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Abstract

Although it is well appreciated that gene expression is inherently noisy and that transcrip-

tional noise is encoded in a promoter’s sequence, little is known about the extent to which

noise levels of individual promoters vary across growth conditions. Using flow cytometry, we

here quantify transcriptional noise in Escherichia coli genome-wide across 8 growth condi-

tions and find that noise levels systematically decrease with growth rate, with a condition-

dependent lower bound on noise. Whereas constitutive promoters consistently exhibit low

noise in all conditions, regulated promoters are both more noisy on average and more vari-

able in noise across conditions. Moreover, individual promoters show highly distinct varia-

tion in noise across conditions. We show that a simple model of noise propagation from

regulators to their targets can explain a significant fraction of the variation in relative noise

levels and identifies TFs that most contribute to both condition-specific and condition-inde-

pendent noise propagation. In addition, analysis of the genome-wide correlation structure of

various gene properties shows that gene regulation, expression noise, and noise plasticity

are all positively correlated genome-wide and vary independently of variations in absolute

expression, codon bias, and evolutionary rate. Together, our results show that while abso-

lute expression noise tends to decrease with growth rate, relative noise levels of genes are

highly condition-dependent and determined by the propagation of noise through the gene

regulatory network.

Introduction

It is by now well established that isogenic cells growing in a homogeneous environment show

cell-to-cell fluctuations in gene expression (for example, [1–4]). This gene expression noise is

not surprising from a biophysical perspective, given the inherent thermodynamic fluctuations

in the molecular events underlying gene expression and the small numbers of molecules

involved. In the simplest models of gene expression, where promoters are transcribed at a con-

stant rate, the “intrinsic” noise in gene expression would simply grow in proportion to the
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square root of a gene’s absolute expression level (for example, [5]). However, even in bacteria

where the gene expression process is considerably simpler than in eukaryotes, genes typically

exhibit significantly higher levels of transcriptional noise, indicating that transcription rates

fluctuate in time and across cells due to “extrinsic” factors [1]. Moreover, studies of genome-

wide gene expression noise in bacteria have shown that genes with the same absolute expres-

sion can exhibit different noise levels and that the transcriptional noise of a gene is to a sub-

stantial extent encoded in its promoter sequence [6–9]. However, how the promoter sequence

of a gene determines its transcriptional noise and what factors are the main drivers of differ-

ences in transcriptional noise remains largely unknown.

In addition, because genome-wide studies have so far focused on gene expression noise in a

single growth condition, it is currently not clear to what extent gene expression noise in bacte-

ria is condition-dependent. That is, we do not know to what extent absolute noise levels vary

across growth conditions and whether genes with the highest noise in one condition also

exhibit the highest noise in other conditions.

A systematic investigation into the condition dependence of genome-wide gene expression

noise may provide important insights into what drives both absolute and relative noise levels

of promoters. For example, it is possible that transcriptional noise is mostly driven by fluctua-

tions in general factors, for example, the concentrations of RNA polymerases and nucleotides,

and the overall state of the DNA. For example, it has been suggested that noise levels in yeast

are mainly determined by basic promoter architecture and associated nucleosome positioning

(see [10] and citations therein). Similarly, since supercoiling of the DNA has been reported to

control the sizes of transcriptional bursts in Escherichia coli [11], it is conceivable that a pro-

moter’s noise properties depend on its sensitivity to supercoiling. If differences in transcrip-

tional noise across promoters result mainly from differences in the sensitivity of promoters to

such global factors, then one would expect the same promoters to show highest noise across

conditions.

Alternatively, instead of a promoter’s noise level being an intrinsic feature of its architec-

ture, a promoter’s noise might be determined by the way it is regulated in a given condition.

Since the transcription rate of a promoter will generally depend on the binding of transcription

factors (TFs), a promoter’s transcription rate will fluctuate as TFs stochastically bind and

unbind to it. The rates of binding and unbinding of TFs in turn depend on average expression

levels and fluctuations in expression levels of TFs across cells [8,12–14]. Consequently, fluctua-

tions in both the expression levels of TFs and their binding to promoter regions will thus

unavoidably propagate to fluctuations in expression of their target genes [15–19].

That noise propagation may play an important role for genome-wide gene expression noise

was suggested by results we obtained in a previous study in which we measured genome-wide

gene expression noise of E. coli promoters in a single growth condition and compared this

with expression noise of synthetic promoters that were selected from a large library of 100 to

150 bp random sequence fragments [9]. We not only found that the synthetic promoters gen-

erally exhibited low expression noise, but also found that native promoters with high expres-

sion noise tended to have more known regulatory inputs from TFs than genes with low

expression noise. To explain these observations, we developed an evolutionary theory in [9]

explaining why natural selection may favor noisy gene regulation in many situations. How-

ever, to what extent genome-wide gene expression noise is indeed determined by noise propa-

gation is currently unclear, and one of the motivations of this study is to systematically

investigate this experimentally.

As TFs change their expression levels across growth conditions, so will the fluctuations in

their binding at their target promoters. Consequently, a key characteristic that distinguishes

noise propagation from other sources of expression noise is that this noise will be highly
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condition-dependent. Therefore, a systematic investigation of how genome-wide noise levels

of promoters vary across condition should directly provide insights into the role of noise

propagation.

To investigate the condition dependence of gene expression noise and elucidate the roles of

both global factors and noise propagation, we systematically quantified genome-wide gene

expression noise in E. coli across 8 different conditions that represent a wide range of growth

rates and include different nutrients, different types of stress, and stationary phase.

Results

Expression noise levels vary substantially across conditions and

systematically decrease with growth rate

Using methodology already employed in several previous studies [7,9,20], we used flow cytom-

etry together with a library of fluorescent transcriptional reporters [21] to measure gene

expression distributions of E. coli promoters genome-wide across a set of 8 different growth

conditions (Fig 1A). The library of fluorescent reporters consists of most of E. coli’s intergenic

regions inserted upstream of a strong ribosomal binding site and a fast-folding GFP on a low

copy number plasmid. As we have shown previously [9], the GFP levels of these reporters

reflect transcriptional activity, since translation and mRNA decay rates vary little across these

reporters, which have almost identical mRNAs.

