
RESEARCH ARTICLE

Using fluorescence flow cytometry data for

single-cell gene expression analysis in

bacteria

Luca Galbusera1,2, Gwendoline Bellement-Theroue1,2, Arantxa Urchueguia1,2,

Thomas Julou1,2*, Erik van NimwegenID
1,2*

1 Biozentrum, University of Basel, Basel, Switzerland, 2 Swiss Institute of Bioinformatics, Lausanne,

Switzerland

* thomas.julou@unibas.ch (TJ); erik.vannimwegen@unibas.ch (EVN)

Abstract

Fluorescence flow cytometry is increasingly being used to quantify single-cell expression

distributions in bacteria in high-throughput. However, there has been no systematic investi-

gation into the best practices for quantitative analysis of such data, what systematic biases

exist, and what accuracy and sensitivity can be obtained. We investigate these issues by

measuring the same E. coli strains carrying fluorescent reporters using both flow cytometry

and microscopic setups and systematically comparing the resulting single-cell expression

distributions. Using these results, we develop methods for rigorous quantitative inference of

single-cell expression distributions from fluorescence flow cytometry data. First, we present

a Bayesian mixture model to separate debris from viable cells using all scattering signals.

Second, we show that cytometry measurements of fluorescence are substantially affected

by autofluorescence and shot noise, which can be mistaken for intrinsic noise in gene

expression, and present methods to correct for these using calibration measurements.

Finally, we show that because forward- and side-scatter signals scale non-linearly with cell

size, and are also affected by a substantial shot noise component that cannot be easily cali-

brated unless independent measurements of cell size are available, it is not possible to

accurately estimate the variability in the sizes of individual cells using flow cytometry mea-

surements alone. To aid other researchers with quantitative analysis of flow cytometry

expression data in bacteria, we distribute E-Flow, an open-source R package that imple-

ments our methods for filtering debris and for estimating true biological expression means

and variances from the fluorescence signal. The package is available at https://github.com/

vanNimwegenLab/E-Flow.

Introduction

It is has become well recognized that, due to the intrinsic stochasticity of the gene expression

process, even isogenic populations of microbial cells growing in homogeneous environments

exhibit significant heterogeneity in their gene expression, e.g. [1–4]. Therefore, the traditional
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studies at the population level, by smoothing out this heterogeneity, tend to hide crucial infor-

mation [5, 6] that is required to correctly understand and interpret the observed behavior of

microbes [7].

Although most studies of single-cell gene expression in bacteria use fluorescent reporters in

combination with microscopy to quantify gene expression in single cells, fluorescence flow

cytometry (FCM) is also an attractive alternative methodology for single-cell gene expression

studies in bacteria. In particular, given that flow cytometers can quantify the fluorescence of

thousands of cells per second, flow cytometry allows for high-throughput characterization of

the single-cell expression distributions of a large number of fluorescent reporters [8, 9].

Indeed, in recent years there has been a large number of studies in which standard commer-

cially available flow cytometers were used in combination with fluorescent reporters to mea-

sure gene expression at the single-cell level in bacteria [10–31], as well as in single-celled

eukaryotes [32, 33].

However, so far there has been little systematic investigation into the accuracy of flow

cytometry in quantifying gene expression in single cells, or a systematic comparison with the

results from microscopy measurements. Here we aim at filling this gap by systematically com-

paring flow cytometry measurements with measurements from a microscopy setup. In particu-

lar, there are several technical challenges in analyzing fluorescence flow cytometry data of

individual bacterial cells:

1. Differentiating cells from debris. Bacterial cells are typically one thousandth the volume of

mammalian cells, which places them near the edge of instrument detection. At this size it

can be challenging to differentiate viable cells from debris of similar size [9, 34–37]. In the

literature different approaches are used to separate debris from viable cells. Most of these

approaches use ad hoc combinations of the scatter measurements to retain a fraction of the

measurements.

We here perform a careful analysis of all the scatter signals reported by the flow cytometer

and propose a principled way of identifying debris from viable cells using a Bayesian mix-

ture model that considers all the information available in the scatter signals.

2. Distinguishing measurement noise from biological variability. In order to quantify the

amount of biological gene expression variation in a population of isogenic cells, it is impor-

tant to quantify to what extent variation in measured fluorescence intensity derives from

biological variation, and to what extent it derives from measurement noise.

We show that flow cytometry measurements contain a substantial amount of shot-noise

which can be easily mistaken for true biological variability, and develop a method to correct

for this shot-noise using measurements of reference beads that are commonly used to cali-

brate flow cytometers. Using a mixture modeling approach, we develop a rigorous method

for estimating the true mean and variance in expression levels of a population of cells.

3. Accounting for autofluorescence. Because most genes are expressed at low levels in bacteria

(roughly one per cell cycle or less for half of the genome [38]), the relative fluorescence pro-

duced by fluorescent proteins compared to autofluorescent compounds is very low for

many reporters [39]. Therefore, gene expression estimates require careful correction for

autofluorescence.

We here provide methods for correcting both the estimated mean and variance in fluores-

cence levels for autofluorescence using measurements of cells that do not express GFP.

4. Estimating the distribution of GFP concentrations. While we provide methods for accurately

estimating the distribution of total GFP levels in a population of cells from the flow cytome-

try measurements, microscopy measurements show that total GFP levels correlate strongly
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with cell size and that GFP concentrations vary significantly less across cells than total GFP.

