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Abstract

Markovian master equations provide a versatile tool for describing open quantum systems when
memory effects of the environment may be neglected. As these equations are of an approximate
nature, they often do not respect the laws of thermodynamics when no secular approximation is
performed in their derivation. Here we introduce a Markovian master equation that is
thermodynamically consistent and provides an accurate description whenever memory effects can
be neglected. The thermodynamic consistency is obtained through a rescaled Hamiltonian for the
thermodynamic bookkeeping, exploiting the fact that a Markovian description implies a limited
resolution for heat. Our results enable a thermodynamically consistent description of a variety of
systems where the secular approximation breaks down.

1. Introduction

Theoretical descriptions of open quantum systems are crucial for understanding various scenarios, as a
complete shielding from the environment is usually not feasible or not even desirable. The latter is the case
in the field of quantum thermodynamics, where heat flows in out-of-equilibrium situations are the key
issue of concern. As a microscopic description of the environmental degrees of freedom becomes quickly
intractable, numerous approaches exist to approximate the behavior of the degrees of freedom of the system
alone [1-4]. Of particular interest are Markovian master equations in so-called GKLS form, after Gorini

et al [5], and Linblad [6]. By neglecting any memory effects induced by the environment, they provide a
particularly tractable description that gives access to the full density matrix of the system alone (i.e. the
reduced system). These equations usually rely on Born—Markov approximations which do not ensure GKLS
form. For this reason additional approximations are usually employed.

The most prominent approximation is the so-called secular approximation [1], where oscillating terms
are dropped from the master equation (for a recent generalization to time-dependent systems, see reference
[7]). This approximation has the desirable feature that it ensures consistency with the laws of
thermodynamics. The secular approximation has also been termed the global approach, because it uses the
(delocalized) eigenstates of the Hamiltonian. This is in contrast to the local approach which is widely used
in, e.g. quantum optics [8, 9] (for a comparison between the global and the local approach, see references
[10-20]). The difference between the local and the global approach becomes particularly apparent when
considering a system of weakly coupled components (e.g. two or three qubits or harmonic oscillators weakly
coupled to each other). In this case, the local approach can be obtained by deriving a master equation for
the individual, uncoupled components and simply adding the coupling term. We stress however that the
local approach is by no means phenomenological, as a microscopic derivation exists [13, 20]. This approach
is appealing mainly for two reasons: first, it does not require diagonalization of the Hamiltonian and can
thus be applied to problems where a secular approximation is difficult to implement analytically. Second, it
holds for systems that consist of weakly coupled degenerate units, where the secular approximation breaks

© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft


https://doi.org/10.1088/1367-2630/ac3b2f
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-6036-7291
https://orcid.org/0000-0003-2691-724X
https://orcid.org/0000-0003-1758-6274
mailto:patrick.potts@unibas.ch

10P Publishing

New J. Phys. 23 (2021) 123013 P P Potts et al

down due to the near-degeneracies. Such systems are widely studied in the field of quantum
thermodynamics as they are promising for manipulating and exploiting heat flows [21, 22]. However, the
local approach was criticized for not being thermodynamically consistent as it may result in violations of
the second law of thermodynamics [23]. These violations where shown to be small as long as the local
approach is justified [24, 25]. One may thus argue that sizable violations of the second law provide a useful
red flag, indicating that the approach is applied outside its regime of validity. Nevertheless, thermodynamic
consistency is desirable in any Markovian master equation as it allows for falling back on well established
laws [26]. It was shown that the local approach can be rendered thermodynamically consistent by
re-defining heat. This was motivated from a collisional model, where work is required to maintain the
collisions [27], as well as directly from the master equation itself [28]. Below, we show how thermodynamic
consistency of the local approach can be obtained starting from the standard microscopic system-bath
picture by exploiting a crucial insight: the approximations that result in a Markovian master equation impose
limitations on the energy-resolution for heat. Within this limited resolution, we may re-define heat without
compromising the accuracy of the approach.

Recently, a novel approach termed PERLind (position and energy resolved Lindblad equation) was
introduced [29] in an attempt to interpolate between the local and global approach. Since then, multiple
microscopic derivations were given [30—33], showing that the PERLind approach does not require any
additional assumptions going beyond the ones already present when performing Born—Markov
approximations. Compared to the global and local approaches, the PERLind approach thus has an increased
regime of validity, making it a very promising approach. However, it also comes with disadvantages: it
requires diagonalization of the Hamiltonian and it is not thermodynamically consistent. Furthermore, an
analytical treatment is often complicated by tedious expressions as shown below. Another approach that
goes beyond the secular approximation is based on introducing a coarse-graining time [15, 34—38]. While
taking this time to infinity recovers the global master equation, a GKLS master equation can be obtained by
choosing a finite coarse-graining time. In general, coarse-grained master equations are not
thermodynamically consistent. However, just as for the local approach, thermodynamic consistency can be
recovered by re-defining heat as motivated by a collisional model [39]. Yet an alternative approach for
obtaining a GKLS master equation beyond the secular approximation is provided by truncating the Redfield
equation [40].

Here we introduce a novel Markovian master equation in GKLS form that goes beyond the secular
approximation. Its main merit compared to previous approaches is that it is thermodynamically consistent.
Our approach is based on the same principle that is at the heart of all Markovian master equations: the
environment properties are slowly changing in energy. This allows us to not only neglect the broadening of
energy levels but to also treat transition energies that are close as having the same value. Employing the
same approximation in the definition of heat then naturally results in a thermodynamically consistent
treatment. Our approach may reduce to the global approach (when no transition energies are close) or to a
thermodynamically consistent version of the local approach (when all transition energies are close). We
note that for a time-independent Hamiltonian, our results are in agreement with the unified GKLS master
equation which was very recently derived in an independent work [41].

The rest of this paper is structured as follows. In section 2, we compare different Markovian master
equations and illustrate the main results without going into technical details. In particular, we introduce a
thermodynamically consistent local master equation as an example of our general master equation, which is
derived in section 3. Sections 4 and 5 illustrate our master equation with the examples of a fermionic and a
bosonic heat engine, covering both the time-independent as well as the time-dependent case. In section 6,
we apply our master equation to an interacting double quantum dot, a problem where we do not have an
exact solution and where our master equation may provide a description that differs from both the global
and the local approach. We conclude in section 7.

2. Comparing different master equations

In this section, we compare different master equations, in order to illustrate some of our main results
without going into mathematical details. To shed light on the discussion about the thermodynamic
consistency, we focus on the system that was considered in reference [23], where it was shown that a local
approach (here referred to as conventional local approach) may violate the second law of thermodynamics.
The system (sketched in figure 1) consists of two coupled harmonic oscillators and is described by the
Hamiltonian

Hs = Qcalac + Qualan + g@lac + alay) = Qyalay +Q ala, (1)
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Figure 1. System of coupled harmonic oscillators to illustrate the validity of different Markovian master equations. Two
harmonic oscillators with frequencies €2, and €2, are coupled to each other with coupling strength g and to a thermal reservoir of
temperature T}, and T, (with coupling strength xj, and k) respectively.

with the standard commutation relations
[aonajq] = da,5 [aa>a3] = 0. (2)

The two oscillators are labeled by ¢ and h, as they are coupled to a cold and a hot bath respectively.
Diagonalizing the Hamiltonian results in the eigenfrequencies

0, =04/ 1 g sz Azw, 3)

and the corresponding ladder operators
at = cos(0/2)ay + sin(6/2)a, a_ = —sin(6/2)an + cos(6/2)ac, (4)

where the angle 6 is defined through
A

VA4 g? ’
where we use the branch 0 < 6 < 7, which corresponds to g > 0, which we tacitly assume throughout this
work.

cos(f) = (5)

We will now compare five different approaches to describe the heat transport through this system:

(a) The transmission function approach (valid for arbitrary system-bath coupling).
(b) The conventional local approach (may violate the second law of thermodynamics).
(c) Our local approach (ensures the laws of thermodynamics).

(d) The global approach (relies on the secular approximation).

(e) The PERLind approach (interpolates between local and global).

As we show below, the master equation we introduce in this work reduces either to the local, or to the
global approach depending on the parameters. We stress that the approach we refer to as local is
thermodynamically consistent, in contrast to the conventional local approach investigated, e.g. in reference
[23]. The transmission function approach is used as a benchmark, because it is not perturbative in the
system-bath coupling. Furthermore, by resolving the energy dependence of heat transport, it indicates
specific shortcomings in the other approaches. We include the local approach used in reference [23] to
illustrate when and why the second law of thermodynamics may be violated.

In all five approaches, we take the so-called wide-band limit, assuming an energy-independent coupling
between system and bath and neglecting any Lamb shift of the Hamiltonian. While this is the only
assumption for the transmission approach, all master equation approaches further rely on the
Born—Markov approximations. For the current scenario, these approximations are valid whenever

K:(V << Q(V) (6)

where k,, denotes the transition rate between system and reservoir a = ¢, h. All master equation approaches
are of the form _ _

&p = —ilHs, p) + LLp + Ly, 7)
with different dissipators £, where j labels the approach.

