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1 Introduction

The high-luminosity upgrade of the LHC will substantially improve its potential for discov-
ering physics beyond the Standard Model. In parallel to the expected decrease of statistical
errors, theoretical uncertainties for standard model processes must be reduced as much as
possible to optimize the physics output. A particular challenge is the description of multiple
hard scattering, which means that several hard parton-level interactions occur within the
same proton-proton collision. Contributions from multiple scattering generically increase
with the collision energy. They can be substantial for final states with high multiplic-
ity. Many discovery channels for new physics are of this type. In this work, we focus
on double parton scattering (DPS), which is the least complex and often most important
representative of multiple hard scattering.

The discussion of DPS started already in the late 1970s and produced a remarkable
amount of theoretical insight [1–7]. During the last decade, there has been a considerable
effort to develop a full description of DPS from first principles in QCD [8–19]. Experimental
searches for DPS contributions to various final states also started long ago [20, 21] and were
greatly intensified at the Tevatron and the LHC, see [22–26] and references therein. At
LHC energies, it is possible to study double Drell-Yan-type reactions, in particular like-
sign W pair production [26–31], which is particularly clean at the theoretical level. For a
comprehensive and recent overview of multiparton interactions, we refer to [32].

Whilst the two hard-scattering processes in DPS proceed independently of each other,
the partons that initiate them can be correlated. These correlations are quantified by dou-
ble parton distributions (DPDs), which extend the familiar concept of parton distribution
functions (PDFs) to the case of two partons extracted from one hadron. To date, little is
known about DPDs, apart from constraints from sum rules that reflect quark number and
momentum conservation [33–36] and from their behavior in the limit of small inter-parton
distances [9, 13, 37]. Beyond this, a considerable number of papers have investigated DPDs
in quark models [38–50].

A complementary approach is to study correlations inside a hadron using lattice QCD.
This has long been pursued at the level of two-current correlation functions, with a focus
on various physics aspects [51–62]. In the short-distance limit, such correlation functions
can be used to extract parton distributions, which has recently been done in [63].

As was observed in [9, 13], correlation functions of two currents in a hadron can also
be related to the Mellin moments of DPDs. This generalizes the well-known relation
between single-current matrix elements and the Mellin moments of PDFs, which has been
extensively exploited in lattice calculations as reviewed in [64–66]. We recently presented
a corresponding calculation for DPDs in the pion [67], using nf = 2 ensembles with a pion
mass around 300 MeV. The results have rather high statistical precision, and they reveal
a number of interesting patterns. For unpolarized quarks, they agree rather well with the
quark model results in [47, 48]. Encouraged by these findings, we went on to study the
DPDs in an unpolarized proton, which are relevant to collider experiments. We report on
this in the present work; preliminary results have been published in [68].

Our paper is organized as follows. In section 2, we review the different theoretical
objects relevant to our study and explain how they are related to each other. Details of the
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lattice setup and ensembles we used are given in section 3, with more technical information
being collected in an appendix. Sections 4 and 5 contain the results of our calculation.
In section 4, the Mellin moments for different flavor and polarization combinations are
presented, while the results of various factorization tests are discussed in section 5. Such
tests are especially important in view of the fact that many phenomenological models of
DPS use similar factorization assumptions. We summarize our findings in section 6.

2 Theory

In this section we review certain basics on double parton distributions (DPDs) and their
relevance in the context of double parton scattering.

2.1 Double parton distributions

The DPD of a given hadron parameterizes the joint probability of finding two partons with
certain polarization and momentum fractions xi at a given relative transverse distance y.
For the case of the unpolarized proton, DPDs of quarks and antiquarks are defined by a
proton matrix element of two operators:

Fa1a2(x1, x2,y) = 2p+
∫

dy−
∫ dz−1

2π
dz−2
2π ei(x1z

−
1 +x2z

−
2 )p+

×
∑′

λ

〈p, λ| Oa1(y, z1)Oa2(0, z2) |p, λ〉 , (2.1)

where ∑′ indicates the average over the proton helicity states. In (2.1) we use light-cone
coordinates v± = (v0± v3)/

√
2, v = (v1, v2) for a given four-vector vµ. Moreover, we work

in a frame where the transverse proton momentum vanishes, i.e. p = 0. The light-cone
operators appearing in (2.1) are defined as:

Oa(y, z) = q̄
(
y − 1

2z
)

Γa q
(
y + 1

2z
)∣∣∣
z+=y+=0, z=0

, (2.2)

where a specifies the quark flavor and polarization, which is determined by the spin pro-
jections

Γq = 1
2γ

+ , Γ∆q = 1
2γ

+γ5 , Γjδq = 1
2 iσ

j+γ5 (j = 1, 2) . (2.3)

In this notation, q refers to the sum over all quark polarizations. ∆q denotes the differ-
ence between positive and negative helicity contributions and, therefore, corresponds to
the longitudinal quark polarization, whereas δq is the analogue for the case of transverse
polarization. The expression of the light cone operators given in (2.2) is only valid in
light cone gauge, otherwise a Wilson line has to be inserted. Notice that the light cone
operators have to be renormalized. This leads to a scale dependence of the operators and,
consequently, of the DPDs. For brevity, we do not indicate the scale.

Because of momentum conservation, the momentum fractions can take only values
satisfying |x1|+|x2| ≤ 1. Negative momentum fractions are associated with antiquarks, i.e.:

Fa1a2(−x1, x2,y) = ηa1
C Fā1a2(x1, x2,y) , Fa1a2(x1,−x2,y) = ηa2

C Fa1ā2(x1, x2,y) ,
(2.4)
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where

ηaC = −1 for a = q, δq , ηaC = +1 for a = ∆q . (2.5)

DPDs fulfill certain sum rules, which have been proposed in [33] and proven in [69, 70]. In
this paper, we consider the number sum rule. In position space this can be formulated as:∫ 1−|x1|

−1+|x1|
dx2

∫ ∞
|y|>ycut

d2y Fqq′(x1, x2,y)

=
(
Nq′ + δqq̄′ − δqq′

)
fq(x1) +O(Λ2y2

cut) +O
(
αs
)
, (2.6)

where fq(x) is an ordinary PDF for an unpolarized quark with flavor q and satisfies fq̄(x) =
fq(−x). Nq′ is the number of valence quarks with flavor q′. The lower cutoff in the integral
over y is necessary, because DPDs have a singular 1/y2 behavior for y2 → 0. This is caused
by perturbative splitting processes, which are of O(αs(µ)). For more details see [71]. A
common choice for the lower cutoff is ycut = b0/µ, where µ is the renormalization scale and
b0 = 2e−γ ≈ 1.12 with the Euler-Mascheroni constant γ.

The double parton distributions defined in (2.1) are needed to compute double parton
scattering processes. The corresponding cross section can be written in terms of two DPDs,
integrated over the transverse parton distance:∫

d2y Fa1a2(x1, x2,y)Fb1b2(x′1, x′2,y) . (2.7)

Hence, the dependence of DPDs on the transverse distance is not directly accessible in
experiments.

DPDs are often simplified and expressed in terms of single parton distributions within
certain factorization approaches. The first procedure in this context is based on the inser-
tion of a complete set of states between the operators in the matrix element in (2.1). Then
it is assumed that nucleon states dominate, such that all other states can be neglected.
This leads to an expression of DPDs in terms of impact parameter distributions fa(x, b):

Fa1a2(x1, x2,y) ?=
∫

d2b fa1(x1, b + y) fa2(x2, b) . (2.8)

This kind of factorization has been investigated on the lattice for the case of the pion.
Significant differences between the r.h.s. and l.h.s. of (2.8) have been found, while the
orders of magnitude are consistent with each other [67]. Similar observations have been
made in quark model studies [49]. We shall perform analogous investigations for the case
of the nucleon in section 5.

The other factorization approach frequently used assumes a complete factorization
w.r.t. all arguments:

Fa1a2(x1, x2,y) ?= fa1(x1) fa2(x2)G(y) . (2.9)

This leads to the so-called “pocket formula”, where the DPS cross section is written as a
product of two SPS cross sections [72]:

σDPS,ij = 1
C

σSPS,i σSPS,j
σeff

, (2.10)
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x1 − 1

Figure 1. Illustration of a skewed DPD of a u and a d quark for the case where all fractions
xi ± ζ/2 are positive.

where i and j indicate the final states of the two hard scattering processes. C is a combi-
natoric factor, which is 2 if i = j and 1, otherwise. The effective cross section σeff is defined
by σ−1

eff =
∫

d2y[G(y)]2. The function G(y) must be independent of the quark flavor, which
leads to the prediction that σeff should be a universal constant. Since we are not able to
resolve the xi dependence of DPDs in lattice studies, we cannot investigate to what extent
factorization approaches w.r.t. the momentum fractions are valid. However, we shall per-
form the evaluation of DPD Mellin moments for different quark flavor combinations, such
that we are able to check the universality of the function G(y).

2.2 Skewed double parton distributions

The DPDs defined in (2.1) can be extended by introducing an additional phase in the
definition. This causes a difference between the momenta of the emitted and absorbed
partons, respectively. We call the resulting functions skewed DPDs, which additionally
depend on the skewness parameter ζ:

Fa1a2(x1, x2, ζ,y) = 2p+
∫

dy−e−iζy−p+
∫ dz−1

2π
dz−2
2π ei(x1z

−
1 +x2z

−
2 )p+

×
∑′

λ

〈p, λ| Oa1(y, z1)Oa2(0, z2) |p, λ〉 . (2.11)

The partons have momentum fractions xi ± 1
2ζ. The sign of the fractions determines

whether there is a quark (antiquark) in the proton wave function or an antiquark (quark)
in its complex conjugate. An overview of the corresponding regions is given in figure 2.
If all fractions are positive, we have two quarks with momentum fractions x1 − 1

2ζ and
x2 + 1

2ζ in the proton wave function and two quarks with x1 + 1
2ζ, x2 − 1

2ζ in its complex
conjugate. This is sketched in figure 1 for the case of a u and a d quark. Because of
momentum conservation, the region in the (x1, x2, ζ)-parameter space where the skewed
DPDs are non-zero is restricted by

|xi ± 1
2ζ| ≤ 1 , |x1|+ |x2| ≤ 1 , |ζ| ≤ 1 . (2.12)

The corresponding support region is also indicated in figure 2. From PT invariance it
follows that:

Fa1a2(x1, x2, ζ,y) = ηa1
PT η

a2
PT Fa1a2(x1, x2,−ζ,−y) , (2.13)

– 4 –
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(1

Figure 2. Support regions of Fud(xi, ζ,y) w.r.t. the arguments xi and ζ. This is shown for positive
(left) and negative (right) skewness parameter ζ. For each sub-region we indicate the (anti-)quark
content of the wave function and its complex conjugate. The notation u|d̄du means that we have a
u-quark in the proton wave function and d̄du in its complex conjugate.

with

ηaPT = −1 for a = ∆q, δq , ηaPT = +1 for a = q . (2.14)

Moreover, one can give a decomposition of the skewed DPDs in terms of functions that
are rotationally invariant in the transverse plane. Fq1q2 and F∆q1∆q2 have even parity and
are scalar quantities, therefore they are already rotationally invariant. By contrast F∆q1q2
and Fq1∆q2 are parity-odd, which implies that they have to vanish. From invariance under
time reflection, it also follows that the T -odd quantities F j1δq1∆q2 and F j2∆q1δq2 are zero. The
remaining DPDs can be decomposed in terms of transverse vectors as follows:

Fq1q2(x1, x2, ζ,y) = fq1q2(x1, x2, ζ, y
2) ,

F∆q1∆q2(x1, x2, ζ,y) = f∆q1∆q2(x1, x2, ζ, y
2) ,

F j1δq1q2(x1, x2, ζ,y) = εj1kykmfδq1q2(x1, x2, ζ, y
2) ,

F j2q1δq2(x1, x2, ζ,y) = εj2kykmfq1δq2(x1, x2, ζ, y
2) ,

F j1j2δq1δq2
(x1, x2, ζ,y) = δj1j2fδq1δq2(x1, x2, ζ, y

2)

+
(
2yj1yj2 − δj1j2y2)m2f tδq1δq2(x1, x2, ζ, y

2) , (2.15)

where m is the proton mass and εij is the antisymmetric tensor in two dimensions, with
ε12 = 1. Notice that y2 = yµyµ denotes the Lorentz invariant scalar product. In our case
we have y+ = 0, i.e. y2 = −y2. For ζ = 0 the functions on the r.h.s. of (2.15) have the
following physical interpretation:

• fq1q2 describes the probability of finding two quarks with momentum fractions x1 and
x2 at a transverse distance y. It contains a sum over all quark polarization states,
i.e. the quarks are unpolarized.

– 5 –
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• f∆q1∆q2 describes the difference between the probabilities of finding the two quarks
with aligned or anti-aligned spins in the longitudinal direction. This gives a measure
for the longitudinal quark polarization.

• fδq1δq2 is the analogue of f∆q1∆q2 for polarization in the transverse direction.

• fδq1q2 describes the correlation between the transverse polarization of the first quark
and the transverse distance y between the two quarks. fq1δq2 can be interpreted in
analogy, where the second quark is polarized and the first unpolarized.

• f tδq1δq2 gives the correlation between the transverse distance y of the quarks and their
transverse polarizations.

The functions fδq1q2 , fq1δq2 , and f tδq1δq2 describe spin-orbit correlations, whereas fδq1δq2 and
f∆q1∆q2 quantify spin-spin correlations. Combining (2.15) and (2.13) we find:

fa1a2(x1, x2, ζ, y
2) = fa1a2(x1, x2,−ζ, y2) . (2.16)

The matrix elements in the definitions (2.1) and (2.11) are not directly accessible on a
Euclidean lattice, since they involve light-like distances. A way to circumvent this obstacle
is to consider Mellin moments of skewed DPDs. The lowest Mellin moment is defined as:

Ia1a2(ζ, y2) =
∫ 1

−1
dx1

∫ 1

−1
dx2 fa1a2(x1, x2, ζ, y

2)

=
∫ 1

0
dx1

∫ 1

0
dx2

[
fa1a2(x1, x2, ζ, y

2) + ηa1
C fā1a2(x1, x2, ζ, y

2)

+ηa2
C fa1ā2(x1, x2, ζ, y

2) + ηa1
C ηa2

C fā1ā2(x1, x2, ζ, y
2)
]
. (2.17)

The integrals over x1 and x2 in (2.17) together with the exponentials eixip+z−i in (2.1)
and (2.11) set z−i to zero, which is what we intended. The resulting matrix elements
involve only local quark bilinears, which can be evaluated in lattice simulations.

2.3 Two-current matrix elements

We define two-current matrix elements of the proton with momentum p as:

Mµ1···µ2···
q1q2,i1i2

(p, y) :=
∑′

λ

〈p, λ| Jµ1···
q1,i1

(y) Jµ2···
q2,i2

(0) |p, λ〉 , (2.18)

where we take the average of the proton spin. The currents Jµ...q,i are local quark bilinear
operators. In this work we focus on three types of currents, which are defined as:

Jµq,V (y) = q̄(y)γµq(y) , Jµq,A(y) = q̄(y)γµγ5 q(y) , Jµνq,T (y) = q̄(y)σµν q(y) . (2.19)

These operators commute if the distance vector y is space-like, in particular for y0 = 0. A
consequence of this property is the relation:

Mµ1···µ2···
q1q2,i1i2

(p, y) = Mµ2···µ1···
q2q1,i2i1

(p,−y) . (2.20)

– 6 –
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Moreover, the currents have definite transformation behavior under charge conjugation and
the combination of parity and time reflection:

Jµ···q,i (y)→
C
ηiC J

µ···
q,i (y) , Jµ···q,i (y) →

PT
ηiPT J

µ···
q,i (−y) , (2.21)

where in analogy to (2.5) and (2.14) the sign factors ηC and ηPT are defined as:

ηiC = −1 for i = V, T , ηiC = +1 for i = A (2.22)

and

ηiPT = −1 for i = A, T , ηiPT = +1 for i = V . (2.23)

The combined PT symmetry implies for the two-current matrix elements:

Mµ1···µ2···
q1q2,i1i2

(p, y) = ηi1PT η
i2
PT M

µ1···µ2···
q1q2,i1i2

(p,−y) . (2.24)

In the context of DPDs we have to consider the current combinations V V , AA, V T , TV ,
and TT . The corresponding two-current matrix elements are by definition Lorentz tensors
of a certain rank, which is determined by the involved currents. Therefore, the matrix
elements can be decomposed in terms of Lorentz invariant functions and Lorentz tensors
constructed from the four-vectors p and y. In order to reduce the number of independent
quantities, we subtract trace contributions and consider symmetric combinations. For
brevity we skip the arguments y and p of the matrix elements M :

M
{µν}
q1q2,V V

− 1
4g
µνgαβM

αβ
q1q2,V V

= uµνV V,AAq1q2 + uµνV V,Bm
2Bq1q2 + uµνV V,C m

4Cq1q2 ,

Mµνρ
q1q2,TV

+ 2
3g
ρ[µ
M

ν]αβ
q1q2,TV

gαβ = uµνρTV,AmAδq1q2 + uµνρTV,Bm
3Bδq1q2 ,

1
2
[
Mµνρσ
q1q2,TT

+Mρσµν
q1q2,TT

]
= ũµνρσTT,AAδq1δq2 + ũµνρσTT,Bm

2Bδq1δq2 + ũµνρσTT,C m
2Cδq1δq2

+ ũµνρσTT,Dm
4Dδq1δq2 + uµνρσTT,Em

2 Ẽδq1δq2 . (2.25)

