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German Summary

1. Einleitung und Hintergrund

Eine faszinierende Gemeinsamkeit zwischen einigen, auf den ersten Blick recht
unterschiedlichen Krankheitsbildern wie Morbus Alzheimer, Schizophrenie,
Depression und posttraumatischer Belastungsstérung ist die Beeintrachtigung
derselben Gehirnregion im medialen Temporallappen: des Hippocampus
(Abbildung 1). Es ist bemerkenswert, dass derart breit gefacherte und vielgestaltige
Symptome, wie die der genannten Krankheiten, allesamt mit der gestorten Integritat
einer gemeinsamen Region in Verbindung gebracht werden kdénnen. Diese
hippocampale Involviertheit in einer Vielzahl von neuropsychiatrischen Erkrankungen
spiegelt sich in dessen Teilnahme an zahlreichen unterschiedlichen Gehirnfunktionen
wider: Der Hippocampus ist heben der Gedachtnisbildung auch in Funktionen wie
raumliche Navigation und emotionale Verarbeitungsmechanismen involviert.
Zusatzlich zu diesen weitgehend anerkannten Funktionen gibt es Hinweise auf eine
Implikation des Hippocampus in verschiedenen weiteren Vorgéngen, wie unter

anderem Wahrnehmung und Vorstellungsvermdgen.

Doch wie schafft es der Hippocampus als relativ kleine, strukturell weitgehend
homogene Gehirnstruktur, eine solche Vielfalt an Funktionen und pathologischen
Implikationen zu unterhalten? Bisherige Studien weisen darauf hin, dass sich die
funktionelle Diversitat in einer intrinsischen Organisation der hippocampalen
Langsachse widerspiegelt. Demnach sind anteriorer und posteriorer Teil des
Hippocampus in verschiedene Funktionen eingebunden, wobei der Ubergang
zwischen diesen beiden funktionell distinkten Polen bisher allerdings ungeklart ist.
Einerseits werden Modelle diskutiert, die einen kontinuierlichen funktionellen
Gradienten vorschlagen, welche andererseits mit Hypothesen einer modularen
Struktur in diskreten Untereinheiten konkurrieren (Abbildung 3). Die Klarung dieser
Frage wirde es langfristig nicht nur ermdoglichen, den prazisen Einfluss des
Hippocampus auf kognitive Vorgdnge im gesunden Gehirn zu charakterisieren,
sondern auch seine Rolle in der Pathophysiologie krankhafter Prozesse zu verstehen

und womdglich bessere Therapieoptionen zu entwickeln.



Die vorliegende Arbeit knlpft an diese Fragestellung an und zielt darauf ab, das
dominante Muster funktioneller Organisation innerhalb des Hippocampus zu
identifizieren. Zu diesem Zweck wurde die Gehirnaktivitit gesunder Probanden’
mittels hochauflésender funktioneller Magnetresonanztomografie (fMRT) wé&hrend
eines Navigationsexperiments untersucht. Mithilfe eines kurzlich entwickelten
Analysealgorithmus (Haak et al., 2018) wurde das funktionelle Verhalten des
Hippocampus wahrend einer Navigationsaufgabe in Beziehung zum Verhalten des
restlichen Gehirns gestellt, um individuelle Interaktionsmuster hippocampaler
Neuronenverbande zu ermitteln. Diese sogenannten Profile funktioneller Konnektivitat
wurden quantifiziert und untereinander verglichen, um die Topografie der Ahnlichkeit
funktioneller Konnektivitdt innerhalb des Hippocampus zu identifizieren. Die
berechnete Topografie entspricht dem dominanten Organisationsmuster funktioneller
Konnektivitat im Hippocampus und diente als Ausgangspunkt fur eine Parzellierung

des Hippocampus in funktionelle Untereinheiten.

2. Material und Methoden

Um die funktionelle Organisation im Hippocampus zu untersuchen, analysierten wir
fMRT-Daten mit einer ultrahohen Auflésung im Submillimeterbereich mithilfe des
sogenannten connectopic mapping Algorithmus. Der verwendete 7 Tesla
fMRT-Datensatz wurde bereits fir ein vorangegangenes Projekt erhoben und

vorverarbeitet (Navarro Schréder et al., 2015).

2.1 Experimentelles Design

Der Datensatz besteht aus den fMRT-Scans von 22 gesunden, erwachsenen
Probanden (Alters- und Geschlechtsverteilung in Abbildung 7). Da mithilfe dieser
Daten Ruckschlisse Uber die funktionelle Organisation des Hippocampus gezogen
werden sollten, war es notwendig, wahrend des Scannens sicherzustellen, dass der

Hippocampus der Probanden funktionell aktiv ist. Daher fuhrten die

* Zur besseren Lesbarkeit wird in der folgenden Arbeit auf die gleichzeitige Nennung mannlicher und
weiblicher Sprachformen verzichtet. Es wird das generische Maskulinum verwendet, wobei alle
Geschlechtsidentitaten gleichermalRen gemeint sind.



Versuchsteilnehmer im Scanner eine experimentelle Aufgabe durch, welche
Navigationsverhalten und raumliches Gedéachtnis erfordert und daher mit hoher
Wahrscheinlichkeit die Aktivitdt des Hippocampus gewahrleistet. Wahrenddessen
wurde simultan die Gehirnaktivitat mittels fMRT erfasst. Um wahrend des Scannens
ein Navigationsverhalten zu ermdéglichen, bei dem die Versuchsteilnehmer in
korperlicher Ruhe bleiben kdnnen, wurde die experimentelle Aufgabe mithilfe virtueller
Realitat umgesetzt (Doeller et al., 2008; 2010): Probanden benutzten einen Controller
in ihrer Hand, um durch eine dreidimensionale, virtuelle Arena zu navigieren, welche
auf einen Bildschirm innerhalb des Scanners in ihr direktes Blickfeld projiziert wurde.
Sie hatten die Aufgabe, sechs verschiedene Objekte einzusammeln und sich deren
assoziierte Positionen innerhalb der Arena zu merken. Nach dieser Phase des
Einsammelns wurde ein visueller Stimulus in Form eines der zuvor eingesammelten
Objekte prasentiert. Die Teilnehmer waren instruiert, daraufhin zu der Position zu
navigieren, an der sie das jeweilige Objekt zuvor eingesammelt hatten, um dort eine
bestimmte Taste auf dem Controller zu driicken. Unverzuglich erhielten die Probanden
Ruckmeldung mittels eines Emoticons (glicklich, neutral oder traurig), wie akkurat sie
die mit dem Objekt assoziierte Position aufgesucht hatten, und sammelten danach das
entsprechende Objekt erneut ein, um die Assoziation des Objektes mit der

entsprechenden Position fur folgende Versuche zu starken (Abbildung 6).

2.2 Definition der region of interest

Far die Untersuchung neuronaler Aktivitat im Hippocampus musste das gemessene
fMRT-Signal innerhalb dieser Gehirnstruktur, der sogenannten region of interest,
extrahiert werden. Dies erforderte eine dreidimensionale binare Maske, welche die
exakte Lokalisation und den Umriss des Hippocampus innerhalb unserer fMRT-Scans
des gesamten Gehirns definiert. Eine solche Maske wurde unter sorgfaltiger Befolgung
der Instruktionen des Harmonisierten Protokolls fur Hippocampale Segmentierung
(Boccardi et al.,, 2015) auf der Basis unserer gruppenspezifischen fMRT-Bilder
(sogenanntes template) manuell angefertigt (Abbildung 8).



2.3 Quantifizierung der Topografie funktioneller Konnektivitat

Um mithilfe der fMRT-Daten die funktionelle Organisation des Hippocampus zu
analysieren, verwendeten wir den kurzlich entwickelten connectopic mapping
Algorithmus (Haak et al., 2018). Dieser Algorithmus verfolgt das Ziel, die Topografie
der Ahnlichkeit funktioneller Konnektivitat in einer Zielstruktur, hier im Hippocampus,

zu quantifizieren, und kann in drei Schritte unterteilt werden.

Der erste Schritt des connectopic mapping Algorithmus diente dazu, das individuelle
Muster funktioneller Konnektivitdt jedes einzelnen Voxels (= volumetric pixel, d.h.
kleinste raumliche Einheit eines MRT-Datensatzes, fur die ein Signal gemessen wird)
innerhalb des Hippocampus mit dem restlichen Gehirn zu bestimmen. Funktionelle
Konnektivitadt wird in der funktionellen Bildgebung als statistisches Mal} dafur
verwendet, wie dhnlich sich die Aktivitat zweier Voxel ist und gibt somit Auskunft
dartiber, wie stark die beiden betrachteten Voxel an denselben funktionellen
Vorgangen beteiligt oder unbeteiligt sind (schematisch illustriert in Abbildung 5). Dies
Iasst allgemeine Ruckschlisse dartber zu, ob die jeweiligen Voxel ein ahnliches oder
unahnliches funktionelles Verhalten zeigen und damit zum gleichen funktionellen
Netzwerk bzw. der gleichen funktionellen Einheit gehéren oder nicht (Friston et al.,
1993). In der fMRT ist die funktionelle Konnektivitdt als Korrelation der
fMRT-Signalzeitfolgen zweier Voxel definiert und kann Werte zwischen -1
(entsprechend inverser Zeitfolgen, d.h. gegensétzliches Aktivitatsprofil) und 1
(entsprechend identischer Zeitfolgen, d.h. &quivalentes Aktivitatsprofil) annehmen. Der
erste Schritt des connectopic mapping Algorithmus zielte darauf ab, die funktionelle
Konnektivitat eines jeden Voxels innerhalb der Hippocampusmaske mit jeweils allen
extrahippocampalen Voxeln zu quantifizieren. Hierzu wurden fur jedes hippocampale
Voxel hunderte Korrelationswerte berechnet, welche jeweils die Beziehung seiner
Aktivitatszeitfolge mit der Zeitfolge jedes extrahippocampalen Voxels angeben
(Abbildung 9B). Dies ergab einen individuellen Satz an Korrelationswerten fir jedes
hippocampale Voxel, welcher das einzigartige Muster funktioneller Konnektivitat des
entsprechenden Voxels zum restlichen Gehirn charakterisiert und auch Fingerabdruck

funktioneller Konnektivitat genannt wird.

Mithilfe dieser Fingerabdriicke sollte nun das intrinsische Organisationsmuster

funktioneller Konnektivitat im Hippocampus identifiziert werden. Genauer gesagt hatte



der connectopic mapping Algorithmus das Ziel, die hippocampalen Voxel
entsprechend der Ahnlichkeit ihrer Fingerabdriicke funktioneller Konnektivitat zu
,ordnen“ bzw. zu bewerten, um dann das zugrundeliegende Organisationsmuster der
Ahnlichkeit funktioneller Konnektivitat im Hippocampus zu visualisieren. Zu diesem
Zweck wurde im zweiten Schritt des Algorithmus zunachst die Ahnlichkeit zwischen
den Fingerabdrucken funktioneller Konnektivitat quantifiziert. Hierzu wurde fur jedes
Paar an hippocampalen Fingerabdriicken ein Ahnlichkeitswert berechnet
(mathematisch definiert als n2-Koeffizient), der Werte zwischen 0 und 1 annimmt, was
keiner bzw. hoher Ahnlichkeit der entsprechenden Fingerabdriicke entspricht. Diese
Werte wurden in einer sogenannten Ahnlichkeitsmatrix mit n Zeilen und n Spalten

gespeichert, wobei n der Anzahl der hippocampalen Voxel entspricht (Abbildung 10).

Die Ahnlichkeitsmatrix enthalt prinzipiell die relevante Information, die fir das Ableiten
des intrinsischen hippocampalen Organisationsmusters notwendig ist. Allerdings ist
die Interpretation dieser Matrix komplex, weswegen der dritte und letzte Schritt des
connectopic mapping Algorithmus darin  bestand, die Komplexitdt der
Ahnlichkeitsmatrix mittels des sogenannten Laplacian Eigenmaps Algorithmus
(Belkin & Niyogi, 2003) zu reduzieren und der enthaltenen Information wieder einen
raumlichen Bezug zu verleihen (Abbildungen 11 und 12). Das finale Resultat dieses
Schrittes war eine topografische Darstellung des Hippocampus, in welcher jedes
einzelne hippocampale Voxel einen Wert innerhalb einer Skala von funktioneller
Organisation zugeschrieben bekam. Statt also wie in der Ahnlichkeitsmatrix jedes Paar
aus hippocampalen Voxeln mit einem Wert (d.h. n?-Koeffizienten) zu charakterisieren,
Zielte dieser Schritt darauf ab, jedem individuellen Voxel einen Wert zuzuschreiben,
der die Position dieses Voxels innerhalb der zugrundeliegenden Topografie der
Ahnlichkeit funktioneller Konnektivitat angibt. Diese Werte kénnen dann als
dreidimensionale Karte, sogenannte connectopic map, des Hippocampus dargestellt
werden, welche die Beurteilung der dominanten, topografischen Organisationsstruktur

der funktionellen Konnektivitat aller hippocampalen Voxel ermdglichte.

Die beschriebenen Analyseschritte wurden fur den Datensatz eines jeden
Versuchsteilnehmers durchgefiihrt, sodass insgesamt 22 probandenspezifische
connectopic maps resultierten. Zudem implementierten wir einen Mittelungsprozess,
sodass fur die Beurteilung der Gesamtheit aller Probanden eine gruppenspezifische

connectopic map zur Verfugung stand.