2.1. The transmission function
For non-interacting particles, the heat current can be written using a Landauer-like formula [42]. For
bosons (with vanishing chemical potential) it takes on the form

*d
J— /0 Tl w) — ), (8)
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Figure 2. Steady state heat current for degenerate harmonic oscillators (A = 0). (Grey) Transmission approach (J') which serves
as a benchmark. The PERLind approach (JP) agrees perfectly with the transmission approach for these figures. (Blue) Local
approach (J'). In steady state, this approach reduces to the conventional local approach (J) for A = 0. (Red) Global approach
(J®) which relies on the secular approximation. (a) As expected, the transmission approach interpolates between the local and
global approaches as a function of the coupling strength g. In agreement with equation (15), the local approach may be justified
even for ¢ > k. The insets illustrate the transmission function as a function of energy for two different values of g, where the local
or the global approach is well justified. (b) The master equation approaches agree well with the transmission function approach
for a wide range of temperatures. The inset (where T. = 0) illustrates the regime where both temperatures become small. We
note that in this regime, the relative error associated to the master equation approaches may become large but the absolute error
stays small. Parameters: K = k. = K, = 0.02Q2, A =0, kg T}, = Q, (a) kg T, = 0.8 €2, (b) g = 5k, inset: T, = 0.

where we introduced the Bose—Einstein distribution

S 9)

ng(w) =

eBln — ]
and the transmission function 7 (w) can be obtained using non-equilibrium Green’s functions [43, 44]. For
the present system, it reads (see for instance reference [45] for the analogous case of Fermions)

2
& Kckh

T(w) = | (w—+i%) (w—Q+i%) — g2

(10)

The Landauer-like formula has an intuitive interpretation. At each energy w, bosons traverse the system
with the rate 7 (w)dw. The transmission function has two peaks located at 2 and €2_. For small gand A,
these peaks merge as illustrated in the insets of figure 2(b).

2.2. The conventional local approach
In this approach, the dissipators act locally on the two oscillators

L3 = ko {n5(Q)Dlal] + [n(Qa) + 1]Daal}, (1)
where cl stands for conventional local. Here we used the GKLS superoperators
DIAl = Apd! ~ 34,7}, 12
with {, -} denoting the anti-commutator. The heat current in this approach is defined as
J4=Tr {HsLi'p} . (13)
In steady state, this reduces to

KeOn + k0 Ag%Kcrn 15 (Qn) — n§ ()]

c
/ (K + kn)?  4¢2 + Kekp + 16A%Kckn /(Ko + kp)?

(14)

It is important to note that there is a microscopic derivation that results in this local approach, which is
valid for the current system as long as ng (2,) ~ ng(€2.) [13], which is the case for

A< Q. (15)

When this inequality is satisfied, we may expect that the laws of thermodynamics hold, see figure 2. When
this approximation is not justified, the second law of thermodynamics is not guaranteed as illustrated in
figure 3. The reason for this is that the Bose—FEinstein distributions are evaluated at {2, and €. respectively
in equation (14). This implies that the bosons change their energy when traversing the system. From the
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Figure 3. Steady state heat current as a function of the detuning between the oscillator frequencies A = €, — Q.. (Grey)
Transmission approach (J') which serves as a benchmark. The PERLind approach (JP) agrees perfectly with the transmission
approach for these figures. (Blue) Local approach (). (Green) Conventional local approach (J). (Red) Global approach (J8).
(a) For small coupling g, only a very small violation of the second law (negative heat current) is observed in the conventional
local approach. (b) For larger g, the violation of the second law becomes larger. Interestingly, the local approach provides an
accurate heat current, even though it is no longer microscopically justified for these parameters. Parameters:

K=ke =k = 0020, kgT. = 0.8, kgTy, = ©, (a) g = 0.022, (b) g = 0.1

Landauer-like formula (cf equation (8)), it is apparent that this cannot happen. We note that while
equation (15) ensures |n§(Qy) — n§(Qc)| < 1, the relative error in the heat current can still be sizable when
the occupation numbers (and thus the heat current) become small. This is the case because equation (15)
does not ensure 1§ (Q) — nf(Q)| < 15 (Qa)-

2.3. Our local approach
Here we present a thermodynamically consistent local approach that follows from our general master
equation introduced below in section 3, where we motivate this approach microscopically and show how it
can be generalized to more complicated systems. As in the previous approach, the dissipators act locally in
this approach

Ll = ko {n§(QDIa}] + (n3(Q) + 11Dlaa]} (16)

the only difference being that the Bose—FEinstein distributions are now all evaluated at the frequency €. This
approach has the same regime of validity as the previous local approach. Indeed, equation (15) implies

|5 () — ng(Q)] < 1, (17)

and we expect the dissipators in equations (11) and (16) to result in approximately the same dynamics as
illustrated in figure 2. If equation (15) is not satisfied, the two local approaches may result in different
results, see figure 3.

To obtain a thermodynamically consistent description, the approximation in equation (15) is exploited
in the definition of the heat current which reads

J'="Tr {HwLip}, (18)
where we introduced a separate Hamiltonian for the thermodynamic bookkeeping (TD)
Hrp = Qafac + alan). (19)

Whenever equation (15) holds, this Hamiltonian provides the (approximately) correct energy flows.
Consider the case where A = 0. Then, Hrp, is simply obtained by dropping the coupling between the
oscillators. The thermodynamic bookkeeping thus neglects both the system-bath couplings, as well as the
coupling between the oscillators. Of course, all these couplings are crucial for the dynamics, where they
appear either in the Hamiltonian or in the dissipators. In section 3, we illustrate how such a thermodynamic
Hamiltonian can be constructed in general, providing thermodynamic consistency of the corresponding
master equation at the price of a slightly reduced energy resolution of thermodynamic quantities.

In steady state, the heat current reads

9] 4¢% kekin [mB(Q) — n$(Q)]
Ke + Kn 4g% + Kekn + 16A%Kekn / (ke + kp)?

J= (20)

We note that for A = 0, we find J! = J< in the steady state. However, in the transient regime the two local
approaches may result in different heat currents even for A = 0. The difference between the two approaches




10P Publishing

New J. Phys. 23 (2021) 123013 P P Potts et al

is in this case the energy associated to the coupling term (proportional to g), which is dropped in the local
approach. We note that the heat current associated to this coupling term has been interpreted as a quantum
contribution before [19].

Comparing the local master equation with the Landauer-like formula (cf equation (8)), one can see that
transmission is approximated to happen at a single energy 2. This is a good approximation when
equation (15) holds. In this case, the transmission function is only non-zero around ) and the
Bose—Einstein distributions may be assumed constant across all energies where transmission is non-zero.
Interestingly, the local approach agrees well with the transmission approach for the present system, even
when equation (15) is not satisfied, see figure 3(b). This is in stark contrast to the conventional local
approach.

2.4. The global approach
In the global approach, the dissipators are introducing jumps between the eigenstates of the Hamiltonian

L8 =" k7 {ng(Q,)Dlal] + [n§(Q,) + 1]Dla,]}, (21)

o=+
where the coupling strengths reflect the spatial distribution of the eigenstates

/ﬁf{ = rp cos”(6/2), Ky, = K sin?(0/2), kI = kesin?(0/2), k. = ke cos*(0/2). (22)

C

The heat current in the global approach reads

J& =Tr {HsLEp}, (23)
which in steady state reduces to
KIKY
& — Q,—= 1R (Q,) — n5(Q)]. 24
J ; w7 7 7B = 5(0)] (24)

This approach is thermodynamically consistent and we will always find heat flowing from hot to cold. As
it relies on the secular approximation, it requires the condition

Ko kin < \/ A + g2, (25)

In the global master equation, the transmission is approximated to happen at the two energies (2. If
equation (25) holds, the transmission function given in equation (10) consists of two narrow peaks located
at 24, see the right inset in figure 2(b). Over the width of these peaks, the Bose—Einstein distributions can
be assumed constant and the global master equation is valid. Note that if equation (25) does not hold, the
peaks overlap and the secular approximation breaks down, see figure 2. We also note that equations (15)
and (25) may both be valid. In this case, both the global as well as the local approach are expected to give
accurate results.

2.5. The PERLind approach
In the PERLind approach, the dissipators read

['g - Z D[j(y,k]) (26)

k=-1,1

with the jump operators
Jorr = \/REI§(Q) + Ny + /g [5(Q) + 1a,
Jor = \/rEng(Qp)al, + rong(QO)al,

(27)
Tho1 = e (B (Qy) + 1ay — y/ky [nB(Q) +1a,
T = /R )al — [k al(Qo)al .
In this approach, the heat current is defined as
JP ="Tr {HsL}p}. (28)
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For the present system, the heat current in the PERLind approach agrees perfectly with the result obtained
from the transmission approach for all considered parameter values. This is expected as we consider
scenarios where equation (6) is fulfilled and the Born—Markov approximations are justified. Clearly, the
PERLind approach has strong advantages. However, it also has its disadvantages. First, the analytical
expressions quickly become unwieldy, which is the case already for the simple system considered here.
Second, the PERLind approach may violate the second law of thermodynamics [29]. When heat is defined
by equation (28), a necessary and sufficient condition for the second law to hold is given by [46, 47]

LPe Patls — g, (29)

This condition is not fulfilled as shown in reference [30]. However, as long as the Born—Markov
approximations are justified, any second law violations should become vanishingly small. It is an open
question if a different definition for heat, that is consistent with the Born—Markov approximation, could
salvage the second law.

2.6. Which approach to use?

As we have shown above, all approaches have their advantages and disadvantages. The PERLind approach
provides the most accurate description, while the conventional local approach is the most simple, not
requiring diagonalization of the Hamiltonian. Both approaches may however result in violations of the
second law. The global and the local approach both respect the laws of thermodynamics. Furthermore,
together they provide an accurate description for all parameter values as they are justified in
complementary, but overlapping, parameter regimes (cf equations (6), (15) and (25), assuming the
Born—Markov approximations are justified). In the following, we illustrate how these thermodynamically
consistent approaches follow from a unified framework that can be extended to scenarios where neither a
global nor a local description is justified.

3. A thermodynamically consistent master equation

We first revisit the general scenario under consideration and discuss the laws of thermodynamics. We then
provide a detailed derivation and discuss how thermodynamic consistency is obtained by a consistent
application of the approximations on the thermodynamic bookkeeping.