Here we write t{µν} = (tµν + tνµ)/2 and t[µν] = (tµν − tνµ)/2 for an arbitrary tensor tµν .
The quantities A, B,. . . are Lorentz invariant functions, i.e. they only depend on py = pµyµ
and y2 = yµyµ. The decomposition of Mµν

q1q2,AA
, which is not explicitly given in (2.25), has

the same form as the one for Mµν
q1q2,V V

and introduces the functions A∆q1∆q2 , B∆q1∆q2 , and
C∆q1∆q2 . Decomposing Mµνρ

q1q2,V T
works in analogy to Mµνρ

q1q2,TV
with the Lorentz indices

interchanged appropriately. The basis tensors are given by:

uµνV V,A = 2pµpν − 1
2 g

µνp2 ,

uµνV V,B = 2p{µyν} − 1
2 g

µνpy ,

uµνV V,C = 2yµyν − 1
2 g

µνy2 ,

uµνρTV,A = 4y[µpν]pρ + 4
3 g

ρ[µyν]p2 − 4
3 g

ρ[µpν]py ,

uµνρTV,B = 4y[µpν]yρ + 4
3 g

ρ[µyν]py − 4
3 g

ρ[µpν]y2 ,

ũµνρσTT,A = −8p[νgµ][ρpσ] ,

– 7 –
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ũµνρσTT,B = −y2 uµνρσTT,A − 16y[µpν]y[ρpσ] ,

ũµνρσTT,C = −4p[νgµ][ρyσ] − 4y[νgµ][ρpσ] ,

ũµνρσTT,D = −8y[νgµ][ρyσ] ,

uµνρσTT,E = 2gµ[ρgσ]ν . (2.26)

Notice that the tensors ũTT,A . . . ũTT,D are not trace-subtracted, which is in contrast to the
analogous tensors uTT,A . . . uTT,D defined in [67]. For this reason, the last term in (2.25),
which is proportional to the trace, involves a modified invariant function Ẽδq1δq2 rather
than the original function Eδq1δq2 . The remaining functions Aδq1δq2 . . . Dδq1δq2 are the
same as in [67]. Using the decomposition (2.15), we can relate the two-current matrix
elements (2.18) to the DPD Mellin moments (2.17):∫ ∞

−∞
dy− e−iζy−p+

M++
q1q2,V V

(p, y)
∣∣∣
y+=0,p=0

= 2p+Iq1q2(ζ, y2) ,∫ ∞
−∞

dy−e−iζy−p+
M++
q1q2,AA

(p, y)
∣∣∣
y+=0,p=0

= 2p+I∆q1∆q2(ζ, y2) ,∫ ∞
−∞

dy−e−iζy−p+
Mk1++
q1q2,TV

(p, y)
∣∣∣
y+=0,p=0

= 2p+ yk1mIδq1q2(ζ, y2) ,∫ ∞
−∞

dy−e−iζy−p+
M+k2+
q1q2,V T

(p, y)
∣∣∣
y+=0,p=0

= 2p+ yk2mIq1δq2(ζ, y2) ,∫ ∞
−∞

dy−e−iζy−p+
Mk1+k2+
q1q2,TT

(p, y)
∣∣∣
y+=0,p=0

= 2p+ [δk1k2 Iδq1δq2(ζ, y2)−
(
2yk1yk2 − δk1k2y2)m2Itδq1δq2(ζ, y2)

]
. (2.27)

Notice that the Dirac structure in the local tensor operator Jµνq,T differs from that in the
spin projection Γjδq by an extra γ5, see (2.3) and (2.19). This corresponds to a rotation by
90◦ in the transverse plane, which follows from the relation iσj+γ5 = εjkσk+ and has been
taken into account in (2.27).

Comparing (2.27) with (2.25) we find the following relations between the DPD Mellin
moments and the invariant functions:

Ia1a2(ζ, y2) =
∫ ∞
−∞

d(py) e−iζpy Aa1a2(py, y2) ,

Itδqδq′(ζ, y2) =
∫ ∞
−∞

d(py) e−iζpy Bδqδq′(py, y2) , (2.28)

i.e. the Mellin moments are Fourier transforms of the invariant functions Aa1a2 and Bδqδq′ .
We refer to this subset of invariant functions as twist-two functions throughout this paper.
Since the Mellin moments are symmetric in ζ, which follows from (2.13), the inverse Fourier
transform at py = 0 can be written as:

Aa1a2(py = 0, y2) = 1
π

∫ 1

0
dζ Ia1a2(ζ, y2) . (2.29)

We define even ζ-moments of the Mellin moments:

〈ζ2m〉a1a2(y2) =
∫ 1
−1 dζ ζ2m Ia1a2(ζ, y2)∫ 1
−1 dζ Ia1a2(ζ, y2)

=
[

(−1)m
Aa1a2(py, y2)

∂2mAa1a2(py, y2)
(∂py)2m

]
py=0

, (2.30)
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whereas odd ζ-moments vanish because of parity. The last expression in (2.30) follows
from inserting (2.28) and performing an integration by parts. Hence, the 2m-th moment in
ζ is directly related to the 2m-th derivative in py of the corresponding twist-two function
at py = 0.

3 Two-current matrix elements on the lattice

In order to perform lattice simulations, we switch to Euclidean spacetime in this section.
The corresponding time component of a four vector xµ is denoted by x4 instead of x0.
In Euclidean spacetime, the matrix elements given in (2.18) can be directly calculated
in lattice QCD if the distance between the two insertion operators is purely spatial, i.e.
y4 = y0 = 0. In this section we describe the relation between the matrix elements and
the lattice four-point functions defined below for the case of the nucleon and explain the
techniques we use for the evaluation of the latter.

3.1 Four-point functions and matrix elements

Definition: we define the proton four-point function Cij,~p4pt as the correlator of a proton
creation operator P (source), the corresponding annihilation operator P (sink), and the
two local currents Ji defined in (2.19):

Cij,~p4pt (~y , t, τ) := a6 ∑
~z ′,~z

e−i~p(~z ′−~z )
〈

tr
{
P+P(~z ′, t) Ji(~y , τ) Jj(~0 , τ) P(~z , 0)

}〉
, (3.1)

where the sum over ~z , ~z ′ combined with the exponential injects a total proton momentum,
and the operator

P+ = 1
2 (1 + γ4) (3.2)

projects onto positive parity. The proton creation and annihilation operators, which we
also refer to as interpolators, are given by tri-quark operators matching the proton’s spin
J = 1/2 and isospin I = 1/2:

P(~x, t) := εabc
[
ūa(x) Cγ5 d̄

T
b (x)

]
ūc(x)

∣∣∣
x4=t

,

P(~x, t) := εabc ua(x)
[
uTb (x) Cγ5 dc(x)

]∣∣∣
x4=t

, (3.3)

where C is the charge conjugation matrix in spinor space, and [.] indicates a scalar quantity
w.r.t. spinor indices. The traces in (3.1) are taken w.r.t. the open spinor indices introduced
by the quark fields ua and ūc, respectively. Furthermore, we define the two-point function:

C~p2pt(t) := a6 ∑
~z ′,~z

e−i~p(~z ′−~z )
〈

tr
{
P+P(~z ′, t) P(~z , 0)

}〉
. (3.4)

We denote the separation in Euclidean time direction between the source and the current
insertions by τ , and the separation between the source and the sink by t.
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Wick contractions: the evaluation of the correlation functions (3.1) and (3.4) leads to
a definite set of Wick contractions. While there are only two contractions arising from
permutations of uū-pairs in the two-point function, there is a multitude of possible con-
tractions in the case of the four-point functions, which can be grouped into five types.
Following the notation of [62] we call them C1, C2, S1, S2 and D. They can be represented
by the graphs illustrated in figure 3. S1, S2 and D are disconnected contractions involving
the sub-graphs G3pt and G2pt, as well as the loops L1 and L2. Explicit expressions are
given in appendix A.2. The explicit contribution of a given type depends on the flavor
content of the inserted operators Jqq′,i, which in general can be flavor changing. In the
case of the graph C1 this is indicated by the four flavors q1 . . . q4 of the quark lines con-
nected to the current insertions, where the first two indices correspond to the flavor of
the first operator Jq1q2,i and the last two flavor indices are those of the second operator
Jq3q4,j . For the proton there are three independent contributions called C1,uuuu, C1,uudd
and C1,uddu, where the latter is not considered in this work, since we restrict ourselves to
flavor conserving currents Jqq,i = Jq,i, see definition (2.19). If all considered quarks have
the same mass, the graphs C2,q and S1,q depend only on the flavor q of the two propagators
connecting the source or sink with one of the current insertions. Therefore, in the case of
proton-proton matrix elements there are two possibilities for each contraction: C2,u, C2,d,
S1,u, S1,d. For each of the contractions S2 and D there is only one contribution, which
is flavor independent. Notice that we define the quantities C1,uuuu, C1,uudd, C1,uddu, C2,u,
C2,d, S1,u, S1,d, S2, and D as a sum of all quark permutations that share the same quark
line topology. In particular, this includes permutations of the two u-quarks of the proton
itself (see the definitions in (A.13), (A.15), and (A.16)).

In addition to the desired nucleon ground state, the interpolators P and P also create
and annihilate excited states. In order to relate the four-point functions to physical matrix
elements of the nucleon ground state, we have to ensure that these excited states are
sufficiently suppressed. This can be achieved by taking large Euclidean time separations t
and t− τ . In this context we define:

Cij,~p4pt (~y ) := 2V
√
m2 + ~p2

Cij,~p4pt (~y , t, τ)
C~p2pt(t)

∣∣∣∣∣∣
0�τ�t

, (3.5)

where V = L3a3 denotes the spatial volume. The factor 2V
√
m2 + ~p2 on the r.h.s. of (3.5)

ensures the correct normalization of states. In a similar manner, we define:

Cij,~p1,uudd(~y ) = 2V
√
m2 + ~p2

Cij,~p1,uudd(~y , t, τ)
C~p2pt(t)

∣∣∣∣∣∣
0�τ�t

, (3.6)

and likewise for the other contractions C1,uuuu, C2,u, . . . that contribute to C4pt(~y , t, τ).
Let us now point out some properties of these contractions: using (A.7) and (A.11)

and PT invariance, as well as invariance under translations in the time direction we are
able to deduce the relations

Gij,~p(~y ) = ηijPT G
ij,~p(−~y ) for G = C1,uudd, C1,uuuu, S1,u, S1,d, S2, D ,

Gij,~p(~y ) = ηijPT G
ji,~p(~y ) for G = C2,u, C2,d , (3.7)

– 10 –



J
H
E
P
0
9
(
2
0
2
1
)
1
0
6

Cij
1,q1...q4

=

Jq1q2,i

Jq3q4,j

Cij
2,q =

Jq′q,j

Jqq′,i

Dij =

Ji

Jj

G2pt

Li
1

Lj
1

Sij
1,q =

Jqq,i

Jj

Gi
3pt,q

Lj
1

Sij
2 =

Ji

Jj

G2pt

Lij
2

Figure 3. Illustration of the five kinds of Wick contractions (graphs) contributing to a four-point
function of a baryon. The explicit contributions for the graphs C1, C2 and S1 depend on the quark
flavor of the current insertions (red points). In the case where all quark flavors have the same mass,
C2 only depends on the flavors of the two propagators connected to the source or the sink. These
flavors have to be the same for proton-proton matrix elements. For the graphs S1, S2 and D we
also indicate the parts connected to the proton source and sink, i.e. G3pt and G2pt (blue), as well
as the disconnected loops L1 and L2 (orange).

where ηijPT is defined in (2.23). Notice that strictly speaking (3.7) is exactly fulfilled only if
τ = t/2. In the limit of large Euclidean time separations 0� τ � t we consider Gij,~p to be
constant w.r.t. τ so that the PT relations can also be applied to the ratio (3.5). Invariance
under CP transformations, together with the relations (A.7) and (A.10), implies for all
contractions: [

Gij,~p(~y )
]∗

= ηij4 η
ij
PT G

ij,~p(−~y ) , (3.8)

with

ηi4 = +1 for i = V, T , ηi4 = −1 for i = A , ηij4 = ηi4η
j
4 . (3.9)

If ηij4 = 1, which is the case for the matrix elements we consider in this work, the rela-
tions (3.7) and (3.8) imply that C1,uudd, C1,uuuu, S1,u, S1,d, S2, D are real-valued, whereas
C2,u, C2,d can have non-vanishing imaginary parts. For these contractions we find

2 Re
{
Cij,~p2,q (~y )

}
= Cij,~p2,q (~y ) + Cji,~p2,q (−~y ) ,

2i Im
{
Cij,~p2,q (~y )

}
= Cij,~p2,q (~y )− Cji,~p2,q (−~y ) . (3.10)
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Moreover, translational invariance implies that

Gij,~p(~y ) = Gji,~p(−~y ) for G = S2, D . (3.11)

Contribution to physical matrix elements: inserting a complete set of states between
the interpolators and the current insertions and taking the limit 0� τ � t (see (3.5)), we
find:

Cij,~p4pt (~y ) =
∑
λλ′ ū

λ′(p)P+u
λ(p) 〈p, λ| Ji(y) Jj(0) |p, λ′〉∑
λ ū

λ(p)P+uλ(p)

∣∣∣∣∣
y0=0

, (3.12)

where uλ(p) is the usual spinor solution of the Dirac equation for the nucleon. Again we
note that we set y0 = y4 = 0 so that the translation to Minkowski spacetime is trivial. By
writing y0 instead of y4 on the r.h.s. of (3.12) we refer to the matrix elements in Minkowski
spacetime, which we are actually interested in. For the parity projection P+ defined in (3.2)
the r.h.s. of (3.12) turns into the desired spin averaged proton matrix element. Considering
the currents defined in (2.19) (we omit Lorentz indices for brevity), we can write:

Cij,~p4pt (~y ) = Mq1q2,i1i2(p, y)
∣∣∣
y0=0

, (3.13)

where Mq1q2,i1i2 is the two-current matrix element (2.18) to be investigated. For the cur-
rents containing only the light quarks u and d, we find for the proton matrix elements:

Mud,ij(p, y)|y0=0 = Cij,~p1,uudd(~y ) + Sij,~p1,u (~y ) + Sji,~p1,d (−~y ) +Dij,~p(~y ) ,

Muu,ij(p, y)|y0=0 = Cij,~p1,uuuu(~y ) + Cij,~p2,u (~y ) + Cji,~p2,u (−~y ) + Sij,~p1,u (~y ) + Sji,~p1,u (−~y )

+ Sij,~p2 (~y ) +Dij,~p(~y ) ,

Mdd,ij(p, y)|y0=0 = Cij,~p2,d (~y ) + Cji,~p2,d (−~y ) + Sij,~p1,d (~y ) + Sji,~p1,d (−~y )

+ Sij,~p2 (~y ) +Dij,~p(~y ) . (3.14)

According to (3.10), we can identify the combination Cij,~p2,q (~y ) + Cji,~p2,q (−~y ) in (3.14) with
the real part 2 Re{Cij,~p2,q (y)}. Since we consider the u and d quarks to have the same mass,
the quantities we calculate exhibit an exact isospin symmetry. Therefore, we can relate
our results for the proton matrix elements to those of the neutron:

Mdu,ij |n = Mud,ij |p , Mdd,ij |n = Muu,ij |p , Muu,ij |n = Mdd,ij |p . (3.15)

Renormalization: the operators Ji(y) have to be renormalized multiplicatively, i.e.:

JMS
i (y) = ZiJ

latt
i (y) , (3.16)

where J latt
i (y) are the bare lattice operators. The renormalization factors ZA and ZV for

the axial and vector currents do not depend on the renormalization scale, because the
associated anomalous dimensions vanish. By contrast, ZT refers to the scale

µ = 2 GeV . (3.17)
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ZV ZA ZT
0.7128 0.7525 0.8335

Table 1. Renormalization constants for the local currents JV , JA and JT for β = 3.4 and the
renormalization scale µ = 2 GeV [73] (table X therein).

The renormalization constants Zi specific to our lattice setup with β = 3.4 have been
determined in [73] (see table X therein) using the RI′-MOM scheme. They include the
conversion to the MS-scheme at 3-loop accuracy. We summarize the corresponding values
in table 1.

The matrix elements we are interested in contain two local operators. Hence, the
two-current matrix element renormalized in the MS scheme is given by:

MMS
q1q2,i1i2 = Zi1Zi2M

latt
q1q2,i1i2 . (3.18)

In other words, the product of renormalized operators JMS
i (y) JMS

j (0) requires no additional
renormalization, because we always consider a finite spacelike distance y between the two
currents.

3.2 Technical details on Wick contractions

In the following, we discuss the technical details regarding the evaluation of each Wick
contraction we have previously defined. A technical sketch of all graphs is shown in figure 4.
Each contraction is calculated on a smeared quark point source SΦ,~p

z = Φ~pSz. It is a
diagonal spinor-color matrix located at position z, i.e. (Sz)abαβ(y) = δzyδαβδab, where z4

is the nucleon source timeslice. Notice that here and in the following spinor indices are
denoted by Greek letters α, β, . . . , whereas Latin letters a, b, . . . denote color indices of the
fundamental representation. More details and explanations on the notation can be found
in appendix A.1

Smearing: as already mentioned above, we apply a smearing function Φ~p to the corre-
sponding sources and propagators, in order to increase the overlap of the proton interpola-
tors with the proton ground state. Φ~p includes a phase injecting a momentum b~p to each of
the quarks, where ~p denotes the proton momentum. The method is known as momentum
smearing [74], which is based on the Wuppertal smearing technique [75]. Explicitly, the
smearing function Φ~p reads:

(Φ~p0 )(x|y) = 1
1 + 6ε

δx,y + ε
3∑
j=1

(
δx+̂,yU

sm
j (x) eib~p̂ + δy+̂,xU

sm,†
j (y) e−ib~p̂

) , (3.19)

where we set ε = 0.25 and b = 0.45, in order to obtain a maximal overlap with the ground
state. The value of the latter parameter is specific to our setup. The smearing function is
applied n times, which is denoted by Φ = Φn

0 . The gauge links U sm appearing in (3.19)
are obtained from the original gauge links by applying spatial APE-smearing [76], which
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C1

0 τ t

×
×

C2 ×
×

0

S1 ×
×

0

S2 D(pt× st)

×
×

D(st× st)

×
×

×
×

point source / propagator

stochastic source / propagator

propagator with HPE

×

sequential source / propagator

Figure 4. Sketch of all Wick contractions including the techniques used for the evaluation of each
piece on the lattice. We use one color for each involved quark source, i.e. if two or more pieces
within a graph share the same color, they involve the same quark source. Colors have no meaning
regarding the evaluation technique. There are two versions of the D graph: in the first we use
two stochastic loops (bottom right), whereas in the second (bottom center) one stochastic loop is
replaced by a point source loop.

reduces unphysical short-distance fluctuations. MΦ,~p
z (y) denotes the source-smeared point-

to-all quark propagator, which is obtained by solving:

DMΦ,~p
z = SΦ,~p

z := Φ~pSz , (3.20)

where D is the Dirac operator. This propagator is used for the construction of each of the
contractions relevant for the four-point function C4pt.

