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Abstract

Adaptive spectral (AS) decompositions associated with a piecewise constant func-
tion, u, yield small subspaces where the characteristic functions comprising u are well
approximated. When combined with Newton-like optimization methods, AS decompo-
sitions have proved remarkably efficient in providing at each nonlinear iteration a low-
dimensional search space for the solution of inverse medium problems. Here, we derive
L2-error estimates for the AS decomposition of u, truncated after K terms, when u is
piecewise constant and consists of K characteristic functions over Lipschitz domains and
a background. Numerical examples illustrate the accuracy of the AS decomposition for
media that either do, or do not, satisfy the assumptions of the theory.

Keywords: Inverse medium problem, scattering problem, adaptive eigenspace inversion,
image segmentation

1 Introduction

Adaptive spectral (AS) decompositions have been proposed as low-dimensional search spaces
during the iterative solution of inverse medium problems [1–5]. For piecewise constant media,
in particular, AS decompositions have proved remarkably efficient and accurate. So far,
however, their remarkable approximation properties are only supported by numerical evidence.
Here, starting from [5], we derive L2 error estimates for AS approximations of piecewise
constant functions.

In [1], De Buhan and Osses proposed to restrict the search space of an inverse medium
problem to the span of a small basis of eigenfunctions of a judicious elliptic operator, repeat-
edly adapted during the nonlinear iteration. Their adaptive inversion approach relies on a
decomposition

v =
∞∑

k=1

βkϕk, (1.1)

for v ∈ W 1,∞
0 (Ω), with Ω ⊂ R

d. Here each ϕk is an eigenfunction of a v-dependent, linear,
symmetric, and elliptic operator Lε[v], i.e.,

Lε[v]ϕk = λkϕk in Ω, ϕk = 0 on ∂Ω, (1.2)
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for an eigenvalue λk ∈ R. In the sequel we shall in fact apply the AS decomposition to
more general functions in W 1,∞(Ω) by extending their boundary data appropriately into the
interior of Ω; here, for simplicity, we suppose v ∈W 1,∞

0 (Ω).
Clearly, the choice of Lε[v] is crucial for obtaining an efficient approximation of v with as

few basis functions as possible. Typically, we use

Lε[v]w = −∇· (µε[v]∇w) , µε[v](x) =
1√

|∇v(x)|2 + ε2
, (1.3)

where ε > 0 is a small parameter to avoid division by zero, but other forms have also been
used in the past and are treated by our analysis.

Note that we cannot apply the above AS decomposition directly to piecewise constant
u, because µε[u] is not in L∞ and thus Lε[u] not well-defined. Nevertheless, we may still
(approximately) decompose u at the cost of an additional step. We first approximate u by a
more regular approximation, which we denote generically by uδ, where δ > 0 is a parameter
that controls the error and is proportional to the width of the support of ∇uδ near the jump
discontinuities of u. Then we apply the AS decomposition to uδ and obtain an approximation
of u by truncating the expansion (1.1) in the eigenfunctions of Lε[uδ].

Insight about the AS decomposition approach may be obtained from its connection to the
total variation (TV) functional, which is commonly used for image denoising while preserving
edges. In fact, Lε[v]v, with Lε[v] given by (1.3), is the FrÃľchet derivative of the penalized
TV functional – see [3, Remark 1]. The eigenvalue problem for Lε[v] also bears a striking
resemblance to nonlinear eigenvalue problems for the TV functional, which have been studied
in the more general context of 1-homogeneous functionals for image processing – see [6–8] and
the references therein. In particular, the characteristic functions of convex bounded domains
in the plane with a sufficiently regular boundary are eigenfunctions of the TV functional [8]
– see also [5, Remark 8].

The AS decomposition has been used as follows in various iterative Newton-like algorithms
for the solution of inverse medium problems [2–4]: Given an approximation of the medium,
u(m−1), from the previous iteration, the approximation u(m) at the current iteration is set as
the minimizer of the misfit in the space span(ϕk)

K
k=1, where ϕk, k = 1, . . . ,K, satisfy (1.2)

with v = u(m−1). As the approximation u(m) changes from one iteration to the next, so does
the search space used for the subsequent minimization.

By combining the adaptive inversion process with the TRAC (time reversed absorbing
condition) approach, de Buhan and Kray [2] developed an effective solution strategy for time-
dependent inverse scattering problems. In [3], Grote, Kray and Nahum proposed the AEI
(adaptive eigenspace inversion) algorithm for inverse scattering problems in the frequency do-
main. In [4], the AEI algorithm was extended to multi-parameter inverse medium problems.
Recently, it was extended to electromagnetic inverse scattering problems at fixed frequency [9]
and also to time-dependent inverse scattering problems when the illuminating source is un-
known [10]. In [11], AS decompositions were used for solving 2-D and 3-D seismic inverse
problems for the Helmholtz equation. First theoretical estimates for AS decompositions to-
gether with an approach for adapting the dimension of the search space were derived in [5].

When u consists of a sum of K characteristic functions of sets compactly contained in
Ω, the expansion (1.1) in the spectral basis of Lε[uδ] truncated after K terms has proved
remarkably accurate, as it essentially recovers u. In [5] it is shown that the gradients of
the first K eigenfunctions of Lε[uδ] are small away from the discontinuities of u. Thus, in
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regions where u is constant, each ϕk (k = 1, . . . ,K) is also nearly constant and we expect
that u be well approximated in Φε,δ

K = span{ϕk}Kk=1. Here, our goal is to rigorously prove this
proposition.

The remainder of our paper is organized as follows. In Section 2, we describe the class
of piecewise constant media considered, provide definitions and introduce notation. In fact,
we consider the more general case when u is not necessarily constant near the boundary ∂Ω.
Section 3 contains the analysis and the main results of the paper. Starting from the estimates
of the gradients of ϕ1, . . . , ϕK obtained in [5], we derive L2 estimates for the projection
error of u onto the appropriate affine space. In our main result, given by Theorem 3.6, we
then prove that the L2 projection error of u is O(

√
ε+ δ). Moreover, we show that any of

the K characteristic functions composing u is approximated by its L2 projection on Φε,δ
K up

to O(
√
ε+ δ). That proof also requires a technical result about the level sets of distance

functions for Lipschitz domains, which is provided in Appendix B. Finally, we present in
Section 4 various numerical examples which illustrate the accuracy of the AS decomposition
for media that either do, or do not, satisfy the assumptions of our theory.

2 Notation and definitions

The AS decomposition (1.1) of a function v is based on the spectral decomposition of the
v-dependent operator Lε[v] given by

Lε[v]w = −∇· (µε[v]∇w) . (2.1)

Typically, the weight function µε[v] has the form of either

µε[v](x) =
1

(|∇v(x)|q + εq)1/q
, (2.2)

for some q ∈ [1,∞), or

µε[v](x) =
1

max{|∇v(x)|, ε} . (2.3)

For the analysis below, however, we allow more general µε[v].
Suppose we wish to decompose a piecewise constant function u into the characteristic

functions composing it. Note that we cannot apply the AS decomposition directly to u: since
u is piecewise constant, µε[u] is not in L∞, and so Lε[u] is not well defined. Nevertheless, we
may still (approximately) decompose u at the cost of an additional step. We first approximate
u by a more regular approximation, which we denote generically by uδ, where δ is a parameter
that controls the error and is proportional to the width of the support of ∇uδ near the
jump discontinuities of u. Then we may apply the AS decomposition to uδ and obtain an
approximation of u by truncating the expansion.

To include finite element (FE) approximations in the analysis, we formulate boundary
value problems in closed subspaces Vδ ⊂ H1(Ω) and Vδ

0 = Vδ ∩H1
0 (Ω), respectively. We let

〈·, ·〉 and ‖ · ‖L2(Ω) denote the standard inner product and norm of L2(Ω), and | · | denote the
ℓ2-norm. We use C, C1, C2, etc. to denote generic constants which may depend on u, but are
independent of δ and ε; their values may also vary depending on the context. We sometimes
use the term “medium” to refer to functions on the domain of interest Ω ⊂ R

d.
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2.1 Piecewise constant medium

Let Ω ⊂ R
d, with d ≥ 2, be a bounded Lipschitz domain, and u : Ω → R be piecewise constant

such that
u(x) = u0(x) + ũ(x), x ∈ Ω, (2.4)

where

u0 =
M∑

m=1

ωmχΩm , ωm ∈ R, ũ =
K∑

k=1

αkχAk , αk ∈ R \ {0}, (2.5)

with χA denoting the characteristic function of a set A ⊂ R
d. We suppose Ω1, . . . ,ΩM are

disjoint Lipschitz domains covering Ω,

Ω =
M⋃

m=1

Ωm.