Estimating the distribution of GFP concentrations directly using flow cytometry requires to

not only estimate the total GFP but also the volume of individual cells. Although forward-

and side-scatter signals can be used to distinguish the average size of populations of cells of

sufficiently different shapes and sizes [40–43], it is substantially more challenging to accu-

rately quantify the relatively small cell-to-cell variations in cell volume for populations of

isogenic bacteria growing in a homogeneous environment. In line with previous works [35,

44–46] we find that, because forward- and side-scattering measurements depend on cell

volume in a complex non-linear manner and contain a substantial amount of shot noise

that cannot be easily calibrated, it is impossible to accurately quantify the sizes of individual

cells. Consequently, it is not possible to directly estimate the distribution of GFP concentra-

tions from flow cytometry measurements. However, we show that because GFP concentra-

tions and cell sizes fluctuate approximately independently, it is still possible to obtain

reasonably accurate quantifications of the relative amounts of GFP concentration fluctua-

tions for different genes.

Although the precise flow cytometer used will of course affect the precise values of the mea-

surements and calibrations, the methods for separating true cells from debris, estimating and

correcting for autofluorescence, and correcting for measurement shot noise, are general and

should be applicable to data from most flow cytometers. Our methods have been implemented

as an R package called E-Flow, which we make publically available and can be easily integrated

in any flow cytometry data analysis pipeline.

Materials and methods

Strains and growth conditions

We measured the fluorescence distributions for a number of different Escherichia coliMG1655

strains carrying fluorescent transcriptional reporters (a GFP gene downstream of a given pro-

moter, either on a low-copy number plasmid, or integrated into the chromosome) both using

flow cytometry of batch cultures and time lapse microscopy in a microfluidic device (Mother

Machine). We considered a number of different promoters, that have different means and var-

iances of expression levels.

In particular, we considered E. coli strains with a lacZ-GFP fusion integrated in the chro-

mosome [47], and a set of E. coli strains that carry a transcriptional reporter expressed from a

low copy number plasmid [48]. These reporters included known target promoters of the LexA

transcription factor (dinB, ftsK, lexA, polB, recA, ruvA, or uvrD) [49] and two synthetic pro-

moters that were obtained by experimental evolution and express at levels corresponding to

the median and the 97th percentile of all native E. coli promoters [23]. Throughout the paper,

we refer to these two synthetic promoters as high and medium expressers.

To estimate autofluorescence in both the FCM and microfluidic experiments, we used two

strains that carry plasmids where the GFP sequence is downstream of a random sequence

(pUA66 and pUA139) [48] and hence do not express GFP [23].

In the microfluidic experiments, cells carrying a lacZ-GFP fusion were tracked using time-

lapse microscopy while growing in a microfluidic device in M9 minimal media supplemented

with 0.2% lactose (which leads to full induction of the lac operon), taking measurements every

3 minutes [47]. Detailed experimental procedures are available in the corresponding publica-

tion [47]. Microfluidic experiments with strains carrying a transcriptional reporter expressed

from a plasmid were performed following the same procedure, using M9 + 0.4% glucose
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(supplemented with 50μg / mL of kanamycin during the overnight preculture only) and

acquiring data over 4 hours.

To obtain comparable measurements with flow cytometry (FCM), the same strains were

grown in the same conditions as for the microfluidic measurements. Practically, strains

expressing from a plasmid were inoculated from frozen glycerol stocks and grown overnight

in 200μL of M9 + 0.4% glucose supplemented with 50μg/mL of kanamycin. After 100× dilution

in fresh medium without kanamycin, strains were grown to saturation again, and re-diluted

100× to fresh medium without kanamycin. For the lacZ-GFP strain, we used 200μL of M9

+ 0.2% lactose with only one overnight culture. For all strains, expression was measured in

mid-exponential phase (typically after 4h), adjusting the cell concentration with PBS if neces-

sary. All cultures used for FCM measurements were incubated in 96-well plates at 37˚C with

shaking at 600-650 rpm.

To study the accuracy of the scatter signal for estimating cell size, we used the data acquired

for a previous project in the lab [31] where both flow cytometry measurements and micros-

copy measurements of cell size distributions have been obtained in four different media char-

acterized by different size distributions: M9 supplemented with either 0.2% glucose (w/v),

0.2% glycerol (v/v) or 0.2% lactose (w/v); a MOPS based synthetic rich media (Teknova,

M2105) supplemented with 0.2% glucose. We refer to the original study for more information

about the cell cultures and growth conditions [31].

Flow cytometry

The flow cytometry measurements were obtained with a BD FACSCanto II cytometer and

were managed using the Diva 8 software. The excitation beam for the GFP was set at 488 nm

and the emission signal was captured with a 530/30 nm bandpass filter. The gain voltage were

set by default to 625V, 420V, and 600V for FSC, SSC, and GFP acquisition respectively, and

events were created for measurements where FSC> 200 & SSC> 200. For each sample,

5 × 104 events were recorded at a typical flow rate ranging from 1 × 104 to 2 × 104 per second.

Calibration beads

CS&T (Cytometer Setup and Tracking Beads) are artificial fluorescent beads that are used to

calibrate fluorescence measurement values [50]. To calibrate the measurement shot noise we

used beads of lot 41720 that contains beads of two different sizes, which have high, medium

(3μm in size) and low fluorescence (2μm in size) levels.

Microscopy size estimation

To estimate cell sizes, strains containing a plasmid without promoter were selected from 4 dif-

ferent media with different size distributions (M9 + glucose, lactose or glycerol; MOPS + glu-

cose. See Strains and growth conditions). Cells were then placed on a 1% agarose pad and phase

contrast images were obtained with a Nikon Ti-E microscope using a 100 × Ph3 objective (NA

1.45) and an Hamamatsu Orca-Flash 4.0 v2 camera. Cell outlines were identified using a cus-

tom MATLAB pipeline [31].