3.1. The general scenario
We consider the general scenario described by the Hamiltonian

I:Itot(t) - I:IS(t) + Z (I:I(y + V{y) - I:IS(t) + I:IB + ‘A/) (30)

«

where the first term describes the Hamiltonian of the system (which may be time-dependent) and the
second and third term describe the thermal reservoirs (labeled by «v) and their coupling to the system
respectively. The system exchanges energy and particles with the reservoirs, such that energy changes can be
divided into heat and work. The average heat that leaves bath o during the time interval [0, t] is given by

<Q(y> = = TI'{(I:I” - ,UaNa)ﬁtot(t)} + Tr{(I:Ia - U(yNa)ﬁtot(O)}U (31)

where N, denotes the particle number operator for reservoir v and yu,, its chemical potential. The average
work provided by reservoir « is

<Wa> - _/~L04 (Tr{Naﬁtot(t)} - Tr{Naﬁtot(O)}) . (32)
In addition, the time-dependence of the system Hamiltonian results in the external average power

Pe (1) = Tr{ [0:Hs(£)] pron (1) }. (33)

3.2. Thelaws of thermodynamics
Before deriving a Markovian description, we discuss the laws of thermodynamics as they hold for the
general scenario.
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3.2.1. The Oth law
For a large environment in thermal equilibrium (i.e. described by a single inverse temperature 5 and
chemical potential 1) and a time-independent system Hamiltonian, the reduced state of the system tends to
[48, 49]

ﬁS — TI'B {e*B(Htot*#Ntot)/Z} R 7 ="Tr {efﬁ(Htot*#Ntot)} , (34)
where Trp denotes the trace over the reservoir degrees of freedom. In the weak system-bath coupling limit,
equation (34) reduces to the Gibbs state

. e—ﬁ(Hs—/le)
P = fy fe s i} (35)

3.2.2. The Ist law
For future reference, we first introduce the heat current and power provided by bath « as

]a(t) = at<Qa>) Pa(t) - at<Wa>~ (36)

The first law of thermodynamics is then given by

AU (1) = Pe(t) + Y _Ua(t) + Pu(t)], U = Te{[Hs(t) + V]pa(1)}- (37)

In the weak system-bath coupling limit, the coupling energy can be neglected and U = Tr{Hs(t)pror(£) }
reduces to the usual internal energy of the system.

3.2.3. The 2nd law
To express the second law of thermodynamics, we impose the initial condition

efﬁ(H(yfﬂNu)

Prot(0) = ps(0)X)7ar 7o (38)

B Tr {e—ﬁa(Ha—uaNa) } 4

i.e. all reservoirs are in local thermal equilibrium and uncorrelated with the system and the other reservoirs.
With this initial condition, the second law of thermodynamics can be written as [50]

() = AS(r) — Zg—‘” =3 [ﬁth)ms(t)@%a] >0, (39)

«

where ps = Trp{pwt(t) } denotes the reduced state of the system, S[p;||g2] = Tr{p1(In py — In p,)} is the
quantum relative entropy (which is by definition positive for positive definite density matrices p;, p, with
unity trace), and AS denotes the change in the system’s von Neumann entropy

AS(t) = —kg Te{ps(£) In ps(£)} + ks Tr{ps(0) In ps(0)}. (40)

Equation (39) has an intuitive interpretation: the entropy production ¥ denotes the information that is lost

when describing system and reservoirs by the state ps(#)&),, 7. In this description, correlations between the

system and the reservoirs, as well as any displacement from equilibrium of the reservoirs are neglected [51].
While equation (39) is always non-negative, the same is not necessarily true for the entropy production

rate
£ = s — Y (41)

(e}

(e}

A negative entropy production rate can be understood as information backflow and is a hallmark of
non-Markovian behavior [52]. For systems amenable to a Markovian description, we expect 3 > 0, as the
initial condition in equation (38) can be translated in time without altering the dynamics.

3.3. Distribution for heat and work exchanged with the reservoirs

Throughout this work, we are mainly interested in average thermodynamic quantities. In order to obtain a
Markovian description of these, it is nevertheless instructive to start with the full probability distribution
for the heat and work exchanged with the reservoirs. With the initial condition given in equation (38), this
distribution can be written as
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P(QW)= > P(E,N|E,N)PyEN)
EE NN’

< [ [6(Wa = 1aN;, + 11aNa)5(Qa + W — E,, + Ea), (42)

where we grouped Q,,, W, E,, and N, into vectors Q, W, E, and N and similarly for E/, and N/,. The
joint probability for each bath « having energy E, and particle number N, at time ¢ = 0 is given by

e—iga (Ea—paNa)

Py(E,N) = HTr {efga(ﬂ(ﬁu,,m)}'

«

(43)

The conditional probability that the reservoirs have energies E/, and particle number N/, at time ¢, given that
their energies and particle numbers where E, and N, initially reads

P,(E,N'|[E,N) = Tr{Mps(0)M'}, M = Tr{|E,N)(E,N'|U(1)}, (44)
where H,|E,N) = E,|E,N), N,|E,N) = N, |E, N), and we introduced the time-evolution operator
O(t) = Te ot Ha®), (45)

with 7 denoting the time-ordering operator. We note that the probability distribution given in (42) can in
principle be measured by applying projective measurements on the reservoirs at the initial and final time.
Importantly, while such measurements may not be experimentally feasible, they do not influence the
dynamics of the system due to the chosen initial condition.

The moment generating function is provided by the Fourier transform of the probability distribution in
(42)

AN x) = / dQAWP(Q W)e A& XW — Tr {H (A x; 1)}, (46)

where we introduced
Dot X3 1) = U X5 Dot (0)UT (=X, —x; 1) (47)

with the modified time-evolution operator

. — 5 Moo —paNa)+xattaNal L 1 e o —paNa)+xattaNa]

U x;t)=e ' U(t)e @ : (48)
The quantities A\, and x,, are known as counting fields and allow us to keep track of work and heat
exchanged with the reservoirs (for the use of counting fields in master equations, see references [4, 53]).
From the moment generating function, we recover the average values for heat and work given in section 3.1
as

(Qu) = 10x, A(X, 0) | x=0> (Wa) =10y, A0, X)|x=0- (49)

We note that we do not include the external power in the probability distribution for heat and work as
this goes beyond the scope of this paper. Indeed, fluctuations of the external power may not necessarily be
described by a positive probability distribution without introducing a measurement scheme that potentially
alters the dynamics of the system [54—56].

3.4. Born—Markov approximations

We are now in a position to derive a Markovian master equation, keeping track of the thermodynamic
bookkeeping associated to the heat and work exchanged with the bath. Together with a secular
approximation, resulting in a global master equation, such a procedure has been applied before [57-59] (for
a similar approach based on path-integrals, see [60]). Here we will make an approximation that is different
from the secular approximation, allowing for treating (near) degeneracies while still ensuring
thermodynamic consistency. We follow standard procedure [1, 4] and write the system-bath coupling as

V - Z Sa,kB(y,k) (50)
.k

where the operators ga,k (Ba,k) act only on the system (reservoir). We note that we do not assume that these
operators are Hermitian. To determine the jump operators that will enter the Markovian master equation,
we need the Fourier coefficients of the operators S, in the interaction picture, i.e.

UL08axUs(t) = > e 8,45 Us(r) = Te Mo ist), (51)
J
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For a time-independent Hamiltonian, the frequencies w; denote the energy gaps in the Hamiltonian and the
operators S, t; are ladder operators that induce transitions between the corresponding states. For a periodic
Hamiltonian with period f, = 27 /w, the S, ;j are ladder operators of an averaged Hamiltonian defined by

Us(t,) = e oty (52)

The frequencies then fulfill w; = v; + li, where v; denotes an energy gap of H,, and J; denotes an integer,
corresponding to the exchange of photons with the driving field [57, 61, 62].

Standard application of Born—Markov approximations then results in the Redfield equation including
counting fields (in the interaction picture)

Oyps(t) = — Z ei(wj_wf’)t/ dsZ(s, 1),
0

a,kk !
Z(s,t) = € Clu(9)S] 1 iSawyr Ds() + € I Clu (=9)ps (1), Sy
— ei#”na’k()\"ix") |:eiwj/5 I?,k’(s + )\a) + eiisz I?,k’(_s + )\a)] S‘oz,k’;j’ps(t):gjl,k;j’ (53)

where we suppressed the counting field dependence of the density matrix for ease of notation. We note that
the term Redfield equation sometimes refers to the non-Markovian equation that is obtained before taking
the time-integration to infinity [1] while we include this limit here. Here we used global particle
conservation, which ensures

[Sa,k;p NS] - na,kga,k;j) [Sa,k/;j’) NS] - na,kga,k’;‘U (54)

for all pairs k and k' that appear together in equation (53), i.e. Sa,k;j and Sa,k’;j’ change the particle number
by the same amount, such that no superpositions of particle numbers are created. We further introduced
the bath correlation functions

Couls) = Tr {eifﬁafs; . e—ifﬁafs(,,km} . (55)

These correlation functions define a bath correlation time 75 by their characteristic decay time. The Markov
approximation is generally justified when the bath correlation time is much shorter than the characteristic
time-scale over which pg changes in the interaction picture, 7s. The time 75 describes the relaxation time of
the system and is determined by the inverse of the system-bath coupling. Note however that the counting
fields A\, enter the argument of the bath correlation times. For the counting-field dependent density matrix,
the Markov approximation is only justified if G’} (&7 + Aq) =~ 0 for 7 2 75. This implies the regime of
validity

LT, || € 75 (56)

The last inequality has a very important consequence. It implies that only the low frequency components of
the heat distribution are to be trusted. Due to the uncertainty principle between Fourier conjugate variables
[63], this implies that energy-differences in heat of the order of 1/75 cannot be resolved. Thus, whenever a
Markovian description is employed, the heat exchanged with the reservoirs suffers from a limited
energy-resolution. With this in mind, it is no surprise that Markovian descriptions may result in
thermodynamic inconsistencies. There is however a straightforward solution to the problem: as our
resolution of heat is finite, we may change the definition of heat such that it fulfills the laws of
thermodynamics while remaining the same within our limited resolution.

