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Abstract

In the past few years, Function as a Service (FaaS) solutions, and Serverless
computing in general, have become a significant topic both in terms of general
interest and research effort. Allowing users to run stateless code in the cloud
without worrying about the underlying infrastructure for scheduling, management
and scaling, the ease of use of these approaches still comes with various trade-
offs and challenges. In this thesis, the issue of data locality is observed, using an
extension of the Apache OpenWhisk framework to provide users the ability to select
the node they wish to use to schedule some of their functions, allowing the code to
be run closer to the data it manipulates. Additionally, a topology-based scheduling
approach is implemented for the framework, where load balancers are instructed
to prioritize nodes in their same topological zone; this way, users can specify a
preferred load balancer for different functions, with no need to know the position
and name of all other nodes in the cluster. This modified version of the OpenWhisk
framework is then compared with the standard OpenWhisk implementation, along
with two other serverless frameworks, Fission and OpenFaaS, using a test suite
composed of different use cases, using both existing projects from the Wonderless
dataset and custom-built functions targeting different aspects of the paradigm.
The role of data locality considerations and topology-based policies is analyzed,
showing their importance in a multi-zone cluster with nodes in various geographical
locations, where latency between them and the remote data used by the functions
can be significant.
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Chapter 1

Introduction

1.1 Cloud Computing

According to NIST in [21], cloud computing is “a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management effort or service
provider interaction”.

In other words, computing in the cloud means having on-demand access to de-
localized resources managed by a cloud service provider, and using those resources
to perform different tasks, depending on the service model and the kind of resource
provisioned.

Cloud computing has many different applications, with the main advantage of
removing the onus of configuring and maintaining data centers for computationally
intensive tasks, and delegating it to the provider; this translates in a cost-effective
solution most of the time, reducing IT costs and introducing usage-based pricing.

1



2 1. Introduction

1.2 Cloud Service Models

Cloud service providers can offer different capabilities and computing resources,
matching different end users and necessities. In this section the main service
models are described; the first three are defined in [21] and further clarified in [27],
while the fourth one has more recently emerged as a potential alternative to the
previous models, with its own advantages and challenges.

1.2.1 Infrastructure as a Service

In this service model, the user can manage fundamental computing resources,
such as storage, processing power and networks, and deploy arbitrary software
on them; usually these resources are in the form of either Virtual Machines or
containers, deployed on the provider’s physical resources.
While it is possible for the end user to manage some networking components,
such as firewalls for hosts and subnets, no capabilities over the underlying cloud
infrastructure are given; nevertheless, the IaaS model offers the lowest-level control
of resources out of the service models here described.

The typical end users are either developers, or IT roles in general, who want
direct control over the computational resources in use.
Some examples of IaaS include EC2 from Amazon Web Services (AWS), Google
Compute Engine (GCE) and DigitalOcean.

1.2.2 Platform as a Service

The PaaS model is the following level of abstraction, where the end user has
no control over the underlying infrastructure and computing resources, and has
some configuration options over the environment of his choice.
The environment is then used as a computing platform to deploy and manage one
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or more applications, using languages, libraries and additional services supported
by the selected environment (and provider).

In this model, the provider is responsible not only for their physical resources,
but also for middleware, database systems, operating systems and other additional
services necessary for the consumer application; the end user only has control over
the deployed applications and their data.

Typical end users are developers who wish to publish their applications into the
cloud; services such as AWS Elastic Beanstalk, Google App Engine and Heroku
are notable examples of PaaS.

1.2.3 Software as a Service

The SaaS model encompasses most web applications, where the provider man-
ages all resources, including the code run on the cloud, and the consumer only has
the capability of using the application offered as a service.
The client used to access the application can be both a web browser or a standalone
program interface, but the actual application code is still run in the cloud.

Popular examples of SaaS are GMail, Slack or Netflix; compared to the previous
two models, typical end users are required to possess less technical skills, and are
able to simply use the provided software application.

1.2.4 Function as a Service

The FaaS model is not described by NIST in [21], and emerged around 2010
as a category of cloud computing services allowing the end user to execute code
in response to events, without the responsibility of managing any part of the
underlying infrastructure.
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Figure 1.1: An illustration of the different levels of abstraction in the various cloud

service models; it can be seen how IaaS, PaaS and SaaS progressively move management

and operation responsibilities from the end user to the cloud provider. Picture from

https://www.ibm.com/cloud/learn/iaas-paas-saas.

.

From the user’s point of view, FaaS platforms have better “built-in scaling”
compared to PaaS and especially IaaS solutions, since not only the physical hard-
ware, but also the OS and any additional software are handled by the provider;
this effectively removes the need for user interaction and tuning when it comes to
scaling.

Advantages, challenges and applications of FaaS and serverless in general are
described in the next section.

https://www.ibm.com/cloud/learn/iaas-paas-saas
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1.3 FaaS and Serverless Computing

FaaS is a central part of serverless computing, focusing on the paradigm where
the function’s code is only executed in response to specific events or requests;
although the two are often conflated together, FaaS is technically a subset of
serverless computing, as the latter also encompasses every service category (e.g.
databases or storage services) “where configuration, management, maintenance and
billing of servers are invisible to the user”[41].

As such, serverless computing in general refers to the cloud computing execu-
tion model where resources are provisioned on demand, and every management
task is responsibility of the cloud provider.

While the name can be misleading, servers are of course still part of the server-
less architecture; the denomination acts as a description from the customers’ per-
spective: servers are invisible to them, and never part of any direct interaction.

1.3.1 Characteristics

Applications based on serverless computing, and more specifically on FaaS
solutions, usually share some common characteristics. As found in [7], a significant
majority of analyzed serverless applications have a very short runtime, in the order
of seconds or milliseconds, while less than a fourth have a runtime of minutes; in
the same paper, it is shown that serverless applications very often have “bursty”
workloads (i.e. characterized by a pattern that includes sudden load spikes) and
are invoked using mostly HTTP-based or cloud-based triggers, the latter including
events such as file uploads to a cloud-based storage.

Another characteristic usually associated with FaaS-based applications is the
use of small, isolated functions, each performing specific tasks; scaling small func-
tions is generally easier and less expensive, since usually only specific components
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of an application actually need to be scaled; if bigger and less “specialized” func-
tions are used instead, many parts of the application might end up being scaled
unnecessarily.

Smaller functions, in this case functions that don’t require many libraries, also
have faster loading times; this comes both from the size of the uploaded archive
containing the function code and the instantiation time for the libraries; all of this
contributes to the cold start issue (1.3.2), making the use of as few libraries as
possible a general guideline for functions in FaaS applications.

1.3.2 Advantages and issues

As mentioned before, serverless computing allows developers to focus entirely
on the actual application, with no responsibility over the management of the un-
derlying infrastructure; this particular perk, combined with the multiple language
runtimes generally available in serverless platforms, helps streamlining the de-
velopment and deployment process; developers can code in many programming
languages, with various libraries, without the need to know the infrastructure on
which the applications will run.

Compared to IaaS solutions, serverless computing is also usually more cost-
effective, since the customers only need to pay for the function execution; this is
especially useful in case of dynamic or sporadic workloads, with alternating short
periods of computation and long periods of idling; with a IaaS-based approach
a consumer would have to pay for the provisioned resources until their explicit
removal (more precisely, decommission), while with a FaaS-based approach only
the time of execution would be accounted for payment.

At the same time, various challenges and shortcomings exist in different areas
of serverless and FaaS; the authors of [19] present a summary of findings regarding
current behaviors and constraints of these solutions, such as:
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• FaaS generally offers a single function abstraction, with no distinction for dif-
ferent function “types”; this tends to limit the amount and type of resources
available to the function handler’s runtime, failing to adapt to more compu-
tationally intensive applications. Moreover, if platforms impose a maximum
execution time on a function, errors can be raised in case of long tasks; a
popular example of this issue are deep learning applications, requiring both
long execution times and better control on the hardware running the function
(since GPUs are in many cases required for such computations).

• Users have no control over the platform’s elasticity controller; because of
this, the standard provisioning and de-provisioning time of FaaS solutions
might not suit the application’s scaling needs (e.g. the service may not scale
fast enough to respond to spikes in traffic, or might de-provision resources
too greedily, impacting performance when it comes to caching results from
previous executions). This creates an even bigger issue when combined with
the relatively limited “elasticity” of many services, as noted by the authors of
[17]; the resulting ability to rapidly scale according to the volume of requests
might consequently not meet the demands of serverless applications.

• While FaaS tends to be more cost-effective compared to other solutions, since
idle time is not accounted for in its cost model, the actual price of execution
can still be inflated by other factors; firstly, developers can still specify the
“size” of the functions (i.e. the amount of memory the function should use),
meaning they still need to evaluate the cost-performance trade-off for the
application (since the default amount might either not suffice for the invo-
cation or exceed the actual needs); secondly, since function composition is
an integral part of FaaS applications, cost increases related to it are to be
considered (e.g. synchronous calls between functions, where the waiting time
is still billed as execution time).

Similar problems are also pointed out by the authors of “Serverless Computing:
One Step Forward, Two Steps Back” [13], namely the inability to access specialized
hardware and the limited function lifetime in the AWS Lambda platform.
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An issue strongly related to commercial solutions is the possibility of ven-
dor lock-in; while some serverless applications can be deployed on different cloud
providers, and a number of open source frameworks are available for use in private
clouds, proprietary solutions are still a very popular choice (as shown in [19], 80%
of the surveyed cases are deployed on AWS); moreover, if the application requires
interaction with specific workflows or services, even migrating to different providers
can be very difficult; as the authors of [17] discuss, vendor lock-in may be stronger
with serverless computing compared to “serverful” solutions. Finally, deploying
an open source solution on a private cluster requires the actual management of
the cluster, which is in contrast with the main appeal of the paradigm; all of this
can make users rely on a single cloud provider, thus creating a situation of vendor
lock-in.

Especially in the context of hybrid and multi-zone clusters, the issue of locality
arises; as described in [14], session locality, code locality and data locality need to
be considered by load balancers. The issue of locality will be better explored in
Chapter 2, along with other research themes.

Finally, one of the most discussed issues of FaaS is handling cold starts, i.e. the
time needed to initialize the environment used to run the code; the startup latency
can be noticeable, especially when functions are packaged with a higher number
of libraries, leading to a delay of seconds before the actual code execution. This
particular issue can make serverless approaches unfeasible for applications where
fast response times are a priority (e.g. financial trading); nonetheless, as found
by the authors of [7], use cases where a degree of stable latency is required (e.g.
interaction with human users) are still present, regardless of cold starts.

1.3.3 Use cases

According to IBM[42], the main use cases for serverless architecture are mi-
croservices, API backends, data and stream processing, and embarassingly parallel



1.3 FaaS and Serverless Computing 9

Figure 1.2: Illustration of what constitutes the cold start in serverless functions; the

actual code execution is preceded by several bootstrapping operations, which can con-

siderably affect latency times. Picture from https://medium.com/ssense-tech/the-

trade-offs-with-serverless-functions-71ea860d446d.

.

tasks.
The first category is focused on creating small services that do a single job, and
has requirements of scalability and modularity; given the advantages of serverless
computing when it comes to automatic scaling and quick provisioning and de-
provisioning of resources, this model is well suited for the microservices use case.
The second category is a natural consequence of the possibility, for serverless plat-
form, to invoke functions based on external triggers, such as HTTP requests; every
action can then become an HTTP endpoint, and be combined with others to ef-
fectively become an API.
The third category makes use of the simplicity and fast scalability of serverless
solutions, and as shown in “An Evaluation of Serverless Data Processing Frame-
works”[32], serverless frameworks can perform better and be more cost-effective
compared to approaches such as Amazon EMR.
The fourth category is well suited for serverless, and specifically the FaaS paradigm,
as it consists of applications where tasks are almost, if not completely, independent;
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each parallelizable sub-task can then be handled by a single action invocation.

Similarly, the authors of [13] list three main categories of applications: em-
barassingly parallel functions, orchestration functions and function composition.
The first category has already been described, and the authors note how it is in-
herently limited in scope and complexity; the second one consists of functions used
to orchestrate calls to other services (e.g. preprocessing data before sending it to
analytics applications); the last one encompasses “collections of functions that are
composed to build applications, and thus need to pass along outputs and inputs”
(e.g. groups of functions chained together by triggering events on storage services).

Apache OpenWhisk documentation also offers a list1 of common use cases for
their framework, including IoT applications and support for cognitive technologies
(e.g. extracting frames from an uploaded video, which are then to be processed
by visual recognition software).

As noted by the authors in [7], serverless can still be seen as a broadly appli-
cable solution, and their finding show that serverless applications are quite evenly
distributed between APIs, asynchronous and stream processing, and applications
assisting in monitoring, operating and automating software systems.

1.3.4 Providers and platforms

When talking about FaaS platforms, a distinction can be made between open-
source frameworks, available for deployment on both public and private clouds,
and proprietary platforms, tied to specific cloud providers.

The main examples of the latter category are AWS Lambda, Google Cloud Func-
tions and Azure Functions, offered by Amazon, Google and Microsoft respectively.
The main upsides of using a proprietary solution are the robust underlying infras-
tructure, which grants a very high level of reliability, and the ability to interact

1https://github.com/apache/openwhisk/blob/master/docs/use_cases.md

https://github.com/apache/openwhisk/blob/master/docs/use_cases.md
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very easily with the provider’s ecosystem (e.g. using the addition of an object in
an S3 bucket as a trigger to invoke a function on AWS Lambda2).

The main downside of proprietary solutions is having to rely on the provider
both for framework updates and infrastructure; this reduces flexibility for devel-
opers, and relying on commercial services can create vendor lock-in. A greater
control over the infrastructure and the deployment of the serverless platform can
also help optimizing resource usage and latency (e.g. with data locality issues);
moreover, having a better knowledge of the infrastructure facilitates testing and
benchmarking.

For these reasons, only open source frameworks were considered for the purpose
of this thesis; a deeper analysis of the three that were chosen is given in 2.2.

1.4 Objective of the Thesis

The main purpose of this thesis is to analyze and optimize the behaviour of
serverless platforms in a multi-zone cluster, building upon the work done in [6];
specifically, the authors’ aim is to improve on the flexibility of a configurable load
balancer for the Apache OpenWhisk platform, extending its behavior in presence
of multiple replicas of the service.