R package E-Flow
The analysis pipeline presented in this paper has been implemented in the R package E-Flow
available on GitHub https://github.com/vanNimwegenLab/E-Flow. Here the methods were

tested with flow cytometers manufactured by BD and operated through the DIVA software.
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Nonetheless we kept the methods as general as possible, such that they should be applicable to

flow cytometers of other manufacturers.

For a detailed explanation of the package, we refer to the GitHub page, including the

vignette and the documentation of the individual functions. Here we list the main components

of the software:

1. Filtering: The cells are filtered based on their scattering profile and an estimate of the mean

and variance of the population is obtained. This is the most resource-intensive step and

therefore can be parallelized.

2. Mean and variance: The mean and variance of the population of cells is computed. Mea-

surements that are outliers in the fluorescence are accounted for using a mixture model.

3. Autofluorescence removal: Using the fluorescence distribution of non-expressing cells, an

estimate of the autofluorescence is obtained and subtracted from the mean and variance of

the population.

4. Shot noise removal: The shot noise introduced by the machine is removed and a corrected

variance is calculated. This can be regarded as a proxy for the biological gene expression

noise.

Results

Signals reported by the cytometer

In flow cytometry, a beam of light is used to illuminate cells that flow one by one through a

channel; a series of detectors is able to record the light scattered by the single cells at right

angles or in the forward direction and the cell fluorescence stimulated by the incident light

beam. Most flow cytometers, including the BD Canto II used here, report for each measured

‘event’ (typically corresponding to a single measured cell) a forward-scatter signal, a side-scat-

ter signal, and a fluorescence signal. Each of these signals is in turn represented by 3 statistics

of the electrical impulse, namely height, area, and width of the impulse (Fig 1). The height cor-

responds to the maximal value of the impulse, the area to the area under the curve and the

width is its time duration [51] (see Section 1.1 in S1 File).

We noticed that these statistics are not all independent. In particular, for all three signals,

the area is always directly proportional to the product of height and width (S1 Fig and Section

1.2 in S1 File). Moreover, while height and width vary approximately independently across

events, the area correlates significantly with both (S2 Fig in S1 File). Therefore, we only use

height and width for the subsequent analysis of the forward- and side-scatter signals.

For the fluorescence signal we were unable to find any systematic dependence between the

width of the fluorescence signal and any biological signal, such as cell size or total fluorescence.

In addition, for the calibration beads there is clearly no information in the width of the fluores-

cence signal (S3 Fig and Section 1.3 in S1 File). Therefore, for the fluorescence signal we will

only use the height statistic as a proxy for the total fluorescence of the cells. While we believe

that all these considerations apply generally to flow cytometers, we also observed anomalous

behavior of the signal at very low fluorescence levels that may be specific to the BD machine

used here (see Section 1.4 in S1 File). Due to this anomalous behavior, quantitative analysis is

restricted to constructs for which the GFP fluorescence is at least as high as the autofluores-

cence of the cells (see S4 Fig in S1 File).
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Filtering events based on their forward- and side-scatter

In comparison to eukaryotic cells, bacterial cell produce only relatively weak scattering signals,

and we used permissive settings of the device to call events. This increases the likelihood of

having spurious observations that correspond to non-viable cells and other debris. Conse-

quently, we needed a strategy for using the measured forward- and side-scatter of the events to

separate viable cell measurements from debris. As explained above, the scatter of each event is

characterized by 4 statistics, namely the height and width of both the forward- and side-scatter.

Thus, the measured scatter of each event can be represented by a point in a 4-dimensional

space, and a given dataset corresponds to a distribution of points in this 4-dimensional space.

To separate viable cells from debris we fit this distribution with a mixture of a multivariate

Gaussian distribution and a uniform distribution, as detailed in the Section 2 in S1 File. The

rationale behind this mixture modeling is that most of the data represents good cells and

should cluster in this 4-dimensional space, whereas the outliers are relatively rare and more

widely distributed. In this model, the Gaussian part of the mixture captures the cluster of good

cells, while the uniform component takes care of outliers, i.e. fragments of dead cells and other

debris.

Fig 2 shows 2D projections of the 4D scatter of forward- and side-scatter for events taken

from E. coli cells that carry a lacZ-GFP fusion (see [47] for a description of the strain used)

while growing in M9 minimal media supplemented with lactose. Besides the scatter of mea-

surements, Fig 2 also shows the multivariate Gaussian fitted to the data, showing that this

Gaussian indeed captures the bulk of the measured events.

Once the mixture model has been fitted to a dataset, a posterior probability pi is calculated

for each measured event i to correspond to a viable cell, i.e. the probability that the observation

derives from the multivariate Gaussian component of the mixture as opposed to deriving from

the uniform distribution. By default the E-flow software retains all events with posterior

Fig 1. The signals reported by the cytometer. As a particle enters the laser beam, an electric signal (pulse) is generated which

reaches its maximum when the particle is in the middle of the beam and trails off as the particle leaves the beam. Each pulse with

height over a certain threshold is recorded and three quantities are reported: height, area, and width of the pulse.

https://doi.org/10.1371/journal.pone.0240233.g001
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probability pi� 0.5 and discards as outliers events with pi< 0.5, but the user can change this

threshold probability if desired. S5 Fig in S1 File shows the same scatter of measured events as

shown in Fig 2, but now with selected events in red and events that were filtered out in black

when using the default threshold of p = 0.5.