Stochastic propagators and improvements: the all-to-all propagators required for
the evaluation of most of the four-point graphs are estimated by use of time-local stochastic
sources η(`)

t . In this context the spatial unit matrix is approximated in the following way:

1
Nst

Nst∑
`

η
(`)
t ⊗ η

†(`)
t

Nst→∞−−−−−→ 1t . (3.21)
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In the present study we employ Z2 ⊗ Z2 wall sources defined for a specific timeslice t, i.e.
the entries can take the values(

η
(`)
t

)
αa

(x) = 1√
2

(±1± i) δx4t . (3.22)

The propagated stochastic source ψ(`)
t , which we call “stochastic propagator” in the re-

mainder of this work, is obtained by solving:

Dψ(`)
t = η

(`)
t . (3.23)

It describes the propagation from any spatial position on timeslice t to any other site on
the lattice.

The off-diagonal components in (3.21) are pure noise. This noise is particularly large
for near-diagonal terms, where the propagator takes large values. Quantities involving these
terms can be improved by a method that has also been used in [77], where one exploits ultra-
locality of the action. The method consists of applying the hopping parameter expansion
(HPE), where the Dirac operator is rewritten as D = (1 − H)/(2aκ). Subsequently, the
corresponding propagator can be expanded in terms of powers Hn using the geometric
series. Depending on the situation there exists a maximal order N in the series, up to
which the corresponding terms vanish exactly in the stochastic limit or, equivalently, for
the exact solution of the propagator. This enables us to rewrite the propagator as:

D−1 = 2aκ
∞∑
n=0

Hn = 2aκ
N−1∑
n=0

Hn + 2aκ
∞∑
n=N

Hn

→ 0 + 2aκ
∞∑
n=N

Hn = HN2aκ
∞∑
n=0

Hn = HND−1 . (3.24)

The replacement D−1 → HND−1 removes the first N terms in the expansion.
In the context of our calculations this method is used in two different places. The first

one is a propagator connecting two sites on the same timeslice, which is needed for the
calculation of the C2 graph. Since the hopping term H connects only nearest neighbors,
we set aN(~y ) = |y1| + |y2| + |y3|. Taking into account the periodicity of the lattice, the
exact definition of N(~y ) is:

N(~y ) =
3∑
i=1

min
( |yi|
a
, L− |yi|

a

)
. (3.25)

In the expression of the graph to be evaluated, we then have to replace ψ(`)
τ by

ξ(`),N
τ = HNψ(`)

τ . (3.26)

If the propagator is contracted with a Dirac matrix, e.g. in loops containing only one
current, there is also a certain number of terms in the hopping parameter expansion that
cancel. The number of terms that vanish depends on the Dirac matrix, see table 2.
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Γ V µ Aµ Tµν

N 3 4 1

Table 2. Number N of omitted hopping terms in the L1 contraction for each considered operator
insertion type.

Interpolator kernels: before we continue to define the expressions to be evaluated, we
introduce the compact notation:

(Ea)bcβγ := εabc (Cγ5)βγ ,
E~p(x) := e−i~x~p . (3.27)

We then define the annihilation operator kernel:

σOabcαβγ = (P+)σα (Ea)bcβγ . (3.28)

Contracting with the quark field operators, this yields the baryon annihilation opera-
tor (3.3) itself. In analogy, the baryon creation operator kernel is defined as:

σO
abc
αβγ = (Ec)abαβ (P+)γσ . (3.29)

In both cases, the index σ corresponds to the open fermion index, which is consistent with
the fermionic nature of baryons. P+ again denotes the parity projection operator (3.2).

The two point function C2pt: the proton two-point function involves two Wick con-
tractions arising from permutations of the two u-quarks. In terms of the smeared point-
to-all propagator (3.20) evaluated at the source at position z, the total contribution for
momentum ~p is given by:

G~p2pt(z, z′) = E~p(z′ − z)
[ (
P+Φ~pMΦ,~p

z (z′)
)ab
αα

tr
{(

Φ~pMΦ,~p
z (z′)Eb

)T
EaΦ~pMΦ,~p

z (z′)
}

+
(
P+Φ~pMΦ,~p

z (z′)
)ab
βγ

[(
Φ~pMΦ,~p

z (z′)Eb
)T

EaΦ~pMΦ,~p
z (z′)

]cc
γβ

]
, (3.30)

where z′ denotes the sink position. Together with the phase introduced by the factor
E~p(z′− z), a sum over z′ at the sink timeslice projects onto the proton momentum ~p . The
two-point function itself is defined as the average over all gauge fields, which is indicated
by the 〈.〉-notation:

C~p2pt(t) =
〈
G̃~p2pt(t)

〉
, G̃~p2pt(t) = a3V

∑
~z ′

G~p2pt(z, z′)
∣∣∣
(z′)4=z4+t

, (3.31)

where t is the source-sink separation in the time direction. A momentum projecting sum at
the source is not necessary because of translational invariance, i.e. there is no dependence
on the source position. In the second expression in (3.31), the omitted sum over z has been
compensated for by a factor V .

As previously discussed, the two-point function C2pt is needed to normalize the two-
current matrix element, see (3.5). Furthermore, the expression G̃2pt is part of the contrac-
tions S2 and D, which will be discussed later.
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σ

[
S(`)
t (z′)

]
b̄a′

β̄α′ = σ

[
X†(`)(x)γ5

]
b̄a
β̄α

= σ

[
Y

(`)
i (x)

]
b̄a
β̄α

=

=
(
D−1S†(`)t

)†
(x)γ5 = = X†(`)(x)γ5ΓiM(x) =

b̄β̄

z′ = (t,~z ′)

σ

×(`)

a′α′ c

a

b

x
aα

b̄β̄

σ

×(`)

c

a

b

aα
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σ

Γi, x

×(`)

c

a

b

[
q

(`)
1,i (x)

]
a
α =

[
q

(`)
2,i (x)

]
a
α = Cij1 (y) =

=
∑
x`[q

T,(`)
1,i (x+y)q

(`)
2,j(x)] =

Γi, x

×(`)aα

c

a

b

aα

Γi, x
×
(`)

c

a

b

Γi, x+y

Γj , x
×
×

(`)

(`)

c

a

b

= c

= a

×
×

= b

Figure 5. Detailed illustration of the different parts involved in the evaluation of the C1 graph.
The symbols have the same meaning as in figure 4. For clarity, we also write down the spinor,
color and stochastic indices and spacetime arguments. We also indicate the quark lines a, b or c,
which are defined at the bottom. Upper panels: left: the sequential source St at timeslice t, which
is a sum of the expressions defined in (A.18). The sequential source already incorporates parts
of each quark line. The light blue dot indicates the open spinor and color indices that are used
for the inversion of the Dirac operator. Center: sequential propagator X†γ5 including Hermitian
conjugation. Right: the combination of the sequential propagator, the current insertion Γi, and
the forward propagator M , which defines the quantity Y . Lower panels: left: a linear combination
of the contractions (A.19), which is called q1. This is constructed from the quantity Y . The open
baryon spinor index σ of the sink is contracted with the baryon spinor index of the source, which
is why it does not appear anymore in q1. Center: a part of the stochastic quark line b, which is
called q2. Right: the complete C1 graph, which is constructed from q1,i and q2,j (or in some cases
q1,j and q2,i)

Graph C1: the evaluation procedure of the C1 graph is shown in figure 5. In total, this
contraction involves five propagators, where three of them correspond to the smeared point-
to-all propagator (3.20), which we refer to as forward propagator in the following. The two
propagators connecting the current insertions and the sink are calculated from sources
placed at the sink. Both propagators have to be Hermitian conjugated and multiplied
by γ5 on both sides in order to obtain the desired propagator in the forward direction.
For these two propagators, we use two different methods: the first propagator is obtained
from an inversion on a stochastic wall source η(`)

t , which is placed at the sink timeslice,
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see (3.23). This stochastic propagator is denoted by ψ
(`)
t . From the smeared stochastic

source, i.e. Φ~pγ5η
(`)
t (the γ5 is needed to reverse the propagator), and the smeared forward

propagator Φ~pMΦ,~p
z , both contracted with the baryon annihilation kernel (3.28), we create

a sequential source S~p,(`)t , where:

S~p,(`)t (z′) = E~p(z′) S(`)(z′) δz′4t . (3.32)

The exact contraction with the annihilation kernel, i.e. which index is contracted with
which part, depends on the baryon type and the quark flavor of the local currents. This
is discussed in detail in appendix A.3, where all possible expressions for S(`) are listed,
see (A.18).

An inversion on the momentum smeared sequential source yields a sequential propa-
gator X~p,(`)

t :

DXΦ,~p,(`)
t = Φ~pS†,~p,(`)t . (3.33)

The sequential source technique has been invented in [78]. The sequential propagator is
connected to the second current insertion. In this technical context, the three quark lines
between the proton source and sink can be distinguished w.r.t. the evaluation method of
the involved propagators. We shall use the following labels:

a forward propagator connecting the baryon operators
b quark line with the stochastic source, the stochastic propagator, and one current

insertion
c quark line with the sequential propagator and the other current insertion.

Furthermore, we define:

Y
~p,(`)
t,j (y) := X

†,Φ,~p,(`)
t (y) γ5Γj MΦ,~p

z (y) , (3.34)

which represents the quark lines a and c and the stochastic source η(`)
t belonging to quark

line b. The contraction of Y ~p,(`)t,j (y) with the baryon creation operator kernel (3.29) is
denoted by q(`)

1,j(y). Like for the sequential source S†,~p,(`)t , there are multiple possibilities to
contract Y with the creation kernel, which again depend on the flavor. All possible terms
are summarized in (A.19). The remaining part of quark line b is given by the quantity q(`)

2,i :(
q
~p,(`)
2,t,i

)a
α

(y) :=
[
ψ
†,(`)
t (y) γ5Γi MΦ,~p

z (y)
]a
α
. (3.35)

The γ5 in (3.34) and (3.35) again appears from reversing the sequential or stochastic prop-
agator, respectively. The C1 graph itself is obtained by calculating

Cij,~p1 (~y , t, τ) = a3

Nst

∑
~x

Nst∑
`

〈[
q
T,~p,(`)
2,t,i (x+ y) q~p,(`)1,t,j (x)

]〉∣∣∣∣∣
x4=τ,y4=0

. (3.36)

Here x is the position of the operator Oj . In order to increase statistics, we perform a
sum over all spatial positions at the insertion timeslice (volume average), exploiting spatial
translational invariance.
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Depending on the quark flavors of the baryon and the insertion operators, there are
several terms that have to be summed up to obtain the full C1 contribution. This is
explained in detail in appendix A.4 for the proton case and the operators Ou,iOd,j and,
Ou,iOu,j i.e. the graphs Cij1,uudd and Cij1,uuuu.

Loops L1 and L2: we implement two methods to calculate the loop L1, which is needed
for the evaluation of the S1 and D graphs. The first method involves the stochastic wall
source η(`)

τ at the insertion timeslice τ and the corresponding propagator. Fluctuations
introduced by the stochastic noise vectors are reduced by employing the hopping parameter
expansion trick, which we have discussed previously. The number of omitted terms N
depends on the inserted Dirac structure Γi, see table 2. With the accordingly improved
stochastic propagator ξ(`),N

τ (see (3.26)), we define:

Lj1,st(~y , τ) := 1
Nst

Nst∑
`

[
η†(`)τ (y) Γj ξ(`),N

τ (y)
]∣∣∣∣∣
y4=τ

. (3.37)

Alternatively, we compute the loop for fixed spatial positions using point sources. A dis-
advantage is that the calculation has to be repeated for each loop position we want to
consider. This version is only employed for one of the two loops in the D graph:

Lj1,pt(~y , τ) := tr {Γj My(y)}|y4=τ . (3.38)

Furthermore, we define the volume average:〈〈
Lj1(τ)

〉〉
:= a3

V

∑
~y

〈
Lj1(~y , τ)

〉
. (3.39)

The second kind of loop, L2, appears in the S2 graph. It contains the two spatially separated
current insertions, which are connected by two propagators. Using stochastic noise vectors
is not feasible in this case. Thus, the loop is calculated from point-to-all propagators only:

Lij2 (~y , τ) = tr
{
γ5 M

†
x(x+ y) γ5Γi Mx(x+ y) Γj

}∣∣∣
x4=τ,y4=0

. (3.40)

Statistics can be enhanced by averaging over several spatial positions ~x . For each position
the calculation has to be repeated.

Graphs C2 and S1: the C2 and S1 graphs are both constructed from a sequential
source. For this we use the same source as for usual three-point functions, see (A.20). The
corresponding sequential propagator Xt is obtained by inverting:

DXΦ,~p
t,3pt = Φ~pγ5S

†,~p
t,3pt , (3.41)

where again

S~pt,3pt(z′) = E~p(z′) S~p3pt(z′) δz′4t . (3.42)

In the case of the C2 contraction, the sequential propagator is connected to one current
insertion. The other current insertion is contracted with the forward propagator. Both
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current insertions are connected by a stochastic propagator, which is improved by the
HPE trick we have discussed earlier. Explicitly, we find for the C2 graph:

Cij,~p2 (~y , t, τ) = a3

Nst
E−~p(z)

Nst∑
`

∑
~x

〈[
X†,Φ,~pt,3pt (~x + ~y , τ) γ5Γi ξ(`),n(~y )

τ (~x + ~y , τ)
]

×
[
η†(`)(~x, τ) Γj MΦ,~p

z (~x, τ)
]〉∣∣∣

z4=0
. (3.43)

The S1 graph consists of two disconnected pieces. The first one has the same structure as
a usual three-point function calculated from a sequential source:

Gi,~p3pt(~x, τ, t) = E−~p(z)
[
X†,Φ,~pt,3pt (~x, τ) γ5Γi MΦ,~p

z (~x, τ)
]∣∣∣
z4=0

. (3.44)

The second part is given by the previously defined loop L1. If the quantum numbers permit,
there are disconnected contributions from the vacuum expectation values of G3pt and L1.
These must be subtracted, in order to obtain the S1 contribution we wish to calculate:

Sij,~p1 (~y , t, τ) = −a3∑
~x

〈
Gi,~p3pt(~x + ~y , τ, t) Lj1(~x, τ)

〉
+ a3∑

~x

〈
Gi,~p3pt(~x, τ, t)

〉〈〈
Lj1(τ)

〉〉
. (3.45)

Notice that the global sign corresponds to the permutation sign of the Wick contraction.

Graphs S2 and D: the graph S2 consists of a two-point contraction and the loop L2,
whereas D consists of a two-point contraction and two L1 loops. As for the S1 graph,
we have to consider vacuum contributions of the disconnected parts, which have to be
subtracted. Notice that we defined the loop L2 at a fixed spatial position. Hence, we are
not able to perform a volume average like in the previous cases:

Sij,~p2 (~y , t, τ) = −
〈
G̃~p2pt(t) L

ij
2 (~y , τ)

〉
+
〈
G̃~p2pt(t)

〉〈
Lij2 (~y , τ)

〉
. (3.46)

We use two methods to evaluate the D graph: the first employs two stochastic loops
L1,st, which allows us to perform a volume average. In the second method, we replace one
stochastic loop by a loop attached to a point source L1,pt. This might reduce the stochastic
noise but precludes the possibility to perform a volume average. For the doubly stochastic
case, the D graph reads:

Dij,~p(~y , t, τ) = a3∑
~x

{〈
G̃~p2pt(t) Li1,st(~x + ~y , τ) Lj1,st(~x, τ)

〉
−
〈
G̃~p2pt(t)

〉〈
Li1,st(~x + ~y , τ) Lj1,st(~x, τ)

〉
−
〈
G̃~p2pt(t) Li1,st(~x, τ)

〉〈〈
Lj1,st(τ)

〉〉
−
〈
G̃~p2pt(t) L

j
1,st(~x, τ)

〉〈〈
Li1,st(τ)

〉〉}
+ 2

〈
G̃~p2pt(t)

〉〈〈
Li1,st(τ)

〉〉〈〈
Lj1,st(τ)

〉〉
. (3.47)

Note that we use two different sets of stochastic sources for the two disconnected loops.
Equation (3.47) is valid for the first method. For the second method L1,st has to be replaced
by L1,pt. Furthermore, one has to replace the sum a3∑

~x by a volume factor V .
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id β a[fm] L3 × T κl κs mπ,K [MeV] mπLa configs
H102 3.4 0.0856 323 × 96 0.136865 0.136549339 355, 441 4.9 2037

Table 3. Details of the CLS ensemble which we use for the evaluation of the two-current matrix
elements. Our simulation includes 990 configurations.

3.3 Lattice setup

The simulation is performed on the gauge ensemble H102 of the CLS collaboration [79]. It
includes nf = 2+1 dynamical Sheikholeslami-Wohlert fermions and the tree-level improved
Lüscher-Weisz gauge action. The extension is 323 × 96 with open boundary conditions in
the time direction. The pseudoscalar masses are mπ = 355 MeV and mK = 441 MeV,
and the lattice spacing is a = 0.0856 fm, which corresponds to the inverse lattice coupling
β = 3.4. More information can be found in table 3. From this ensemble we use 990
configurations.

For the calculation of the ratio (3.5) we need to know the value of the nucleon energy
E~p =

√
m2 + ~p2 in the given lattice setup. We obtain the corresponding value from

an exponential fit to the two-point function data for each momentum. Moreover, the
proton mass is needed in the decompositions (2.25) and (2.27). From our fits, we obtain
m = 1.1296(75) GeV.

