly distributed in a wide coverage area. The com-
munication between APs and UEs follows the time division
duplex (TDD) mode. Each coherence interval, denoted by τc,
includes two phases: uplink training τp (τp < τc) and downlink
data transmission (τc− τp). The total N UEs are grouped into
L clusters and each UE belongs to one cluster only. We denote
the set of L clusters by L , {1, 2, · · ·L}. The set of UEs in
the l-th cluster is defined as Nl , {1l, · · · , nl, · · · , Nl} with

AP1

CPU

AP2

APm

Cluster lnl

Nl

APM

wired fronthaul links

UEs

Fig. 1. An illustration of the CFmMIMO-NOMA system.

|Nl| = Nl, where
⋃
l∈L |Nl| = N and Nl

⋂
Nl′ = ∅ for

l 6= l′.

B. Signal Model and Sum Spectral Efficiency (SSE)

1) Uplink Training
In the uplink training phase, all UEs send their training

pilots to APs for channel estimation. Then, downlink channels
are achieved by leveraging the channel reciprocity property
of the TDD mode. With the aim of minimizing the channel
estimation overhead in CFmMIMO-NOMA, UEs in the same
cluster share the same pilot sequence, and the pilot sequences
among different clusters are pairwisely orthogonal [15], [19]
which requires τp ≥ L. In this paper, we assume that τp = L.
Let us denote the pilot sequence sent from the UEs in the
l-th cluster by φl ∈ Cτp×1 with l ∈ {1, 2, . . . , τp}, satisfying
the orthogonality, i.e., ‖φl‖22 = τp and φHl φl′ = 0 if
l 6= l′. The channel vector from UE nl to APm is defined
as hm,nl ∈ CK×1. In this paper, we focus on slowly time-
varying channels, and assume that the channel coefficients are
static during the τc interval. The channel hm,nl is generally
modeled as follows:

hm,nl =
√
βm,nl h̄m,nl , (1)

where βm,nl represents the large-scale fading coefficient ac-
counting for path loss and shadowing, and h̄m,nl ∈ CK×1

is the small-scale fading vector in which the components are
independent and identically distributed (i.i.d.) CN (0, 1) RVs.
The training signals received at APm can be written as follows:

Ypm =
∑
l∈L

∑
nl∈Nl

√
ρnlhm,nlφ

H
l + Wp

m, (2)

where ρnl and Wp
m ∈ CK×τp are the normalized transmit

power of UE nl and the additive noise matrix at APm whose
elements follow CN (0, 1), respectively.

Given Ypm, APm estimates hm,nl using the minimum mean
square error (MMSE) criterion. The projection ŷpm ∈ CK×1

of Ypm at APm onto φl can be derived as follows:

ŷpm = Ypmφl = τp
∑
nl∈Nl

√
ρnlhm,nl + Wp

mφl. (3)

Hence, the MMSE estimate of hm,nl is given as

ĥm,nl = E{hm,nl(ŷpm)H}
(
E{ŷpm(ŷpm)H}

)−1 ŷpm



4

= υm,nl ŷ
p
m, (4)

where υm,nl =

√
ρnlβm,nl

τp
∑

n′
l∈Nl

ρn′
l
βm,n′

l
+ 1

. The estimation error

vector of hm,nl is given as

em,nl = hm,nl − ĥm,nl , (5)

where the elements of em,nl and ĥm,nl are i.i.d. RVs dis-
tributed as CN (0, (βm,nl − γm,nl) IK) and CN (0, γm,nlIK),

respectively, with γm,nl =
τpρnlβ

2
m,nl

τp
∑

n′
l∈Nl

ρn′
l
βm,n′

l
+1 . Note that

there is no cooperation among APs to exchange the channel
estimate information.

Remark 1. The so-called pilot contamination exists when APs
estimate the channels of UEs belonging to the same cluster.
The relationship of channel estimates of UE nl and UE n′l
in the l-th cluster with nl 6= n′l and nl, n′l ∈ Nl, at APm is
expressed as follows:

ĥm,nl =

√
ρnlβm,nl√
ρn′

l
βm,n′

l

ĥm,n′
l
. (6)

2) Downlink Data Transmission

Under TDD operation, we consider the channel reciprocity
to acquire CSI to precode the transmit signals in the downlink
[9], [12]. In this paper, we adopt the fpZF precoding [36]
to cancel inter-cluster interference, but still take into account
intra-cluster interference. Compared with the pure ZF [37],
each AP computes fpZF precoding using its local CSI only,
leading to a distributed implementable algorithm. From (2),
the full-rank matrix H̃m ∈ CK×τp of fpZF precoder at APm
is given by [36]

H̃m = Ypmφ, (7)

where φ = [φ1,φ2, · · · ,φτp ] ∈ Cτp×τp denotes the collection
of τp orthogonal pilot sequences. Hence, from (4) and (7), the
channel estimate ĥm,nl is rewritten as

ĥm,nl = υm,nlH̃mϕl, (8)

where ϕl is the l-th column of the identity matrix Iτp . From
(7) and (8), the beamforming vector wm,l ∈ CK×1 oriented
to the l-th cluster at APm can be expressed as follows:

wm,l =
H̃m

(
H̃
H

mH̃m

)−1
ϕl√

E
{∥∥H̃m

(
H̃
H

mH̃m

)−1
ϕl
∥∥2

2

} . (9)

The transmitted signal xm ∈ CK×1 from APm is given by

xm =
∑
l∈L

∑
nl∈Nl

√
ρmnlwm,lxnl , (10)

where xnl is the symbol intended for UE nl, and ρmnl is the
normalized transmit power (normalized by the noise power at
APm) allocated to UE nl at APm. Besides, xnl and xn′

l′ for
l, l′ ∈ L and nl, n′l′ ∈ N must satisfy the following condition

E
{
xnl(xn′

l′ )
∗} =

{
1, if l = l′ and n = n′,

0, otherwise.
(11)

Then, the received signal at UE nl in the l-th cluster can be

written as

ynl =
∑
m∈M

hHm,nlxm + znl

=
∑
m∈M

√
ρmnlh

H
m,nl

wm,lxnl︸ ︷︷ ︸
Desired signal

+
∑
m∈M

∑
n′
l∈Nl\{nl}

√
ρmn′

l
hHm,nlwm,lxn′

l︸ ︷︷ ︸
Intra-cluster interference before SIC

+
∑
m∈M

∑
l′∈L\{l}

∑
nl′∈Nl′

√
ρmnl′ h

H
m,nl

wm,l′xnl′︸ ︷︷ ︸
Inter-cluster interference

+znl ,

(12)

where znl ∼ CN (0, 1) is the additive white Gaussian noise
(AWGN) at UE nl.

Without loss of generality, in the l-th cluster we consider a
descending order of channel gain, i.e., UEs 1l and Nl are the
users with strongest and weakest channel gains, respectively.
By NOMA principle [3], [4], UE nl in the l-th cluster first
decodes the signals of UEs n′l > nl with poorer channel
conditions, and then its own signal is successively decoded
after removing the interference from those UEs. Denote by
SINRn

′
l

nl
and SINRn

′
l

n′
l

the signal-to-interference-plus-noise ra-
tios (SINRs) in decoding the signal of UE n′l by UE nl and
itself, respectively. Towards an efficient and implementable
SIC, the following necessary condition is considered [19]

E
{

log2

(
1 + SINRn

′
l

nl

)}
≥ E

{
log2

(
1 + SINRn

′
l

n′
l

)}
, (13)

∀nl < n′l,∀l ∈ L.

