
Samplets: Construction and scattered data compression

Helmut Harbrecht, Michael Multerer

Departement Mathematik und Informatik

Fachbereich Mathematik

Universität Basel

CH-4051 Basel

Preprint No. 2022-05

February 2022

dmi.unibas.ch

https://dmi.unibas.ch/

SAMPLETS: CONSTRUCTION AND SCATTERED DATA COMPRESSION

HELMUT HARBRECHT AND MICHAEL MULTERER

Abstract. We introduce the concept of samplets by transferring the construction of Tausch-

White wavelets to scattered data. This way, we obtain a multiresolution analysis tailored to

discrete data which directly enables data compression, feature detection and adaptivity. The

cost for constructing the samplet basis and for the fast samplet transform, respectively, is

O(N), where N is the number of data points. Samplets with vanishing moments can be used

to compress kernel matrices, arising, for instance, kernel based learning and scattered data

approximation. The result are sparse matrices with only O(N logN) remaining entries. We

provide estimates for the compression error and present an algorithm that computes the com-

pressed kernel matrix with computational cost O(N logN). The accuracy of the approximation

is controlled by the number of vanishing moments. Besides the cost efficient storage of kernel

matrices, the sparse representation enables the application of sparse direct solvers for the nu-

merical solution of corresponding linear systems. In addition to a comprehensive introduction

to samplets and their properties, we present numerical studies to benchmark the approach. Our

results demonstrate that samplets mark a considerable step in the direction of making large

scattered data sets accessible for multiresolution analysis.

1. Introduction

Multiresolution methods and wavelet techniques in particular have a long standing tradition

and are a versatile tool in many different fields. Applications comprise nonlinear approximation,

image analysis, signal processing and machine learning, see for instance [6,10,15,16,31,32] and the

references therein. Starting from a signal, the pivotal idea of wavelet techniques is the splitting

of this signal into its contributions relative to a hierarchy of scales. Such a multiresolution ansatz

starts from an approximation on a coarse scale and successively resolves details, that have not

been captured so far, at finer scales. Therefore, multiresolution methods naturally accommodate

data compression and adaptivity. In particular, the transformation of a signal into its wavelet

representation and the backward transformation can be performed with linear cost in terms

of the size of the wavelet basis, see for instance [8]. The classical construction of wavelets is

based on dilations and translations of a given mother wavelet. This way, a nested sequence of

approximation spaces is obtained, where the elements of this sequence are scaled copies of each

other. As a consequence, the classical construction of wavelets is limited to structured data, such

as uniform subdivisions of the real line. Adaptions to deal with intervals have been suggested

in [2, 7, 12], while wavelet constructions on manifolds are the topic of [14, 26, 41]. An extension

to (surface) triangulations, has been suggested in [39], where (multi-)wavelets are constructed

as linear combinations of functions at a fixed fine scale. In particular, the stability of the

resulting basis, which is known as Tausch-White wavelets, is guaranteed by its orthonormality.

An approach to obtain a multiresolution analysis on unstructured data, for example on graphs,

are diffusion wavelets, see [9]. However, there is no linear cost bound for the computation of a

diffusion wavelet basis.

In this article, generalize the concept of Tausch-White wavelets towards scattered data. To

this end, we modify the construction from [1,39] and construct a multiresolution analysis which

consists of localized and discrete signed measures. Inspired by the term wavelet, we call such

signed measures samplets. Samplets are tailored towards the underlying data set and can be
1

2 HELMUT HARBRECHT AND MICHAEL MULTERER

constructed such that their associated measure integrals vanish for polynomial integrands. If

this is the case for all polynomials of total degree less or equal than q, we say that the samplets

have vanishing moments of order q + 1. Lowest order samplets, i.e. q = 0, have been considered

earlier for data compression in [35]. The construction of samplets is, however, not limited to the

use of polynomial vanishing moments. Indeed, it is easily be possible to adapt the construction

to other primitives with different desired properties. We present a general construction template

for samplets with an arbitrary number of vanishing moments. This construction can always

be performed with linear cost for a balanced cluster tree, even for non-quasi-uniform data.

Moreover, the obtained basis is always orthonormal and hence stable. Representing scattered

data by samplets, there is a fast decay of the samplet coefficients with respect to the support

size if the data are smooth, due to the vanishing moments. This straightforwardly enables

data compression. In contrast, non-smooth regions in the data are indicated by large samplet

coefficients. This, in turn, enables feature detection and extraction. As examples we shall

consider time-series data, images and unstructured point clouds in three spatial dimensions.

Furthermore, we provide rigorous estimates for the decay of the samplet coefficients based on

the local regularity of the underlying signal.

In addition to the construction of samplets and signal compression, we consider the compression of

kernel matrices, as they arise in kernel based learning and scattered data approximation, compare

[17,27,36,42,43,44]. Kernel matrices are typically densely populated, since the underlying kernels

are nonlocal. Nonetheless, these kernels are usually asymptotically smooth, meaning that they

behave like smooth functions apart from the diagonal. Cluster methods, such the fast multipole

method, see [21,33,45], or hierarchical matrices, cp. [5,22], exploit this asymptotical smoothness

to obtain a data-sparse representation of the kernel matrix by means of blockwise low-rank

approximations. In turn, the discretization of asymptotical smooth kernels employing a samplet

or a wavelet basis with vanishing moments results in quasi-sparse kernel matrices, i.e. they can

be compressed such that only a sparse matrix remains, compare [4, 11, 13, 38, 40], where this

has been shown for the wavelet case. We derive corresponding compression error estimates for

samplets and present an algorithm with almost linear runtime to compute the compressed matrix.

In [25], it has been numerically demonstrated that nested dissection, see [18, 30], is applicable

to obtain a fill-in reducing reordering of such compressed matrices in the standard form. This

reordering in turn allows for the rapid factorization of the compressed matrix by the Cholesky

factorization without introducing additional errors. A reordering approach based on operator

adapted wavelets, cf. [34], is discussed in [37]. The latter is, however, only proven to work for

Green’s functions with homogenous boundary conditions on Lipschitz domains. The approximate

Cholesky factorization was also computed for matrices given in wavelet coordinates by means of

the non-standard form in [20] and with the aid of hierarchical matrices, see for instance [22].

The rest of this article is organized as follows. In Section 2, the concept of samplets is introduced.

The subsequent Section 3 is devoted to the construction of samplets and to their properties. The

change of basis by means of the fast samplet transform is the topic of Section 4. Section 5

deals with the samplet compression of kernel matrices. Especially, we recapitulate certain H2-

matrix techniques and leverage them to efficiently compute the compressed kernel matrix. In

Section 6, we numerically demonstrate the capabilities of samplets for data compression and the

compression of kernel matrices. Numerical results in up to four dimensions are provided. Finally,

in Section 7, we state concluding remarks.

Throughout this article, in order to avoid the repeated use of generic but unspecified constants,

by C . D we indicate that C can be bounded by a multiple of D, independently of parameters

which C and D may depend on. Moreover, C & D is defined as D . C and C ∼ D as C . D

and D . C.

SAMPLETS: CONSTRUCTION AND SCATTERED DATA COMPRESSION 3

2. Samplets

Let X := {x1, . . . ,xN} ⊂ Ω denote a set of points within some bounded or unbounded region

Ω ⊂ R
d. Associated to each point xi, we introduce the Dirac measure

δxi
(x) :=

{

1, if x = xi

0, otherwise.

With a slight abuse of notation, we define the point evaluation functional according to

(f, δxi
)Ω =

∫

Ω
f(x)δxi

(x) dx :=

∫

Ω
f(x)δxi

(dx) = f(xi),

where f ∈ C(Ω) is a continuous function.

Next, we define the space X := span{δx1
, . . . , δxN

} as the N -dimensional vector space of all

discrete and finite signed measures supported at the points in X. An inner product on X is

given by

〈u, v〉X :=
N
∑

i=1

uivi, where u =
N
∑

i=1

uiδxi
, v =

N
∑

i=1

viδxi
.

Indeed, the space X is isometrically isomorphic to R
N endowed with the canonical inner product.

To construct a multiresolution analysis, we introduce the spaces Xj := spanΦj , where

Φj := {ϕj,k : k ∈ Ij}.
Herein, Ij denotes a suitable index set with cardinality |Ij | = dimXj and j ∈ N is referred to as

level. Moreover, each basis element ϕj,k is a linear combination of Dirac measures such that

〈ϕj,k, ϕj,k′〉X = 0 for k 6= k′.

In what follows, we shall identify bases by row vectors, such that, for vj = [vj,k]k∈Ij , the corre-

sponding measure can simply be written as a dot product according to

vj = Φjvj =
∑

k∈Ij

vj,kϕj,k.