Our analysis requires a wide range of proton momenta. Explicitly, calculations are
performed for the momenta

~p = 2π~P
La

(3.48)

with ~P = (0, 0, 0), (−1,−1,−1), (−2,−2,−2), (2, 2,−2), (2,−2, 2), (−2, 2, 2). Thus, the
largest momentum has the absolute value |~p | ≈ 1.57 GeV.

To avoid artifacts possibly caused by the open boundary conditions, we place the
source at tsrc = T/2 = 48a. The spatial position is chosen randomly for each configuration.
The distance to the sink in time direction is t = tsnk − tsrc = 12a for the case ~p = ~0 and
t = 10a otherwise. We evaluate the C1 graph for all intermediate insertion times 0 < τ < t.
A value for C1(~y ) is then given by a fit w.r.t. τ to a constant including a certain region
around t/2, where excited states are seen to be sufficiently small. The remaining graphs
are calculated for τ = t/2, i.e. τ = 6a for ~p = ~0 and τ = 5a for ~p 6= ~0 . The disconnected
parts 〈L2(τ)〉 and 〈L1(τ)L1(τ)〉 do not depend on the proton momentum. Hence, the
corresponding calculations can be combined, which increases statistics. Consequently, the
average insertion time for the contractions S2 and D is slightly different from t/2, which
should not be a problem as long as excited state contributions are small.

We perform the calculations for multiple proton sources located at different source
positions, which further enhances statistics. The number of proton sources, as well as
the number of stochastic noise vectors being used for each contraction is summarized in
table 4. The propagators are smeared at the proton source and sink by n = 250 smearing
iterations (3.19).
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~p C1 C2 S1(st) S2 D(st, st) D(st, pt) 3pt 2pt
Nsrc = ~0 1 2 4 25 25 25 4 25

6= ~0 1 1 1 21 21 21 1 21
Nst/pt all 2 96 120 480 16(60, 60) 4(120, 120) - -

vol. average all y y y n y n y n

Table 4. Overview of the statistics of our simulation for each Wick contraction. If the contractions
involve the loop L1, we indicate by (st) or (pt) which version is employed. Nsrc refers to the
number of proton sources for which each graph is evaluated. Nst/pt is the number of stochastic
sources used for the calculation of the stochastic propagators. For the graphs involving loops where
multiple point sources are used (S2 and D(st, pt)), Nst/pt refers to the corresponding number of
point sources. In the last line we indicate whether volume averaging is possible.

3.4 Data quality

In the following we want to consider the matrix elements 〈V 0V 0〉 and 〈A0A0〉 and discuss
a number of artifacts. For the remainder of this paper we shall use the following notation
for absolute values of 3-vectors:

p := |~p | , P := |~P | , y := |~y | . (3.49)

Nevertheless, we denote the usual 4-vector scalar product by y2 = yµyµ. Since y0 = 0,
one has |~y |2 = −y2. To avoid confusion, the n-th power of y = |~y | is denoted by

√
−y2n.

For details on our notation, see appendix A.1. At the moment, we consider the data for
single contractions instead of the complete four-point functions and, moreover, we restrict
ourselves to zero momentum, i.e. p = 0 or, equivalently, P = 0. In our study, we are
interested in the dependence on the current distance y. For the C1 graph we are able to
investigate the dependence on the insertion time τ , which is plotted in figure 6 for 〈V 0V 0〉
and 〈A0A0〉 at ~y = (−3, 4, 3). We observe a reasonable quality of the data and plateaus
around t/2. The values for C1(~y ) are obtained by a fit to a constant w.r.t. the insertion
time τ , where we take into account the timeslices τ ∈ [t/2−3a, t/2+3a]. The corresponding
fit bands are also plotted in figure 6. For all remaining contractions, the insertion time is
fixed at τ = t/2 in our simulation, as discussed in the previous section.

For the remainder of this paper, we concentrate on the contributions C1, C2, S1 and
S2. For both versions of 〈L1L1〉 we have presented in section 3.2, and consequently for
the D graph itself, we obtain statistical errors that are much larger than the signals of the
remaining graphs. In contrast to our study [62] for the pion, this is already the case before
carrying out the vacuum subtraction. As a consequence, we shall not consider contributions
of the D graph in subsequent analysis steps.

In order to investigate possible anisotropy effects, we distinguish three sets of data
points characterized by the angle θ between the distance vector y and the nearest lattice
space diagonal:

• cos θ =
√

1/3: data points placed on one of the lattice axes

• cos θ > 0.9: data points in the vicinity of one lattice space diagonal
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Figure 6. τ -dependence of the C1 contraction for the two flavor combinations uu and ud. This is
plotted for 〈V 0V 0〉 (a) and 〈A0A0〉 (b) for fixed ~y = (−3, 4, 3) at momentum ~p = ~0 .

•
√

1/3 < cos θ < 0.9: all other data points1

In figure 7 we show some selected results. The first kind of anisotropy effects observed
in the lattice data is caused by mirror charges originating from the periodic boundary
conditions in the spatial directions, which is explained in detail in [58]. These are stronger
along the lattice axes, since the mirror charges lie closer together in this case. This artifact
can be observed in figure 7(a) at distances y > 12a, where the data with cos θ < 0.9 clearly
lie above the data for y close to the lattice diagonals. The resulting “saw-tooth” pattern
can be seen in each channel in the C1 data.

Another anisotropy effect is caused by the anisotropy of the lattice propagator and is
present in all contractions involving at least one propagator directly connecting the two
currents, i.e. the graphs C2 and S2. Examples are plotted figure 7(b) and 7(c) for the C2
graph and in 7(d) for S2. In these plots, we see a significantly different behavior of the
data close to the lattice space diagonals and the remaining data points.

The lattice propagator anisotropy has been studied in detail, e.g. in [80, 81], where it
was found that lattice artifacts are most pronounced along the lattice axes, whereas they
are moderate close to the lattice diagonals.

4 Mellin moments of DPDs

4.1 Extraction of twist-two functions

According to (2.25), the two-current matrix elements we obtain in our lattice simulation can
be decomposed in terms of Lorentz invariant functions. The twist-two components, which
are relevant in the DPD context, are parameterized by a certain subset of these invariant
functions. We refer to these functions as twist-two functions. Explicitly, the twist-two
functions are Aqq′ , A∆q∆q′ , Aδqq′ , Aqδq′ , Aδqδq′ , and Bδqδq′ . Since our calculation includes

1A vector with cos θ = 0.9 does not exist in our lattice setup.
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Figure 7. Visualization of anisotropies found in the four-point data. The data points are separated
w.r.t. to the angle θ between the distance vector ~y and the next nearest space diagonal (see the
text). These plots show the results for the C1 contribution to 〈V 0

u V
0
u 〉 (a), the C2 contribution to

〈V 0
u V

0
u 〉 for small y (b) and 〈V 0

d V
0
d 〉 for intermediate y (c), as well as the S2 graph for small y (d).

only light-quark operators, we can extract the twist-two functions for qq′ = uu, ud, dd. For
proton DPDs, which we consider in this paper, the latter probes at least one sea quark.

The twist-two functions are obtained by solving the overdetermined system of equations
given by (2.25). This we do by χ2 minimization. Before we go into physics interpretation,
we discuss possible lattice artifacts seen in the data. If Lorentz invariance were intact, the
extracted data points of the invariant functions would be boost- and rotationally invariant,
i.e. for a given py they would be independent of the momentum ~p and the direction of ~y . In
order to check this, the system of equations is solved separately for each graph and for each
accessible direction of the distance vector ~y , i.e. we obtain one data point for each y2, py
and θ, where θ is the angle between ~y and the nearest space diagonal on the lattice. We use
the same classification of the data points w.r.t. θ as in section 3.4. Figure 8 shows the data
obtained for the twist-two functions separated according to this scheme for some selected
channels. As in the data of the bare two-current matrix elements, we observe the saw-tooth
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Figure 8. Visualization of anisotropies in the data of twist-two functions. We separate the data
points w.r.t. the angle between ~y and the nearest diagonal in the same manner as in figure 7. This
figure shows the corresponding results for the C1 contributions to Aud (a) and Auu (b), as well
as the C2 contribution to Auu for small y (c) and large y (d). In panel (b) we plot the data for
non-zero momentum and py = 1.6, whereas in the remaining plots ~P = ~0 . In panels (e) and (f)
we show the data for Bδuδd and Bδuδd, respectively, where we distinguish only between cos θ < 0.9
and cos θ > 0.9. This is compared to the data for P =

√
3 at py = 0.
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pattern in the C1 data for large distances, which originates from mirror charges due to the
periodic spatial boundary conditions in our lattice setup. This is plotted in figure 8(a) for
~P = ~0 and in figure 8(b) for ~P = −(1, 1, 1) and py = 1.6. The data corresponding to
distance vectors along one of the lattice diagonals are less affected by mirror charges. In
figure 8(d) and 8(c) we again observe the anisotropy of the lattice propagators in the data
of the C2 graph. As discussed in the previous section, the propagator is less affected by
this for distance vectors close to one lattice diagonal.

Beside the patterns already discussed, we find an anisotropic behavior of the twist-two
function Bδuδd for ~P = ~0 , which can be seen for all regions in y. The data points along a
lattice axis have a significantly larger value than those corresponding to distance vectors
in the vicinity of a space diagonal. This is shown in figure 8(e) and figure 8(f), where
we compare these data with those for ~P = −(1, 1, 1). The data for non-zero momentum
are consistent with the data for zero momentum if again ~y is close to a space diagonal.
Therefore, we regard those data points as more reliable.

Based on this discussion, we will keep only data corresponding to distances ~y that
satisfy

cos θ > 0.9 , (4.1)

when discussing physical results. As a further check of the reliability of our data, we
compare the twist-two functions obtained for different proton momenta at py = 0. Because
of Lorentz invariance, these should yield the same result within statistical errors. In figure 9
we compare the twist-two data obtained for the momenta P = 0, P =

√
3 and P = 2

√
3.

For each value of P , y2 and py the data are extracted separately, taking into account all
distances ~y satisfying (4.1) and all contributing momenta ~P .

In the case of C1, see e.g. figure 9(a), we observe consistency with Lorentz symmetry.
In some cases small deviations are visible, as for Aδdu shown in figure 9(b). In this case,
the difference occurs between the data for P = 0 and P 6= 0. Notice that we used different
source-sink separations for these two cases, hence, the discrepancy might be caused by
excited state contributions.

At large distances y, Lorentz symmetry is also intact for the C2 graph, as can be
seen in figure 9 (c)-(e). However, once we go to smaller y, Lorentz invariance is clearly
broken. The most extreme example for this is given by Aδuu, which is plotted in panel (d).
Deviations start to show up for y < 5a and become large for y < 4a.

The situation is even worse for the S2 graph at y < 7a, where in the most extreme
cases the data for P = 0 and P 6= 0 show different signs. As an example we show the
corresponding data of Aqq in figure 10(a). For larger y, consistency with Lorentz invariance
can be observed in all channels; an example is given in figure 10(b).
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Figure 9. Comparison of the twist-two data for P = 0 (red), P =
√

3 (green) and P = 2
√

3 (blue).
This is shown for the C1 contributions to Aud (a) and Aδdu (b), the C2 contributions to Auu (c),
Aδuu (d) and Add (e). In the latter case we leave out the data for P =

√
3 for clarity, since they

have large statistical errors.
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Figure 10. The same as figure 9 for the S2 contribution to Aqq. This is shown for small distances
(a), where breaking of Lorentz invariance is observed, and for large y (b).

4.2 Physical results for py = 0

In the following, we consider the data of twist-two functions extracted for each single graph.
For the moment we restrict ourselves to ~P = ~0 . Again we take into account only the data
points fulfilling (4.1) and solve the system of equations (2.25) for each value of y2 and
py = 0, i.e. data points for equal y = |~y | are combined. In figure 11(a) and (b) we show
the results for Aqq′ and Aδqq′ , where we compare the contributions of C1, C2 and S2 for a
specific flavor combination. Panels (c) and (d) show the same comparison for C1 and S1.

It is observed that the most dominant contributions are those of the two connected
graphs C1 and C2. The C2 data strongly increase towards small y, whereas C1 is relatively
large at all distances and shows a slow decay with increasing y. S2 is smaller by orders
of magnitude than the other contractions for y > 6a but very steeply increasing towards
small y. Remember that in this region the S2 graph strongly violates Lorentz invariance,
as we have seen in the previous section. The S1 contribution has rather large errors and
is consistent with zero in all regions of y. For Aqq′ we see a significant offset in the S1
contribution. This offset is very small compared to the size of the connected contractions,
except for very large distances, where the size of the offset and the decreasing signals of
the connected contractions become comparable.

In the following discussion, we take into account only the C1 and C2 contributions,
since all the other contractions are small compared to the connected graphs or, in the
S2 case, are not reliable due to violation of Lorentz symmetry. For our final result for
the twist-two functions, we add up all considered contractions according to (3.14), before
solving the system of equations (2.25). Furthermore, we include the data for all considered
momenta, see section 3.3.

Let us first look at the flavor dependence of the twist-two functions at py = 0. Since the
spin-orbit correlations Aδqq′ or Bδqδq′ are multiplied by terms proportional to my or m2|y2|
in the decomposition (2.25), we always consider myAδqq′ and m2|y2|Bδqδq′ in the following
discussion. The same applies to the corresponding DPD Mellin moments, see (2.27). In
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Figure 11. Comparison between the contributions of each Wick contraction to the twist-two
functions for ~P = ~0 and Aqq′ (left) and Aδqq′ (right). Panels (a,b) show the data for C1, C2 and
S2, whereas in (c,d) we compare the data for C1 and S1.

figure 12 we show the results for the twist-two functions Aqq′ (a) and Aδqq′ (b) for the
different flavor combinations. Notice that for Aδqq′ we have the four combinations uu, ud,
du, and dd, whereas in all other cases the functions for ud and du are equal by permutation
symmetry between the two partons. At large distances we have comparably large signals
for uu, ud and du, while the ones for dd are much smaller. This changes for smaller y,
where both uu and dd strongly increase. The size of dd becomes comparable to that of ud
and du around y = 4a = 0.342 fm.

A very interesting aspect is the dependence on the quark polarization. We compare
the corresponding channels in figure 13 for ud (a), uu (b) and dd (c). In all cases Aqq′ is
observed to be the channel with the largest signal. Polarization effects are significant in the
case of ud, especially Aδud and Aδdu are very large. The signal in the remaining channels
is smaller but clearly different from zero. In the case of uu and dd, polarization effects are
suppressed. The largest polarized contribution is again Aδqq in both cases.
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the results for all independent flavor combinations. For Aqq′ these are uu, ud, and dd, whereas for
Aδqq′ we additionally have to consider the combination du. Here and in the following plots, only
the contributions from the graphs C1 and C2 are included.
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Figure 13. Comparison of the results for different quark polarizations for the flavor combinations
ud (a), uu (b) and dd (c) at py = 0.
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channel fit range δ

Aud [1a, 16a] 1.2
Add [3.5a, 16a] 0
A∆d∆d [3.5a, 15a] 0
Aδuδd [3a, 16a] 1.2
Aδdδd [3.5a, 15a] 0
Bδdδd [4a, 15a] 0
else [4a, 16a] 0

Table 5. Fit ranges in y used for the fit of each twist-two function for the double exponential (4.2).
We also give the fixed parameter δ. In all cases, y0 = 4a.

4.3 Parameterization of the y2 dependence

Further analysis steps require a parameterization of the results obtained for the twist-two
functions. In the following, we adapt the approach we developed in [67]. For the description
of the y2-dependence at py = 0 a sum of two exponentials is found to be suitable in most
cases. For Aud and Aδuδd it appears that this ansatz has to be slightly modified. As a
general ansatz we write:

A(py = 0, y2) = (η1y)δA1 e
−η1(y−y0) + (η2y)δA2 e

−η2(y−y0) , (4.2)

where the fits are preformed for fixed δ. In the cases of Aud and Aδuδd it turns out that
δ = 1.2 is a suitable choice. In all other channels, a pure double exponential, i.e. δ = 0, is
sufficient.

For most of the fits we take into account each point in the region 4a ≤ y ≤ 16a.
Thus, we ensure that the data points entering the fit are only mildly affected by the lattice
artifacts that result in anisotropy effects or the breaking of boost invariance. For stability
reasons the fit range is slightly modified in some channels. In all cases where the fit range
is adjusted, we carefully checked that the data points within the modified fit range do not
include such artifacts. An overview is given in table 5, where also the corresponding fixed
value of δ is shown. In order to achieve that the parameters Ai describe the relative weight
of the two exponentials at the lower fit boundary, we introduce a shift y0 = 4a = 0.342 fm
in the exponent. In the fits we neglect correlations between the data points.

The data points of the twist-two functions at py = 0 are plotted together with the
curve resulting from the fit in figure 14. We take a logarithmic scale on the vertical axis to
emphasize the double-exponential shape. As can be observed in the plots, the fitted curves
describe the twist-two data reasonably well. The values obtained for the fit parameters
Ai and ηi are listed in table 6, as well as the values of χ2 per degree of freedom. The
corresponding errors are computed using the Jackknife procedure.