Remark 2. We note that perfect SIC is practically unattain-
able owing to the effects of intra-cluster pilot contamination
and channel estimation errors. Consequently, the received
signal at UE nl in the l-th cluster after SIC processing can
be written as follows:

ȳnl =
∑

m∈M

√
ρmnlh

H
m,nlwm,lxnl︸ ︷︷ ︸

Desired signal

+
∑

m∈M

nl−1∑
n′
l=1

√
ρmn′

l
hH
m,nlwm,lxn′

l︸ ︷︷ ︸
Intra-cluster interference after SIC

+
√
ζnl

∑
m∈M

Nl∑
n′′

l=nl+1

√
ρmn′′

l
hH
m,nlwm,lxn′′

l︸ ︷︷ ︸
Intra-cluster interference due to imperfect SIC

+
∑

m∈M

∑
l′∈L\{l}

∑
nl′∈Nl′

√
ρmnl′ hH

m,nlwm,l′xnl′︸ ︷︷ ︸
Inter-cluster interference

+znl , (14)

where ζnl is a general SIC performance coefficient at UE nl
in the l-th cluster. In particular, ζnl = 1 (ζnl = 0) indicates
no SIC (perfect SIC), while 0 < ζnl < 1 means imperfect SIC.

3) Downlink Performance Analysis
Given the UC algorithms that will be introduced in

Section III, we first derive the SSE of CFmMIMO-NOMA.
From (14), the SINR of UE nl in the l-th cluster is
given by (15) at the top of the next page, where DS =

E
{ ∑
m∈M

√
ρmnlh

H
m,nl

wm,l

}
, BU =

( ∑
m∈M

√
ρmnlh

H
m,nl

wm,l −



5

SINRnl =
|DS|2

E {|BU|2}+
nl−1∑
n′
l=1

E {|ICI|2}+
Nl∑

n′′
l=nl+1

E {|RICI|2}+
∑

l′∈L\{l}

∑
nl′∈Nl′

E {|UI|2}+ 1

, (15)

E
{ ∑
m∈M

√
ρmnlh

H
m,nl

wm,l

})
, ICI =

∑
m∈M

√
ρmn′

l
hHm,nlwm,l,

RICI =
√
ζnl

∑
m∈M

√
ρmn′′

l
hHm,nlwm,l, and UI =∑

m∈M

√
ρmnl′ h

H
m,nl

wm,l′ are the coherent beamforming

gain (desired signal), beamforming gain uncertainty, intra-
cluster interference after SIC, residual interference due to
imperfect SIC, and inter-cluster interference, respectively.

To simplify (15), we first compute the expectation term in
the denominator of (9) [38]:

E
{∥∥H̃m

(
H̃
H

mH̃m

)−1
ϕl
∥∥2

2

}
=

υ2
m,nl

γm,nl(K − τp)
, ∀nl ∈ Nl.

(16)
From (8), (9), and (16), we have

ĥ
H

m,niwm,l =
υm,ni
υm,nl

ϕHi ϕl

√
γm,nl(K − τp)

=

{√
γm,nl(K − τp), if i = l,

0, if i 6= l.
(17)

Lemma 1. The closed-form expression for the SE of UE nl
in the l-th cluster is given by

Rnl =
(

1− τp
τc

)
log2

(
1 + SINRnl

)
=
(

1− τp
τc

)
log2

(
1 + min

n′
l=1,...,nl

SINRnl
n′
l

)
, ∀nl. (18)

With ρ , {ρmnl}m∈M,nl∈Nl,l∈L, SINRnl
nl

and SINRnl
n′
l
, ∀n′l <

nl, are derived as follows:

SINRnl
nl

=

(K − τp)
( ∑
m∈M

√
ρmnlγm,nl

)2

Inlnl (ρ) + 1
, (19)

SINRnl
n′
l

=

(K − τp)
( ∑
m∈M

√
ρmnlγm,n′

l

)2

Inln′
l
(ρ) + 1

, (20)

where Inlnl (ρ) and Inln′
l
(ρ) are defined as

Inlnl (ρ) ,
∑

n′′
l∈Nl\{nl}

ηn′′
l′ (K − τp)

( ∑
m∈M

√
ρmn′′

l
γm,nl

)2

+
∑
l′∈L

∑
n′′

l′∈Nl′

∑
m∈M

ηn′′
l′ρ

m
n′′

l′
(βm,nl − γm,nl) ,

Inln′
l
(ρ) ,

∑
n′′

l∈Nl\{nl}

ηn′′
l′ (K − τp)

( ∑
m∈M

√
ρmn′′

l
γm,n′

l

)2

+
∑
l′∈L

∑
n′′

l′∈Nl′

∑
m∈M

ηn′′
l′ρ

m
n′′

l′
(βm,n′

l
− γm,n′

l
) ,

with

ηn′′
l′ =

{
1, if l′ 6= l or l′ = l and n′′l ≤ nl,

ζnl , otherwise.

Proof: We follow similar steps as in [17] to derive (19)
and (20), by taking into account the residual interference due

to imperfect SIC.
We define the virtual channel of UE nl in the l-th cluster

as hnl = [γ1,nl , . . . , γM,nl ]
T , ∀nl ∈ Nl. We assume that UEs

in the l-th cluster are sorted based on their virtual channels,
such as ‖h1l‖2 ≥ ‖h2l‖2 ≥ . . . ≥ ‖hNl‖2, ∀l ∈ L. From (18),
the SSE of CFmMIMO-NOMA is expressed as

RΣ =
∑
l∈L

∑
nl∈Nl

Rnl

=
(

1− τp
τc

)∑
l∈L

∑
nl∈Nl

log2

(
1 + SINRnl

)
. (21)

III. CLUSTERING CELL-FREE MASSIVE MIMO-NOMA
SYSTEM

In CFmMIMO systems, a large number of APs are deployed
in the area, which leads to the heterogeneous locations be-
tween UEs and different APs. In this section, we propose two
unsupervised ML-based UC algorithms to effectively divide
all UEs into separate clusters, which are implemented at the
CPU by exploiting the large-scale fading coefficients and
considering all the APs. Similar to [19] and [28], large-scale
fading coefficients of UEs are assumed to be collected and
shared with the CPU before performing the UC algorithm.
We note that it is only necessary to estimate the large-
scale fading coefficients once every 40 τc intervals [15],
and thus, conveying these coefficients via the fronthaul links
occurs much less frequently than data transmission. Denote by
βn , [β1,n, β2,n, . . . , βM,n]T ∈ RM×1 the set of large-scale
fading coefficients from all APs associated to UE n,∀n ∈ N .
The vector βn can be considered as an effective feature-vector
denoting the location of UE n.

A. The k-means Algorithm

The k-means algorithm for UC studied in [27] and [28] is
one of the simplest unsupervised ML algorithms to partition
UEs in the coverage area into separate groups. The key idea
is to find a user-specified number of clusters L, which are
represented by L centroids, one for each cluster. The number
of clusters L in the k-means algorithm is predetermined. The
principle of k-means algorithm is given as follows. Firstly, L
initial centroids are randomly selected. Secondly, each point
is assigned to the nearest centroid, and each mass of points
assigned to the same centroid creates a cluster. Then, the
centroid of each cluster is updated according to the points
associated to the cluster. The assignment and update processes
of centroids are repeated until either there is no change in the
clusters or centroids remain similarly.