As the forward- and side-scatter should reflect the size, shape and composition of the

objects measured in each event, one may wonder to what extent filtering out events based on

their forward- and side-scatter may bias measurements towards cells of a certain size. Indeed,

in previous work, e.g. [19], researchers have attempted to select subsets of cells with similar

shapes and size by very strictly gating on forward- and side-scatter, retaining only those cells

that lie near the center of the Gaussian distribution. To check the viability of such an approach,

we compared the distribution of measured fluorescence levels with two extreme filtering strat-

egies: one very lenient in which all events with p> e−10 are retained and one very strict in

which only cells with p> 1 − e−10 are retained. As shown in S6 Fig in S1 File, there is virtually

no difference in the observed distribution of fluorescence levels between the very lenient and

very strict filtering. Given that we expect total fluorescence to scale with cell size, this observa-

tion suggests that strict filtering on forward- and side-scatter is not effective for selecting out a

subset of cells with similar size.

Flow cytometer measurements are affected by substantial measurement

noise

When using the flow cytometer to estimate single-cell gene expression, we aim to quantify the

variation in gene expression across a population of isogenic cells growing in a homogeneous

environment. In such conditions, bacteria at different stages of their cell cycle vary by roughly

two-fold in size, and their total fluorescence is typically proportional to cell size.

In a previous work we have established that time-lapse microscopy measurements of cells

growing in microfluidic devices can measure cell size with an accuracy of around 3% error and

GFP copy-number G with an error of about
ffiffiffiffi
G
p

[47]. Using such microscopy measurements

Fig 2. Mixture model fitting of the scatter signals. The panels show different two-dimensional projections of the full

4D distribution of heights (H) and widths (W) of forward- (FSC) and side-scatter (SSC) measurements for 5 × 104

events obtained from E. coli cells growing in M9 minimal media with lactose. The ellipses show the contour of the

fitted multivariate Gaussian distribution, one standard deviation away in each principal direction. Note that the color

indicates the local density of points.

https://doi.org/10.1371/journal.pone.0240233.g002
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on E. coli cells carrying a lacZ-GFP fusion gene in its native locus while growing in M9 mini-

mal media with lactose, we find a high correlation between lacZ-GFP levels and cell size (Fig 3,

top panels). That is, because lacZ-GFP concentrations fluctuate only moderately from cell to

cell, and both size and GFP level measurements have high accuracy, the measured cell length

explains around 70% of the variance in total fluorescence.

We calculated the analogous correlation between size and total fluorescence in the flow

cytometer for the same strain growing in the same environment, using the scatter signals as

representing the cell size. We see that, in contrast to the microscopy measurements, there is

only a very weak correlation between total fluorescence and scattering measurements (Fig 3,

bottom 4 panels).

The lack of correlation between size and fluorescence measurements in the cytometer

strongly suggests that either the fluorescence measurements, the size measurements, or both

are much more heavily affected by measurement noise than in the microfluidic experiments.

In the following we will look at different sources of noise and how to deal with them.

Estimating the mean and variance of the fluorescence distribution

As has been observed by others [38], we observed that for virtually all E. coli promoters, the

distribution of fluorescence levels is fitted very well by a log-normal distribution [23], i.e. the

log-fluorescence follows a Gaussian distribution. Our E-Flow package fits a Gaussian distribu-

tion to the measured log-fluorescence levels of single cells, estimating a mean μ and variance v
for a given population of cells. However, we noticed that, even after filtering events on for-

ward- and side-scatter as explained above, there are still clear outlying events, i.e. with fluores-

cence levels that lie far outside the range observed for almost all other events. To separate these

outliers from valid measurements we modeled the distribution of log-fluorescence levels as a

mixture of a Gaussian and a uniform distribution, fitting its parameters using expectation

maximization (see Section 3 of S1 File for details). The E-Flow package calculates an estimated

mean μ and variance v of the log-fluorescence levels of a set of measurements, together with

error bars σμ and σv on these estimates. In addition, transforming from log-fluorescence back

to fluorescence in linear scale, the package also calculates mean and variance of the distribu-

tion of fluorescence levels, together with error bars (Section 3 in S1 File).

Autofluorescence estimation

It is well known that the laser used to excite the GFP can also excite other cellular components

of the cell, resulting in an “autofluorescence” signal that also occurs in cells without GFP mole-

cules. In addition, the fluorescence signal may also contain a background fluorescence compo-

nent coming from sources other than the cell’s autofluorescence. In order to estimate GFP

levels, we need to correct for these other sources of fluorescence and the E-Flow package allows

for such correction by using measurements of cells that do not express GFP. Let’s call IM the

measured fluorescence intensity, IT the true intensity (deriving from GFP molecules) and A
the component from other sources of fluorescence, which for simplicity we will refer to as

autofluorescence. We have the relation

IM ¼ IT þ A: ð1Þ

Assuming that the component A fluctuates independently from the true fluorescence IT, we
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Fig 3. Correlation between cell size and fluorescence measurements for microscopy and cytometer measurements. Each panel

shows measured GFP fluorescence (vertical axis) and cell size estimates (horizontal axis) of cells growing in M9 minimal media with

lactose. The top 2 panels show microscopy measurements from a microfluidic device [47]. The lower 4 panels show fluorescence

measurements as a function of size estimates based on forward- (middle 2 panels) or side-scatter (bottom 2 panels) measurements in the

flow cytometer (FCM). The squared Pearson correlations between fluorescence and size measurements are indicated in each panel. Note

that the color indicates the density of points. The white dots show median values of equally spaced bins along the horizontal axis.

https://doi.org/10.1371/journal.pone.0240233.g003
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obtain

hITi ¼ hIMi � hAi ð2aÞ

varðITÞ ¼ varðIMÞ � varðAÞ: ð2bÞ

Thus, in order to correct for autofluorescence, it suffices to estimate both its mean hAi and

variance var(A). These can be easily estimated by performing fluorescence measurements on

cells that either lack GFP, or where the GFP gene is known not to be expressed, and applying

the same Bayesian mixture model described above. Once hAi and var(A) have been estimated

in this way, the true mean and variance of GFP expression in cells carrying an active reporter

can be calculated using Eq (2).