4.4 Parameterization of the py dependence

A parameterization of the twist-two functions is in particular mandatory for the evaluation
of the py-integral in (2.28). The reason is that one has to extrapolate in py, since the
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Figure 14. Data points for the twist-two functions compared to the corresponding curve resulting
from a fit to the form (4.2). Each plot has a logarithmic scale for the vertical axis.

accessible range is restricted by the largest proton momentum:

|py| ≤
y0=0

|~p ||~y | ≤ 2π
√

12 y
La

≤ 6π ≈ 18.85 . (4.3)

In order to make an ansatz for the py-dependence, we consider the constraints on the
ζ-dependence of the skewed DPDs. These are the symmetry relation (2.16) and the con-
straints (2.12) restricting the support region in ζ. Furthermore, we assume that the Mellin
moment I(ζ, y2) can be Taylor expanded around ζ = 0. Combining everything, we make
the ansatz that the Mellin moment I(ζ, y2) can be approximated by an even polynomial
in ζ within the region |ζ| ≤ 1:

I(ζ, y2) = π
N∑
n=0

an(y2) ζ2n Θ(1− ζ2) . (4.4)
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channel A1[fm−2] η1[fm−1] A2[fm−2] η2[fm−1] χ2/dof
Auu 0.026(17) 39(20) 0.1920(99) 2.89(15) 0.37
Aud 0.00037(35) 17.5(3.1) 0.0530(28) 3.52(12) 0.07
Add 0.010(12) 46(47) 0.0573(64) 3.66(36) 0.48

A∆u∆u −0.62(57) 13.7(3.8) 0.61(58) 12.3(2.3) 0.63
A∆u∆d −0.0190(39) 4.86(46) 0.0026(24) 1.30(73) 0.30
A∆d∆d −0.029(61) 14(15) 0.010(61) 4.6(8.2) 0.61
Aδuu 0.0208(46) 21.8(6.9) 0.0211(31) 3.45(25) 0.49
Aδdu −0.0059(27) 6.80(37) 0.0228(23) 3.40(15) 0.20
Aδud −0.0085(27) 6.85(23) 0.0258(26) 3.43(16) 0.25
Aδdd 0.0144(36) 17.7(7.7) 0.0036(26) 3.6(1.1) 0.64
Aδuδu −0.193(99) 9.5(1.3) 0.196(98) 7.5(1.3) 0.74
Aδuδd −0.000033(88) 21(13) −0.00835(65) 3.57(24) 0.16
Aδdδd −0.0027(82) 18(35) 0.0073(81) 3.0(2.3) 1.01
Bδuδu −0.72(99) 15.8(2.9) 0.72(99) 15.7(3.0) 1.01
Bδuδd −0.00074(71) 7.9(2.1) 0.00253(56) 4.13(23) 0.07
Bδdδd 0.73(41) 16.9(1.5) −0.73(41) 17.0(1.5) 0.72

Table 6. Results of the fit (4.2) to the twist-two functions at py = 0. The corresponding χ2/dof
is listed in the rightmost column.

This implies for the twist-two functions, which are related to the Mellin moments by a
Fourier transform:

A(py, y2) =
N∑
n=0

an(y2) hn(py) , (4.5)

where the functions hn are defined as:

hn(x) := 1
2

∫ 1

−1
dζ eixζ ζ2n = sin(x) sn(x) + cos(x) cn(x) (4.6)

with

sn(x) =
n∑

m=0

(2n)! (−1)m
(2n− 2m)!x1+2m , cn(x) =

n−1∑
m=0

(2n)! (−1)m
(2n− 2m− 1)!x2+2m . (4.7)

It is easy to check that the functions hn(x) fulfill the following relations:

hn(0) = 1
1 + 2n ,

d2hn(x)
dx2 = −hn+1(x) . (4.8)

We recall that A(py = 0, y2) is already completely described by the double exponential
ansatz in (4.2). Therefore, in the analysis of the py dependence, we consider the normalized
twist-two function

Â(py, y2) := A(py, y2)
A(0, y2) =

N∑
n=0

ân(y2) hn(py) , (4.9)
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with the normalized coefficients

ân(y2) = an(y2)
A(0, y2) . (4.10)

A useful quantity to investigate in the context of the py-analysis is the 2m-th moment in
ζ of the DPD Mellin moment, which can be written as:

〈ζ2m〉(y2) :=
∫ 1
−1 dζ ζ2mI(ζ, y2)∫ 1
−1 dζ I(ζ, y2)

= (−1)m∂
2mÂ(py, y2)
∂(py)2m

∣∣∣∣∣
py=0

. (4.11)

If we insert our ansatz (4.5) combined with (4.9) and replace the 2m-th derivative of Â
according to (4.8), we find that 〈ζ2m〉 can be expressed as:

〈ζ2m〉(y2) =
N∑
n=0

Tmnân(y2) , (4.12)

where we defined the (N + 1)× (N + 1)-matrix T

Tmn = (1 + 2n+ 2m)−1 . (4.13)

Equation (4.12) can be inverted, so that we are able to express the coefficients ân in terms
of the ζ-moments:

ân(y2) =
N∑
m=0

(
T−1

)
nm
〈ζ2m〉(y2) , (4.14)

and hence

Â(py, y2) =
N∑

n,m=0

(
T−1

)
nm
〈ζ2m〉(y2) hn(py) . (4.15)

One has 〈ζ0〉(y2) ≡ 1 by definition. Thus, the first non-trivial term in (4.15) is the one with
m = 1. For each value of y2 we can perform a fit with the functional form (4.15) with N fit
parameters. These kind of fits are referred to as “local” fits in the following. Furthermore,
we parameterize the moments of ζ in terms of powers of the distance y =

√
−y2, i.e. we

write

〈ζ2m〉(y2) =
K∑
k=0

cmk

√
−y2

k

, (4.16)

such that we obtain a global parameterization describing both the y2 and py-dependence:

Â(py, y2) =
N∑

n,m=0

K∑
k=0

(
T−1

)
nm

cmk

√
−y2

k

hn(py) . (4.17)

Since c0k = δ0k by definition, there are N(K+1) parameters to be determined in a “global”
fit to the parameterization (4.17).
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(a) local fit on Âud at yfit = 10a = 0.856 fm

7.5 5.0 2.5 0.0 2.5 5.0 7.5
py

0.25

0.00

0.25

0.50

0.75

1.00

1.25

A u
d

local fit on Aud at y = 12a, K = 0 

fit N = 2
fit N = 3
data 11.5a y 12.5a
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(d) local fit on Âδdu at yfit = 10a = 0.856 fm

Figure 15. py dependence of the twist-two function data and the corresponding local fits with
N = 2, 3. This is shown for the functions Âud at yfit = 10a (a) and yfit = 12a (b), as well as for
Âuu (c) and Âδdu (d) both at yfit = 10a. We plot all data points included by the fits for a given
yfit, i.e. all data points in the range yfit ± 0.5a (see the text).

Local py-fits: the results obtained for the y2-fit are used to calculate the normalized
function Â(py, y2), which is then fitted to the functional form (4.15) for certain values of
y2. We perform two sets of fits using N = 2 or N = 3, i.e. there are two or three free
fit parameters, respectively. The free fit parameters are the moments in ζ, i.e. 〈ζ2m〉 with
m = 1, . . . , N . For each accessible value of y2, there is a number of available data points
that can be used to fit the py-dependence. This number strongly varies with y2. In order
to avoid fluctuations caused by this circumstance we do not only consider the data points
with y = yfit, but take into account all data points in a band yfit − 0.5a ≤ y ≤ yfit + 0.5a.
The fit is carried out for yfit = νa, where ν ∈ [4, 16] is an integer.

In figure 15 we show for selected channels the data points of Â(py, y2) entering the
fit for a given y2 in comparison to the resulting fit bands for N = 2 and N = 3. We
observe that the Â data are reasonably described and the two fits are consistent within
the statistical error. For N = 3 the fit tends to be sensitive to the data points at large py,
which causes visible deviations relative to the fit with N = 2.
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Figure 16. Results for 〈ζ2m〉 obtained from the local fit (red points) compared to the global fits
(bands). For N = 2 (top) we performed fits for K = 0 (dark blue), as well as K = 1 (light blue),
whereas for N = 3 (bottom) we fixed K = 0. The results are shown for the second (a,c) and the
fourth moment in ζ (b,d) of the Mellin moment Iud.

There are channels where the data of Â are compatible with zero, which leads to a
dominance of fluctuations. In these cases a reliable fit of the py-dependence is not feasible.
We refer to these channels as the “bad” channels. Explicitly, they are given by the functions
Â∆q∆q′ and B̂δuδu, as well as all polarized channels for the flavor combination dd. These
channels will not be considered in the subsequent physics discussions.

The resulting values of 〈ζ2m〉 are plotted in figures 16 and 17 (red data points). It
appears that the moments are rather small (〈ζ2m〉 < 0.25) and in almost all cases these
show a linear dependence on the distance y. In most cases they are nearly constant.
Deviations from that behavior are seen for uu at small y, where the data tend to increase.
However, this is the region where the violation of Lorentz invariance starts to show up in the
corresponding channels, as we have discussed earlier. This might skew the py-dependence.
The results that are not shown in the plots look very similar. An exception to this are the
data for Âδuδu, which carry large statistical errors.
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Figure 17. The same as figure 16 for the second (left) and fourth (right) moment of ζ in Iuu,
Iδdu, and Itδuδd, where only results for N = 2 are shown.
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The results for the ζ-moments are quite different from those we obtained for the
pion [67], where we found a clear linear rise with increasing y. In that case, for y > 1 fm,
values of 〈ζ2〉 > 0.5 were observed.

Global py-fits: in order to reduce the number of parameters entering our analysis, we
perform a global fit on the Â data using the functional form given in (4.17). This is again
carried out for N = 2, 3. We have seen in the previous discussion that a linear dependence
on y is sufficient to describe the 〈ζ2m〉 behavior. Therefore, we take K = 0, 1 for the global
fits. For N = 3 we restrict ourselves to K = 0, i.e. a constant, since for K = 1 we find that
the data are overfitted. In total we have three fits, where we use (N,K) = (2, 0), (2, 1), (3, 0)
with 2, 4 or 3 free fit parameters, respectively. In each fit we take into account all data
points for which 4a < y < 16a. The resulting curves for K = 0 are plotted in figure 18,
where again we show the py-dependence for fixed values of y2. As for the local fits, the
two possibilities N = 2 and N = 3 yield comparable results; small deviations are found for
large py.

In general, the value of χ2/dof differs only weakly between different fits of the same
channel. In most channels, the differences are marginal (. 0.01). Hence, we consider the
fit with (N,M) = (2, 0) as reliable; the other two fits might already overfit the data. Ex-
ceptions are given by Bδuδd (see the discussion below), and Aδdu, Aδud, where discrepancies
up to 0.11 in χ2/dof are found. This can also be observed in the slightly different behavior
of the fit bands for large py, see figure 18(d). In the last two cases, fits with N = 3 yield
the smallest value for χ2/dof.

The 〈ζ2m〉 curves resulting from the global fits are also shown in figures 16 and 17
(blue and light blue bands). The results for the fit parameters cmk are listed in table 7
to 11, where for completeness also the results of the “bad” channels (see the discussion
above) are shown. In most cases, the linear fit barely differs from the fit to a constant.
For a few exceptions, there is a better overlap with the data if the linear term is included.
The most extreme example is given by Itδuδd, which is shown in figure 17(e) and 17(f).
The corresponding χ2, see table 11, is slightly smaller. However, the linear fit must be
considered with some caution, since there is a wide region in y where the moments 〈ζ2m〉
become negative. For even moments this is mathematically inconsistent. The constant fit
still covers the data points sufficiently well.
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(d) global fit on Âδdu at y = 10a ≈ 0.86 fm, K = 0

Figure 18. The same as figure 15 for slices of the global py-fit with K = 0.

N K c10 c11[fm−1] c20 c21[fm−1] c30 χ2/dof
Auu 2 0 0.093(55) - 0.032(53) - - 0.96

1 0.102(98) −0.00(12) 0.11(12) −0.08(14) - 0.95
3 0 0.104(66) - 0.056(76) - 0.059(88) 0.96

Aud 2 0 0.097(51) - 0.058(49) - - 0.47
1 0.067(77) 0.036(84) 0.06(11) 0.006(97) - 0.46

3 0 0.092(58) - 0.046(63) - 0.038(69) 0.46
Add 2 0 −0.029(99) - −0.13(12) - - 0.93

1 −0.03(27) 0.02(34) −0.03(34) −0.10(42) - 0.93
3 0 0.05(10) - 0.03(13) - 0.10(17) 0.92

Table 7. Fit results for the parameters cmk of our global fit ansatz (4.17) obtained for the unpo-
larized channels Auu, Aud and Add. We take into account (N,K) = (2, 0), (2, 1), (3, 0).
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N K c10 c11[fm−1] c20 c21[fm−1] c30 χ2/dof
A∆u∆u 2 0 −0.36(87) - −0.8(1.3) - - 0.24

1 −0.3(3.2) 0.4(6.8) 1.6(4.6) −3.6(9.2) - 0.24
3 0 0.21(90) - 0.9(1.7) - 2.4(3.3) 0.24

A∆u∆d 2 0 0.15(42) - 0.07(62) - - 0.17
1 0.26(96) −0.2(1.5) 0.2(1.2) −0.2(1.5) - 0.17

3 0 0.09(49) - −0.10(84) - −0.2(1.2) 0.17
A∆d∆d 2 0 0.4(1.3) - 0.2(1.5) - - 0.12

1 1.3(2.6) −1.4(5.1) 1.7(4.0) −2.0(6.4) - 0.12
3 0 0.6(1.2) - 0.7(2.0) - 0.8(3.0) 0.12

Table 8. The same as table 7, but for the twist-two function A∆q∆q′ .

N K c10 c11[fm−1] c20 c21[fm−1] c30 χ2/dof
Aδuu 2 0 0.126(82) - 0.080(84) - - 0.98

1 −0.14(24) 0.29(24) −0.25(31) 0.36(31) - 0.97
3 0 0.137(85) - 0.102(97) - 0.11(11) 0.98

Aδdu 2 0 0.044(49) - 0.002(48) - - 1.02
1 0.14(11) −0.09(11) 0.23(14) −0.21(13) - 0.95

3 0 0.017(54) - −0.056(60) - −0.086(67) 0.91
Aδud 2 0 0.106(49) - 0.048(49) - - 1.06

1 0.013(99) 0.099(96) −0.02(11) 0.077(99) - 1.03
3 0 0.123(54) - 0.085(60) - 0.095(66) 1.01

Aδdd 2 0 −0.36(26) - −0.51(28) - - 0.76
1 −0.70(61) 0.49(67) −0.52(83) 0.15(85) - 0.75

3 0 −0.31(31) - −0.42(42) - −0.38(53) 0.76

Table 9. The same as table 7, but for the twist-two function Aδqq′ .

N K c10 c11[fm−1] c20 c21[fm−1] c30 χ2/dof
Aδuδu 2 0 0.18(29) - 0.37(33) - - 0.58

1 −0.2(1.1) 0.6(1.7) 0.2(1.5) 0.4(2.2) - 0.58
3 0 0.45(38) - 1.01(68) - 1.5(1.0) 0.58

Aδuδd 2 0 0.057(87) - 0.024(95) - - 0.80
1 0.04(19) 0.01(21) −0.15(22) 0.15(22) - 0.78

3 0 0.085(93) - 0.08(11) - 0.12(13) 0.78
Aδdδd 2 0 0.38(49) - 0.35(56) - - 0.47

1 −0.1(1.5) 0.7(1.8) 0.1(1.9) 0.4(2.2) - 0.47
3 0 0.69(62) - 0.96(95) - 1.2(1.3) 0.46

Table 10. The same as table 7, but for the twist-two function Aδqδq′ .
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N K c10 c11[fm−1] c20 c21[fm−1] c30 χ2/dof
Bδuδu 2 0 0.5(1.0) - 0.5(1.5) - - 0.25

1 5.2(4.4) −7.7(7.8) 11.4(8.1) −18(14) - 0.25
3 0 1.6(1.3) - 3.9(2.6) - 6.9(4.6) 0.25

Bδuδd 2 0 0.068(78) - −0.012(72) - - 0.71
1 −0.30(19) 0.37(20) −0.45(27) 0.42(26) - 0.66

3 0 0.080(92) - 0.01(10) - 0.01(12) 0.70
Bδdδd 2 0 −0.4(1.3) - −0.7(2.0) - - 0.20

1 6(12) −11(23) 13(20) −23(35) - 0.20
3 0 1.3(1.6) - 4.3(5.4) - 9(11) 0.20

Table 11. The same as table 7, but for the twist-two function Bδqδq′ .

4.5 Results for Mellin moments

From the fits described in the previous section, we are able to reconstruct the Mellin
moments I(ζ, y2). Combining (4.17), (4.2), (4.9) and executing the Fourier transform (2.28)
we arrive at:

Iqq′(ζ, y2) = π
∑
i=1,2

Aie
−ηi(y−y0)

N∑
n,m=0

K∑
k=0

ζ2n
(
T−1

)
nm

cmk

√
−y2

k+δ
ηδi Θ(1− ζ2) . (4.18)

In the following we discuss the corresponding results and physics implications. We take into
account every channel except for those we characterized as “bad” channels in section 4.4.

Fit dependence: figure 19 shows the results for the Mellin moments I(ζ = 0, y2) for
selected channels. We compare the bands obtained from the three different fits in order
to estimate the systematic error introduced by the extrapolation in py. In each channel
we observe consistency between the different fits, i.e. the three curves coincide within the
error bands. The situation is the same for the channels which are not shown in the plots.
Notice that also the bands for Itδuδd match within the statistical error, despite the fact that
a linear dependence of the moments 〈ζ2m〉 on y seemed to give a better description.

The agreement of the results for different fits also holds for ζ . 0.6 in most of the
channels that we have not excluded. As an example we show the results for Iud, Itδuδd and
Iuu in figure 20 (a-c). An exception is found for Iδdu plotted in figure 20 (d), where clear
deviations between the fits with N = 3 and N = 2 are found for ζ > 0.2. Notice that in
this channel we found the largest variations between the values of χ2/dof of the different
fits. At this point, we emphasize again that the ansatz (4.4) for the functional form of
the DPD Mellin moments represents an expansion around ζ = 0. Consequently, the more
terms of this expansion are taken into account, the more sensitive the results for large ζ
become to fluctuations of the corresponding coefficients.

Since the fit for (N,K) = (2, 0) yields already a consistent description of the data, we
will base our physics discussion on the corresponding results.

Flavor comparison: we compare the results for the DPD Mellin moments w.r.t. the
quark flavor in figure 21, using a logarithmic scale on the vertical axes. The results for
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Figure 19. Results for selected DPD Mellin moments, where we compare the curves obtained from
the fits with (N,K) = (2, 0), (2, 1), (3, 0).

Iδqq′ are multiplied by my, which follows from the decomposition (2.27). Like for the twist-
two functions, we observe that in the case of two unpolarized quarks (see panel (a)) the dd
signal is much smaller than that of ud and uu for large distances. At small y, the Mellin
moments for uu and dd show a steeper slope than Iud. The same behavior is observed for
Iδqq′ in panel (b), where we compare only uu, ud and du, since we have classified dd as a
“bad” channel.