3.5. Frequency grouping for positivity
It is well known that the Redfield equation does not preserve positivity of the density matrix and can thus
result in negative probabilities. Multiple schemes have been put forward to achieve positivity. Here we
introduce a novel scheme that has the same regime of validity as the Born—Markov assumptions and thus
goes beyond the regime of validity of the secular approximation. As we show in the next subsection, our
approach allows for a thermodynamically consistent formulation.

Equation (56) ensures that for any two transition frequencies we either have |w; — wy| < 1/7p or
|wj — wj| > 1/7s. Indeed, both of these conditions may be fulfilled simultaneously as 75 < 75. We may
thus group the transition frequencies into sets x,, such that the first (second) inequality holds if the
transition frequencies are in the same (different) set, that is

|wj —wyr| < 1/78 for wj € x,, wyr € xy with g = ¢, )
|wj — wyr| > 1/75  for wj € x4, wjr € xy with q # ¢

10
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It is important to note that this procedure may not always work, for instance if the w; form a continuum.
However, in small quantum systems, where the number of transition frequencies is finite, this procedure is
expected to work. It is particularly well suited for thermal machines that consist of weakly coupled
sub-units. These naturally exhibit sets of near-degenerate transition frequencies (see the examples below).
In the spirit of the secular approximation, we then drop terms in equation (53) where w; and wy belong
to different sets. This is justified as the corresponding terms exhibit fast oscillations that average to zero. For
transition frequencies in the same set x,, we follow the spirit of the Markov approximation and replace

ek, et —y el lwg —wil € 1/18 VY wj € x5 (58)
within Z(s) in equation (53), while keeping the frequency differences in the prefactor et governing
the coherent dynamics of the system. For each set, we thus choose a set frequency w,. All transition
frequencies w; in the set x, are then replaced by the set frequency, because they are virtually
indistinguishable over the time-scale over which the integrand in equation (53) is finite.

This approximation results in the Lindblad master equation

Qupsx: 1) = —ilHis, ps(A x; )] + Y LX ps(X, X3 1), (59)

(63

with

1
ﬁXa )\a Z re (Wq) |: —idqwg—i(Xa—Aa) uanaks kq(t)psakq(t) -3 { ki q(t)Sakq(t) p}] (60)

where the tilde denotes the interaction picture and we introduced the jump operators

S(y,k;q(t) - Z e_iwjtsa,k;j) (61)
{j\ijxq}
and the Lamb-shift Hamiltonian
His = AR (@q)S) 00 (8)Sakq(t), (62)
ak;q
as well as the quantities
I(w) = / ds ei“’SC,‘C’,'k(s) A (w) = —%/ ds el sign(s) Cix(s). (63)

For simplicity, we assumed C}'}, o< Oy p to derive equation (59). We note that relaxing this assumption is
straightforward.

In the absence of counting fields, we may use the Kubo—Martin—Schwinger condition [1] (which is
slightly complicated by our definition of the bath-correlation functions) to write the master equation as

s = —i[His(t), ps] + Z Laps, (64)

with

Lo= 30 3 Tiwp {DlSasy(®)] + e PolareranDIS] )]} (65)

{qlwg>0} Kk

For a time-independent Hamiltonian, the master equation in the Schrodinger picture is given by

Oips = —i[Hs + His, ps] + Z Lapss (66)
with
Z Z ¢ (wq) {D[Sa,k;q] + eiﬁa(wr#”n‘”’k)p[S(Ty,k;q]} : (67)
{q\wq>0} k

where Sa,k;q = 3a,k;q(0) and Hys = H;5(0). For time-dependent Hamiltonians, one has to be more careful
because in general Sa,k;q(t) =+ Ul(t)ga,k;q Us(t), see also appendix A.

There are two simple limits for the master equation in equation (66). If all pairs of transition frequencies
fulfill |w; — wy| > 1/7s, then each transition frequency may be associated to a separate set x;. We then

recover the secular approximation where ’D[S}y,k;q(t)] = D[ga,k;j] (the time-dependence of the jump

11
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operators drops out in the interaction picture). If all pairs of transition frequencies fulfill |w; — w]-/\ < 1/73,
then all transition frequencies may be grouped into a single set x, such that Sa,k;q(t) = U;(t)g}y,k Us(1) (the
time-dependence of the jump operators drops out upon returning to the Schrodinger picture). We then
recover a local master equation, which has the appeal that the Hamiltonian does not need to be
diagonalized in order to identify the jump operators. This local approach differs from the conventional local
approach as only a single frequency enters the bath distribution function.

Importantly, the counting fields A, have an influence on the regime of validity of equation (59), just as
for the Markov approximation. Indeed, for the approximation to be valid, |w,; — wj| does not only have to
be much smaller than 1/75 but also has to be much smaller than 1/|)\,| (in complete analogy to
equation (56)). Just like the Markov approximation, this frequency-grouping thus limits the
energy-resolution for heat exchanged with the reservoirs. As a consequence, energy changes of the order of
|wj — wj |, where both frequencies are within the same set, can no longer be resolved. This finite resolution
in energy may result in the false conclusion that particles change their energy when traversing the system. In
the conventional local approach, this results in thermodynamic inconsistencies when using standard
definitions for heat, see section 2.

We note that dropping terms that involve frequencies from different sets is reminiscent of the partial
secular approximation developed in references [15, 34, 35, 64, 65]. Here, as well as in reference [41], an
additional coarse-graining in energy (replacing frequencies with set-frequencies) results in a master
equation in GKLS form.

3.6. Two Hamiltonians for thermodynamic consistency

We now turn to the question of how to utilize the finite energy-resolution to ensure thermodynamic
consistency. To do this, we introduce a second Hamiltonian, Hrp, that provides the correct thermodynamic
bookkeeping under the approximations that resulted in our master equation. For simplicity, we consider
here a time-independent system Hamiltonian. The time-dependent case is slightly more complicated and
treated in appendix A. Due to the frequency grouping outlined in the last subsection, all frequencies in the
set x, are effectively replaced by the frequency w, from the point of view of the reservoirs. To ensure a
consistent thermodynamic bookkeeping, the Hamiltonian Hrp needs to fulfill

[Sa,k;j) HTD] - qua,k;j) (68)

for all frequencies w; € x,. To fulfill this, the thermodynamic Hamiltonian can be obtained from H;s by
changing its eigenvalues such that all frequencies w; — w, for w; € x,. Such a rescaling is expected to always
be possible if the frequency grouping is possible as discussed above.

With the thermodynamic Hamiltonian at hand, we define the internal energy of the system as

U = Tr{Hmp}. (69)

Furthermore, from equations (59), (36), and (49) we find that the heat current and power provided by bath
« can be cast into
]a = Tr{(HTD - ,U/aNS)['apS}) Pa = Ha Tr{NS['aﬁS}> (70)

where £, is defined in equation (67). We note that while Hryp, determines the thermodynamic bookkeeping,
it is still Hg that determines the kinetics, i.e. enters the master equation in equation (59). For future
reference, we also introduce the total power produced by the system as

P(t) = =)  Po(t) — Pex(t). (71)

This will be the quantity of interest when we consider heat engines.

3.6.1. The Oth law
Using equation (68), it is straightforward to show that

Eaefﬁu(HTDfﬂ(yNS) = 0. (72)

as well as [Hrp, Hys] = 0. Furthermore, as Hyp is obtained by changing only the eigenvalues of Hs, these
two Hamiltonians also commute. When all reservoirs have the same inverse temperature 5 and chemical
potential i, it then follows that the Gibbs state with respect to the thermodynamic Hamiltonian,

e*ﬁ(HTD*NNs)

Tr{e- A -nf9)} (73)

ﬁG(ﬁ) ,u) =

12
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is the steady state of equation (66). Compared to equation (35), this state neglects the system-bath coupling,
as well as the differences between Hg and Hp. This is consistent with our approximations, which imply
that these differences cannot be resolved within our Markovian treatment.

3.6.2. The first law
Using [Hrp, Hs + His] = 0, the first law of thermodynamics follows directly from equations (69) and (70)
and reads

U =" (Po+Ja) (74)

3.6.3. The second law
The entropy production rate can be written as

E/kB - _at Tl’{f)s In ﬁS} - Z 6(1](1 - _Z Tr{(‘c(yﬁS)[ln ﬁS —1In ﬁG(ﬁ(w /Jf(y)]} 2 0. (75)

Here we used equations (66), (70), and the last inequality is known as Spohns inequality [46, 66] and relies
on p(fa» pa) being a fixed point of £, cf equation (72).

The master equation in equation (66), together with the thermodynamic bookkeeping introduced in
equations (69) and (70), thus provide a thermodynamically consistent description. We stress that the only
assumption that went into equation (66) is the one that justifies the standard Born—Markov
approximations, i.e. T << Ts. However, when considering the full probability distribution for heat and
work exchanged with the reservoirs, cf (59), then we further have restrictions on the counting fields A,
which are the Fourier transform variables of heat. These restrictions imply that we lose energy-resolution
on the scale of 1 /75 as well as |w; — wJ’| for pairs of frequencies that are close to each other (and grouped
into one set). Thermodynamic consistency is obtained by using an appropriate definition of heat that is
consistent with our limited energy-resolution (i.e. we may freely add terms of order |w; — w]f | to heat, as our
results are not to be trusted to this order in the first place).