2.4 Validierung einer potenziell modularen Organisation

Auf Basis der erhaltenen connectopic maps wollten wir herausfinden, ob die
identifizierte hippocampale Organisation einem kontinuierlichen Gradienten folgt oder
im Gegenteil klar abgrenzbare, modulare Untereinheiten enthalt. Um dies im Detail zu
untersuchen, wurden die connectopic maps als Histogramme abgebildet, in welchen
die absolute Anzahl hippocampaler Voxel (y-Achse) gegen den jeweils attribuierten
Wert innerhalb des Organisationsmusters funktioneller Konnektivitat (x-Achse)
aufgetragen wurde. Wie in Abbildung 13 schematisch illustriert, kann anhand des
Verteilungsmusters im Histogramm auf eine kontinuierliche oder diskrete Organisation
rickgeschlossen werden. Eine diskrete Organisation in funktionellen Modulen wirde
sich beispielsweise in einigen deutlichen Maxima im Histogramm zeigen, welche durch
mehrere Histogrammklassen, deren y-Werte nahe Null liegen, getrennt waren. Bevor
allerdings die Schlussfolgerung einer relevanten modularen Organisation aus der
Existenz klar trennbarer Maxima in den Histogrammen gezogen und auf dieser
Grundlage weitere Analysen durchgefiihrt wirden, war es notwendig, die Validitat
dieses Ruckschlusses sicherzustellen. Daher wollten wir testen, ob die Héhe der
beobachteten Maxima in unserer Stichprobe tatsachlich einer biologisch relevanten
Organisation entsprach oder méglicherweise auch durch Zufall entstehen kénnte.
Daher generierten wir eine Nullverteilung von Histogramm-Maxima, mit der wir die
Maxima unserer Probanden verglichen. Dies wurde mithilfe einer zufalligen
Durchmischungsprozedur auf Ebene der originalen fMRT-Datensétze verwirklicht: In
den Daten aller Probanden wurden jeweils die Aktivitatszeitverlaufe einzelner Voxel
zufallig zeitlich und ortlich durchmischt, um die grundlegenden statistischen
Eigenschaften von realen fMRT-Daten zu erhalten, aber die Integritét realer
Zeitverlaufe und damit funktioneller Organisation vollkommen zu zerstéren. Die durch
dieses Durchmischungsverfahren produzierten Datensatze wurden genauso wie die
Probandendaten mittels des connectopic mapping Algorithmus prozessiert. Die
resultierenden connectopic maps wurden anschlieRend als Histogramme geplottet.
Um die Héhe der Maxima zwischen realen und simulierten Daten zu vergleichen,
identifizierten wir die zehn hochsten Maxima innerhalb eines jeden realen und
simulierten Histogramms: Aus jedem Histogramm wurden die Maximalwerte fiir das
hochste Maximum, fur das zweithéchste Maximum, usw. bis zum zehnthéchsten

Maximum extrahiert. Somit erhielten wir fir den Maximalwert jeder Gréfienordnung
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(vom hochsten bis zum zehnthéchsten Maximum) eine Nullverteilung, mit der wir den
entsprechenden gemittelten Wert der Histogramm-Maxima unserer Probanden
verglichen. Dadurch wollten wir die Frage beantworten, ob bzw. welche Maxima
innerhalb der Organisation funktioneller Konnektivitat unserer Versuchsteilnehmer die

durch Zufall erwartbaren Maximalwerte Ubersteigen.

2.5 Funktionelle Parzellierung des Hippocampus mittels k-Means-Algorithmus

Neben der Beleuchtung und Validierung des Musters funktioneller Organisation im
Hippocampus hatten wir uns das weitere Ziel gesetzt, die connectopic maps im Falle
einer enthillten modularen Organisation als Basis fiur eine funktionelle Parzellierung
zu verwenden, um potenziell klar abgrenzbare hippocampale Untereinheiten zu
visualisieren. Daher wandten wir eine Clusteranalyse, den sogenannten
k-Means-Algorithmus (implementiert in MATLAB (2017)), auf die erzielten connectopic
maps an, um basierend auf einem potenziell modularen Organisationsmuster
funktionelle Cluster innerhalb des Hippocampus zu identifizieren. Die Wahl der Anzahl
der Cluster k wurde mithilfe der sogenannten Ellbogenmethode objektiviert (Kodinariya

& Makwana, 2013), deren Details im englischen Kapitel 2.8 ausgefihrt sind.

3. Ergebnisse

Die beschriebenen Analysen zielten auf die Beantwortung zweier Schllsselfragen ab:
Erstens, folgt die Organisation funktioneller Konnektivitat des Hippocampus einem
graduellen, gleichmaRigen Gradienten oder weist diese diskrete, klar abgrenzbare
Untereinheiten auf? Falls unsere Ergebnisse die letztere Hypothese einer modularen
Organisation bestéatigten, wollten wir als Zweites herausfinden, wie viele hippocampale
Untereinheiten unterschieden werden und ob die Module in einer koharenten

Parzellierung visualisiert werden kénnen.

3.1 Funktioneller Gradient entlang der Langsachse im Gruppendurchschnitt

Um die erste Frage zu beantworten, betrachteten wir zunachst die connectopic maps
unseres Gruppendurchschnitts, welcher die analysierten fMRT-Daten aller

22 Probanden beinhaltet. Abbildung 14 zeigt die entsprechenden maps des linken
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sowie rechten Hippocampus im Sagittalschnitt. Die rot-gelbe Farbskala visualisiert die
topografische Organisation der Profile funktioneller Konnektivitdt des jeweiligen
hippocampalen Voxels zur grauen Masse des restlichen Gehirns. Bezuglich der
Interpretation bedeutet dies, dass zwei Voxel mit verschiedenen Farben sehr
unterschiedliche Fingerabdriicke funktioneller Konnektivitdt aufweisen, wahrend
umgekehrt Voxel mit sehr dhnlichen Farben ein sehr ahnliches Konnektivitatsprofil
zeigen. Im Gruppendurchschnitt zeigt sich insofern in den Hippocampi beider
Hemispharen ein funktioneller Gradient entlang der hippocampalen Langsachse, als
dass sich die Profile funktioneller Konnektivitat von Voxeln im anterioren Pol deutlich
von denen im posterioren Pol unterscheiden. Nachdem wir somit die Langsachse als
dominante Achse funktioneller Organisation identifiziert hatten, galt es konkret den
Ubergang von anteriorem zu posteriorem hippocampalen Pol zu untersuchen, um
herauszufinden, ob der funktionelle Ubergang als kontinuierlich oder diskret zu
charakterisieren ist. Zu diesem Zweck wurden in Abbildung 15 die Werte innerhalb der
Topografie funktioneller Konnektivitat der connectopic maps auf der x-Achse
aufgetragen, um in Form eines Histogramms auf der y-Achse zu visualisieren, wie
vielen Voxeln der jeweilige Wert zugeschrieben wurde. Interessanterweise zeigt sich
in den gruppenspezifischen Histogrammen weder ein eindeutig kontinuierliches noch
ein klar diskretes Muster: Einerseits wurde jeder Wert an mindestens etwa 50 Voxel
vergeben, was auf einen graduellen Ubergang hindeutet, andererseits finden sich
innerhalb dessen kleinere Spitzen, was méglicherweise mit funktionellen Modulen
vereinbar ware. Die Gruppenresultate liefern also keine klare Aussage bezuglich der

oben formulierten ersten Forschungsfrage.

3.2 Diskrete Organisation einzelner Probandendaten

Es ist moglich, dass der Mittelungsprozess Uber 22 Probanden die eigentlichen
Topografien einzelner Probanden verfalscht und somit der Gruppendurchschnitt der
Individualitat eines jeden Einzelnen nicht gerecht wird. Dies leuchtet insbesondere ein,
wenn man bedenkt, dass im Falle einer modularen Organisation die Grenzen zwischen
funktionellen Untereinheiten nicht zwingend fur alle Individuen an der exakt gleichen
Stelle liegen mussen. Daher ist es notwendig, die connectopic maps individueller
Probanden zu untersuchen, welche in Abbildung 16 in Form der bereits eingefiihrten

Histogrammdarstellung illustriert sind. In der Tat wird ein génzlich anderes Muster als
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im Gruppendurchschnitt deutlich: In beiden Hippocampi des exemplarisch
abgebildeten Probanden zeigen sich klar abgrenzbare Maxima, welche durch
Segmente, die nahezu auf der Nulllinie liegen, getrennt sind (Histogramme aller
Probanden in Abbildung 22 A und B). Bezuglich unserer ersten Frage spricht dies
dafur, dass die Topografie funktioneller Konnektivitat in einzelnen Probanden diskret

verlauft und in funktionellen Modulen organisiert sein konnte.

3.3 Validierung der Modularitat

Die oben beschriebene Schlussfolgerung einer modularen hippocampalen
Organisation basiert auf dem Vorhandensein abrupter Maxima in der
Histogrammdarstellung der connectopic maps. Um die Validitat dieser
Schlussfolgerung sicherzustellen, ist es notwendig zu kléaren, ob solche beobachteten
Maxima nicht auch durch Zufall entstehen kénnten. Daher generierten wir mithilfe einer
zufalligen Durchmischungsprozedur eine Nullverteilung von Histogramm-Maxima und
verglichen die Maximalwerte der Histogramme unserer Probanden mit der 95sten
Perzentile der entsprechenden Maxima in den Histogrammen der simulierten Daten
(illustriert in Abbildung 17). Genauer gesagt fuhrten wir {-Tests durch zwischen den
Werten des héchsten Maximums, den Werten des zweithéchsten Maximums usw. bis
zum zehnthéchsten Maximum. Diese Herangehensweise erlaubt uns nicht nur, die
generelle Validitat unserer Argumentation zu prufen, sondern kénnte auch einen
Hinweis auf die Anzahl der hippocampalen Module geben, falls nicht alle Werte von
héchstem bis zehnthéchstem Maximum signifikant hoher sind als die Nullverteilung
(oben formulierte Forschungsfrage 2). Wie Abbildung 18 sowie die p-Werte in
Tabelle 1 verdeutlichen, zeigen sich signifikant héhere Maximalwerte in den
Probandendaten fur das hdchste und zweithdchste Maximum in den Hippocampi
beider Hemispharen. Der viert- bis zehnthéchste Peak in den realen Daten ist jeweils
entweder nicht signifikant unterschiedlich bzw. signifikant niedriger als in den
simulierten Daten. Beim dritthdchsten Peak allerdings unterscheiden sich die
Ergebnisse insofern leicht zwischen linkem und rechtem Hippocampus, als dass links
der dritthochste Peak entsprechend der 5 %-Signifikanzschwelle gerade noch
signifikant hoher als die 95ste Perzentile der Nullverteilung ist, wahrend dieser rechts
knapp oberhalb der Schwelle und damit nicht signifikant héher ist. Daher lasst sich

schlussfolgern, dass die beiden héchsten Maxima mit hoher Wahrscheinlichkeit nicht
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durch Zufall entstanden sind und einer realen diskreten Organisation entsprechen,
wéahrend die H6he des vierten bis zehnten Maximums die zuféallig erwartbaren Werte
nicht Ubersteigen und daher wahrscheinlich keine biologische Relevanz aufweisen.
Bezuglich des dritten Maximums differieren die Resultate zwischen linkem und
rechtem Hippocampus. Somit ist an dieser Stelle unklar, wie viele Untereinheiten im
Hippocampus abgrenzbar sind, wobei die Anzahl bereits auf entweder zwei oder drei

eingegrenzt wurde.

Angesichts dieser uneinheitlichen Ergebnisse fuihrten wir eine zusatzliche Berechnung
durch, um die Frage nach der Anzahl der funktionellen Module abschlieend zu kléren.
Diese Herangehensweise involvierte die Quantifizierung der Anzahl der Maxima
(im Gegensatz zur Héhe der Maxima in obiger Validierungsprozedur): In unserer
Stichprobe von 22 Probanden lag die gemittelte Anzahl der Maxima im linken
Hippocampus bei 2,81 und im rechten Hippocampus bei 2,91. Dies deutet auf eine

hippocampale Organisation in insgesamt drei funktionellen Untereinheiten hin.

3.4 Funktionelle Parzellierung

Nachdem wir die funktionelle Organisation des Hippocampus entsprechend der
Ahnlichkeit funktioneller Konnektivitatsprofile hippocampaler Voxel charakterisiert und
ein diskretes Organisationsmuster in insgesamt drei funktionellen Modulen identifiziert
hatten, war unsere nachste Frage, ob wir diese Organisation in einer funktionellen
Parzellierung visualisieren kénnten. Daher verwendeten wir einen populdren und in
vorherigen fMRT-Studien vielfach eingesetzten Parzellierungsalgorithmus, das
sogenannte k-Means-Clustering in drei Cluster. Die Wahl der Anzahl der Cluster k = 3
basierte auf der gemittelten Anzahl von Histogramm-Maxima und wurde mithilfe der

so genannten Ellbogenmethode objektiviert (Abbildung 19).

Die Clusteranalyse wurde auf die connectopic maps des Gruppendurchschnitts sowie
jedes einzelnen Probanden angewandt und resultierte in einer Unterteilung des
Hippocampus in drei longitudinal arrangierte Cluster (Abbildung 20). In den meisten
Fallen (Probanden #1 — #15) waren diese Cluster klar voneinander abgrenzbar und
koharent angeordnet, wahrend manche Probanden (Probanden #16 — #22) in den
Hippocampi einer oder beider Hemispharen teils inkonsistente oder zersplitterte

Cluster aufwiesen. Obwohl also aus noch unklaren Griunden die hippocampale
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Organisation mancher Individuen durch k-Means-Clustering in drei Cluster nicht
erfolgreich visualisiert werden konnte, war dies in der Mehrheit der Probanden der Fall.
Beziglich der Volumina war das posteriore Cluster stets am gréRten, gefolgt vom

anterioren und intermediéren Cluster (Abbildung 21).