A very interesting result is the different behavior of the Mellin moments Iud and Iuu.
In factorization assumptions as they are made in the pocket formula (see section 2.1) it is
required that the dependence of DPDs on the transverse quark distance is independent of
the quark flavor, see (2.9). Our results clearly exclude this.

Polarization effects: in figure 22 we show the dependence of the Mellin moments on
the quark polarization for ud (c) and uu (a). Again we only show the results for N = 2 and
K = 0. As in the discussion of the twist-2 functions, we multiply the DPD Mellin moments
Iδqq′ or Itδqδq′ by my or m2|y2|, respectively, which follows from the decomposition (2.27).
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Figure 20. ζ dependence of selected DPD Mellin moments, where we compare the curves obtained
from the fits with (N,K) = (2, 0), (2, 1), (3, 0). This is shown for y = 10a.

The polarization dependence of the Mellin moments is very similar to that of the twist-two
functions, which we already gave in figure 13. These are again shown in panel (d) and (b).
We see that the unpolarized channels are clearly dominant for both flavor combinations.
However, in the case of ud, there are visible polarization effects. They are especially large
for Iδud and Iδdu, whereas Mellin moments Iδuδd and Itδuδd are smaller but still significantly
different from zero. At this point, we want to compare with the situation for ud̄ in the
π+, which was calculated in [67]. The corresponding results are also plotted in figure 22.
Remarkably, the behavior of the Mellin moments (e), as well as the twist-two functions (f),
for ud̄ in a π+ is comparable to the one for ud in a nucleon.

In the case of uu in the proton, polarization effects appear to be less important.
Notice that in the corresponding plots we only show the results for Iδuu and Iδuδu, since
the remaining functions belong to “bad” channels, as we have discussed before. The largest
polarized Mellin moment is again Iδuu. Iδuδu is clearly non-zero for small distances, but the
corresponding statistical error is quite large (> 50%). The sign of Iδuδu indicates that the
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Figure 21. Results for the Mellin moments Iqq′ (a) and Iδqq′ (b) obtained from fits with (N,K) =
(2, 0). In each panel we compare contributions for different flavor combinations using a logarithmic
scale on the vertical axis.

quark spins are more aligned than anti-aligned, which agrees with expectations from SU(6)
symmetric valence quark wave functions [13]. However, the ratios I∆u∆d/Iud = −2/3 or
I∆u∆u/Iuu = +1/3 predicted by this model are clearly not observed in our results. The
same conclusion can be drawn from the corresponding data of the twist-two functions.

4.6 The number sum rule

We consider the DPD number sum rule, which we have already stated in (2.6) in position
space. We look at the flavor combination ud. The remaining two flavor combinations
uu and dd cannot be investigated, since the corresponding expressions include sea quark
contributions that would lead to diverging integrals over x1. In the considered case of one
u and one d quark, splitting contributions are at least of second order in αs. Inserting the
sum rule for ordinary PDFs in (2.6) we can write:∫ 1

−1
dx1

∫ 1

−1
dx2

∫
b0/µ

d2y Fud(x1, x2,y;µ) = 2 +O(α2
s(µ)) +O((Λ/µ)2) . (4.19)

By executing the integrals over x1 and x2, we can identify the DPD Mellin moments for
ζ = 0. The Fourier transform in py (2.28) then yields up to corrections of order Λ2/µ2 and
α2
s:

2π
∫ ∞
b0/µ

dy y
∫ ∞
−∞

d(py) Aud(py, y2) = 2 . (4.20)

The verification that this equations holds for the results we presented in the previous
sections can be seen as a consistency check of our lattice calculations and our fitting ansatz.
We evaluate the expression on the l.h.s. of (4.20) by inserting the parameters obtained from
the y2 fit and each of the three global py fits. The corresponding values are summarized
in table 12.
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Figure 22. Comparison between different quark polarizations for the flavor combinations uu (a,b)
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functions, which was already plotted in figure 13. Panels (e) and (f) show the results for ud̄ in the
π+, which were calculated in [67].
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N K χ2/dof integral
2 0 0.47 1.93(23)
3 0 0.46 2.07(51)
2 1 0.46 1.98(24)

Table 12. Results for the integral on the l.h.s. of (4.20) obtained for the fits with (N,K) =
(2, 0), (3, 0), (2, 1). In the center column we again list the values of χ2/dof for the fit.

Each of the obtained results is very close to the value predicted by the sum rule with
a largest absolute deviation of the mean of 0.07. The statistical error varies between 12%
and 25%, i.e. it is larger than the systematic error which is introduced by the extrapolation
in py. Evaluating the integral (4.20) implicitly includes an extrapolation for y > 16a. In
order to estimate the corresponding systematic error, we decrease the upper integration
boundary of the y integral to 16a = 1.37 fm. We obtain values which are at most 16%
smaller. Thus, the systematic error from the extrapolation in y is at most of the size of the
statistical error. Notice that there is no extrapolation to the lower boundary b0/µ ≈ 1.29a,
since the lower boundary of the fit range is 1a in the unpolarized ud case.

5 Factorization tests

A crucial aspect to be studied in the context of DPDs is the strength of parton-parton
correlations. These are neglected in factorization assumptions like (2.8). In the following
we want to check to what extent this factorization ansatz is valid.

5.1 Derivation

Equation (2.8) can be derived by inserting a complete set of states in the two-current matrix
element appearing in (2.1) or (2.11) and then assuming that the intermediate nucleon states
dominate, i.e. omitting all remaining contributions:∑

λ

〈p, λ| Oa1(y, z1) Oa2(0, z2) |p, λ〉 ?=

?=
∑
λ,λ′

∫ dp′+d2p′

2p′+(2π)3 e
−iy(p′−p) 〈p, λ| Oa1(0, z1) |p′, λ′〉 〈p′, λ′| Oa2(0, z2) |p, λ〉 . (5.1)

By writing ?=, we emphasize that (5.1) is an assumption; its validity is investigated in this
section. For the remaining derivation steps, we substitute the intermediate momentum
p′ by:

p′+ = (1− ζ)p+ , p′ = p− r . (5.2)

Furthermore, we set p = 0 and identify:

x̄i = xi

1− ζ
2
, ξ = ζ

2− ζ , t(ζ, r2) = −ζ
2m2 + r2

1− ζ . (5.3)
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Figure 23. Illustration of the approximation of a DPD in terms of GPD matrix elements fλλ′ for
the flavor combination ud. Panel (a) shows the factorization ansatz to be used for the case ζ > 0,
whereas (b) depicts the variant that we employ if ζ < 0.

This enables us to write a factorized expression of the skewed DPD defined in (2.11) in
terms of GPD matrix elements fλ′λ(x̄, ξ,p′,p):

Fa1a2(x1, x2, ζ,y) ?= 1
2(1− ζ)

∫ d2r

(2π)2 e
−iry

 ∏
i=1,2

∫ dz−i
2π eixip

+z−i


×
∑
λλ′

〈p, λ| Oa1(0, z1) |(1− ζ)p+,−r, λ′〉 〈(1− ζ)p+,−r, λ′| Oa2(0, z2) |p, λ〉

= 1
2(1− ζ)

∫ d2r

(2π)2 e
−iry

∑
λλ′

fλλ
′

a1 (x̄1,−ξ,0,−r) fλ′λa2 (x̄2, ξ,−r,0) (5.4)

with

fλ
′λ

a (x̄, ξ,p′,p) :=
∫ dz−

2π eix̄(p′+p)+z−/2 〈p′, λ′| Oa(0, z) |p, λ〉 , (5.5)

where ξ = (p − p′)+/(p + p′)+. This factorization is shown pictorially in figure 23(a) for
the flavor combination ud. In the following we concentrate on the case of two unpolarized
quarks or two longitudinally polarized quarks. In these cases, the GPD matrix elements
can be decomposed in terms of the GPDs H and E or H̃ and Ẽ, respectively. For details
we refer to equation (14) in [82]. The polarization sum in (5.4) can be replaced by:

1
2
∑
λλ′

fλλ
′

q (x̄1,−ξ,0,−r) fλ′λq′ (x̄2, ξ,−r,0) = (1− ξ2) Hq(x̄1,−ξ, t) Hq′(x̄2, ξ, t)

− ξ2Hq(x̄1,−ξ, t) Eq′(x̄2, ξ, t)− ξ2Eq(x̄1,−ξ, t) Hq′(x̄2, ξ, t)

+
(

ξ4

1− ξ2 + 1 + ξ

1− ξ
r2

4m2

)
Eq(x̄1,−ξ, t) Eq′(x̄2, ξ, t) , (5.6)

1
2
∑
λλ′

fλλ
′

∆q (x̄1,−ξ,0,−r) fλ′λ∆q′(x̄2, ξ,−r,0) = (1− ξ2) H̃q(x̄1,−ξ, t) H̃q′(x̄2, ξ, t)

− ξ2H̃q(x̄1,−ξ, t) Ẽq′(x̄2, ξ, t)− ξ2Ẽq(x̄1,−ξ, t) H̃q′(x̄2, ξ, t)

+
(

ξ4

1− ξ2 + 1 + ξ

1− ξ ξ
2 r2

4m2

)
Ẽq(x̄1,−ξ, t) Ẽq′(x̄2, ξ, t) , (5.7)

with t = t(ζ, r2) from (5.3). Notice that for ξ = 0 the cross terms between H and E

in (5.6), as well as the last three terms in (5.7) vanish. This is the case if the skewness
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parameter ζ is zero. For that case, the expressions in (5.6) and (5.7) have already been
derived in [13], see equations (4.48) and (4.49) therein.

Before we continue, we have to discuss an issue regarding the support region w.r.t.
xi and ζ, which is different on the two sides of (5.4). On the r.h.s. the support region
is constrained by −1 + ζ/2 < xi < 1 − ζ/2, whereas on the l.h.s. it is given by (2.12).
Except for the case where ζ = 1, the two regions are distinct. Their mismatch is even more
pronounced if ζ < 0. For this reason, we derive an alternative factorization formula by
commuting the two operators in the two-current matrix element. Following the same steps
as in the derivation of (5.4), we obtain:

Fa1a2(x1, x2, ζ,y) ?= 1
2(1 + ζ)

∫ d2r

(2π)2 e
−iry

∑
λλ′

fλλ
′

a2 (x̄′2,−ξ′,0,−r) fλ′λa1 (x̄′1, ξ′,−r,0) ,

x̄′i = xi

1 + ζ
2
, ξ′ = − ζ

2 + ζ
. (5.8)

The corresponding support regions show the same relative behavior as for (5.4) and ζ > 0.
Hence, we shall use (5.4) for ζ > 0 and (5.8) if ζ < 0 for the following calculations. A
graphical representation of (5.8) can be found in figure 23(b). Taking the first Mellin
moments on both sides in (5.4), we find

Ia1a2(ζ,−y2) ?=
(1− ζ

2)2

2(1− ζ)

∫ d2r

(2π)2 e
−iry

∫
dx1

∫
dx2

×
∑
λλ′

fλλ
′

a1 (x1,−ξ,0,−r) fλ′λa2 (x2, ξ,−r,0) . (5.9)

and an analogous expression for (5.8). The integrals over xi of the corresponding GPD
matrix elements can be expressed in terms of the Pauli and Dirac form factors F1 and F2
(for fq) or the axial and pseudoscalar2 form factors gA and gP (for f∆q), which are the
lowest Mellin moments of the GPDs H and E or H̃ and Ẽ, respectively. Since the GPDs
are invariant under rotations in the transverse plane, we can evaluate the angular part of
the r-integral. Considering Iqq′ or I∆q∆q′ and inserting ζ = 0 we can write:

Iqq′(ζ = 0,−y2) ?=
∫ dr

2π rJ0(ry)
[
F q1 (−r2) F q

′

1 (−r2) + r2

4m2F
q
2 (−r2) F q

′

2 (−r2)
]
,

(5.10)

I∆q∆q′(ζ = 0,−y2) ?=
∫ dr

2π rJ0(ry) gqA(−r2) gq
′

A (−r2) (5.11)

with the Bessel function J0. The validity of the equations (5.10) and (5.11) is one subject
to be investigated in this section. Another relation can be derived by using (2.29) and
performing the angular part of the r-integral in (5.9). This yields:

Aa1a2(py = 0,−y2) ?= 1
2π2

∫ 1

0
dζ

(1− ζ
2)2

2(1− ζ)

∫
dr rJ0(yr)

×
∫

dx1

∫
dx2

∑
λλ′

fλλ
′

a1 (x1,−ξ,0,−r) fλ′λa2 (x2, ξ,−r,0) . (5.12)

2This is also called the induced pseudoscalar form factor.
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Considering Aqq and A∆q∆q′ and replacing the integrals over xi of the GPD matrix elements
by F1, FF2 , gA, or gP , we arrive at:

Aqq′(py = 0,−y2) ?= 1
2π2

∫ 1

0
dζ

(1− ζ
2)2

1− ζ

∫
dr rJ0(yr)

[
K1(ζ) F q1 (t) F q

′

1 (t)

−K2(ζ)
(
F q1 (t) F q

′

2 (t) + F q
′

1 (t) F q2 (t)
)

+
(
K3(ζ) +K4(ζ) r2

4m2

)
F q2 (t) F q

′

2 (t)
]
,

(5.13)

A∆q∆q′(py = 0,−y2) ?= 1
2π2

∫ 1

0
dζ

(1− ζ
2)2

1− ζ

∫
dr rJ0(yr)

[
K1(ζ) gqA(t) gq

′

A (t)

−K2(ζ)
(
gqA(t) gq

′

P (t) + gq
′

A (t) gqP (t)
)

+
(
K3(ζ) +K5(ζ) r2

4m2

)
gqP (t) gq

′

P (t)
]
, (5.14)

where t is a function of ζ and r2 as defined in (5.3), and

K1(ζ) := 1−K2(ζ) , K2(ζ) := ζ2

(2− ζ)2 , K3(ζ) := (K2(ζ))2

K1(ζ) ,

K4(ζ) := 1
1− ζ , K5(ζ) := K2(ζ) K4(ζ) . (5.15)

In our lattice study we obtained data for the l.h.s. of (5.13), (5.14), (5.10), and (5.11).
In the remainder of this section we investigate differences relative to the corresponding
factorized expressions given on the r.h.s.. These can be calculated form the nucleon form
factors, which can be evaluated in lattice studies.

5.2 The nucleon form factor

As already mentioned, the nucleon form factors as functions of the virtuality t can be
obtained from lattice calculations. In this study we use the form factor data [83] which has
been generated in the simulation described in [84]. In that work various gauge ensembles
have been investigated; we take the form factor data for gauge ensemble H102, which is
the same ensemble that is used in our DPD study. The form factor analysis carefully
takes account of excited state contributions. The absolute value of the largest initial
proton momentum that has been used is |~p | =

√
6 · 2π/(La) ≈ 1.11 GeV. Notice that

the final momentum is set to ~p ′ = 0. In this setup, the largest available virtuality is
t = −∆2 ≈ 1.02 GeV2.

In order to evaluate the integrals (5.13), (5.14), (5.10), and (5.11), we need to extrap-
olate the lattice results in t. To this end, we fit the form factor data to a power law of the
form

F (t) = F (0)(
1− t

M2

)n , (5.16)

which is frequently used for parameterization of form factors. For each channel we
perform two different fits with fixed values for the exponent, n = 2 and n = 3, whereas F (0)
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Figure 24. t-dependence of the form factor data points and the corresponding curves obtained
from a fit to the ansatz (5.16) with n = 3. This is shown for the Pauli and Dirac form factors in
panel (a), as well as for the axial and pseudoscalar form factors (b).
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form factor F (0) M2[GeV2] n(fixed) χ2/dof
F u1 1.977(12) 1.063(19) 2 1.09

1.936(11) 1.747(29) 3 1.79
F u2 1.764(38) 0.982(44) 2 1.63

1.711(34) 1.674(68) 3 0.52
F d1 1.0421(70) 0.766(13) 2 7.15

1.0035(60) 1.300(19) 3 2.06
0.9860(57) 1.837(26) 4 0.94

F d2 −1.744(23) 0.834(19) 2 2.51
−1.658(20) 1.456(29) 3 1.30

Table 13. Results for the fit parameters F (0) and M2 obtained from a fit on the data of the Pauli
and Dirac form factors using the ansatz (5.16) with fixed n. The corresponding χ2/dof, which takes
into account the complete covariance matrix, is also listed.

form factor F (0) M2[GeV2] n(fixed) χ2/dof
guA 0.8999(82) 1.971(64) 2 1.61

0.8920(78) 3.161(97) 3 0.82
guP 29.84(94) 0.327(11) 2 0.30

24.73(62) 0.688(17) 3 1.03
gdA −0.2930(41) 1.800(81) 2 1.05

−0.2896(39) 2.90(12) 3 0.93
gdP −9.62(77) 0.305(27) 2 0.13

−7.88(49) 0.638(44) 3 0.60

Table 14. The same as table 13 for the axial and pseudoscalar form factors.

and M enter the fit as free fit parameters. The fits are performed employing the complete
covariance matrix, i.e. taking into account correlations between the data points. The
resulting curves are shown together with the form factor data in figure 24 for n = 3. The
corresponding values of the fit parameters and of the χ2/dof are summarized in table 13
(vector current) and table 14 (axial current), respectively. In order to analyze the quality
of the fit, we plot for each fit the ratio of the data and the fit value. This is shown in
figure 25.

From most of the fits we obtain a sufficiently good description of the form factor
data. The only exception is found for F d1 and n = 2, where we observe a relatively large
discrepancy between the data and the resulting curve, see figure 25(a). Consequently, the
corresponding χ2/dof has the very large value of 7.15. Hence, we perform an alternative
fit using n = 4, which again yields a reasonable result. For the remainder of this section
we discard the fit for F d1 with n = 2 and instead use the fit for n = 4 in this channel.
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Figure 26. Comparison between the different terms contributing to the factorized expressions for
the twist-two functions Aud, A∆u∆d, Auu, and for the Mellin moment Iud at zero skewness ζ. In the
keys we use the short notation K34 := K3(ζ)+K4(ζ) r2/(4m2) and K35 := K3(ζ)+K5(ζ) r2/(4m2).