In the context of NOMA systems, it should be noted that the
k-means algorithm studied in [27] results in clusters that have
unlimited number of UEs, which may not be applicable to
NOMA systems because of the increase in SIC computational
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complexity and the degradation of the decoding performance.
As the number of UEs per group increases, it also becomes
more challenging to achieve suitable receive power ratios
among NOMA UEs, especially under practical setups where
the SIC is imperfect and error propagation can be significant.
Hence, we impose a constraint to limit the number of UEs per
cluster. In the context of CFmMIMO-NOMA, the procedure
of k-means can be summarized as follows:
• Step 1: L initial centroids are randomly selected from N

UEs, where L is a predefined number. Let us define the
set of L cluster centroids as follows:

C = {cl, l ∈ L} , (22)

where cl represents the centroid of the l-th cluster.
• Step 2: Each UE n ∈ N is grouped to the nearest

centroid, and hence, UEs assigned to the same centroid
creates a cluster:

l′ = arg min
∀l∈L

fd
(
βn,βcl

)
, (23)

where fd
(
βn,βcl

)
= ‖βn − βcl‖2 represents the Eu-

clidean distance from UE n to centroid cl [27]. As shown
in (23), UE n is grouped to l′-th cluster (denoted by
centroid cl′ ) since the distance from UE n to centroid cl′
is nearest.

• Step 3: The centroid of each cluster is recalculated under
given UEs assigned to this cluster:

βcl =
1

|Nl|
∑
n∈Nl

βn,∀l ∈ L, (24)

where βcl represents the updated centroid for the l-th
cluster, which can be calculated by the mean of all UEs
belonging to the l-th cluster.

• Step 4: Steps 2-3 are repeated until convergence, i.e.,
there is no change in the clusters or the centroids remain
the same.

• Step 5: If ∃l′′ ∈ L such that |Nl′′ | > ι, where ι denotes
the maximum number of UEs in each cluster, and with L′′
denoting the set of clusters with size exceeding ι, i.e.,
L′′ = {l′′, l′′ ∈ L with |Nl′′ | > ι}, the UEs from the
oversized clusters in L′′ are pooled as:

N ′ =
⋃

∀l′′∈L with |Nl′′ |>ι

Nl′′ . (25)

Repeat Steps 1-4 to N ′ targeting |L′′|+ 1 clusters.
Update the number of clusters L ← L+ 1.

• Step 6: Step 5 is repeated until |Nl| ≤ ι, ∀l ∈ L.
Note that Steps 5-6 are performed iteratively to ensure that

all clusters are bounded above. The k-means algorithm for
UC in CFmMIMO-NOMA is given in Algorithm 1. Note
that k-means is a greedy algorithm, which can converge to
a local minimum since its performance highly depends on the
predefined number of clusters L and the centroid initialization
process, i.e., how to select L initial centroids.

B. Proposed k-means++ Algorithm

One drawback of the k-means algorithm is that it is sensitive
to the initialization of the centroids [39], [40]. If an initial
centroid is a far point, it might not associate with any other

Algorithm 1 The k-means Algorithm for UC in CFmMIMO-
NOMA

1: Input: L and βn,∀n ∈ N .
2: //**Identify L cluster centroids at random cl, ∀l ∈ L (Step

1)**//
3: Set C = ∅ and l = 1, where C denotes the set of cluster

centroids.
4: while l ≤ L do
5: cl = generateRandom[1,N];
6: if cl 6∈ C then
7: C ← cl;
8: l = l + 1;
9: end if

10: end while
11: //**Main process (Steps 2-4)**//
12: while C changes do
13: //**Identify Nl′ , ∀l′ ∈ L, containing the subset of UEs

that are closer to cl′ than cl, with l′ 6= l (Step 2)**//
14: for n ∈ N\C do
15: l′ = arg min

∀l∈L
fd
(
βn,βcl

)
, where fd

(
βn,βcl

)
=

||βn − βcl ||2;
16: Nl′ ← n;
17: end for
18: //**Recalculate cl of cluster Nl, ∀l ∈ L (Step 3)**//
19: for l = 1 : L do
20: βcl = 1

|Nl|
∑
n∈Nl

βn;

21: end for
22: end while
23: //**Ensure |Nl| ≤ ι, ∀l ∈ L (Steps 5-6)**//
24: L′′ = {l′′, l′′ ∈ L with |Nl′′ | > ι};
25: L = L \ L′′;
26: while L′′ 6= ∅ do
27: N ′ =

⋃
∀l′′∈L′′

Nl′′ ;

28: Repeat Steps 2-22 to N ′ with |L′′′| = |L′′|+1 clusters,
where L′′′ denotes the set of |L′′|+ 1 clusters;

29: L = L ∪ {l′′, l′′ ∈ L′′′ with |Nl′′ | ≤ ι};
30: L′′ = {l′′, l′′ ∈ L′′′ with |Nl′′ | > ι};
31: end while
32: Output: Nl and cl, ∀l ∈ L.

points. Equivalently, more than one initial centroids might be
created into the same cluster which leads to poor grouping.
In this section, the k-means++ algorithm is developed to
resolve this issue. It aims at providing a clever initialization
of the centroids that improves the quality of the grouping
process. Besides, the proposed k-means++ algorithm is able
to control the maximum number of UEs per cluster. Except
for the improvement in the centroid initialization process, the
remainder of k-means++ algorithm is the same as in the k-
means. In the context of CFmMIMO-NOMA, the proposed
k-means++ can be summarized as follows:

• Step 1: The first initial centroid c1 is randomly selected
from N UEs.

• Step 2: For each UE n (with n ∈ N and n 6∈ C),
its distance from the nearest centroid is calculated as
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follows:

fd
(
βn,βct

)
= ‖βn − βct‖2, (26)

where ct = arg min
∀cl∈C

fd
(
βn,βcl

)
.

• Step 3: The next centroid is selected from UEs (∀n ∈
N\C) such that the probability of selecting a UE as
a centroid is in direct proportion to its distance from
the nearest and previously selected centroid, i.e., the UE
having the maximum distance from the nearest centroid
is virtually to be chosen next as a centroid:

cl = arg max
∀n∈N\C

fd
(
βn,βct

)
. (27)

• Step 4: Steps 2-3 are repeated until L − 1 centroids are
selected.

• Step 5: The process continues following Steps 2-6 in the
k-means algorithm.

The centroid initialization process of the proposed k-
means++ (from step 1 to step 4) ensures that chosen centroids
are far away from each other. This increases the opportunity
of initially selecting centroids that are located in differ-
ent clusters. The proposed k-means++ algorithm for UC in
CFmMIMO-NOMA is described in Algorithm 2.