4. Diskussion

4.1 Beurteilung potenzieller Limitationen

Bezuglich méglicher Unzulanglichkeiten der prasentierten Analysen und Ergebnisse
wollen wir zunachst klaren, ob der genutzte fMRT-Datensatz fur unsere spezielle
Fragestellung geeignet war. Bezlglich funktioneller Bildgebungsverfahren ist
grundsatzlich zu bedenken, dass die raumliche Auflésung bisher nicht ausreicht, um
Aktionspotentiale oder Erregungszustande auf der Ebene einzelner Neuronen
darzustellen. Allerdings ist die Aussagekraft funktioneller fMRT-Studien deshalb nicht
zwingend eingeschrankt, da die Fragestellungen in der Regel nicht individuelle
Neurone betreffen, sondern vielmehr Erregungsmuster in funktionellen Netzwerken,
d.h. gréReren Zellverbanden, welche die GréRenskala einzelner Zellen tUberschreiten.
Analog waren wir in diesem Projekt nicht am einzelnen hippocampalen Neuron,
sondern an der intrinsischen Organisation des gesamten Hippocampus interessiert.
Um die Organisationsstruktur und eventuelle Untereinheiten identifizieren zu kénnen,
gilt die Voraussetzung, dass die raumliche Auflésung unserer Daten groRer sein muss
als die kleinste zu erwartende Untereinheit. Unsere fMRT-Daten wurden auf einem
Scanner mit einer hohen magnetischen Feldstérke von 7 Tesla akquiriert, was eine
VoxelgroBe von etwa 0.9x0.9x0.9 mm® und damit eine raumliche Auflésung
unterhalb der Millimetergrenze ermdglichte. Da potenzielle Module im Hippocampus
auf wesentlich groReren Langenskalen liegen, mussten diese Daten grundsatzlich in
der Lage sind, Uber die Organisationsstruktur im Hippocampus zuverlassig Auskunft
zu geben. Ein weiterer Faktor, der die raumliche Aufldsung mafRgeblich mitbestimmt,
ist jedoch das sogenannte smoothing im Rahmen der Vorverarbeitung. Dieses wird in
den meisten modernen fMRT-Studien neben anderen Schritten standardmafig
durchgefuhrt, um unter anderem das Signal-Rausch-Verhaltnis sowie die
Generalisierbarkeit zwischen Probanden zu erhéhen (Friston, 2003). Allerdings bringt

das smoothing auch Nachteile mit sich, wie beispielsweise eine Verschlechterung der
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initialen raumlichen Auflésung. In diesem Sinne ist es moglich, dass die Anwendung
eines smoothing kernels von 2.5 mm (full-width at half-maximum) in unseren Analysen
dazu fuhrte, dass potenziell scharfe Abgrenzungen zwischen hippocampalen
Untereinheiten egalisiert werden und urspriinglich harte Grenzen verschwimmen.
Daher ist der wahrscheinlichste Effekt, mit dem sich smoothing auf unsere Analysen
auswirken kdnnte, ein Bias in Richtung eines gleichmaRigen funktionellen Gradienten,
was in den prasentierten Resultaten nicht ausgeschlossen ist. Bemerkenswerterweise
sprechen unsere Ergebnisse allerdings trotz dieser mdéglichen Verzerrung fir eine

diskrete Organisation.

Neben der Datenerhebung und Vorverarbeitung muss geklart werden, ob der
connectopic mapping Algorithmus voreingenommen sein kdnnte. Diesbeziglich ist
insbesondere der letzte Schritt des Algorithmus, die Berechnung der sogenannten
Laplacian  Eigenmaps, hervorzuheben: Die Entwickler erkldren in der
Originalpublikation, dass die zugrundeliegenden mathematischen Berechnungen die
naturlichen Cluster innerhalb der Eingangsdaten nachweisen und méglicherweise
verstarkend hervorheben (Belkin & Niyogi, 2003). Daher kénnte argumentiert werden,
dass die detektierte diskrete Struktur des Hippocampus nicht in einer realen modularen
Organisation begriindet liegt, sondern durch den Algorithmus kunstlich eingefiihrt
wurde. Dies erscheint allerdings aus zweierlei Griinden nicht stichhaltig: Erstens
wenden die Entwickler die Laplacian Eigenmaps Methode in der Originalpublikation
exemplarisch auf einen simulierten Datensatz an und liefern eine akkurate Detektion
der zugrundeliegenden kontinuierlichen Struktur der Beispieldaten. Zweitens wurde
connectopic mapping bereits auf andere Gehirnregionen angewandt, beispielsweise
den Motorcortex (Haak et al., 2018), und ergab ebenso einen kontinuierlichen
Gradienten funktioneller Konnektivitat, der die bekannte somatotopische Organisation
des Motorcortex widerspiegelt. Daher ist mit keinem Bias in Richtung diskreter

Ubergange innerhalb des connectopic mapping Algorithmus zu rechnen.

Eine mogliche Verbesserung unserer Methodik liegt zudem im Generieren der
simulierten Datensatze fur die Nullverteilung an Histogramm-Maxima. Um die reale
Organisationsstruktur des Gehirns so weit wie méglich aufzulésen, aber gleichzeitig
die fundamentalen statistischen Gegebenheiten von fMRT-Daten beizubehalten,
implementierten wir ein zufalliges Durchmischungsverfahren. Dieses war insofern

erfolgreich, als dass die inharente hippocampale Organisation zerstért wurde,
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allerdings wurde so sowohl die Integritat realer Aktivitatszeitverlaufe als auch die
natUrlicherweise in fMRT-Daten vorkommende rédumliche Autokorrelation aufgehoben.
Obwohl unklar ist, wie genau dies unsere Ergebnisse beeintrachtigt haben kénnte,
wére es fur zuklnftige Studien interessant, eine fairere Implementierung der
Nullverteilung anzustreben. Um beispielsweise die rdumliche Autokorrelation zu
erhalten, wirde sich eine Phasenverschiebungsmethode eignen, welche im Detail im

englischen Kapitel 4.1.4 beschrieben ist.

Eine weitere Limitation entsteht durch die Verwendung von k-Means-Clustering, da
diese Methode im Gegensatz zum connectopic mapping Algorithmus nicht vollstandig
datenbasiert ist, sondern die gewtinschte Anzahl der Cluster k als Eingangsgroée vom
Anwender festgelegt werden muss. Um den Wert von k so weit wie méglich zu
objektivieren und ein personenbezogenes Bias bezlglich der Anzahl der Cluster zu
vermeiden, quantifizierten wir die H6he sowie Anzahl der Histogramm-Maxima der
connectopic maps und wandten zudem die Ellbogenmethode an. Allerdings kénnten
zukinftige Studien von der Verwendung eines vollstédndig datenbasierten Clustering-
Algorithmus profitieren, welcher nicht die Vorgabe von k benétigt, wodurch sich die

genannten Analysen erubrigen wirden, die in unserem Fall notwendig waren.

Im Zuge der Limitationen dieser Studie sei zudem die manuelle Definition der
Hippocampusmaske als methodologische Schwierigkeit erwahnt. Trotz der
sorgfaltigen Befolgung der detaillierten Instruktionen im Harmonisierten Protokoll fur
Hippocampale Segmentierung (Boccardi et al.,, 2015) war insbesondere die
Abgrenzung des posterioren Pols eine Herausforderung, da sich die hippocampale
graue Masse an dieser Stelle verdinnt und flieRend in das Indusium griseum tbergeht
(Abbildung 1). Hier entschieden wir uns insofern fur eine liberale Segmentierung, als
dass wir lieber alle hippocampalen Voxel und eventuell kleinere Mengen nicht-
hippocampaler Voxel inkludierten, anstatt um jeden Preis extrahippocampale Masse
und damit womaoglich wesentliche hippocampale Masse auszuschlielen. Daher ist es
mdglich, dass unsere Hippocampusmaske am posterioren Pol etwas zu voluminds ist.
Dies spiegelt sich méglicherweise in dem Ergebnis, dass das Volumen des posterioren
Clusters in der funktionellen Parzellierung signifikant héher war als das des
intermedidren und anterioren Clusters (Abbildung 21). Obwohl diese Frage in der
Literatur noch nicht abschlielRend geklart ist, ware gemal vorausgehenden Studien

eher mit Untereinheiten von etwa gleicher Gré3e zu rechnen (Chase et al., 2015).
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4.2 Konzeptuelle Implikationen unserer Ergebnisse

Mithilfe des connectopic mapping Algorithmus identifizierten wir die dominante Achse
funktioneller Organisation hinsichtlich der Ahnlichkeit der Fingerabdriicke funktioneller
Konnektivitat aller hippocampaler Voxel zur restlichen grauen Substanz. Unsere
Ergebnisse weisen darauf hin, dass die dominante Topografie funktioneller
Konnektivitat innerhalb des Hippocampus in klar abgrenzbaren Modulen entlang der

Langsachse verlauft.

Dies wirft die interessante Frage auf, ob und inwiefern die identifizierten Module in
verschiedene Gehirnfunktionen involviert sind. In bisherigen Studien hat sich im Laufe
der Jahrzehnte die generelle Sicht verfestigt, dass der anteriore und posteriore
hippocampale  Pol  tatsdchlich  unterschiedliche = Funktionen  ausfiuhren
(Fanselow & Dong, 2010). Bezuglich der konkreten funktionellen Aufgaben besteht in
der aktuellen Literatur allerdings noch Uneinigkeit: Einige Studien deuten auf ein
Modell hin, in welchem der anteriore Hippocampus in emotionale Vorgange, wie
Angstverhalten, die koérpereigene Stressantwort und stressbedingte hormonelle
Regelkreislaufe, eingebunden ist, wahrend der posteriore Teil eher kognitiv betonte
Funktionen vermittelt, darunter allen voran die Bildung raumlicher Erinnerungen und
Navigation (Bannerman et al., 2004; Moser & Moser, 1998). Diese Hypothese wird von
einigen Autoren insofern erweitert, als dass der posteriore Hippocampus nicht nur fur
die Verarbeitung rédumlicher, sondern auch deklarativer Gedachtnisinhalte zustandig
sein kdnnte (Fanselow & Dong, 2010). Allerdings wurde diese Theorie durch andere
Untersuchungsergebnisse infrage gestellt, welche nahelegen, dass die kognitive
Reprasentation von Gedachtnis entlang der gesamten hippocampalen Langsachse
und insbesondere auch im anterioren Teil stattfindet (Chase et al, 2015;
Zeidman & Maguire, 2016). Allerdings stehen solche Erkenntnisse nicht zwingend im
Widerspruch zu einer funktionellen Differenzierung, da méglicherweise die Modalitat
verarbeiteter Information entlang der Langsachse variiert: Auch wenn Neuronen
entlang der gesamten Lange des Hippocampus an der Gedachtnisbildung beteiligt
sind, konnte der anteriore Teil eher selbstzentrierte (egozentrische) und der posteriore
Teil eher weltbezogene (allozentrische) Informationen verarbeiten (Plachti et al.,
2019). Zudem deuten weitere Studien auf eine Differenzierung hinsichtlich der

Detailliertheit codierter Erinnerungen hin, wonach der anteriore Pol eher grobe Inhalte
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und der posteriore Teil eher detaillierte Informationen verarbeite (Brunec et al., 2018;
Evensmoen et al., 2013; Poppenk et al., 2013; Sekeres et al., 2018).

Obwohl zukunftige Studien nétig sind, um diese verschiedenen Theorien in Einklang
zu bringen, besteht aus aktueller Sicht kaum Zweifel an der grundsatzlichen Existenz
einer anterior-posterioren Differenzierung. Eine viel weniger untersuchte, aber nicht
minder relevante Frage bezieht sich auf die prazise Topografie des Ubergangs
zwischen den beiden funktionell distinkten hippocampalen Polen. Die wenigen
Studien, welche diesen Zusammenhang explizit ansprechen, liefern teils
gegensatzliche Ergebnisse (Abbildung 3): Auf der einen Seite sprechen einige
funktionelle Bildgebungsstudien fiir eine Organisation der hippocampalen Langsachse
in klar abgrenzbaren funktionellen Untereinheiten. Die Anzahl der identifizierten
Module variiert je nach Studie zwischen zwei bis zu funf Untereinheiten (Plachti et al.,
2019; Robinson et al., 2015), wobei die Mehrzahl allerdings eine dreigeteilte
Organisation in einem anterioren, intermedidren und posterioren Cluster vorschlagt
(Chase et al., 2015; Zarei et al., 2013). Unterstutzung findet eine solche funktionelle
Dreiteilung beispielsweise auch in Untersuchungen struktureller Charakteristika, wie
etwa der Genexpression oder elektrophysiologischer Eigenschaften (Dong et al., 2009;
Kenney & Manahan-Vaughan, 2013; Thompson et al., 2008). Im Gegensatz zu einem
mdoglicherweise modularen Organisationsmuster stehen Erkenntnisse, welche einen
gleichmaRigen funktionellen Gradienten entlang der hippocampalen Langsachse
postulieren. Diese fuRen ebenfalls sowohl auf funktionellen Bildgebungsdaten
(Masouleh et al., 2020; Przezdzik et al., 2019) als auch auf der Untersuchung
struktureller Parameter (Kjelstrup et al., 2008; Witter et al., 1989).