Rather than using the multiresolution analysis corresponding to the hierarchy

X0 ⊂ X1 ⊂ · · · ⊂ X ,

the idea of samplets is to keep track of the increment of information between two consecutive

levels j and j + 1. Since we have Xj ⊂ Xj+1, we may decompose

(1) Xj+1 = Xj

⊥
⊕ Sj

by using the detail space Sj . Of practical interest is the choice of the basis of the detail space Sj

in Xj+1. This basis is assumed to be orthonormal as well and will be denoted by

Σj =
{

σj,k : k ∈ IΣj := Ij+1 \ Ij
}

.

Recursively applying decomposition (1), we notice that the set

ΣJ = Φ0 ∪
J−1
⋃

j=0

Σj

forms a basis of XJ := X , which we call a samplet basis. In view of data compression, an essential

ingredient is the vanishing moment condition, meaning that

(2) (p, σj,k)Ω = 0 for all p ∈ Pq(Ω),

where Pq(Ω) denotes the space of all polynomials with total degree at most q. We say then that

the samplets have q + 1 vanishing moments.

4 HELMUT HARBRECHT AND MICHAEL MULTERER

Remark 2.1. For quasi-uniform points, i.e. if the separation radius qX := 1
2 mini 6=j ‖xi−xj‖2 of

X is similar to the fill distance hX,Ω := supx∈Ωminxi∈X ‖x− xi‖2 in the sense that qX ∼ hX,Ω,

we obtain bases which satisfy diam(suppϕj,k) := diam({xi1 , . . . ,xip}) ∼ 2−j/d and, likewise,

(3) diam(suppσj,k) ∼ 2−j/d.

These properties are favorable with regard to the compression of data and the compression of

kernel matrices. However, we stress that this is not a requirement in our construction.

Remark 2.2. The concept of samplets has a very natural interpretation in the context of repro-

ducing kernel Hilbert spaces, compare [3]. If (H, 〈·, ·〉H) is a reproducing kernel Hilbert space

with reproducing kernel K, then there holds (f, δxi
)Ω = 〈K(xi, ·), f〉H. Hence, the samplet

σj,k =
∑p

ℓ=1 βℓδxiℓ
can be identified with the function

σ̂j,k :=

p
∑

ℓ=1

βℓK(xiℓ , ·) ∈ H.

Especially, it holds 〈σ̂j,k, h〉H = 0 for any h ∈ H which satisfies h|suppσj,k
∈ Pq(suppσj,k).

3. Construction and properties of samplets

3.1. Cluster tree. To construct samplets with the desired properties, especially vanishing mo-

ments, cp. (2), we shall transfer the wavelet construction from [39] into our setting. The first step

is to construct a hierarchy subspaces of signed measures. To this end, we perform a hierarchical

clustering of the set X.

Definition 3.1. Let T = (V,E) be a tree with vertices V and edges E. We define its set of leaves

as L(T) := {ν ∈ V : ν has no sons}. The tree T is a cluster tree for the set X = {x1, . . . ,xN},
iff X is the root of T and all ν ∈ P \ L(T) are disjoint unions of their sons.

The level jν of ν ∈ T is its distance from the root, i.e. the number of edges that are required for

traveling from X to ν. The depth J of T is the maximum level of all clusters. We define the set

of clusters on level j as Tj := {ν ∈ T : ν has level j}. Finally, the bounding box Bν of ν is the

smallest axis-parallel cuboid that contains all its points.

There exist several choices for the construction of a cluster tree for the set X. Within this

article, we will exclusively consider binary trees and remark that other options, such as 2d-

trees, are possible, with the obvious modifications. Definition 3.1 provides a hierarchical cluster

structure on the set X. Even so, it does not provide guarantees for the cardinalities of the

clusters. Therefore, we introduce the concept of a balanced binary tree.

Definition 3.2. Let T be a cluster tree for X with depth J . T is called a balanced binary tree,

if all clusters ν satisfy the following conditions:

(i) The cluster ν has exactly two sons if jν < J . It has no sons if jν = J .

(ii) It holds |ν| ∼ 2J−jν .

A balanced binary tree can be constructed by cardinality balanced clustering. This means that

the root cluster is split into two son clusters of identical (or similar) cardinality. This process

is repeated recursively for the resulting son clusters until their cardinality falls below a certain

threshold. For the subdivision, the cluster’s bounding box is split along its longest edge such that

the resulting two boxes both contain an equal number of points. Thus, as the cluster cardinality

halves with each level, we obtain O(logN) levels in total. The total cost for constructing the

cluster tree is therefore O(N logN). Finally, we remark that a balanced tree is only required to

guarantee the cost bounds for the presented algorithms. The error and compression estimates

SAMPLETS: CONSTRUCTION AND SCATTERED DATA COMPRESSION 5

we shall present later on are robust in the sense that they are formulated directly in terms of the

actual cluster sizes rather than the introduced cluster level.

3.2. Construction of samplet bases. Having a cluster tree at hand, we shall now construct a

samplet bases on the resulting hierarchical structure. We begin by introducing a two-scale trans-

form between basis elements on a cluster ν of level j. To this end, we create scaling distributions

Φ
ν
j = {ϕν

j,k} and samplets Σ
ν
j = {σν

j,k} as linear combinations of the scaling distributions Φ
ν
j+1

of ν’s son clusters. This results in the refinement relation

(4) [Φν
j ,Σ

ν
j] := Φ

ν
j+1Q

ν
j = Φ

ν
j+1

[

Qν
j,Φ,Q

ν
j,Σ

]

.

In order to provide both, vanishing moments and orthonormality, the transformation Qν
j has to

be appropriately constructed. For this purpose, we consider an orthogonal decomposition of the

moment matrix

Mν
j+1 :=

(x0, ϕj+1,1)Ω · · · (x0, ϕj+1,|ν|)Ω
...

...

(xα, ϕj+1,1)Ω · · · (xα, ϕj+1,|ν|)Ω

= [(xα,Φν

j+1)Ω]|α|≤q ∈ R
mq×|ν|,

where

(5) mq :=

q
∑

ℓ=0

(

ℓ+ d− 1

d− 1

)

=

(

q + d

d

)

≤ (q + 1)d

denotes the dimension of Pq(Ω).

In the original construction by Tausch and White, the matrix Qν
j is obtained from a singular

value decomposition of Mν
j+1. For the construction of samplets, we follow the idea from [1] and

rather employ the QR decomposition, which has the advantage of generating samplets with an

increasing number of vanishing moments. It holds

(6) (Mν
j+1)

⊺ = Qν
jR =:

[

Qν
j,Φ,Q

ν
j,Σ

]

R

Consequently, the moment matrix for the cluster’s own scaling distributions and samplets is

given by

(7)

[

Mν
j,Φ,M

ν
j,Σ

]

=
[

(xα, [Φν
j ,Σ

ν
j])Ω

]

|α|≤q
=
[

(xα,Φν
j+1[Q

ν
j,Φ,Q

ν
j,Σ])Ω

]

|α|≤q

= Mν
j+1[Q

ν
j,Φ,Q

ν
j,Σ] = R⊺.

As R⊺ is a lower triangular matrix, the first k − 1 entries in its k-th column are zero. This

corresponds to k − 1 vanishing moments for the k-th distribution generated by the transforma-

tion Qν
j = [Qν

j,Φ,Q
ν
j,Σ]. By defining the first mq distributions as scaling distributions and the

remaining ones as samplets, we obtain samplets with vanishing moments at least up to order

q+1. By increasing the polynomial degree to q̂ > q at the leaf clusters such that mq̂ ≥ 2mq, we

can even construct samplets with an increased number of vanishing moments up to order q̂ + 1

without any additional cost.

Remark 3.3. The samplet construction using vanishing moments is inspired by the classical

wavelet theory. However, it is easily possible to adapt the construction to other primitives than

polynomials.

Remark 3.4. Each cluster has at most a constant number of scaling distributions and samplets.

For a given cluster ν, their number is identical to the cardinality of Φ
ν
j+1. For leaf clusters,

this number is bounded by the leaf size. For non-leaf clusters, it is bounded by the number of

scaling distributions from its son clusters. As there are at most two son clusters with a maximum

of mq scaling distributions each, we obtain the bound 2mq for non-leaf clusters. If Φ
ν
j+1 has

less than mq + 1 elements, there are no samplets and all distributions are considered as scaling

distributions.

6 HELMUT HARBRECHT AND MICHAEL MULTERER

For leaf clusters, we define the scaling distributions by the Dirac measures supported at the

points xi, i.e. Φν
J := {δxi

: xi ∈ ν}. The scaling distributions of all clusters on a specific level j

then generate the spaces

(8) Xj := span{ϕν
j,k : k ∈ Iνj , ν ∈ Tj},

while the samplets span the detail spaces

(9) Sj := span
{

σν
j,k : k ∈ I

Σ,ν
j , ν ∈ Tj

}

= Xj+1

⊥
⊖Xj .

Combining the scaling distributions of the root cluster with all clusters’ samplets gives rise to

the samplet basis

(10) ΣN := Φ
X
0 ∪

⋃

ν∈T

Σ
ν
j .