We measured autofluorescence levels A using strains carrying two different plasmids not

expressing GFP, designed as negative controls (see materials and methods) on 4 different days,

measuring each strain in triplicate on each day. Fig 4 shows the estimated mean fluorescences

(left 4 panels) and variances in fluorescences (right 4 panels) for each replicate of each strain

(red an blue) on each day (one panel per day). Using a procedure described in Section 4 in S1

File, we averaged over different replicates on each day to calculate a mean fluorescence μd for

each day (black line in each panel) and an error bar on this estimate (grey region in each

panel), and similarly for the variances on each day (right 4 panels). We then additionally aver-

aged over different days to calculate an overall average mean autofluorescence �m and an overall

average variance in autofluorescence �v (see Section 4 in S1 File).

Mean fluorescence levels agree between microscopy and FCM across the

entire range of expression levels

Although commercial flow cytometers have been designed to ensure a linear relationship

between GFP content and fluorescence measurements over a wide range and previous gene

expression studies studies using FCM have operated under this assumption, we here tested this

Fig 4. Autofluorescence measurements. Each panel shows the measured mean fluorescence (left 4 panels) and variance in fluorescence (right 4 panels) on one

day, with each bar indicating the measured value and error bar for one replicate. Two different strains were used (indicated in red and blue) and each was

measured in triplicate on each day. The black line and grey bar indicate the estimated averages μd and corresponding error-bars σd for each day d. Note that well G6

on 20/12/2016 appears to be an outlier, possibly due to contamination of the well, which was excluded from the analysis.

https://doi.org/10.1371/journal.pone.0240233.g004
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assumption by comparing estimated mean fluorescence levels of different promoters between

FCM and microscopy measurements. To do so we calculated the mean fluorescence levels,

corrected for autofluorescence, of promoters with a wide range of expression levels using both

the FCM and microscopy measurements. As shown in Fig 5, we indeed find that there is a per-

fectly linear relationship between the average expression levels of the different promoters as

estimated by FCM and microscopy, over the entire expression range.

Cytometer fluorescence measurements exhibit significant shot noise

We used Eq (2) to remove the autofluorescence contribution from the mean expression and

variance of the population for a number of different transcriptional reporters and calculated

the observed squared coefficient of variation CV2 for each promoter. Next, we took micros-

copy measurements from our microfluidic setup of the same E. coli strains growing in the

same conditions and measured CV2 for each of these promoters as well. As shown in the top

panel of Fig 6, we observe systematically higher CV2 in the FCM than in the microscopy setup

and the difference in the two CV2s decreases almost exactly inversely with the mean expression

level.

Since the growth conditions in the FCM and the microfluidic setup were kept as close as

possible, the true CV2 of the distribution of total GFP levels should be highly similar, so that

the difference between the measured CV2 must derive from measurement noise. Indeed, one

source of noise whose contribution to CV2 is expected to scale inversely with mean intensity is

shot noise from the photomultiplier tube, whose CV2 scales as 1/mean [52]. Due to this noise,

one generally has the following relationship between the measured fluorescence intensity IM

Fig 5. Estimated mean expression levels of different promoters as estimated by FCM and microscopy. After correcting for autofluorescence, mean fluorescence

levels of different promoters (colors) are perfectly linearly correlated between microscopy and FCM measurements, over the entire range of expression levels. The

scales of the axes are in natural log and the error bars show the standard error of the mean. Note that the slope of the black line is 1.

https://doi.org/10.1371/journal.pone.0240233.g005
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and the true intensity IT:

IM ¼ IT þ �
ffiffiffiffi
IT
p
þ O; ð3Þ

where � is a Gaussian random variable with mean 0 and an (unknown) variance δ2 which

quantifies the size of the shot noise. The constant term O is an offset that is added in BD

devices in order to prevent the clipping of negative values during the digital conversion, when

true intensities IT are close to zero [51].

Flow cytometers are often calibrated using synthetic fluorescent beads of known intensities

and such beads can also be used to estimate the size δ of the measurement shot noise. As

shown in the bottom panel of Fig 6 (and S7 Fig in S1 File) the CV2 of the artificial beads also

drops inversely with mean expression. If we assume that the true variation of the beads can be

Fig 6. Difference in CV2 between the FCM and microscopy measurements shows FCM measurements contain substantial shot noise. Top: Difference between

the CV2 as measured by the FCM and the microscopy setup for different transcriptional reporters of E. coli promoters (colored points). Both axes are shown on a

logarithmic scale. The difference in CV2 scales inversely with mean expression. Bottom: The observed CV2 of calibration beads of three different intensities also

decreases as the inverse of mean intensity and this dependence can be well modeled by shot noise (black line), as given by Eq (3).