Die in dieser Dissertation prasentierten Ergebnisse lassen sich eindeutig der ersteren
Gruppe zuordnen, da die hier identifizierte Topografie funktioneller Konnektivitat
abrupte Anderungen entlang der Léngsachse aufweist und in den meisten Probanden
drei funktionelle Module klar abgegrenzt werden kénnen. Wahrend unsere Resultate
deutlich fur eine modulare Organisation sprechen, spiegeln sie doch in einem
gewissen MaR die Unklarheit in der Literatur beziglich der Anzahl der Untereinheiten
wider (z.B. uneinheitliche Ergebnisse der t-Tests). Obwohl unsere Ergebnisse auf den
ersten Blick im Widerspruch zu anderen Bildgebungsstudien stehen, welche eine
graduelle Anderung der Konnektivitatsprofile berichten, kénnte diese Diskrepanz

durch fundamentale Unterschiede zwischen den entsprechenden Studien erklart
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werden. Im Falle der Studie von Przezdzik et al. (2019) beispielsweise, in welcher
ebenfalls den connectopic mapping Algorithmus auf den Hippocampus angewandt
wird, basieren die fMRT-Daten auf einem sogenannten resting-state Experiment,
d.h. die Probanden wurden gebeten, wahrend des Scannens keiner geistigen
Beschaftigung nachzugehen, sondern mdglichst gedankenlos, aber wach zu
verweilen. Im Gegensatz dazu wurde in den hier prasentierten Daten explizit darauf
geachtet, die  Gehirnaktivitdt der  Versuchsteilnehmer  wahrend  einer
hippocampusabhangigen experimentellen Aufgabe zu scannen. Es erscheint also
maoglich, dass die hippocampale Langsachse abhangig von der gegenwartigen
kognitiven Beschaftigung ein unterschiedliches Organisationsmuster hervorbringt
(Robinson et al., 2016). Zudem verwenden Przezdzik et al. als Ausgangspunkt der
Analysen nicht die Konnektivitdt hippocampaler Voxel zur gesamten
extrahippocampalen grauen Masse, wie in der hier prasentierten Studie, sondern
berlcksichtigen ausschliefllich neokortikale Regionen. Da allerdings gezeigt wurde,
dass der Hippocampus auch eine hohe funktionelle Konnektivitdt mit verschiedenen
subkortikalen Kerngebieten aufweist (Kahn & Shohamy, 2013), ist wenig
verwunderlich, dass die Konnektivitatsprofile variieren, je nachdem ob diese Areale
miteingeschlossen sind oder nicht. Vor diesem Hintergrund wird klar, dass die Studie
von Przezdzik et al. und unsere Resultate sich nicht zwingend widersprechen, sondern
sich vielmehr zu einem interessanten Gesamtbild zusammenfiigen und Fragen fur
zukunftige  Experimente  aufwerfen.  Mdglicherweise  sind  verschiedene
Organisationsmuster von funktioneller Konnektivitat entlang der hippocampalen
Langsachse Uberlagert, welche je nach geistiger Involvierung bzw. je nach

Bertcksichtigung verschiedener Gehirnareale zu Tage treten (Strange et al., 2014).

4.3 Klinische Anwendungen

Wie eingangs erwahnt, zeichnet sich eine Vielzahl neuropsychiatrischer Erkrankungen
durch eine massive Stérung der funktionellen bzw. strukturellen hippocampalen
Integritat aus, weswegen verschiedenste klinische Forschungsbereiche derzeit die
Auswirkungen pathologischer Vorgange auf den Hippocampus betrachten. Mehrere
Studien zeigen, dass sich die Anfalligkeit fur spezifische Krankheiten entlang der
hippocampalen Langsachse unterscheidet, weswegen der Untersuchung dieser eine

groBe Bedeutung fur klinische Fragestellungen zukommt (Lladé et al., 2018;
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Ranganath & Ritchey, 2012; Vogel et al., 2020). Allerdings ist die Vergleichbarkeit
zwischen derzeitigen Studien aufgrund der variierenden Methodik stark eingeschrankt.
Mégliche Inkonsistenzen ergeben sich insbesondere aufgrund der Vielzahl
existierender Protokolle zur Unterteilung longitudinaler Untereinheiten. Dies kénnte
durch eine gemeinsame Herangehensweise verbessert werden. Als solche universelle
und automatisierte Segmentierungsmethode kdnnte der in dieser Arbeit prasentierte
Ansatz, connectopic mapping kombiniert mit k-Means Clustering, zum Einsatz
kommen. Auf der Basis der vorgeschlagenen Methodik kdnnten zudem unbegrenzte
weitere Fragestellungen bearbeitet werden, die nicht auf den Hippocampus begrenzt

sein missen, da als region of interest jegliches Gehirnareal definiert werden kann.

Zusatzlich zu den breiten Anwendungsmdéglichkeiten in der neurowissenschaftlichen
Forschung koénnte die hier verwendete Herangehensweise in der Zukunft auch als
pradiktives Tool Einzug in den praktischen Alltag in der Klinik finden. Da Studien
zufolge die funktionelle Konnektivitat des Hippocampus insbesondere bei Patienten
mit neurodegenerativen Erkrankungen wie etwa Morbus Alzheimer stark verandert ist,
kénnte  der  Quantifizierung  funktioneller ~ Konnektivitait ~ sowie  einer
konnektivitatsbasierten Parzellierung zukunftig eine gréRere Bedeutung in der
Diagnostik, Verlaufsbeurteilung oder dem Monitoring des Therapieansprechens
zukommen (Zarei et al., 2013; Zhang et al., 2010). Obwohl| weitere Studien benétigt
werden, um den prazisen Nutzen der hier verwendeten Methodik fur eine Anwendung
in der klinischen Praxis zu etablieren, sind die denkbaren Vorteile enorm, da die fMRT
als nichtinvasive, schmerzfreie und nahezu risikofreie Untersuchung mit keinen

relevanten unerwiinschten Nebenwirkungen einhergeht.

Somit liefern die hier prasentierten Ergebnisse nicht nur interessante Erkenntnisse in
die faszinierende Organisationsstruktur der hippocampalen Langsachse, sondern
bieten auch eine methodische Grundlage fiir vielfaltige zuklinftige Anwendungen.
Diese umfassen insbesondere den Einsatz der vorgestellten Methodik als universell
einsetzbares, automatisiertes Segmentierungstool der hippocampalen Langsachse in
der neurowissenschaftlichen Forschung sowie als wertvolles, nahezu risikofreies

pradiktives Tool bei neurodegenerativen Erkrankungen in der klinischen Praxis.
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1. Introduction

1.1 What a seahorse has to do with navigation systems

In the milliseconds before starting to read this text, the unusual title of this section may
have caused different memories to cross the reader’s mind, perhaps including a past
visit at ‘Sea Life’, facts and figures from a marine biology textbook, or potentially even
the specific frustrating experience of intending to reach a destination with an outdated
navigation device. If not before reading this, perhaps by now similar memories may
have been elicited. This capability of the mind to instantaneously recollect previously
acquired information or events and vividly relive past experiences may be best
described as a form of mental time travel, which is an intriguing ability of the human
brain. Interestingly, the addressed entities, namely the formation of memory (textbook
knowledge or personal experience), spatial navigation (attempting to reach a
destination), and emotional processing (frustration with a technical device), have all
been linked to a circumscribed brain structure in the medial temporal lobe, the
hippocampus, which — being the Latin word for seahorse — explains the connection
hinted at in the title. As this thesis is dedicated to the functional organization of that
fascinating brain structure, it is important to first provide a brief overview of its gross
anatomy and functional implications. After describing the structure and function of the
hippocampus in a physiological context, the hippocampal role in pathological
conditions shall be pointed out, specifically intending to captivate readers whose
general curiosity is focused on the clinical rather than fundamental sciences. Hopefully
having sparked all readers’ interest in the functional organization of the hippocampus,
subsection 1.5 will introduce an efficient means to investigate organizational patterns
of the human brain in-vivo, namely functional magnetic resonance imaging. With the
relevant background information given, the Introduction will be concluded by an outline

of the precise goal of this study.
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1.2 Topological and structural neuroanatomy of the hippocampus

The human hippocampus is a bilateral, circumscribed structure in the medial temporal
lobe that partly forms the floor of the lateral ventricle (Duvernoy, 2005). In addition to
its resemblance with a seahorse, the shape of the hippocampus could also be
described as a large cashew nut, with a dilated anterior portion forming the so-called
hippocampal head and an elongated hippocampal tail that is located posteriorly
(illustrated in Figure 1). The anterior and posterior poles of the hippocampus are
connected by the hippocampal body, the orientation of which follows a sagittal
direction. Note that the entire length of the hippocampus features several elongate
humps, also called hippocampal digitations, which are separated by smaller sulci.
These digitations correlate to cortical folding, similar to gyrification in the neocortex,

and are most prominent in the anterior hippocampus.
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Figure 1: Topology of the left hippocampus

Viewed from a lateral position, the left cerebral hemisphere is dissected to reveal the left
hippocampus, which is usually not visible from the outside as it is covered by temporal lobe
matter. The anterior pole of the hippocampus thickens to form the hippocampal head, whereas
the posterior pole thins out into the indusium griseum. The fimbria hippocampi, a fine strip of
white matter, continues into the crus fornicis.

lllustration adopted from Schiinke et al.(2012), p. 322.
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In terms of topology, the hippocampal head anteriorly neighbors the amygdala (not
visible in Figure 1 due to removal for illustration purposes) and posteriorly, the
hippocampus elongates towards the caudal end of the corpus callosum, also termed
splenium (Schinke et al., 2012). At this position, the gray matter of the hippocampus
merges into the indusium griseum, which is a thin layer of gray matter closely following
the cranial surface of the corpus callosum. The hippocampus, mostly composed of
gray matter, is accompanied by a thin, fibrous strip of white matter, the so-called
fimbria, which posteriorly continues into the crus of the fornix (Trepel, 2008).
Structurally, the hippocampus is part of a particular subtype of cerebral cortex termed
archicortex, which remarkably constitutes the phylogenetically oldest region of the
cerebral cortex (Frotscher & Seress, 2007). As a part of this system, the hippocampus
is thought to be highly conserved across (especially mammalian) species
(Amaral & Lavenex, 2007).

1.3 Functional neuroanatomy of the hippocampus

The anatomical characteristics outlined above have been known for a long time, as
already studies in the late 19" and early 20" century have focused on the topological
and morphological anatomy of the hippocampus (Ramén y Cajal, 1893). However,
it was not until the 1950s that research questions regarding hippocampal function

gained sweeping popularity.

1.3.1 A brief history of research on hippocampal functions

The interest in hippocampal function was sparked by a groundbreaking discovery
based on the case of Henry Molaison, by now famously referred to as ‘patient H. M.’
This patient suffered from severe epilepsy that was resistant to all treatment options
available at the time. At the age of 27, as patient H. M. was utterly incapacitated by his
recurring seizures, he underwent an experimental surgery as a last resort
(Scoville & Milner, 1957): Since attending physicians suspected the known
epileptogenic potential within the medial temporal lobe of causing the condition,
surgeons generously resected large parts of the patient’s bilateral medial temporal
lobes, including the majority of the hippocampus (Augustinack et al., 2014).

Unexpectedly at the time, the seminal finding stemming from this procedure did not
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concern the antiepileptic effect of the surgery — although both incidence and severity
of seizures were reduced — but rather the fact that after bilateral temporal lobe removal,
patient H. M. experienced severe memory impairment (Squire, 2009). Specifically, the
patient suffered from anterograde amnesia, i.e., he was not able to form new
memories, while he was still able to recall memories that had been encoded before the
surgery. This discovery led to the conclusion that structures within the medial temporal
lobe, including the hippocampus, are essential for the formation of memory.
Interestingly, however, further experiments involving patient H. M. after his surgery
revealed that not all kinds of memory depend on the medial temporal lobe
(Cohen & Squire, 1980): For instance, in a multi-day drawing task patient H. M. was
asked to trace the outline of a five-pointed star with a pencil, while he could only see
his hand and the drawing paper reflected in a mirror. Interestingly, the patient’s motor
skill of ‘mirror-drawing’ improved significantly and was stable for several days, yet at
every new trial the patient had absolutely no awareness that he had performed the task
before (Milner, 1962).

These intriguing insights originating from the unique case of patient H. M. boosted
interest in hippocampal research. In subsequent years, intensive studies progressively
corroborated the pivotal role of the hippocampus for the formation of declarative
memory (Squire et al., 1993). This specific type of memory usually coincides with the
use of ‘memory’ in everyday language, i.e., conscious knowledge of facts (semantic
memory) and events or episodes (episodic memory) and is distinct from procedural
memory which typically encompasses unconscious skill-based knowledge, including

complex motor skills like the above-mentioned mirror-drawing task.

In parallel, however, a different line of evidence emerged from the new-found interest
in hippocampal function, suggesting a hippocampal role for cognition beyond
declarative memory: Lesion studies in rodents demonstrated that hippocampal
damage resulted in major impairment of spatial memory (Morris et al., 1982).
Moreover, the breakthrough discovery of ‘the brain’s navigational system’, which was
later awarded the Nobel Prize for Physiology or Medicine (The Nobel Committee for
Physiology or Medicine, 2014), further corroborated a hippocampal role in spatial
navigation: The rodent hippocampus was shown to contain specialized neurons,

so-called place cells, that respond to specific, circumscribed locations in space with an
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increased firing pattern (O’Keefe & Dostrovsky, 1971). Hence, hippocampal place cells
are thought to provide a mapping of the environment around the individual, which led
to the view that the mental representation of space is situated in the hippocampus and
organized as a ‘cognitive map’ (O’Keefe & Nadel, 1978). Although these experiments,
based on in-vivo cell recordings via implanted electrodes, have not been replicated in
humans for obvious ethical reasons, noninvasive functional imaging studies have

provided evidence for the existence of place cells in humans (Epstein et al., 2017).