5.3 Results

Before comparing the two sides of the factorization formulae (5.13), (5.14), (5.10),
and (5.11), let us investigate the different terms on their r.h.s.. In figure 26 we com-
pare the size of the integrals over these terms. Notice that the shown results are based
on the form factor fits with the smallest χ2. In the unpolarized channels the F1F1-term is
found to be dominant, whereas the remaining contributions are very small. As an example
we show Aud (a) and Add (c), as well as Iud (d). In the longitudinally polarized case, the
gAgA-term is also the most relevant one, but the relative size of the other contributions is
larger than in the unpolarized cases. This can be observed e.g. in the result for A∆u∆d,
which is plotted in figure 26(b). A similar behavior is found in the other channels that
are not shown in the plots.

In the following, we consider the complete results of the r.h.s. of (5.13), (5.14), (5.10),
and (5.11) obtained from the corresponding integrals over the form factors and compare
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Figure 27. Left: comparison of the twist-two functions Auu (a) and Aud (c) (green points) and
the factorization results obtained by the integral (5.13). The red curve is obtained from the form
factor fits with best χ2/dof. The orange band represents the envelope of the error bands of the
different fits. Right: ratio of the form factor integral and the corresponding twist-two functions,
again shown for Auu (b) and Aud (d). In the panels (a) and (c) we also present the integration
result taking into account only the first term (5.13) (blue curve). In panel (e) and (f), we show the
corresponding results for the π+ obtained in [67] for two different fits.
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Figure 28. The twist-two functions Add (a), A∆u∆d (b), A∆d∆d (c) and A∆u∆u (d) compared
to the corresponding form factor integral (5.13) or (5.14). The orange band again represents the
envelope of the error bands for the different fits. The blue curve shows again the integration result
of the first term in (5.13) or (5.14).

them to the l.h.s.. The observed difference can be interpreted as a measure of the strength
of the quark-quark correlations. If the values of the involved data points are large enough
compared to the statistical error, we also compute the ratio of both sides, in order to better
see similarities and differences. We start with (5.13), where the two sides, as well as the
ratio of both sides is shown in figure 27 for Aud and Auu. The result for Add (without
the ratio, since the signal is not sufficiently clean) is plotted in figure 28(a). For all flavor
combinations, the form factor result correctly reproduces the size of the two-current data.
Deviations are observed to be very small. From the ratio, we can read off the relative
deviation, which is at most ∼ 20% for ud. For uu, deviations are seen to be typically
around ∼ 20%. Notice that the F2F2-term and the mixed term play only a minor role in
the integral formula, i.e. the F1F1-term (blue curve) is almost equal to the complete result.

The size of the two results also matches in the longitudinally polarized channels, as can
be seen in figure 28 for A∆u∆d (b), A∆d∆d (c), and A∆u∆u (d). A remarkable observation
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is the nearly perfect agreement within statistical errors in the case of A∆u∆d. Notice that
the two-current signal of A∆d∆d is consistent with zero. Hence, the agreement of the
corresponding curves and data points should be interpreted with some caution. In contrast
to the unpolarized case, taking the complete integral instead of only the gAgA-term is
crucial. Evaluating the integral over the gAgA-term only (the corresponding result is again
shown by the blue curve) yields a significant difference between the two sides of (5.14). In
figure 27(e) and 27(f) we show again the factorization results for Aud̄ for the π+, which
has been investigated in [67]. The results obtained there are comparable with those of Aud
in the nucleon that we have described above.

Finally, we want to consider the factorization for the Mellin moments Iqq′ at ζ = 0
according to (5.10). We shall not discuss (5.11), since we do not have results of sufficient
quality for I∆q∆q′ , as we have concluded in section 4.4. Figure 29 shows the two sides
of (5.10) (a), as well as the ratio (b) for quark flavor ud, while the analogous results for
uu and dd (the latter again without the ratio) are shown in (c), (d) and (e). The integral
again yields a consistent order of magnitude. However, the deviations of the two curves
are found to be larger than for the factorization ansatz of the twist-two functions. The
relative deviations are at most ∼ 40% for ud and ∼ 60% for uu. Again we compare with
the situation for the π+, which is shown in figure 29(f). Especially for small distances y,
the factorization result of Iud̄ is closer to the two-current result for the Mellin moment in
the pion case than it is observed for ud in the proton.

Notice that regions where the integral gives a higher value than the two-current data,
or vice versa, are consistently the same for the twist-two functions and the Mellin moments.
For ud we observe the integral to be larger for y < 8a, while it is smaller if y > 8a. This
means that in a joint observation of an u and a d quark, we find the two quarks farther
apart than we would if they were uncorrelated. This is similar to ud̄ in the π+ described
in [67]. For two quarks of the same flavor, the integration results are generally larger than
the two-current data. An exception is given by the region y < 5a, where at least the
twist-two function results indicate a sign change in the absolute difference.
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Figure 29. Mellin moment Iud at ζ = 0 compared to its factorized result obtained from the
corresponding integral (5.10) (a) and the ratio of the integral and the Mellin moment (b). The
same is plotted for Iuu (c,d) and Idd (e). For the latter the ratio is not shown. The orange curve
shows the envelope of the error bands for every fit. The result of a integral where only the first term
in (5.10) is taken into account is represented by the blue curve. Panel (f) shows the factorization
result for Iud̄ in the π+ obtained in [67] for the two form factor fits considered in that work.
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6 Conclusions

This paper presents the first lattice calculation that provides information about double
parton distributions in the proton. The distributions in the neutron are readily obtained
from isospin symmetry. Our simulations are done on a 323 × 96 lattice with spacing a ≈
0.086 fm and a pion mass of mπ = 355 MeV. We compute the correlation functions (2.18)
of two spatially separated currents in the proton and project out their twist-two parts. Our
primary observables are the invariant functions A and B associated with that projection,
see (2.25). They depend on the distance yµ between the two currents and on proton four-
momentum pµ via the scalar products y2 and py. We consider the vector, axial, and tensor
current, whose twist-two components respectively correspond to unpolarized, longitudinally
polarized, and transversely polarized quarks.

Lattice aspects. We evaluate all Wick contractions that contribute to the two-current
correlation functions, making heavy use of stochastic sources, sequential sources, and the
hopping parameter expansion. The statistical signal we obtain is in general very good
for the connected graphs C1 and C2 and the disconnected graph S2, and fair for the
disconnected graph S1 (see figure 3). Only for the doubly disconnected graph D are
the errors so large that we must exclude it from our analysis. Lattice artifacts manifest
themselves in the invariant functions as a breaking of rotation invariance (i.e. a dependence
on direction of ~y ) and a breaking of boost invariance (at given y = |~y | and py the functions
must be independent of pµ). We find a significant amount of anisotropy in the C1 data at
large y and in the C2 and S2 data at small y. These can be interpreted as a finite size effect
in the first case and as due to the anisotropy of the lattice propagator in the second case.
We can largely remove these effects by selecting points ~y close to the lattice diagonals and
by imposing a lower cutoff on y, which depending on the polarization channel is taken of
order 4a ≈ 0.34 fm. After this selection, the violation of boost invariance is at an acceptable
level, except for graph S2, where a momentum dependence is seen up to about y ∼ 7a. For
larger y, the contribution of S2 to physical matrix elements is small compared with the
one from C1 and C2. The contribution of S1 is found to be small at the scale of C1 and
C2, except for larger y, where the errors on S1 prevent us from drawing strong conclusions.
For our final physics analysis, we restrict ourselves to the contributions of the connected
graphs C1 and C2, where C2 is absent for the parton combination ud and C1 is absent
for dd.

Results. In a first stage, we analyze the invariant twist-two functions A and B at py = 0,
where the statistical signal is best and the data can be plotted as a function of the single
variable y. To connect these functions with DPDs, we slightly deform them by a skewness
in the parton momentum fractions that is parameterized by ζ (see figure 1). Twist-two
functions at py = 0 are then equal to the Mellin moments of skewed DPDs integrated
over ζ. The size of these functions is seen to be largest for Aqq′ and Aδqq′ , with the
former corresponding to unpolarized partons and the latter to the correlation between the
transverse polarization of one parton and the parton separation. Our results exhibit a clear
flavor dependence, with Aud and Aδud ≈ Aδdu decreasing more slowly with y than their
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counterparts for two u or two d quarks (see figure 12). For unpolarized quarks, this finding
is of particular importance, because one of the assumptions made for deriving the pocket
formula (2.10) for DPS cross sections is a universal y dependence of DPDs for all flavor
combinations. Interestingly, Auu and Add have a rather similar y dependence, although the
former receives a contribution from C1 but the latter does not.

The signal for spin dependent functions other than Aδqq′ is best for the ud combina-
tion, whereas for qq′ = uu and dd it is mostly consistent with zero (see figure 13). In
the ud channel, the invariant functions for two polarized quarks are significantly smaller
than Aδud. We see a clear difference between the spin-spin correlations A∆u∆d and Aδuδd
for longitudinal and transverse polarization, which shows the inadequacy of simple non-
relativistic pictures that predict them to be equal. Moreover, we find that the longitudinal
polarization ratios A∆u∆d/Aud and A∆u∆u/Auu are significantly smaller in size than the
values −2/3 and +1/3 obtained with a static SU(6) invariant wave function for the three
valence quarks in the proton [13]. Interestingly, the pattern of polarization dependence
for ud in the proton is quite similar to the one we found for ud̄ in a π+ in our previous
work [67].

In the second stage of our analysis, we assume a parametric form for the y and py

dependence of the twist-two functions (see (4.2) and (4.17)). We use this to fit our data
and to extrapolate it to the full range of py, which is needed to compute the Mellin moments
Iqq′ , Iδqq′ , . . . of DPDs at given skewness ζ. For flavor and polarization combinations with
sufficiently small statistical errors, the results of fits with different numbers of parameters
are consistent with each other for small to moderate ζ (see figures 19 and 20). This gives
us confidence in analyzing the corresponding Mellin moments at ζ = 0 and thus to make
closer contact with the physics of double parton scattering.

The flavor and polarization dependence of Mellin moments at ζ = 0 is very similar to
the one of the associated twist-two functions at py = 0, which corroborates the physics
conclusions discussed above (see figures 21 and 22). From the moment Iud, we can also
evaluate the x integral of the number sum rule for DPDs [33, 70]. We find excellent
agreement with the predicted value of the sum rule (see table 12) and regard this as a
strong check of our fitting ansatz and analysis procedure.

Correlation effects. Many models for DPDs rest on the assumption that the two partons
are independent of each other. This assumption can be formalized and leads to factorization
formulae for the twist-two functions Aqq′ and A∆q∆q′ ((5.13) and (5.14)), and for the
associated Mellin moments ((5.10) and (5.11)). These functions are then expressed in
terms of the nucleon Dirac and Pauli form factors F1 and F2 for unpolarized quarks, and
of the axial and pseudoscalar form factors gA and gP for longitudinal quark polarization.
We fit these form factors to lattice data from the same ensemble used for computing the
two-current correlators, and then extrapolate the form factors in the momentum transfer.
We find that the factorization formula for unpolarized quarks is to a good approximation
saturated by the contribution from F1, whilst for longitudinal polarization it is important
to include the contributions from both gA and gP (see figure 26).
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We find that the factorization assumption for Aud and Auu at py = 0 works remarkably
well, with deviations not larger than 20% in the y range considered (see figure 27). It
works rather well also for A∆u∆d, whereas for Add and A∆u∆u larger deviations from
factorization are observed (see figure 28). The factorization for the Mellin moments Iud
and Iuu at ζ = 0 works rather well, albeit with deviations up to almost 60%, whereas for
Idd the discrepancies are again larger (see figure 29). In other channels, the errors in our
data or fits are too large for drawing solid conclusions.

Summary and outlook. In summary, we find that the calculation of two-current corre-
lators on the lattice can provide valuable physics insight into two-quark correlations inside
the proton, which are essential for understanding double parton scattering. Our main
results are as follows. (i) The dependence of two-parton distributions on the distance y
is not the same for different flavors. (ii) Spin-spin correlations between two quarks are
remarkably small, in contrast to spin-orbit correlations. (iii) The functions we studied
approximately factorize into separate functions for the individual partons.

Important challenges for future work are to perform simulations at smaller lattice
spacings, so as to extend the y range where lattice artifacts can be controlled, and to move
closer to the physical pion mass. Improvements that will allow the inclusion of disconnected
graphs in the physics analysis are also highly desired. The results obtained in the present
study strongly motivate us to make efforts in these directions.
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A Notation and lattice technicalities

In the following, we list expressions that are useful for the calculation of the baryon four-
point contractions introduced in section 3. This includes symmetry relations, as well as
ingredients that are used to evaluate the four-point contractions on the lattice. Further-
more, we give details on the notation used in this paper.
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Object Symbol Degrees of freedom Explicit
Gauge link Uµ space× color2 (Uµ)ab (x)

Generic source S space× spinor2 × color2 Sabαβ(x)
Smearing function Φ space2 × color2 Φab(x|y)
Dirac operator D space2 × spin2 × color2 Dabαβ(x|y)

Propagator (x→ y) M space2 × spin2 × color2 Mab
αβ(y|x)

Point(x)-to-all(y) propagator Mx space× spinor2 × color2 (Mx)abαβ (y)
Stochastic source/propagator η, ψ space× spinor× color ηαa(x), ψαa(x)

Sequential propagator (at time t) Xt space× spinor2 × color2 (Xt)abαβ (x)
Gamma matrices Γ spinor2 Γαβ

Table 15. Lattice objects and their degrees of freedom regarding spacetime (for brevity, we write
“space” in the table), spinor and color indices. Notice that Lorentz indices, e.g. of the gauge link
Uµ, are always written explicitly.

A.1 Notation

In this work we use the following notation conventions:

• Indices: lorentz indices are denoted by Greek letters µ, ν, . . . , spinor indices by
α, β, . . . , and color indices (fundamental) by Latin letters a, b, c, . . . .

• Spacetime dependencies are indicated by an argument if it represents a degree of
freedom. If the corresponding variable is fixed (e.g. the source position of a point-to-
all propagator) an index is used instead.

• Unless stated otherwise, traces and transpositions are taken w.r.t. spinor and color
indices.

• For a given 4-vector yµ we denote the spatial components by ~y (identical in Minkowski
and Euclidean spacetime). The spatial distance is denoted by y := |~y |. If y0 = 0,
we have |~y |2 = −y2 := −yµyµ. In order to avoid confusion with the usual Minkowski
scalar product y2, we explicitly write

√
−y2n for the n-th power of y = |~y |.

For better readability, spinor and color indices, as well as spacetime arguments are not
always explicitly written in section 3.2. This applies if the considered objects have matrix
or vector character w.r.t. these indices or arguments. We list some of the objects that are
considered in this work and display their explicit notation in table 15. Notice that each of
the mentioned expressions may have further dependencies which are not stated above. A
product of these quantities is considered to be a matrix-matrix or matrix-vector product.
As an example we rewrite (3.41) using the compact and the explicit notation, respectively:

DXΦ,~p
t,3pt = Φ~pγ5S

†,~p
t,3pt

⇔
∑
y,β,b

Dabαβ(x|y)
(
XΦ,~p
t,3pt(y)

)bc
βγ

=
∑
y,β,b

(
Φ~p(x|y)

)ab
(γ5)αβ

[(
S~pt,3pt(y)

)cb
γβ

]∗
. (A.1)
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Each of the two sides carries the (implicit) indices or arguments x, α, γ, a, and c, i.e. :[
DXΦ,~p

t,3pt(x)
]ac
αγ

,
[
Φ~pγ5S

†,~p
t,3pt(x)

]ac
αγ

. (A.2)

In some cases where spinor and color indices are written explicitly, we make use of the
Einstein summation convention, i.e. indices that appear twice are to be summed over.

A.2 Explicit expressions for four-point Wick contractions

The baryons are created and annihilated by the interpolators (3.3). Referring to this
equation, we assign the following integer numbers to the quark fields:

ūa → 1̄ , d̄Tb → 2̄ , ūc → 3̄ ,
uTb → 1 , dc → 2 , ua → 3 . (A.3)

These numbers are also shown in the upper left panel of figure 30 and are used in the
following to indicate the permutation of the annihilator fields w.r.t. the creator fields.
The connected part of a generic baryon Wick contraction can be written in terms of the
expressions (traces and transpositions are taken w.r.t. to spinor indices only):

G123[X,Y, Z] := εabc εa
′b′c′ tr

{(
ΓB
)T

Xa′a ΓB Y T
b′b

}
tr
{
Zc′c ΓA

}
,

G213[X,Y, Z] := −εabc εa′b′c′ tr
{

ΓB Xb′a ΓB Y T
a′b

}
tr
{
Zc′c ΓA

}
,

G321[X,Y, Z] := −εabc εa′b′c′ tr
{

ΓA Xc′a ΓB Y T
b′b

(
ΓB
)T

Za′c

}
,

G132[X,Y, Z] := −εabc εa′b′c′ tr
{(

ΓB
)T

XT
a′a ΓB Zb′c ΓA Yc′b

}
,

G231[X,Y, Z] := εabc εa
′b′c′ tr

{(
ΓB Xb′a ΓB

)T
Za′c ΓA Yc′b

}
,

G312[X,Y, Z] := εabc εa
′b′c′ tr

{
ΓA Xc′a ΓB Y T

a′b ΓB Zb′c
}
. (A.4)

For the nucleon we have ΓB = Cγ5 and ΓA = P+, where C is the charge conjugation matrix
and P+ selects positive parity. As a consequence, we can relate:

G321[X,Y, Z] = G132[Y,X,Z] , G312[X,Y, Z] = G231[Y,X,Z] . (A.5)

X, Y and Z can be either a propagator M(z′|z) connecting the source at z and the sink
at z′ or one of the following terms:

Ki
1(z′|y|z) := M(z′|y) Γi M(y|z) ,

Kji
2 (z′|y|z) := M(z′|y) Γi M(y|0) Γj M(0|z) ,

K
ij
2 (z′|y|z) := M(z′|0) Γj M(0|y) Γi M(y|z) = Kij

2 (z′| − y|z) . (A.6)

Each of the expressions Gijk, K1, K2 and K2 is pictorially represented in figure 30.
The second identity in the last line of (A.6) is a consequence of translational invariance. We
now consider the effects of PT transformations and the combination of complex conjugation
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G123[X,Y , Z] G312[X,Y , Z] G231[X,Y , Z]

I(1̄)
J(2̄)
I(3̄)

J (1)
I (2)
I (3)

.
I
J
I

J
I
I

.
I
J
I

J
I
I

.