Through this, the objective is to address the issue of data locality, allowing
functions to be invoked near the data, regardless of the amount of nodes and zones
in the network; at the same time, developers can impose a degree of tolerance on
the load balancers’ behavior, requesting the code to only be executed on certain
nodes, and only be scheduled by certain replicas (e.g. private code should only be
scheduled by private load balancers, and should fail everywhere else).

Following this additions, the authors focused on comparing performance and

2https://docs.aws.amazon.com/lambda/latest/dg/with-s3-example.html

https://docs.aws.amazon.com/lambda/latest/dg/with-s3-example.html
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behavior of three different open source serverless frameworks; this was done by
building a test suite composed of basic functions, realistic use cases taken from
the Wonderless [8] dataset, and critical cases, addressing some known issues with
the platforms and serverless in general. The same test suite was then used to
evaluate the modified version of OpenWhisk, analyzing the improvements.

1.4.1 Contributions

The contributions of this thesis, mainly described in Chapter 3, were:

• The extension of the APP language described in [6], to include configuration
options in situations with replicated Controllers and load balancers.

• The implementation of a topology-based Invoker distribution in a multi-zone
cluster case, having load balancers prioritize nodes in the same topological
zone.

• The implementation of a script influencing Nginx behavior when handling
requests to replicated Controllers, to assist the aforementioned topology-
based distribution.

• The definition of a test suite, to compare serverless platforms behavior and
performance in various use cases, including some known pitfalls of both the
platforms and the paradigm.

1.5 Structure of the Thesis

The first chapter of this thesis was intended as an introduction to the purpose,
the challenges and the advantages of serverless computing.
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The second chapter covers the state of the art of serverless computing, focusing
on current themes of research regarding the improvements of serverless platforms;
three specific open source FaaS frameworks are then described and analyzed, show-
ing similarities and differences in their architecture and approaches.

The third chapter presents the contributions of this thesis, more precisely, the
additions made to the Apache OpenWhisk project and its deployment configura-
tion on the Kubernetes system.

The fourth chapter illustrates the design of the test suite used on the platforms
described in Chapter 2, and on the customized version obtained with the additions
from Chapter 3; it includes the considered use cases, the critical cases and the
testing results.

The last chapter contains both the conclusions of the thesis and possible future
works.





Chapter 2

State of the Art

Serverless computing and FaaS are continuously growing areas of research,
despite the technologies’ relatively young age (AWS Lambda was only introduced
at the end of 2014[43]); in this time span, many papers were published regarding
a plethora of issues, challenges and innovations for the paradigm, ranging from
formal models to scheduling optimizations with IoT and edge computing, along
with different benchmarks and comparison of different FaaS platforms.

At the same time, many of these platforms are in active development; from
commercial solutions, such as AWS Lambda, Google Cloud Functions and Azure
Functions, to open source frameworks, such as Apache OpenWhisk, OpenFaaS,
Kubeless, Fission and more; as expected, different platforms have different archi-
tectures and technology stacks, resulting in various approaches to function schedul-
ing and deployment.

The first section of this chapter gives an overview of some of the popular
research themes, with references to related recent publications. The second section
is composed of four more subsections, with the first three respectively containing a
description of the Apache OpenWhisk[37], OpenFaaS[53] and Fission[40] platforms;
the last subsection contains a note on the Kubeless platform, which was discarded

15
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during the writing of this thesis.

2.1 Research overview

As previously mentioned, the young age and growing popularity of the server-
less computing paradigm result in numerous and varied areas of research.

2.1.1 Architecture

A popular theme is the optimization of the underlying architecture, target-
ing components such as virtualization technologies and orchestration systems.
Docker[38] has, for a long time, been considered the most common virtualiza-
tion and containerization technology; as Docker by itself lacks a way to easily
orchestrate container deployments, especially in cloud systems, technologies such
as Docker Swarm and the vastly more popular Kubernetes[47] exist. While Docker
is still a very commonly chosen technology for containerization, alternatives have
been developed in the last few years, such as:

• Firecracker[2], the virtual machine monitor (VMM) powering AWS Lambda
and AWS Fargate. Firecracker uses the Linux Kernel’s KVM infrastructure
to provide microVMs, extremely lightweight virtual machines, with the ad-
vantage of a better process isolation compared to containers (since virtual
machines offer an additional level of sandboxing for applications, instead of
relying directly on the kernel’s sandboxing capabilities). Firecracker is also
generally seen as an alternative to QEMU[5], since its only purpose is to run
serverless functions and containers; this reduced versatility results in better
performance and a lower memory footprint.

• LightVM[20] is a solution developed by NEC and, similarly to Firecracker,
has the main purpose of being a lightweight and secure virtualization tech-
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nique, minimizing the virtual machines’ overhead and optimizing instantia-
tion times. It is based on the Xen hypervisor.

• Kata Containers[45] are another approach to obtain better isolation; contain-
ers are executed withing QEMU-based virtual machines, using the hypervisor
as a way to further separate the container runtime from the host system’s
kernel. Kata Containers also support the use of Firecracker as hypervisor.

• Faaslets[25], a recent solution targeting the issue of stateful serverless com-
puting. Running on the Faasm runtime, developed by the same authors, this
approach uses a distributed state on both a local (in-memory sharing) and
global (across hosts) level to reduce data access and serialization overheads.

Regarding orchestration systems, and interesting alternative to Kubernetes is
Nomad[51]; the developers offer a comparison to Kubernetes, including simplicity
and a good scalability as advantaged of their solution1. In the serverless world,
Nomad is used as an orchestrator by the Koyeb[46] Serverless Engine, along with
the aforementioned Firecracker for virtualization; Koyeb’s developers also offer an
explanation for their choice of Nomad over Kubernetes2.

2.1.2 Cold starts

Many publications focus on techniques to reduce the impact of cold starts in
the initial latency. The authors of [28] offer a solution based on multiple queues,
at the same time “pre-warming” containers and keeping multiple copies of the ones
that were recently used; this way, concurrent invocations can be scheduled on
previously initialized containers. The results in the paper show that this approach
accomplishes very good startup times at the cost of a moderately higher memory
usage.

1https://www.nomadproject.io/docs/nomad-vs-kubernetes
2https://www.koyeb.com/blog/the-koyeb-serverless-engine-from-kubernetes-to-

nomad-firecracker-and-kuma

https://www.nomadproject.io/docs/nomad-vs-kubernetes
https://www.koyeb.com/blog/the-koyeb-serverless-engine-from-kubernetes-to-nomad-firecracker-and-kuma
https://www.koyeb.com/blog/the-koyeb-serverless-engine-from-kubernetes-to-nomad-firecracker-and-kuma
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A work from the end of 2020, “Prebaking Functions to Warm the Serverless
Cold Start”[26], describe a technique based on restoring snapshots from previously
executed function processes; this way, when a new function instance is created
(or when a function replica needs to be instanced), the platform can restore the
snapshot; the only time a new snapshot is created is when the user deploys a
new function version, generally reducing the overhead from the snapshot creation.
The authors then integrate the prebaking solution with the OpenFaaS platform,
describing the necessary steps in the paper.

On the other hand, a work from 2019[22] focuses on the impact of initializ-
ing network elements in containers; the authors find that network creation and
connection account for a large part of cold start times, and develop an approach
based on pre-creating networks and connecting them to function containers. They
accomplish this by creating a pool of “pause containers” (PC), which have their
initialization paused after the network creation step; during function invocation, a
newly launched container (built for a specific runtime) is attached to an available
PC, removing it from the pool and exploiting the pre-initialized network com-
ponents. The solution is then evaluated by modifying the Apache OpenWhisk
platform, and comparing it with an unmodified version, showing significant im-
provements in startup times.

2.1.3 Formal models

Other papers propose formal models and definitions for serverless computing:
in [9] the Serverless Kernel Calculus (SKC) is defined, combining ideas from λ-
calculus (for functions) and π-calculus (for communication); SKC defines a server-
less architecture as a pair 〈S,D〉 where S is the system of running functions and
D is a definition repository. The authors then use an extension of SKC to encode
a portion of Tailor[56], an architecture for user registration developed over AWS
Lambda.
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In the same year, a different paper[15] proposed formal tools for serverless com-
puting, defining an operational semantics for of serverless platforms called λ�; this
model also captures low-level details such as cold starts, storage, transactions and
function restarts. The authors then extend λ� with a domain specific language for
composing serverless functions, called “serverless programming language” (SPL),
and implement different programs as case studies to identify possible features that
might be missing from the language.

2.1.4 Scheduling

Additionally, one of the main areas of research is focused on optimizing function
scheduling and workflows. While works such as [30] define algorithms for load
balancing by acting on the controller level (i.e. scheduling functions on specific
nodes), approaches such as the ETAS[4] scheduling scheme also exist. The authors
of ETAS implement a new scheduling policy on the worker level, influencing the
order in which the invocations should be removed by a worker’s waiting queue when
resources become available; this algorithm estimates a function’s execution time
from previous invocations and calculates the ideal finish time (defined as the sum
of arrival time and execution time); functions are then executed according to their
finish time, ensuring that small functions are not stuck behind larger ones (since
parallel invocations prioritize shorter execution times), and that larger functions
are not starved.

A different approach to scheduling optimization is given in “Faastlane: Accel-
erating Function-as-a-Service Workflows”[18], where the authors define a solution
based on scheduling functions of a single workflow as threads within a single pro-
cess of a container instance. This helps reducing the data sharing overhead, as
functions can simply exchange data via simple load/store instructions; this repre-
sents both a study on optimizing function scheduling and on handling the issue of
managing state in a specific workflow.
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2.1.5 State management

State management is in itself another theme of research, and surveys such
as [23] and [12] have recognised it both as a challenge for the paradigm and a
difficult task for developers; the aforementioned Faasm[25] runtime tackles this by
supporting both global and local state access, aiming at performance improvements
for data-intensive applications.

In 2021, a paper introducing the Boki[16] FaaS runtime approaches the issue of
state management by associating each function invocation with a “LogBook” (i.e.
an abstraction allowing serverless functions to access shared logs), and having all
functions of a Boki application sharing one; the aim of the authors is to address
some demands in serverless computing, namely fault-tolerant workflows, durable
object storage and shared message queues among serverless functions (allowing
them to directly communicate with each other).

Another example of a stateful FaaS runtime is Cloudburst[29], a framework
built on top of the Anna[33] key-value storage (KVS); a performance comparison
between Boki and Cloudburst is also provided by the first runtime’s authors in
their paper.

2.1.6 IoT and Edge

Many papers also discuss issues related to IoT and edge computing, and what
challenges they present for serverless solutions. An interesting study combining
serverless computing with edge and IoT devices is presented in [10], where the
authors introduce the concept of “deviceless edge computing”; this paradigm allows
functions to be executed on devices close to the user, instead of server, effectively
integrating those devices in the serverless infrastructure.

This concept is also expanded in a study[11], where the possibility of “infras-
tructureless” computing is explored, evaluating challenges and advantages of pos-
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sibly including embedded systems in the paradigm, while also using concepts from
dew computing (executing functions on a local smart device, and offloading it to
a server or a neighboring smart device if specific conditions are met, such as the
presence of an internet connection or a low battery level); it has to be noted that
the author only provides an analysis of this approach, not an implementation.

2.1.7 Locality

Finally, an important aspect in serverless computing, especially when working
on hybrid clusters, is locality; in “Serverless Computation with OpenLambda”[14],
three main types of locality are described: session locality, code locality and data
locality.

• Session locality, which plays a role when function invocations are part of long-
running sessions with open TCP connections. In this case, it is preferred to
dispatch the invocations to the same worker node, if they share the same
TCP connection; the authors comment on how this is beneficial, as it avoids
diverting traffic through a proxy.

• Code locality, which should be considered by schedulers especially when han-
dling functions which share many dependencies; as functions requiring a
high number of libraries can incur in considerable delay due to cold starts,
dispatching their invocations to nodes where the dependencies are already
cached can result in considerable improvements.

Works such as “Package-Aware Scheduling of FaaS Functions”[1] and its
follow-up “Beyond Load Balancing: Package-Aware Scheduling for Serverless
Platforms”[3] handle this by defining a package-aware scheduling algorithm,
which assigns functions to nodes where a required package is already cached
(in case of multiple package affinity, the largest package is chosen). The
authors find that their solution greatly outperforms a least-loaded balancer
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in [3], with a slightly higher node imbalance as a trade-off (i.e. load is not
evenly distributed between all worker nodes).

• Data locality, which consists in moving the computation closer to the data it
uses; this is especially important when a function handles large amounts of
data, or has to be otherwise run alongside databases. Data locality can have
a significant impact in performance when working with hybrid and multi-
zone clusters or edge computing, as in these cases nodes can be in different
geographical areas, and network latency can become significantly different
between zones.

The work upon which this thesis is built, “Allocation Priority Policies for
Serverless Function-execution Scheduling Optimisation”, introduces a declar-
ative language to specify function scheduling policies, and implements an ex-
tension for Apache OpenWhisk which uses a configurable load balancer; this
way, developers can specify different scheduling policies on different func-
tions, requiring the invocation to be dispatched to specific nodes.

A different work[31] published in 2020 introduces Skippy, a scheduling sys-
tem to be integrated with existing container orchestration; this prototype
adds runtime components and domain concepts to make the orchestration
system aware of device capabilities (e.g. network context, container images
present on the node, availability of a GPU). The scheduler then analyzes
function metadata to obtain information such as data consumption/produc-
tion and capability requirements; this information is then given as input to
various priority functions, the outputs of which influence the nodes where
the invocation will be dispatched. The authors couple their solution with a
modified version of the OpenFaaS platform, where function deployments in-
dicate they should be scheduled by Skippy (instead of the default Kubernetes
scheduler); the paper’s results show that this modified version yields higher
data throughput and less network traffic, at the cost of decreased scheduler
performance (caused by the higher complexity).

Two previously mentioned solutions also tackle the issue of data locality by
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co-locating caches (Cloudburst[29]) and log index copies (Boki[16]) with the
function executors.

2.2 Open Source Serverless Frameworks

This section contains an overview of the most popular (according to stars and
contributors on the respective GitHub repositories) Open Source Serverless frame-
works. First, the three that were used and analyzed in this thesis (Apache Open-
Whisk, Fission and OpenFaaS) will be described in more detail: a deeper level of
explanation will be reserved for OpenWhisk load balancing and scheduling algo-
rithms, as the main contribution of this thesis was also based on modifying their
behavior; then, a brief note on the Kubeless framework is given, along with the
reasons why it was not used in this work.