The growth conditions (see SI Methods and Texts in S1 Text) were chosen to span a wide

range of growth rates (Fig A in S1 Text), cell physiologies (Fig B in S1 Text), and regulatory

states. They consist of MOPS synthetic rich media, M9 minimal media with 3 different carbon

sources (0.2% glucose, 0.2% glycerol, and 0.2% lactose), 2 stresses (sub-MIC antibiotic: cipro-

floxacin 1.5 ng/ml + 0.2% glucose and osmotic: 0.4 M NaCl + 0.2% glucose), and 2 time points

in stationary phase (after 16 h and 30 h of growth in 0.2% glucose, respectively). We used

microscopy to image cells from each growth condition and found that, consistent with the

known relationship between growth rate and cell physiology [22], cell size generally increased

with growth rate (Fig C in S1 Text).

For each condition and each promoter, we used high-throughput flow cytometry to mea-

sure GFP levels for thousands of single cells. Apart from the 2 stationary phase conditions, all

measurements were taken during mid-exponential phase. In total, we gathered 500000 single-

cell measurements for each of the 1,810 promoters in the library across 8 conditions, including

some conditions in replicate. As observed previously [9], the fluorescence distributions can be

well fitted with log-normal distributions, and we thus characterized each fluorescence distribu-

tion by the mean and variance of log-fluorescence. We note that, since flow cytometry mea-

surements are themselves noisy, inferring means and variances from the raw measurements

requires careful computational procedures, and we here use a set of procedures that we

recently developed [23]. These include using forward and side scatter to identify events corre-

sponding to cells and fits the log-fluorescence distribution by a mixture of a Gaussian and uni-

form distributions to remove possible outliers (for example, contaminants and nongrowing

cells), as described in [23].

Replicate measurements performed on different days were highly reproducible, with Pear-

son squared correlations R2>0.99 for the mean between replicates in all conditions and

squared correlations for the variance ranging from R2 = 0.85 to R2 = 0.95 (Fig D in S1 Text). In

order to determine whether this variability derived mainly from biological variation from day

to day or from measurement noise, we performed a time course experiment where we repeat-

edly measured the same culture at different time points during exponential growth and found

that both the mean and variance measurements were extremely reproducible in these
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Fig 1. Genome-wide expression noise of E. coli promoters varies significantly with growth condition. (A) For each growth condition and E. coli promoter,

we used flow cytometry to measure the distribution of GFP levels across single cells of the corresponding fluorescent reporter. The 8 growth conditions

comprised synthetic rich media, minimal media with different carbon sources, an osmotic and DNA damage stress, and 2 time points in stationary phase. (B)

Mean (x-axis) and variance (y-axis) of log GFP levels for all promoters with expression above background level for growth in M9 0.2% lactose (see Fig G in S1

Text for results in all conditions). The blue line shows the fitted minimal variance as a function of mean expression and the corresponding noise floor ac is

indicated with an arrow. The insets show distributions of log-GFP levels for 2 example promoters. (C) The noise floor ac as a function of the growth rate in the

respective condition (stationary phase at 30 h not shown). The dotted line indicates a linear fit (with Pearson squared correlation coefficient R2 indicated). (D)

To compare noise of promoters with different means, we defined the noise level of a promoter as the difference between its variance and the fitted minimal

variance at its mean expression. Shown are noise levels versus mean for promoters in M9 0.2% lactose. (E) Noise level distributions of the full library in each of

the measured conditions. The horizontal lines indicate the medians. The vertical scale is clipped at 0.35 for better visibility (Fig H in S1 Text has the full

distributions). The underlying data for Fig 1 can be found in S1 Data and https://doi.org/10.5281/zenodo.4662163.

https://doi.org/10.1371/journal.pbio.3001491.g001
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experiments (Fig E and F in S1 Text). This implies that variation in measurements from differ-

ent days are mostly due to uncontrolled biological variation, and not measurement noise. This

also implies that genes exhibit more biological variation in their noise levels across days than

in their mean expression.

To illustrate the typical form that the distribution of means and variances of log-expression

across promoters takes, Fig 1B shows the variance as a function of mean for each promoter

measured in M9 minimal media + 0.2% lactose (see Fig G in S1 Text for all conditions). Note

that the variance in log-expression is equal to the square of the coefficient of variation (CV2)

whenever fluctuations are small relative to the mean [9]. This approximation applies in our

data, as the majority of promoters (approximately 75% across all conditions) have a variance

smaller than 0.3 (Fig G in S1 Text).

As has been observed in previous studies [6,9,24,25], we find that there is a clear lower

bound on noise as a function of the mean expression level of the promoter (Fig 1B), which

decreases with mean, and asymptotes to a fixed lower bound at high mean expression. A quali-

tatively similar curve is observed in all growth conditions (Fig G in S1 Text). As derived previ-

ously [9] and explained in the S1 Text, the functional form of the minimal variance as a

function of mean expression can be derived, assuming that GFP variance is the sum of 2

terms: one “multiplicative” contribution with variance proportional to the square of the mean

expression, and one “Poissonian” contribution with variance proportional to mean expression.

The Poissonian term, whose magnitude we denote by bc and is often referred to as the “intrin-

sic noise” term, could in principle derive from intrinsic expression noise whose magnitude

scales proportional to mean expression [6,26].

However, by comparing microscopy and flow cytometry measurements we have recently

shown that, at these expression levels, the component bc derives almost entirely from the mea-

surement noise of the flow cytometer [23]. We will refer to the multiplicative term as the

“noise floor” ac, which is often referred to as an “extrinsic noise” contribution. In contrast to

the Poissonian term, whose contribution decreases with increasing mean and is negligible for

highly expressed promoters, the contribution of the noise floor is independent of expression

mean and corresponds to the minimal variance for highly expressed promoters. As shown in

Fig G in S1 Text, the same functional form describes the minimal variance in all conditions,

and we estimated the noise floor ac for each condition.