C. Proposed Improved k-means++ Algorithm

As shown in Sections III-A and III-B, the performance of
the k-means algorithm can be enhanced by selecting the L
initial centroids more effectively. Based on the characteristics
of CFmMIMO-NOMA, we propose the improved k-means++
algorithm which includes a new approach to cleverly select
L initial centroids. Since initial centroids are chosen as UEs
that have highest large scale fading coefficients to the largest
number of APs, the resulting clusters are served by more
APs with better signal quality. The procedure of improved
k-means++ is summarized as follows:

• Step 1: Each AP identifies an associated UE, denoted by
Λm, which has the best connection, i.e., highest large-
scale fading coefficient βm,n:

Λm = arg max
∀n∈N

βm,n,∀m ∈M. (28)

• Step 2: The CPU then selects a subset of APs, denoted
by Υn, which have best connections to UE n:

Υn = {APm : UE n == Λm} ,∀n ∈ N . (29)

• Step 3: The CPU selects a UE having the highest number
of serving APs as a centroid:

cl = arg max
∀n∈N\C

|Υn|, (30)

where |Υn| denotes the cardinality of Υn.
• Step 4: Step 3 is repeated until L centroids are chosen.
• Step 5: The process continues following Steps 2-6 in the

k-means algorithm.

The centroid initialization process of the improved k-
means++ for UC in CFmMIMO-NOMA (Steps 1-4 above)
is described in Algorithm 3.

Algorithm 2 The k-means++ Algorithm for UC in
CFmMIMO-NOMA

1: Input: L and βn, ∀n ∈ N .
2: //**Identify the first cluster centroid cl (Step 1)**//
3: Set C = ∅ and c1 = generateRandom[1,N];
4: C ← c1 and set f = 0;
5: //**Identify L−1 cluster centroids, cl, l = 2, . . . , L (Steps

2-4)**//
6: for l = 2 : L do
7: for n = 1 : N do
8: for t = 1 : l − 1 do
9: if n 6= ct then

10: dis (1, t) = fd
(
βn,βct

)
, where fd

(
βn,βct

)
=

‖βn − βct‖2;
11: else
12: dis (1, t) = NaN;
13: f = f + 1;
14: end if
15: end for
16: if f == 0 then
17: dist (1, n) = max dis;
18: else
19: dist (1, n) = NaN;
20: f = 0;
21: end if
22: end for
23: cl = arg max

∀n∈N\C
dist;

24: C ← cl;
25: end for
26: //**Main process (Step 5)**//
27: while C changes do
28: for n ∈ N\C do
29: l′ = arg min

∀l∈L
fd
(
βn,βcl

)
, where fd

(
βn,βcl

)
=

‖βn − βcl‖2;
30: Nl′ ← n;
31: end for
32: for l = 1 : L do
33: βcl = 1

|Nl|
∑
n∈Nl

βn;

34: end for
35: end while
36: //**Ensure |Nl| ≤ ι, ∀l ∈ L (Step 5)**//
37: L′′ = {l′′, l′′ ∈ L with |Nl′′ | > ι};
38: L = L \ L′′;
39: while L′′ 6= ∅ do
40: N ′ =

⋃
∀l′′∈L′′

Nl′′ ;

41: Repeat Steps 2-22 to N ′ with |L′′′| = |L′′|+1 clusters,
where L′′′ denotes the set of |L′′|+ 1 clusters;

42: L = L ∪ {l′′, l′′ ∈ L′′′ with |Nl′′ | ≤ ι};
43: L′′ = {l′′, l′′ ∈ L′′′ with |Nl′′ | > ι};
44: end while
45: Output: Nl and cl, ∀l ∈ L.
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Algorithm 3 Centroid Initialization Process of the Improved
k-means++ Algorithm for UC in CFmMIMO-NOMA

1: Input: L and βn,∀n ∈ N .
2: //**Identify UE that has the best connection to each AP

(Step 1)**//
3: for m = 1 : M do
4: Λm = arg max

∀n∈N
βm,n;

5: end for
6: //**Identify the subset of APs that have best connections

to each UE (Step 2)**//
7: for n = 1 : N do
8: for m = 1 : M do
9: if n == Λm then

10: Υn ← m;
11: end if
12: end for
13: end for
14: //**Identify L cluster centroids, cl, ∀l ∈ L, that have large

number of serving APs (Steps 3-4)**//
15: C = ∅, where C denotes the set of cluster centroids.
16: for l = 1 : L do
17: cl = arg max

∀n∈N\C
|Υn|;

18: C ← cl;
19: end for
20: Output: C.

IV. THE SUM SPECTRAL EFFICIENCY MAXIMIZATION

From (19) and (20), it is clear that the SSE of CFmMIMO-
NOMA highly depends on the power allocation (PA) at all
APs. Thus, it is necessary to optimize the transmit power at
APs so that the SSE of CFmMIMO-NOMA can be enhanced.
In this section, we aim at optimizing the normalized transmit
power ρ , {ρmnl}m,nl,l to maximize the SSE under the
constraints of the transmit power budget at the APs, SIC con-
ditions, and minimum required SE at UEs. The optimization
problem can be mathematically expressed as

max
ρ

(
1− τp

τc

)∑
l∈L

∑
nl∈Nl

log2

(
1 + SINRnl

)
(31a)

s.t.
∑
l∈L

∑
nl∈Nl

ρmnl ≤ P
m
max,∀m ∈M, (31b)

ρmnl ≤ ρ
m
nl+1, nl ∈ [1, Nl − 1] ,∀m ∈M, l ∈ L,

(31c)(
1− τp

τc

)
log2

(
1 + SINRnl

)
≥ R̄nl ,∀nl. (31d)

Herein, constraint (31b) indicates that the total transmit
power at APm is limited by the normalized maximum power
Pmmax, constraint (31c) is the necessary condition to implement
SIC in the l-th cluster, ∀l ∈ L, and constraint (31d) denotes
the minimum SE requirement R̄nl of UE nl, ∀nl. We note that
SINRnl in (31a) is a nonconvex and nonsmooth function with
respect to ρ, making problem (31) intractable. Therefore, it
may not be possible to solve the problem directly. In addition,
the globally optimal solution (e.g., exhaustive search) comes
at the cost of high computational complexity, and may not

be suitable for practical implementation. In what follows, we
develop newly approximated functions using the IA framework
[35], [41], and then propose a fast converging and low-
complexity algorithm.

Equivalent Optimization Problem: To apply the IA method,
several transformations are necessary to make (31) tractable.
To do so, we introduce the auxiliary variables r ,

{
rnl
}
∀nl

and ϕ ,
{
ϕnl
}
∀nl

to rewrite (31) equivalently as

max
ρ,r,ϕ

(
1− τp

τc

)∑
l∈L

∑
nl∈Nl

rnl (32a)

s.t. ln (1 + ϕnl) ≥ rnl ln 2, ∀nl ∈ Nl, (32b)
SINRnln′

l
≥ ϕnl , ∀n′l < nl, ∀nl ∈ Nl, (32c)

SINRnlnl ≥ ϕnl , ∀nl ∈ Nl, (32d)(
1− τp

τc

)
rnl ≥ R̄nl ,∀nl, (32e)

(31b), (31c). (32f)

It is clear that the objective function becomes linear. The
equivalence between (31) and (32) is verified by the following
lemma.

Lemma 2. Problems (31) and (32) share the same optimal
solution set and the same optimal objective value. In partic-
ular, let (ρ?, r?,ϕ?) be the optimal solution to problem (32),
then ρ? is also the optimal solution to problem (31) and vice
versa.