Writing ΣN = {σk : 1 ≤ k ≤ N}, where σk is either a samplet or a scaling distribution at the

root cluster, we obtain a unique indexing of all the signed measures comprising the samplet basis.

The indexing induces an order for the set ΣN . We choose this order to be level-dependent, i.e.

the samplets of a cluster are grouped together, with those on finer levels having larger indices.

Remark 3.5. The present construction of samplet bases on a balanced cluster tree can always

be performed with linear cost O(N), we refer to [1] for a proof of this statement.

3.3. Properties of samplets. By construction, samplets satisfy the following properties, which

can be inferred by adapting the corresponding results from [24,39].

Theorem 3.6. The spaces Xj defined in equation (8) form a multiresolution analysis

X0 ⊂ X1 ⊂ · · · ⊂ XJ = X ,

where the corresponding complement spaces Sj from (9) satisfy Sj+1 = Xj

⊥
⊕ Sj for all j =

0, 1, . . . , J − 1. The associated samplet basis ΣN defined in (10) is an orthonormal basis in X .

In particular, there holds:

(i) The number of all samplets on level j behaves like 2j.

(ii) The samplets have q + 1 vanishing moments.

(iii) Each samplet is supported in a specific cluster ν.

Remark 3.7. In the situation of Theorem 3.6, if the points in X are even quasi-uniform, then

the diameter of the cluster satisfies diam(ν) ∼ 2−jν/d and it holds (3).

Remark 3.8. Due to Sj ⊂ X and X0 ⊂ X , we conclude that each samplet is a linear combination

of the Dirac measures supported at the points in X. Especially, the related coefficient vectors ωj,k

in the representations

(11) σj,k =
N
∑

i=1

ωj,k,iδxi
and ϕ0,k =

N
∑

i=1

ω0,k,iδxi

are pairwise orthonormal with respect to the inner product on R
N .

Later on, the following bound on the samplets’ coefficients ‖ · ‖1-norm will be essential:

Lemma 3.9. The coefficient vector ωj,k =
[

ωj,k,i

]

i
of the samplet σj,k on the cluster ν fulfills

(12) ‖ωj,k‖1 ≤
√

|ν|.

The same bound holds for the coefficient vectors of the scaling distributions ϕj,k.

SAMPLETS: CONSTRUCTION AND SCATTERED DATA COMPRESSION 7

Proof. It holds ‖ωj,k‖ℓ2 = 1. Hence, the assertion follows immediately from the Cauchy-Schwarz

inequality

‖ωj,k‖1 ≤
√

|ν|‖ωj,k‖2 =
√

|ν|.
�

The key for data compression and feature detection is the following estimate which shows that

the samplet coefficients decay with respect to the samplet’s support size provided that the data

result from the evaluation of a smooth function. Hence, in case of smooth data, the samplet

coefficients are small and can be set to zero without compromising the accuracy. Vice versa,

a large samplet coefficient indicates that the data are singular in the region of the samplet’s

support.

Lemma 3.10. Let f ∈ Cq+1(Ω). Then, it holds for a samplet σj,k supported on the cluster ν

that

(13) |(f, σj,k)Ω| ≤
(

d

2

)q+1diam(ν)q+1

(q + 1)!
‖f‖Cq+1(Ω)‖ωj,k‖1.

Proof. For x0 ∈ ν, a Taylor expansion of f yields

f(x) =
∑

|α|≤q

∂|α|

∂xα
f(x0)

(x− x0)
α

α!
+Rx0

(x).

Herein, the remainder Rx0
(x) reads

Rx0
(x) = (q + 1)

∑

|α|=q+1

(x− x0)
α

α!

∫ 1

0

∂q+1

∂xα
f
(

x0 + s(x− x0)
)

(1− s)q ds.

In view of the vanishing moments, we conclude

|(f, σj,k)Ω| = |(Rx0
, σj,k)Ω| ≤

∑

|α|=q+1

max
x∈ν

‖x− x0‖|α|
2

α!
max
x∈ν

∣

∣

∣

∣

∂q+1

∂xα
f(x)

∣

∣

∣

∣

‖ωj,k‖1

≤
(

d

2

)q+1diam(ν)q+1

(q + 1)!
‖f‖Cq+1(Ω)‖ωj,k‖1.

Here, we used the identity

∑

|α|=q+1

2−(q+1)

α!
=

2−(q+1)

(q + 1)!

∑

|α|=q+1

(q + 1)!

α!
=

1

(q + 1)!

(

d

2

)q+1

,

which is obtained by choosing x0 as the cluster’s midpoint and the multinomial theorem. �

4. Fast samplet transform

In order to transform between the samplet basis and the basis of Dirac measures, we in-

troduce the fast samplet transform and its inverse. To this end, we assume that the data

(x1, y1), . . . , (xN , yN) result from the evaluation of some (unknown) function f : Ω → R, i.e.

yi = f∆
i = (f, δxi

)Ω.

Hence, we may represent the function f on X according to

f =

N
∑

i=1

f∆
i δxi

.

8 HELMUT HARBRECHT AND MICHAEL MULTERER

Our goal is now to compute the representation

f =

N
∑

i=1

fΣ
k σk

with respect to a samplet basis. For the sake of a simpler notation, let f∆ := [f∆
i]Ni=1 and

fΣ := [fΣ
i]

N
i=1 denote the associated coefficient vectors. Then, the samplet transform amounts to

a change of basis fΣ = Tf∆ with an orthogonal matrix T ∈ R
N×N . The actual implementation

of this change of basis is, however, recursive.

Figure 1. Visualization of the fast samplet transform.

To implement the fast samplet transform, we recursively apply the refinement relation (4) to the

point evaluations

(14) (f, [Φν
j ,Σ

ν
j])Ω = (f,Φν

j+1[Q
ν
j,Φ,Q

ν
j,Σ])Ω = (f,Φν

j+1)Ω[Q
ν
j,Φ,Q

ν
j,Σ].

On the finest level, the entries of the vector (f,Φν
J)Ω are exactly those of f∆. Recursively

applying Equation (14) therefore yields all the coefficients (f,Σν
j)Ω, including (f,ΦX

0)Ω, required

for the representation of f in the samplet basis, see Figure 1 for a visualization of the resulting

fish bone scheme. The complete procedure is formulated in Algorithm 1.

Algorithm 1: Fast samplet transform

Data: Data f∆, cluster tree T and transformations [Qν
j,Φ,Q

ν
j,Σ].

Result: Coefficients fΣ stored as [(f,ΦX
0)Ω]

⊺ and [(f,Σν
j)Ω]

⊺.

begin

store [(f,ΦX
0)Ω]

⊺ := transformForCluster(X)

end

Function transformForCluster(ν)

begin

if ν = {xi1 , . . . ,xi|ν|
} is a leaf of T then

set fν
j+1 :=

[

f∆
ik

]|ν|

k=1

else

for all sons ν′ of ν do

execute transformForCluster(ν′)

append the result to fν
j+1

end

end

set [(f,Σν
j)Ω]

⊺ := (Qν
j,Σ)

⊺fν
j+1

return (Qν
j,Φ)

⊺fν
j+1

end

SAMPLETS: CONSTRUCTION AND SCATTERED DATA COMPRESSION 9

The inverse transformation is obtained by reversing the steps of the fast samplet transform: For

each cluster, we compute

(f,Φν
j+1)Ω = (f, [Φν

j ,Σ
ν
j])Ω[Q

ν
j,Φ,Q

ν
j,Σ]

⊺

to either obtain the coefficients of the son clusters’ scaling distributions or, for leaf clusters, the

coefficients f∆. The procedure is summarized in Algorithm 2.

Algorithm 2: Inverse samplet transform

Data: Coefficients fΣ, cluster tree T and transformations [Qν
j,Φ,Q

ν
j,Σ].

Result: Coefficients f∆ stored as [(f,Φν
j)Ω]

⊺.

begin

inverseTransformForCluster(X, [(f,ΦX
0)Ω]

⊺)

end

Function inverseTransformForCluster(ν, [(f,Φν
j)Ω]

⊺)

begin

[(f,Φν
j+1)Ω]

⊺ := [Qν
j,Φ,Q

ν
j,Σ]

[

[(f,Φν
j)Ω]

⊺

[(f,Σν
j)Ω]

⊺

]

if ν = {xi1 , . . . ,xi|ν|
} is a leaf of T then

set
[

f∆
ik

]|ν|

k=1
:= [(f,Φν

jν+1)Ω]
⊺

else

for all sons ν′ of ν do

assign the part of [(f,Φν
j+1)Ω]

⊺ belonging to ν′ to [(f,Φν′

j′)Ω]
⊺

execute inverseTransformForCluster(ν′, [(f,Φν′

j′)Ω]
⊺)

end

end

end

The fast samplet transform and its inverse can be performed in linear cost. This result is well

known in case of wavelets and was crucial for their rapid development.