4. Fermionic heat engine

4.1. System

In this section, we illustrate the derivation of our master equation for a simple but non-trivial example of
non-interacting electrons. Here, as well as for all time-independent examples, we provide all equations in
the Schrodinger picture. The system under consideration is sketched in figure 4 and consists of two coupled

single-level quantum dots o o . o
Hs = Qud]dy + Qrdldr + g(d] dr + d}dy), (76)

with the standard anti-commutation relations
{aa) EZ};} = Oq,3> {Ei(y)aﬁ’} =0. (77)

In equation (76), €2, denote the on-site energies and g the coupling strength. We note that this system is a
fermionic version of the system considered in section 2 and thus shares many of its properties. Due to the
finite chemical potential of the reservoirs, it can however feature as a heat engine, leveraging a heat current
to drive a particle current against a chemical potential bias. The reservoirs and their coupling to the system
are described by

Ha = Z €a,lel,lea,l) \A/a = Z ta,l(&jyea,l + él)laa)) (78)
1 1
with o = L, R. From equations (50) and (78), we identify the following system and bath operators
S‘(1,1 - (ji];) g(y,—l - aay (79)

and

B(y,l - Z ta,la(y,l) B(y,—l - Z t(y,lal,p (80)
I 1

To derive the master equation and judge its validity, the bath correlation functions need to be inspected. We
defer this discussion to appendix B.1, and simply state the conclusion that the Born Markov approximations
are valid whenever

Ko < max{kpTs, |wj— psl}, (81)

13
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ML
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Figure4. System of coupled quantum dots acting as a heat engine. Two quantum dots with on-site energies €2;, and 2y are
coupled to each other with coupling strength g and to a thermal reservoir of temperatures Ty, Ty and chemical potentials 1, i
(with coupling strength «j, and &) respectively.

where the inequality should hold for all choices of a, 3, and j and we assumed an energy-independent bath
spectral density. Physically, equation (81) ensures that the rates

' (~w) = kang (W), ' (W) = ka1 = ng(w)], (82)
with the Fermi—Dirac distribution )
ng(w) = Teopa (83)
ekBTﬂ + 1

is flat over the energy scale . At high temperatures, this is ensured because the Fermi—Dirac distribution
becomes flat. For large |wj — 115, the eigenenergies of the double quantum dot lie far away from the
chemical potential, where the Fermi—Dirac distribution is flat and takes on the value zero or one.

To identify the transition frequencies and the jump operators, we require the Fourier coefficients of the
system operators given in equation (79)

eiﬂstgiRe_igst = e 1t cos(9/2)gi_ + e 104t sin(9/2)£i+,

e . N . . (84)
elffstd e st = —e7 T 5in(9/2)d_ 4 e+ cos(6/2)d,
where we used a similar notation to section 2, i.e. the diagonalized Hamiltonian reads
Hy=Q.dd, +Q.dd, (85)
where Q. = Q4+ /A% + g2, with Q = (Qr + Q1) /2, A = (Qr — Q1)/2,and cos() = A//A* + g2
Comparing equation (84), and their Hermitian conjugates, to equation (51), we find the transition
frequencies
{w]} = {Q+, Q,, —Q+, —Q,}, (86)
and the corresponding jump operators
{Sp1} = {sin(#/2)d,., cos(8/2)d_, 0, 0},
{Si,-1} = {cos(8/2)d,., —sin(8/2)d_, 0, 0},
(87)

{Sr1} = {0, 0, sin(8/2)d"., cos(6/2)d" },
{Su1,} = {0, 0, cos(9/2)d",, —sin(8/2)d" }.

We note that the frequencies {2, only feature in the jump operators with k = —1 (corresponding to
electrons leaving the system), while the frequencies —{2. only feature in the jump operators with k = 1
(corresponding to electrons entering the system). This implies that we may consider only the frequencies
Q4 when deciding how to group the transition frequencies into sets. We may group {24 and {2_ in the same
set, or we may assign them to different sets. For the frequencies —{2., we then choose an equivalent
grouping.

4.2. Global approach

Grouping (), into different sets is justified as long as their difference 21/A? + g? is much larger than

max{ K, kr }, which corresponds to 1/7s. This grouping results in a different set for each frequency, such
that {w,} = {w;} and {So .y} = {Sak;}. Having identified the set frequencies and jump operators, we may
then use equation (67) to obtain the well-known dissipator in the secular approximation

£8 = Y wg {n QD) + [1 = ng ()DL, (85)
o==%
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with the coupling strengths
ki = kpcos?(0/2), Ky = kLsin®(0/2), ki = krsin?(0/2), kg = kg cos*(6/2). (89)

As the jump operators in equation (87) are ladder operators of Hs, no rescaling is required for obtaining the
thermodynamic Hamiltonian and we find Hrp = Hj, resulting in the standard definition for heat currents
(cf equation (70)).

4.3. Local approach

Alternatively, we may group €24 and {2_ in the same set. In this case, we need to choose a set frequency. The
average value () is a natural choice. Using the same arguments that result in equation (81), this grouping is
justified as long as 21/ A* + g2 < max{ksT}s, |wj — 115|}. In this case, we end up with two sets with the set
frequencies

{wg} = {0, -0}, (90)

and the jump operators
{SR,fl;q} = {dR> 0})

{SL-1:0} = {dv, 0},
{Srisq} = {0, dl},
{Suig} = {0, d},

which are simply obtained by adding the jump operators in equation (87) which belong to the same set.
Inserting these quantities into equation (60) results in the local approach with the dissipator

(91)

£, = o {ng(@DIAL] + [1 - n (DI}, (92)

fora = L,R.
The thermodynamic Hamiltonian is obtained by rescaling all transition frequencies to their set
frequency. In the present case this rescaling is obtained by Q2. — € resulting in

Hip = Qd\ dy +d'd ) = Qdd + djdw). (93)

4.4. Results

Depending on how the transition frequencies are grouped, we obtain either the global or the local
approach. As long as the Born—Markov approximations are justified, i.e. as long as equation (81) holds, at
least one of the two procedures is justified. As the parameters of the system are changed, we may thus need
to change from the local to the global approach to maintain an adequate description of the system. This is a
general drawback of our master equation: as parameters are varied, the grouping of transition frequencies
into sets may need adaptation. This results in discontinuities which are expected to be small as long as the
Born—Markov approximations are justified.

In figure 5, we illustrate the global, the local, as well as the benchmark provided by the transmission
approach for this system when operated as a heat engine (see appendix B.2 for analytical expressions). We
find that our master equation reproduces the transmission approach well if the frequency grouping is
chosen such that the local (global) approach is obtained for g below (above) 5x. Interestingly, we find that
the efficiency is generally better reproduced by the global approach (see insets in figure 5). While the local
approach predicts Carnot efficiency when nk(Q) = nR (), the transmission and the global approach predict
a drop in efficiency. The reason for this drop is that the heat current remains finite at vanishing power when
transmission occurs at more than one energy [21].

The upper inset in figure 5(b) shows that at temperatures kg T,, < K4, the Born—Markov approximation
breaks down if one of the transition frequencies €21 is close to the chemical potential i, cf equation (81).
In this case, the step-like behavior of the Fermi—Dirac distribution renders the assumption of a Markovian
bath unjustified. By approximating transmission to occur only at the transition frequencies of the system,
the Markovian master equations predict a step-like behavior of heat currents and power. The transmission
approach shows that the step-like feature is smeared out by the transmission function, which is a
continuous function of energy.
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Figure 5. Steady state heat current J; from the hot bath and output power P as a function of (a) the coupling constant g, and
(b) the on-site energy Q2 = € = Q. The superscripts 1, g, p, t refer to the local, global, PERLind, and transmission approach
respectively. When not shown, the PERLind approach agrees perfectly with the transmission approach. (a) The different
approaches work well in their respective regime of validity. (Inset) Efficiency 7 = Ps/J;; the black line denotes the Carnot
efficiency 1 — Tr/Ty. (b) For the chosen parameters (g/x = 1), the local approach agrees well with the transmission approach.
(Lower inset) Efficiency; the black line denotes the Carnot efficiency. (Upper inset) For low temperatures (ks Tr = 0.1%), the
Born—Markov approximation breaks down for on-site energies close to the chemical potential 1. In this regime, the PERLind
approach differs from the transmission approach. Parameters: 1y, = 0, k = k. = kp = 0.05 pg, kg 11 = 2.5 g, ks Tr = pigs
(a) Q = Qp = Qp = 2.5 py, (b) g = K, upper inset: kg Tr = 0.005 py.

5. Bosonic heat engine—a time-dependent example

5.1. System
In this section, we provide an example of a time-dependent system. To this end, we consider the heat engine
introduced by Kosloff in 1984 [67] with the system Hamiltonian

Hs(t) = Qeala. + Qualan + g(@l ace ™ + ala,e™), (94)

where the bosonic annihilation and creation operators fulfill the standard commutation relations given in
equation (2), and the frequency of the external drive reads

w = — Qe an. (95)

This Hamiltonian describes two bosonic modes with different frequencies that are coupled via a
time-dependent term with a detuning quantified by A. For a physical implementation of this Hamiltonian

based on a superconducting circuit, see reference [68]. The reservoirs and their coupling to the system are
described by

H(v - Z 5(y,li71;)ll;(1,l) Va - Z t(l,l(&j-yé(!t,l + I;L)laa): (96)
1 1
with & = ¢, h and we consider a vanishing chemical potential for the reservoirs, y, = 0.
From equations (50) and (96), we identify the following system and bath operators

A~ A~

Sa,l - Elj,p S(v —1 = Qa>» (97)

s

and

Ba,l - Z ta,lba,l)
1

We find that the Born—Markov approximations are justified when (see appendix C.1 and references
(12, 13])

By =) taib! ). (98)
1

Ka < Wj, (99)

where the inequality should hold for all values of o and j. This ensures that the Bose—Einstein distribution
is flat around the transition energies over the energy scale x,,. Assuming a flat bath spectral density, the
same holds for the rates

I'(—w) = Kkang (W), ' (w) = Rall — 5 (w)], (100)

where w > 0 as we are dealing with Bosons with zero chemical potential.
The time-dependence in equation (94) can be removed by a suitable unitary transformation, see
reference [13], where this model was used to compare local and global master equations. Here, we use the

16



10P Publishing

New J. Phys. 23 (2021) 123013 P P Potts et al

model to illustrate how a time-dependent Hamiltonian affects our master equation and we thus remain in
the lab frame. As discussed in section 3, the average Hamiltonian defined in equation (52) is an important
quantity. For our system, we find (see appendix C.2)

H,=90%ala, +0rata, (101)

where the eigenmodes are given in equations (4) and (5) and we introduced the frequencies

OF = Q.+ A+ /A + g2, QF =y — Ak /A + g2 (102)

We note that this choice for the average Hamiltonian is not unique. Indeed, H,, = Q+a Lay +Qa ala_
does also fulfill the defining relation given in equation (52).
The Fourier coefficients of the bath operators given in equation (98) are determined by

UL(t)aUs(t) = e % sin(0/2)ay + e "% cos(0/2)a_,
(103)
UL(t)anUs(1) = e cos(0/2)iy — e "% sin(0/2)a_,

where 0 is defined in equation (5) (where equation (95) determines A). From these equations (and their
Hermitian conjugates) we can identify the transition rates and jump operators. As we have seen for the
fermionic heat engine, it is sufficient to consider only the frequencies and operators related to particles
leaving the system (the others can be treated separately and equivalently). These transition frequencies read

{wi} ={QF, 9., 9, o 1. (104)

As discussed above, these can be written as v; + lww, where v; denotes a transition frequency of the average
Hamiltonian (i.e. Q7 for equation (101)) and I = 0, 1. The corresponding jump operators read

{Sc,,l;j} = {sin(6/2)a, cos(/2)a_, 0, 0},

. (105)
{Sh,-1;i} = {0, 0, cos(#/2)a,, —sin(f/2)a_} .