Proof: The proof is done by showing the fact that con-
straints (32b)-(32d) will hold with equality at the optimum. We
prove this statement by contradiction. Suppose that constraints
(32c) and (32d) are inactive at the optimum for some users,
i.e., there exists ϕ′nl > 0 such as min

(
SINRnln′

l
,SINRnlnl

)
=

ϕ′nl > ϕ?nl . It is clear that ϕ′nl is also a feasible point to (32b),
and r′nl = ln

(
1 + ϕ′nl

)
/ ln 2 > ln

(
1 + ϕ?nl

)
/ ln 2 = r?nl .

As a consequence, this results in a strictly larger objective
value, i.e.,

(
1 − τp

τc

) ∑
l∈L

∑
nl∈Nl

r′nl >
(
1 − τp

τc

) ∑
l∈L

∑
nl∈Nl

r?nl ,

which contradicts the assumption that (ρ?, r?,ϕ?) represents
the optimal solution to problem (32).

Inner Approximation (IA) for Problem (32): The nonconvex
parts include (32c) and (32d). The direct application of IA
method is still not possible due to the complication of SINRnln′

l

and SINRnlnl . In the following, we make the change of variable
as ρmnl = (ρ̂mnl)

2,∀nl ∈ Nl. Let us handle (32c) first by
rewriting SINRnln′

l
as

SINRnl
n′
l

=

(K − τp)
( ∑
m∈M

ρ̂mnl
√
γm,n′

l

)2
Inln′

l
(ρ̂) + 1

, (33)

where ρ̂ , {ρ̂mnl}∀nl and

Inln′
l
(ρ̂) ,

∑
n′′

l∈Nl\{nl}

ηn′′
l′ (K − τp)

( ∑
m∈M

ρ̂mn′′
l

√
γm,n′

l

)2
+
∑
l′∈L

∑
n′′

l′∈Nl′

∑
m∈M

ηn′′
l′

(
ρ̂mn′′

l′

)2 (
βm,n′

l
− γm,n′

l

)
.

(34)

By introducing the slack variables $ , {$nl
n′
l
}∀nl , τ ,

{τn
′
l

n′′
l
}∀nl , and θ , {θnln′

l
}∀nl , constraint (32c) can be equiv-
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alently rewritten as (35) at the top of the next page, where

Inln′
l
(ρ̂, τ ) ,

∑
n′′

l∈Nl\{nl}

ηn′′
l′ (K − τp)

(
τn

′
l

n′′
l

)2
+
∑
l′∈L

∑
n′′

l′∈Nl′

∑
m∈M

ηn′′
l′

(
ρ̂mn′′

l′

)2(
βm,n′

l
− γm,n′

l

)
(36)

is a quadratic function. Here, constraint (35d) remains non-
convex. We note that ($nl

n′
l
)2/(θnln′

l
+1) is the quadratic-over-

linear function, which is convex with respect to ($nl
n′
l
, θnln′

l
).

Let ($
nl,(κ)
n′
l

, θ
nl,(κ)
n′
l

) be a feasible point of ($nl
n′
l
, θnln′

l
) at the

κ-th iteration of an iterative algorithm and by the IA principle,
constraint (35d) can be convexified as

(K − τp)
( 2$

nl,(κ)
n′
l

θ
nl,(κ)
n′
l

+ 1
$nl
n′
l
−

(
$
nl,(κ)
n′
l

)2(
θ
nl,(κ)
n′
l

+ 1
)2 (θnln′

l
+ 1)

)
≥ ϕnl ,

(37)

∀n′l < nl, ∀nl ∈ Nl. Similarly, constraint (32d) can be
iteratively approximated as (38) at the top of the next page,
where

Inlnl (ρ̂, τ ) ,
∑

n′′
l∈Nl\{nl}

ηn′′
l′ (K − τp)

(
τnln′′

l

)2
+

∑
l′∈L

∑
n′′

l′∈Nl′

∑
m∈M

ηn′′
l′

(
ρ̂mn′′

l′

)2

(βm,nl − γm,nl) .

In summary, the convex approximate program of (32) solved
at iteration κ+ 1 is given as

max
ρ̂,r,ϕ,$,τ ,θ

(
1− τp

τc

)∑
l∈L

∑
nl∈Nl

rnl (39a)

s.t. (32b), (32e), (35a)−(35c), (37), (38a)−(38d),
(39b)∑

l∈L

∑
nl∈Nl

(ρ̂mnl)
2 ≤ Pmmax,∀m ∈M, (39c)

ρ̂mnl ≤ ρ̂
m
nl+1, nl ∈ [1, Nl − 1] ,∀m ∈M, l ∈ L.

(39d)

Conic Quadratic Program: Problem (39) is a mix of ex-
ponential and quadratic constraints, resulting in a generic
convex program. The major complexity in solving such a
program is due to the logarithm function in (32b), making
the use of convex solvers (e.g., SeDuMi [42] and MOSEK
[43]) inefficient. To bypass this issue, we use a lower bound
of ln

(
1 + ϕnl

)
as [4, Eq. (66)]

ln
(
1 + ϕnl

)
≥ ln(1 + ϕ(κ)

nl
) +

ϕ
(κ)
nl

ϕ
(κ)
nl + 1

− (ϕ
(κ)
nl )2

ϕ
(κ)
nl + 1

1

ϕnl
,

(40)

∀ϕ(κ)
nl > 0, ϕnl > 0, which is a concave function. We note that

(40) holds with equality at the optimum, i.e., ϕ(κ)
nl = ϕ

(κ+1)
nl .

Next, by introducing new variables ϕ̄ , {ϕ̄nl}∀nl , the conic
quadratic approximate program of (39) is given as

max
ρ̂,r,ϕ,ϕ̄,$,τ ,θ

(
1− τp

τc

)∑
l∈L

∑
nl∈Nl

rnl (41a)

s.t. (32e), (35a)−(35c), (37), (38a)−(38d), (39c), (39d),
(41b)

F (κ)(ϕ(κ)
nl
, ϕ̄nl) ≥ rnl ln 2, ∀nl ∈ Nl, (41c)

0.25 (ϕnl + ϕ̄nl)
2 ≥ 0.25 (ϕnl − ϕ̄nl)

2
+ 1, ∀nl ∈ Nl,

(41d)

where F (κ)(ϕ
(κ)
nl , ϕ̄nl) , ln(1 +ϕ

(κ)
nl ) +

ϕ(κ)
nl

ϕ
(κ)
nl

+1
−

(ϕ(κ)
nl

)2

ϕ
(κ)
nl

+1
ϕ̄nl .

We note that (41d) is a second-order cone constraint and must
hold with equality at the optimum. The proposed IA-based
iterative algorithm is summarized in Algorithm 4.

Algorithm 4 Proposed IA-based Iterative Algorithm to Solve
Problem (31)
Initialization: Set κ := 0 and generate an initial feasible point

($(0),θ(0),ϕ(0)).
1: repeat
2: Solve the conic quadratic approximate program

(41) to obtain the optimal solution, denoted by
(ρ̂?, r?,ϕ?, ϕ̄?,$?, τ ?,θ?);

3: Update (ϕ(κ+1),$(κ+1),θ(κ+1)) := (ϕ?,$?,θ?);
4: Set κ := κ+ 1;

5: until Convergence, i.e.,
(∑
l∈L

∑
nl∈Nl

r
(κ)
nl −∑

l∈L

∑
nl∈Nl

r
(κ−1)
nl

)/∑
l∈L

∑
nl∈Nl

r
(κ−1)
nl < ε

6: Ouput: ρ? with ρm,(?)nl = (ρ̂
m,(?)
nl )2,∀nl ∈ Nl.