Theorem 4.1. The runtime of the fast samplet transform and the inverse samplet transform are

O(N), each.

Proof. As the samplet construction follows the construction of Tausch and White, we refer to [39]

for the details of the proof. �

5. Compression of kernel matrices

5.1. Kernel matrices. The second application of samplets we consider is the compression of

matrices arising from positive (semi-) definite kernels, as they emerge in scattered data approx-

imation kernel based learning or Gaussian process regression, see for example [27,36,42,44] and

the references therein. We start by recalling the concept of a positive kernel.

Definition 5.1. A symmetric kernel K : Ω×Ω → R is called positive (semi-)definite on Ω ⊂ R
d,

iff [K(xi,xj)]
N
i,j=1 is a symmetric and positive (semi-)definite matrix for all {x1, . . . ,xN} ⊂ Ω

and all N ∈ N.

Given the set of points X = {x1, . . . ,xN}, many applications require the assembly and the

inversion of the kernel matrix

K := [K(xi,xj)]
N
i,j=1 ∈ R

N×N

10 HELMUT HARBRECHT AND MICHAEL MULTERER

or an appropriately regularized version K+ρI, ρ > 0, thereof. In case that N is a large number,

already the assembly and storage of K can easily become prohibitive. For the solution of an

associated linear system, the situation is even worse. Fortunately, the kernel matrix can be

compressed by employing samplets. To this end, the evaluation of the kernel function at the

points xi and xj will be denoted by

(K, δxi
⊗ δxj

)Ω×Ω := K(xi,xj).

Hence, in view of V = {δx1
, . . . , δxN

}, we may write the kernel matrix as

K =
[

(K, δxi
⊗ δxj

)Ω×Ω

]N

i,j=1
.

5.2. Asymptotically smooth kernels. The essential ingredient for the samplet compression

of kernel matrices is the asymptotical smoothness property of the kernel K, that is

(15)
∂|α|+|β|

∂xα∂yβ
K(x,y) ≤ cK

(|α|+ |β|)!
r|α|+|β|‖x− y‖|α|+|β|

2

, cK, r > 0.

Remark 5.2. A particular class of positive definite kernels which are asymptotically smooth are

the Matérn kernels given by

kν(r) :=
21−ν

Γ(ν)

(
√
2νr

ℓ

)ν

Kν

(
√
2νr

ℓ

)

, r ≥ 0, ℓ > 0.

Herein, Kν is the modified Bessel function of the second kind of order ν and Γ is the gamma

function. The parameter ν steers for the smoothness of the kernel function. In particular, we

have

k1/2(r) = exp

(

− r

ℓ

)

, k∞(r) = exp

(

− r2

2ℓ2

)

.

A positive definite kernel in the sense of Definition 5.1 is obtained by K(x,y) := kν(‖x− y‖2).

Based on the asymptotical smoothness property (15), we obtain the following result, which is

the basis for the matrix compression introduced thereafter.

Lemma 5.3. Consider two samplets σj,k and σj′,k′ , exhibiting q+1 vanishing moments with sup-

porting clusters ν and ν ′, respectively. Assume that dist(ν, ν ′) > 0. Then, for kernels satisfying

(15), it holds that

(16) (K, σj,k ⊗ σj′,k′)Ω×Ω ≤ cK
diam(ν)q+1 diam(ν ′)q+1

(dr dist(νj,k, νj′,k′))2(q+1)
‖ωj,k‖1‖ωj′,k′‖1.

Proof. Let x0 ∈ ν and y0 ∈ ν ′. A Taylor expansion of the kernel with respect to x yields

K(x,y) =
∑

|α|≤q

∂|α|

∂xαK(x0,y)

(x− x0)
α

α!
+Rx0

(x,y),

where the remainder Rx0
(x,y) is given by

Rx0
(x,y) = (q + 1)

∑

|α|=q+1

(x− x0)
α

α!

∫ 1

0

∂q+1

∂xα
K
(

x0 + s(x− x0),y
)

(1− s)q ds.

Next, we expand the remainder Rx0
(x,y) with respect to y and derive

Rx0
(x,y) = (q + 1)

∑

|α|=q+1

(x− x0)
α

α!

∑

|β|≤q

(y − y0)
β

β!

×
∫ 1

0

∂q+1

∂xα

∂|β|

∂yβ
K
(

x0 + s(x− x0),y0

)

(1− s)q ds+Rx0,y0
(x,y).

SAMPLETS: CONSTRUCTION AND SCATTERED DATA COMPRESSION 11

Here, the remainder Rx0,y0
(x,y) is given by

Rx0,y0
(x,y) = (q + 1)2

∑

|α|,|β|=q+1

(x− x0)
α

α!

(y − y0)
β

β!

×
∫ 1

0

∫ 1

0

∂2(q+1)

∂xα∂yβ
K
(

x0 + s(x− x0),y0 + t(y − y0)
)

(1− s)q(1− t)q dt ds.

We thus arrive at the decomposition

K(x,y) = py(x) + px(y) +Rx0,y0
(x,y),

where py(x) is a polynomial of degree q in x, with coefficients depending on y, while px(y) is a

polynomial of degree q in y, with coefficients depending on x. Due to the vanishing moments,

we obtain

(K, σj,k ⊗ σj′,k′)Ω×Ω = (Rx0,y0
, σj,k ⊗ σj′,k′)Ω×Ω.

In view of (15), we thus find

|(K, σj,k ⊗ σj′,k′)Ω×Ω| = |(Rx0,y0
, σj,k ⊗ σj′,k′)Ω×Ω|

≤ cK

(

∑

|α|,|β|=q+1

(|α|+ |β|)!
α!β!

)

(‖ · −x0‖q+1
2 , |σj,k|)Ω(‖ · −y0‖q+1

2 , |σj′,k′ |)Ω
r2(q+1) dist(ν, ν ′)2(q+1)

.

Now, we have by means of multinomial coefficients that

(|α|+ |β|)! =
(|α|+ |β|

|β|

)(|α|
α

)(|β|
β

)

α!β!,

which in turn implies that
∑

|α|,|β|=q+1

(|α|+ |β|)!
α!β!

=

(

2(q + 1)

q + 1

)

∑

|α|,|β|=q+1

(|α|
α

)(|β|
β

)

=

(

2(q + 1)

q + 1

)

d2(q+1) ≤ d2(q+1)22(q+1).

Moreover, we use

(‖ · −x0‖q+1
2 , |σj,k|)Ω ≤

(

diam(ν)

2

)q+1

‖ωj,k‖1,

and likewise

(‖ · −y0‖q+1
2 , |σj′,k′ |)Ω ≤

(

diam(ν ′)

2

)q+1

‖ωj′,k′‖1.

Combining all the estimates, we arrive at the desired result (16). �

5.3. Matrix compression. Lemma 5.3 immediately suggests a compression strategy for kernel

matrices in samplet representation. This compression differs from the wavelet matrix compression

introduced in [11], since we do not exploit the decay of the samplet coefficients with respect to

the level in case of smooth data. This enables us to also cover the case of non-quasi-uniform

data. Consequently, we use on all levels the same accuracy, which is similar to the setting in [4].

Theorem 5.4. Set all coefficients of the kernel matrix

KΣ :=
[

(K, σj,k ⊗ σj′,k′)Ω×Ω

]

j,j′,k,k′

to zero which satisfy the admissibility condition

(17) dist(ν, ν ′) ≥ ηmax{diam(ν), diam(ν ′)}, η > 0,

where ν is the cluster supporting σj,k and ν ′ is the cluster supporting σj′,k′ , respectively. Then,

it holds
∥

∥KΣ −KΣ
ε

∥

∥

F
≤ cKcsum(ηdr)

−2(q+1)mqN
√

log(N).

12 HELMUT HARBRECHT AND MICHAEL MULTERER

for some constant csum > 0, where mq is given by (5).

Proof. Fix the levels j and j′. In view (16), we can estimate any coefficient which satisfies (17)

by

|(K, σj,k ⊗ σj′,k′)Ω×Ω| ≤ cK

(

min{diam(ν), diam(ν ′)}
max{diam(ν), diam(ν ′)}

)q+1

(ηdr)−2(q+1)‖ωj,k‖1‖ωj′,k′‖1.

If we next set

θj,j′ := max
ν∈Tj ,ν′∈Tj′

{

min{diam(ν), diam(ν ′)}
max{diam(ν), diam(ν ′)}

}

,

then we obtain

|(K, σj,k ⊗ σj′,k′)Ω×Ω| ≤ cKθ
q+1
j,j′ (ηdr)

−2(q+1)‖ωj,k‖1‖ωj′,k′‖1

for all coefficients such that (17) holds. In view of (12) and the fact that there are at most mq

samplets per cluster, we arrive at

∑

k,k′

‖ωj,k‖21‖ωj′,k′‖21 ≤
∑

k,k′

|ν| · |ν ′| = m2
qN

2.