2.2.1 Apache OpenWhisk

Apache OpenWhisk[37] is an open source serverless platform, initially an-
nounced by IBM and later donated to the Apache Software Foundation. Open-
Whisk is currently maintained on GitHub with over 190 contributors and 5.4k
stars. While the main core of OpenWhisk is written in Scala, the project “stands
on the shoulders of giants”, to quote the main documentation; OpenWhisk’s main
components include Nginx, Apache Kafka and CouchDB, which will be briefly
described in the next paragraph; a simplified representation of OpenWhisk archi-
tecture is also shown in Figure 2.1.

Components

Nginx[50] is an open source HTTP and reverse proxy server, a mail proxy
server, and a generic TCP/UDP proxy server; Nginx is known for its performance
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Figure 2.1: OpenWhisk architecture. Nginx is the system’s main entry points, and

forwards request to a Controller; the Controller then uses Kafka to communicate with

the Invokers, and CouchDB to obtain the necessary information about the function and

the user requesting it. Invokers then use CouchDB to store the function execution’s

result. Picture from https://openwhisk.apache.org/documentation.html.

https://openwhisk.apache.org/documentation.html


2.2 Open Source Serverless Frameworks 25

and stability, and was written “specifically to address the performance limitations
of Apache web servers”3. As a part of the OpenWhisk architecture, its main
purpose is to expose the public HTTP endpoints and act as a reverse proxy and
an SSL termination proxy; as such, requests made to the platform are received by
Nginx and then forwarded to the next components.

Apache Kafka[36] is an open source distributed event streaming platform; its
role in the OpenWhisk architecture consists in allowing Controllers and Invokers,
two of OpenWhisk core components, to communicate. Requests coming from a
Controller are first buffered as messages by Kafka, and subsequently delivered
to the requested Invoker; the buffering phase is necessary, as Invokers may be
momentarily busy, or may have crashed and be in the process of restarting, and
as such be unable to process the message as soon as it’s sent; for this purpose,
Kafka’s “publish and subscribe” architecture allows requests to be stored until they
are ready to be executed.

CouchDB[34] is an open source, document-oriented NoSQL database, and
it’s currently a project of the Apache Software Foundation. Its purpose in the
OpenWhisk architecture is to maintain and manage the state of the entire system,
such as credentials, function definitions, triggers and rules. The Controller uses
CouchDB for user authentication and authorization, and obtains the function code
and metadata when a specific action is executed; the action’s result is then also
stored in CouchDB, as part of the activations database and identified by a
specific activation ID.

Programming model

The OpenWhisk programming model is event-driven, and code can be run
either in response to these events or to direct invocations. The main components
of this model are actions, triggers, rules and feeds.

3https://www.nginx.com/blog/nginx-vs-apache-our-view/

https://www.nginx.com/blog/nginx-vs-apache-our-view/
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Actions are the main entity in the OpenWhisk FaaS architecture, constituting
the actual code being run. Actions are, at their core, stateless functions, generally
written in one of the supported languages (actions can also be created directly from
executables). Actions are invoked in response to events, and produce observable
outputs; actions can also be invoked directly from the wsk CLI or from their
endpoint as a REST API call. Every action invocation results in an activation ID,
which can be queried to obtain results and logs in non-blocking invocations.

Triggers are similar to actions as they can also be activated (while the term
for actions is invoked, the term for triggers is fired) and return an activation ID.
Triggers can be either explicitly fired by a user, or on behalf of a user by an external
event source (such as a feed).
When a trigger is fired without any accompanying rule, no visible output or effect
is produced. Common examples of triggers are location updates or changes in a
cloud storage service; they are used to define classes of events, which can in turn
cause action invocations.

Rules are used to associate triggers and actions; a single rule associates one
trigger and one action, with every firing of the trigger resulting in an invocation
of the action, with the trigger event as input. By defining different rules, triggers
can be used to invoke multiple actions, and multiple triggers can all result in the
same action being invoked.

Feeds are specially crafted actions, which need to respect a certain architec-
tural pattern. Feeds are used as event sources for triggers, and generally acts as a
connection between a stream of events produced by a package and a user-defined
trigger.

The OpenWhisk programming model and its components can be seen in Figure
2.2: an external event source is connected to a trigger by a feed; the former is then
used to invoke an action according to a specific rule; the action then produces
an observable result (such as a JSON output). Actions, triggers and rules are all
divided in specific namespaces.
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Figure 2.2: OpenWhisk programming model. Picture from https://openwhisk.

apache.org/documentation.html.

Internal flow of processing

After an action is invoked, whether directly or in response to the firing of a trig-
ger, a specific processing flow is started, involving all of the previously mentioned
components; a representation of this flow can be seen in Figure 2.3.

1. Firstly, the action invocation is handled as an HTTP request against the
system’s entry point, Nginx. The proxy server analyzes the request path,
and forwards it to the next component, the Controller; if more than one
Controller is available (e.g. when multiple replicas are present), Nginx uses
a round-robin load balancing algorithm, marking single Controllers as un-
available for the request after a specified timeout.

2. After that, the request is processed by the Controller; this component first
has to disambiguate the kind of request that was received (e.g. an action
invocation is a POST request), and then authenticates and authorizes it by
verifying the user identity on CouchDB, in the subjects database.

Following this, the Controller actually loads the action from the whisks

database, along with possible metadata; the record also includes parameters
in the invoke request, which are visible to the Controller.

3. Then, a component of the Controller, the Load Balancer, chooses a par-
ticular Invoker to execute the action; the Load Balancer has a global view
of all Invokers, and so can choose an healthy one according to a specific load

https://openwhisk.apache.org/documentation.html
https://openwhisk.apache.org/documentation.html
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balancing algorithm.

In case of multiple Controllers (and consequently, multiple Load Balancers)
the default approach is to evenly distribute each Invoker’s capacity (i.e. the
maximum amount of memory of actions running in parallel on that Invoker)
between all of them, while still maintaining the global view; e.g. if N Con-
trollers and M Invokers are present, with each Invoker having capacity C,
the resulting view for every Load Balancer isM Invokers with capacity N/C.

4. The Controller then uses Kafka to communicate with the chosen Invoker;
this removes from both the Controller and the Invoker the responsibility of
buffering the message in memory, and ensures the messages are not lost in
case of a crash. In the case of a non-blocking invocation a response is sent
for the initial HTTP request by the user, containing the relevant activation
ID.

5. After the message has been successfully delivered, the next phase is handled
by the Invoker; a Scala-based component, like the Controller, its role is to
execute actions in an isolated way by using Docker containers.

When an action is invoked, Docker is used to setup a new container, in
which the action code is injected and executed; after the code has finished
its execution, the result is obtained and the container is destroyed. The
result is then stored in the activations database in CouchDB, along with
the action logs.

Load balancing algorithms

• As previously mentioned, Nginx uses a simple round-robin load balancing
algorithm; as such, requests are evenly distributed between multiple Con-
trollers, with no specific priority rules. Controllers are ignored only if they
result unavailable at the time of the request. As shown in Section 3.1, in
this thesis the Nginx default configuration was modified, allowing users to
prioritize certain Controllers in their invocations.
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Figure 2.3: How OpenWhisk processes an action. Picture from “Learning Apache

OpenWhisk”[24].
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• The Controller’s default load balancing algorithm is currently described in
the project’s code and documentation on GitHub4; what follows is a summary
of that description.

Firstly, when an invocation request is received, a hash is calculated from
the action’s name and namespace; the hash is then use to pick an Invoker
(identified in the Invoker list by a numeric index); the formula used is hash
% numInvokers. The resulting index is the “home Invoker”, from which the
following progression will start.

If the home Invoker is healthy (i.e. no more than 3 out of the last 10 activa-
tions on that Invoker contained system errors, and the Invoker has success-
fully sent a periodic ping to the Load Balancer before a certain timeout) and
has sufficient capacity to handle the action, then the request is scheduled to
it.

If one of these conditions is not met, the index is incremented by a step-size;
the available step-sizes are all the coprime numbers smaller than numInvokers,
and a specific one is selected using the formula: hash % numStepSizes; the
Invoker relative to the new index is then both health-checked and capacity-
checked, verifying its availability for the action invocation.

The procedure is repeated until all Invokers have been checked, after which
a random healthy Invoker will be selected; if none are available, the Load
Balancer returns an error, and the request is not queued.

The main logic behind this approach is that, since a certain action in a
certain namespace will always generate the same hash and progression, the
Load Balancer will generally schedule functions on Invokers that already
have a “warm” container; as also noted in the code, this is not always true:
for instance, two computationally heavy actions can override each other on
a specific Invoker, with each successive invocation resulting in a cold start
(as the previous warm container was evicted to make space for the other
function).

4https://github.com/apache/openwhisk

https://github.com/apache/openwhisk
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• The modified load balancing algorithm used as a starting point for this the-
sis was defined in [6]; in the paper, a configurable Load Balancer was im-
plemented, allowing users to prioritize specific Invokers for specific function
classes; different strategies for selecting from the list of Invokers are available,
along with the possibility of default to the standard load balancing algorithm
as a fallback. The load balancing algorithm used in this thesis largely follows
the same principle, while allowing for more flexibility in selecting Invokers
that are “nearby” a specific Controller.

2.2.2 Fission

Fission[40] is an open source serverless framework, designed for Kubernetes; like
OpenWhisk, it has an active community on GitHub, with 6.6k stars and over 120
contributors. Unlike OpenWhisk, its core is written in Go, and has a less complex
stack of additional components; this is because Fission is heavily dependent on
Kubernetes features, and is meant to be run and installed on a Kubernetes cluster,
while OpenWhisk on the other hand can be deployed in various different ways
(including a “standalone” option).

Programming model

Fission programming model is built upon three main concepts, visible in Figure
2.4: functions, environments and triggers.

Functions are, analogously to OpenWhisk’s actions, the actual code that is
executed by Fission; like actions, functions are generally stateless and event-driven
programs, written in one of the supported programming languages. Functions gen-
erally have one entry point, which is an asynchronous function written according
to a certain interface (e.g. in NodeJS, the entry point receives a context input,
containing information such as the HTTP request body and headers).



32 2. State of the Art

Figure 2.4: Fission core concepts: functions can be invoked according to triggers con-

necting them to certain events; functions are defined and isolated in environments, de-

pending on the required language runtime. Picture from https://fission.io/docs/

concepts/.

Environments are the basis for function deployment; they consist in a pool of
containers, defined by a Docker image which has an HTTP server and a dynamic
loader for the selected language; environments can also include a builder image
and builder command, which will be used for building from source code (instead
of uploading all dependencies as a single archive). When functions are created, an
environment is specified, along with the function name and code.

Triggers are the connection between certain events and the invocation of a
function; various types of triggers are available, such as HTTP triggers (in response
HTTP requests), Kubernetes Watch triggers (in response to changes in the cluster)
or Message Queue triggers (in response to services such as Kafka, with a publish-
subscribe approach). It has to be noted that, regardless of the trigger, all functions
are invoked through HTTP requests; for instance, in Figure 2.5 the trigger detects
a message from the external service (to which it is subscribed), and sends a POST
request to invoke the assigned function.

In practice, all of these abstractions are Kubernetes CRDs (Custom Resource
Definitions); as previously mentioned, this completely integrates Fission with the
orchestration system.

https://fission.io/docs/concepts/
https://fission.io/docs/concepts/
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Figure 2.5: Example of a Message Queue trigger; when a message is received, the

trigger sends a POST request to invoke the connected function. Picture from https:

//fission.io/docs/usage/triggers/.

Architecture

The Fission architecture is described in the project’s documentation5, and is
divided in Core Components and Optional Components ; while all of the elements
in both categories play a role in Fission’s processing flow, four of them are central
to the invocation and scheduling of functions, and are here described.

The Controller is the component that the Fission CLI talks to; it keeps track
of all functions, routes, triggers and environments, while containing their CRUD
APIs; the Controller also contains proxy APIs to communicate with internal 3rd-
party services. A representation of the Fission Controller flow is given in Figure
2.6.

When an HTTP requests is instead sent to invoke a function, the Router is
used to forward it to the right pod (i.e. a default Kubernetes resource consisting
in a group of containers and a specification on how to run them); depending on

5https://fission.io/docs/architecture/

https://fission.io/docs/usage/triggers/
https://fission.io/docs/usage/triggers/
https://fission.io/docs/architecture/
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Figure 2.6: How the Fission Controller works: (1) The client send requests to endpoints

on Controller, (2) The Controller either (A) operates CRDs according to the request or

(B) proxies the request to an internal service. Picture from https://fission.io/docs/

architecture/controller/.

the Executor type, the Router can either:

• First check whether a function service record exists in its cache (and forward
the request to the relevant pods); if no running service is found, one is
requested from the Executor; once the service is ready, the original request
if forwarded to its pod.

• Directly forward the request to the Executor

The Router processing flow is shown in Figure 2.7.

The Executor is the component used to launch Kubernetes pods for functions;
when a request for a function service is sent to the Executor, the component
retrieves function information from the Kubernetes CRD and invokes one of the
Executor types to “spin up” the pods; once these are up, a function service record
containing the relevant address is returned. At the time of writing, Fission supports
two Executor types:

• The PoolManager watches the environment CRD for changes, and creates
pools of generic containers for each environment; these generic containers

https://fission.io/docs/architecture/controller/
https://fission.io/docs/architecture/controller/
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Figure 2.7: How the Fission Router works: (1) The client send requests to a specific

URL, (2) The Router returns 404 is no matching HTTP Trigger exists; otherwise, it either

(3) asks the Executor for the Function service address or (4) forwards the request to the

address found in its cache. Picture from https://fission.io/docs/architecture/

router/.

are then “specialized” when a the Executor is asked for the service address
of a function, loading the function code inside the container. After a certain
idle duration, the function pod is cleaned up, and subsequent requests to the
function will cause a new pod to be specialised from the pool.
With the PoolManager type, no router-side caching is used, and requests are
directly forwarded to the Executor. The Fission documentation advises the
use of this strategy for short-living functions that need a short cold start
time.