5.2. Global approach

Again, we have two choices for grouping the frequencies which result in the local and global approach
respectively. We may group 2" into different sets or assign them to the same set. Grouping them into
different sets results in a single frequency per set such that {w,} = {w;} and

{Smk;q(t)} = {S”,k;j exp(—iwjt)} (cf equation (61)). Inserting these quantities into equation (65), we find
the dissipator (in the interaction picture)

22:2 & {ug()DIal] + (152 + 11D(a, 1}, (106)

o=%

with 7 being defined in equation (22). As outlined in appendix A, a single-thermodynamic Hamiltonian is
usually not sufficient for the time-dependent scenario. Furthermore, even when a secular approximation is
performed, a rescaling needs to be performed [62]. In the present case, the rescaling is obtained starting
from H,, in equation (101) and rescaling the relevant transition frequencies to w,. It turns out that it is
sufficient to consider two thermodynamic Hamiltonians, one for each reservoir

HYy = QF a+a+ +Qyala . (107)
The expression for the heat current given in equation (A.5) then reduces to
Jo = Tr{Hip L8 ps}. (108)
Note that the two thermodynamic Hamiltonians correspond to two possible choices for H,.
In this scenario, the external power can no longer be accessed by the standard expression given in

equation (33). As a consequence of the secular approximation, this quantity evaluates to zero [13]. The
time-averaged power can however be recovered by relying on the first law as in equation (A.6).
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Figure 6. Bosonic heat engine for a resonant drive (A = 0). (a) Steady state heat current from the hot bath ]{1 and power P’S asa
function of the coupling strength g. The superscriptsl, g, t, refer to the local, global, and transmission approach respectively.

(b) Lasso diagram obtained by varying €2, in the window where power is positive ([, Tw$2./T.], for the local approach [68]).
Along the arrow, £, is increased. The vertical line denotes the Carnot efficiency: 1 — T, /Tj,. For these plots, the PERLind
approach is visibly indistinguishable from the transmission approach. Parameters: 2, = 2 Q, & = k. = K, = 0.05 €,

kgTh = 2.5 Qo kg Te = 0.5 Q, (b) g = 2k.

5.3. Local approach
Alternatively, we may group %" into the same set. This grouping is justified as long as g, A < Q, O, (in
analogy to equation (99)). A natural choice for the set frequencies then reads

{wd = {Q+ A, O — A}, (109)

with the jump operators

{(Se_rg(t)} = {U§<t>acf]s<t), o},

(110)
{Sn g0} = {0, Tl Us(n) }
Upon returning to the Schrodinger picture, these quantities result in the local dissipator
L = ke{np(Q + A)Dlal] + [np(Q + A) + 11Dac]}, a1
111

L = rn{n(Qn — A)DIa] ] + [n5(Q — A) + 1]D[ay]}.

Two thermodynamic Hamiltonians can again be obtained by re-scaling the transition frequencies of the
average Hamiltonian in equation (101). However, due to the local structure of the jump operators, we can
find a single thermodynamic Hamiltonian in the Schrodinger picture (cf appendix A)

Hrp = (Qc + A)afac + (2 — A)alan, (112)
From equation (A.9), we recover the usual expression for the power produced by the system
Ps = —Pey = i Tr{[Hrp, Hs(1)]ps} = — Te{[0,Hs(t)]ps}. (113)

For A = 0, the thermodynamic Hamiltonian in equation (112) was used before in reference [56] and has an
intuitive explanation: for the thermodynamic bookkeeping, we neglect the coupling energy between the
bosonic modes, just as we neglect the coupling energy between system and bath.

5.4. Results

In figure 6, power, heat current, and efficiency of the bosonic heat engine for a resonant drive are
illustrated. The local and global approaches for this scenario were already compared in reference [13], where
exact numerics for finite reservoirs was used as a benchmark. In agreement with these results, we find that
the local and global approaches together reproduce exact solutions over the full range of parameters where
the Born—Markov approximation is justified. This implies that our master equation, which reduces either to
the local or to the global approach, describes this scenario very well. We note that the PERLind approach
reproduces the transmission approach extremely well. The disadvantage of the PERLind approach is that it
is not thermodynamically consistent. The disadvantage of our master equation is that it exhibits a
discontinuity when the frequency grouping is adapted (i.e. when changing from the local to the global
approach).
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Figure 7. Bosonic heat engine for an finite detuning A. Steady state heat current from the hot bath J| and power P{ as a function
of (a) the coupling strength g, and (b) the detuning A. The superscripts|, g, t, refer to the local, global, and transmission
approach respectively. For these plots, the PERLind approach is visibly indistinguishable from the transmission approach.
Parameters: Qn, =2 Q,, k = ke = K = 0.05 Qo kg Ty, = 2.5 Qc, kg Te = 0.5 Q, (a) A = k/4, (b) g = 2k.

In figure 7, the performance of the heat engine at finite detuning A is investigated. For small detuning,
we find that the global approach correctly reproduces the ¢ — 0 limit, as an exact degeneracy is no longer
reached in this limit (panel (a)). As A increases, the low-g behavior is increasingly well captured by the
global approach, because the secular approximation becomes better. For a fixed coupling strength g, we find
a decrease in the heat engine performance as A is increased (panel (b)). This behavior is expected, because
energy transfer between the drive and the system works best on resonance.

6. Interacting double quantum dot—beyond local and global approaches

6.1. System

In the previous examples, the derived master equation reduces to the well known global or local
approaches. In this last example, we consider a system that has more transition frequencies, such that the
master equation may differ from both the local as well as the global approach. To this end, we consider a
spinless double quantum dot with Coulomb interactions described by the Hamiltonian

Hs = Qdldy + Qdldy + g(dl dy + didy) + Udl dydlydy

Qdd +Q.dd, +vddd.d.. (114)

Apart from the interaction term, the system as well as the bath properties are identical to section 4 (with
Q= QL = Qr and O = Q £ ¢) where all notation used in this section is defined. From equation (114), we
see that the Hamiltonian is diagonal in the occupation basis of the = modes. The transition frequencies and
jump operators are obtained from the equations

eiHstaRe—iHst — LQJ(I _ aT EZ+)EZ_ + e_i(Qi—’_U)taT El+d_
V2 + N
O —d i+ T
+ —u_u_ —+ + —_u_u4,
V2 V2
G o it e e U
iftst g e—iffst — _7(1 —didd — 5 ded
e*iQJ’,t A . e*l(Q++U)t T
+ (1—-d.d )dy + d d dy. (115)

Considering only transition frequencies that correspond to particles leaving the system, we find

{wi} ={0., 9, Q-+ U, Q4 + U}, (116)
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and the jump operators

. 1-dd,. 1-dd . dd. . dd .
{SR,—I;J‘}Z{ \/%L td, 2 ds, J\“/;d_, 7 dy s
117
6oy i, i da da "
L—1j 5 — \/E —> \/E +> \/E —> \/E + (-

6.2. Global approach
In the global approach, we choose a different set for each transition frequency. This results in the dissipator

28 = 3" L )DI1 — dhdo)d]] + [1 = n QDI — dLdy)d, )
o=%+ 2
x 1§ (Q + U)Dldbdzd}] + (1 — ng (Qy + U)]D[Eij;gl(—,gia]}, (118)
where & # . As usual, the thermodynamic Hamiltonian in the global approach is equal to Hs. This

frequency grouping is justified when
|w]‘ - w]—/| > Kas (119)

for all j, f, and .

6.3. Local approach

In the local approach, we group all transition frequencies into a single set. A natural set frequency is then
the average frequency w, = € + U/2. The jump operators are given by summing the jump operators in
equation (117) over j, which results in the local dissipator

£, = o {n(Q+ U/2DIEL] + (1 - ng(@ + U/2)IDId1 } (120)
The thermodynamic Hamiltonian, obtained by rescaling all transitions to 2 4+ U/2, is given by
Hrp = (Q+ U/2)(ddy + didr) = (Q+ U/2)(d\d; +d d). (121)

We note that apart from the choice of the transition frequency, the dissipator and thermodynamic
Hamiltonian are identical to the one obtained for U = 0, cf equations (92) and (93). The frequency
grouping for the local approach is justified as long as

|n% (wy) — ng(wj/)\ <1, (122)

for all j, f, and .