Thus, for a fixed level-level block, we arrive at the estimate

∥

∥KΣ
j,j′ −KΣ

ε,j,j′
∥

∥

2

F
≤

∑

k, k′ : dist(ν, ν ′)

≥ ηmax{diam(ν), diam(ν ′)}

|(K, σj,k ⊗ σj′,k′)Ω×Ω|2 ≤ c2Kθ
2(q+1)
j,j′ (ηdr)−4(q+1)m2

qN
2.

Finally, summation over all levels yields

∥

∥KΣ −KΣ
ε

∥

∥

2

F
=
∑

j,j′

∥

∥KΣ
j,j′ −KΣ

ε,j,j′
∥

∥

2

F
≤ c2K(ηdr)

−4(q+1)m2
qN

2
∑

j,j′

θ
2(q+1)
j,j′

≤ c2Kcsum(ηdr)
−4(q+1)m2

qN
2 logN,

which is the desired claim. �

Corollary 5.5. In case of quasi-uniform points xi ∈ X, we have
∥

∥KΣ
∥

∥

F
∼ N . Thus, we

immediately obtain
∥

∥KΣ −KΣ
ε

∥

∥

F
∥

∥KΣ
∥

∥

F

≤ cK
√
csum(ηdr)

−2(q+1)mq

√

logN,

where the compressed matrix has O(m2
qN logN) remaining coefficients.

Proof. We fix j, j′ and assume j ≥ j′. In case of quasi-uniform points, it holds diam(v) ∼ 2−jν/d.

Hence, for the cluster νj′,k′ , there exist only O([2j−j′]d) clusters νj,k from level j, which do not

satisfy the admissibility condition (17). Since each cluster contains at most mq samplets, we

arrive at
J
∑

j=0

∑

j′≤j

m2
q(2

j′2(j−j′))d = m2
q

J
∑

j=0

j2jd ∼ m2
qN logN,

which implies the assertion. �

Remark 5.6. The admissibility condition (17) is a multilevel version of the admissibility condi-

tion used by hierarchical matrices, see e.g. [22].

SAMPLETS: CONSTRUCTION AND SCATTERED DATA COMPRESSION 13

5.4. Compressed matrix assembly. For a given pair of clusters, we can now determine

whether the corresponding entries need to be calculated. As there are O(N) clusters, naively

checking the cut-off criterion for all pairs would still take O(N2) operations, however. Hence, we

require smarter means to determine the non-negligible cluster pairs. For this purpose, we first

state the transferability of the cut-off criterion to son clusters, compare [11] for a proof.

Lemma 5.7. Let ν and ν ′ be clusters satisfying the admissibility condition (17). Then, for the

son clusters νson of ν and ν ′son of ν ′, we have

dist(ν, ν ′son) ≥ ηmax{diam(ν), diam(ν ′son)},
dist(νson, ν

′) ≥ ηmax{diam(νson), diam(ν ′)},
dist(νson, ν

′
son) ≥ ηmax{diam(νson), diam(ν ′son)}.

The lemma tells us that we may omit cluster pairs whose father clusters already satisfy the

admissibility condition. This will be essential for the assembly of the compressed matrix. The

computation of the compressed kernel matrix can be sped up further by using H2-matrix tech-

niques, see [19, 23]. This idea was used earlier in [1, 24, 28] in case of Tausch-White wavelets.

H2-matrices approximate the kernel interaction for sufficiently distant clusters ν and ν ′ in the

sense of the admissibility condition (17) by means of a polynomial interpolant, see [5]. More

precisely, given a suitable set of interpolation points {ξνt }t for each cluster ν with associated

Lagrange polynomials {Lν
t (x)}t, we introduce the interpolation operator

Iν,ν′ [K](x,y) =
∑

s,t

K(ξνs , ξ
ν′

t)Lν
s (x)Lν′

t (y)

and approximate an admissible matrix block via

(18)

K∆
ν,ν′ = [(K, δx ⊗ δy)Ω×Ω]x∈ν,y∈ν′

≈
∑

s,t

K(ξνs , ξ
ν′

t)[(Lν
s , δx)Ω]x∈ν [(Lν′

t , δy)Ω]y∈ν′ =: V ν
∆S

ν,ν′(V ν′

∆)⊺.

Herein, the cluster bases are given according to

(19) V ν
∆ := [(Lν

s , δx)Ω]x∈ν , V ν′

∆ := [(Lν′

t , δy)Ω]y∈ν′ ,

while the coupling matrix is given by Sν,ν′ := [K(ξνs , ξ
ν′
t)]s,t.

Remark 5.8. Different from the H2-matrix setting, we shall consider the expansion (18) also

when the clusters ν and ν ′ are located on different levels of the cluster tree.

Directly transforming the cluster bases into their corresponding samplet representation results

in a log-linear cost. This can be avoided by the use of nested cluster bases, as they have been

introduced for H2-matrices. For the sake of simplicity, we assume from now on that a fixed

polynomial degree is p used for the kernel interpolation at all different cluster combinations.

Therefore, the Lagrange polynomials of a father cluster can exactly be represented by those of

the son clusters. Introducing the transfer matrices T νson := [Lν
s(ξ

νson
t)]s,t, it holds

Lν
s(x) =

∑

t

T νson
s,t Lνson

t (x), x ∈ Bνson .

Exploiting this relation in the construction of the cluster bases (19) leads to the recursive refine-

ment relation

V ν
∆ =

[

V
νson1
∆ T νson1

V
νson2
∆ T νson2

]

.

Combining this refinement relation with the recursive nature of the samplet basis, results in the

variant of the fast samplet transform summarized in Algorithm 3.

14 HELMUT HARBRECHT AND MICHAEL MULTERER

Algorithm 3: Recursive computation of the multiscale cluster basis

Data: Cluster tree T , transformations [Qν
j,Φ, Qν

j,Σ], nested cluster bases V ν
∆ for leaf clusters and

transformation matrices T νson1 , T νson2 for non-leaf clusters.

Result: Multiscale cluster basis matrices V ν
Φ, V ν

Σ for all clusters ν ∈ T .

begin

computeMultiscaleClusterBasis(X);

end

Function computeMultiscaleClusterBasis(ν)

begin

if ν is a leaf cluster then

store

[

V ν
Φ

V ν
Σ

]

:=
[

Qν
j,Φ,Q

ν
j,Σ

]⊺

V ν
∆

else

for all sons ν′ of ν do

computeMultiscaleClusterBasis(ν′)

end

store

[

V ν
Φ

V ν
Σ

]

:=
[

Qν
j,Φ,Q

ν
j,Σ

]⊺

[

V
νson1

Φ
T νson1

V
νson2

Φ
T νson2

]

end

end

Having the multiscale cluster bases at our disposal, the next step is the actual assembly of the

compressed kernel matrix. The computation of the required matrix blocks is exclusively based

on the two refinement relations
[

K
Φ,Φ
ν,ν′ K

Φ,Σ
ν,ν′

K
Σ,Φ
ν,ν′ K

Σ,Σ
ν,ν′

]

=

[

K
Φ,Φ
ν,ν′son1

K
Φ,Φ
ν,ν′son2

K
Σ,Φ
ν,ν′son1

K
Σ,Φ
ν,ν′son2

]

[

Qν′

j,Φ,Q
ν′

j,Σ

]

and
[

K
Φ,Φ
ν,ν′ K

Φ,Σ
ν,ν′

K
Σ,Φ
ν,ν′ K

Σ,Σ
ν,ν′

]

=
[

Qν
j,Φ,Q

ν
j,Σ

]⊺

[

K
Φ,Φ
νson1 ,ν

′ K
Φ,Φ
νson1 ,ν

′

K
Σ,Φ
νson2 ,ν

′ K
Σ,Φ
νson2 ,ν

′

]

,

where we set
[

K
Φ,Φ
ν,ν′ K

Φ,Σ
ν,ν′

K
Σ,Φ
ν,ν′ K

Σ,Σ
ν,ν′

]

:=

[

(K,Φν ⊗Φ
ν′)Ω×Ω (K,Φν ⊗Σ

ν′)Ω×Ω

(K,Σν ⊗Φ
ν′)Ω×Ω (K,Σν ⊗Σ

ν′)Ω×Ω

]

.

Based on these relations, we introduce the function recursivelyDetermineBlock, which is the

key ingredient for the computation of the compressed kernel matrix. Note that this function

never requires the formation of the actual H2-matrix, as it only embeds the multilevel interpola-

tion procedure to rapidly evaluate admissible blocks. Especially, the evaluation of the coupling

matrices can be performed on the fly, significantly reducing the memory requirements of the

method.