As detailed above, decades of hippocampal research have established two key
functions of the hippocampus, namely declarative memory and spatial navigation.
However, more recent work has extended the functional role of the hippocampus
to additionally take part in emotional processing, including anxiety or fear (Kjelstrup et
al., 2002), and stress-related behaviors (Franklin et al., 2012). This suggested
emotional component of hippocampal function is supported not only by behavioral
studies, but also by evidence indicating a regulatory influence of the hippocampus for
the hypothalamic-pituitary-adrenal-axis (Jacobson & Sapolsky, 1991). Furthermore, a
hippocampal role in perception (Lee et al., 2012), decision-making (McCormick et al.,
2016), and imagination of objects and fictitious events (Karapanagiotidis et al., 2017)
has been proposed, although these hypotheses are not yet corroborated by a large

body of evidence.

In sum, it is to date widely established that the hippocampus takes part in a multitude
of complex brain functions. These include most prominently the formation of
declarative memory, spatial navigation, and emotional processing but may extend to

even more roles that are still under investigation.

1.3.2 Current view: Two axes of functional organization

The involvement of the hippocampus in a multiplicity of brain functions gives rise to the
question how this functional diversity is sustained by an underlying hippocampal
organization. Although this question is not yet entirely resolved, an established view
assumes that the hippocampus exhibits two axes of functional organization that are

perpendicular to each other (Vos de Wael et al., 2018).
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The first axis has been identified long before patient H. M.’s case was studied, when
Spanish histologist Santiago Ramén y Cajal and his student Rafael Lorente de N6
published the first detailed and comparative studies on morphology and neuronal
connectivity of the hippocampus (Lorente De N6, 1934; Ramoén y Cajal, 1893).
Specifically, they discovered delicate differences in cytoarchitectonic properties, based
on which they divided the hippocampus into histological subfields that are until now
integral part of neuroanatomy textbooks: These subfields include the so-called dentate
gyrus, cornu Ammonis fields CA1, CA2 and CAS3, and the subiculum (illustrated in
Figure 2). Subsequent studies have extended the original nomenclature and
suggested subdomains on an even smaller scale, like a division of the subiculum into
pre-, para-, prosubiculum, and subiculum proper (Duvernoy, 2005). Critically, the
identified histological subfields are arranged along the transversal axis of the

hippocampus and are in this thesis henceforth referred to as transversal subfields.

Figure 2: Transversal subfields of the hippocampus

According to delicate cytoarchitectonic differences, the hippocampus can be divided into
several histological subfields. In this view onto the hippocampi of both hemispheres from an
antero-ventral angle, the left hippocampus shows the outline and orientation of the transversal
subfields, as defined in the segmentation protocol by Dalton et al. (2017) Although the precise
nomenclature and number of subfields differ between protocols, these subfields are generally
arranged along the transversal axis of the hippocampus (except for the uncus, which is not
consistently mentioned in different segmentation protocols).

Magenta: pre- and parasubiculum, dark blue: prosubiculum and subiculum, green: CA1,
yellow: CA2/3, red: CA4 and dentate gyrus, turquoise: uncus.
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Regarding the functional relevance of these microscopically discriminable subfields,
more recent work has suggested that transversal hippocampal subfields may be
implicated in different cognitive functions (Carr et al., 2010), for example the encoding
versus retrieval of a memory (Suthana et al., 2011). Hence, one aspect of hippocampal
functional organization may be sustained by a functional distinction along its

transversal axis.

In addition to the long-standing notion of a transversal axis of organization, which has
first been identified using microstructural characteristics but moreover may be
functionally relevant, more recent studies have proposed a functional differentiation
along the longitudinal axis of the hippocampus (Poppenk et al., 2013). Hitherto this
organization is not underpinned by clearly defined cytoarchitectonic properties that can
be thoroughly assessed using microscopy. Thus, its exact morphology is more
ambiguous and previous studies have produced different hypotheses regarding the
hippocampal long-axis organization (schematically illustrated in Figure 3): Some
studies suggest a dichotomous organization in which the anterior one-third, roughly
covering the hippocampal head, is functionally different than the posterior two-thirds.
This is mostly based on studies of intrinsic anatomical connectivity of the hippocampus
that revealed an abrupt divergence of neuronal projections between the ventral
one-third and dorsal two-thirds of the hippocampus (Kondo et al., 2009). Extending
this discrete view, gene expression (Dong et al, 2009), electrophysiological
(Kenney & Manahan-Vaughan, 2013), and behavioral (Bast et al., 2009) studies point
towards a modular organization in three distinct, nonoverlapping subunits. In contrast,
a third set of evidence suggests a smooth functional gradient spanning from the
anterior to the posterior hippocampal pole with continuous transitions of functional
specialization (Kjelstrup et al., 2008; Przezdzik et al., 2019). Evidently, the question
regarding the precise functional organization of the hippocampal long-axis is not yet

entirely resolved (Strange et al., 2014).
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Figure 3: Hippocampal long-axis organization

The functional organization along the hippocampal long-axis is not yet entirely resolved.
Previous studies have proposed different models, which can be grouped into three partly
opposing hypotheses: A dichotomous view with a discrete functional distinction between the
anterior one-third and the posterior two-thirds (left sketch), a tripartite model with three sharply
demarcated subunits (middle), or a continuous gradient of functional differentiation (right).

Illustration inspired by Strange et al. (2014)

1.4 Why should clinicians care about the hippocampal organization?

At this point, it may be of interest to consider why a clinician should at all be bothered
with the hippocampal (long-axis) organization. As established above, decades of
research have revealed that the hippocampus is critically involved in an abundance of
important neurophysiological functions. Yet this functional multiplicity reflects only one
side of a coin, as analogously it was shown that the hippocampus not only sustains
healthy brain function, but also shows major impairment in pathological conditions
(Small et al., 2011). These include a variety of neuropsychiatric diseases, for instance
neurodegenerative illnesses, like most prominently Alzheimer's disease
(La Joie et al., 2014) and frontotemporal dementia (Vogel et al., 2020), but also
schizophrenia (Lewis & Lieberman, 2000), bipolar disease (Altshuler et al., 2000),
major depressive disorder (Kemmotsu et al., 2013), anxiety (Cha et al., 2016), and
post-traumatic stress disorder (Karl et al., 2006). Some of these links between disease
and hippocampal alteration have been long established and are currently widely
accepted, for instance a hippocampal involvement in Alzheimer’s disease and other
forms of dementia, whereas other connections are rather recent and may require
further testing. Besides, correlation does not automatically imply causation and a

possible confounder may relate to comorbidity (Cha et al., 2016), therefore one should
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not over-interpret findings at the current stage. Nonetheless, the multitude of
neuropsychiatric diseases in which the hippocampus may play a role is remarkable,
especially given the diversity of the mentioned medical conditions, ranging from
impaired memory and spatial orientation in dementia to different instances of emotional
imbalance in depression or anxiety. Therefore, fundamental research investigating
how the multiplicity of cognitive functions is sustained by the hippocampal organization
will eventually help to advance our clinical understanding of how such different
symptoms can be caused by the damaged integrity of a single circumscribed brain
region. In fact, the link between functional transitions along the hippocampal long-axis
(matter of fundamental research) and the relevance of such organizational patterns in
disease (clinical relevance) was already indicated by recent studies: Not only the
distribution of brain functions changes along the long-axis, but also the vulnerability to
disease, as shown for Alzheimer’s and other forms of dementia (Llad6 et al., 2018;
Ranganath & Ritchey, 2012; Vogel et al., 2020). In the long term, such insights can
promote a more accurate model of a disease’s pathophysiology and therein help to
discover new avenues for better, earlier, and potentially more targeted treatment

options.

1.5 Mapping the functional organization of the human brain

As outlined above, the functional organization of the hippocampus is an unresolved
question, and its illumination may help to understand the fundamental role of the
hippocampus in health and disease and thus pave the way for better treatment options
for various conditions. Since many previous findings stem from animal research and
their generalizability to humans is not entirely evident, it is important to investigate the
hippocampal organization directly in humans. Furthermore, to derive information
regarding functional rather than structural aspects, analyses should be performed in
alive humans, as postmortem studies are better suited to address the structural

anatomy of brain tissue but often not directly conferrable to functional neuroanatomy.

1.5.1 FMRI as an efficient tool for indirect quantification of neuronal activation

Generally, for research questions regarding the functional behavior of human brain

regions, ethical concerns naturally forbid numerous invasive techniques that are useful
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in animal research. Hence, a noninvasive, riskless, and ideally high-resolution tool for
mapping human brain function in-vivo is needed. Such an approach was rendered
possible by the development of functional imaging techniques, including among others
functional magnetic resonance imaging (fMRI). Against a common misconception,
fMRI does not provide a means to directly quantify brain activity but in fact constitutes
an indirect measure of neuronal activity as it detects the physiological reaction of the
cerebral vascular system following neuronal activation (Huettel et al., 2009).
To understand this, it is firstimportant to deconstruct what the term ‘neuronal activation’
precisely implies: On a cellular level, neuronal activity is reflected by numerous
biochemical reactions, including for instance axonal transmission of action potentials
or synaptic release of neurotransmitters (Glover, 2011). These processes require
energy, which is usually provided in the form of adenosine triphosphate, produced by
intracellular oxidative glycolysis. The main substrates needed for this reaction, glucose
and oxygen (Oz), are supplied via the blood stream, which conversely also removes
accumulating metabolites like carbon dioxide (CO2). Note that whereas COz is in large
parts dissolved directly in the blood, Oz usually requires hemoglobin for transportation.
Neuronal activation, i.e., upregulation of energy-consuming cellular processes above
baseline, leads to a higher substrate demand, which is met by changes in blood supply
after a short delay of a few seconds (Roy & Sherrington, 1993), the so-called
hemodynamic response. A major consequence of this hemodynamic response is a
local change in the concentrations of oxygenated and deoxygenated hemoglobin: As
oxygen is transported into cells for energy production, hemoglobin molecules are
increasingly depleted of their carried Oz and change from a so-called oxygenated to a
deoxygenated state. Shortly after, however, the hemodynamic system responds to this
increased oxygen depletion with an overshoot of blood flow and volume so that the

concentrations of oxygenated and deoxygenated hemoglobin reverse.

Having outlined the hemodynamic response to neuronal activation, the question
emerges as to how an fMRI scanner is able to detect these hemodynamic changes
and thereby indirectly measure brain activity. Without detailing the physical concepts
underlying the generation and detection of MR signal, it is worth noting that MRI is
technically designed to detect specific changes in spin orientation and precession
frequency of hydrogen atomic nuclei located in a strong magnetic field, induced by

excitation of the nuclei via high-energy electromagnetic waves, so-called
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radiofrequency pulses (Huettel et al., 2009). Thus, the MR signal fundamentally relies
on the magnetic characteristics of the examined tissue. Critically, the hemoglobin
molecule exhibits substantially different magnetic properties depending on whether it
currently carries oxygen or is in its deoxygenated state (Pauling & Coryell, 1936). Due
to this difference in magnetic susceptibility, deoxygenated hemoglobin interferes with
and distorts the MR signal more than oxygenated hemoglobin (Thulborn et al., 1982).
Hence, local changes in the amount of deoxygenated hemoglobin can be detected
using MRI, which requires the use of a specific contrast (Ogawa et al., 1990;
Ogawa & Lee, 1990). This so-called blood-oxygen-level-dependent (BOLD) contrast
relies on changes in deoxygenated hemoglobin over time, which — as we have
established above — are caused by the cerebral hemodynamic response which in turn
mirrors local neuronal activity. Therefore, BOLD fMRI not only maps the concentrations
of differentially loaded hemoglobin molecules but importantly allows for conclusions
about the underlying neuronal activation. Importantly, this neuronal activity is quantified
over time, in contrast to structural MRI for instance, which is commonly used in clinical
contexts to produce a momentary snapshot of the brain’s structural composition. In
functional MRI, BOLD signal is measured at thousands of time-points throughout the
duration of an experiment, thereby quantifying neuronal activation with a temporal
resolution. At each time-point, the fMRI scanner measures the current BOLD signal
from the entire brain, producing a three-dimensional reconstruction of the signal
intensity values at that specific time-point, a so-called brain volume (illustrated as
stacks of brain images in Figure 4, top left panel). For technical reasons, most
scanners acquire a complete brain volume by assembling two-dimensional, axial brain
slices (bottom left panel). Each of these slices, and thus each brain volume is virtually
dissected into small cubes with an edge length on the millimeter scale, which constitute
the smallest spatial units for which BOLD signal is recorded (bottom right panel). These
cubes are called voxels and can be described as three-dimensional pixels, or
volumetric pixels (hence the compound term vo-xel). A voxel’s acquired BOLD signal
over time can be represented as a voxel-specific time-course of BOLD signal,

sometimes referred to as activity time-course (top right panel).

As voxels constitute the smallest spatial units of signal acquisition, voxel size
determines the spatial resolution of the obtained images. It can be influenced by

numerous factors, most notably by the employed magnetic field strength. Usually, fMRI
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studies employ scanners operating at a field strength of 1.5 or 3 Tesla, resulting in a
voxel edge length measuring a few millimeters. With ultra-high-field scanners at 7 or

very rarely 9.4 Tesla, an even higher sub-millimeter resolution can be achieved.
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Figure 4: Basic structure of fMRI data

In fMRI, three-dimensional brain volumes are acquired over time (top left panel). Due to the
typical acquisition technique, brain volumes are acquired as several two-dimensional axial
brain slices (bottom left). The smallest entity within each brain slice, and thus in the entire
brain volume, is a small, three-dimensional ‘volumetric pixel’, i.e., voxel (bottom right). For
each voxel, BOLD signal is detected over time, yielding voxel-wise time-courses of BOLD
signal (top right).