https://doi.org/10.1371/journal.pone.0240233.g006
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ignored, we get from Eq (3) that the measured CV2 is

CV2
M ¼

d
2

hIMi
�
d

2O
hIMi

2
ð4Þ

If we define Y ¼ CV2
MhIMi and X ¼ 1

hIMi
, we obtain

Y ¼ d2
� d

2OX ð5Þ

and we can infer both the strength δ and the offset O by fitting Y as a simple linear function of

X. This simple approach leads to an inferred value of δ = 13.4 and O = 128. In the Section 5 in

S1 File we also present a more sophisticated Bayesian mixture model approach to inferring

these quantities, which does not ignore the true variability of the beads, but assumes that the

CV2 of the true intensities IT is the same for all three types of beads. Using this more rigorous

procedure, the resulting strength and offset are: δ = 12.7 ± 0.6, O = 97 ± 29 (S7 Fig in S1 File),

which are close to the values we would have obtained with the more simple linear model of Eq

(4). Using this result we can now fit the observed CV2 that we expect to see; the fit describes

well the observed data, as shown in the bottom panel of Fig 6 (and in the top left panel of S7

Fig in S1 File).

Finally, Section 6 of the S1 File investigates two more subtle technical points that one might

think could affect the direct comparison of FCM measurements and microscopy measurement

from growth in the microfluidic device. First, one could argue that the age-distributions of the

population of cells in the microfluidic device and in a population that is growing exponentially

(i.e. as used in the FCM) are different. That is, since in the microfluidic device some newborn

daughters are constantly washed out of the growth channels, there are relatively fewer cells

close to birth and more cells close to division in the microfluidic device than in a population

undergoing exponential growth in bulk (S8 Fig in S1 File). Since total fluorescence correlates

with cell size, which again correlates well with time since birth, the access of ‘old’ cells could in

principle effect the distribution of total fluorescence one observes. However, as shown in Sec-

tion 6.1 in S1 File, we derive theoretically that the effects of the altered age-distribution are

small enough to be neglected (S9 Fig in S1 File). Second, since in the microfluidic setup we

measure the fluorescence of a cell multiple times during its cell cycle, there are clearly substan-

tial correlations between different measurements and one might wonder whether this could

significantly affect the observed statistics. In Section 6.2 in S1 File we show that this effect is

also negligible (S9 Fig in S1 File).

Correcting for autofluorescence and shot noise

After having estimated the mean and variance of the autofluorescence, and the strength of the

FCM’s shot noise, we can now correct the measured means and variances of transcriptional

reporters for these two components. Combining the autofluorescence contribution from Eq

(1) and the shot noise component from Eq (3), we can write the measured intensity IM as

IM ¼ IT þ AT þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IT þ AT

p
þ O; ð6Þ

and the measured autofluorescence as

AM ¼ AT þ �
ffiffiffiffiffiffi
AT

p
þ O; ð7Þ

where variables with subscript T correspond to true values and variables with subscript M cor-

respond to measured values, � is again a Gaussian distributed variable with mean zero and var-

iance δ2 and O is a constant offset. From these equations we find for the mean and variance of
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the measured intensities IM:

hITi ¼ hIMi � hAMi; ð8aÞ

and

varðITÞ ¼ varðIMÞ � varðAMÞ � d
2
hITi: ð8bÞ

Using these expressions we calculated hITi, var(IT) and the resulting CV2 for a set of differ-

ent E. coli promoters and compared the results with the CV2 measured for the same promoters

in the microscopy setup. As shown in Fig 7, the estimated CV2 are much closer to the results

obtained with the microscopy measurements and the difference no longer systematically

depends on the mean expression level. In addition, whereas the CV2 of the raw FCM measure-

ments show little correlation with the CV2 of the microscopy measurements, after correcting

for autofluorescence and shot noise there is a much better agreement between the CV2 as mea-

sured by the FCM and microscopy (Fig 8).

Fig 7. Comparison of CV2 from FCM and microscope measurements after correcting for autofluorescence and shot noise. Absolute difference of the CV2 of

different transcriptional reporters of native and synthetic E. coli promoters as estimated from FCM and microscope measurements. The black transparent dots use

uncorrected FCM measurements and reproduce Fig 6 in linear scale, while the colored dots are obtained when using the CV2 that are corrected for the FCM shot

noise.

https://doi.org/10.1371/journal.pone.0240233.g007
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Estimating mean and variance of GFP concentration

As shown in Fig 3, microscopy measurements show a strong correlation between the size of

the cells and total GFP of the cells, indicating that cell size variations are responsible for a large

fraction of the variation in total GFP, and that GFP concentration fluctuates significantly less

than total GFP. It would thus be desirable to be able to estimate the mean and variance of GFP

concentrations from the FCM measurements as well. However, the fact there is a much weaker

correlation between raw fluorescence and scatter measurements in FCM (Fig 3) suggests that

it may be difficult to accurately estimate GFP concentrations for single cells. In particular, to

estimate the GFP concentration of a single cell, we need to not only take the autofluorescence

and shot noise of the fluorescence measurement into account, we also need to quantify how

the cell’s volume relates to the forward- and side-scatter measurement, which is known to be

very challenging.