To ensure that for each m, ∂Ωm ∩ ∂Ω is open in the topology of ∂Ω, we assume

Ωm = Ω ∩ Ω̃m, ∂Ω ∩ Ω̃m 6= ∅,
for some bounded disjoint Lipschitz domain Ω̃m ⊂ R

d. Moreover, we suppose A1, . . . , AK

are Lipschitz domains with mutually disjoint boundaries such that for each k, the boundary
∂Ak of Ak is connected, and Ak ⊂⊂ Ωm for some m = 1, . . . ,M . Hence Ω is partitioned into
finitely many subdomains Ωm adjacent to its boundary ∂Ω, while each Ωm may contain one
or several inclusions Ak isolated from ∂Ω.

2.2 Admissible approximation

Suppose u is approximated by uδ ∈ Vδ ⊂ H1(Ω) in the sense that

lim
δ→0

‖uδ − u‖L2(Ω) = 0. (2.6)

We assume uδ is obtained by a method satisfying the conditions in Appendix A below, intro-
duced in [5]. We refer to such methods as admissible.

In Corollary 6 of [5] we provide two examples of standard methods which are admissible:

Example 2.1. For δ > 0, let Vδ denote an H1-conforming FE space associated with a simplex
mesh Tδ with mesh size δ. If the family of meshes {Tδ}δ is regular and quasi-uniform (see,
e.g., [12]), then the interpolation uδ of u in Vδ is admissible. The proof of this proposition
requires technical yet standard arguments and is therefore omitted.

Example 2.2. If u is extended to R
d by

u =
M∑

m=1

ωmχΩ̃m +
K∑

k=1

αkχAk (2.7)

(compare with (2.4), (2.5)), and uδ is the convolution

uδ(x) = ζδ ∗ u =

∫

Rd

ζδ(x− y)u(y) dy, ζδ(x) = δ−dζ(x/δ) (2.8)

with ζ the standard mollifier (e.g., [13]), then uδ is admissible. For the proof see Corollary 6
of [5].
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Figure 1: Typical configuration in two dimensions. In this example K = 3 and M = 4. The
frame on the left shows the sets A1, A2 and A3, and the frame on the right shows B1 = A1,
B2 = A2 \A3, and B3 = A3.

We require u be obtained by an admissible method so we may employ the estimates
obtained in [5]. However, for simplicity of presentation, here we state only conditions we
directly use in this paper. We shall use that uδ satisfies

∇uδ ∈ L∞(Ω), supp(∇uδ) ⊂ Mδ, (2.9)

for the δ-wide neighborhood Mδ of all interfaces, i.e.,

Mδ =
K⋃

k=1

{
x ∈ Ω : dist(x, ∂Ak) < δ

}
∪

M⋃

m=1

{
x ∈ Ω : dist(x, ∂Ωm ∩ Ω) < δ

}
. (2.10)

Here, dist(x,W ) denotes the distance of x ∈ R
d to the set W ⊂ R

d.
While ∇uδ ∈ L∞(Ω), uδ converges to a function u with jump discontinuities and therefore

‖∇uδ‖L∞(Ω) is generally not bounded with respect to δ. Still, we assume there exists a
constant C, such that for every δ > 0 sufficiently small, uδ satisfies

δ‖∇uδ‖L∞(Ω) ≤ C. (2.11)

For the analysis below it is convenient to partition the open complement,

Dδ = Ω \Mδ, (2.12)

where ∇uδ = 0 into its (disjoint) connected components. Hence, we let the sets A1, . . . , AK

be indexed so that if i > k, then either Ai ⊂ Ak or Ai ∩Ak = ∅, and define

Bk
δ = Bk ∩Dδ, Bk = Ak \

⋃

i>k

Ai, k = 1, . . . ,K. (2.13)

Figure 1 shows an illustration of a possible configuration in 2 dimensions.
Similarly, we define outside the inclusions

Em
δ = Em ∩Dδ, Em = Ωm \

K⋃

k=1

Ak, m = 1, . . . ,M. (2.14)
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Thus, for each k and δ > 0 small, Bk and Bk
δ are open and connected, and Dδ is given by

the disjoint union

Dδ = Eδ ∪
K⋃

k=1

Bk
δ ,

where Eδ denotes the “δ-exterior”,

Eδ =

M⋃

m=1

Em
δ . (2.15)

By Theorem B.1, for every sufficiently small δ, each Bk
δ is a Λ-Lipschitz domain, for some

Λ independent of δ. Note, however, that since a portion of the boundary of Em
δ coincides

with the boundary of Em for every δ, it does not have the form assumed in Theorem B.1.
As a result, we cannot rely on the same theorem to deduce that Em

δ is a Lipschitz domain.
Nevertheless, outside a neighborhood of ∂Ω ∩ ∂Em, the boundary of Em

δ is a Λ-Lipschitz
surface with Em

δ lying to one of its sides, by Theorem B.6. It is therefore possible to modify
the definition of Mδ so that for every δ sufficiently small, Em

δ , given by (2.14), is a Λ-Lipschitz
domain. Here, for simplicity, we assume the latter to be true.

2.3 Medium dependent weight function

Given ε > 0 and v ∈ H1(Ω), with ∇v ∈ L∞(Ω), we define the weight function µε[v] as

µε[v](x) = µ̂ε(|∇v(x)|), x ∈ Ω, (2.16)

where µ̂ε : [0,∞) → R is a non-increasing function that satisfies

µ̂ε(0) = ε−1, 0 < µ̂ε(t), tµ̂ε(t) ≤ 1, t ≥ 0, (2.17)

and
∃C > 0, s.t. for every sufficiently large t, C ≤ tµ̂ε(t). (2.18)

In particular, for µ̂ε(t) = 1/(tq + εq)1/q and µ̂ε(t) = 1/max(t, ε), as in (2.2) and (2.3),
respectively, (2.17)-(2.18) hold for any C < 1. From (2.17), we immediately conclude that

µε[v](x)|∇v(x)| ≤ 1, a.e. x ∈ Ω, (2.19)

and
0 < µ̂ε(‖∇v‖L∞(Ω)) ≤ µε[v](x) a.e. x ∈ Ω. (2.20)

2.4 Boundary value problems

Let Vδ be a closed subspace of H1(Ω), and Vδ
0 = Vδ ∩ H1

0 (Ω). For sufficiently small and
fixed δ, ε > 0, the operator Lε[uδ] in (2.1) is uniformly elliptic in Ω [5]. Thus, it admits
in Vδ

0 a (possibly finite) non-decreasing sequence {λk}k≥1 of positive eigenvalues with each
repeated according to its multiplicity with corresponding eigenfunctions {ϕk}k≥1 which form
an L2-orthonormal basis of Vδ

0 . In addition, we denote by ϕ0 ∈ Vδ the Lε[uδ]-lifting of the
boundary data of uδ into Ω. More precisely, we let ϕ0 ∈ Vδ satisfy

Lε[uδ]ϕ0 = 0 in Ω, ϕ0 = uδ on ∂Ω (2.21)
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in Vδ
0 , and for k ≥ 1 we let ϕk ∈ Vδ

0 , ϕk 6= 0 satisfy

Lε[uδ]ϕk = λkϕk in Ω, ϕk = 0 on ∂Ω, (2.22)

in Vδ
0 . Clearly both (2.21) and (2.22) should be understood in a weak sense with respect to

the bilinear form
Bεδ[w, v] = 〈µε[uδ]∇w,∇v〉 . (2.23)

Remark 2.3. Note that ϕk (k ≥ 0) and λk (k ≥ 1) depend on ε and uδ, and thus on u and
δ. For simplicity of notation, we do not indicate this dependency explicitly.

3 Error estimates

Since uδ is an admissible approximation of u, as defined in Section 2.2, for every ε > 0 and
every sufficiently small δ > 0, we have [5]

Bεδ[uδ, uδ] ≤ C, Bεδ[ϕk, ϕk] ≤ C, k = 0, 1, . . . ,K. (3.1)

As a consequence, the gradients of ϕk, k = 0, . . . ,K, are small in Dδ [5, Theorem 5]. Heuris-
tically, this implies that each ϕk is almost constant in regions where u is constant and thus
we expect that u be well approximated in ϕ0 +Φε,δ

K , where

Φε,δ
K = span{ϕk}Kk=1. (3.2)

Here, our goal is to rigorously prove this proposition.
More precisely, let Πε

K [uδ] denote the standard orthogonal projection on Φε,δ
K :

Πε
K [uδ] : L

2(Ω) → Φε,δ
K , 〈v −Πε

K [uδ]v, ϕ〉 = 0, ∀ϕ ∈ Φε,δ
K , (3.3)

and let XK be given by

XK = span{χAk}Kk=1 = span{χBk}Kk=1, (3.4)

We shall show that every function v ∈ u+XK is well approximated in ϕ0+Φε,δ
K by its L2-best

approximation
Qε

K [uδ](v) = ϕ0 +Πε
K [uδ](v − ϕ0). (3.5)

Similarly, we shall show that every v ∈ XK is well approximated by its orthogonal projection
Πε

K [uδ]v on Φε,δ
K . The main result, given by Theorem 3.6, provides estimates of the L2 errors

in terms of ε and δ.