• TheNewDeploy type instead creates a Kubernetes Deployment, along with
a Service and an HorizontalPodAutoscaler (HPA); this enables the autoscal-
ing of function pods, and the load balancing of requests between pods.
The replicas of a function deployment are initially scaled to a minimum
amount (defined by a tunable setting), and are further scaled up according
to user-defined conditions (such as in response to traffic spikes); after a cer-
tain idle duration, unused pods are cleaned up. The Fission documentation

https://fission.io/docs/architecture/router/
https://fission.io/docs/architecture/router/
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advises the use of this strategy for function designed to serve massive traffic;
if latency requirements are stringent, the minimum amount of replicas can
be set higher than zero to keep some pods ready when a function is created
(without clearing them if they are idle). This approach minimizes latency at
the cost of resource consumption, as the pods are kept running regardless of
the amount of traffic.

The two different Executor types are also shown in Figure 2.8.

Finally, the Function Pod is responsible for the actual execution of the func-
tion; the pod is made from two containers, the Fetcher and the Environment
Container, with a shared volume. The Fetcher pulls the function’s deploy archive
from the storage service, and then saves it to the shared volume; then, the Envi-
ronment Container loads the function from the volume and starts serving the
fowarded requests from the Router. The structure of the Function Pod is also
shown in Figure 2.9.

The other components, not described here, are the Builder Manager and
Builder Pod, the Storage Service, the Logger, the KubeWatcher, the Mes-

sage Queue Trigger, and the Timer.

2.2.3 OpenFaaS

OpenFaaS is an open source serverless framework, currently the most popu-
lar on GitHub in terms of stars from the community (almost 21k), and one of
the most active in terms of contributors (around 160, with many of them having
over 20 commits); OpenFaaS main aim, similarly to other frameworks, is to pro-
vide developers with an easy to use platform where they can deploy event-driven
functions.

OpenFaaS is written in Go, like Fission, and is part of the so-called “PLONK”6

6https://www.openfaas.com/blog/plonk-stack/

https://www.openfaas.com/blog/plonk-stack/
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Figure 2.8: The PoolManager (top) and NewDeploy(bottom) Executor types. Picture

from https://fission.io/docs/architecture/executor/; a description of each step

in the processing flow is available on the same page.

https://fission.io/docs/architecture/executor/
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Figure 2.9: How the Function Pod works. Picture from https://fission.io/docs/

architecture/function-pod/; a description of each step in the processing flow is avail-

able on the same page.

Stack, composed by Prometheus[54] (metrics), Linux/Linkerd[48] (service mesh),
OpenFaaS, NATS[49] (message bus/queue) and Kubernetes; since Linkerd is tech-
nically an optional part in the stack, a description of the service’s role is not given
in this section. While the stack only lists Kubernetes, the platform is also de-
ployable on a single host with faasd[39], a lighter version of the same solution; a
deployment option for Docker Swarm was also present, but has been deprecated
by the authors.

The deployment used in this thesis in the one on Kubernetes, executed using
the official faas-netes7 provider developed by the platform’s authors.

Triggers and function deployment

Similarly to other frameworks, OpenFaaS functions can be triggered by vari-
ous kinds of events; unlike Fission and OpenWhisk though, OpenFaaS does not
have an internal definition of triggers as a specific resource. The general way of
using triggers in OpenFaaS is through the event-connector pattern8, where a

7https://github.com/openfaas/faas-netes
8https://docs.openfaas.com/reference/triggers/

https://fission.io/docs/architecture/function-pod/
https://fission.io/docs/architecture/function-pod/
https://github.com/openfaas/faas-netes
https://docs.openfaas.com/reference/triggers/
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separate microservice maps functions to topics, and invokes functions using the
OpenFaaS Gateway; examples of these connectors are the cron-connector and
the nats-connector; the latter is an alternative to using the built-in queue system
based on NATS Streaming, and uses the publish/subscribe mechanism of NATS.
The “standard” way of invoking functions is still via HTTP requests, like all other
platforms.

Unlike both previously described frameworks, OpenFaaS handles the deploy-
ment of functions by using Docker/OCI[52]-format images; the function image is
built and pushed to a repository of choice, and is then deployed using the plat-
form’s CLI faas-cli; still, multiple language runtimes are supported, with the
chosen function’s runtime being specified in the build files.

Additional components

As mentioned in the introduction, OpenFaaS is part of a technology stack
that includes Prometheus and NATS; while both of these are not part of the core
OpenFaaS architecture, they are used in the framework’s flow of processing for
autoscaling and asynchronous invocations.

Prometheus is an open source monitoring system, which is used by Open-
FaaS to collect metrics and handle autoscaling; more specifically, the Prometheus
AlertManager reads metrics regarding the number of requests per second to a
specific function, and fires an alert to the platform’s API Gateway according to
a configurable rule. Other configurable options for the autoscaling functionality
include the minimum and maximum number of replicas, and the percentage of
the maximum number of replicas to be deployed with each alert; the scale-to-zero
functionality is also present (i.e. bringing a component down to zero replicas if it
has been idle for some time), but it’s not available in the standard version of the
platform (the faas-idler component is only available with OpenFaaS Pro, the
paid version of the framework).
While OpenFaaS uses Prometheus for its built-in autoscaling mechanism, the Ku-
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bernetes HorizontalPodAutoscaler (HPA) can also be used instead; this allows
functions to be scaled depending on the CPU and memory utilization on single
nodes, instead of the amount of inbound requests in a time span.

NATS is “a connective technology that powers modern distributed systems”;
at its core, it’s a message queue system based on a publish/subscribe mechanism.
OpenFaaS uses another service, NATS Streaming9, built on top of the NATS
protocol; NATS Streaming adds features such as at-least-once delivery of mes-
sages, in contrast with the at-most-once policy of the standard NATS system (i.e.
messages are not persisted in memory or secondary storage, and there is no re-
delivery).
In the OpenFaaS system, NATS Streaming is used to handle asynchronous invo-
cations: initially the request is serialized and enqueued by the Gateway when it is
received, waiting to be processed at a later moment; after this, when the function
is ready to be invoked, the queue-worker10 component acts as a subscriber and
dequeues the request, sending it to the actual container (either directly or via the
Gateway, using a synchronous call).
The comparison between synchronous and asynchronous invocations can be seen
in Figure 2.10.

Core Architecture

The core architecture of OpenFaaS is built on two main components: the API
Gateway and the watchdog for each function; the way the various parts of the
infrastructure interact is shown in a diagram in Figure 2.11, which includes the
additional components described in the previous paragraph.

The API Gateway provides the external route to the functions and collects
metrics through Prometheus; the autoscaling of functions is also handled by this
component. The Gateway interacts with the provider (in our case, faas-netes)

9https://nats.io/blog/introducing-nats-streaming/
10https://github.com/openfaas/nats-queue-worker/

https://nats.io/blog/introducing-nats-streaming/
https://github.com/openfaas/nats-queue-worker/
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Figure 2.10: Comparison between synchronous (top) and asynchronous (bottom) calls

in OpenFaaS: in the synchronous case, a connection is established between the com-

ponents at each step; in the asynchronous case, NATS Streaming is used to store the

messages until the queue-worker requests a dequeue and forwards them to the function.

Pictures from https://docs.openfaas.com/reference/async/.

https://docs.openfaas.com/reference/async/.
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Figure 2.11: The OpenFaaS processing flow; while not shown in the diagram, the

watchdog is included in the “function” block, since the function’s process never in-

teracts directly with the outside world. Picture from https://docs.openfaas.com/

architecture/stack/

both for CRUD operations and invocations; the former type of interaction is
required only in deployments where the operator mode was specified for the
provider, causing functions to be defined via Kubernetes CRDs; in this case the
functions are also manageable using the kubectl CLI for Kubernetes, resulting in
a more integrated version of the framework, similar to Fission or Kubeless.

Additionally, for every function a watchdog is used as the actual endpoint
where requests are forwarded; the watchdog embeds a lightweight HTTP server,
translating the communication flow to and from stdin and stdout respectively.
The actual function is a process inside the container, which uses the embedded
webserver to interact with the outside world; as such, the container image built
when the function is deployed actually contains the watchdog service, with the
function code as a forked process to be launched when the container is started. A
representation of the watchdog’s role is shown in Figure 2.12.

2.2.4 A note on Kubeless

At the time of writing, Kubeless is one of the most popular open source server-
less frameworks (6.8k stars and over 100 contributors) on GitHub, along with

https://docs.openfaas.com/architecture/stack/
https://docs.openfaas.com/architecture/stack/
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Figure 2.12: The OpenFaaS watchdog; while the function writes to stdout and reads

from stdin, the embedded HTTP server translates this to responses and from requests

respectively. Picture from https://docs.openfaas.com/architecture/watchdog/

OpenFaaS, Fission and OpenWhisk. The main idea behind Kubeless is, not unlike
Fission, to offer a Kubernetes-native serverless framework, using the orchestra-
tor capabilities to achieve autoscaling, monitoring and load balancing. Similarly
to Fission, Kubeless defines its main entities with Kubernetes CRDs, integrating
functions, http triggers and cronjob triggers as Kubernetes resources.

Unfortunately, since August 2021 Kubeless is no longer maintained; this fact,
along with compatibility issues with the latest version of Kubernetes, led to the
decision of discarding Kubeless in favor of Fission for the purpose of this thesis, as
its role in a performance comparison might not be as relevant. The authors stated
on GitHub that a decision about the future of the platform will be taken by the
end of 2021.

https://docs.openfaas.com/architecture/watchdog/




Chapter 3

Contributions

In this chapter, a description of the main contributions of the thesis is given;
as the aim of this work is both to increase the flexibility of the Configurable
Load Balancer implemented in [6] and to introduce an automated topology-based
mapping between Controllers and Invokers in OpenWhisk, the chapter is divided
in three main sections:

• First, the approach chosen to handle multiple Controller replicas is described;
this mainly required modifications to Nginx’s behaviour, and the addition of
a watcher service in the platform deployment on Kubernetes.

• Then, the contributions regarding the topology-based Invoker distribution
are listed; this required changes to the Load Balancer and also the use of the
previously mentioned watcher service.

• Finally, a description of the additions to the configuration language is given,
along with the different behaviours of the platform according to the config-
uration options.
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3.1 Multiple Controller load-balancing

3.1.1 Motivation

As mentioned in the introduction, the main starting concern of this work was
to extend the flexibility and the scalability of the approach described in [6]; as
that modification to the OpenWhisk platform proved, the ability to configure the
specific node where a function should be invoked can result in a visible advantage
in terms of data locality, especially in hybrid clusters (where the latency between
nodes can vary considerably).

One downside of that work was considering each “worker” as a single node,
resulting in a lack of flexibility when a single zone of the cluster could possibly
be composed of dozens of nodes; in that case, the configuration would have either
needed to account for each node in the desired zone, or ignored many of them
(thereby obtaining a suboptimal result).

For this reason, the possibility of using groups of Invokers in the configuration
was explored; to do this, a simple way was to assign a Controller replica to each
zone, and subsequently assign Invokers to the various Controllers in an automated
way (more on this in Section 3.2); after this, the main concern was instructing
Nginx to forward requests to the required Controller, which would then have the
responsibility of scheduling the function execution on one of its Invokers.

3.1.2 Upstream modifications

The first necessary modification was applied to Nginx’s configuration file; this
was modified in the framework’s deployment on Kubernetes, where the webserver’s
configuration is defined as a ConfigMap1.

1https://kubernetes.io/docs/concepts/configuration/configmap/

https://kubernetes.io/docs/concepts/configuration/configmap/
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In the default setup, only one upstream (i.e. a group of servers, to which
requests can be forwarded) is defined, including all Controller replicas and using
a round-robin load balancing algorithm. In this thesis, multiple upstreams were
defined, dynamically generated according to the number of replicas; each upstream
would have a specific Controller as the main server and the others as backup, in
case of issues with the main one. Thanks to this setup, requests could be forwarded
to a specific upstream, which would then use the main Controller as the default
destination, while still being able to fall back on the other replicas and maintain
availability.

After these modifications, Nginx’s configuration file defined N+1 upstreams,
with N being the number of Controller replicas; every upstream has its main
server’s name (i.e. the replica’s name, such as controller-0 for the first one,
controller-1 for the second one and so on), except for the default upstream
(which keeps the controllers name). This configuration was chosen to allow
both the configured (where invocations can be redirected to a specific Controller)
and the default behaviour (where the round-robin load balancing algorithm is used
on all replicas, with no server used as backup).

3.1.3 Watcher service

To allow a correct mapping between the nodes and the Controller names, two
possible choices were considered:

• Give more permissions to an existing service, allowing it to access cluster-
level properties such as node names and labels.

• Implement an additional service, giving it the required permissions and hav-
ing it act like an API for the already existing services and pods.

As the former option might present security issues by giving cluster-scoped
permissions to externally accessible services (such as Nginx), the latter approach
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{
" azureworker " : "owdev−c on t r o l l e r −0",
" azureworker2 " : "owdev−c on t r o l l e r −1"

}

Figure 3.1: Example of a node-pod map output from the Watcher service; as described,

it’s a simple JSON mapping, used by the other services to avoid querying the Kubernetes

API.

was utilized; the additional service was called watcher in the deployment, and
simply consists of a periodical query to the Kubernetes API, asking for pod names
and the respective nodes where they are deployed. The resulting output is parsed
using jq [44] and written on a JSON file; the file is then stored in a shared volume
between Nginx, the Watcher and the Controllers. This way, the service with the
highest level of permission in inaccessible from outside, and the other services only
interact with it using the shared volume, and reading only a selected subset of the
information available via the Kubernetes API.

The output of the Watcher service is used by Nginx to connect the upstreams
(which are named like the various Controller pods) and the nodes (which have their
own names, and can dynamically host different Controller replicas depending on
the deployment); this way, the user can configure functions to be scheduled by
specific Controller-hosting nodes, without the need to specify which Controller pod
they wish to target (the position of which is more susceptible to changes).

3.1.4 Extending Nginx behaviour: njs script

As a way to extend its functionality, Nginx offers njs2, a subset of the Javascript
language; scripts written in this language interact with requests and responses
alongside the server’s normal behaviour, performing actions such as security checks

2https://nginx.org/en/docs/njs/index.html

https://nginx.org/en/docs/njs/index.html
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and redirects.

In this work, a script written in njs was used to analyze all invocations passing
through Nginx, in order to extract tags from the request parameters and compare
them with the user-defined configuration file; if the extracted tag matches a config-
uration option, the resulting node name is used as a key in the mapping produced
by the Watcher service, obtaining the desired upstream’s name.