We observed that the noise floor ac systematically decreases with growth rate over the entire

range of growth rates. Although we currently lack a theoretical model for how this noise floor

depends on growth rate, we noted that the dependence is well fit by a simple linearly decreas-

ing function (R2 = 0.96; Fig 1C). However, we stress that this is only a phenomenological

observation valid for the growth conditions considered here and that it is currently unclear

whether this relationship generalizes to other conditions, for example, when growth rate is

modulated by subinhibitory levels of antibiotics. The noise floor ac likely reflects the minimal

noise that every promoter is subject to due to general fluctuations in the physiological state of

the cell including overall transcription, translation, mRNA decay, and growth [1,6]. Since we

are measuring total protein levels per cell, one possible contribution to the noise floor is the

variation in cell sizes. Although average cell size increases systematically with growth rate (Fig

C in S1 Text), we find that the coefficient of variation of cell size does not vary much across

conditions and shows no correlation with either the growth rate or the noise floor (Fig I in S1

Text). Therefore, changes in the cell size distribution do not explain the decrease of the noise

floor with growth rate.

Since our reporter constructs use a low copy number plasmid, some of the observed varia-

tion in expression levels may derive from plasmid copy number fluctuations. We note that,

since the only differences between the reporter constructs are the short promoter sequences
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upstream of the GFP gene, all differences in the log-expression means and variances of differ-

ent promoters within a given condition must be due to the differences in their promoter

sequences. However, it is conceivable that plasmid copy number variations contribute signifi-

cantly to the noise floor across conditions. As detailed in the S1 Text, we tested this hypothesis

by selecting a set of promoters that were observed to have noise near the noise floor across all

conditions, created chromosomal constructs for these promoters, and systematically compared

mean and variance in log-expression of these chromosomal constructs with the corresponding

plasmid-based reporters. As shown in Fig J in S1 Text, we find that whereas mean expression

levels of the plasmid reporters are consistently about 6.5 times higher than the corresponding

chromosomal reporters, the noise levels of the plasmid and chromosomal constructs are very

similar, with differences generally within the error bars. These results show that plasmid copy

number noise is either similar to the chromosomal copy number noise or that the copy num-

ber noise is small compared to other factors that determine the noise floor.

An anticorrelation between noise and growth rate, similar to the one we observe here, has

previously been observed in eukaryotes but was proposed to derive from heterogeneity in cell

cycle stage [27]. However, our results show that this general anticorrelation between noise and

growth rate also occurs in prokaryotes that do not have analogous cell cycle stages.

In order to have a measure of the relative levels of noise of genes that is not confounded by

the systematic dependence on mean expression, we defined the noise level Npc of promoter p
in condition c as the difference between its variance in log-fluorescence and the noise floor,

that is, the minimal variance at its mean expression level (see S1 Text, equation (3)). As shown

in Fig 1D, the noise levels Npc indeed no longer show any systematic dependence on mean

expression, and this is observed across all conditions (Fig G in S1 Text).

Fig 1E shows the distribution of noise levels Npc in each of the conditions, sorted from high

to low growth rate. We see that not only the noise floor, but also the distribution of noise levels

on top of this noise floor varies substantially across conditions. Moreover, like the noise floor,

both the median of the noise levels Npc as well as the variability in noise levels increase as the

growth rate decreases, for example, the noise levels are lowest in synthetic rich conditions

(p = 3×10−30, Wilcoxon rank-sum test) and highest at 30 h of stationary phase (p = 5×10−68,

Wilcoxon rank sum test). That is, not only do minimal noise levels increase as growth rate

decreases, the variability in noise levels across genes increases as well. The only exception to

this general trend is the osmotic stress condition M9 + 0.4 M NaCl, which has relatively low

variability in noise levels Npc compared to other conditions with similar growth rate (Fig 1E),

even though its noise floor is not deviating from the general dependence on growth rate.

These results show that the physiological state of the cell has a major influence on the distri-

bution of absolute noise levels and that both the mean and variation in noise levels generally

decreases with growth rate. We now turn to investigating how the relative noise levels of differ-

ent promoters vary across the measured conditions.

Individual promoters show highly diverse changes in noise across

conditions

If changes in noise levels across conditions were mostly driven by fluctuations in global factors

such as concentrations of RNA polymerase, we would expect different genes to exhibit coher-

ent changes in noise across conditions. For example, relative noise levels of different genes

may remain relatively unchanged across conditions, or alternatively, noise levels might rescale

across conditions as a function of the mean expression of the gene in the condition. However,

this is not what we observe. Instead, different promoters show highly diverse changes in their

noise levels across conditions (Fig 2).
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Following the general usage of the word plasticity to refer to the adaptability of the pheno-

type to changes in the environment, we will refer to the variance of a promoter’s mean and

noise level across conditions as the plasticity of its mean and noise. The plasticity of both mean

and noise vary over a substantial range across promoters, without any clear systematic depen-

dence between these quantities. Analogous scatter plots for the variation and dependence

between average expression, average noise, and the plasticities in mean and noise show that all

these quantities vary substantially across promoters (Fig K in S1 Text). That is, individual pro-

moters show highly distinct variation in their mean and noise across conditions, and Fig 2B–

2G shows some examples of the different behaviors we observe. Note that all observations in

these panels have error bars that show the standard error of measured mean and noise across

biological replicates. We observe promoters that are low noise in almost all conditions, either

with high plasticity in mean (Fig 2B) or low plasticity in mean (Fig 2C). Other promoters show

high noise with plasticity in both the mean and noise level, without clear correlation between

Fig 2. Individual promoters show diverse patterns of variation in noise levels across conditions. (A) Scatter plot showing the expression plasticity (variance across

conditions, horizontal axis) and noise (variance in noise across conditions) of all measured promoters. (B-G) Examples of condition-dependent mean and noise of

individual promoters. Each panel shows the noise level as a function of mean across conditions (colors; see legend) for one promoter, with the gene regulated by the

promoter indicated in each panel. Error bars denote standard errors of the estimates based on biological replicate measurements. Each of the 3 pairs of panels

indicate different types of behavior in mean and noise across conditions, as described at the top of each pair of panels. The underlying data for Fig 2 can be found in

S1 Data and https://doi.org/10.5281/zenodo.4662163.

https://doi.org/10.1371/journal.pbio.3001491.g002
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mean and noise level (Fig 2D and 2E). But many other patterns of behavior can be observed,

such as promoters that show only low noise when the promoter has high mean (Fig 2F) or

only low noise when the promoter has low mean (Fig 2G).