1.5.2 Functional connectivity for investigating functional networks

Based on acquired fMRI data, abundant approaches for further analyses and statistical
testing have been developed. For instance, experimenters can choose to analyze each
voxel's time-series independently, constituting the concept of so-called massive
univariate testing, which is to date commonly used. A univariate approach typically
involves fitting a linear model to the BOLD signal time-course of every voxel using a
set of covariates. This method can for instance provide information about the overall
activation level in voxels of a brain region during different conditions of an experimental

design, for example the activation during performing a task versus during rest.
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Thus, while the question may be answered to what extent different regions take part in
an experimental task, strictly univariate approaches are usually not suited to derive
information beyond the absolute activation of distinct brain regions. However, given
accumulating evidence for a complex hierarchy and organization in the human brain,
it is a question of increasing interest to identify and analyze functional brain networks.
Especially when addressing a question regarding the functional organization of a
circumscribed brain region it may be useful to investigate whether different subunits of

the region of interest may or may not belong to different functional brain networks.

One way to address this question, i.e., to assess how functionally connected brain
regions are, is to determine the extent of coactivation between them. This is based
upon the assumption that regions that belong to the same functional entity take part in
similar tasks and are therefore active at the same time (and vice versa inactive at the
same time). This concept, more precisely the amount of coactivation of two brain areas,
can be quantified as the similarity, i.e., correlation, between the respective brain
regions’ or voxels’ BOLD signal time-courses, which is termed functional connectivity
(Friston, 2003). Produced values of functional connectivity range from one to negative
one, indicating an identical or inverse activation pattern, respectively (schematically
illustrated in Figure 5). In other words, two voxels with very similar BOLD time-series
will have a high value of functional connectivity (gray and blue voxels in Figure 5),
whereas a pair of voxels in which one is consistently active when the other one is
inactive will be characterized by a more negative value of functional connectivity (gray

and red voxels in Figure 5).
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Figure 5: Principle of functional connectivity

One way to investigate patterns of functional brain organization consists in comparing activity
time-courses across different brain regions. This can be done using functional connectivity,
which measures the correlation of BOLD time-courses of different brain regions. In this
example, we regard the time-series of an exemplary voxel in the head of the caudate nucleus
(dark gray square). As the time-series of another caudate nucleus voxel (blue square) features
a very similar temporal activation pattern, the correlation of their time-courses will yield a high
value close to 1. These two voxels exhibit a high functional connectivity. Conversely, an almost
inverse time-course (here: red cortical voxel) will result in a negative correlation, i.e., functional
connectivity, close to -1. A voxel with a time-course neither identical nor inverse (green cortical
voxel) will lie in between.

1.6 Aim of this study

As outlined above, the precise functional organization of the human hippocampus is a
topic of much debate and until now remains elusive. The involvement of the
hippocampus in a multitude of intriguing cognitive functions, including but most likely
not limited to memory formation and mental representation of space, motivated us to
investigate how this multiplicity is sustained by an underlying functional organization.
llluminating this would not only provide fundamental insights into the mechanisms of
such complex brain functions and thereby considerably advance the field of
fundamental neuroscience but may also improve our understanding of the

pathophysiology of the abundance of neuropsychiatric diseases that the hippocampus
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is involved in. Therefore, we set out to investigate the functional organization of the
human hippocampus in healthy adults based on an ultra-high-resolution fMRI dataset
acquired at a magnetic field strength of 7 Tesla. Specifically, we aimed to identify the
dominant axis of functional organization within the hippocampus. Furthermore, we
tackled the question whether the pattern of functional organization along the dominant
organizational axis revealed step-like or smooth transitions. Moreover, if we revealed
a step-like pattern, we intended to determine the number of functional modules within

the hippocampus.

To answer these questions, we considered the functional connectivity of the
hippocampus to the rest of the brain. More precisely, we employed a recently
developed, data-driven analysis algorithm, connectopic mapping, to identify the
dominant topography of functional connectivity, or connectopy, within the hippocampus
(Haak et al., 2018). The applied algorithm involved several computational steps but
essentially, we compared functional connectivity profiles across hippocampal voxels
and processed this information to determine the overall pattern of functional
connectivity similarity within the hippocampus. Our first focus of interest was whether
the detected organizational pattern revealed either a smooth functional gradient or a
step-like, modular organization. In the latter case, the second question we aimed to
address was the precise number of hippocampal subunits. Thus, we eventually
performed participant-specific hippocampal parcellations based on the identified

topography of functional connectivity similarity.
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2. Materials and methods

With the above-mentioned goals in mind, this section provides a detailed description
of the applied methods. The first subsections focus on design-related and technical
specifications of the fMRI data acquisition and preprocessing. Note that the fMRI data
processed here had been acquired and preprocessed for a previous project
(Navarro Schroder et al.,, 2015). Subsection 2.5 is dedicated to a detailed and
illustrated description of the applied connectopic mapping algorithm. Finally, our

validation and parcellation approaches will be outlined.

2.1 Experimental design

To achieve the goal of illuminating the functional organization of the hippocampal
long-axis in humans, a set of 22 healthy participants was investigated. As we aimed to
obtain information about the organization of the hippocampus while it is functionally
active, we deemed it necessary to engage participants in a hippocampus-dependent
task while simultaneously recording their brain activity using functional magnetic
resonance imaging (fMRI). Specifically, participants performed a navigation task
involving spatial memory, which in our rationale should ensure a general functional
engagement of the hippocampus, since it is — as established above — pivotally
implicated in the processing of spatial memory. At the same time, brain activity was
mapped using ultra-high-resolution fMRI, acquired at a magnetic field strength of
7 Tesla. During fMRI acquisition it is vital that participants remain as still and stationary
as possible to reduce motion-induced artifacts such as blur and transient amplitude
changes. Thus, to collect high quality fMRI data on participants who engaged in a
spatial navigation task we employed a virtual reality setup. Participants used a
controller in their hand to navigate a three-dimensional virtual arena, which was
projected onto a screen in their direct field of view. In the object-location memory task
adapted from Doeller et al. (2008; 2010), participants collected and relocated six
everyday objects while freely navigating the circular arena (illustrated in Figure 6):
In an initial trial, participants collected each object from a specific location within the
arena and had been instructed to memorize each object’s associated location. In each

subsequent trial, they saw an image of one of the previously collected objects in the
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upper part of the screen. Upon this cue, they had to navigate to the location where they
had initially collected the item and press a button. After each object relocation phase,
participants received immediate feedback on how well they did in navigating to the
object’s associated location (via a happy, neutral, or sad emoticon). Subsequently, the
object reappeared at its correct location and participants had to recollect it to reinforce
the memory. To separate sets of trials, after an average of three trials (range two to

four trials) a fixation cross on a gray background was presented for four seconds.

) Free navigation and collection 2) Visual cue
) Relocation 4) Feedback and recollection

Figure 6: Object-location memory task in virtual reality

During fMRI acquisition, participants performed an object-location memory task in a
three-dimensional virtual arena, the edges of which were equipped with colored triangles to
facilitate spatial orientation. While freely navigating the circular arena using a manual
controller, participants collected six everyday objects (1) and had been instructed to remember
their associated location. Upon a visual cue of a previously collected object (2), they were to
navigate back to the object’s associated location and press a button on the controller (3). After
relocation, the participants received immediate feedback regarding the accuracy of the
remembered location and recollected the item (4).
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Each fMRI scanning session was subdivided into acquisition runs of 210 brain
volumes. Participants underwent an average of five runs (+ 1) and the total number of
runs across all participants was 108. In total, the dataset consisted of 26 healthy
participants (11 females and 15 males, age 19-36, mean 23 years, illustrated in
Figure 7). The data of 22 participants entered the analyses, as four participants had to
be excluded due to excessive movement during scanning (number of instantaneous

movements > 0.5 mm (Power et al, 2012) exceeded the mean plus 1 standard

deviation).
71 I Vale Figure 7: Age and sex distribution
I Female of the participants
64 [ Excluded

From the original dataset, containing
fMRI scanning sessions of 26 healthy
participants, four participants had to be
excluded due to excessive movement
during scanning (transparent bars).
Coincidently, all excluded subjects were
female. This resulted in a definitive
sample of 22 subjects entering the
analyses, including eight female and
14 male participants. Note, however, that
one female subject (that also entered the
analyses) could not be included in this
diagram due to lacking age information.

Number of participants

19-21 22-24 25-30 31-36
Age groups [years]

Materials and methods were approved by the local research ethics committee (CMO
University Duisburg-Essen, Germany and CMO region Arnhem-Nijmegen, NL). Written
informed consent was obtained from each participant for data analysis and publication
of the study results. Note that this dataset had been acquired and preprocessed for a
previous project. Detailed technical specifics can therefore be found in the published
work of Navarro Schrdder et al. (2015) and are only briefly outlined in subsections 2.2
and 2.3. This information is included here for the sake of completeness, but for all
readers who are not experts in fMRI analyses the following two subsections are not

vital for understanding the main analyses and results of this project.
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2.2 FMRI acquisition

The fMRI data was collected on a Siemens MAGNETOM scanner operating at a
magnetic field strength of 7 Tesla (Siemens Healthcare, Erlangen, Germany),
providing ultra-high-resolution brain images at sub-millimeter resolution. The
blood-oxygen-level-dependent (BOLD) T2*-weighted functional images were acquired
using a three dimensional echo-planar imaging (EPI) pulse sequence (Poser et al.,
2010) and a 32-channel surface coil: Repetition time TR =2.7s, echo time
TE =20 ms, flip angle = 14°, slice thickness = 0.92 mm, slice oversampling = 8.3%,
in-plane resolution (0.9 mm)?, field of view =210 mm in each direction, 96 slices,
phase encoding acceleration factor =4, 3D acceleration factor=2. To allow for

T1 equilibration, the first five volumes of the scan were discarded.

Magnetic resonance images are naturally subject to spatial distortions due to local
inhomogeneities of the magnetic field, which can lead to lower quality images and an
inaccurate registration between the functional and structural scans. Common sources
of field inhomogeneity are differing magnetic susceptibilities of neighboring tissues,
such as regions where air-filled sinuses border with bone, like around the temporal
lobe (Ojemann et al., 1997). As our region of interest, the hippocampus, is located in
the very medial temporal lobe, it was especially important to account for distortion
artifacts. Hence, distortion correction of the acquired EPI images was performed using

a field map, which was recorded using a gradient echo sequence.

2.3 FMRI data preprocessing

Preprocessing was implemented using the automatic analysis library (Cusack et al.,
2015; http://automaticanalysis.org) and included motion correction in SPM8
(http://www fil.ion.ucl.ac.uk/spm) and data denoising with the FIX artifact removal
procedure implemented in FSL 5.0.4 (Salimi-Khorshidi et al., 2014; Griffanti et al.,
2014; http://fsl.fmrib.ox.ac.uk/fsl) that was trained manually on ten out of
22 participants. Furthermore, nonlinear normalization to a group-specific EPI template
was performed with the help of the Advanced Neuroimaging Toolbox (Avants et al.,

2011; http://www.picsl.upenn.edu/ANTS). The use of a group-specific template was
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feasible because of the anatomical detail provided by the sub-millimeter resolution of
our dataset. This rendered the registration to structural images unnecessary, which
eliminated a potential source of noise. The functional data were smoothed with a
full-width at half-maximum (FWHM) Gaussian kernel of 2.5 mm (roughly 2.5 times
the voxel size) to increase the signal-to-noise ratio and to improve
independent-component-analysis (ICA) based data denoising with the FIX procedure
while maintaining high spatial resolution. Correction for residual motion artifacts was
performed with AROMA (automated removal of motion artifacts), another ICA-based
method, which has been shown to outperform motion scrubbing and spike-regression
methods both in terms of reproducibility of resting-state networks and conservation of
temporal degrees of freedom (Pruim et al., 2015a; Pruim et al., 2015b). In addition,
brain extraction (Smith, 2002), tissue segmentation (Zhang et al., 2001) and high-pass

filtering with a 128 s cut-off were carried out using FSL 5.0.4.

2.4 Region of interest definition

To investigate the neuronal activity within the hippocampus, it was necessary to extract
the BOLD signal measurements of our region of interest from the whole-brain fMRI
scans. This required a three-dimensional binary mask defining the location and outline
of the hippocampus within our participants’ brains. Therefore, the hippocampus was
manually delineated on the group-specific template using ITK-SNAP 3.6.0
(Yushkevich et al., 2006; www.itksnap.org) according to the instructions provided by
the Harmonized Protocol for Manual Hippocampal Segmentation (Boccardi et al.,
2015; Frisoni et al., 2015; www.hippocampal-protocol.net). This unified protocol was
jointly developed by the European Alzheimer’'s Disease Consortium (EADC) and the
Alzheimer’s Disease Neuroimaging Initiative (ADNI). Figure 8 illustrates the resulting

hippocampal mask.

One might think that it may be faulty to use the exact same mask for all participants,
as acquired scans can vary in brain size and head orientation across individuals.
However, before applying the mask and performing the analyses described below, we
transformed every participant’'s fMRI dataset into the same group-specific space. In
other words, we adjusted individual participants’ brain volumes to match the same

coordinates as our group-specific template. This so-called nonlinear normalization to
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our group-specific template was part of the preprocessing (subsection 2.3). As
therefore all our data referred to the same space and coordinates, it was sufficient to
define the hippocampal outline only once on the group-specific template for the mask
to universally fit all participants. In total, the binary mask covering the left hippocampus
contained 4664 nonzero voxels and the mask for the right hippocampus contained

5112 nonzero voxels.