As this part of the processing flow has to be as lightweight as possible, the
configuration file and the mapping are only read and loaded if a tag is specified
in the invocation; the variables in the request body are always available to Nginx
and can be easily parsed as JSON and used in the script.

From the user’s point of view, the only change in the processing flow is the
addition of a tag parameter in the invocation if they wish to schedule on a specific
Controller; otherwise, the request is simply forwarded to the default upstream with
no additional computations.

3.2 Topology-based Invoker distribution

3.2.1 Motivation

The main reason for this addition was to implement the natural completion of
the previously described Nginx modifications; that is, after allowing users to select
a specific Controller to handle their invocations, having all Controllers prioritize
scheduling on the nearest Invokers, effectively grouping them and allowing users
to target Invoker sets instead of single workers.

The concept of “nearest Invokers” was defined in practice with the use of topol-
ogy labels on Kubernetes; these are specifically named labels, assigned to nodes by
the cluster administrators, which can be used as keys in various ways (e.g. defining
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where pods should be scheduled); they also offer an intuitive way to describe the
cluster structure, assigning nodes to specific regions and zones.

In this work, each node in the cluster was assigned a specific zone label, de-
pending on its geographical location; after this, Controller replicas were distributed
with a special anti-affinity rule: the pods should not be scheduled on nodes in the
same zone, and should first be distributed amongst all zones. This rule was kept as
something that is preferred during scheduling, instead of required, as the number
of zones can be lower than the number of Controller replicas (e.g. if redundancy is
required in specific zones); this possibility is also considered in the Load Balancer
during the Invoker distribution.

3.2.2 Use of the Watcher service

Since topological information is stored in the form of node labels, the Controller
needs to be able to access the nodes’ metadata to handle the Invoker distribution
correctly; as with the Nginx situation, extending the Controller pod’s permissions
(allowing it to read cluster-scoped data such as node labels) seemed an unsafe
approach, so the Watcher service was utilized in a similar fashion. In this case, the
outputted file contains a mapping between nodes and topological zones; similarly
to Nginx, the Controller replicas can only access this limited information about
nodes, and lack the necessary permissions to query the Kubernetes API directly.
The mapping is produced periodically, to account for the addition and modification
of nodes.

3.2.3 Invoker distribution

When the platform is deployed, every Load Balancer (each associated to a
Controller replica) obtain information about the currently “healthy” Invokers and
their metadata; each Invoker has the name of the node it’s currently deployed on,
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and this information is visible to the Load Balancer. When a new Invoker joins the
set, its name is used to retrieve the relevant node’s topological zone (inspecting the
output from the Watcher service); the Load Balancer then acquires control of the
Invoker’s memory, sharing it with all other Load Balancers in the same topological
zone; Invokers in different zones are handled by requiring a configurable portion
of their memory (similarly to the default behaviour, where every Load Balancer
has access to a fraction of all Invokers’ memory).

Different policies are available for Invoker distribution, and one of them can be
required during deployment:

• The shared policy is to maintain the original behaviour, but give full con-
trol over Invokers in the same topological zone; this is prone to Invoker

overloading (i.e. the required memory from the various Load Balancer is
higher than the available memory on the Invoker, which may result in longer
queues) and resource grabbing (other Load Balancers can schedule on
Invokers outside their zone, effectively taking the resources away from the
nearest Load Balancer); since Load Balancers prioritize scheduling on the
nearest Invokers, the ideal situation is a scheduling pattern where each zone
is completely exploited, and resources are borrowed only when a smaller zone
becomes saturated, and a larger zone has idle nodes.

• The min_memory policy is similar to the previous one, but aims to minimize
both overloading and resource grabbing by making Load Balancers require
only a minimal fraction of Invokers’ memory from other zones; the fraction
(referred in code as MIN_MEMORY) is the minimal memory necessary for one
invocation (256MB). When Invokers have no Controller in their topologi-
cal zone, or no topological zone at all, their memory is shared between all
Load Balancers. This policy is safer in terms of overloading, but can create
situations where smaller zones quickly become saturated, and are therefore
unable to handle requests.

• The isolated policy gives complete control over Invokers in the same topo-
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logical zone, but no access over all other Invokers; no resource grabbing and
no overloading are present, and Load Balancers only schedule on the near-
est Invokers; this is a less flexible approach compared to the previous two,
and can exacerbate situations where functions are often scheduled in smaller
zones; nevertheless, it’s the safest options in that it allows all Load Balancers
to have a realistic representation of the available memory on their Invokers.
Similarly to the previous option, Invokers with no assigned Controller are
shared between all Load Balancers.

• The default policy simply maintains the original sharing model, where Load
Balancers have access to a fraction of all Invokers’ memory; the topology-
based priority is still present, but no complete memory availability is granted.

When it comes to actually scheduling the invocations, the Load Balancer uses
the policies defined in [6] (best-first, random, default, next-coprime), and if
no workers are explicitly specified in the configuration file, prioritizes Invokers in
its topology zone. This approach is used for all policies except for best-first,
where a list of workers has to be specified.

3.3 Configuration language extension

3.3.1 Motivation

Since the work of this thesis is mostly built upon the results obtained in [6],
extending the configuration language used in that paper was preferred to defin-
ing a completely new language; as the functionalities added in this thesis do not
substitute the ones already defined, only two simple additions were necessary: the
new controller tag and the concept of topology_tolerance for topology-based
scheduling. An example of a configuration file written with the extended language
can be seen in Figure 3.2.
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de f au l t :
− c o n t r o l l e r : "∗"
− workers : "∗"

s t r a t e gy : random
inva l i d a t e :

− max_concurrent_invocations : 100
− capacity_used : 50

mongoDB:
− c o n t r o l l e r : "AzureWorker2"

topo logy_to le rance : "same"
− workers : "∗"

s t r a t e gy : random
inva l i d a t e :

− max_concurrent_invocations : 100
− capacity_used : 50

− f o l l owup : ’ de fau l t ’

Figure 3.2: Example of a configuration file written with the extended syntax; both the

controller and the topology_tolerance parameters are used.
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3.3.2 Controller Tag

The first addition to the configuration language is a new tag, controller;
intuitively, this specifies the Controller node to be used for scheduling the invoked
functions bearing a certain tag. The option to specify all Controllers is also given,
with the standard “*” symbol; in case all Controllers are specified, both Nginx and
the Load Balancer simply ignore the specification; it has to be noted that while
the behaviour is correct, specifying a tag for an invocation with no Controller
specification (or equivalently, using the “all Controllers” option) has an impact on
performance, as Nginx still has to load the configuration file in response to the
provided tag.

In case both the Controller and the Invokers are specified (using the workers

field), the Load Balancer’s behaviour is to prioritize the specified workers instead
of using the same-topology policy; this allows users to still maintain the behaviour
defined in [6], and invoke functions only on the specified nodes; similarly, in no
Controller is specified and workers are specified, the same rule applies.

To summarize, the topology-based scheduling is only used when a Controller
is specified, and when the workers field is “*”; this instructs the Load Balancer
to schedule the invocation on Invokers in its topology zone, with various levels of
tolerance in case the required Controller is unavailable, and the function is being
handled by a different one.

3.3.3 Topology tolerance

The topology_tolerance tag was added to handle cases where the specified
Controller is unavailable, and the invocation is forwarded to another Controller’s
Load Balancer; in these situations, different policies were defined, depending on
the user’s needs:
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• The all tolerance policy, indicating that the request will be handled with
a topology-based approach, using the Invokers in the same topology zone
of the Controller handling the invocation; this is the most tolerant option,
requiring no adaptation from the Load Balancer.

• The same tolerance policy, which instructs the Load Balancer to schedule
the invocation on the Invokers in the specified Controller’s topology zone;
this was designed for functions with no strong requirement to be handled by
a single Controller, but still requiring invocation in a certain zone (e.g. for
data locality reasons).

• The none tolerance policy, which forces the Load Balancer to drop the request
if it gets forwarded to the “wrong” Controller; this simply creates a stronger
constraint compared to the previous policy, and avoids the function being
handled by any non-specified Controller.

When testing the OpenWhisk platform, all tolerance options were compared to
better understand how they impact performance when a large number of requests
are sent.





Chapter 4

Platform performance analysis

This chapter contains a description of the test suite used to evaluate the dif-
ferent Serverless frameworks that were deployed for the purpose of this thesis, and
the results for each test case. The first section contains a description of the gen-
eral structure of the suite, along with an explanation of the purpose and content
of the single cases; the second section contains the actual results for all cases on
the different frameworks.

4.1 Test design

The test suite is divided in three subsets:

• Basic cases, which are small functions that don’t perform a realistic oper-
ation; they have no interaction with external services, and simply represent
examples of possible parts of real applications.

• Realistic use cases, which are functions taken from the Wonderless[8]
dataset to represent realistic applications of serverless computing (and FaaS
in particular).
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• Critical cases, which are similar to basic cases, but target specific issues of
serverless computing (cold starts for heavy functions, data locality for large
queries and scale-to-zero for idling functions).

4.1.1 Basic test cases

• The hellojs function consists of a simple parametric Hello World application;
it should showcase the frameworks’ performance with very simple functions
with a semi-fixed behaviour (only returns a string, but has to evaluate and
parse parameters).

• The mongoDB function executes a query of a single document from a re-
mote mongoDB database; the document is very lightweight (only three JSON
fields), an as such has little impact on the function’s performance. This test
case should showcase the frameworks’ performance when the access to delo-
calized data is required.

• The sleep function is a simple parametric sleep command, instructing the
container to wait a certain number of seconds. This test case shows the
frameworks’ ability to handle functions running for several seconds, mini-
mizing response errors if many of them queue up.

• The matrixMult function multiplies two matrices, returning the result to
the caller. This is an example of a computationally heavy function, showing
the frameworks’ base performance in this case. For the purpose of these
tests, two matrices of 100x100 size are used as input.

All the basic cases are implemented in Javascript, and use the respective frame-
work’s nodejs environment; the mongoDB test case uses the node12 environment
in every framework, for compatibility reasons.
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4.1.2 Realistic use cases: Wonderless dataset

For the realistic use cases, the Wonderless[8] dataset was used; this dataset
contains a total of almost 2000 repositories, scraped from GitHub by searching for
projects developed using the Serverless Framework[55], and was created with the
purpose of being a data source for further research in the serverless ecosystem.
The dataset is available both as an archive and as source code, and is divided
in seven different folders: AWS, Azure, Cloudflare, Google, Kubeless, OpenWhisk,
Other.

The main advantage of using such a dataset is that the code it contains comes
from actual repositories; this allowed us to extend the test suite with existing code
that has a practical use, instead of developing ad-hoc applications (which may end
up being very similar to the basic scenarios).

The structure and distribution of Wonderless are very unbalanced: out of all
the repositories, 1836 are in the AWS folder, consituting a very significant majority
of the available code; despite this, because of the scale of this folder, priority was
given to the other six, as the main purpose of this phase was to extract a small
number of realistic use cases from the dataset; a complete analysis of the entire
dataset is beyond the scope of this thesis, and will be reserved for future work.

Selection

Since even the reduced portion of Wonderless considered was still composed by
many different projects, a set of rules was defined for this work in order to filter
out a vast majority of the repositories; what follows is a list of the rules used,
with Rule 0 being the only one applied automatically, and the respective reason
for each of them.

0. The project must have a README.md file, and must not have more than 10
immediate subfolders (excluding hidden and common auxiliary folders, i.e.
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img, env, screenshot, doc and the respective plurals). Both rules were applied
automatically before any further inspection.

The reason for the first rule is to filter out repositories that contain no
explanation on their inner workings; as the nature of the scraped projects
is highly varied, a basic description of the projects’ purpose is in many case
necessary to avoid the complete analysis of the code. The second rule was
added to filter out overly complex or unorganized projects, especially if they
are composed of many different subprojects; the commonly occuring auxiliary
subfolders were not counted in this filtering, since they do not contribute to
the project’s complexity, and do not represent independent subprojects.

1. The inspected project must work as-is; this means, no compilation or exe-
cution errors are accepted, and the only necessary modifications allowed are
to configuration files, environment files (such as API keys, credentials and
certificates) and the serverless.yml file (as part of the migration from dif-
ferent platforms). No significant changes have to be made to the running
code, except for migration-related issues (such as parsing function parame-
ters).

The reason for this rule is to limit the amount of time spent bugfixing and
inspecting the projects’ code; many of the scraped repositories are not main-
tained, and as such might present a high number of compatibility issues and
general bugs; as a complete debugging and renewal of all projects is beyond
the scope of this thesis, only working samples were used.

2. The inspected project must not use any paid service, or service connected
with paid subscriptions; these services include all AWS and Google Cloud
features, such as storage on S3 or deployment dependent on GCF.

This rule was added to guarantee that the selected test cases were available
for personal use, with no economic requirement.

3. The inspected project must not be a simple “Hello World”; example projects
and simple boilerplate code are discarded, as they do not represent realistic
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use cases. The project’s code must implement a function accepting input and
producing an output as a result of either an internal transformation (such as
code formatting or the calculation of a complex mathematical expression),
or the interaction with an external service.

The reason for this rule is to simply filter out all projects which do not
represent actual use cases, and are only examples or serverless functions.

4. The inspected project’s README.md file must be in English, and must contain
at least a simple description of the project’s purpose.

This rule is complementary to the first one, and the filtering based on it
was performed manually; similarly to other rules, its purpose is to avoid the
complete analysis of all projects, limiting the selection to repositories where
the purpose of the code was made clear; the English language alone was
chosen for consistency with the language used in this work.

Use cases

The three following projects passed the previously described selection; they
were taken from the analysed folders, and translated for each of the deployed plat-
forms. No modifications were done to the actual running code, save for changes
when parsing the functions’ parameters (which are handled differently in the var-
ious frameworks).

• bespinian/k8s-faas-comparison is a simple project, written for different
platforms; it contains instructions for deployment and a function consisting
of a POST to the Slack API, sending a message. While not very complex, it
is a very common example of a FaaS application, acting as the endpoint for
a Slack Bot.

• hellt/pycatj-web is a Python-based function, requiring pre-packaged code
to work; it consists of a formatter, which takes incoming JSON as a string
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and returns it as a series of equivalences. The repository contains both the
web version and the serverless version of the service; only the latter was
modified and deployed. As a sporadically invoked web-based function, it
represents a frequent use case for serverless applications.