Next, to assemble the compressed kernel matrix in standard form, we have to traverse the tensor

product T ⊗ T of the cluster tree. To this end, we employ two nested recursive calls of the

cluster tree, which is traversed in a depth first search way. Algorithm 4 first computes the lower

right matrix block and advances from bottom to top and from right to left. It relies on the two

recursive functions setupColumn and setupRow. The purpose of the function setupColumn is

to recursively traverse the column cluster tree, i.e. the cluster tree associated to the columns of

the matrix. Before returning, each instance of setupColumn calls the function setupRow, which

performs the actual assembly of the compressed matrix. For a given column cluster ν ′, the

SAMPLETS: CONSTRUCTION AND SCATTERED DATA COMPRESSION 15

Function recursivelyDetermineBlock(ν, ν ′)

Result: Approximation of the block

[

K
Φ,Φ
ν,ν′ K

Φ,Σ
ν,ν′

K
Σ,Φ
ν,ν′ K

Σ,Σ
ν,ν′

]

.

begin

if (ν, ν′) is admissible then

return

[

V ν
Φ

V ν
Σ

]

Sν,ν′[

(V ν′

Φ)⊺, (V ν′

Σ)⊺
]

else if ν and ν′ are leaf clusters then

return
[

Qν
j,Φ,Q

ν
j,Σ

]⊺

K∆
ν,ν′

[

Qν′

j,Φ,Q
ν′

j,Σ

]

else if ν′ is not a leaf cluster and ν is a leaf cluster then

for all sons ν′son of ν′ do
[

K
Φ,Φ
ν,ν′

son

K
Φ,Σ
ν,ν′

son

K
Σ,Φ
ν,ν′

son

K
Σ,Σ
ν,ν′

son

]

:= recursivelyDetermineBlock(ν, νson′)

end

return

[

K
Φ,Φ
ν,ν′

son1

K
Φ,Φ
ν,ν′

son2

K
Σ,Φ
ν,ν′

son1

K
Σ,Φ
ν,ν′

son2

]

[

Qν′

j,Φ,Q
ν′

j,Σ

]

else if ν is not a leaf cluster and ν′ is a leaf cluster then

for all sons νson of ν do
[

K
Φ,Φ
νson,ν′ K

Φ,Σ
νson,ν′

K
Σ,Φ
νson,ν′ K

Σ,Σ
νson,ν′

]

:= recursivelyDetermineBlock(νson, ν
′)

end

return
[

Qν
j,Φ,Q

ν
j,Σ

]⊺

[

K
Φ,Φ
νson1

,ν′ K
Φ,Φ
νson1

,ν′

K
Σ,Φ
νson2

,ν′ K
Σ,Φ
νson2

,ν′

]

.

else

for all sons νson of ν and all sons ν′son of ν′ do
[

K
Φ,Φ
νson,ν′

son

K
Φ,Σ
νson,ν′

son

K
Σ,Φ
νson,ν′

son

K
Σ,Σ
νson,ν′

son

]

:= recursivelyDetermineBlock(νson, νson′)

end

return
[

Qν
j,Φ,Q

ν
j,Σ

]⊺

[

K
Φ,Φ
νson1

,ν′
son1

K
Φ,Φ
νson1

,ν′
son2

K
Φ,Φ
νson2

,ν′
son1

K
Φ,Φ
νson2

,ν′
son2

]

[

Qν′

j,Φ,Q
ν′

j,Σ

]

end

end

Algorithm 4: Computation of the compressed kernel matrix

Data: Cluster tree T , multiscale cluster bases V ν
Φ, V ν

Σ and transformations [Qν
j,Φ,Q

ν
j,Σ].

Result: Sparse matrix KΣ
ε

begin

setupColumn(X)

store the blocks the remaining blocks KΣ
ε,ν,X for ν ∈ T \ {X} in KΣ

ε (they have already been

computed by earlier calls to recursivelyDetermineBlock)

end

function setupRow recursively traverses the row cluster tree, i.e. the cluster tree associated to

the rows of the matrix, and assembles the corresponding column of the compressed matrix. The

function reuses the already computed blocks to the right of the column under consideration and

blocks at the bottom of the very same column.

16 HELMUT HARBRECHT AND MICHAEL MULTERER

Function setupColumn(ν ′)

begin

for all sons ν′son of ν′ do

setupColumn(ν′son)

end

store KΣ
ε,X,ν′ := setupRow(X, ν′) in KΣ

ε

end

Function setupRow(ν, ν ′)

begin

if ν is not a leaf then

for all sons νson of ν do

if νson and ν′ are not admissible then
[

K
Φ,Φ
νson,ν′ K

Φ,Σ
νson,ν′

K
Σ,Φ
νson,ν′ K

Σ,Σ
νson,ν′

]

:= setupRow(νson, ν
′)

else
[

K
Φ,Φ
νson,ν′ K

Φ,Σ
νson,ν′

K
Σ,Φ
νson,ν′ K

Σ,Σ
νson,ν′

]

:= recursivelyDetermineBlock(νson, ν
′)

end

end
[

K
Φ,Φ
ν,ν′ K

Φ,Σ
ν,ν′

K
Σ,Φ
ν,ν′ K

Σ,Σ
ν,ν′

]

:=
[

Qν
Φ,Q

ν
Σ

]⊺

[

K
Φ,Φ
νson1

,ν′ K
Φ,Φ
νson1

,ν′

K
Σ,Φ
νson2

,ν′ K
Σ,Φ
νson2

,ν′

]

else

if ν′ is a leaf cluster then
[

K
Φ,Φ
νson,ν′ K

Φ,Σ
νson,ν′

K
Σ,Φ
νson,ν′ K

Σ,Σ
νson,ν′

]

:= recursivelyDetermineBlock(νson, ν
′)

else

for all sons ν′son of ν’ do

if ν and ν′son are not admissible then

load already computed block

[

K
Φ,Φ
ν,ν′

son

K
Φ,Σ
ν,ν′

son

K
Σ,Φ
ν,ν′

son

K
Σ,Σ
ν,ν′

son

]

else
[

K
Φ,Φ
ν,ν′

son

K
Φ,Σ
ν,ν′

son

K
Σ,Φ
ν,ν′

son

K
Σ,Σ
ν,ν′

son

]

:= recursivelyDetermineBlock(ν, νson′)

end

end

end
[

K
Φ,Φ
ν,ν′ K

Φ,Σ
ν,ν′

K
Σ,Φ
ν,ν′ K

Σ,Σ
ν,ν′

]

:=

[

K
Φ,Φ
ν,ν′

son1

K
Φ,Φ
ν,ν′

son2

K
Σ,Φ
ν,ν′

son1

K
Σ,Φ
ν,ν′

son2

]

[

Qν′

Φ ,Qν′

Σ

]

end

store K
Σ,Σ
ν,ν′ as part of KΣ

ε return

[

K
Φ,Φ
ν,ν′ K

Φ,Σ
ν,ν′

K
Σ,Φ
ν,ν′ K

Σ,Σ
ν,ν′

]

end

Remark 5.9. Algorithm 4 has a cost of O(N logN) and requires an additional storage of

O(N logN) if all stored blocks are directly released when they are not required anymore. We

refer to [1] for all the details.

SAMPLETS: CONSTRUCTION AND SCATTERED DATA COMPRESSION 17

6. Numerical results

6.1. Data compression. To demonstrate the efficacy of the samplet analysis, we compress data

in one, two and three spatial dimensions. For each example, we use samplets with q + 1 = 3

vanishing moments.

One dimension. We start with two one-dimensional examples. On the one hand, we consider

the function

f(x) =
3

2
e−40|x− 1

4
| + 2e−40|x| − e−40|x+ 1

2
|,

sampled at 8192 uniformly distributed random points on [−1, 1]. On the other hand, we consider

a sample path of the Brownian motion sampled at the same points. The coefficients of the sam-

plet transformed data are thresholded with 10−i‖fΣ‖∞, i = 1, 2, 3, respectively. The resulting

compression ratios and the reconstructions can be found in Figure 2 and Figure 3, respectively.

One readily infers that in both cases high compression rates are achieved at high accuracy. In

case of the Brownian motion, the smoothing of the sample data can be realized by increasing the

compression rate, corresponding to truncating more and more detail information. Due to the

orthonormality of the samplet basis, this procedure amounts to a least squares fit of the data.

Figure 2. Sampled function approximated with different compression ratios.

Figure 3. Sampled Brownian motion approximated with different compression ratios.

Two dimensions. As a second application for samplets, we consider image compression. We use a

2000×2000 pixel grayscale landscape image depicted in Figure 4. The coefficients of the samplet

transformed image are thresholded with 10−i‖fΣ‖∞, i = 2, 3, 4, respectively. The corresponding

results and compression rates can be found on the left hand side of the figure. A visualization

of the samplet coefficients in case of the respective low compression can be found on the right

hand side of the figure. As can be seen, the samplets localize at the sharp features of the image.

18 HELMUT HARBRECHT AND MICHAEL MULTERER

Figure 4. Different compression rates of the test image (left) and dominant

samplet coefficients for the low compression (right).