3.1 Preliminary results

From (2.20) with v = uδ, the monotonicity of µ̂, (2.11) and (2.18) we get

0 < Cδ ≤ µε[uδ](x) a.e. x ∈ Ω (3.6)

for every sufficiently small δ, where the constant C may depend on u, but is independent of
δ and ε. Since ∇uδ vanishes in Dδ by (2.9), assumptions (2.16) and (2.17) on µ̂ε yield

µε[uδ](x) = ε−1 a.e. x ∈ Dδ. (3.7)

7



Together with the definition of Bεδ[·, ·] in (2.23), and (3.6) we obtain

ε−1‖∇v‖2L2(Dδ)
+ C1δ‖∇v‖2L2(Mδ)

≤ Bεδ[v, v] (3.8)

for every δ > 0 sufficiently small and every v ∈ H1(Ω). By substituting v = ϕk in the above
and using (3.1) we get

ε−1‖∇ϕk‖2L2(Dδ)
+ C1δ‖∇ϕk‖2L2(Mδ)

≤ Bεδ[ϕk, ϕk] ≤ C. (3.9)

Next we employ (3.9) and PoincarÃľ-type inequalities to obtain L2 estimates for ϕk in
Dδ. To do that we require inequalities with constants independent of δ for the connected
components of Dδ. We use Theorems 1 and 2 of [14] which yield the following: Let p ≥ 1 and
Λ > 0. There exists a constant C > 0 such that for every Λ-Lipschitz domain W ⊂ Ω and
v ∈W 1,p(W ),

‖v − 〈v〉W ‖L2(W ) ≤ C‖∇v‖L2(W ), ∀v ∈W 1,p(W ), (3.10)

where 〈f〉W denotes the average of f over W ,

〈f〉W =
1

L(W )

∫

W
f(x)dx, (3.11)

with L(W ) the Lebesgue measure of W . Moreover, if Γ ⊂ Ω has positive (d− 1)-dimensional
Hausdorff measure, then for every Λ-Lipschitz domain W ⊂ Ω, with Γ ⊂ ∂W , and v ∈
W 1,p(W ) satisfying v = 0 on Γ,

‖v‖Lp(W ) ≤ C‖∇v‖Lp(W ). (3.12)

Corollary 3.1. There exists a constant C > 0 such that for every ε > 0, δ > 0 sufficiently
small and 1 ≤ j ≤ K,

‖ϕ0 − u0‖2L2(Eδ)
≤ Cε, ‖ϕ0 − 〈ϕ0〉Bj

δ

‖2
L2(Bj

δ
)
≤ Cε (3.13)

and
‖ϕk‖2L2(Eδ)

≤ Cε, ‖ϕk − 〈ϕk〉Bj
δ

‖2
L2(Bj

δ
)
≤ Cε, k = 1, . . . ,K. (3.14)

Proof. We show (3.13); the proof of (3.14) is similar. Fix 1 ≤ m ≤ M . Then, for every
sufficiently small δ, we have η = ϕ0 − u0 ∈ H1(Em

δ ), with η = 0 on

Γm = ∂Ω ∩ ∂Em
δ .

As Γm contains an open set in the topology of ∂Ω, its (d− 1)-dimensional Hausdorff measure
is positive. Since Em

δ is Λ-Lipschitz, with Λ independent of δ, by PoincarÃľ (3.12), there
exists C1 > 0 such that

‖η‖L2(Em
δ
) ≤ C1‖∇η‖L2(Em

δ
). (3.15)

Now, we use the above combined with (3.9) and ∇u0 = 0 in Em
δ , to obtain

‖ϕ0 − u0‖L2(Em
δ
) = ‖η‖L2(Em

δ
) ≤ C1‖∇ϕ0‖L2(Em

δ
) ≤ C2

√
ε, (3.16)

which proves the first estimate in (3.13), since Eδ is the disjoint (finite) union of Em
δ . The

proof of the second estimate in (3.13) is similar, but relies on (3.10) instead of (3.12); therefore,
it is omitted here.
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While Corollary 3.1 provides L2 estimates for ϕk in the connected components of Dδ, the
following lemma provides L2 estimates in Mδ. Especially, it yields that the contribution over
Mδ to the norm of ϕk is small. Note that to deduce this conclusion it is not enough to observe
the volume of Mδ is small, since ϕk themselves depend on δ.

Lemma 3.2. There exists a positive constant C such that for every k = 0, . . . ,K, and every
sufficiently small ε, δ > 0,

‖ϕk‖2L2(Mδ)
≤ Cδ. (3.17)

Proof. Here we show (3.17) only for k = 1, . . . ,K. We include the case k = 0 here only for
brevity. The proof for k = 0 is similar, however it requires Lemma 3.5. Thus, the correct
order of our argument is (3.17) for k = 1, . . . ,K, Lemma 3.3, Theorem 3.4, Lemma 3.5, and
then (3.17) with k = 0.

Fix 1 ≤ k ≤ K. Let W = Bj for some j = 1, . . . ,K or W = Ωm for some m = 1, . . . ,M ,
let

Uδ = {x ∈W : dist(x, ∂W ) < δ} . (3.18)

By Theorem C.1 we have

‖ϕk‖2L2(Uδ)
≤ C

(
δ2‖∇ϕk‖2L2(Uδ)

+ δ‖ϕk‖2H1(Dδ)

)
. (3.19)

By using ‖ϕk‖L2(Ω) = 1 and (3.9), we estimate the right hand side of (3.19) and thus for δ, ε
sufficiently small obtain

‖ϕk‖2L2(Uδ)
≤ C1δ (1 + ε) ≤ Cδ. (3.20)

Since Mδ is a subset of the finite union of all Uδ, we obtain (3.17) which completes the
proof.

Following Corollary 3.1 and Lemma 3.2 we know that ϕ1, . . . , ϕK are approximately piece-
wise constant, and that the contributions over Mδ to their norms are small. This implies that
each ϕk is close to some function in XK . The question now is if the converse is also true; i.e.,
can every function in XK be well approximated in Φε,δ

K ? Since in every Bk
δ , ϕ1, . . . , ϕK are

very close to their averages, this question reduces to the question of the linear independency
of the vectors of their averages.

Lemma 3.3. Let the matrix Σ ∈ R
K×K be given by

Σ = (σkj), σkj = 〈ϕj〉Bk
δ
, k, j = 1, . . . ,K. (3.21)

There exist constants 0 < C1 ≤ C2 such that for every sufficiently small δ and ε,

C1|β| ≤ |Σβ| ≤ C2|β|, β ∈ R
K . (3.22)

Proof. Since the upper estimate in (3.22) is simple, here we only show the lower estimate
C1|β| ≤ |Σβ|, for some positive constant C1 independent of β, ε, and δ. Let β ∈ R

K with
|β| = 1 and ϕ ∈ Φε,δ

K be given by

ϕ =
K∑

j=1

βjϕj . (3.23)
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Then, we have
(Σβ)k = 〈ϕ〉Bk

δ
, k = 1, . . . ,K, (3.24)

where (Σβ)k denotes the k-th entry of Σβ. Since ϕ1, . . . , ϕK are orthonormal and |β| = 1, we
get

1 = ‖ϕ‖2L2(Ω) = ‖ϕ‖2L2(Eδ)
+ ‖ϕ‖2L2(Mδ)

+
K∑

k=1

‖ϕ‖2
L2(Bk

δ
)
. (3.25)

Due to (3.24), the function ϕ− (Σβ)k has zero average over Bk
δ and is, therefore, orthogonal

to the constant in L2(Bk
δ ). Thus,

‖ϕ‖2
L2(Bk

δ
)
= ‖ϕ− (Σβ)k‖2L2(Bk

δ
)
+ L(Bk

δ )(Σβ)
2
k, k = 1, . . . ,K. (3.26)

By PoincarÃľ’s inequality (3.10),

‖ϕ− (Σβ)k‖2L2(Bk
δ
)
≤ C‖∇ϕ‖2

L2(Bk
δ
)

(3.27)

and by the triangle inequality and (3.9), we have

‖∇ϕ‖L2(Bk
δ
) ≤

K∑

j=1

|βj |‖∇ϕj‖L2(Bk
δ
) ≤ C

√
ε. (3.28)

We similarly apply (3.14) to estimate ‖ϕ‖L2(Eδ) and use (3.17) with k = 1, . . . ,K to obtain

1 ≤ C(ε+ δ) +
K∑

k=1

L(Bk
δ )(Σβ)

2
k ≤ C(ε+ δ) + max

k
L(Bk) |Σβ|2, (3.29)

since Bk
δ ⊂ Bk. Thus, for every δ and ε sufficiently small,

C̃ ≤ max
k

L(Bk) |Σβ|2 (3.30)

which completes the proof.