6.4. Semi-local approach
In addition to the local and global approaches, we consider the low-g frequency grouping, where €21 can be
replaced by 2. This results in the set frequencies

{wg} = {9 Q+ U}, (123)
with the corresponding jump operators
{SR,—I;q} = {(1 - (;ZIJ[&L)&R, a]taLaR} , y
1
it = {1 = A, dited ey

Note that the jump operators still locally change the number of electrons. However, the jumps are now
dependent on the occupancy of the other dot due to the Coulomb interaction. Inserting these quantities
into equation (60) results in the dissipator

£ =k, {nS(Q)D[(l —dd)dl] + 1 — n (DI — dLda)d,]

@+ UYDIddad ] + 11— g (Q + U))Dlddada) (125)
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Figure 8. Steady state heat current from the hot bath J| and output power P} as a function of (a) the coupling constant g, and
(b) the interaction energy U. The superscripts sl, g, p, refer to the semi-local, global, and PERLind approach respectively. (a) For
finite interaction strength, the semi-local and the global approach together capture the behavior at all values of g. The local
approach fails for all values of g due to the finite value of U = 0.5 p (not shown). (b) For small coupling ¢ = «, the semi-local
approach agrees with the PERLind approach for all interaction strengths while the local approach differs for finite U. The global
approach fails for all values U due to the smallness of g (not shown). Parameters: 2 = 2.5 iy, jt; = 0, K = K. = K, = 0.05 fi,
kpT, = 2.5 pp, kgTr = pip—, (@) U= 0.5 py, (b) g = k.

where & # . The thermodynamic Hamiltonian corresponding to this frequency grouping reads
Flup — QG + dldy) + Udl bl (126)
This frequency grouping is justified for
ng (1) —nf(Qo)| <1, and |nf(QL +U) —nf(Q- +U)| < 1. (127)

To ensure that the frequencies in different sets obey |w; — w;| > K, one may expect the additional
condition U > g, k,. However, because no coherences can build up between states with a different total
number of electrons in the system, this additional condition is not required. The semi-local approach thus
enjoys a strictly larger regime of validity than the local approach (cf equation (122)), remaining valid even
for a vanishing interaction strength U = 0.

6.5. Results

Due to the interaction term, the transmission approach no longer applies. As a benchmark, we instead use
the PERLind approach, see appendix D. As mentioned above, this approach is expected to provide accurate
results whenever the Born—Markov approximations are justified, an expectation that was confirmed in the
examples we considered above.

Figure 8 illustrates heat current and power in the interacting double quantum dot. We find that at finite
interaction strengths, the semi-local approach should be employed instead of the local approach for small
coupling g. In particular, comparing figure 8(a) with figure 5(a) we find a very similar interplay between the
semi-local and global approach at U # 0 as we observed between the local and global approaches for U = 0.
We furthermore find that the semi-local approach agrees with the PERLind approach for any value of the
interaction strength, as long as the coupling g is sufficiently small to respect equation (127), see figure 8(b).
These results highlight the importance to go beyond the local and global approaches for systems that have
more than two competing transition frequencies.

7. Conclusions

Markovian master equations in GKLS form are approximate descriptions for the reduced system state. The
approximations involved in deriving these equations may not preserve the laws of thermodynamics (as is
the case, e.g. in the PERLind approach). A comparison to the transmission approach for non-interacting
particles illustrates that the source of any thermodynamic inconsistency is an inconsistent assignment of
heat to the different jump operators appearing in the master equation. To shed light on this issue, we
performed a microscopic derivation of the probability distribution for heat, employing the same
approximations that are used for deriving master equations in GKLS form. We found that, when employing
master equations, the resolution in heat is limited by the approximations that are performed. Exploiting this
limited resolution, we derived a thermodynamically consistent master equation. To this end, we adapted the
thermodynamic bookkeeping to enforce a consistent assignment of heat to the jump operators. The changes
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in heat induced by this procedure remain smaller than the resolution that the master equation allows for
and are thus consistent with the performed approximations. This refined thermodynamic bookkeeping is
captured by a thermodynamic Hamiltonian, which may differ from the Hamiltonian that determines the
dynamics of the quantum state.

We illustrated our master equation with three different examples, including a time-dependent model
and a model that includes interactions. Our master equation may reduce to the well-known global
approach, or to a thermodynamically consistent version of the local approach in their respective regime of
validity. For systems where neither of these approaches is adequate, it provides a novel description.

Our master equation provides a thermodynamically consistent description for quantum systems that are
amenable to a Markovian description. This allows future investigations on the thermodynamics of quantum
devices to fully rely on the conclusions that follow from basic thermodynamics.
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Appendix A. Thermodynamic consistency for a time-dependent Hamiltonian

Here we show how thermodynamic consistency is obtained for a time-dependent system Hamiltonian. We
note that the Oth law only applies to the time-independent scenario, as no equilibration is expected in the
presence of an external drive.

Let us first consider slow driving, where H(1) changes on a time-scale that is much larger than the bath
correlation time 7. In this case, a master equation may be derived by considering the Hamiltonian to be
frozen, treating its time argument as any other parameter [69]. We may still use equation (66) but the
transition frequencies w; and wy, as well as the operators Sa,k;j become time-dependent. The
thermodynamic Hamiltonian, obtained as in the time-independent case outlined in section 3.6, then also

becomes time-dependent and the first law reads

0U = Tr{(0:H)p} + Y _(Pa +Jo), (A1)

where the internal energy as well as the heat-current and power from reservoir « are still defined by
equations (69) and (70) respectively. The first term on the right-hand side of equation (A.1) denotes the
power provided by the external drive. The second law still holds as discussed in section 3.6.

Next, we consider a time-periodic system Hamiltonian with period t, = 27 /0. In this case, the
frequencies w; are not directly transition frequencies but rather fulfill

wji = vj + lwo, (A.2)

where [ is an integer and v; are the transition frequencies of the averaged Hamiltonian H,, defined in
equation (52). For clarity, we extended the index of wj; to explicitly include [, such that j uniquely defines
the transition frequency of the averaged Hamiltonian. We stress that in this scenario, equations (59) and
(64) hold. Throughout this appendix, we remain in the interaction picture, because going to the
Schrodinger picture is non-trivial for time-dependent Hamiltonians (cf the comment below equation (67)).
Since any time-dependence may be thought of as a single-period of a periodic process, our master equation
is applicable for any time-dependence. However, for a thermodynamically consistent description, we require
the additional assumption

w > 1/7s, (A.3)
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which is complementary to the slow driving regime discussed above. As in the time-independent case, we
may group the frequencies into sets x,, such that

|wig — wiry| < /18 for wjy € x4 wiry € xy with g = ¢, aa)
|wig — wiry| > 1/7 for wjy € xg, wiry € xy with g # q'.

We note that due to equation (A.3), we may choose the sets x; such that wj; and w;, are not in the same set
for 1 # I'. In that case, all frequencies in a given set have different values for j, i.e. correspond to different
transition frequencies v; of the averaged Hamiltonian. For a given set x,, a thermodynamic Hamiltonian
A, may be obtained by rescaling v; — w,, for all j that occur in the set x,. In contrast to the
time-independent case, the same transition frequency v; may feature in different sets (as it may feature in
different w;;). The rescaling therefore has to be done individually for each set. We note that this rescaling is
even required in the secular approximation since v; and wj; differ by /e [62]. The heat current from bath a,
obtained from equations (59) and (36) can then be cast into

Jo= Y Tr{(H} — paNs)Lagps}, (A.5)

{4lwq>0}

with EN(W given in equation (65).

To arrive at the master equation in equation (66), we dropped terms that oscillate with frequencies
much larger than 1/7s. Unfortunately, these terms may be important when evaluating the standard
expression for external power given in equation (33). Loosely speaking, the oscillations of the density
matrix cancel oscillations of 9;Hs(t), thereby contributing to the average power. In general, one may no
longer disentangle the internal energy from the external power [70]. We may then still consider the first law
upon taking a long-time average, ensuring that changes in the internal energy become negligible. Similarly,
one could average over a single period when the system has reached a limit cycle. The first law then reduces
to

0 :pext+2(pa +704); (A6)

where the bar denotes any kind of average that ensures a vanishing change in internal energy.

Interestingly, one may still access the internal energy (and thus the time-dependent power) when the
master equation takes on a local structure. To illustrate this, let us consider a coupling Hamiltonian of the
form

V=" (8.8, +B.5). (A7)
a
A local master equation is obtained when we group the transition frequencies such that each set frequency
corresponds to a single reservoir, i.e. {w,} = {w,}. In this case, the jump operators (in the interaction
picture and dropping the index q) are of the form S, (t) = Ué(t)ga Us(t) (cf equation (61)). For each jump
operator, we then introduce a corresponding number operator 7, such that [S,, 71,] = S,. In this case, we
may define a single, albeit time-dependent, thermodynamic Hamiltonian (in the interaction picture)

I:ITD - Z w(yfjé(t)ﬁ(yf]s(t)) (A8)

which fulfills the defining property [So(8), Hrp] = waS, (). One may then still use equation (69) to define
the internal energy and the first law reads

0,U = —i Tr{[Hp, Hs(t)1ps} + Y (Pa +Jo), (A.9)

which is valid both in the interaction, as well as in the Schréodinger picture where both the jump operators
as well as the thermodynamic Hamiltonian become time-independent. The first term on the right-hand side
of equation (A.9) can be identified with the power provided by the external drive.