• terraindata/terrain is a complex repository, containing a serverless appli-
cation as a stress-test for a deployed backend; this backend was deployed
on another machine, separated from the main cluster, and was used as the
target for this stress-test. The performance evaluation in this thesis doesn’t
contain the stress-test results, as the backend’s performance is not part of
the deployed frameworks. As with the two previous applications, this is a
common example of a FaaS use case (monitoring and benchmarking external
systems).

4.1.3 Critical cases

The following test cases are designed to target a specific “issue" of both the
single platforms and the serverless paradigm as a whole; they are not designed to
be optimized or realistic use cases, but rather to create suboptimal conditions for
the platforms to perform.

• The cold start test case consists of a simple Hello World function, returning
a predetermined string; no request parameter is analyzed or parsed. The
function has relatively heavy dependencies (42.8 MB of libraries), which are
all required and instantiated when the function starts. This type of function
is deliberately against the usual guidelines, and aims to showcase how the
various frameworks handle “heavy" functions in term of cold starts.

• The scale-to-zero test case uses the same setup as the cold start; with both
this and the previous case, the invocation pattern is an integral part of the
test, as the function is called every 5 minutes for a defined number of times,
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and the resource usage in terms of memory and CPU in each of the cluster
nodes is the object of the measurement. This test case will show how the
different frameworks handle “idling" functions (i.e. if they are able to avoid
wasting computational resources when a function is not being invoked).

• The data locality test case is both a memory-heavy function and a data
querying function; it requests a large document (124.38MB) from the same
database as the mongoDB test case, and extracts a property from the returned
JSON. In this case, the performance impact of querying the document from
a nearby node should be significant.

4.1.4 Test execution with JMeter

As all of the deployed actions were easily accessible as web endpoints, Apache
JMeter[35] was chosen as the load testing and benchmarking tool; this open source
project was originally designed to test web applications, and has subsequently
expanded to other functions.

The way JMeter works is by sending a certain amount of requests towards a
service, simulating the presence of multiple users with the use of threads; JMeter
can also be used in a distributed fashion, with a main node coordinating the testing
and various worker nodes actually sending the requests. JMeter tests are defined
in XML files containing the test plans, which are easily editable using the GUI.

For the purpose of this thesis, separate test plans were defined for each plat-
form and each group of test cases; also, all tests were executed in headless mode
to minimize memory consumption by the GUI, while metrics were automatically
collected by the tool; as the scale-to-zero test case also needed measurements
regarding the cluster nodes activity (and not only the invocation performance),
the Kubernetes default metrics API1 was used to sample CPU and memory usage.

1https://kubernetes.io/docs/tasks/debug-application-cluster/resource-

metrics-pipeline/

https://kubernetes.io/docs/tasks/debug-application-cluster/resource-metrics-pipeline/
https://kubernetes.io/docs/tasks/debug-application-cluster/resource-metrics-pipeline/
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Configuration

For each category of test cases, different JMeter configurations were used; each
of these configurations included multiple Thread Groups, executed consecutively
(one at a time), with differing numbers of repeated requests and parallel users.

For basic actions, the default amount of parallel threads (users) was 4, with a
10 seconds ramp-up time (the time needed to reach the total number of threads)
and 200 requests per user; the exception was the sleep test case, which was
reduced to 25 requests per user (a larger sample size was not needed, as the
function had a very predictable behaviour).

For the Wonderless use cases, different setups were used for each one:

• terrain had 1 parallel user, 5 repetitions and a 20 seconds pause between
each repetition; as the task was already a stress test, the amount of parallel
computation needed on the node was already high.

• slackpost had 1 parallel user, 100 repetitions and a 1 second pause between
each request, to accomodate Slack API’s rate limits.

• pycatj had 4 parallel users, 200 repetitions and a 10 seconds ramp-up time,
similarly to basic test cases; as it was a very light function, more parallel
requests could be easily handled by the platforms.

Finally, for the critical test cases the following setups were used:

• The dataLocality function was invoked with 4 parallel threads and 50 rep-
etitions, with a 10 seconds ramp-up time

• The coldStart and scale-to-zero cases (using the same function) were
configured with 1 thread, 3 repetitions and pauses of 11 minutes between each
repetition; this was done to accomodate OpenWhisk default idling tolerance
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of 10 minutes, allowing the platform to properly deallocate the containers
even with unmodified settings.

Metrics

In all test cases, the following metrics were considered:

• Median, average and maximum latency (time between just before sending
the request and just after the first response has been received)

• Percent error rate

• Average connection time (time needed to establish the connection, includ-
ing the SSL handshake)

• Average throughput (inverse of the average elapsed time, calculated simi-
larly to the latency, but with the last response received)

Alongside these, the CPU and Memory usage were also considered when
handling the scale-to-zero test case, and compared in three different stages:
Starting, when the platform had been deployed and no functions were create; Idle,
when functions were scaled down to zero (so functions were created, but hadn’t
been invoked in some time); and Processing, when the function was being invoked.

4.1.5 Cluster configuration

The various frameworks were all deployed on the same cluster, built from six
different machines, in two different regions. Every machine in the cluster was
hosted on Azure, since the hybrid nature of the cluster was not necessary for the
performance analysis (the geographical and latency differences were enough for
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data locality tests, and the private/public duality of hybrid clusters was not part
of the analysed characteristics). The cluster structure is shown in Table 4.1.

Additionally, two machines were deployed using the EC2 service on AWS, both
of them in the same region; these were used respectively for hosting the mongoDB
database and the Terrain backend used in the test cases. Neither of the two
machines was part of the main cluster, and both of them were meant to be used
as examples of external services; as the two nodes’ hostnames are not related to
their purpose, they are omitted from Table 4.2.

After the cluster deployment, the latency between its nodes and the machines
hosting the external services was measured; as expected, nodes in the same geo-
graphical region had a much lower latency; the results of these measurements can
be seen in Table 4.3.

The intra-cluster latency was also observed, with a ping of around 82 between
nodes in different regions and around 1 between nodes in the same region; this
shows that the same-region Virtual Machines were probably deployed in the same
LAN, if not on the same physical host. Intra-cluster latency has to be considered
among the issues with multi-zone clusters, as communication between nodes can
become a significant bottleneck. Additionally, the latency from the JMeter host
to the AzureMaster endpoint was measured, with an average ping of 28.1ms and
a maximum ping of 28.4ms.

4.2 Results

The following sections contain the results in the various test cases for all plat-
forms; since the modified version of OpenWhisk implemented in this thesis allowed
for the use of different policies and levels of tolerance (in case of tagged functions),
only the best result in terms of average latency was reported in the tables; all the
other results were reported in the last section (Section 4.2.4) separately, divided by
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Hostname CPU Cores CPU Clock Speed Memory Region

AzureMaster 2 2.30GHz 4GB EU Central

AzureWorker 2 2.30GHz 4GB EU Central

AzureWorker1 1 2.60GHz 3.5GB EU Central

AzureWorker2 2 2.30GHz 4GB US East

AzureWorker3 1 2.60GHz 3.5GB US East

AzureWorker4 1 2.60GHz 3.5GB US East

Table 4.1: Cluster configuration; the AzureWorker and AzureWorker2 machines were

used as Controllers in OpenWhisk deployment, while AzureWorker1, AzureWorker3 and

AzureWorker4 were used as Invokers. AzureMaster was not used for scheduling by any

of the frameworks (since it acts as Kubernetes master node, and the various framework’s

pods are not deployed on it).

Role CPU Cores CPU Clock Speed Memory Region

mongoDB host 1 2.40GHz 1GB US East

Terrain host 2 2.40GHz 4GB US East

Table 4.2: Service nodes configuration; hostnames are not shown, as they bore no

connection with the nodes’ purpose. Both nodes were purposely placed in the same

region as two of the main cluster’s nodes, to properly exploit the lower latency.
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Target Cluster Node Avg. ping Max. ping

mongoDB host

AzureMaster 80.702 83.316
AzureWorker 80.73 81.29

AzureWorker1 80.757 81.276
AzureWorker2 2.04 2.16

AzureWorker3 2.093 2.354
AzureWorker4 2.18 2.33

Terrain host

AzureMaster 80.708 83.561
AzureWorker 80.61 82.4

AzureWorker1 80.707 81.775
AzureWorker2 2.05 2.6

AzureWorker3 2.056 2.606
AzureWorker4 2.4 2.73

Table 4.3: Latency between cluster nodes and services; as expected, nodes located in

US East have a much lower latency compared to the ones in EU, being in the same

geographical region as the services.
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Invoker distribution policy; additionally, the parameter CTag was used to indicate
whether the Controller tag was sent to Nginx during the invocation (instructing
the proxy to forward the request to the correct upstream), having value True when
the tag was included in the request, and False otherwise.

Two different situations were also considered for OpenFaaS, as the platform
allows to specify label constraints in function deployments; as such, functions
were deployed both on nodes in US East and EU Central, analyzing the differ-
ence in results for tests where locality was significant (i.e. mongoDB, terrain and
datalocality). The results for functions deployed in US East are listed as Open-
FaaS (local node) in the tables.

For the coldstart test case, both an analysis of the response times and of
cpu/memory usage was given; in the plots, the performance for all policies of
the modified OpenWhisk platform is shown, alongside all the other platforms’
performance.

The test names used in the following tables mirror the ones used in the various
test cases and action definitions, and are slightly different from the ones previously
listed; all Wonderless test cases had the repository name removed (and as such
became pycatj, slackpost and terrain), and the critical cases were renamed to
datalocality and coldstart (since scale-to-zero and cold start both used the
same test, and measured different parameters).

4.2.1 Basic test cases

hellojs

In the simplest test case, it’s easy to see that both Fission and OpenFaaS out-
perform each version of OpenWhisk; this is because of the generally lighter nature
of both platforms, as OpenWhisk has to duplicate many Kubernetes functionali-
ties. It can also be seen from the Latency (max) field that Fission and OpenWhisk
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both experience cold starts, with OpenWhisk being slightly slower, while Open-
FaaS (having no idling mechanism in the free version) constantly keeps a pod alive,
and as such has an uninterrupted warm start for every invocation.

It’s interesting to see that the modified version of OpenWhisk performs better
compared to the standard one; this is probably due to the strategy used in the best-
performing case (shared), which greedily uses both local and non-local Invokers,
grabbing resources if necessary; as the function is particularly lightweight, this
probably reduces waiting times, as Invokers don’t get overloaded and Controllers
can benefit from a non-conservative approach.

Platform Latency (avg) Latency (max) Latency
(median)

Fission 180.661 ms 5030 ms 114.0 ms

OpenFaaS 159.132 ms 390 ms 157.0 ms

OpenWhisk
(standard)

1133.439 ms 6876 ms 1092.0 ms

OpenWhisk
(modified)

724.469 ms 6738 ms 623.0 ms

Platform Throughput Error rate Conn. time
(avg)

Fission 5.5325 req/s 0.00% 0.5775 ms

OpenFaaS 6.2806 req/s 0.00% 0.2437 ms

OpenWhisk
(standard)

0.8822 req/s 0.00% 5.5575 ms

OpenWhisk
(modified)

1.3802 req/s 0.00% 4.6025 ms

Table 4.4: Results on hellojs test case.



4.2 Results 71

matrixMult

While heavier from a computational standpoint, this function still shows very
similar results to the previous case; the only interesting note is that the best
performing modified version of OpenWhisk obtains slightly worse results compared
to the standard one; this can be seen as a consequence of the computational
overhead introduced by the modifications; yet again the greedy approach of the
shared distribution performs better than the others, with the default approach
performing very poorly (as seen in Table 4.14), showing the necessity for further
optimizations.

Platform Latency (avg) Latency (max) Latency
(median)

Fission 551.179 ms 8116 ms 633.0 ms

OpenFaaS 344.654 ms 770 ms 306.0 ms

OpenWhisk
(standard)

1323.608 ms 6796 ms 1253.5 ms

OpenWhisk
(modified)

1452.904 ms 4627 ms 1385.5 ms

Platform Throughput Error rate Conn. time
(avg)

Fission 1.3525 req/s 0.00% 1.6675 ms

OpenFaaS 2.3864 req/s 0.00% 0.4363 ms

OpenWhisk
(standard)

0.6513 req/s 0.00% 6.8712 ms

OpenWhisk
(modified)

0.6007 req/s 0.00% 7.3187 ms

Table 4.5: Results on matrixMult test case.
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sleep

As this function has a fixed duration, not much can be seen in terms of exe-
cution and instantiation performance (no additional library is used, and the only
parameter is the number of milliseconds to wait); all platforms have an average
latency of around 3 seconds (the waiting time). The interesting parameter is, as
in the hellojs case, the maximum latency, which again shows the advantage of
the OpenFaaS approach in terms of cold starts; anyway, the median and average
latency both show that these differences are easily erased with the subsequent
invocations.

Platform Latency (avg) Latency (max) Latency
(median)

Fission 3321.720 ms 8164 ms 3120.0 ms

OpenFaaS 3215.290 ms 3407 ms 3205.5 ms

OpenWhisk
(standard)

3775.190 ms 7799 ms 3632.0 ms

OpenWhisk
(modified)

3554.280 ms 5281 ms 3595.0 ms

Platform Throughput Error rate Conn. time
(avg)

Fission 0.3010 req/s 0.00% 8.9300 ms

OpenFaaS 0.3110 req/s 0.00% 3.5300 ms

OpenWhisk
(standard)

0.2649 req/s 0.00% 22.7900 ms

OpenWhisk
(modified)

0.2813 req/s 0.00% 22.7200 ms

Table 4.6: Results on sleep test case.
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mongoDB

As expected, in this case the latency between the cluster and the target ser-
vice (the mongoDB host node) played a significant role; both for OpenWhisk and
OpenFaaS (with the modified version and the node label constraint respectively),
the consideration for locality provided a performance boost; again, the shared In-
voker distribution was the best performing one, with a tolerance of none (only the
Invokers in the desired topology zone were used), and the passing of the Controller
tag to Nginx.