3.2 Main results

Next we show that if ε, δ > 0 are sufficiently small, then the first eigenvalue of Lε[uδ] is
bounded from below by a constant independent of ε, δ.

Theorem 3.4. There exists a positive constant C such that for every ε, δ > 0 sufficiently
small and for every v ∈ H1

0 (Ω),

C‖∇v‖L1(Ω) ≤
√
Bεδ[v, v], C‖v‖2L2(Ω) ≤ Bεδ[v, v]. (3.31)

In particular, the second estimate yields λ1 ≥ C > 0.
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Proof. We begin by showing the first estimate of (3.31). Let v ∈ H1
0 (Ω). Using (3.8) we

obtain
Bεδ[v, v] ≥ Cδ‖∇v‖2L2(Mδ)

+ ε−1‖∇v‖2L2(Dδ)
. (3.32)

HÃűlder’s inequality and Lemma 4 of [5] yield

δ‖∇v‖2L2(Mδ)
≥ δ

L(Mδ)
‖∇v‖2L1(Mδ)

≥ C‖∇v‖2L1(Mδ)
. (3.33)

Similarly we use HÃűlder’s inequality to estimate ‖∇v‖2L2(Dδ)
from below by C‖∇v‖2L1(Dδ)

and thus for ε > 0 sufficiently small we get

Bεδ[v, v] ≥ C1‖∇v‖2L1(Ω), (3.34)

which is equivalent to the first estimate of (3.31).
Next we show the second estimate of (3.31). Since λ1 is the smallest eigenvalue of (2.22)

in Vδ
0 ⊂ H1

0 (Ω), it is sufficient to show that for Vδ
0 = H1

0 (Ω) there exists a positive constant
C such that for every ε, δ > 0 sufficiently small,

λ1 = Bεδ[ϕ1, ϕ1] ≥ C.

Substituting v = ϕ1 into (3.34) yields

λ1 = Bεδ[ϕ1, ϕ1] ≥ C1‖∇ϕ1‖2L1(Ω) (3.35)

Thus for ε, δ > 0 sufficiently small, by PoincarÃľ’s inequality (3.12) we get

λ1 ≥ C1‖∇ϕ1‖2L1(Ω) ≥ C2‖ϕ1‖2L1(Ω). (3.36)

Therefore,
√
λ1 ≥

√
C2

K∑

k=1

L(Bk
δ )|〈ϕ1〉Bδ

|. (3.37)

As a consequence, for every 0 < δ ≤ δ0, with δ0 sufficiently small, we have

√
λ1 ≥ C3min

k
L(Bk

δ0)
K∑

k=1

|〈ϕ1〉Bk
δ
|, (3.38)

where we have used that Bk
δ ⊃ Bk

δ0
. Finally, Lemma 3.3 yields

K∑

k=1

|〈ϕ1〉Bk
δ
| = |Σe1|ℓ1 ≥ |Σe1| ≥ C > 0, (3.39)

where Σ is given by (3.21) and e1 = (1, 0, . . . , 0)T ∈ R
K , and thus λ1 ≥ C > 0. Since λ1 is

the minimum of the Rayleigh quotient in H1
0 (Ω) \ {0}, we also have the second estimate of

(3.31) which completes the proof.

Estimate (3.13) bounds ϕ0 in Eδ. Next we derive L2 estimates for ϕ0 in Bk
δ .
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Lemma 3.5. There exists a positive constant C, such that for each positive δ, ε > 0 sufficiently
small

‖ϕ0‖L2(Bk
δ
) ≤ C. (3.40)

Proof. Let η ∈ Vδ
0 be given by η = ϕ0 − uδ. Then, (2.21) implies

Bεδ[ϕ0, η] = 0 (3.41)

and thus using (3.1) we obtain

Bεδ[η, η] ≤ Bεδ[η, η] +Bεδ[ϕ0, ϕ0] = Bεδ[uδ, uδ] ≤ C. (3.42)

Since η = 0 on ∂Ω, we also have

λ1‖η‖2L2(Ω) ≤ Bεδ[η, η] ≤ C. (3.43)

By Theorem 3.4, λ1 is bounded from below by a positive constant independent of δ and ε.
Therefore,

‖ϕ0 − uδ‖L2(Bk
δ
) ≤ ‖ϕ0 − uδ‖L2(Ω) = ‖η‖L2(Ω) ≤ C, k = 1, . . . ,K, (3.44)

which yields (3.40) by the triangle inequality and (2.6).

We can now prove the main results of this paper.

Theorem 3.6. Let u, given by (2.4), be approximated by admissible uδ as defined in Section
2.2, and let XK be given by (3.4). For ε, δ positive, let Lε[·] be given by (2.1) with µε[·]
given by (2.16), let ϕ0 satisfy (2.21), ϕ1, . . . , ϕK satisfy (2.22), and Πε

K [uδ] be the orthogonal

projection on Φε,δ
K , given by (3.3). If v ∈ XK , then there exists a positive constant C such

that for every sufficiently small ε, δ,

‖v −Πε
K [uδ]v‖L2(Ω) ≤ C

√
ε+ δ . (3.45)

Similarly, if v ∈ u + XK and Qε
K [uδ] is the least squares projection on ϕ0 + Φε,δ

K , given by
(3.5), then for every sufficiently small ε, δ,

∥∥v −Qε
K [uδ](v)

∥∥
L2(Ω)

≤ C
√
ε+ δ . (3.46)

In particular, v = ũ satisfies (3.45), and v = u and v = u0 satisfy (3.46).

Remark 3.7. By the triangle inequality and the arguments of the proof of Theorem 3.6, for
every v ∈ XK and vδ ∈ L2(Ω), we have

∥∥vδ −Πε
K [uδ]vδ

∥∥
L2(Ω)

≤ C
√
ε+ δ + ‖vδ − v‖L2(Ω) , (3.47)

and, similarly, if v ∈ u+XK and vδ ∈ L2(Ω), then
∥∥vδ −Qε

K [uδ](vδ)
∥∥
L2(Ω)

≤ C
√
ε+ δ + ‖vδ − v‖L2(Ω) . (3.48)

In particular, (3.47) is satisfied for v = ũ and vδ = ũδ, and (3.48) is satisfied for v = u and
vδ = uδ and for v = u0 and vδ = u0δ .
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Similarly to Corollary 6 of [5], we have the following:

Corollary 3.8. 1. If uδ is the interpolation of u in a FE space Vδ as in Example 2.1, and
either Vδ = Vδ or Vδ = H1(Ω), then for every ε, δ > 0 sufficiently small estimates (3.45)
and (3.46) hold true.

2. If uδ is the mollification of u as in Example 2.2 and Vδ = H1(Ω), then for every ε, δ > 0
sufficiently small estimates (3.45) and (3.46) hold true.

Proof. This corollary is a direct result of Theorem 3.6 and examples 2.1 and 2.2.