Convergence and Complexity Analysis: The proposed al-
gorithm starts by randomly generating an initial feasible
point for the updated variables ($(0),θ(0),ϕ(0)). In each
iteration, we solve the convex program (41) to produce the
next feasible point (ϕ(κ+1),$(κ+1),θ(κ+1)). This procedure
is successively repeated until convergence, which is stated in
the following proposition.

Proposition 1. Initialized from a feasible point
($(0),θ(0),ϕ(0)), Algorithm 4 produces a sequence
{ϕ(κ),$(κ),θ(κ)} of improved solutions to problem
(41), which satisfy the Karush-Kuhn-Tucker (KKT)
conditions. In light of the IA principles, the sequence{(

1 − τp
τc

) ∑
l∈L

∑
nl∈Nl

r
(κ)
nl

}∞
κ=1

is monotonically increasing

and converges after a finite number of iterations for a given
error tolerance ε > 0.

Proof: Please see Appendix A.
The computational complexity of Algorithm 4 mainly de-

pends on solving the approximate problem (41), which is
polynomial in the number of constraints and optimization
variables. Problem (41) has v = NM+3N+3

∑L
l=1

Nl(Nl−1)
2

scalar real variables and c = 8
∑L
l=1

(Nl(Nl−1)
2 + M(Nl −

1)
)
+M quadratic and linear constraints. As a result, the worst-

case computational cost of Algorithm 4 in each iteration is
O(v2c2.5 + c3.5) [44].

V. COLLOCATED MASSIVE MIMO-NOMA SYSTEM

In this section, we consider a COmMIMO-NOMA sys-
tem, which serves as a benchmark for CFmMIMO-NOMA.
The main differences between CFmMIMO-NOMA and
COmMIMO-NOMA systems are as follows: i) in CFmMIMO-
NOMA, in general βm,nl 6= βm′,nl , for m 6= m′, whereas in
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(32c)⇔



∑
m∈M

ρ̂mnl
√
γm,n′

l
≥ $nl

n′
l
, ∀n′l < nl,∀nl ∈ Nl, (35a)∑

m∈M
ρ̂mn′′

l

√
γm,n′

l
≤ τn

′
l

n′′
l
, ∀n′l < nl, ∀nl ∈ Nl, (35b)

Inln′
l
(ρ̂, τ ) ≤ θnln′

l
, ∀n′l < nl, ∀nl ∈ Nl, (35c)

(K − τp)
(
$nl
n′
l

)2
θnln′

l
+ 1
≥ ϕnl , ∀n′l < nl, ∀nl ∈ Nl, (35d)

(32d)⇔



∑
m∈M

ρ̂mnl
√
γm,nl ≥ $nl

nl
, ∀nl ∈ Nl, (38a)∑

m∈M
ρ̂mn′′

l

√
γm,nl ≤ τ

nl
n′′

l
, ∀nl ∈ Nl, (38b)

Inlnl (ρ̂, τ ) ≤ θnlnl , ∀nl ∈ Nl, (38c)

(K − τp)
( 2$

nl,(κ)
nl

θ
nl,(κ)
nl + 1

$nl
nl
−

(
$
nl,(κ)
nl

)2(
θ
nl,(κ)
nl + 1

)2 (θnlnl + 1)
)
≥ ϕnl , ∀nl ∈ Nl, (38d)

COmMIMO-NOMA, βm,nl = βm′,nl ; and ii) in CFmMIMO-
NOMA, a power constraint is applied at each AP individually,
whereas in COmMIMO-NOMA, a total power constraint is
applied at the collocated AP equipped with MK antennas.
Unless otherwise specified, all notations and symbols given in
the previous sections will be reused in this section.

A. Performance Analysis

Similar to Lemma 1, the closed-form expression for the SE
of UE nl in the l-th cluster is given by

Rcol
nl

=
(

1− τp
τc

)
log2

(
1 + SINRcol

nl

)
=
(

1− τp
τc

)
log2

(
1 + min

n′
l=1,...,nl

SINRnl,coln′
l

)
, ∀nl ∈ Nl.

(42)

By replacing ρmnl with ρnl ,∀nl, SINRnl,colnl
and SINRnl,coln′

l
,

∀n′l < nl, are derived as follows:

SINRnl,colnl
=

(K − τp)ρnlγnl
Inlnl (ρ) + 1

, (43)

SINRnl,coln′
l

=
(K − τp)ρnlγn′

l

Inln′
l
(ρ) + 1

, (44)

where

Inlnl (ρ) ,
∑

n′′
l∈Nl\{nl}

ηn′′
l′ (K − τp)ρn′′

l
γnl

+
∑
l′∈L

∑
n′′

l′∈Nl′

ηn′′
l′ρn′′

l′ (βnl − γnl) , (45)

Inln′
l
(ρ) ,

∑
n′′

l∈Nl\{nl}

ηn′′
l′ (K − τp)ρn′′

l
γn′

l

+
∑
l′∈L

∑
n′′

l′∈Nl′

ηn′′
l′ρn′′

l′ (βn′
l
− γn′

l
) , (46)

and γnl =
τpρnlβ

2
nl

τp
∑

n′
l∈Nl

ρn′
l
βn′

l
+1 ; ηn′′

l′ is defined as

ηn′′
l′ =

{
1, if l′ 6= l or l′ = l and n′′l ≤ nl,

ζnl , otherwise.
(47)

The SSE of the COmMIMO-NOMA system is expressed as
follows:

Rcol
Σ =

∑
l∈L

∑
nl∈Nl

Rcol
nl

=
(

1− τp
τc

)
log2

(
1 + SINRcol

nl

)
.

(48)
The SSE maximization problem for COmMIMO-NOMA is

stated as

max
ρ

(
1− τp

τc

)∑
l∈L

∑
nl∈Nl

log2

(
1 + SINRcol

nl

)
(49a)

s.t.
∑
l∈L

∑
nl∈Nl

ρnl ≤ Pmax, (49b)

ρnl ≤ ρnl+1, nl ∈ [1, Nl − 1] ,∀l ∈ L, (49c)(
1− τp

τc

)
log2

(
1 + SINRcol

nl

)
≥ R̄nl ,∀nl. (49d)

B. Proposed Solution to Problem (49)

By making the change of variable as ρnl = (ρ̂nl)
2,∀nl ∈

Nl and following similar steps from (32) to (39), problem (49)
is equivalently transformed to the following tractable form

max
ρ̂,r,ϕ,θ

(
1− τp

τc

)∑
l∈L

∑
nl∈Nl

rnl (50a)

s.t. ln (1 + ϕnl) ≥ rnl ln 2, ∀nl ∈ Nl, (50b)
Inln′

l
(ρ̂) ≤ θnln′

l
, ∀n′l < nl, ∀nl ∈ Nl, (50c)

Inlnl (ρ̂) ≤ θnlnl , ∀nl ∈ Nl, (50d)
(K − τp)(ρ̂nl)2γn′

l

θnln′
l

+ 1
≥ ϕnl , ∀n′l < nl, ∀nl ∈ Nl,

(50e)
(K − τp)(ρ̂nl)2γnl

θnlnl + 1
≥ ϕnl , ∀nl ∈ Nl, (50f)
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TABLE I
SIMULATION PARAMETERS.