The growth media were not predictive for how individual genes were going to change their

mean and noise. For example, while overall the whole library is shifted towards lower noise in

synthetic rich media, individual genes can show higher noise in this condition compared to

other conditions (for example, Fig 2B and 2F). We highlighted this particular condition as an

example, but the same observation applies to others. These observations indicate that global

changes in the cell physiology or in the expression level cannot explain how the noise of a pro-

moter varies across conditions. This implies that there is a promoter-specific source of noise

shaping condition-dependent gene expression variability. Just as the plasticity in mean expres-

sion derives from gene regulation, one obvious hypothesis is that this promoter-dependent

source of condition-dependent noise derives from gene regulation as well.

Noise propagation predicts that relative noise levels are condition-

dependent

As mentioned in the introduction, the mechanistic basis for gene expression regulation is that

the binding and unbinding of TFs to a promoter causes the transcription rate from this pro-

moter to change. Consequently, fluctuations in the expression levels of TFs and their binding

to promoter regions will unavoidably propagate to fluctuations in the expression of their target

genes [8,12–19]. While the general decrease of absolute noise levels with growth rate (Fig 1C

and 1E) is likely due to general physiological fluctuations that affect all promoters, the highly

diverse changes in the relative noise levels of different promoters across conditions (Fig 2) is

exactly what is expected to occur under a noise propagation scenario (Fig 3).

Let us consider a simple scenario in which 2 individual genes are each regulated by one TF,

that is, gene A is regulated by TF1 and gene B by TF2 (Fig 3A). As the activities of these TFs fluc-

tuate within a given condition, these fluctuations can propagate to their respective targets. For

example, in a condition where TF1 exhibits less variation in activity from cell to cell than TF2,

gene A will generally exhibit less expression noise than gene B (Fig 3A). In anticipation of analysis

presented below, it is important to stress that the distribution of “TF activity” shown in Fig 3A is

only a schematic representation of a much more complicated biophysical process at the molecu-

lar level, and different target promoters of the same TF might respond very differently to fluctua-

tions in the TF’s “activity.” Roughly speaking, the extent to which a TF X will propagate noise to a

given target promoter Y depends on how much the binding of TF X to promoter Y fluctuates in

time and across cells and how much the transcription rate of promoter Y depends on these fluc-

tuations in binding of TF X. For example, if promoter Y is already strongly repressed or activated

by another TF, the binding of TF X may be irrelevant for its transcription, and TF X will not

propagate noise to promoter Y. Even if the transcription rate of Y is sensitive to binding of TF X,

it may still be that binding affinities of the sites in promoter Y are so weak that the promoter is

essentially never bound or so strong that it is essentially always bound, even if the concentration

of TF X fluctuates from cell to cell. Only those target promoters of X for which the transcription

rate is both sensitive to the binding of TF X, and for which the binding of TF X fluctuates signifi-

cantly, will experience significant increase in their noise levels. Thus, the amount of noise propa-

gation from a given TF X to a given target promoter Y is a complex context-dependent function,

and only a subset of the promoters that are targeted by TF X will indeed respond to fluctuations

in the activity of TF X in a given condition.

These considerations make clear that, in general, we expect the extent to which different

TFs propagate noise to different target promoters to be highly condition-dependent. For
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example, for the simple scenario imagined in Fig 3A, we can easily imagine that, in another

condition, TF1 may show higher variability than TF2, such that the noise levels of their targets

would change accordingly (Fig 3B). In other words, if gene expression noise is to a large extent

determined by noise propagation from regulators to their targets, then this would explain why

relative noise levels of genes can vary in a complex manner across conditions, because we

expect both the noise levels of different regulators and the sensitivity to this noise at different

promoters to vary across conditions. In summary, we propose that the qualitative patterns in

Fig 3. Signatures of condition-dependent noise propagation. (A) We imagine a scenario in which 2 promoters are

each regulated by a single transcription factor (TF1 or TF2). In growth condition 1, TF2 shows a higher variability in

its activity (orange distribution) than TF1 (blue distribution). As a result, its target (gene B, yellow) will show higher

expression variability than the target of TF1 (gene A, pink). (B) If the relative levels of variability in the activities are

reversed in a different condition, the relative noise levels of target genes A and B will likewise be reversed. That is,

noise propagation can explain why transcriptional noise is highly condition-dependent. (C) Because the noise of a

target gene depends on fluctuations in activities of all of the TFs that regulate it, promoters that are more regulated will

typically show higher noise levels in all conditions. The illustration shows a promoter controlling the expression of

gene C (green) which is regulated both by TF1 (blue) and TF2 (orange). Since at least one of these TFs is highly

variable in each condition, gene C will exhibit high noise levels in both conditions.

https://doi.org/10.1371/journal.pbio.3001491.g003
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expression noise across conditions that we observed in Fig 2 and Fig K in S1 Text can be

explained by assuming that noise levels are to a large extent determined by propagation of

noise from regulators to their targets.

The hypothesis that noise propagation is responsible for the observed condition-dependent

relative noise levels makes a number of additional predictions. First, constitutive promoters,

that is, promoters that are not targeted by any TF other than the sigma factor of the RNA poly-

merase, should exhibit low noise in each condition and relatively little plasticity in their noise

levels. Second, the larger the number of regulators that target a given promoter, the larger the

chance that the promoter will be sensitive to fluctuations in the activities of at least one of

these TFs (Fig 3C). Thus, more noisy promoters are in general expected to have more regula-

tory inputs. In addition, because all regulatory inputs of a promoter can change their noise lev-

els in a condition-dependent manner, we also expect that, the more regulatory inputs a

promoter has, the higher the plasticity of its noise level will be. Finally, to the extent that the

regulatory inputs of each promoter are known, it should be possible to explain why some pro-

moters are more noisy in one condition, and other promoters more noisy in another condi-

tion, and identify which TFs are most responsible for noise propagation in different

conditions. In the next section, we investigate whether our data indeed exhibit these

properties.

Noise propagation explains the condition-dependent noise levels of genes

In a previous work [9], we found that, for cells growing in minimal media with glucose, more

noisy genes generally have more regulatory inputs, and we here checked whether these obser-

vations generalize to multiple growth conditions. We sorted promoters by their noise levels

and used the regulatory site annotation from RegulonDB [28] to calculate the average number

of known regulatory inputs of genes with noise levels Npc above a certain cutoff level, as a func-

tion of the cutoff level (Materials and methods). We find that in all 8 conditions, the number

of known regulatory inputs systematically increases with noise levels (Fig 4A and Fig L in S1

Text). Notably, these differences are highly statistically significant with t-statistics of 4 or

higher for the difference between known regulatory inputs for promoters above and below a

given noise cutoff across a wide range of cutoffs in each condition (Fig M in S1 Text).