Three dimensions. Finally, we show a data compression result in three dimensions. Here, the

data are generated for a uniform subsample of a surface triangulation of the Stanford bunny. We

consider data resulting from the evaluation of the function

f(x) = e−20‖x−p0‖2 + e−20‖x−p1‖2 ,

where the points p0 and p1 are located at the tips of the bunny’s ears. The plot on the left

hand side of Figure 5 visualizes the sample data, while the plot on the right hand side shows the

dominant coefficients in case of a threshold parameter of 10−2‖fΣ‖∞. The samplets perfectly

refine towards the points of interest p0 and p1.

Figure 5. Data on the Stanford bunny (left) and dominant samplet coefficients (right).

6.2. Compression of kernel matrices. All computations in this section have been performed

on a single node with two Intel Xeon E5-2650 v3 @2.30GHz CPUs and up to 512GB of main

SAMPLETS: CONSTRUCTION AND SCATTERED DATA COMPRESSION 19

memory1. To achieve consistent timings, only a single core was used for all computations. The

samplet compression is implemented in C++11 and relies on the Eigen template library2 for linear

algebra operations. To benchmark the compression, we consider two different kernel functions,

namely the exponential kernel kexp and the rational quadratic kernel kRQ given by

kexp(x,y) = e−‖x−y‖2 , kRQ(x,y) =
1

√

1 + ‖x− y‖22
,

see e.g. [43]. The exponential kernel decays exponentially for ‖x − y‖2 → ∞ and exhibits

a kink for x = y. On the other hand, the rational quadratic kernel only decays linearly for

‖x−y‖2 → ∞, while the kernel itself is smooth. In what follows, we consider the compression of

these kernel functions, for data sets based on uniformly distributed points and on exponentially

distributed points.

Figure 6. Test data sets for d = 2 and d = 3. We consider uniformly distributed

random points on the hypercube with randomly cut out circular holes.

Uniformly distributed points. In this benchmark problem, the data set is selected from the hy-

percube [0, 1]d with randomly distributed cut out circular holes. The radii of the holes are

exponentially distributed, while their position is uniformly distributed. The points themselves

are uniformly distributed, see Figure 6 for a visualization of two data sets for d = 2, 3. The con-

vergence of the samplet compression is steered by the parameter η in the admissibility condition

and the number of vanishing moments. In the experiments, we shall keep η fixed and increase

the number of vanishing moments. In addition, we introduce an a-posteriori thresholding of

small matrix entries using the parameter τ , i.e. all entries whose modulus is smaller than τ are

neglected. Finally, to keep the consistency error issuing from the kernel approximation (18) in

the admissible blocks of the order of the compression error, we have to increase the polynomial

degree p of the kernel approximation when increasing the number of vanishing moments. The

respective parameter values can be found in Table 1. As a measure of sparsity, we introduce the

q = 0 q = 1 q = 2 q = 3

mq 1, 1, 1 2, 3, 4 3, 6, 10 4, 10, 20

p 2 3 4 6

η 1.25 1.25 1.25 1.25

τ 10−2 10−3 10−4 10−5

Table 1. Parameters chosen for the different numbers of vanishing moments.

The three numbers for mq correspond to d = 1, 2, 3.

1The full specifications can be found on https://www.euler.usi.ch/en/research/resources.
2https://eigen.tuxfamily.org/

20 HELMUT HARBRECHT AND MICHAEL MULTERER

average number of nonzeros per row

anz(A) :=
nnz(A)

N
, A ∈ R

N×N ,

where nnz(A) is the number of nonzero entries of A.

uniformly distributed points and kexp

Figure 7. Number of entries per row (left), relative compression error (middle)

and computation time (right) for d = 1, 2, 3 for the exponential kernel kexp and

uniformly distributed points.

Figure 7 shows the numerical results in case of the exponential kernel kexp and uniformly dis-

tributed points. The left column shows the values for anz(KΣ
ε). The middle column shows the

relative compression errors, where we have approximated the Frobenius norm by randomly sam-

pling 100 columns of the original kernel matrix and the respective columns of the compressed

one. The right column of Figure 7 shows the computation times for the matrix compression.

Here, the dashed lines correspond to the asymptotics N logαN for α = 0, 1, 2, 3. As we keep

the precision fixed, the average number of matrix entries per row decreases for d = 1, 2, 3 and

increasing N . Moreover, we see that the compression error reduces approximately by one order

of magnitude if the number of vanishing moments is increased by one. For d = 1, we retrieve a

log-linear rate for all numbers of vanishing moments. For d = 2, 3, we observe α > 1 for higher

SAMPLETS: CONSTRUCTION AND SCATTERED DATA COMPRESSION 21

uniformly distributed points and kRQ

Figure 8. Number of entries per row (left), relative compression error (middle)

and computation time (right) for d = 1, 2, 3 for the rational quadratic kernel kRQ

and uniformly distributed points.

numbers of vanishing moments. Even so, it seems that the power is reduced for larger values of

N , indicating a preasymptotical behavior.

Figure 8 shows the same metrics as before in case of the rational quadratic kernel kRQ. As the

kernel is analytic, we observe a very low average number of entries per row, while obtaining a

very high accuracy, particularly in case q = 3. The computation times are similar to the case of

the exponential kernel.

Exponentially distributed points. To demonstrate that samplets also work on non-quasi-uniform

data sets, we consider the hypercube [0, 1]d with randomly distributed cut out circular holes

from before. This time, the points are exponentially distributed with respect to their distance

from the origin. Figure 9 shows a visualization of the data set for d = 2, 3. Figure 10 shows

the respective results for the exponential kernel. The average numbers of entries per row and

the computation times are very similar to the case of uniformly distributed points, while the

approximation error is slightly larger.

22 HELMUT HARBRECHT AND MICHAEL MULTERER

Figure 9. Test data sets for d = 2 and d = 3. We consider exponentially

distributed random points, with respect to the origin, on the hypercube with

randomly cut out circular holes.

The results for the rational quadratic kernel are found in Figure 11. As for the exponential

kernel, there are no significant qualitative differences between the two point distributions, except

that the compression error is slightly larger.

exponentially distributed points and kexp

Figure 10. Number of entries per row (left), relative compression error (middle)

and computation time (right) for d = 1, 2, 3 for the exponential kernel kexp and

exponentially distributed points.

SAMPLETS: CONSTRUCTION AND SCATTERED DATA COMPRESSION 23

exponentially distributed points and kRQ

Figure 11. Number of entries per row (left), relative compression error (middle)

and computation time (right) for d = 1, 2, 3 for the rational quadratic kernel kRQ

and exponentially distributed points.

Simulation of a Gaussian random field. As final example, we consider a Gaussian random field

evaluated at randomly chosen points at the surface of the Stanford bunny. The bounding box

of the Stanford bunny is given by [−1.89, 1.22] × [−0.34, 2.75] × [−1.24, 1.176] and we consider

the exponential kernel kexp as covariance function, while we set the mean to zero. In order to

demonstrate that our approach works also for dimensions larger than 3, the Stanford bunny

has been embedded into R
4 and randomly rotated to prevent axis-aligned bounding boxes. The

parameters are set to q = 2, p = 4, η = 1.25, τ = 10−3, which results in a relative compression

error of about 3 · 10−4 for N = 1000 000 points. For the simulation of the Gaussian random

field, we compute the Cholesky decomposition of the compressed covariance matrix. To this end,

we have added a ridge parameter of ρ = 10−6 relative to the trace of the covariance matrix.

The Cholesky decomposition is performed using the nested dissection ordering implemented in

the METIS library, cp. [29]. The graph on the left of Figure 12 shows the computation times

for the Cholesky decomposition including the ordering of the matrix. As can be seen, the

computation times are even better than the expected rate of O(N3/2) for graphs that exhibit a√
N -separator. The associated number of entries per row is about 1000. The sparsity pattern of

24 HELMUT HARBRECHT AND MICHAEL MULTERER

KΣ
ε for N = 100 000 can be found in the middle of Figure 12, while the corresponding sparsity

pattern of the Cholesky factor is found on the right. Each dot represents a matrix block of size

100×100, lighter blocks have less entries. Performing an a-posteriori thresholding of the Cholesky

factor with 10−6 reduces this number by about 30%, while a thresholding with 10−3 even reduces

this number by about 80%. Four different realizations of the corresponding Gaussian random

field field projected to R
3 are shown in Figure 13.

Figure 12. Computation times for the Cholesky decomposition for kexp and

corresponding values for anz(L) (left), sparsity pattern of KΣ
ε (middle) and spar-

sity pattern of L (right) for the four dimensional Stanford bunny. Each dot

represents a 100× 100 matrix block, lighter blocks have less entries.

Figure 13. Four different realizations of a Gaussian random field with covariance

kexp on a Stanford bunny embedded into four dimensions for N = 100 000 (three

dimensional projection shown).