To verify the second law, we write the entropy production rate as

Y= —kBZ Z Tr{(Logps)[In ps —In pL1} >0, (A.10)
o {qlwg>0}
where we introduced . .
4 e—ﬁ(H,‘}D—,,NS)

b= e 7y (A11)

Spohns inequality ensures the positivity of the entropy production rate since ﬁ(y;qﬁqG =0.
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Appendix B. Supplemental calculations for the fermionic heat engine

B.1. Bath correlation functions
The bath operators given in equation (80) result in the bath correlation functions (cf equation (55))

Ra ; . kBTa
Co = Qeistia | § _ ,
1T { ) lsinh(kaTa)]
o (B.1)
Ra _j . Bla
Cc = Weista |5 _ ,
1T { ) lsinh(kaTa)]
where we introduced the bath spectral density
Ka )
E—;@mwam (B.2)

quantifying the system-bath coupling and which we assume to be constant as a function of w. We note that
Cp = Gy and Cy o Oy p- The bath correlation functions decay on the time-scale 3,,. The bath correlation
time can thus be identified by 75 = max{/3;, fr}. The system (in the interaction picture) changes on the
time-scale 7s = min{1/kyr, 1/kgr}. Thus, the Born—Markov approximations are expected to hold for
temperatures that are much higher than the coupling between system and bath. Furthermore, from the
Redfield equation in equation (53), together with equation (B.1), we find that the integral over s involves
factors explis(w; = f1,,)]. Whenever |w; & 11| > kgT,, the rapid oscillations of these factors imply that
only values of s < 1/(wj & p1,,) contribute to the integral. For larger values of s, the term

kg T, /sinh(mskgT,,) varies on a time-scale much slower than the oscillations. This implies that the
Born—Markov approximations are also justified in the regime |w; &= 1, | > kT, and

min{|w; £ g, |wjE+ pg|} > 1/7s. Nowin case 1/7s < |wj £ p| (dropping the bath index for ease of
notation), either we have kg T < |wj £ p/, such that the Born—Markov approximations are justified, or we
have kgT 2 |wj &= p| which implies 1/7s < kgT, also ensuring the Born—Markov approximation. In the
first case, the bath-correlation functions oscillate to zero over times much smaller than 7, in the latter case
the bath correlation functions decay much faster than 7g. As a consequence, the Born—Markov
approximations are fulfilled whenever « is much smaller than either kg T, or |w; &= 1| as expressed in
equation (81).

The Fourier transforms of the bath correlation functions are given by equation (82). We reach the same
conclusions about the validity of the Born—Markov approximation by demanding that these functions are
flat over the energy scale x (the inverse of 7g). For k < kT, the Fermi—Dirac distribution is everywhere
slowly varying compared to k. For k < |w — p| and kT < |w — p|, the Fermi function is either very
close to zero or one, depending on the sign of w — p, and remains so over the energy scale of «.

B.2. Power and heat currents
For the double dot system with non-interacting fermions the Landauer-like formula provides the following
steady state heat current (out of the left lead)

1 o0
Ji = E/ dwT (W) (w = p) [ng(w) — ng(w)], (B.3)
and power
(pr —p) [
g:ﬁ%%L/dmmmmm—@wm (B.4)
with the transmission function
2
& KLKR
T(w) = — — . B.5
@) [(w— QL +i%) (w—Qr +iR) — g*2 (B.5)
Note that the transmission function is the same as for the bosonic system, cf equation (10).
For the global and local approaches, the definitions for the heat current and the power are given in
equations (70) and (71), with Ng = d{dL + d;dR. For the local approach, we find
J (€ — 1) 4g*kurr[ng(Q) — nf(Q)] (B6)
L7kl + kR 4¢% + Kikr + 16A%kpkR /(KL + Kr)? ’
and ( |
Pl=_p —p = RTHAp (B.7)
S L R (Q _ /J/L)
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This tight-coupling condition between heat current and power (which can be inferred from the form of
Hrp, cf equation (93)) is a direct result of approximating transmission to happen at a single energy.
For the global approach, we find

=30 - ”L“R = 1) = Q)] (B.8)
o=+
and
PE= P} — P = (ux— )y :“L“R nE(€) — ni(Q,)]. (B.9)
o=+
Finally, in the PERLind approach the dissipators read
Ly =Y Dlaxl (B.10)

k=-1,1

with the jump operators

Tror = /e (1= nR(Q)]dy + \/wg [1 — nR(Q)1d,
Tro = \/ra iR Q)L+ /g nR(Q)d",

(B.11)
Jo = /R = mb(@))dy — \Jrp (1= nk(@))d,
Jui = [k nk(Qp)d — \/rpnk(Qo)d
In this approach, heat current and power are defined as
JP =Tr {(Hs — mNs) LEp}, (B.12)
and
=—u Tr {Ngﬁ p} ur Tr {Nsﬁﬁp} (B.13)
Appendix C. Supplemental calculations for the bosonic heat engine
C.1. Bath correlations functions
The bath operators in equation (98) result in the bath correlation functions (cf equation (55))
Je! > dw isw o
C = /O >, fiae “ng(w),
(C.1)

* dw )
co = — Ky —isw 0 1],
—1 /0 . Kot " [ng(w) + 1]

where k,, is given by equation (B.2) and we have C}' = C}; and C}}; o dyp. We note that these integrals
only converge if K, — 0 for w — 0. Here we do not give a specific form of x,, and directly proceed to
investigating the Fourier transforms of the bath correlation functions. For a detailed discussion on the bath
correlation functions for an ohmic spectral density, we refer to reference [12]. By Fourier transforming
equation (C.1), we find the rates given in equation (100). We note that even if x, needs to vanish as w — 0,
we can still assume it to be constant over all energies that the system probes (i.e. all energies where the
transmission function is non-zero).

Similarly to the fermionic case, the Born—Markov approximations are justified when the quantities in
equation (100) remain constant over the energy interval x,, around the transition frequencies of the system.
This is the case if £, < wj. We note that for very small temperatures (kT < wj), ng(w;) becomes
exponentially small and the dynamics is dominated by the temperature-independent term in equation (100)
which corresponds to spontaneous emission. We further note that x, < kg T, is not a sufficient condition
for the Born—Markov approximation to be justified. When &, — wj, then ng(w; — k) diverges, no matter
the temperature. The conclusions drawn here from the Fourier transform of the bath correlation functions
are in complete agreement with the conclusions obtained in reference [12] by considering the bath
correlation functions for an ohmic spectral density.
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C.2. The average Hamiltonian
To derive the average Hamiltonian for the system given in equation (94), we first consider the rotating
frame determined by the unitary transformation

0, = eit[(Qc-&-A)ﬁl&c-&-(Qh—A)&Lﬁh]. (C.2)
In the rotating frame, we find the time-independent Hamiltonian
Hs = U.()Hs(1)Ul(t) — iU()0, Ul (t) = Aalay — ala.) + glalac + alay). (C.3)
The time-evolution operator in the lab frame fulfills the relation
Us(t) = Te a8 — i) Ts (), (C4)

where Us(t) denotes the time-evolution operator for the system in the rotating frame.
To obtain the average Hamiltonian, we use the relations

e = 1, (C.5)

for t, = 2 /w, where #; is any operator that only has integer eigenvalues (such as a photon number
operator). With the help of this relation, one can show

Us(tp) _ e—itp[Q,{ra;aJrJrQ;aZa,]’ (C.6)

which holds both for « = ¢, h (the frequencies are given in equation (102)), resulting in the two choices for
the average Hamiltonian discussed in the main text.

C.3. Power and heat currents

In the rotating frame discussed in the last subsection, the bosonic heat engine looks just like the system
discussed in section 2, upon setting € = 0 and shifting the energies of the reservoir modes by Q. + A and
Qn — A respectively (see also reference [13]). We then obtain the Landauer-like formula for the heat

current ~
Jh = ﬁ /_ dw T (w)w[nh(w) — 1w — @)], (C.7)
and for power we find
L (:deT(w)W[n'ﬁ(W) — e — @), (C8)
with the transmission function
T(w) = 8 ckin (C.9)

| (w—Q+i%) (w— Qe —w+i%) — g2
For the local approach, we find the heat current

O — A 4% kekn [ (Y — A) — 1§ (Q + A)]

1
_ , C.10
Jh Ke + K 4¢2 + Kekn + 16A% Kk [ (Ke 4 kp)? ( )
and power
Qe+ A
Pl=(1-=° he C.11
(1-fra), e
The global approach results in the heat current
JE= Y0 ) - my(@0) (€12)
" o=+ K(CT + HK ‘
and power
KIRY
PE=Jy+ ] = B Hl(QF) — g (Q0)]. C.13
§=J+J ;%HH;[”B( P — Q)] (C.13)
Finally, for the PERLind approach, the dissipators read (in the rotating frame)
Lh =" Dlal (C.14)

k=-1,1
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with the jump operators

Jomt = /K M§(Q5) + 1ay +\/kZ[n§(Q0) + 1]a_,
Jor = \/rEng(QD)al, + \/kng(Q0)a",
To1 =\ R aB(Q) + 1ay — /sy () + 1]a,
Th1 = /e b (@D, — \/ry nl(Qg)al .

In this approach, the heat currents can be obtained from equation (53) by applying the approximations
discussed in the supplemental material of reference [30]. For the present system, we obtain

= Z M Tr { (ﬁx,l;aja,l;a’ —72,_1;(7}&,,1;0/) ﬁ} > (C.16)

2
0,0/ =+

(C.15)

where
L,k = ja,k;—l— + ja,k;—a (C.17)
and ], 1., can be inferred from equation (C.15) as the term that is proportional to a'). The power is given
by
Pg=J; +JE. (C.18)

Appendix D. PERLind approach for the interacting double quantum dot

For the interacting double quantum dot discussed in section 6, the dissipators in the PERLind approach
read

Ly =Y Dlal (D.1)

k=-1,1

with the jump operators

Jro1 = %[1 — k)1 —d d)d, + \/%[1 — Ry +U))d d_d +

/B 10 - dand + B0 abe + Ul
o = [2a0 -t [, vita

+/ SR QOA = didd + [ Sk + vdd.d,

Joo1 = %[1 — k()]0 —d d)d, + \/%[1 —nk(Qy +U)d d_d,+
K

- ;u_¢me_@@mL_¢§u_¢m,umﬂ@a,

Jui =/ Sk = dldod, + [ Tenk@y + v)d' d_d)+

- \/%u —didpd - W&M&V (b2)
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