Parameter Value
System bandwidth (B) 20 MHz
Number of APs (M ) 32
Number of UEs (N ) 20
Number of antennas per AP (K) 16
Total power budget for all APs 40 dBm
Power budget at UEs 23 dBm
Noise power at receivers -104 dBm
SIC performance coefficient at UEs 0.05
Maximum number of UEs in each cluster (ι) 2
Minimum SE requirement of UE nl (R̄nl ) 0.5 bps/Hz

∑
l∈L

∑
nl∈Nl

(ρ̂nl)
2 ≤ Pmax, (50g)

ρ̂nl ≤ ρ̂nl+1, nl ∈ [1, Nl − 1] ,∀l ∈ L, (50h)(
1− τp

τc

)
rnl ≥ R̄nl ,∀nl, (50i)

where

Inln′
l
(ρ̂) ,

∑
n′′

l∈Nl\{nl}

ηn′′
l′ (K − τp)(ρ̂n′′

l
)2γn′

l

+
∑
l′∈L

∑
n′′

l′∈Nl′

ηn′′
l′ (ρ̂n′′

l′ )
2 (βn′

l
− γn′

l
) , (51)

Inlnl (ρ̂) ,
∑

n′′
l∈Nl\{nl}

ηn′′
l′ (K − τp)(ρ̂n′′

l
)2γnl

+
∑
l′∈L

∑
n′′

l′∈Nl′

ηn′′
l′ (ρ̂n′′

l′ )
2 (βnl − γnl) . (52)

The nonconvex constraints are (50e) and (50f). Let
(ρ̂

(κ)
nl , θ

nl,(κ)
nl ) be a feasible point of (ρ̂nl , θ

nl
nl

) at iteration κ.
By (40), the conic quadratic approximate program for solving
(50) is given as

max
ρ̂,r,ϕ,ϕ̄,θ

(
1− τp

τc

)∑
l∈L

∑
nl∈Nl

rnl (53a)

s.t. (41c), (41d), (50c), (50d), (50g)−(50i), (53b)

(K − τp)γn′
l
G(κ)(ρ̂nl , θ

nl
n′
l
) ≥ ϕnl ,

∀n′l < nl, ∀nl ∈ Nl, (53c)

(K − τp)γnlG(κ)(ρ̂nl , θ
nl
nl

) ≥ ϕnl , ∀nl ∈ Nl,
(53d)

where G(κ)(ρ̂nl , θ
nl
n′
l
) ,

2ρ̂(κ)nl

θ
nl,(κ)

n′
l

+1
ρ̂nl −

(
ρ̂(κ)nl

)2(
θ
nl,(κ)

n′
l

+1
)2 (θnln′

l
+ 1)

and G(κ)(ρ̂nl , θ
nl
nl

) ,
2ρ̂(κ)nl

θ
nl,(κ)
nl

+1
ρ̂nl−

(
ρ̂(κ)nl

)2(
θ
nl,(κ)
nl

+1
)2 (θnlnl +1). The

solution to problem (49) can be found by using Algorithm 4,
in which we replace problem (41) by problem (53) in Step
2. The worst-case computational complexity of solving (53)
in each iteration is O(v̄2c̄2.5 + c̄3.5) [44], where v̄ = 4N +∑L
l=1

Nl(Nl−1)
2 and c̄ =

∑L
l=1

(
Nl(Nl−1)+ (Nl−1)2

2

)
+2N+1

are scalar real variables and constraints, respectively.

VI. NUMERICAL RESULTS

We now quantitatively assess the performance of the pro-
posed unsupervised ML-based UC algorithms in CFmMIMO-
NOMA system.
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Fig. 2. A system topology with M = 32 APs and N = 20 UEs is used in
numerical examples.

A. Simulation Parameters

A CFmMIMO-NOMA system including M = 32 APs and
N = 20 UEs is considered as shown in Fig. 2, where all APs
and UEs are uniformly distributed within a circular region
with a radius of 1 km. The large-scale fading coefficient of
all channels is modeled as [9] βm,nl = 10

PL(dm,nl
)+σshz

10 ,
∀m ∈ M, nl ∈ Nl, where dm,nl is the distance from APm
to UE nl. The shadow fading is modeled as an RV z, which
follows CN (0, 1) with standard deviation σsh = 8 dB. The
path loss PL(dm,nl) is calculated based on the three-slope
path loss model in [9], [37], [45]. Unless otherwise stated,
other key parameters are shown in Table I, where all APs are
assumed to have the same power budget [9], [37]. The used
convex solver is SeDuMi [42] in the MATLAB environment.

B. Selection of the Initial Number of Clusters L

The performance of the k-means based UC algorithms is
highly affected by the initial value of number of clusters L
[27], [28]. Thus, it is essential to investigate the particular
feature of the UEs’ distribution in CFmMIMO-NOMA system
to choose a proper number of clusters, such that the SSE is
maximized. A reliable and precise approach to validate the
initial optimal number of clusters L is the silhouette score
[46], which is the mean silhouette coefficient of all UEs. The

silhouette coefficient of an UE is calculated as
c− b

max(c, b)
,

where b denotes the mean distance to other UEs in the
same cluster (so-called the mean intra-cluster distance), and c
represents the mean distance to UEs of the next closest cluster
which is the one that minimizes b, excluding the UE’s own
cluster (so-called mean nearest-cluster distance). The value of
the silhouette coefficient ranges from -1 to +1. A coefficient
close to +1 means that the UE is well matched to its own
cluster and far from other clusters. A coefficient close to 0
indicates that the UE is near a cluster boundary, whereas
a coefficient close to -1 implies that the UE is assigned to
the wrong cluster. Table II at the beginning of the next page
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TABLE II
SILHOUETTE SCORE FOR CFMMIMO-NOMA AND COMMIMO-NOMA.

Number of clusters L 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Silhouette Score CFmMIMO-NOMA 0.72 0.15 0.23 0.31 0.35 0.37 0.63 0.78 0.99 0.25 0.40 0.47 0.53 0.64
COmMIMO-NOMA 0.75 0.06 0.17 0.30 0.39 0.47 0.64 0.85 0.98 0.30 0.38 0.50 0.56 0.58
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Fig. 3. The SSE of CFmMIMO-NOMA versus the total power budget of all
APs for the k-means, k-means++, and improved k-means++ algorithms.
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Fig. 4. The SSE of CFmMIMO-NOMA and COmMIMO-NOMA versus the
total power budget of all APs.

shows the silhouette score versus the number of clusters L.
It is observed that the inital optimal number of clusters for
this setting is L? = 10. Note that this is the initial value
of the number of clusters to execute the modified k-means
and k-means based UC algorithms, and not the total number
of clusters obtained after implementing the corresponding
algorithms.

In what follows, we set L = 10 to verify the performance
analysis in Section VI-C and to evaluate the performance of
the proposed algorithms in Section VI-D.