Next, we wanted to test whether constitutive promoters exhibit consistently low noise lev-

els. This analysis is complicated by the fact that our knowledge of E. coli’s regulatory network

is extremely incomplete, with no known target promoters for almost two-thirds of E. coli’s
TFs. Thus, although no known regulatory input is known for almost 60% of E. coli promoters

(Fig N in S1 Text), a substantial fraction of these promoters are likely regulated by TFs for

which we currently lack information. To obtain a set of promoters that are very likely constitu-

tive we took a random selection of synthetic promoters that we obtained previously by screen-

ing a library of 100 to 150 bp random sequence fragments for sequences that drive expression

in M9 minimal media with glucose [9] (see Supplementary Methods in S1 Text). We measured

mean expression and expression noise of these synthetic promoters across 4 growth conditions

and compared their expression plasticity, average noise, and noise plasticity with those of

native promoters that have at least one known regulatory input. We found that the synthetic

promoters not only have lower expression plasticity (p-value = 1.545e-09, two-sided Welch’s t
test), confirming that they are likely constitutive but that both their average noise (p< 2.2e-16,

two-sided Welch’s t test) and noise plasticity (p = 6.209e-05, two-sided Welch’s t test) are sys-

tematically low in comparison with regulated promoters (Fig O in S1 Text).

To test whether all high noise promoters have at least one regulatory input, we calculated

what fraction of promoters with noise level over a given cutoff have at least one known
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Fig 4. Noise propagation explains condition-dependent noise levels. (A) More noisy promoters tend to have more regulatory inputs. We sorted promoters

by their average noise �Np across the 8 conditions and calculated the mean (y-axis) and standard error (gray area) of the average number of TFs known to

regulate the promoters with noise level above �Np, as a function of �Np (x-axis). (B) The fraction of regulated promoters increases with higher levels of noise. We

sorted promoters as in panel A and calculated the fraction (y-axis) and standard error (gray area) of the number of promoters with at least 1 regulatory input

with noise level above �Np, as a function of �Np (x-axis). (C) The noise plasticity increases with number of regulatory inputs of the promoter. Shown are the

cumulative distributions of the variance in noise across the 8 conditions for promoters with no known regulatory inputs (blue), 1 or 2 known regulators

(yellow), and 3 or more known regulators (red). (D) The Motif Activity Response Analysis model explains a significant fraction of the variation in noise levels.

Shown is the percentage of explained variance (FOV %, y-axis) in each of the 8 conditions (x-axis) after running the model on the real dataset (gray bars) and

on randomized data (orange bars). Randomized data were generated by shuffling the association between regulatory inputs and expression noise multiple times

and shown is the average value obtained +/− its standard error. (E) Table of TFs predicted by the model to significantly propagate noise in a condition-specific

manner, that is, with Arc>δArc in only one condition. (F) Average noise propagation activities (�Ar , y-axis) and their error bars (d�Ar , vertical lines) of the

strongest 6 noise propagators (with �Ar > d�Ar), sorted by significance (j�Ar=d
�Arj, x-axis), which consistently propagate noise across all 8 conditions. The

underlying data for Fig 4 can be found in S1 Data and https://doi.org/10.5281/zenodo.4662163.

https://doi.org/10.1371/journal.pbio.3001491.g004

PLOS BIOLOGY Condition-dependent gene expression noise in E. coli is determined by noise propagation

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001491 December 17, 2021 11 / 22

https://doi.org/10.5281/zenodo.4662163
https://doi.org/10.1371/journal.pbio.3001491.g004
https://doi.org/10.1371/journal.pbio.3001491


regulatory input (Fig 4B and Fig P in S1 Text) and found that 70% to 90% of high noise pro-

moters in each condition have at least one known regulatory input. Given that our current

knowledge of the regulatory network only represents one-third of E. coli’s TFs, this strongly

suggests that most, if not all, of the high noise promoters are indeed regulated.

We next tested to what extent noise plasticity increases with the amount of known regula-

tory inputs of a promoter. As shown in Fig 4C, we indeed observe that genes with more regula-

tory inputs show larger noise plasticity compared to genes with few or no known regulatory

inputs (p<3.7×10−10, two-sided Welch’s t test). That is, regulated genes are not only more

noisy on average, their noise levels are also more regulated across conditions.

If noise propagation is responsible for the high condition dependence of the relative noise

levels across conditions, then it should in principle be possible to explain changes in the rela-

tive noise levels of promoters in terms of their regulatory inputs, and changes in the amount of

noise that different TFs are propagating in different conditions. We have previously developed

a model, called Motif Activity Response Analysis [29,30], which models gene expression in

terms of computationally predicted regulatory sites in promoters genome-wide using a simple

linear model, to identify which TFs are most important for driving observed gene expression

changes across a set of conditions. We here adapted this approach to investigate whether

changes in relative noise levels of promoters across conditions can be explained in terms of

changes in the “noise propagating activities” of regulators and to identify which TFs are most

important for propagating noise in different conditions. In particular, we used the RegulonDB

database [28] to set a binary matrix of known regulatory inputs, that is, Spr is 1 when promoter

p is known to be regulated by TF r and 0 otherwise. We then model the noise Npc of each pro-

moter p in each condition c as a simple linear function of its known regulatory inputs Spr and

the unknown noise propagating activities Arc of each regulator r in each condition c:

ðNpc �
�NcÞ ¼ �þ

P
r ðSpr � �SrÞArc; ð1Þ

where �Nc is the average noise level of all promoters in condition c, �Sr is the average of Spr across

all promoters, and � is a noise term that is assumed Gaussian distributed with mean 0 and

unknown variance. For each condition c, we then inferred the noise propagating activities Arc

by fitting the model (1) using a Gaussian prior on the activities Arc to avoid overfitting, which

allows us to calculate a full posterior probability distribution over the activities Arc [30].