Scattering signals are non-linear functions of cell size. The extent to which forward-

and side-scatter measurements of FCMs can be used to estimate the size of the measured

Fig 8. Correlation of CV2 in the FCM and microscope measurements before and after correcting for autofluorescence and shot noise. Top: The CV2 of the raw

FCM fluorescence measurements is consistently higher than the CV2 of fluorescence in the microscope measurements, and there is little correlation between the

two. Bottom: Once the FCM measurements are corrected for autofluorescence and shot noise, there is now a good agreement between the CV2 as estimated by

FCM and microscopy. Measurements for different promoters are indicated by different colors (see legend) and different points of the same color represent

replicate FCM measurements. Only promoters expressing more than exp(4) above the background are shown and the black line in both plots is a line with slope 1

and intercept 0.

https://doi.org/10.1371/journal.pone.0240233.g008

PLOS ONE Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria

PLOS ONE | https://doi.org/10.1371/journal.pone.0240233 October 12, 2020 15 / 23

https://doi.org/10.1371/journal.pone.0240233.g008
https://doi.org/10.1371/journal.pone.0240233


object is a topic of considerable debate in the flow cytometry literature. It is generally assumed

that forward scatter mostly reflects cell size, and that side scatter reflects surface properties

such as granularity [53]. Several previous studies have established that FCM can be successfully

used to distinguish bacteria of different shapes and sizes [40–43], i.e. the average scattering of a

population of cells reflects the average size of the cells in the population.

To confirm that, also within our setup, the average size of a population of cells can be

inferred from averages of scatter measurements, we made use of flow cytometry measurements

from a recent study from our lab in which E. coli cells were grown in a number of different

conditions and cell sizes were measured using microscopy in each condition [31]. Notably, the

growth-rate of the cells varied considerably across these conditions and E. coli cells are known

to increase size with growth-rate. For each condition, we calculated both the average cell size

from the microscopy measurements as well as the average height and width of both forward-

and side-scatter.

As shown in Fig 9, we found a very good correlation between forward-scatter and cell size

in each condition, confirming results from previous studies that average scatter can indeed be

used to estimate average cell size. However, it should be noted that the observed relationship

between cell size and scatter is highly non-linear. That is, whereas the height of the forward-

Fig 9. Average forward- and side-scatter of cells show approximate power-law dependence on average cell size. Each panels shows the average of the logarithm

of one of the four scattering signals, i.e. height or width of either forward- (FSC) or side-scatter (SSC), as a function of the average logarithm of cell area for E. coli
cells growing in different media (M9 + glucose, glycerol or lactose; MOPS + glucose, see legend) as measured by microscopy [31]. The error bars represent the

standard errors of the mean over replicate experiments.

https://doi.org/10.1371/journal.pone.0240233.g009
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scatter grows approximately quadratically with cell area, the width of the forward-scatter

grows approximately as area to the power 1/3. Previous studies indicate that the mathematical

relationship between cell size and scattering signal can be highly dependent on the specific

experimental setup and is often at odds with predictions of mathematical theories of light scat-

tering [8, 36, 37]. In [54] it is further shown that even if a particular non-linear relation

between scattering and single-cell size can be established in a given setting, this relationship is

not universal and it can vary even for bacteria of similar sizes and geometric properties. Thus,

although we could here make use of the microscopy cell size measurements to calibrate the

non-linear relationship between forward-scatter and cell size, it is highly doubtful that this

relationship would apply in other settings.

Scattering signals contain a substantial shot noise component. Moreover, in order to be

able to estimate GFP concentrations in individual cells, we have to go beyond relating popula-

tion averages of scatter and size, and estimate sizes of individual cells from the scattering mea-

surements. Several previous studies have reported that it is difficult to use individual scattering

measurements to measure variations of the sizes of single cells in a homogeneous population

[35, 44–46]. To investigate this within our setup we focused on height of the forward scatter-

ing, since based on Fig 9 this signal most strongly correlates with cell size, calculated the CV2

of the scattering as a function of the average scatter, and compared this with the CV2 in cell

area as a function of average cell area, as measured by microscope (Fig 10).

We see that, whereas the microscopy measurements indicate that the CV2 in cell size is

roughly equal in all conditions, the FCM measurements show a clear decrease of CV2 with

mean, similarly to what was observed for the fluorescence signal. As the scatter signal is gener-

ated by converting a light signal into an electrical impulse, it is to be expected that scattering

measurements are also affected by shot noise, and the results in Fig 10 confirm that this is the

case. Thus, in order to estimate the variation in cell sizes from the forward-scatter signals, we

not only have to take into account the non-linear relationship between scattering and size, but

also the shot noise on the scattering measurements. However, in contrast to the situation with

the fluorescence measurements, where we used the calibration beads to estimate the shot

noise, we cannot use these beads for estimating the shot noise on the scattering measurements

since these are strongly influenced by the geometry and material of the particles. Therefore,

the relationship between size and scatter will likely be very different for the beads than for liv-

ing cells.

In summary, both the complex non-linear relationship between scattering measurements

and size, and the absence of a general procedure for estimating the size of the shot noise in the

scattering measurements, make it very difficult to estimate the true variability of cell sizes

using FCM measurements only. Consequently, we currently do not see a simple way for using

FCM measurements to directly measure the GFP concentrations in individual cells.

FCM measurements can be used to quantify the relative sizes of variation in GFP con-

centrations of different genes. Although we do not believe that, absent of calibration with

an independent measurement technology such as microscopy, it is possible to reliably estimate

the true sizes of single cells using forward- and side-scattering measurements, FCM measure-

ments can still be used to learn a great deal about the relative noise levels of different genes.