Proof of Theorem 3.6. Here, we only show (3.46); the proof of (3.45) is similar. We have

∥∥v −Qε
K [uδ](v)

∥∥
L2(Ω)

= min
β∈RK

∥∥∥∥(v − ϕ0)−
K∑

k=1

βkϕk

∥∥∥∥
L2(Ω)

. (3.49)

By Lemma 3.3 there exists a unique vector β = (βk) ∈ R
K such that

K∑

j=1

βj〈ϕj〉Bk
δ
= 〈v − ϕ0〉Bk

δ
, (3.50)

and, moreover,

|β|2 ≤ C1

K∑

k=1

〈v − ϕ0〉2Bk
δ

(3.51)

for C1 > 0 independent of ε and δ. Therefore, by Lemma 3.5, we have

|β| ≤
√
C1

[
K∑

k=1

‖v − ϕ0‖2L2(Bk
δ
)

] 1

2

≤ C (3.52)

for C > 0 independent of ε, δ. For

ϕ = ϕ0 + ϕ̃, ϕ̃ =
K∑

k=1

βkϕk, (3.53)

we have ∥∥v −Qε
K [uδ](v)

∥∥
L2(Ω)

≤ ‖v − ϕ‖L2(Ω). (3.54)

By the triangle inequality, we get

‖v − ϕ‖L2(Ω) ≤ ‖v − ϕ‖L2(Eδ) + ‖v‖L2(Mδ) + ‖ϕ‖L2(Mδ) +

K∑

k=1

‖v − ϕ‖L2(Bk
δ
). (3.55)

Next we estimate each of the terms on the right hand side. Since for every k, Bk
δ ∩ Eδ = ∅,

and v = u in Eδ, we can estimate the first term as follows:

‖v − ϕ‖L2(Eδ) ≤ ‖u− ϕ0‖L2(Eδ) + ‖ϕ̃‖L2(Eδ) ≤ C
√
ε (3.56)
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because of (3.52), (3.13) and (3.14). We estimate the second term as

‖v‖L2(Mδ) ≤ ‖v‖L∞(Mδ)

√
L(Mδ) ≤ C

√
δ (3.57)

where we have used Lemma 4 in [5]. To estimate the third term on the right hand side of
(3.55), we use Lemma 3.2. For each k = 1, . . . ,K, we estimate ‖v−ϕ‖L2(Bk

δ
) as follows: Since

β sovles (3.50), we have 〈v − ϕ〉Bk
δ
= 0, which by the PoincarÃľ inequality (3.10) yields

‖v − ϕ‖L2(Bk
δ
) ≤ C‖∇(v − ϕ)‖L2(Bk

δ
). (3.58)

Since ∇v = 0 in Bk
δ , estimates (3.9) and (3.52) yield

‖v − ϕ‖L2(Bk
δ
) ≤ C1‖∇ϕ‖L2(Bk

δ
) ≤ C2

√
ε. (3.59)

Finally, by combining the above, we obtain
∥∥v −Qε

K [uδ](v)
∥∥
L2(Ω)

≤ ‖v − ϕ‖L2(Ω) ≤ C
√
ε+ δ (3.60)

which completes the proof.

4 Numerical examples

Here we present numerical examples which illustrate the main results of our analysis and,
in particular, the remarkable accuracy of AS decompositions for piecewise constant media1.
First, we consider media comprised of a constant background and a single characteristic
function. Secondly we consider a medium which consists of an inhomogeneous background
comprised of five sets Ωm, m = 1, . . . , 5, and four interior inclusions Ak, k = 1, . . . , 4 (see
Section 2.1). In the third example, we consider a medium which consists of four adjacent
squares in a constant background. Since the boundaries of the squares are not mutually
disjoint, this example is not covered by our theory. Next we apply the AS decomposition to a
polygonal approximation of the map of Switzerland with its 26 cantons. Finally, we consider
the well-known Marmousi model from seismic imaging.

In all examples the domain Ω ⊂ R
2 is rectangluar and we use a regular, uniform triangular

mesh Th whose vertices lie on an equidistant Cartesian grid of size h > 0. We let Vδ ⊂ H1(Ω),
with δ = h, be the standard P1 FE space of continuous piecewise linear functions and set
Vδ
0 = Vδ ∩ H1

0 . For piecewise constant u, we let uδ denote the H1-conforming (continuous)
interpolation of u in the FE space Vδ.

We consider decompositions associated with Lε[uδ] given by (2.1) with µε[·] of the form
(2.2) with q = 2. We compute the approximation of the background ϕ0 and the first few
eigenfunctions ϕk of Lε[uδ] by numerically solving (2.21) and (2.22) using the Galerkin FE
method. The discretization of (2.22) leads to a generalized eigenvalue problem

Aϕk = λkMϕk for k = 1, . . . ,K, (4.1)

where the stiffness matrix A corresponds to the discretization of Lε[uδ] and M is the mass
matrix. We solve (4.1) numerically using the MATLAB function eigs.

1We will use the term medium for functions from Ω ⊂ R
2 into R.
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(a) disc (b) square (c) Pac-Man (d) star

Figure 2: Four simple shapes. The exact medium u (or uδ) consists of a single characteristic
function χA1 and vanishing u0.

Once we have obtained ϕ0 ∈ Vδ and ϕk ∈ Vδ
0 for k = 1, . . . ,K, we can compute the projec-

tions Πε
K [uδ] and Qε

K [uδ] given by (3.3) and (3.5). Since {ϕk}Kk=1 are computed numerically,
they satisfy 〈ϕk, ϕj〉 = δkj only up to a small error. This slight loss of orthonormality causes
small errors when computing the projection Πε

K [uδ] directly from the Fourier expansion

Πε
K [uδ]v =

K∑

k=1

〈ϕk, v〉ϕk.

To avoid these errors, we instead compute Πε
K [uδ]v by solving the K-dimensional least squares

problem

Πε
K [uδ]v = argmin

w∈Φε,δ
K

‖v − w‖L2(Ω), Φε,δ
K = span{ϕk}Kk=1.

When validating the conclusion of Theorem 3.6 and its corollary in Remark 3.7, we shall
focus on two types of errors

‖u−Qε
K [uδ](u)‖L2(Ω) and ‖uδ −Qε

K [uδ](uδ)‖L2(Ω); (4.2)

the first measures the misfit to the true medium u whereas the second measures the misfit to
the continuous interpolant uδ. Note that in both cases the same AS basis is used. Computing
these expressions requires the evaluation of L2 inner products. As the functions participating
in the expression on the right lie in the FE space Vδ, we can evaluate the needed integrals
exactly. In contrast, the expression on the left includes inner products involving a piecewise
constant function whose discontinuities are, in general, not aligned with the mesh. Thus, to
evaluate the integrals for the error on the left in (4.2), we use a numerical quadrature rule
from ACM TOMS algorithm #584 [15] with degree of precision of 8 and 19 quadrature points.

In principle, ε > 0 should be as small as possible, while sufficiently large so that the matrix
A is well-conditioned. Unless specified otherwise, we always use ε = 10−8.

4.1 Four simple shapes

We consider the four 2-dimensional piecewise constant media u : Ω → R, in Ω = (0, 1)2, shown
in Fig. 2. All four vanish on the boundary ∂Ω and correspond to the characteristic function

u(x) = ũ(x) = χA1(x), x ∈ Ω (4.3)
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Figure 3: Four simple shapes. The error ‖u − Πε
1[uδ](u)‖L2(Ω). Left: the error as a function

of δ for fixed ε = 10−8. Right: the error as a function of ε for fixed mesh-size δ = 0.05/26.
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Figure 4: Four simple shapes. The error ‖uδ −Πε
1[uδ](uδ)‖L2(Ω). Left: the error as a function

of δ for fixed ε = 10−8. Right: the error as a function of ε for fixed mesh-size δ = 0.05/26.

of a Lipschitz domain and are therefore covered by our analysis. The sets are chosen purposely
with different geometric properties: the disc is convex with a smooth boundary; the square
is convex, but its boundary is only piecewise smooth; the Pac-Man and the star are both
non-convex with piecewise smooth boundaries.

In Figure 3, we show the error ‖u−Πε
1[uδ](u)‖L2(Ω). The left frame shows the error for

varying mesh-size δ but fixed ε = 10−8. For all four shapes, the error decays as O(
√
δ), as

proved in Theorem 3.6. The right frame of Figure 3 shows the error ‖u−Πε
1[uδ](u)‖L2(Ω) for

varying ε on the fixed finest mesh, i.e., with smallest δ. The error initially decreases with ε
but then levels off at about 10−2, at which point it can only be improved by further refining
the mesh.

To eliminate the interpolation error and thereby illustrate the estimates of Remark 3.7,
we show in Figure 4 the projection error ‖uδ − Πε

1[uδ](uδ)‖L2(Ω). On the left, we show the
approximation error for varying δ, with ε = 10−8 fixed: The projections of the disc, the
square, and the Pac-Man in the AS basis are remarkably good, with errors at about 10−9.
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Figure 5: Four simple shapes. Left: The aligned mesh for the star-shaped medium with
δ = 0.05/22. Right: the error ‖uδ−Πε

1[uδ](uδ)‖L2(Ω) for mesh-sizes δ = 0.05/2m, m = 1, . . . , 6,
and fixed ε = 10−8.

For these cases, the projection of each uδ (hence the first eigenfunction ϕ1 of Lε[uδ]) essentially
coincides with uδ itself. In contrast, the error for the star is larger, though it decays at a rate
of O(δ), still faster than the upper estimate of O(

√
δ) in Remark 3.7. In all cases, the errors

here are significantly smaller than those in the left frame of Figure 3, indicating that the
errors in Figure 3 are mainly due to interpolating u in Vδ.

The error ‖uδ − Πε
1[uδ](uδ)‖L2(Ω) for varying ε and fixed δ is shown in the right frame of

Figure 4. Here we observe a decay rate of O(ε), which is also faster than the upper estimate
in Remark 3.7. Here, for all shapes but the star, the error decreases with ε down to about
10−9. In contrast, the error for the star levels off at about 10−3.