7. Conclusion

Samplets are multiresolution approach for the analysis of large data sets. They are easy to

construct and scattered data can be transformed into a samplet basis with linear cost. In our

construction, we deliberately let out the discussion of a level dependent compression of the given

data, as it is known from wavelet analysis, in favor of a robust error analysis. We emphasize

however that, under the assumption of uniformly distributed points, different norms can be

incorporated, allowing for the construction of band-pass filters and level dependent thresholding.

In this situation, also an improved samplet matrix compression is possible such that a fixed

number of vanishing moments would be sufficient to achieve a precision proportional to the fill

distance with log-linear cost.

Besides data compression, detection of singularities and adaptivity, we have demonstrated how

samplets can be employed for the compression of kernel matrices to obtain sparse representations.

Having a sparse representation of the kernel matrix, algebraic operations, such as matrix vector

multiplications can considerably be sped up. Moreover, in combination with a fill-in reducing

SAMPLETS: CONSTRUCTION AND SCATTERED DATA COMPRESSION 25

reordering, the factorization of the compressed kernel matrix becomes computationally feasible.

This, in turn, allows for the fast application of the inverse kernel matrix on the one hand and the

efficient solution of linear systems involving the kernel matrix on the other hand. The numerical

results, featuring about 5 ·106 data points in up to four dimensions, demonstrate the capabilities

of samplets.

Future research will be directed to the extension of samplets towards high-dimensional data. This

extension requires the incorporation of different clustering strategies, such as locality sensitive

hashing, to obtain a manifold-aware cluster tree and the careful construction for the vanishing

moments, for example by anisotropic polynomials.

References

[1] D. Alm, H. Harbrecht, and U. Krämer. The H
2-wavelet method. J. Comput. Appl. Math., 267:131–159, 2014.

[2] B.K. Alpert. A class of bases in L
2 for the sparse representation of integral operators. SIAM J. Math. Anal.,

24(1):246–262, 1993.

[3] N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68(3):337–404, 1950.

[4] G. Beylkin, R. Coifman, and V. Rokhlin. The fast wavelet transform and numerical algorithm. Comm. Pure

Appl. Math, 44:141–183, 1991.

[5] S. Börm. Efficient numerical methods for non-local operators: H
2-matrix compression, algorithms and anal-

ysis. European Mathematical Society, Zürich, 2010.

[6] C.K. Chui. An introduction to wavelets. Academic Press, San Diego, 1992.

[7] C.K. Chui and E. Quak. Wavelets on a bounded interval. Numer. Meth. Approx. Theory, 9:53–75, 1992.

[8] A. Cohen. Numerical Analysis of Wavelet Methods. Elsevier, Amsterdam, 2003.

[9] R.R. Coifman and M. Maggioni. Diffusion wavelets. Appl. Comput. Harmon. Anal., 21(1):53–94, 2006.

[10] W. Dahmen. Wavelet and multiscale methods for operator equations. Acta Numer., 6:55–228, 1997.

[11] W. Dahmen, H. Harbrecht, and R. Schneider. Compression techniques for boundary integral equations.

Optimal complexity estimates. SIAM J. Numer. Anal., 43(6):2251–2271, 2006.

[12] W. Dahmen, A. Kunoth, and K. Urban. Biorthogonal spline wavelets on the interval – stability and moment

conditions. Appl. Comp. Harm. Anal., 6(2):132–196, 1999.

[13] W. Dahmen, S. Prößdorf, and R. Schneider. Wavelet approximation methods for pseudodifferential equations

ii: Matrix compression and fast solution. Adv. Comput. Math., 1(3):259–335, 1993.

[14] W. Dahmen and R. Stevenson. Element-by-element construction of wavelets satisfying stability and moment

conditions. SIAM J. Numer. Anal., 37(1):319–352, 1999.

[15] I. Daubechies. Ten lectures on wavelets. Society of Industrial and Applied Mathematics, Philadelphia, 1992.

[16] R. A. DeVore. Nonlinear approximation. Acta Numer., 7:51–150, 1998.

[17] G.E. Fasshauer. Meshfree approximation methods with MATLAB. World Scientific, River Edge, 2007.

[18] A. George. Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal., 10(2):345–363, 1973.

[19] K. Giebermann. Multilevel approximation of boundary integral operators. Computing, 67:183–207, 2001.

[20] D. Gines, G. Beylkin, and J. Dunn. LU factorization of non-standard forms and direct multiresolution solvers.

Appl. Comput. Harmon. Anal, 5(2):156–201, 1998.

[21] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys., 73(2):325–348,

1987.

[22] W. Hackbusch. Hierarchical Matrices: Algorithms and Analysis. Springer, Berlin Heidelberg, 2015.

[23] W. Hackbusch and S. Börm. H2-matrix approximation of integral operators by interpolation. Appl. Numer.

Math., 43(1–2):129–143, 2002.

[24] H. Harbrecht, U. Kähler, and R. Schneider. Wavelet Galerkin BEM on unstructured meshes. Comput. Vis.

Sci., 8(3–4):189–199, 2005.

[25] H. Harbrecht and M. Multerer. A fast direct solver for nonlocal operators in wavelet coordinates. J. Comput.

Phys., 428:110056, 2021.

[26] H. Harbrecht and R. Schneider. Biorthogonal wavelet bases for the boundary element method. Math. Nachr.,

269(1):167–188, 2004.

[27] T. Hofmann, B. Schölkopf, and A.J. Smola. Kernel methods in machine learning. Ann. Stat., 36(3):1171–1220,

2008.

[28] U. Kähler. H2-wavelet Galerkin BEM and its application to the radiosity equation. Dissertation TU Chemnitz,

Chemnitz, 2007.

26 HELMUT HARBRECHT AND MICHAEL MULTERER

[29] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM

J. Sci. Comput., 20(1):359–392, 1998.

[30] R.J. Lipton, D.J. Rose, and R.E. Tarjan. Generalized nested dissection. SIAM J. Numer. Anal., 16(2):346–

358, 1979.

[31] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, San Diego, 1999.

[32] S. Mallat. Understanding deep convolutional networks. Philos. Trans. R. Soc. A, 374(2065):20150203, 2016.

[33] W.B. March, B. Xiao, S. Tharakan, D.Y. Chenhan, and G. Biros. A kernel-independent FMM in general

dimensions. In SC’15: Proceedings of the International Conference for High Performance Computing, Net-

working, Storage and Analysis, pages 1–12, 2015.

[34] H. Owhadi and C. Scovel. Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization: From

a Game Theoretic Approach to Numerical Approximation and Algorithm Design, volume 35. Cambridge

University Press, Cambridge, 2019.

[35] I. Ram, M. Elad, and I. Cohen. Generalized tree-based wavelet transform. IEEE Trans. Signal Process.,

59(9):4199–4209, 2011.

[36] R. Schaback and H. Wendland. Kernel techniques: from machine learning to meshless methods. Acta Numer.,

15:543–639, 2006.

[37] F. Schäfer, T.J. Sullivan, and H. Owhadi. Compression, inversion, and approximate PCA of dense kernel

matrices at near-linear computational complexity. SIAM Multiscale Model. Simul., 19(2):688–730, 2021.

[38] R. Schneider. Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur Lösung großer

vollbesetzter Gleichungssysteme. B.G. Teubner, Stuttgart, 1998.

[39] J. Tausch and J. White. Multiscale bases for the sparse representation of boundary integral operators on

complex geometry. SIAM J. Sci. Comput., 24(5):1610–1629, 2003.

[40] T. von Petersdorff and C. Schwab. Fully discrete multiscale Galerkin BEM. In W. Dahmen, A. Kurdila, and

P. Oswald, editors, Multiscale wavelet methods for PDEs, pages 287–346. Academic Press, San Diego, 1997.

[41] T. von Petersdorff, C. Schwab, and R. Schneider. Multiwavelets for second-kind integral equations. SIAM J.

Numer. Anal., 34(6):2212–2227, 1997.

[42] H. Wendland. Scattered Data Approximation. Cambridge University Press, Cambridge, 2004.

[43] C.K. Williams and C.E. Rasmussen. Gaussian processes for machine learning. MIT Press, Cambridge, 2006.

[44] C.K.I. Williams. Prediction with Gaussian processes. From linear regression to linear prediction and beyond.

In M.I. Jordan, editor, Learning in Graphical Models, volume 89 of NATO ASI Series (Series D: Behavioural

and Social Sciences). Springer, Dordrecht, 1998.

[45] L. Ying, G. Biros, and D. Zorin. A kernel-independent adaptive fast multipole algorithm in two and three

dimensions. J. Computat. Phys., 196(2):591–626, 2004.

Helmut Harbrecht, Departement für Mathematik und Informatik, Universität Basel, Spiegel-

gasse 1, 4051 Basel, Switzerland.

Email address: helmut.harbrecht@unibas.ch

Michael Multerer, Euler Institute, USI Lugano, Via la Santa 1, 6962 Lugano, Svizzera.

Email address: michael.multerer@usi.ch