Platform Latency (avg) Latency (max) Latency
(median)

Fission 184.509 ms 2535 ms 128.0 ms

OpenFaaS 624.819 ms 794 ms 621.0 ms

OpenFaaS
(local node)

141.833 ms 404 ms 140.0 ms

OpenWhisk
(standard)

1053.322 ms 4260 ms 1071.5 ms

OpenWhisk
(modified)

793.616 ms 11099 ms 730.0 ms
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Platform Throughput Error rate Conn. time
(avg)

Fission 5.4188 req/s 0.00% 0.5500 ms

OpenFaaS 1.6004 req/s 0.00% 0.6450 ms

OpenFaaS
(local node)

7.0495 req/s 0.00% 0.2150 ms

OpenWhisk
(standard)

0.9494 req/s 0.00% 5.1063 ms

OpenWhisk
(modified)

1.2599 req/s 0.00% 4.4575 ms

Table 4.7: Results on mongoDB test case.

4.2.2 Wonderless use cases

pycatj

A very lightweight function, the observed behaviour is similar to the basic use
cases; it’s interesting to see that the modified version of OpenWhisk, while still
suffering from heavy cold starts (more than four times both Fission and Open-
FaaS), performs better than the standard version; as the best performing policy
is min_memory, with shared being a close second (as seen in Table 4.17), the In-
voker distribution probably plays a role by allowing resource grabbing and reusing
Invokers in a greedy way (while with the default distribution Invokers may be
discarded in scheduling when they’re seen as full).



4.2 Results 75

Platform Latency (avg) Latency (max) Latency
(median)

Fission 223.681 ms 1922 ms 113.0 ms

OpenFaaS 574.400 ms 1664 ms 544.0 ms

OpenWhisk
(standard)

830.872 ms 4193 ms 835.0 ms

OpenWhisk
(modified)

605.663 ms 8017 ms 600.0 ms

Platform Throughput Error rate Conn. time
(avg)

Fission 4.4697 req/s 0.00% 0.5613 ms

OpenFaaS 1.7408 req/s 0.00% 0.4263 ms

OpenWhisk
(standard)

1.2035 req/s 0.00% 4.0438 ms

OpenWhisk
(modified)

1.6510 req/s 0.00% 3.4100 ms

Table 4.8: Results on pycatj test case.

slackpost

Similarly to previous cases, Fission and OpenFaaS generally outperform Open-
Whisk, especially in terms of maximum latency; with the shared distribution pol-
icy the modified version of OpenWhisk manages to obtain a better performance,
reaching a lower average latency then OpenFaaS, albeit with a very significant cold
start.
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Platform Latency (avg) Latency (max) Latency
(median)

Fission 824.150 ms 2580 ms 882.5 ms

OpenFaaS 1232.550 ms 2429 ms 1193.0 ms

OpenWhisk
(standard)

1542.950 ms 5466 ms 1441.5 ms

OpenWhisk
(modified)

1101.100 ms 7363 ms 1431.5 ms

Platform Throughput Error rate Conn. time
(avg)

Fission 1.2129 req/s 0.00% 3.4800 ms

OpenFaaS 0.8112 req/s 0.00% 1.9700 ms

OpenWhisk
(standard)

0.6480 req/s 0.00% 15.1100 ms

OpenWhisk
(modified)

0.9081 req/s 0.00% 13.0900 ms

Table 4.9: Results on slackpost test case.

terrain

Another test where locality plays an important role, as a high number of parallel
HTTP requests has to be forwarded to a remote service (the Terrain host node
on AWS); the heavy nature of the action created issues with both versions of
OpenWhisk, possibly incurring in bottlenecks due to the low specifications of the
cluster, and resulting in various errors. Nevertheless, the impact of manually
selecting the node can be easily observed in OpenFaaS, where the consideration of
locality reduced the latency to less than half.

Given the high percentage of errors in a very small number of requests (only
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five invocations in this test case), the average latency results for OpenWhisk can be
ignored, as they probably do not offer a significant representation of the platform’s
performance.

Platform Latency (avg) Latency (max) Latency
(median)

Fission 6074.200 ms 8201 ms 5537.0 ms

OpenFaaS 5641.800 ms 6199 ms 5379.0 ms

OpenFaaS
(local node)

2471.200 ms 3172 ms 2323.0 ms

OpenWhisk
(standard)

11932.000 ms 12906 ms 11932.0 ms

OpenWhisk
(modified)

6363.750 ms 9465 ms 6465.0 ms

Platform Throughput Error rate Conn. time
(avg)

Fission 0.1646 req/s 0.00% 44.0000 ms

OpenFaaS 0.1772 req/s 0.00% 43.0000 ms

OpenFaaS
(local node)

0.4046 req/s 0.00% 41.8000 ms

OpenWhisk
(standard)

0.0838 req/s 60.00% 168.0000 ms

OpenWhisk
(modified)

0.1571 req/s 20.00% 147.5000 ms

Table 4.10: Results on terrain test case.
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4.2.3 Critical cases

coldstart/scale-to-zero

This test was, as mentioned, divided in two parts; the cold start was evaluated
with the same metrics as the other test cases (Table 4.1), while the scale-to-zero
used memory and CPU metrics, to observe how the different frameworks han-
dled the pod/container deprovisioning, and their resource consumption in general
(Figure 4.1).

Expectedly, OpenFaaS outperformed all platforms both in maximum and aver-
age latency, as its strategy in the free version is to keep one replica of each function
always active and ready for requests; as such, the structure of the test (very small
number of invocations, very long interval) heavily favored this approach. Fission
demonstrates a rather good performance in terms of starting times, with the stan-
dard version of OpenWhisk obtaining slightly worse results. The modified version
of OpenWhisk introduced in this thesis shows a worse performance, consistently
with the other test cases in terms of cold starts; the best performing policy was
min_memory, with the other three obtaining similar results to each other (Table
4.20).

Regarding resource usage, OpenWhisk shows a significantly higher load both
in terms of memory and CPU; the modified version is heavier when it comes to
memory (as expected from the addition of the watcher service and the NJS script,
both described in Section 3.1), and a comparable load in terms of CPU. No clear
peaks are present in the CPU plot, indicating the relatively low impact the function
invocation has compared to the other services; the memory usage on the other hand
shows rather regular increases following the invocations, and subsequent decreases
after the containers are removed.

On the other hand, both Fission and OpenFaaS show clear peaks in terms
of CPU usage, with an extremely low idle load; both platforms essentially only
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performed computations after the invocations had been received. From a memory
standpoint, OpenFaaS requires a slightly lower amount, but shows no decrease in
memory usage during the entire test, as expected from the absence of an idling
handler.

In Figure 4.1, the CPU usage is in nCPU 2 and the Memory usage is in KiB.
The resource usage was measured using Kubernetes metrics API, filtering the pods
by namespace.

Platform Latency (avg) Latency (max) Latency
(median)

Fission 5058.000 ms 5494 ms 5337.0 ms

OpenFaaS 1878.000 ms 3949 ms 843.0 ms

OpenWhisk
(standard)

6758.333 ms 8002 ms 6544.0 ms

OpenWhisk
(modified)

8612.333 ms 11210 ms 8204.0 ms

Platform Throughput Error rate Conn. time
(avg)

Fission 0.1977 req/s 0.00% 38.3333 ms

OpenFaaS 0.5321 req/s 0.00% 117.3333 ms

OpenWhisk
(standard)

0.1480 req/s 0.00% 457.3333 ms

OpenWhisk
(modified)

0.1161 req/s 0.00% 412.3333 ms

Table 4.11: Results on coldstart/scale-to-zero test case.

2https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-

resource/#cpu-units

https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/#cpu-units
https://kubernetes.io/docs/tasks/configure-pod-container/assign-cpu-resource/#cpu-units
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Figure 4.1: CPU and Memory usage for the coldstart/scale-to-zero test case.
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datalocality

For this test case, both the ability to handle heavier workloads in terms of
memory and the consideration for locality were important factors.

Fission achieves a very low average latency, with a rather high maximum la-
tency, yet again showing very good results, possibly influenced by the use of “cor-
rect” nodes. OpenFaaS as usual has very close numbers in terms of its average
and maximum latency, thanks to the virtually absent cold starts; as with previous
locality-based tests, the node specification introduces a massive increase in perfor-
mance. The standard version of OpenWhisk performs better than the non-local
version of OpenFaas, but still achieves a rather poor performance compared to all
other options; on the other hand, the modified version (using the default dis-
tribution policy, with a tolerance of all for non-local nodes) is almost even with
both Fission and the node-constrained version of the OpenFaaS function.

Platform Latency (avg) Latency (max) Latency
(median)

Fission 2046.040 ms 16278 ms 1077.0 ms

OpenFaaS 14873.880 ms 15625 ms 14849.0 ms

OpenFaaS
(local node)

2223.505 ms 3101 ms 2283.5 ms

OpenWhisk
(standard)

9869.705 ms 23191 ms 15190.0 ms

OpenWhisk
(modified)

2817.495 ms 13663 ms 2581.0 ms
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Platform Throughput Error rate Conn. time
(avg)

Fission 0.4887 req/s 0.00% 5.0450 ms

OpenFaaS 0.0672 req/s 0.00% 22.7650 ms

OpenFaaS
(local node)

0.4497 req/s 0.00% 4.4000 ms

OpenWhisk
(standard)

0.1013 req/s 0.00% 12.8900 ms

OpenWhisk
(modified)

0.3549 req/s 0.00% 16.8550 ms

Table 4.12: Results on datalocality test case.

4.2.4 Modified OpenWhisk: all results

In the following paragraphs, the results obtained by the modified OpenWhisk
platform in all tests will be listed; unlike the previous section, the comparison will
be between different Invoker distribution policies, along with the tolerance level
and the presence/absence of the Controller tag for Nginx, both specified in data
locality-based tests (i.e. mongoDB, terrain, datalocality).

hellojs

As previously mentioned, the best performance is achieved by the shared In-
voker distribution policy; an interesting detail is that, while both the min_memory
and the shared achieve better results in terms of average latency, they also achieve
significantly worse results in terms of maximum latency; this might point to a
property of resource grabbing between Controllers, which can allow a better over-
all performance, but can also create long waiting times due to load balancers
requiring more resources than are actually available; nevertheless, considering the
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results in the other tests, no definitive conclusion can be drawn on this fact.

Policy Latency (avg) Latency (max) Latency
(median)

default 1600.190 ms 4616 ms 1541.0 ms

isolated 1346.665 ms 3088 ms 1310.0 ms

min_memory 741.325 ms 7194 ms 697.5 ms

shared 724.469 ms 6738 ms 623.0 ms

Policy Throughput Error rate Conn. time
(avg)

default 0.6249 req/s 0.00% 7.6500 ms

isolated 0.7425 req/s 0.00% 2.7363 ms

min_memory 1.3489 req/s 0.00% 4.2800 ms

shared 1.3802 req/s 0.00% 4.6025 ms

Table 4.13: Modified OpenWhisk results on hellojs test case.

matrixMult

Similarly to the previous case, the policies allowing for resource grabbing be-
tween Controllers achieve better results; unlike the previous case, the shared policy
also obtains a lower maximum latency than the others.
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Policy Latency (avg) Latency (max) Latency
(median)

default 2383.347 ms 5969 ms 2530.0 ms

isolated 1880.938 ms 7633 ms 1826.0 ms

min_memory 1583.634 ms 12389 ms 1458.0 ms

shared 1452.904 ms 4627 ms 1385.5 ms

Policy Throughput Error rate Conn. time
(avg)

default 0.3844 req/s 0.00% 10.7188 ms

isolated 0.5049 req/s 0.00% 2.4588 ms

min_memory 0.5552 req/s 0.00% 7.6063 ms

shared 0.6007 req/s 0.00% 7.3187 ms

Table 4.14: Modified OpenWhisk results on matrixMult test case.

sleep

One interesting result in this test case is the large difference in maximum
latency between the default policy and the other three, which are relatively close
in this regard; this might point to an issue with only allowing the Controller to
require half of each Invoker’s memory, as it might lead to them being marked
as busy, causing the load balancer to schedule the invocation on a different node
(causing a new cold start, as the container needs to be instantiated again); since
only 4 parallel threads were used, the other approaches probably allowed for more
repeated invocations on the same node.
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Policy Latency (avg) Latency (max) Latency
(median)

default 4224.300 ms 8825 ms 4147.0 ms

isolated 4078.310 ms 5578 ms 4077.5 ms

min_memory 3565.670 ms 4960 ms 3604.5 ms

shared 3554.280 ms 5281 ms 3595.0 ms

Policy Throughput Error rate Conn. time
(avg)

default 0.2367 req/s 0.00% 22.7200 ms

isolated 0.2452 req/s 0.00% 6.6500 ms

min_memory 0.2805 req/s 0.00% 22.6600 ms

shared 0.2813 req/s 0.00% 22.7200 ms

Table 4.15: Modified OpenWhisk results on sleep test case.

mongoDB

As with previous tests, the min_memory and shared policies achieve better
results in terms of average latency, while showing comparable or worse results in
maximum latency; the different tolerance levels show a relatively low impact in
all runs, while the use of the Controller tag to influence Nginx generally produces
better results, especially with the isolated policy.
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Policy Tol CTag Latency (avg) Latency
(max)

Latency
(median)

default

all True 1135.152 ms 7472 ms 1059.5 ms
all False 1548.334 ms 8810 ms 1646.5 ms
none True 1053.924 ms 6912 ms 992.0 ms
none False 1563.419 ms 17754 ms 1595.5 ms
same True 1232.984 ms 5892 ms 1158.5 ms
same False 1645.590 ms 14854 ms 1651.0 ms

isolated

all True 1099.134 ms 13290 ms 1026.0 ms
all False 1786.374 ms 14942 ms 1702.0 ms
none True 1091.286 ms 10715 ms 1036.0 ms
none False 1754.541 ms 14876 ms 1561.5 ms
same True 1363.170 ms 15828 ms 1119.5 ms
same False 1743.003 ms 15463 ms 1712.5 ms

min_memory

all True 826.844 ms 14293 ms 731.0 ms
all False 844.663 ms 10928 ms 807.0 ms
none True 850.220 ms 14267 ms 771.5 ms
none False 902.420 ms 12257 ms 814.5 ms
same True 1069.070 ms 20285 ms 955.5 ms
same False 958.774 ms 14559 ms 915.5 ms

shared

all True 832.296 ms 15067 ms 765.5 ms
all False 898.861 ms 15990 ms 811.0 ms
none True 793.616 ms 11099 ms 730.0 ms

none False 884.416 ms 15392 ms 805.0 ms
same True 1097.438 ms 20713 ms 994.0 ms
same False 949.717 ms 19749 ms 821.0 ms
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Policy Tol CTag Throughput Error rate Conn. time
(avg)

default

all True 0.8809 req/s 0.00% 5.4325 ms
all False 0.6458 req/s 0.00% 7.0650 ms
none True 0.9488 req/s 0.00% 5.4037 ms
none False 0.6396 req/s 0.00% 7.0975 ms
same True 0.8110 req/s 0.00% 6.2250 ms
same False 0.6077 req/s 0.00% 7.3450 ms

isolated

all True 0.9098 req/s 0.00% 1.8462 ms
all False 0.5598 req/s 0.00% 2.1587 ms
none True 0.9163 req/s 0.00% 1.7737 ms
none False 0.5699 req/s 0.00% 2.1575 ms
same True 0.7336 req/s 0.00% 2.1113 ms
same False 0.5737 req/s 0.00% 2.1587 ms

min_memory

all True 1.2093 req/s 0.00% 4.5400 ms
all False 1.1839 req/s 0.00% 4.1225 ms
none True 1.1761 req/s 0.00% 4.3650 ms
none False 1.1081 req/s 0.00% 4.3575 ms
same True 0.9354 req/s 0.00% 5.0912 ms
same False 1.0430 req/s 0.00% 5.1063 ms

shared

all True 1.2014 req/s 0.00% 4.1562 ms
all False 1.1125 req/s 0.00% 4.4550 ms
none True 1.2599 req/s 0.00% 4.4575 ms

none False 1.1306 req/s 0.00% 4.1513 ms
same True 0.9112 req/s 0.00% 5.0862 ms
same False 1.0529 req/s 0.00% 5.0963 ms

Table 4.16: Modified OpenWhisk results on mongoDB test case.
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pycatj

As already stated in the framework comparison section, this test case is very
similar in structure and load to the basic ones; as such, it’s not surprising that the
min_memory and shared polcies achieve better results compared to the other two.