The significant difference in the behavior of the error for the star compared to the other
shapes, shown in Figure 4, is due to the geometry of the discontinuities in the media and
the mesh. Indeed, if we repeat the experiment for the star but with a locally adapted mesh
aligned with the star’s geometry, as shown in Figure 5, the error ‖uδ − Πε

1[uδ](uδ)‖L2(Ω) also
drops below 10−8. Note that while δ is smaller in this test than it is in the tests shown in
Figure 4, this reduction by itself is not sufficient to explain the difference in the errors between
figures 4 and 5, which is of about 6 orders of magnitude.

4.2 Nonuniform background

Next we consider a medium u with non-constant background u0. We let u : Ω → R be the
medium shown in frame (a) of Fig. 6, and Ω = (0, 1)2. Here u admits a decomposition (2.4),
(2.5) with M = 5 and K = 4. Figure 6 also shows the approximation ϕ0 of the background
and the first four eigenfunctions ϕ1, . . . , ϕ4 of Lε[uδ].

Figure 7 (left) shows the error ‖u−Qε
K [uδ](u)‖L2(Ω) with K = 4, for six different meshes

with δ = 0.05/2m, m = 1, . . . , 6. Here we observe an error decay of O(
√
δ), consistent with

our theoretical estimates. The right frame of Figure 7 shows the error ‖uδ−Qε
K [uδ](uδ)‖L2(Ω)

with K = 4, as a function of ε with fixed δ = 0.05/26. Again, we observe a convergence rate
of O(ε), faster than the O(

√
ε) rate proved in Remark 3.7.
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(a) The medium u (or uδ) (b) ϕ1 with λ1 ≈ 14.37 (c) ϕ3 with λ3 ≈ 36.04

(d) ϕ0 (e) ϕ2 with λ2 ≈ 29.88 (f) ϕ4 with λ4 ≈ 50.48

Figure 6: Nonuniform background. The exact medium u with its background ϕ0 and first
four eigenpairs (λi, ϕi), i = 1, . . . , 4.

4.3 Four adjacent Squares

Let Ω be the unit square Ω = (0, 1)2 and

u(x) =

4∑

k=1

αkχAk(x), x ∈ Ω, (4.4)

with αk = k, for k = 1, . . . , 4, the piecewise constant medium shown in Fig. 8. Since the
boundaries ∂Ak of the squares Ak are not mutually disjoint, this example is not covered
by our analysis. However, we may still compute the AS approximation and measure the
approximation error.

In Figure 9 we still observe errors of O(
√
δ), consistent with our theoretical estimates.

Again, the error with respect to ε decays with a rate of O(ε), as seen in Figure 9.

4.4 Map of Switzerland

Here we consider the polygonal approximation of the map of Switzerland with its K = 26
cantons, shown in frame (a) of Figure 10, where each canton admits a constant value. The
data of the map are given on a discrete rectangular pixel based 1563 px × 1002 px grid with
grid-size δ = 1px. We interpolate the data to obtain uδ ∈ Vδ

0 , and compute the first K = 26
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Figure 7: Nonuniform background. Left: the error ‖u − Qε
4[uδ](u)‖L2(Ω) for mesh-sizes δ =

0.05/2m, m = 1, . . . , 6, and fixed ε = 10−8. Right: the error ‖uδ − Qε
4[uδ](uδ)‖L2(Ω) for

ε = 10−m, m = 0, . . . , 8, and fixed mesh-size δ = 0.05/26.

eigenfunctions, ϕ1, . . . , ϕK of Lε[uδ]; frames (c), (d) and (e) of Figure 10 show three of the
eigenfunctions.

Although a single eigenfunction does not necessarily correspond to any particular canton,
we may still represent each canton in Φε,δ

26 = span{ϕk}26k=1. If uc is the characteristic function
for a canton shown in the map in Figure 10, and ucδ is its continuous (piecewise linear)
interpolant in Vδ, we can use the AS basis {ϕk}Kk=1 to approximate ucδ as

ucδ ≈ Πε
K [uδ]u

c
δ =

K∑

k=1

βkϕk,

with K = 26. In Figure 11 we show the approximations for the cantons of Bern, Grisons, and
St. Gallen in Φε,δ

26 = span{ϕk}Kk=1. These reconstructions approximate very well the exact
cantons in Figure 10.

4.5 The Marmousi model

As a last example we consider the subsurface model of the P-wave velocity of the AGL elastic
Marmousi model shown in Figure 12, see [16, 17]. The data of the model is given as nodal
values on a discrete rectangular mesh representing a 17 km× 3.5 km area. We interpolate the
data in Vδ with δ = 2.5m to obtain uδ. Next, we compute the background ϕ0 ∈ Vδ as well
as the first 100 eigenfunctions of the operator Lε[uδ].

Remarkably, the background ϕ0 already yields a good approximation of the model with a
relative error of

‖uδ −Qε
0[uδ](uδ)‖L2(Ω)

‖uδ‖L2(Ω)
=

‖uδ − ϕ0‖L2(Ω)

‖uδ‖L2(Ω)
≈ 12.8%,

probably because many of the internal layers in the model reach the boundary and thus
can be recovered by ϕ0. In contrast, the eigenfunctions ϕk (k ≥ 1) account for variations
of the medium in the interior of the domain. Here, the additional contribution of the first
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(a) The medium u (or uδ) (b) ϕ1 with λ1 ≈ 3.3 (c) ϕ3 with λ3 ≈ 12.65

(d) Πε
4
[uδ]uδ (e) ϕ2 with λ2 ≈ 8.88 (f) ϕ4 with λ4 ≈ 18.37

Figure 8: Adjacent squares. The medium u and the first four eigenfunctions ϕk, k = 1, . . . , 4,
of the operator Lε[uδ], together with its AS decomposition Πε

4[uδ](uδ) computed on a mesh
with δ = 0.05/26.

K = 100 eigenfunctions to the approximation further reduces the relative error to ‖uδ −
Qε

K [uδ](uδ)‖L2(Ω)/‖uδ‖L2(Ω) ≈ 3.8%.

Acknowledgments. We thank Giovanni Alberti and Gianluca Crippa for their useful com-
ments and suggestions regarding Appendix B.

A Admissible approximations

Let u, as in Section 2.1, be approximated by uδ obtained by a linear method, uδ = Iδu. We
assume that for every k = 1, . . . ,K and m = 1, . . . ,M the approximations IδχAk ∈ Vδ

0 of χAk

and IδχΩm ∈ Vδ of χΩm satisfy

lim
δ→0

‖IδχAk − χAk‖L2(Ω) = 0, lim
δ→0

‖IδχΩm − χΩm‖L2(Ω) = 0. (A.1)

For each δ > 0, the H1-regular approximation uδ of u is thus given by

uδ = u0δ + ũδ, (A.2)
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Figure 9: Adjacent squares. Left: the error ‖u−Πε
4[uδ](u)‖L2(Ω) for mesh-sizes δ = 0.05/2m,

m = 1, . . . , 6, and fixed ε = 10−8. Right: the error ‖uδ − Πε
4[uδ](uδ)‖L2(Ω) for ε = 10−m,

m = 0, . . . , 8, and fixed mesh-size δ = 0.05/26;

where

u0δ = Iδu0 =
M∑

m=1

ωm IδχΩm ∈ Vδ, ũδ = Iδũ =
K∑

k=1

αk IδχAk ∈ Vδ
0 . (A.3)

Next we introduce two assumptions regarding uδ. For this we require additional notation.
Let

Sδ =
M⋃

m=1

{
x ∈ Ω | dist(x, ∂Ωm ∩ Ω) < δ

}
, (A.4)

and, similarly,
Uk
δ =

{
x ∈ Ω | dist(x, ∂Ak) < δ

}
. (A.5)

Assumption 1. For each m = 1, . . . ,M ,

∇(IδχΩm) ∈ L∞(Ω), supp
(
∇(IδχΩm)

)
⊂ Sδ, (A.6a)

and for each k = 1, . . . ,K,

∇(IδχAk) ∈ L∞(Ω), supp
(
∇(IδχAk)

)
⊂ Uk

δ . (A.6b)

Assumption 2. There exists a constant C such that for every δ > 0 sufficiently small, each
of the functions χδ = IδχΩm , m = 1, . . . ,M , and χδ = IδχAk , k = 1, . . . ,K, satisfies

δ‖∇χδ‖L∞(Ω) ≤ C. (A.7)

We say that uδ is an admissible approximation of u, or that the method Iδ is admissible
if the conditions of this section are satisfied.
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GrisonsBern

St. Gallen

(a) Polygonal Switzerland (b) 3D-view of ϕ5

(c) ϕ2 with λ2 ≈ 28.75 (d) ϕ5 with λ5 ≈ 85.03 (e) ϕ15 with λ15 ≈ 217.59

Figure 10: Polygonal approximation of the map of Switzerland uδ and its 26 cantons (top
left), together with three eigenfunctions ϕk, k = 2, 5, 15, of the operator Lε[uδ].