G213[X,Y , Z] G132[X,Y , Z] G321[X,Y , Z]

I
J
I

J
I
I

.
I
J
I

J
I
I

.
I
J
I

J
I
I

.

Ki
1(z′|y|z) Kji

2 (z′|y|z) K
ij

2 (z′|y|z)

z z′
Γi

y
. z z′

Γiy

Γj
0

. z z′

Γiy

Γj
0

.

Figure 30. Depiction of expressions (A.4) and (A.6) used for the construction of each baryonic
four-point function graph. The blobs at the left (right) of each graph in the two first lines denote
the baryon source (sink). Each symbol I and J represents a quark field, where J means that the
corresponding spinor has to be transposed. The boxes denote the di-quark. For the three quark
line types (bottom) we also indicate the positions of the propagator end points and the indices of
the current insertions.

and CP transformation on the previously defined expressions. The following relations are
understood to be valid after integrating over the gauge fields:

X
PT−−→ S−1 [UPT (X)]T S X∗

CP−−→ A−1 UCP (X) A , (A.7)

where

UPT (M(z′|z)) := M(−z| − z′) ,
UCP (M(z′|z)) := M(z̃′|z̃) ,

UPT (Ki
1(z′|y|z)) := ηiPT η

i
4 K

i
1(−z| − y| − z′) ,

UCP (Ki
1(z′|y|z)) := ηiPT K

i
1(z̃′|ỹ|z̃) ,

UPT (Kji
2 (z′|y|z)) := ηijPT η

ij
4 Kij

2 (−z|y| − z′) ,
UCP (Kji

2 (z′|y|z)) := ηijPT K
ji
2 (z̃′|ỹ|z̃) , (A.8)

with z̃ := (−~z , z4), and

S := γ4T , A := γ4Cγ5 . (A.9)

T is the time reflection matrix. We use a chiral basis for the Dirac matrices, where C = γ2γ4
and T = γ1γ3γ4. The sign factors ηPT, η4 are defined in (2.14) and (3.9), respectively.
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Considering the generic connected baryon contractions (A.4) we find for the nucleon:

(
Gijk[X,Y, Z]

)∗ CP−−→ Gijk[UCP (X), UCP (Y ), UCP (Z)] , (A.10)

and moreover

Gijk[X,Y, Z] PT−−→ Gijk[UPT (X), UPT (Y ), UPT (Z)] for (ijk) = (123), (213) ,

Gijk[X,Y, Z] PT−−→ Gijk[UPT (Z), UPT (Y ), UPT (X)] for (ijk) = (321), (312) ,

Gijk[X,Y, Z] PT−−→ Gijk[UPT (X), UPT (Z), UPT (Y )] for (ijk) = (132), (231) . (A.11)

Notice the different orderings of X, Y , Z on the r.h.s. . Furthermore, we define the loops:

Li1(y) := tr {Γi M(y|y)} ,
Lij2 (y) := tr {Γi M(y|0) Γj M(0|y)} . (A.12)

As discussed in section 3.1, there are five types of Wick contractions, which can be repre-
sented by the graphs depicted in figure 3. The explicit contributions depend on the quark
flavors of the inserted operators and the baryon, which in our case is always a proton.
Since the end points are always connected to the source at z and the sink at z′, we shall
not write the corresponding arguments of K1,2 and K2 in the following for brevity. For
C1-type graphs we define:

Cij1,uudd(z, z
′, y) :=

〈
G123[Ki

1(y),Kj
1(0),M ] +G321[Ki

1(y),Kj
1(0),M ]

+G321[M,Kj
1(0),Ki

1(y)] +G123[M,Kj
1(0),Ki

1(y)]
〉
,

Cij1,uuuu(z, z′, y) :=
〈
G123[Ki

1(y),M,Kj
1(0)] +G321[Ki

1(y),M,Kj
1(0)]

+G321[Kj
1(0),M,Ki

1(y)] +G123[Kj
1(0),M,Ki

1(y)]
〉
,

Cij1,uddu(z, z′, y) :=
〈
G213[Ki

1(y),Kj
1(0),M ] +G231[Ki

1(y),Kj
1(0),M ]

+G312[M,Kj
1(0),Ki

1(y)] +G132[M,Kj
1(0),Ki

1(y)]
〉

= Cij1,duud(z, z
′,−y) . (A.13)

The contribution for a certain proton momentum is obtained by a discrete Fourier trans-
form:

Cij,~p1,uudd(~y , t, τ) := a6∑
~z~z ′

e−i~p(~z ′−~z )Cij1,uudd(z, z
′, y)|y4=τ,z4=0,z′4=t , (A.14)

with analogous expressions for the remaining contractions, which shall be defined in the

– 63 –



J
H
E
P
0
9
(
2
0
2
1
)
1
0
6

following. The contributions for C2 and S1 can be written as:

Cij2,u(z, z′, y) :=
〈
G123[Kji

2 (y),M,M ] +G321[Kji
2 (y),M,M ]

+G321[M,M,Kji
2 (y)] +G123[M,M,Kji

2 (y)]
〉
,

Cij2,d(z, z
′, y) :=

〈
G123[M,Kji

2 (y),M ] +G321[M,Kji
2 (y),M ]

〉
,

Sij1,u(z, z′, y) := −
〈[
G123[Ki

1(y),M,M ] +G321[Ki
1(y),M,M ]

+G321[M,M,Ki
1(y)] +G123[M,M,Ki

1(y)]
]
Lj1(0)

〉
,

Sij1,d(z, z
′, y) := −

〈[
G123[M,Ki

1(y),M ] +G321[M,Ki
1(y),M ]

]
Lj1(0)

〉
. (A.15)

The last two contractions we consider are purely disconnected and are defined as:

Sij2 (z, z′, y) := −
〈[
G123[M,M,M ] +G321[M,M,M ]

]
Lij2 (y)

〉
,

Dij(z, z′, y) :=
〈[
G123[M,M,M ] +G321[M,M,M ]

]
Li1(y)Lj1(0)

〉
. (A.16)

For completeness, we also give the expression for the two-point function:

C2pt(z, z′) :=
〈
G123[M,M,M ] +G321[M,M,M ]

〉
. (A.17)

A.3 Baryon sources and sinks

In the following, we list the terms that are used to construct the sequential sources and
contractions needed for the evaluation of baryonic four-point graphs. Notice that each
quantity given in the following is based on a point-to-all propagator with point source at
z. After correcting the momentum phase by multiplying with E~p(z) and averaging over all
gauge fields, the complete contraction is independent of the source position. This is why
on the l.h.s. in (A.19) z is not written as argument or index.

C1-sink (sequential source): for the sequential source required by the C1 graph at the
baryon sink, we have six possibilities to attach the quark lines to the sink kernel (3.28).
Since each of the quark lines is evaluated in a technically different manner, there are also
six possible expressions that can appear in the construction of the sequential source from
which the sequential propagator of quark line c (3.33) is calculated. In terms of the forward
propagator M (quark line a) and the stochastic source η (quark line b), the sequential
sources are given by:

σ

(
S
~p,(`)
123

)b̄a′
β̄α′

(z′) := E~p(z′) (P+γ5)σα′
[(

Φ~pMΦ,~p
z (z′)

)T
Ea
′Φ~pγ5η

(`)(z′)
]b̄
β̄
,

σ

(
S
~p,(`)
213

)c̄a′
γ̄α′

(z′) := E~p(z′) (P+γ5)σα′
[(

Φ~pη(`)(z′)
)T

γT5 E
a′Φ~pMΦ,~p

z (z′)
]c̄
γ̄
,

σ

(
S
~p,(`)
231

)c̄b′
γ̄β′

(z′) := E~p(z′)
(
P+Φ~pγ5η

(`)(z′)
)a
σ

[
γT5 E

aΦ~pMΦ,~p
z (z′)

]b′c̄
β′γ̄

,

σ

(
S
~p,(`)
132

)b̄c′
β̄γ′

(z′) := E~p(z′)
(
P+Φ~pγ5η

(`)(z′)
)a
σ

[(
Φ~pMΦ,~p

z (z′)
)T

Eaγ5

]b̄c′
β̄γ′

,
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σ

(
S
~p,(`)
312

)āc′
ᾱγ′

(z′) := E~p(z′)
(
P+Φ~pMΦ,~p

z (z′)
)aā
σᾱ

[(
Φ~pη(`)(z′)

)T
γT5 E

aγ5

]c′
γ′
,

σ

(
S
~p,(`)
321

)āb′
ᾱβ′

(z′) := E~p(z′)
(
P+Φ~pMΦ,~p

z (z′)
)aā
σᾱ

[
γT5 E

aΦ~pγ5η
(`)(z′)

]b′
β′
. (A.18)

The integer indices denote which quark line is connected to which part according to the
pattern n(a)n(b)n(c), where n(a) indicates the number of the quark field (see (A.3)) to
which the quark line a is connected, and similar for n(b), n(c). For instance, in case
of the expression S312 we have the forward quark line a attached to quark field (3), the
stochastic quark line b to quark field (1), and the sequential quark line c to quark field (2).
A sequential source S for a specific flavor combination is represented by a sum of a certain
subset of terms given in (A.18).

C1-source: analogous combinatorics lead to the six possible expressions used to construct
the quantity q1 from the forward propagator M and the sequential propagator X. In terms
of the quantity Y defined in (3.34), the contractions read:(

S
~p,(`)
123,t,j

)b
β

(y) := E−~p(z)
∑
σ

[
σY

T,~p,(`)
t,j (y)Ec

]cb
γβ

(P+)γσ ,(
S
~p,(`)
213,t,j

)a
α

(y) := E−~p(z)
∑
σ

[
EcσY

~p,(`)
t,j (y)

]ac
αγ

(P+)γσ ,(
S
~p,(`)
231,t,j

)c
γ

(y) := E−~p(z)
∑
σ

tr
{
σY

~p,(`)
t,j (y)Ec

}
(P+)γσ ,(

S
~p,(`)
132,t,j

)c
γ

(y) := E−~p(z)
∑
σ

tr
{
EcσY

T,~p,(`)
t,j (y)

}
(P+)γσ ,(

S
~p,(`)
312,t,j

)a
α

(y) := E−~p(z)
∑
σ

[
EcσY

T,~p,(`)
t,j (y)

]ac
αγ

(P+)γσ ,(
S
~p,(`)
321,t,j

)b
β

(y) := E−~p(z)
∑
σ

[
σY

~p,(`)
t,j (y)Ec

]cb
γβ

(P+)γσ . (A.19)

Like for the sequential sources discussed before, q1 is obtained by summing over a subset of
these terms, which is specific to the flavor combinations. More details and the cases needed
for flavor conserving proton-proton matrix elements shall be discussed in appendix A.4.

Sequential sources for G3pt: for the disconnected three-point contractions we re-use
the sequential sources that appear in three-point functions. Depending on the flavor of the
quark line, they can be written as:3(

S~p3pt,u

)ab
αβ

(z′) = E~p(z′)
[
P+Φ~pMΦ,~p

z (z′)Ea
(
EbΦ~pMΦ,~p

z (z′)
)T ]cc

αβ

+ E~p(z′) (P+)αβ tr
{

Φ~pMΦ,~p
z (z′)Ea

(
EbΦ~pMΦ,~p

z (z′)
)T}

+ E~p(z′)
[(
EbΦ~pMΦ,~p

z (z′)Ea
)T

Φ~pMΦ,~p
z (z′)P+

]cc
αβ

3In contrast to the sequential source (A.18) used for the C1 contraction, the three-point sources S~p3pt are
defined without γ5, which in this case is included in (3.41)
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S
132 S132

ū(1̄)

d̄(2̄)

ū(3̄)

(5)dd̄(5̄)

(4)uū(4̄)

u(1)

d(2)

u(3)

a

c

b

a

c

b

(1, 5, 4, 3, 2) = +1

B

S
312 S312

ū(1̄)

d̄(2̄)

ū(3̄)

(5)dd̄(5̄)

(4)uū(4̄) u(1)

d(2)

u(3)

b

c

a

b

c

a

(4, 5, 3, 1, 2) = +1

C

S
132 S312

ū(1̄)

d̄(2̄)

ū(3̄)

(5)dd̄(5̄)

(4)uū(4̄)

u(1)

d(2)

u(3)

a

c

b

b

c

a

(3, 5, 4, 1, 2) = −1

D

S
312 S132

ū(1̄)

d̄(2̄)

ū(3̄)

(5)dd̄(5̄)

(4)uū(4̄) u(1)

d(2)

u(3)

b

c

a

a

c

b

(4, 5, 1, 3, 2) = −1

Figure 31. Contributions of C1 type for the combination Ouui (y)Oddj (0) (C1,uudd). Depending on
the evaluation method, we use different symbols to depict the propagators: the forward propagator
Mz is represented by a simple line, the stochastic propagator ψ by a zigzag line, and the sequential
propagator X (without the incorporated forward propagator and the stochastic source) by a dashed
line. The colors indicate the quark lines: red corresponds to a, orange to b, and blue to c. The
combination of the quark lines with the numbers (1), (2), (3) at the sink or (1̄), (2̄), (3̄) at the source
determines the sequential source type Sn(a)n(b)n(c) (see (A.18)) or the contraction Sn(a)n(b)n(c)
(see (A.19)), respectively. The resulting permutation is also given for each contraction. Moreover, at
the bottom line of each panel we give the permutation of quark fields represented by the propagator
and the corresponding sign, which enters the total contribution and hence the physical matrix
elements.

+ E~p(z′)
(
Φ~pMΦ,~p

z (z′)P+
)cd
γγ

[(
EbΦ~pMΦ,~p

z (z′)Ea
)T ]dc

αβ
,

(
S~p3pt,d

)ab
αβ

(z′) = E~p(z′)
(
Φ~pMΦ,~p

z (z′)P+
)cd
γγ

[(
EbΦ~pMΦ,~p

z (z′)Ea
)T ]dc

αβ

− E~p(z′)
(
EbΦ~pMΦ,~p

z (z′)
)cd
βγ

(
P+Φ~pMΦ,~p

z (z′)Ea
)cd
γα

. (A.20)

A.4 C1 contractions

We now give explicit expressions for the sequential source S and the contraction q1 needed
for the calculation of the C1 graph. We start with the contributions to Ouui (y)Oddj (0).
The corresponding sub-graphs are illustrated in figure 31. If the last integer index of the
sequential sources (A.18) is equal for two or more contractions appearing in the flavor
specific sum, the corresponding sequential sources can be combined before the inversion.
In the case considered, we are able to combine A with C and B with D, which in both
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(5)uū(5̄)

u(1)

d(2)

u(3)

c

a

b

b

a

c

(5, 2, 4, 1, 3) = −1

D

S
213 S213
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(4)uū(4̄)

(5)uū(5̄)
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Figure 32. The same as figure 31, but for the contributions to Ouui (y)Ouuj (0) with C1 topology
(C1,uuuu).

cases gives:

S~p,(`)(z′) = S
~p,(`)
132 (z′)− S~p,(`)312 (z′) , (A.21)

up to a global sign. Inserting the source (A.21), we obtain the corresponding sequential
propagator X by an inversion of (3.33). The relative signs, which can be read off from
figure 31, correspond to the permutations of fermionic fields. The two contributions (A,C)
and (B,D) are then combined in the quantity q1 by calculating the sum:

q
~p,(`)
1,t,j (y) = S

~p,(`)
132,t,j(y)− S~p,(`)312,t,j(y) . (A.22)

The quantity Y appearing in the definition (A.19) of the contractions S is obtained from
the sequential propagator, one current insertion, and the forward propagator, see (3.34).
The total contribution to C1,uudd is then simply given by (3.36) with q1 as defined in (A.22).

We now turn to the C1 contribution for the flavor combination Ouui (y)Ouuj (0). The
corresponding sub-graphs are shown in figure 32. In this case, we only need the expression
S213 for the construction of the sequential source, i.e. :

S~p,(`)(z′) = S
~p,(`)
213 (z′) . (A.23)

Like for C1,uudd, we calculate the sequential propagator by inverting (3.33) with the
source (A.23), and calculate Y (see (3.34)), which is then contracted with the sources (A.19)
according to the permutation that can be read off in figure 32. It is possible to combine
A with C and B with D before doing the spatial correlation, since each current insertion
is connected to the same quark line within these pairs. In contrast to the C1,uudd case, we
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have two terms contributing to C1,uuuu consisting of q1q2 products, where q1 and q2 are
given by:

q
~p,(`)
1,AC,t,j(y) = S

~p,(`)
213,t,j(y)− S~p,(`)231,j(y) ,

q
~p,(`)
1,BD,t,i(y) = −S~p,(`)231,t,i(y) + S

~p,(`)
213,i(y) ,

q
~p,(`)
2,AC,t,i(x) = ψ

†,(`)
t (x) γ5Γi MΦ,~p

z (x) ,

q
~p,(`)
2,BD,t,j(x) = ψ

†,(`)
t (x) γ5Γj MΦ,~p

z (x) . (A.24)

Notice that in the BD case the current insertion indices i, j are exchanged compared to
the AC case. Putting everything together, the total C1,uuuu contribution reads:

Cij,~p1,uuuu(~y , t, τ) = a3

Nst

∑
~x

Nst∑
`

〈[
q
T,~p,(`)
2,AC,t,i(x+ y) q~p,(`)1,AC,t,j(x)

]
+
[
q
T,~p,(`)
1,BD,t,i(x+ y) q~p,(`)2,BD,t,j(x)

]〉∣∣∣
x4=τ,y4=0

. (A.25)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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