There are many reasons why the crude model (1) is extremely unlikely to provide a good

quantitative model for the measured noise levels. First, as already mentioned above, our cur-

rent knowledge of E. coli’s regulatory network is very incomplete with no targets known for

almost two-thirds of its TFs, that is, there may well be significantly more regulatory interac-

tions that we do not know about than those that we happen to know about. Second, as dis-

cussed in the previous section, the extent to which noise from a given TF propagates to a given

target is likely a complex function of the combination of TFs that target a given promoter, the

numbers, positions, and affinities of the binding sites for each of these TFs, the concentrations

of all these TFs in a given condition, and so on. In particular, it is likely that of all promoters

that a given TF targets, only a fraction will be sensitive to the noise in the TF binding in a given

condition. However, we currently have no knowledge whatsoever about the extent to which

different targets may respond to noise in the TFs that regulate them in a given condition. In

absence of such knowledge, Eq (1) makes the crude assumption that each TF will propagate

the same amount of noise to all its (known) target promoters and that the total noise of a pro-

moter is simply the sum of the noise propagated by each of the regulators. Note that the latter

effectively assumes that the fluctuations in the binding of all TFs are mutually independent,

which is also unlikely to be true.
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Consequently, the aim of the model (1) is not to explain noise levels of individual promoters

or to quantify the amount of noise propagated by each TF. Rather, the aim is to test whether

this crude model of noise propagation can explain a significant fraction of the variation in

noise levels across promoters and to identify which TFs are most responsible for noise propa-

gation in each condition.

As shown in Fig 4D (gray bars), in spite of our highly incomplete and rudimentary knowl-

edge of E. coli’s regulatory network, the simple model explains between 10% and 30% of the

variance in noise levels across conditions. To confirm the significance of these results, we fit

the same model to data in which the association between regulatory inputs and noise levels

were randomized by randomly shuffling the rows of the noise matrix Npc and observed that

the fraction of explained variance on the randomized data was always much lower than on the

real data (Fig 4D, orange bars).

The model of Eq (1) also calculates error bars δArc for the estimated noise propagation

activities Arc of each regulator r in each condition c, allowing us to infer which TFs are most

significantly propagating noise in each condition and Fig Q in S1 Text shows, for each condi-

tion, all TFs for which the noise propagating activity was larger than its error bar, that is,

Arc>δArc. Note that, while activity Arc corresponds to the average amount of additional noise

per target that regulator r is predicted to cause in condition c, this should not be interpreted as

the typical amount of noise per target. As discussed above, different target promoters will have

very different sensitivities to the noise of regulator r, so that the Arc reflects an average between

weak or no noise propagation at many targets and much stronger noise propagation at a subset

of the targets of r.
Focusing first on TFs that propagate noise in a highly condition-specific manner, Fig 4E

lists the 5 TFs that had significant noise propagating activity in only one condition. For several

of these TFs, their known functional role is consistent with the prediction that they propagate

noise in these specific conditions. To mention the most obvious case, the TF LexA is predicted

to propagate noise only in the sub-MIC ciprofloxacin condition. LexA is a repressor of the

SOS response genes, and it is known that ciprofloxacin causes DNA damage and induces the

SOS response [31]. Since we employed ciprofloxacin at a concentration well below the mini-

mal inhibitory concentration, DNA damage likely only occurred in a subset of the cells, lead-

ing to heterogeneity in LexA activity across the cells. Similarly, the model predicted that

FlhDC, the master regulator of flagellar biosynthesis [32], significantly propagates noise only

in early stationary phase. It is known that flagellar synthesis peaks toward the end of exponen-

tial phase and decreases shortly after entry into stationary phase [33]. Since the 16-h condition

is a transition between late exponential growth and entry into stationary phase, it seems plausi-

ble that some cells had entered growth arrest and were no longer expressing components of

the flagellar machinery, while others had not yet transitioned, causing heterogeneity in the

expression of targets of FlhDC. The other examples of condition-specific noise propagators are

discussed in the S1 Text.

In addition to condition-specific noise propagators, we noted that many of the most signifi-

cant noise propagators were found in multiple conditions (Fig Q in S1 Text). To identify regu-

lators that were consistently contributing to noise propagation in all conditions, we calculated,

for each regulator r, its average noise propagating activity �Ar averaged over all conditions (SI

Methods and Texts in S1 Text). Fig 4F shows the 6 TFs that were most significantly propagat-

ing noise in all conditions. As discussed in more detail in the S1 Text, the appearance of many

of these TFs likely reflects our experimental setup, that is, growth in minimal media in microti-

ter plates. For example, the early stationary phase and stress regulator Sigma38 (rpoS) has been

shown to have heterogeneous activity across single cells in M9 media with glucose [34].
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Similarly, limiting oxygen levels in microtiter plates can lead to production of fermentation

products [35,36], which are known to acidify the medium [37], explaining the appearance of

GadW and GadX, which are involved in the response to acid stress [38]. The prediction that

the histone-like TF H.NS is the most significant noise propagating TF is interesting, given that

in eukaryotes, noise properties of different genes have been related to nucleosome organization

in their promoters [39].

Although the predicted condition-dependent role of these TFs in propagating noise are, at

this point, just hypotheses that require in-depth experimental follow-up to confirm, for several

cases, the predicted role in noise propagation by these TFs is highly plausible, given their

known functional role, and highlights that the simple model can make concrete predictions

about which TFs are most involved in driving gene expression noise in different conditions.

In summary, we have presented multiple lines of evidence to confirm that noise propaga-

tion plays an important role in determining condition-dependent expression noise genome-

wide. Constitutive promoters have consistently low noise and low noise plasticity across condi-

tions. In contrast, across all conditions, we find that the higher the expression noise, the higher

the number of known regulatory inputs promoters tend to have. Although almost 60% of pro-

moters have no known regulatory input, 70% to 90% of high noise promoters have at least one

known regulatory input. In addition, promoters with more known regulatory inputs also

exhibit higher noise plasticity across conditions, indicating that gene regulation causes noise

levels to be regulated as well. And finally, in spite of our very limited knowledge of E. coli’s reg-

ulatory network, a crude model of noise propagation explains 10% to 30% of the variance in

relative noise levels across conditions. Together, these results imply that propagation of noise

through the regulatory network is a major determinant of condition-dependent expression

noise. That is, not only the mean expression levels of genes are determined by gene regulation,

the noise levels of genes are to a substantial extent determined by the structure of the gene reg-

ulatory network as well.