Policy Latency (avg) Latency (max) Latency
(median)

default 1324.940 ms 10175 ms 1270.0 ms

isolated 1569.459 ms 10762 ms 1481.0 ms

min_memory 605.663 ms 8017 ms 600.0 ms

shared 619.634 ms 10728 ms 591.5 ms

Policy Throughput Error rate Conn. time
(avg)

default 0.7547 req/s 0.00% 6.2438 ms

isolated 0.6371 req/s 0.00% 2.4337 ms

min_memory 1.6510 req/s 0.00% 3.4100 ms

shared 1.6137 req/s 0.00% 3.9588 ms

Table 4.17: Modified OpenWhisk results on pycatj test case.

slackpost

Similarly to the previous case, the shared and min_memory produce better
results in terms of average latency, although like with the hellojs case, they both
have worse results in terms of maximum latency. Analyzing the difference between
the median and the average latency, along with the further inspection of the raw
results, it was seen that the default and isolated policies produced very even
results, with an almost constant latency, while the shared and min_memory policies
had many extremely low-latency responses (around 500ms), alternated with some
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higher-latency ones (around 1.7-2.0k ms).

Policy Latency (avg) Latency (max) Latency
(median)

default 1691.860 ms 4650 ms 1646.0 ms

isolated 1492.500 ms 5320 ms 1450.5 ms

min_memory 1180.960 ms 7825 ms 1453.5 ms

shared 1101.100 ms 7363 ms 1431.5 ms

Policy Throughput Error rate Conn. time
(avg)

default 0.5910 req/s 0.00% 14.6100 ms

isolated 0.6700 req/s 0.00% 5.9400 ms

min_memory 0.8467 req/s 0.00% 12.4200 ms

shared 0.9081 req/s 0.00% 13.0900 ms

Table 4.18: Modified OpenWhisk results on slackpost test case.

terrain

Rather oddly, the addition of the Controller tag for Nginx resulted in more
errors for this test case; an almost identical performance was achieved with all
policies, both regarding the errors and the latency. The nature of these results
(very similar to the ones obtained by the standard version of the platform) point to
the need of further investigation of both the test case and the platform’s behaviour
with similar loads.
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Policy Tol CTag Latency (avg) Latency
(max)

Latency
(median)

default

all True 5337.500 ms 7173 ms 5337.5 ms
all False 8485.500 ms 11850 ms 8012.0 ms
none True 4882.500 ms 6591 ms 4882.5 ms
none False 7177.250 ms 12363 ms 6555.0 ms
same True 5191.500 ms 7241 ms 5191.5 ms
same False 7551.250 ms 11851 ms 7581.5 ms

isolated

all True 6001.500 ms 9155 ms 6001.5 ms
all False 7460.750 ms 12135 ms 6432.5 ms
none True 5985.000 ms 8710 ms 5985.0 ms
none False 7444.500 ms 11703 ms 6718.5 ms
same True 5676.000 ms 8182 ms 5676.0 ms
same False 7699.250 ms 13948 ms 6431.0 ms

min_memory

all True 6982.500 ms 11053 ms 6982.5 ms
all False 7178.750 ms 11407 ms 7170.0 ms
none True 6705.500 ms 9246 ms 6705.5 ms
none False 6363.750 ms 9465 ms 6465.0 ms

same True 5690.500 ms 8272 ms 5690.5 ms
same False 6977.500 ms 11162 ms 6518.0 ms

shared

all True 7481.500 ms 11570 ms 7481.5 ms
all False 6957.500 ms 11500 ms 6672.5 ms
none True 6799.500 ms 10232 ms 6799.5 ms
none False 7136.000 ms 12269 ms 6556.5 ms
same True 6049.500 ms 8869 ms 6049.5 ms
same False 7270.750 ms 10860 ms 7697.5 ms
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Policy Tol CTag Throughput Error rate Conn. time
(avg)

default

all True 0.1873 req/s 60.00% 276.0000 ms
all False 0.1178 req/s 20.00% 145.0000 ms
none True 0.2048 req/s 60.00% 276.5000 ms
none False 0.1393 req/s 20.00% 142.5000 ms
same True 0.1926 req/s 60.00% 169.5000 ms
same False 0.1324 req/s 20.00% 141.5000 ms

isolated

all True 0.1666 req/s 60.00% 178.0000 ms
all False 0.1340 req/s 20.00% 44.2500 ms
none True 0.1671 req/s 60.00% 149.0000 ms
none False 0.1343 req/s 20.00% 42.0000 ms
same True 0.1761 req/s 60.00% 168.0000 ms
same False 0.1299 req/s 20.00% 43.5000 ms

min_memory

all True 0.1432 req/s 60.00% 299.5000 ms
all False 0.1393 req/s 20.00% 146.0000 ms
none True 0.1491 req/s 60.00% 269.0000 ms
none False 0.1571 req/s 20.00% 147.5000 ms

same True 0.1757 req/s 60.00% 170.0000 ms
same False 0.1433 req/s 20.00% 142.7500 ms

shared

all True 0.1336 req/s 60.00% 283.5000 ms
all False 0.1437 req/s 20.00% 147.0000 ms
none True 0.1470 req/s 60.00% 310.5000 ms
none False 0.1401 req/s 20.00% 153.0000 ms
same True 0.1653 req/s 60.00% 301.0000 ms
same False 0.1375 req/s 20.00% 143.7500 ms

Table 4.19: Modified OpenWhisk results on terrain test case.
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coldstart/scale-to-zero

As also seen in Table 4.11, the modified framework’s performance greatly suffers
in terms of cold starts; the best performing policy is still slower than the standard
version, with the other three showing a significant decrease in performance. From
the plots in Figure 4.1 it can be seen how the resource usage is almost identical
for all policies, and slightly higher than the standard version in terms of memory.

Policy Latency (avg) Latency (max) Latency
(median)

default 11406.000 ms 13607 ms 13059.0 ms

isolated 11709.333 ms 13470 ms 11337.0 ms

min_memory 8612.333 ms 11210 ms 8204.0 ms

shared 12374.333 ms 13032 ms 13018.0 ms

Policy Throughput Error rate Conn. time
(avg)

default 0.0877 req/s 0.00% 422.0000 ms

isolated 0.0854 req/s 0.00% 171.3333 ms

min_memory 0.1161 req/s 0.00% 412.3333 ms

shared 0.0808 req/s 0.00% 412.0000 ms

Table 4.20: Modified OpenWhisk results on coldstart test case.

datalocality

Unlike many of the previous test cases, in this one both the default and the
isolated policies obtain better performances than the other two, with the former
achieving the best results in terms of both average and maximum latency. The
addition of the Controller tag for Nginx also plays an important part, reducing
the average latency of almost 8 seconds in some runs; this is probably due to the
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prioritization, by each Controller, of its local Invokers; as such, if the targeted
Controller is the one that was requested, the invocation proceeds on the “correct”
Invokers, according to the data locality requirements.

Policy Tol CTag Latency (avg) Latency
(max)

Latency
(median)

default

all True 2817.495 ms 13663 ms 2581.0 ms

all False 10098.215 ms 24536 ms 14425.5 ms
none True 2821.820 ms 17130 ms 2531.0 ms
none False 10116.085 ms 24924 ms 13661.0 ms
same True 2872.480 ms 12181 ms 2633.0 ms
same False 10049.095 ms 22842 ms 15244.0 ms

isolated

all True 3495.620 ms 17343 ms 3372.5 ms
all False 10058.985 ms 32000 ms 9900.0 ms
none True 3279.130 ms 15845 ms 3286.5 ms
none False 10028.000 ms 30027 ms 10529.5 ms
same True 3405.945 ms 16990 ms 3351.0 ms
same False 10006.395 ms 33245 ms 10285.0 ms

min_memory

all True 4164.575 ms 19658 ms 3634.5 ms
all False 10050.355 ms 26861 ms 9928.5 ms
none True 4021.315 ms 20438 ms 3556.0 ms
none False 10075.885 ms 26557 ms 11360.0 ms
same True 3776.275 ms 15610 ms 3467.5 ms
same False 9959.625 ms 26570 ms 10312.5 ms

shared

all True 3854.320 ms 17578 ms 3566.0 ms
all False 10122.625 ms 28337 ms 10243.5 ms
none True 3885.750 ms 16424 ms 3586.0 ms
none False 10229.940 ms 37892 ms 10122.5 ms
same True 3997.275 ms 19130 ms 3680.0 ms
same False 10321.500 ms 77023 ms 15061.0 ms
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Policy Tol CTag Throughput Error rate Conn. time
(avg)

default

all True 0.3549 req/s 0.00% 16.8550 ms

all False 0.0990 req/s 0.00% 38.4350 ms
none True 0.3544 req/s 0.00% 17.0050 ms
none False 0.0989 req/s 0.00% 38.6000 ms
same True 0.3481 req/s 0.00% 17.4100 ms
same False 0.0995 req/s 0.00% 38.5150 ms

isolated

all True 0.2861 req/s 0.00% 5.8200 ms
all False 0.0994 req/s 0.00% 11.3450 ms
none True 0.3050 req/s 0.00% 5.8800 ms
none False 0.0997 req/s 0.00% 10.8500 ms
same True 0.2936 req/s 0.00% 5.9450 ms
same False 0.0999 req/s 0.00% 11.3150 ms

min_memory

all True 0.2401 req/s 0.00% 22.2950 ms
all False 0.0995 req/s 0.00% 37.9250 ms
none True 0.2487 req/s 0.00% 22.0550 ms
none False 0.0992 req/s 0.00% 39.2250 ms
same True 0.2648 req/s 0.00% 22.9800 ms
same False 0.1004 req/s 0.00% 39.3550 ms

shared

all True 0.2594 req/s 0.00% 22.8850 ms
all False 0.0988 req/s 0.00% 39.8100 ms
none True 0.2573 req/s 0.00% 22.7250 ms
none False 0.0978 req/s 0.00% 41.8850 ms
same True 0.2502 req/s 0.00% 21.2850 ms
same False 0.0969 req/s 0.00% 38.8000 ms

Table 4.21: Modified OpenWhisk results on datalocality test case.
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Conclusions

The OpenWhisk modifications introduced in this thesis proved effective in
achieving a better performance for data locality-dependent applications, along
with better results in some general use cases; the possibility to target multiple
Invokers by only specifying their “assigned” Controller also allowed for more flex-
ibility compared to the original extension defined in [6]. Although some of the
results are promising, this modified version showed issues such as more severe
cold starts in some cases, and a generally higher memory usage for an already
memory-heavy framework.

The comparison with other platforms showed that, while the contributions in
this thesis allowed OpenWhisk to obtain better results in some cases, the base
framework is still noticeably slower than the other two; furthermore, while Open-
FaaS demonstrated very good results in most test cases, Fission reached a com-
parable level of performance, without the potential issue of having a paid version
(which inherently limits customization and tuning options).

Finally, both with OpenFaaS and OpenWhisk the importance of data locality-
aware scheduling, be it via topology information (OpenWhisk) or simple node
constraints (OpenFaaS), was found to be paramount for the frameworks’ perfor-
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mance; because of this, giving users the ability to somewhat influence function
scheduling according to their needs can be a good way to reduce overall latency in
invocations, with relatively few implementative challenges.

Future work

The work discussed in the thesis can be improved from various points of view:
the test results showed that, while some configurations of the modified versions
achieved significantly better performances compared to the standard one, they
also introduced memory consumption overheads and harsher cold starts in many
invocations. This can be further optimized to align the modified framework’s per-
formance with its standard version when using the default configuration, effectively
removing any additional overhead and only providing additional flexibility.

From another perspective, the tests performed in this thesis showed that, when
working on small cluster and using Kubernetes as an orchestrator, both OpenFaaS
and Fission greatly outperform OpenWhisk in almost all situations; it might be
interesting to verify if this difference in performance persists with large-scale use
cases, with thousands of functions deployed and better performing nodes. Addi-
tionally, the configuration language used both in this work and in [6] was designed
specifically for OpenWhisk, and as much might not be very easily adaptable to
different frameworks; extending the language to provide better adaptability to
other platforms can facilitate possible modifications and improvements, while also
allowing better testing of said modifications’ effectiveness.

Defining a more abstract and general specification for scheduling manipulation
can also allow the introduction of more complex policies, such as machine learning-
based approaches (tuning the framework’s behaviour on a per-user or per-function
level); custom scheduling strategies might also be introduced and applied to mul-
tiple platforms, allowing programmers to easily transition from one to another
according to their specific use cases (e.g. different orchestration systems, preferred
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languages or cluster configuration).
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