B Level sets of distance functions

In the following, for p1, p2 ∈ R
d, dist(p1, p2) denotes the Euclidean distance

dist(p1, p2) = |p1 − p2|

between p1 and p2. Here we prove the following theorem:

Theorem B.1. If A ⊂ R
d is a Λ-Lipschitz domain with bounded boundary, and δ > 0

sufficiently small, then Aδ given by

Aδ = {x ∈ A : dist(x, ∂A) > δ} (B.1)

is also Λ-Lipschitz.

We say that a domain A ⊂ R
d with bounded boundary ∂A is Λ-Lipschitz, if locally

∂A coincides with the graph of a Λ-Lipschitz function f with A lying above f [18]. As a
preliminary result we first show in Theorem B.6 of Section B.1 a similar result for a set lying
above the graph of a Lipschitz function.

B.1 Distance functions for Lipschitz graphs

Let B̂ ⊂ R
d−1 be a ball of radius R, f : B̂ → R Λ-Lipschitz, F̂ the graph of f in B̂, B ⊂ B̂ a

ball of radius r < R concentric with B̂, and

G(δ) =
{
p = (x, y) : x ∈ B, y > f(x), dist(p, F̂ ) = δ

}
. (B.2)
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(a) Canton of Bern (b) Canton of Grisons (c) Canton of St. Gallen

Figure 11: Map of Switzerland. Three cantons approximated in the truncated AS basis
{ϕk}Kk=1 with K = 26.

The setup is illustrated in the left frame of Figure 13. Here we show that G(δ) is the graph
of a Λ-Lipschitz function g : B → R.

For p ∈ R
d, we let Cp denote the open (two-sided) infinite cone,

Cp = p+ C0, C0 =
{
(x, y) ∈ R

d−1 × R : |y| > Λ|x|
}
.

We shall use that a function g : B → R is Λ-Lipschitz if and only if for every point p in its
graph, graph(g), we have Cp ∩ graph(g) = ∅.

First we show that for every x ∈ B and y > f(x) sufficiently large, the distance of (x, y)
to F̂ is greater than δ.

Proposition B.2. If x ∈ B and y > f(x) + Λ0δ, with Λ0 =
√
1 + Λ2, then

dist((x, y), F̂ ) > δ; (B.3)

especially (x, y) /∈ G(δ).

Proof. Fix x ∈ B and h > h0 = Λ0δ. We show that p = (x, f(x) + h) satisfies dist(p, F̂ ) > δ.
If Λ = 0, then f is constant and the conclusion is clear. Suppose Λ > 0, and let x̂ ∈ B̂,
p̂ = (x̂, f(x̂)), and τ = |f(x)− f(x̂)|/Λ. Then,

dist(p, p̂)2 = |x− x̂|2 + (f(x) + h− f(x̂))2

≥ 1 + Λ2

Λ2
|f(x)− f(x̂)|2 − 2h|f(x)− f(x̂)|+ h2

=
(
1 + Λ2

)
τ2 − 2hΛτ + h2 =: ψ(τ).

(B.4)

Since the minimum of ψ is achieved in

τ∗ =
hΛ

1 + Λ2
, (B.5)

we have

dist(p, p̂)2 ≥ ψ(τ∗) = h2
(
1− Λ2

1 + Λ2

)
=

h2

1 + Λ2
>

(1 + Λ2)δ2

1 + Λ2
= δ2 (B.6)

which yields the conclusion.
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(a) The Marmousi model

(b) ϕ0 with a relative L2 error of 12.8%

(c) Qε
100

[uδ](uδ) with a relative L2 error of 3.8%

Figure 12: The original Marmousi model with its background ϕ0 and AS decomposition with
100 eigenfunctions.

As a result we have that for every x ∈ B, there exists y > f(x) such that (x, y) ∈ G(δ),
and, in particular, we obtain estimates of y − f(x).

Proposition B.3. For each x ∈ B, there exists t ∈ [δ,Λ0δ], with Λ0 =
√
1 + Λ2, such that

(x, f(x) + t) ∈ G(δ).

Proof. Let ρ(t) = dist((x, f(x) + t), F̂ ), p = (x, f(x)), and h0 = Λ0δ. Since

dist(p, (x, f(x) + δ)) = δ,

we have ρ(δ) ≤ δ. In addition, by Proposition B.2, ρ(h) > δ, for h > h0. Since ρ is continuous,
there exists t ∈ [δ, h) such that

dist((x, f(x) + t), F̂ ) = ρ(t) = δ (B.7)

Because the above is true of every h > h0, we have the conclusion.

The following proposition puts restrictions on f in a neighborhood of a point x ∈ B,
provided p = (x, y) ∈ G(δ). The idea of the proof is illustrated in the right frame of Figure 13.

Proposition B.4. Let p = (x, y) ∈ G(δ), and x̂ ∈ B̂.

1. If |x̂− x| ≤ δ, then
f(x̂) ≤ y −

√
δ2 − |x− x̂|2 . (B.8)

24



B

B̂

F̂

G(δ)

δ

Λ
√

1+Λ2
δ

p

slope = Λ

Figure 13: Left: the graph F̂ of f in B̂ and G(δ); right: illustration of the setup of Proposition
B.4 in the plane.

2. If dist(p, (x̂, f(x̂))) = δ, then

|x− x̂| ≤ Λδ√
1 + Λ2

=
Λ

Λ0
δ. (B.9)

Proof. 1. Assertion 1 is true because f is continuous, f(x) < y, and dist(p, F̂ ) = δ.
2. Since dist(p, (x̂, f(x̂))) = δ, we have |x− x̂| ≤ δ and thus assertion 1 yields

f(x̂) = y −
√
δ2 − |x− x̂|2 . (B.10)

By considering the plane containing p = (x, y), (x, f(x)) and (x̂, f(x̂)) (note that these points
are indeed distinct), we reduce the problem to the 2-dimensional case (d = 2). For this case
we show assertion 2 by contradiction. Suppose

Λδ√
1 + Λ2

< |x− x̂| ≤ δ. (B.11)

It is easy to verify that at x̂ the slope of the lower half of the circle centered at p = (x, y) is
greater (in absolute value) than Λ (see right frame of Figure 13). Since dist(p, F̂ ) = δ (i.e.,
the intersection of F̂ with the open ball centered at p is empty), this yields a contradiction to
f being Λ-Lipschitz continuous and thus we have the conclusion.

As a result of Proposition B.4 we have that if p = (x, y) ∈ G(δ), then the graph F̂ of f in
B̂ lies beneath surface

C̃ =
{
r ∈ B × R : dist

(
r, C+

p

)
= δ

}
(B.12)

illustrated in the right frame of Figure 14, where C+
p denotes the upper half of the cone Cp.

We use this observation to get the following.

Lemma B.5. If p ∈ G(δ), then Cp ∩G(δ) = ∅.

Proof. We show separately the two propositions C±
p ∩G(δ) = ∅, for the upper and lower parts

C±
p of the cone Cp.

1. Consider the lower part C−
p of the cone Cp. Since p = (x, y) ∈ G(δ), there exists

p̂ = (x̂, f(x̂)) ∈ F̂ such that dist(p, p̂) = δ and y > f(x̂) (by Proposition B.4). Since f is

25



δ C−

p

C
−

p̂

p

p̂

δ

C̃

C+
p

p

Figure 14: Illustrations for the proof of Lemma B.5; here C+
p and C−

p denote the upper and
lower halves of the cone Cp, respectively

Λ-Lipschitz and F̂ is the graph of f in B̂, we have C−
p̂ ∩ F̂ = ∅, and in particular C−

p̂ lies below

F̂ . However, the lower part C−
p of Cp is given by C−

p = p− p̂+ C−
p̂ . Since the length of p− p̂

is δ, we have that every point r in the interior of C−
p is at a distance of δ from a point in the

interior of C−
p̂ , which yields dist(r, F̂ ) < δ and thus r /∈ G(δ). Since r ∈ C−

p is arbitrary, we
get C−

p ∩G(δ) = ∅.
2. Now consider the upper part C+

p of the cone Cp, and let r ∈ C+
p . If d > 2, we may reduce

the problem to the 2-dimensional case by considering the plane containing r and the vertical
line going through p. In the 2-dimensional case, illustrated in the right frame of Figure 14, it
is clear that dist(r, F̂ ) > δ, since F̂ lies beneath C̃ given by (B.12).