C. Numerical Results for the Performance Analysis

We now investigate the performance of the two proposed
unsupervised ML-based UC algorithms with fixed PA. The
transmit power at each AP allocated to a specific UE follows
the fixed PA scheme. Each AP allocates equal power to each
cluster, and then, the fractional transmit PA [47] is used to
allocate the power to a specific UE in each cluster based on
the virtual channel gains presented in subsection II-B3. As a
benchmark, we also consider the COmMIMO-NOMA system,
which is presented in Section V.
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Fig. 5. Convergence behavior of Algorithm 4 with different number of AP
antennas, K.

Fig. 3 illustrates the SSE performance of CFmMIMO-
NOMA versus the total power budget of all APs for different
UC algorithms. For comparison, the performance of the k-
means algorithm and the CFmMIMO-NOMA without UC is
also plotted. For the CFmMIMO-NOMA without UC, SIC
is implemented at all UEs. It can be seen that the proposed
UC algorithms significantly outperform the conventional k-
means algorithm and without UC. This confirms the effec-
tiveness of UC in CFmMIMO-NOMA systems. Furthermore,
the improved k-means++ achieves the best SSE among all
algorithms, which can be attributed to the fact that the effective
initialization of centroids is capable of improving the quality
of the clustering process, and thus, of NOMA for CFmMIMO.

Next, the SSE performance of the CFmMIMO-NOMA and
COmMIMO-NOMA systems using the improved k-means++
algorithm versus the total power budget of all APs is shown
in Fig. 4. We can observe that the performance of the
CFmMIMO-NOMA system is better than that of COmMIMO-
NOMA. This is attributed to the fact that CFmMIMO with
many distributed APs brings the service antennas closer to
UEs which not only reduces path losses but also provides
higher degree of macro-diversity, compared to COmMIMO.
In the following numerical results, unless otherwise specified,
the improved k-means++ algorithm is used for UC.

D. Numerical Results for Optimal Power Allocation (Algo-
rithm 4)

In Fig. 5, we evaluate the convergence speed of Algo-
rithm 4 for CFmMIMO-NOMA and COmMIMO-NOMA with
different values of K. The proposed algorithm converges
within three iterations and the convergence speed of both
systems is not sensitive to the number of AP antennas, K.
As expected, the SSE is monotonically increasing after each
iteration. Compared to the results in Figs. 3 and 4 with fixed
PA at the power budget of 40 dBm, Algorithm 4 yields a
significantly better performance in terms of SSE.
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Fig. 6. The SSE of different UC algorithms.
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Fig. 8. The effect of SIC performance coefficient on the SSE of CFmMIMO-
NOMA and COmMIMO-NOMA systems.

Fig. 6 shows the impact of the proposed k-means++ and
improved k-means++ algorithms on the system performance
of CFmMIMO-NOMA. For comparison, we also plot the SSE
of the k-means (i.e., Algorithm 1) and the recently proposed
UC approaches, including near pairing, far pairing, random
pairing [19], and the Jaccard-based UC [20]. The main result
observed from the figure is that the proposed unsupervised
ML-based UC algorithms achieve better SSE performance
compared to the baseline ones, and the performance gaps are
wider when Pmax increases. This implies that the two proposed
UC schemes are capable of exploiting UC more effectively, so
that the SSE is remarkably enhanced.

In Fig. 7, we demonstrate the benefit of optimizing PA for
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Fig. 9. The joint effect of the numbers of antennas K and APs M on the
average SSE of different UC algorithms, for MK = 512.
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Fig. 10. Effect of the number of UEs L on the SSE for the k-means, k-
means++, and improved k-means++ algorithms.

CFmMIMO-NOMA and COmMIMO-NOMA systems. The
SSE of both systems is significantly enhanced with optimal PA
compared to the fixed PA (FPA) scheme. Hence, this shows
the necessity of optimizing PA for both systems, especially for
CFmMIMO-NOMA.

Next, the effect of the SIC performance coefficient ζnl on
the SSE of CFmMIMO-NOMA and COmMIMO-NOMA is
examined in Fig. 8. We note that ζnl = 1 (ζnl = 0) indicates
no SIC (perfect SIC), while 0 < ζnl < 1 means imperfect
SIC. The system performance without NOMA/SIC is plotted.
It is clear that the SSE of CFmMIMO-NOMA degrades when
ζnl ,∀nl increases. It implies that the SIC performance coeffi-
cient is required to be small enough to exploit the full potential
of NOMA in CFmMIMO. Nevertheless, the SSE achieved
by CFmMIMO-NOMA and COmMIMO-NOMA systems is
much higher than their counterparts without NOMA/SIC.

In Fig. 9, we show the joint effect of the numbers of
antennas K and APs M on the average SSE of different UC
algorithms. We fix MK = 512 and select M from the set
M ∈ [1, 2, 4, 8, 16, 32]. When M = 1, then K = 512, which
represents COmMIMO-NOMA. From the figure, we see that
the SSE increases with the increase in M , which translates
into a lower number of AP antennas, K. As such, this not only
reduces path losses, but also increases the degree of macro-
diversity.

Lastly, the impact of the number of UEs on the SSE of the
proposed k-means++ and improved k-means++ algorithms in
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CFmMIMO-NOMA system is illustrated in Fig. 10. It can be
observed that the SSE significantly increases with the number
of UEs.

VII. CONCLUSION

In this paper, we have investigated a downlink CFmMIMO-
NOMA system, for which two efficient unsupervised ML-
based UC algorithms have been proposed to effectively cluster
the users. Using the fpZF precoding at APs, we have con-
sidered the problem of power allocation to maximize SSE.
Since the formulated problem is intractable, we have devel-
oped a low-complexity iterative algorithm based on the IA
framework for its solution. Numerical results have confirmed
the effectiveness of the proposed UC algorithms, and show
their superior performance compared to the baseline schemes.
The proposed PA algorithm converges fast, and significantly
outperforms CFmMIMO-NOMA without optimizing PA and
COmMIMO-NOMA in terms of SSE.

APPENDIX A
PROOF OF PROPOSITION 1

By contradiction and IA principles, we can easily prove that
constraints (35a)-(35c), (37), (38a)-(38d) and (41d) must hold
with equality at optimum. Let us define F(ϕnl) , ln(1+ϕnl).
From (40), we have

F(ϕnl) ≥ F (κ)(ϕ(κ), ϕ̄nl), (54)

and

F(ϕ(κ)
nl

) = F (κ)(ϕ(κ), ϕ̄nl). (55)

Thus, it is true that

F(ϕ(κ)
nl

) ≥ F (κ−1)(ϕ(κ), ϕ̄nl)

≥ F (κ−1)(ϕ(κ−1), ϕ̄nl) = F(ϕ(κ−1)
nl

). (56)

These results imply that ($(κ),θ(κ),ϕ(κ)) is an
improved solution to problem (41), compared to ($(κ−1),
θ(κ−1),ϕ(κ−1)). By [35, Theorem 1], the sequence
{$(κ),θ(κ),ϕ(κ)} converges to at least local optima
which satisfy the KKT conditions. As a result, the objective
value of problem (41) is monotonically increasing, i.e.,(
1 − τp

τc

) ∑
l∈L

∑
nl∈Nl

r
(κ)
nl ≥

(
1 − τp

τc

) ∑
l∈L

∑
nl∈Nl

r
(κ−1)
nl . In

addition, the sequence of the objective values is upper
bounded due to power constraints (39c), which completes the
proof.
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