Gene features are organized along 2 major axes reflecting average

expression and regulation

Previous studies of the genome-wide correlation structure of gene features have uncovered

that genes are organized along a one-dimensional axis that relates evolutionary rates, codon

bias, and gene expression level [40–43], that is, highly expressed genes tend to have strong

codon bias and slowly evolving coding regions, whereas lowly expressed genes tend to have

weak codon bias and evolve more rapidly. We next set out to extent such analysis of the

genome-wide correlation structure of gene properties, including gene properties associated

with gene regulation and expression noise into the analysis, and investigate the interdepen-

dence of absolute gene expression, regulation of expression, expression noise, codon bias, and

evolutionary rates. We collected a set of features for E. coli genes on a genome-wide scale from

the literature including the absolute expression levels at both the RNA [6] and protein level

[44], sequence properties such as codon bias and the evolutionary rates at both synonymous

and nonsynonymous sites (denoted by dN and dS, repectively) [42], and the number of regula-

tory inputs of each gene [28]. We then complemented these features with gene expression fea-

tures that we measured here, including mean expression level, expression plasticity across the

8 growth conditions, the mean expression noise level, and noise plasticity across the 8 growth

conditions.

In total, we gathered 10 different gene features and then calculated an overall normalized

correlation matrix R of correlations between these features, that is, with Rij the Pearson correla-

tion between features i and j. We then performed Principal Component Analysis (PCA) of the
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matrix R to characterize the overall genome-wide correlation structure of these gene features.

As shown in Fig R in S1 Text, the first 2 principal components capture significantly more of

the total variance than the other 8 components, capturing more than 50% of the total variance.

That is, the plane spanned by these first 2 PCA axes captures the majority of the variation in

the 10-dimensional space of gene features. Moreover, each of these axes corresponds to a

weighted average of the 10 gene features, and the fact that the axes are (by construction)

orthogonal implies that these combinations of gene features vary independently of each other.

We thus next investigated which gene features are associated with these first 2 PCA axes. We

find that the first PCA axis corresponds precisely to the previously observed organization of

genes by their absolute expression levels, codon bias, and evolutionary rates [40–43] (Fig 5A).

That is, 94% of the weight along this first PCA component is accounted for by mean RNA and

protein levels, codon bias, and evolutionary rates at synonymous and nonsynonymous sites

Fig 5. Principal component analysis shows gene features are distributed along 2 major axes associated with absolute expression level and gene regulation,

respectively. (A) Relative contribution of the 10 gene features to the first PCA component, sorted from bottom to top. The features in bold together account for 94% of the

first component. In green are expression measurements obtained from previous studies, sequence features are in blue, and features measured in this study are in red. (B)

As in panel A but now for the second PCA component. (C) Correlation structure of the features contributing to the first PCA component. Negative correlations are in blue

and positive correlations in orange. (D) As in panel C but now for the second PCA component. The underlying data for Fig 5 can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3001491.g005
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(Fig 5A). As observed previously, the absolute expression levels and codon bias are positively

correlated with each other, while the 2 evolutionary rates dS and dN are negatively correlated

with these features (Fig 5C).

Strikingly, the second PCA axis corresponds almost entirely to gene features associated

with gene regulation and expression noise. Around 94% of this vector’s weight is accounted

for by gene expression noise, noise plasticity, plasticity in mean expression, and number of reg-

ulatory inputs (Fig 5B). Moreover, we find that these 4 features are all positively correlated

with each other on a genome-wide scale (Fig 5D). That is, this second PCA axis organizes

genes by their regulation and expression noise. On one end of this axis are constitutively

expressed genes that do not change their mean expression level across conditions and have

low noise in all conditions, whereas on the other end of the axis are highly regulated genes that

have a high number of regulatory inputs, are highly plastic in expression, and have high and

varying expression noise across conditions. This result not only shows that gene regulation

and expression noise are intimately coupled on a genome-wide scale, confirming the impor-

tance of noise propagation for condition-dependent expression noise, it also shows that these

gene regulatory features are varying independently of the absolute expression and evolutionary

rate features of the first principal axis.

Discussion

Although it is now well established that gene expression is an inherently noisy process, so far

little is known in bacteria about how noise levels of genes vary across growth conditions. Here,

we used high-throughput flow cytometry in combination with a library of fluorescent tran-

scriptional reporters to quantify expression noise of E. coli promoters genome-wide. The gen-

eral picture that emerges from our study is that the expression noise of a given gene in a given

condition is the sum of two contributions: a minimal amount of noise that derives from global

physiological fluctuations and that is approximately equal for all genes, and a highly gene- and

condition-specific component that is substantially due to propagation of noise through the

regulatory network. Constitutively expressed genes have least expression noise in each condi-

tion and consistently exhibit low noise. Consequently, constitutively expressed genes also

exhibit least variation in noise levels across conditions. In contrast, regulated genes exhibit

additional noise due to noise propagation. As the regulatory network changes its state across

conditions, so does the propagation of noise through the regulatory network, causing regulated

genes to change their noise levels in a highly condition-dependent manner. That is, our results

suggest that the cell’s regulatory network does not only control the mean expression levels of

genes across conditions, but also controls the amount of expression noise of each gene, making

gene expression noise a regulated quantity. This intimate coupling of expression noise and reg-

ulation was underscored by our analysis of the genome-wide correlation structure of various

gene features. We found that number of regulatory inputs, expression plasticity, expression

noise, and noise plasticity are all positively correlated on a genome-wide scale and that varia-

tions in these quantities are indepedent of the correlated variations in average absolute expres-

sion, codon bias, and evolutionary rate that has been observed previously [40–43].

We also observed that both the noise floor and the total amount of variation in noise levels

systematically decrease with the growth rate of the cells and is highest in the stationary phase

(Fig 1). Both its dependence on growth rate, and the fact that this noise floor appears to affect

all promoters equally, strongly suggest that the noise floor is driven by global physiological

fluctuations, although it is currently not clear which physiological variables contribute most to

the noise floor. Our analysis shows fluctuations in cell sizes are similar in all conditions, and

our comparison of plasmid-based and chromosomally integrated reporters shows that plasmid
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and chromosome copy number fluctuations are either similar in size or do not contribute sub-

stantially to the noise floor. However, fluctuations in RNA polymerase concentration, ribo-

some and charged tRNA concentrations, mRNA decay rates, and fluctuations in growth rate

itself are all plausible contributors to the noise floor. In addition, the fact that not only the

noise floor but also the total variance in noise levels decreases with growth rate suggests that

increased growth may dampen the propagation of noise through the regulatory network. To

gain further insight into which fluctuations set the noise floor, and why the noise floor

decreases with growth rate, will likely require quantitative time course data, for example, from

approaches that combine microfluidics with time-lapse microscopy [45,46].