Theorem B.6. For δ > 0, the set G(δ) is the graph of a Λ-Lipschitz function g : B → R.

Proof. By Proposition B.3 and Lemma B.5, for each x ∈ B, there exists a unique y such that
p = (x, y) ∈ G(δ). This defines a function g : B → R such that G(δ) is its graph. Moreover,
by Lemma B.5, for each p ∈ G(δ), G(δ) ∩ Cp = ∅, which yields that g is Λ-Lipschitz.

B.2 Distance functions for Lipschitz domains

For r > 0, let B(r) denote the open ball in R
d−1 of radius r centered at the origin.

Proof of Theorem B.1. Since A is Λ-Lipschitz and ∂A is bounded, there is a finite set of pairs
(Vn, fn), with n = 1, . . . , N , of bounded open right cylinders Vn and functions fn of d − 1
variables satisfying the following:

1. {Vn}n is a finite open cover of ∂A,

2. the bases of Vn are at a positive distance from ∂A,

3. fn is Λ-Lipschitz, and fn(0) = 0,

4. for each n, there exists a Cartesian coordinate system (ξ, η), with ξ ∈ R
d−1 and η ∈ R, for

which
Vn = B(rn)× (−bn, bn), (B.13)

for some rn, bn > 0, and

A ∩ V̂n = {(ξ, η) : ξ ∈ B(2rn), fn(ξ) < η < bn} , V̂n = B(2rn)× (−bn, bn). (B.14)
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Choose δ > 0 such that

∂Aδ ⊂
N⋃

n=1

Vn (B.15)

and for all n, with respect to the n-th coordinate system (ξ, η), the part of the boundary of
Aδ lying in Vn coincides with the set Gn(δ) = G(δ) given by (B.2) with f = fn, B = B(rn),
B̂ = B(2rn). By Theorem B.6, Gn(δ) is the graph of a Λ-Lipschitz function gn : B(rn) → R.
Thus, the boundary ∂Aδ of Aδ is covered by a finite collection of open sets Vn, such that for
each n there exists a coordinate system (ξ, η) in which ∂Aδ ∩ Vn coincides with the graph of
the Λ-Lipschitz function gn and Aδ ∩ Vn lies above gn, which yields the conclusion.

C Estimates in thin sets

We show the following theorem.

Theorem C.1. If A ⊂ Ω is a Λ-Lipschitz domain, then there exists a constant C > 0, such
that for every sufficiently small δ > 0 and every v ∈ H1(Ω),

‖v‖2L2(Uδ)
≤ C

(
δ2‖∇v‖2L2(Uδ)

+ δ‖v‖2H1(Aδ)

)
, (C.1)

where
Uδ = {x ∈ A : dist(x, ∂A) < δ} , Aδ = A \ Uδ. (C.2)

We begin by citing some results of [18] regarding the flattening of Lipschitz graphs. Let V
be a bounded domain such that V ⊂ B × R, with B ⊂ R

d−1 an open ball, and let f : B → R

Λ-Lipschitz. We define Y : V −→ Y (V ) by

Y (x) = (x̂, xd − f(x̂)) x = (x̂, xd) ∈ B × R. (C.3)

Note that the graph of f is mapped by Y to the flat surface B × {0}. It is easy to verify that
∣∣∣∣ det

∂Y

∂x

∣∣∣∣ = 1, (C.4)

and that Y is invertible and

Y −1(ŷ, yd) = (ŷ, yd + f(ŷ)). (C.5)

We define
T : H1(V ) −→ H1(Y (V )) Tu(y) = u

(
Y −1(y)

)
. (C.6)

The operator T is well defined [18], i.e., for every u ∈ H1(V ), Tu ∈ H1(Y (V )). For any
summable g : V → R, by the area formula we have

∫

V
g(x)dx =

∫

Y (V )
g(Y −1(y))dy. (C.7)

Therefore,
‖Tu‖L2(Y (V )) = ‖u‖L2(V ). (C.8)
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We also have [18]
‖∇(Tu)‖L2(Y (V )) ≤ C‖∇u‖L2(V ), (C.9)

where C is independent of u and therefore T is continuous from H1(V ) to H1(Y (V )). If

Γ = {(x̂, f(x̂)) : x̂ ∈ B} ⊂ ∂V

then there exists C > 0 such that for every u ∈ H1(V )

‖Tu‖L2(Y (Γ)) ≤ ‖u‖L2(Γ) ≤ C‖Tu‖L2(Y (Γ)). (C.10)

Next we derive PoincarÃľ-type inequalities for functions in cylinders bounded by Lipschitz
graphs. Specifically, we are interested in the behavior of the constants of the inequalities with
respect to the height of the cylinder.

Lemma C.2. Let f : B → R be Λ-Lipschitz and for h > 0 let

Ch = {(x̂, xd) : x̂ ∈ B, |xd − f(x̂)| < h} , Γh = {(x̂, f(x̂) + h) : x̂ ∈ B} .

There exists a constant C > 0, such that for every h > 0, and v ∈ H1(Ch),

C‖v‖2L2(Ch)
≤ h2‖∇v‖2L2(Ch)

+ h ‖v‖2L2(Γh)
. (C.11)

Proof. Fix h > 0 and let C = Ch and Γ = Γh. The estimate for f ≡ 0 follows easily from
standard estimates for the smallest eigenvalue λ of the problem

−∆u = λu in C (C.12)

∂nu = −h−1u on Γ (C.13)

∂nu = 0 on ∂C \ Γ. (C.14)

Suppose f is Λ-Lipschitz. Then Y (C) = B × (−h, h), and Y (Γ) = B × {h}. Since Y (C) is a
standard right cylinder, we get

‖Tv‖2L2(Y (C)) ≤ C
(
h2‖∇(Tv)‖2L2(Y (C)) + h‖Tv‖2L2(Y (Γ))

)
. (C.15)

Due to (C.8), (C.9) and (C.10) we get the conclusion.

We now can prove Theorem C.1

Proof of Theorem C.1. Let v ∈ H1(Ω). Fix x ∈ ∂A. Since A is bounded and Λ-Lipschitz,
there exists a cylinder C and a Λ-Lipschitz function f of d − 1 variables such that f(0) = 0,
the bases of C are at a positive distance from ∂A, and there exists a Cartesian coordinate
system (ξ, η), with ξ ∈ R

d−1 and η ∈ R, in which

C = B(r)× (−b, b), (C.16)

for r, b > 0, B(r) ∈ R
d−1 the ball of radius r centered at zero and

A ∩ C = {(ξ, η) : ξ ∈ B(r), f(ξ) < η < b} . (C.17)
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For κ > 0, let Vκ denote

Vκ = {(ξ, η) : ξ ∈ B(r), 0 < η − f(ξ) < κ} . (C.18)

Choose δ0 > 0 such that κ0 = 2δ0
√
1 + Λ2 < b, and set κ = Λδ, for δ < δ0. Then, by

Proposition B.2 we have
Uδ ∩ Vκ = Uδ ∩ C (C.19)

and
Ṽ = {(ξ, η) : ξ ∈ B(r), κ < η − f(ξ) < κ0} ⊂ Aδ. (C.20)

Lemma C.2 yields
C‖v‖2L2(Vκ)

≤ κ2‖∇v‖2L2(Vκ)
+ κ‖v‖2L2(Γ) (C.21)

where
Γ = {(ξ, f(ξ) + κ) : ξ ∈ B(r)} .

Since κ is bounded at a positive distance below κ0, we have

‖v‖2L2(Γ) ≤ C‖v‖2
H1(Ṽ )

. (C.22)

Combining the above we obtain

C1‖v‖2L2(Vκ)
≤ κ2‖∇v‖2L2(Vκ)

+ κ‖v‖2
H1(Ṽ )

(C.23)

Since Vκ ⊂ C ∩A, we have

‖∇v‖2L2(Vκ)
≤ ‖∇v‖2L2(C∩A) = ‖∇v‖2L2(C∩Uδ)

+ ‖∇v‖2L2(C∩Aδ)
(C.24)

Substituting this into (C.23) and using Ṽ ⊂ C ∩Aδ yields

C‖v‖2L2(Vκ)
≤ δ2‖∇v‖2L2(Uδ)

+ δ(1 + δ)‖v‖2H1(C∩Aδ)
. (C.25)

Since ∂A is compact, we can cover it by a finite number of neighborhoods C, independent of
δ and thus obtain

C‖v‖2L2(Uδ)
≤ δ2‖∇v‖2L2(Uδ)

+ δ(1 + δ)‖v‖2H1(Aδ)
(C.26)

which completes the proof
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