Sagittal Coronal

Axial 3D rendering

Posterior

Anterior

Figure 8: Hippocampal masks

Depicted are manually delineated hippocampal masks of both hemispheres overlayed onto
sagittal, coronal, and axial slices of the group-specific brain template. Furthermore, a 3D
rendering of the masks is included, corresponding to a view from an antero-ventral direction.
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2.5 Quantification of hippocampal functional connectivity topography

To deduce the functional organization of the hippocampus based on the acquired and
preprocessed fMRI data, we employed a recently developed analysis algorithm,
connectopic mapping (Haak et al., 2018), that has proven successful in previous fMRI
studies (Navarro Schréder et al.,, 2015; Przezdzik et al., 2019). As this entirely
data-driven algorithm constitutes the heart of the analyses in this project, its three main
steps are described below in more detail. The underlying Python code is openly
accessible at https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/OtherSoftware, section ‘Congrads’,

and was implemented using Python 3.6.3 (Van Rossum & Drake Jr, 1995).
2.5.1 Computation of hippocampal functional connectivity fingerprints

As a first step of the algorithm, we aimed to quantify the functional connectivity of the
hippocampus with the rest of the brain. Generally, functional connectivity indicates the
level of coactivation of different brain regions and is thus defined as the temporal
correlation between measured activity signals from those brain regions (Friston et al.,
1993). Here, we were interested in voxel-wise functional connectivity profiles of the
hippocampus, i.e., we aimed to determine how strongly neuronal activity of each

hippocampal voxel correlated with activity from the rest of the brain.

To this end, we first processed each participant’s fMRI dataset individually in the
following way (details on obtaining group-level results in subsection 2.5.4). We
extracted the neuronal activity measurements, i.e., time-courses of BOLD signal
intensity, from all voxels within the hippocampus of one hemisphere, using our
manually delineated hippocampal mask. Note that we performed the analyses
separately for the left and right hippocampus. In addition, we extracted the
time-courses of all extrahippocampal gray matter voxels, using a group-specific gray
matter mask. Restricting the analysis to gray matter voxels corresponds to the goal of
identifying mere firing patterns of neuronal cell bodies (gray matter) without introducing
the potential bias of recording delayed activation in their axons (white matter). Thanks
to the sub-millimeter resolution provided by the 7 Tesla fMRI scanner, the binary gray
matter mask comprised roughly 800.000 nonzero voxels. Thus, the matrix storing the

time-courses of extrahippocampal gray matter voxels contained 800.000 entries for
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each time-point. Processing a matrix of that size would render the following analyses
highly expensive in terms of computational resources and time. This is a common
challenge in big data processing, which we overcame by reducing the dimensionality
of the dataset using singular value decomposition (SVD). Generally, dimensionality
reduction procedures like SVD transform a high-dimensional source matrix into an
output matrix of lower dimensionality by extracting the ‘essence’, or principle
components, of the original matrix. Importantly, dimensionality reduction using SVD is
lossless because the data in the high-dimensional source matrix typically features
many redundancies in its pattern, which do not contribute new or unique information,
but just elongate evaluation of the data. Here, we decomposed the initial matrix,
containing the time-courses of 800.000 extrahippocampal gray matter voxels, into
210 principle components, containing the same information and explaining 100% of
the source variance but allowing for better computational manageability (Figure 9,
SVD). Intuitively, these principle components can be thought of as ‘principle
time-series’ of the extrahippocampal gray-matter data, from which theoretically all

original time-courses could be reconstructed.

At that point, we had extracted on the one hand the time-courses of BOLD signal for
all hippocampal voxels and on the other hand the 210 ‘principle time-series’ of BOLD
signal from all extrahippocampal gray matter voxels. Based on this, we aimed to
deduce a functional connectivity profile for each hippocampal voxel denoting how
strongly the respective hippocampal voxel's BOLD signal correlated with each of the
210 principle patterns of extrahippocampal BOLD signal (Figure 9, CORR). In other
words, we determined how closely a hippocampal voxel’s time-course resembled each
of the 210 principle components extracted from the extrahippocampal gray matter
time-courses. As a mathematical measure of resemblance, the code uses the pairwise
Pearson correlation, yielding correlation values ranging from negative one (minimal
resemblance) to one (maximal resemblance). This provided a set, or vector, of
210 correlation values for each hippocampal voxel, denoting the respective voxel's
individual fingerprint in terms of coactivation with the rest of the brain, thus termed a

functional connectivity fingerprint.
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Figure 9: Dimensionality reduction and computation of functional connectivity
fingerprints

SVD: In the 7 Tesla fMRI data, each brain volume contains roughly 800.000 extrahippocampal
(extra-hpc) gray matter voxels (panel A). We used singular value decomposition (SVD) to
remove redundancies in this data and to extract only the 210 unique principle components of
the gray matter data (panel B). Thereby, the dimensionality of the gray matter data was
reduced from 800.000 voxels x 210 time-points to 210 components x 210 time-points.

CORR: As the first main step of the connectopic mapping algorithm, we aimed to determine
how strongly each of the ‘principle time-series’ from the gray matter data was reflected in a
hippocampal voxel's time-course. This was measured as the pairwise Pearson correlation
(CORR) between a hippocampal voxel's time-course (panel C) and every single principle
component (panel B), respectively (each performed correlation indicated by &). This yielded
a vector with 210 correlation values for each hippocampal voxel (panel D shows the correlation
vector for hippocampal voxel #X). Each of these vectors can be thought of as the respective
hippocampal voxel’s functional connectivity (FC) fingerprint with respect to the rest of the brain.

2.5.2 Quantification of fingerprint similarity

Using the computations above, we obtained a functional connectivity fingerprint for
each hippocampal voxel, respectively. However, we were not solely interested in these
vectors quantifying hippocampal functional connectivity, but ultimately intended to

identify an inherent organizational pattern of functional connectivity similarity within the
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hippocampus. Therefore, as a second step in the algorithm, the code determined how
similar or dissimilar the individual functional connectivity fingerprints were across
hippocampal voxels. To this end, we iterated through hippocampal voxels, compared
one-by-one the fingerprint of one hippocampal voxel with every fingerprint of the
remaining hippocampal voxels and stored a measure of the similarity between the

respective two fingerprints in a so-called similarity matrix (Figure 10).

As a mathematical measure of similarity, we employed the n? coefficient, which
generally quantifies the similarity between two signals on a point-by-point basis
(mathematical definition provided in Cohen et al. (2008), equation 1). Briefly, at every
position of a vector, the n? coefficient incorporates the distances of the value in one
vector (here e.g., fingerprint of hippocampal voxel #1) and the value in a second vector
(e.g., fingerprint of hippocampal voxel #2) to the mean value of the two vectors at that
position. The sum of squared distances is then inverted and normalized to range from
zero to one, indicating no or high similarity of the two vectors, respectively. In our
analysis pipeline, an n? coefficient was calculated for every pair of hippocampal voxels.
More precisely, functional connectivity fingerprints of two hippocampal voxels were
compared on a point-by-point basis, producing one n?2 coefficient per pair of
hippocampal voxels, which characterizes the similarity between these two voxels’
functional connectivity fingerprints. The ensuing n? values were stored in a similarity
matrix with the size n x n, where n equals the number of hippocampal voxels. The more
similar two hippocampal voxels’ fingerprints are, the higher the n?2 coefficient between

them, ranging from zero (entirely dissimilar) to one (identical).

46



Fingerprint 2

Vi

N

Vs Vn

v, [N3(1,1)[n*(1,2)[n*(1,3)

Fingerprint2 | v |n*(2,1){n(", )|n3(2,3)

V5 |N*(3,1)|n*(3,2) [n*(3,3)

Hpc voxels

n n*(m.n)

Hpc voxels

Figure 10: Matrix of fingerprint similarity between hippocampal voxels

As a second step of the connectopic mapping algorithm, we compared how similar or dissimilar
functional connectivity fingerprints were across hippocampal (hpc) voxels. To this end, we
generated a similarity matrix with n rows and n columns, where n equals the number of
hippocampal voxels. As a measure of similarity between two fingerprints, we computed an
n? coefficient n?(x, y) for each pair of hippocampal voxels x and y. The n? values reached from
zero to one, indicating no or high similarity, respectively. Thus, elements on the diagonal (dark
gray squares) are filled with ones as comparing a voxel's fingerprint to itself yields n? =
(maximal similarity). Furthermore, the similarity matrix is symmetrical along the diagonal
because n?(x, y) equals n?(y, x).

2.5.3 Obtaining hippocampal maps using Laplacian Eigenmaps

We have now obtained a matrix that fully describes the similarity between functional
connectivity fingerprints across hippocampal voxels. In fact, this similarity matrix
contained all information required to derive an intrinsic organizational pattern of
functional connectivity similarity for the hippocampus, which was our eventual goal.

However, for a visual representation, it would be preferable to produce a map of the
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hippocampus with a single value per each voxel (instead of a similarity coefficient per
each pair of hippocampal voxels). The exact value that would be assigned would
represent an arbitrary measure of functional behavior, so that voxels with similar
behavior would be assigned similar values. Such a hippocampal map would accurately
map the spatial arrangement of the identified organization and allow for easier

interpretation of the underlying organizational pattern.

To achieve this and to transform the similarity matrix into a hippocampal map, we first
built a graph from the similarity data. Importantly, in the mathematical field of graph
theory, a graph serves as an abstract representation of a dataset and consists of
datapoints (nodes) which are interconnected by links (edges). Per definition, a graph
is ‘connected’ if there exists a path from each node to any other node via an arbitrary
number of edges. In our graph representation of the similarity matrix, each node
represented a hippocampal voxel and edges between nodes corresponded to the
similarity of the respective two voxels’ functional connectivity fingerprints (Figure 11).
This means that edges between two nodes were not binary — with the value of either
zero (no connection) or one (connection) — but weighted according to the similarity,
i.e., n? value, of the respective two voxels. This resulted in a graph with ‘stronger’ and
‘weaker’ edges (connections) between nodes (voxels). Importantly, at this point we
reduced the complexity of the data in that weighted edges were not blindly established
between all nodes. We disregarded all edges that were ‘too weak’, which in this regard
was defined as ‘not essential to form a connected graph’. This concept was
implemented using an iterative procedure, in which we initially created links only
between the voxels with the highest similarity values. Then we checked if the resulting
graph is connected and if not, we moved the threshold further down in that edges were
established for the next lower similarity values. This process was repeated until we first
obtained a connected graph. Ensuring a connected graph accords with the concept
that we aimed to find an organizational pattern covering the entire hippocampus rather
than multiple mappings that each might cover only a part of the region of interest.
Finally, the ensuing graph featured a network of edges that were weighted according
to the functional connectivity similarity but thinned out in that unnecessary small

similarities between nodes were disregarded.

48



Vi 2_ _\_l-"'_____ n Vy Vs vy
-7 == Example: v,
v, 1 09 | 0.1 ) — 1 0.1
09| 1 |05 ”
o) Threshold
>< =
v, |01 ]05 (1 ) for edges = 0.3
8
T
Vi, 1
Below
Hpc voxels threshold

O Node (data-point)

—— Edge (links)

Connected graph with thresholded edges

Figure 11: Graph representation of the similarity matrix

The similarity matrix (top left) was transformed into a graph (bottom right). In this graph, every
node represents a hippocampal voxel (for illustration purposes, nodes corresponding to voxels
that are described in the similarity matrix were highlighted). Each edge between two nodes
represents the similarity of the respective two voxels’ fingerprints. Therefore, edges were
weighted according to the n?values between the two respective voxels’ fingerprints. In
addition, edges were only established between voxels whose fingerprint similarity exceeded
a certain threshold (in this example: n2 > 0.3). The threshold was chosen so that the ensuing
graph was connected, i.e., there was a path from every node to any other node via an arbitrary
number of edges. The thresholding process is illustrated for the highlighted voxels vi — va:
n? values above 0.3 were translated into weighted edges (hence: strong connection between
vi and v,; weaker but still relevant connection between v, and vs). In contrast, n? coefficients
below 0.3 were not necessary for the graph to be connected and were disregarded (hence: no
connection between v, and vs).

Now this graph constitutes a data representation in which hippocampal voxels with
highly similar functional connectivity profiles are more strongly connected, or closer
together, than voxels with entirely dissimilar fingerprints. Hence, it is already a
representation of the functional organization within the hippocampus, yet we needed
to transform it into a map of the hippocampus to be able to visualize the data and to

facilitate interpretation. This was rendered possible by the use of the so-called
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Laplacian Eigenmaps algorithm, developed by Belkin and Niyogi (2003). Conceptually,
this algorithm is a means of nonlinear dimensionality reduction, which relies on a
similar concept as SVD (see above, subsection 2.5.1) in that the underlying problem
is a dataset of unnecessarily high dimensionality that complicates data analysis and
interpretation (Tenenbaum et al., 2000). The Laplacian Eigenmaps algorithm assumes
that the dimensionality of the data is only artificially high, and the representation of the
data of interest can be simplified. More precisely, the original data can be described
as a low-dimensional representation (so-called manifold) embedded in a
higher-dimensional space. Importantly, the Laplacian Eigenmaps algorithm computes
a lower-dimensional representation of the data that at the same time optimally
preserves local neighborhood information. This results in a representation map that

naturally arises from the geometry of the manifold.