Although our modeling of noise levels in terms of known regulatory interactions showed that

noise propagation can explain a significant fraction of the condition-dependent variation in noise

levels genome-wide, there are many questions that remain for future work. Our modeling identi-

fied both TFs that appear important noise propagators in all conditions, for example, the histone-

like H.NS and sigma factor Sigma38, as well as TFs that significantly propagate noise in one con-

dition only, for example, LexA under treatment with ciprofloxacin and FlhDC in early stationary

phase. Therefore, the most obvious direction for detailed experimental follow-up is to investigate

the precise role of these TFs in noise propagation. For example, it is currently not clear what the

main biophysical mechanism is through which noise is propagated from regulators to their tar-

gets. Both fluctuations in TF concentration across cells and the stochastic binding and unbinding

of TFs to promoters will contribute to noise propagation, but the relative contribution of these

are currently not known. In addition, it is also not clear what sets the sensitivity of different target

promoters to fluctuations in an upstream regulator. To quantitatively understand the sensitivities

of different target promoters to noise in the activities of their regulators will likely require much

more realistic biophysical models of promoter function, which take into account that different

TFs compete for binding to the promoter, that binding rates depend on TF concentrations, that

interactions between bound TFs and RNA polymerase depend on the relative positioning of sites,

and so on. Developing such quantitative models will likely require detailed data on the expression

dynamics of different promoter architectures as growth conditions are varied.

Lastly, since the structure of the regulatory network is a major determinant of genome-

wide noise levels, this raises the question of how natural selection has acted on noise propaga-

tion. One might expect that by making gene regulation less accurate, the effects of noise regula-

tion are mainly deleterious, so that natural selection would be expected to act to minimize

noise propagation. However, our previous theoretical work has shown that, by effectively

implementing a targeted bet hedging strategy, noise propagation can in fact be beneficial in

many circumstances where perfect regulation is difficult to achieve [9]. It is thus conceivable

that the way noise propagates through the regulatory network has been tuned by natural selec-

tion. It will be interesting to investigate to what extent the condition-dependent noise proper-

ties that we have measured contribute to growth and survival of the population in these

conditions. For example, it is conceivable that the systematic increase of expression noise as

growth rate decreases might be an adaptive strategy by which cells more actively explore differ-

ent phenotypes when they grow more slowly. Similarly, it would be very interesting to investi-

gate to what extent the noise propagation patterns that we observed in our lab strain of E. coli
are conserved in related wild bacterial strains or related species.

Materials and methods

Strains

All 1,810 strains used in this study were taken from [21] and have been previously described

[7]. In short, each strain carries a transcriptional fusion of a given native E. coli promoter
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followed by a strong ribosomal binding site and gfp-mut2 on a low copy number plasmid (SI

Methods and Texts in S1 Text).

Growth conditions

The library of strains was grown in a total of 8 different conditions: minimal media, M9 (0.1

mM CaCl2, 1 mM MgSo4, 1 × M9 salts [Sigma M6030]) supplemented with either 0.2% glucose

(w/v), 0.2% glycerol (v/v), 0.2% lactose (w/v), 0.4 M NaCl (+0.2% glucose [w/v]), or 1.5 ng/ml

ciprofloxacin (+0.2% glucose [w/v]); a MOPS based synthetic rich media (Teknova, M2105)

supplemented with 0.2% glucose, and 2 stationary phase conditions, where plates were grown

for either 16 h or 30 h in M9 minimal media + 0.2% glucose (w/v) (SI Methods and Texts in S1

Text).

Flow cytometry quantification of fluorescence

We measured the distribution of GFP fluorescence levels in single cells using a FACSCanto II

(BD Biosciences) with a high-throughput sampler (HTS), fluorescence excitation at 488 nm

and a 530/30-nm filter for emission. We used a Bayesian procedure that removes outliers to

extract the mean and variance of the log-fluorescence distributions as described in [23] (SI

Methods and Texts in S1 Text).

Minimal variance as a function of mean and noise estimation

Flow cytometry data show a clear lower bound on noise levels (variance of log-fluorescence)

that depends on the mean of expression. In previous work [9], we derived a functional form

for this noise floor as a function of mean expression and used it to correct for the dependency

in each condition (see S1 Text). We define a promoter’s noise, Npc, as the difference between

the measured variance and the fitted minimal variance.

Noise propagation features

We sorted all annotated genes by their average noise across all conditions ( �Np) and as a func-

tion of a cutoff in �Np, we calculated the mean and standard error of the number of regulatory

inputs of all genes with �Np values above the cutoff and the fraction of genes with at least one

known regulatory input. As a measure of noise plasticity of each promoter p, we calculated the

variance of the noise levels Npc across conditions. We used the same promoter annotation as in

[9], where the promoter fragments had been reannotated by mapping the primer pairs used to

construct the library to the E. coli K12 MG1655 genome (SI Methods and Texts in S1 Text).

Fitting noise in terms of regulatory inputs

To model noise in terms of regulatory inputs, we adapted a previously developed method,

called Motif Activity Response Analysis, which models gene expression levels in terms of com-

putationally predicted regulatory sites in promoters and condition-dependent activities of reg-

ulators [29,30]. In particular, we model the noise Npc of each promoter p in each condition c as

a linear function of the condition-dependent noise-propagating activities Arc of the regulators

known to regulate promoter p, that is, Eq (1). Details of the approach are in the SI Methods

and Texts in S1 Text.
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Principal component analysis

For each promoter, we gathered a list of 10 features associated with the immediately down-

stream gene using both the measurements in this study, as well as previously published data.

We calculated a covariance matrix containing all the variances of each of the features across

genes, and the covariances of each pair of features. We then transformed this covariance

matrix into a matrix of correlation coefficients and performed PCA (SI Methods and Texts in

S1 Text).
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