Indeed, as confirmed in Fig 7, provided that autofluorescence and shot noise are taken into

account, the CV2 of total fluorescence levels of different promoters can be estimated reason-

ably accurately from FCM fluorescence measurements. Given that each of these fluorescent

promoter reporter constructs are embedded in identical cells growing in the same environ-

ment, these cells will all exhibit the same variation in cell sizes, so that the differences in CV2 in

total fluorescence must reflect differences in the CV2 of the GFP concentrations for these

reporter constructs.
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Without loss of generality, the total GFP intensity I of a cell can be written as the product

I = C � V of GFP concentration C and cell volume V, and we can additionally write C as the

average concentration hCi plus a deviation δC, and similarly for volume:

I ¼ ðhCi þ dCÞðhVi þ dVÞ; ð9Þ

where both δC and δV have average zero.

From the microscopy measurements we know that the fluctuations in the GFP concentra-

tion C are approximately independent of fluctuations in cell volume V (S10 Fig in S1 File).

Using this, we can derive relationships between both the means and coefficients of variation of

Fig 10. The CV2 of the scattering distribution is affected by shot noise. Top panel: The CV2 of the cell areas as a function of mean cell area across growth

conditions, as measured by microscopy. Bottom panel: The CV2 of the height of the forward scattering signal as function of the mean height of forward scattering

across growth conditions, as measured by FCM. In both panels the colors corresponds to different growth media as indicated in the legend (M9 + glucose, M9

+ glycerol or M9 + lactose, and MOPS + glucose).

https://doi.org/10.1371/journal.pone.0240233.g010
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the total GFP I, and the concentration C and volume V, respectively. We find

hIi ¼ hCihVi ð10aÞ

CV2
I ¼ CV2

C þ CV
2
V þ CV

2
CCV

2
V : ð10bÞ

We can use this to rewrite the coefficient of variation of concentration, in terms of the coef-

ficient of variation of total GFP (which we have shown how to estimate) and the (unknown)

coefficient of variation in cell size, i.e.

CV2
C ¼

CV2
I

1þ CV2
V

�
CV2

V

1þ CV2
V

: ð11Þ

Thus, if the coefficient of variation of cell volume CV2
V in the growth condition of interest

can be estimated using independent measurements, then Eq (11) can be used to estimate the

coefficient of variation of concentration in terms of the CV2
I for total GFP, as given by Eq (8).

Importantly, since the CV2
V is the same for all reporter constructs, such a measurement would

only have to be done once.

Lastly, even if the CV2
V is not known, we note that it will be the same for each of the pro-

moter reporter constructs. Therefore, the difference dCV2
C of the coefficients of variation in

GFP for two promoters is directly proportional to the difference dCV2
I in coefficient of varia-

tion of total GFP, i.e.

dCV2
C ¼

dCV2
I

1þ CV2
V

: ð12Þ

Although this still depends on the CV2
V , for all conditions we tested we found that CV2

V � 1,

so that a reasonable estimate of the relative size of variation in concentrations is given by sim-

ply setting CV2
V ¼ 0 in the above equation.

Discussion

Although flow cytometry is an attractive technology for single-cell analysis of gene expression

in high-throughput, we have shown that for data from bacterial cells there are a number of

challenges to overcome in data analysis in order to obtain accurate quantification. We here

developed a number of procedures for measuring single-cell expression distributions in bacte-

ria using FCM data and implemented them in an R package called E-Flow.

We first analyzed the forward- and side-scatter signals and their correlation structure.

There seems to be little agreement in the literature as to when to use forward-scatter or side-

scatter and whether to use height, width or area. We showed that only width and height pro-

vide independent measurements and developed a Bayesian mixture model for separating via-

ble cell measurements from debris and other outliers using the full 4-dimensional distribution

of forward- and side-scatter measurements. In general the filter we developed is much broader

than the very strict gating strategies that are sometimes used and typically only a small fraction

of the events are discarded.

We next developed a Bayesian mixture model to estimate the mean and variance in single-

cell fluorescences of a population of cells carrying a fluorescent reporter. However, by compar-

ing of the means and variances estimated by FCM with the means and variances estimated

from microscopy measurements of the same strains growing in the same conditions, we

observed systematic differences because of two effects. First, the amount of autofluorescence

per cell differs systematically between FCM and microscopy and we developed methods for
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estimating and removing the autofluorescence from the FCM measurements. We show that,

after correcting for autofluorescence, there is a perfect agreement between the means of differ-

ent reporters as estimated by FCM and microscopy, over the entire range of expression levels.

However, FCM measurements systematically overestimate the variation in fluorescence levels

due to shot noise in the FCM measurement. We developed a method to correct for the contri-

bution of shot noise to the estimated variation that uses calibration beads to estimate the size

of the FCM shot noise. We showed that, only after correcting for shot noise do gene expression

noise measurements from the FCM converge to those obtained from microscopy measure-

ments. Although the precise size of the shot noise and autofluorescence will likely vary between

different flow cytometers, the methods we presented here are general, can be applied to data

from any flow cytometer, and provide a step-by-step procedure for both estimating the size of

autofluorescence and shot noise, and correcting for these components.

Finally, we investigated whether FCM can be used to directly measure the distribution of

GFP concentration across cells by using forward- and side-scatter measurements to estimate

the volumes of individual cells. In line with previous work, we show that because scattering

measurements depend on cell size in a complex non-linear manner and contain a shot noise

component that is difficult to calibrate, it is not possible to accurately estimate the fluctuations

in volumes of single cells from scattering measurements. However, because GFP concentration

and cell size fluctuate independently across cells, we showed that the relative sizes of GFP fluc-

tuations for different reporter constructs can still be estimated from the variation of total GFP

with reasonable accuracy.
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