In our implementation, the input for the Laplacian Eigenmaps algorithm was the graph
in which nodes represented voxels that were connected by stronger or weaker edges
according to the similarity of their functional connectivity fingerprints. In other words,
voxels with similar functional connectivity profiles stayed closer together than voxels
with no similarity. The Laplacian Eigenmaps algorithm pertained this neighborhood
information and transformed the graph into a mapping in which every hippocampal
voxel was assigned a value between zero and one according to its location within the
topography of functional connectivity similarity (illustrated in Figure 12). That means
that voxels with similar fingerprints were assigned a similar value, whereas voxels with
dissimilar fingerprints remained farther away from each other in this mapping. Thus,
importantly, the absolute value on this scale is not equal to a measure of similarity in
which zero indicates no similarity and one indicates high similarity (as was true for
n? values). Instead, one voxel's value on this arbitrary scale is only meaningful with
respect to values of the other hippocampal voxels. The resulting mapping conveys the
dominant topography of hippocampal functional connectivity similarity, i.e., a functional
connectivity topography or ‘connectopy’, and is henceforth referred to as connectopic

map.
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Figure 12: Mapping of functional connectivity similarity onto hippocampal map

Using the Laplacian Eigenmaps algorithm, a means of nonlinear dimensionality reduction, we
transformed the graph, representing the proximity of hippocampal voxels in terms of their
functional connectivity fingerprints, into a hippocampal map. For illustration purposes, the
depicted graph only consists of eleven hippocampal voxels, whereas in reality this graph
comprised all voxels within the hippocampus. Importantly, this algorithm optimally preserves
the underlying neighborhood information in the resulting mapping. The ensuing connectopic
map captures the topography of functional connectivity similarity as values on an arbitrary
scale between zero and one and projects this scale back onto hippocampal voxels. Note that
the connectopic map illustrated here constitutes only a fictitious example corresponding to a
theoretical transversal gradient.

For the sake of completeness, it should be mentioned that as a result of the
mathematical computations within the Laplacian Eigenmaps algorithm — or more
specifically because an eigenvalue problem typically has several solutions — several
connectopic maps were obtained. However, as suggested by Belkin and Niyogi (2003)
and concordant with previous implementations (Haak et al., 2018; Navarro Schroder
et al.,, 2015; Przezdzik et al., 2018), the eigenvector with the smallest nonzero
eigenvalue was considered the dominant connectopic map, which explained most of
the data’s variance. All results presented below refer to this first, dominant topography

of functional organization.
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On a side note, technically building the graph representation of the similarity matrix
can be viewed as the first step of the Laplacian Eigenmaps algorithm but was
described separately here for didactic purposes. Those interested in the mathematical
details and calculations underlying the Laplacian Eigenmaps approach may find the
description in Belkin’s doctoral thesis helpful (Belkin, 2003), complemented by the
examples in the publication by Belkin and Niyogi (2003).

2.5.4 Single-subject and group-level averaging

In this study, we planned to consider connectopic maps on a single-subject level as
well as on the group-level. Thus, we aimed to compute on the one hand a connectopic
map for each individual participant and on the other hand a group-specific connectopic
map. As each participant’s fMRI scanning session was divided into several acquisition
runs, we applied the first two steps of connectopic mapping (computation of
connectivity fingerprints and fingerprint similarity) to every run of each participant’s
data separately, yielding one similarity matrix for each acquisition run. Then, we
merged all runs of one participant by first averaging the n? values over all runs of this
participant, yielding a participant-specific similarity matrix. Then, the third step of the
algorithm (Laplacian Eigenmaps) was applied to the participant-specific similarity
matrix to eventually produce a participant-specific connectopic map, which will be
reported on below as the single-subject level results. Additionally, group-level results
were obtained by averaging the 22 participant-specific similarity matrices and applying

a final Laplacian Eigenmaps algorithm to yield one group-specific connectopic map.

2.6 Quantification of the modularity in connectopic maps

Using the obtained connectopic maps, we aimed to determine whether the dominant
functional organization in the hippocampus either followed a smooth gradient or a
modular organization. To answer this, connectopic maps were plotted as histograms
with 75 bins, depicting the number of voxels (y-axis) that were assigned a certain value
within the topography of functional connectivity similarity (x-axis). In theory, a smooth
functional gradient would show as a horizontal line of bins in the histogram (Figure 13,

left panel). In contrast, a modular organization would manifest as several clusters of

52



voxels with very similar functional connectivity profiles, corresponding to several abrupt
peaks in the histogram (Figure 13, right panel). Therefore, to determine the modularity
of our participants’ histograms, we counted how many clusters of adjacent bins
exceeded the mean number of voxels per bin in the respective histogram. To favor
global rather than local peaks, thus preventing a large number of local false positives,
we defined a minimum peak distance such that clusters of adjacent bins above the
mean had to be separated by at least four bins (illustrated in the right panel in
Figure 13). This peak finding algorithm was implemented in MATLAB (2017).

Number of voxels
Number of voxels

Min R Max Min X
Assigned value Assigned value

Figure 13: Histograms of a smooth versus modular organization

Hippocampal connectopic maps were plotted as histograms, using 75 bins (for illustration
purposes, this sketch contains only 13 bins). Each histogram depicts the absolute number of
voxels that were assigned a certain value within the topography of functional connectivity
similarity, ranging from zero (Min) to one (Max). In a strictly smooth pattern, every assigned
value would be present in the histogram, resulting in a horizontal line (left panel). In contrast,
in case of a modular organization, the histogram would consist of discrete similarity peaks and
some values may not be present at all (right panel). To assess the modularity in the
histograms, a peak identification algorithm was implemented such that sets of adjacent bins
above the mean (indicated by the dotted line) were defined as peaks. However, cases like the
purple cluster, where bins exceeding the mean are separated but pertain to the same cluster,
would be identified as two peaks if peak identification was applied without additional
parameters. To overcome this, we implemented a criterion of minimum peak distance (MPD)
between peaks (in reality: MPD = 4, in this illustration: MPD = 2). Thus, the fictitious example
in this illustration contains four peaks of functional connectivity similarity.
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2.7. Validation of a potentially modular organization

As outlined above, we identified the number of peaks in the histograms to deduce
information about the modularity of the underlying connectivity topography. However,
this was only a valid conclusion if the identified peaks were higher than peaks that
would correspond to a honmodular organization. Therefore, it was necessary to find
out whether the ‘peakiness’ in our data represented a meaningful functional
organization or could in fact be caused by chance. To this end, we compared the
connectopic maps of our participants to a simulated set of random connectopic maps

with regards to their respective ‘peakiness’.

2.7.1 Creation of simulated connectopic maps

To simulate connectopic maps, we aimed to preserve the integrity of the analyses as
much as possible. Thus, to introduce the simulation at the most upstream point of our
analysis pipeline, we simulated random fMRI datasets. These were based on our
22 participants’ datasets to preserve the fundamental statistical properties of real fMRI
data. First, we applied a random spatial and temporal shuffling procedure to our
participants’ fMRI acquisition runs, using MATLAB. More precisely, for each run we
separately shuffled the BOLD signal intensity values of all hippocampal voxels on the
one hand and all extrahippocampal gray matter voxels on the other hand. This shuffling
procedure was repeated ten times for all runs of each participant, thus yielding
1080 simulated fMRI datasets in total. Note that although this random shuffling
approach was performed with the intention of preserving the fundamental statistical
properties of real fMRI data, it has likely disrupted the naturally occurring level of spatial

autocorrelation (potentially arising bias discussed in detail in subsection 4.1.4).

Next, like it was done with the participants’ datasets as part of the preprocessing, the
shuffled datasets were smoothed with a FWHM Gaussian kernel of 2.5 mm using
SPM 12. After that, they were each processed using the connectopic mapping
algorithm described above. Thus, each shuffled dataset yielded a hippocampal map of

functional connectivity similarity, which could be plotted as a histogram.
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2.7.2 Generation of a null distribution of peak heights

Based on these histograms originating from simulated datasets, it was our goal to
create a reliable null distribution of peak heights. Therefore, we ran a peak identification
algorithm implemented in MATLAB to determine the values of the ten highest peaks in
each histogram. Analogous to the peak identification in real participants’ data above,
we defined a minimum peak distance criterion so that peaks had to be separated by at
least four bins (illustration in Figure 13). To imitate the real sample size of
22 participants, peak identification was performed on 22 histograms that had been
randomly selected out of the 1080 shuffled histograms. Next, the 22 identified peak
height values were averaged for each peak order, ranging from one to ten, i.e., we
calculated the mean height of the highest peak in the 22 selected histograms, the mean
height of the second highest peak in the 22 selected histograms and so on. This
random selection (22 out of 1080 histograms) and averaging of highest through tenth
highest peaks were repeated 1000 times, yielding one null distribution of peak heights
for every peak order, each incorporating 1000 datapoints. To assess the probability of
histogram peaks with a magnitude as in our sample of 22 participants, we then
compared the mean peak heights of the participants to the 95" percentile of the null
distribution. Thanks to this analysis, we were able to assess whether applying
connectopic mapping to a randomly shuffled dataset could yield topographies that

were equally modular as the observed data.

2.8 Functional parcellation using k-means clustering

In addition to identifying the dominant functional connectivity topography of the
hippocampus, we planned to tackle a second question: Given a modular hippocampal
organization, we aimed to establish a functional parcellation into subunits based on the
revealed discrete pattern of functional connectivity similarity. To this end, we applied
k-means clustering, implemented in MATLAB, to each participant’s connectopic map
separately as well as to the group-averaged map. K-means clustering is a popular
clustering algorithm that attempts to split a given dataset into a predefined number of
clusters k (Hartigan & Wong, 1979). Methodologically, k-means clustering employs an

iterative refinement technique, which can be described as follows: Initially, a number
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(k) of so-called centroids are chosen randomly. A centroid is the specific datapoint (real
or imaginary) that is located at the center of a cluster. Having defined centroids, each
datapoint is assigned to the cluster with the closest centroid, providing an initial,
preliminary parcellation. Subsequently, the centroid is adjusted in that it is redefined
as the arithmetic mean of all assigned datapoints. These two steps of datapoint
assignment and centroid adjustment are repeated until the centroids stabilize and
assignments no longer change. Having outlaid this principle, it becomes apparent that
in some cases there can be more than one equally good clustering solutions and the
algorithm leads to slightly different parcellations upon repetition. In those cases, we
repeated k-means clustering of the respective dataset 1000 times and chose the
cluster assignments that were most frequently obtained. This was necessary in three

participants for the left hippocampus and two participants for the right hippocampus.

We chose k-means clustering for its simplicity as well as speed and because it
performed well in previous fMRI studies performing functional parcellations (e.g.,
(Chase et al., 2015; Plachti et al., 2019; Robinson et al., 2015; Vos de Wael et al.,
2018). However, there are certain drawbacks, including for instance the necessity to
predefine the number of clusters k. Hence, to corroborate our choice of k, we aimed to
identify the optimal number of clusters using the so-called elbow method
(Kodinariya & Makwana, 2013), an iterative procedure consisting of the following steps:
k-means clustering was repeated for different numbers of clusters k (1 — 15) for each
participant. Note that this was done separately for the left and right hippocampus. For
each k, the total clustering error was calculated as the sum of squared Euclidian
distances from all data points of a cluster to the respective cluster’s centroid (sum of
squared errors). The calculated clustering errors were then plotted as a function of k.
Since our goal was a parcellation that is consistent across our sample of
22 participants, we calculated the overall mean of all participant-specific curves,
yielding one group-level elbow curve for the left and right hippocampus, respectively.
According to the elbow method, the optimal number of clusters was then identified as
the starting point of the plateau in the resulting curve. The underlying rationale is that
at the point of the curve where the plateau starts, increasing k would not yield a
significant reduction of the total clustering error, but decreasing k would result in a
considerable augmentation of this error. In other, less abstract words, imagine that

clustering with the minimum number of clusters k = 1 yields a certain clustering error,
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which can be considered the maximally possible error. In contrast, clustering with the
maximum number of clusters, here k = 15 (hypothetically the number of datapoints is
considered the maximum k), yields a certain clustering error, which is considered the
minimally possible error. The maximally achievable reduction of clustering error within
the boundaries of k =1 and k = 15 (hypothetically number of datapoints) is how used
as a reference to determine the optimal number of clusters for the dataset: The ideal k,
coinciding with the starting point of the elbow curve’s plateau, is identified as the first k
where more than 90% of the maximally possible reduction of clustering error is
achieved (MATLAB code made available by Bao (2021)). It should be mentioned that
in our analyses, the optimal k determined using the elbow method with a maximum k
of 15 clusters was equal to the results obtained when the number of datapoints (i.e.,
number of hippocampal voxels) was considered the maximum Kk, since the clustering
error very quickly asymptotically approaches the x-axis with increasing k (visible in
Figure 19).
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3. Results

In this project, we used ultra-high-resolution fMRI to map healthy participants’ brain
activity while they performed a hippocampus-dependent spatial navigation task. By
applying a recently developed data-driven analysis algorithm, connectopic mapping,
we aimed to illuminate the organizational pattern of functional connectivity similarity.
Based on the revealed organization, we furthermore performed k-means clustering to

identify functional subdivisions within the hippocampus.

Using these analyses, the two key questions we strived to answer are (1) whether the
topography of functional connectivity similarity either follows a smooth gradient or
exhibits step-like transitions. In case of an identified modular pattern, we planned to

tackle the question (2) regarding the number of functional hippocampal subunits.

3.1 Functional long-axis gradient in group-level average

To answer question (1), we first consider the group-level connectopic maps of our
sample of 22 participants, which are shown in Figure 14. Note that the analyses were
performed for the left and right hippocampus separately (left and right panel,
respectively). At the depicted sagittal plane, the hippocampus extends in its full length,
at one level with parts of the striatum, the trigone of the third ventricle and the amygdala
(Trepel, 2008). Each panel shows an overlay of the group-averaged connectopic map
onto our group-specific brain template. These hippocampal maps represent the
topography of functional connectivity similarity, based on the respective hippocampal
voxel's functional connectivity with the rest of the brain. Note that similar values (i.e.,
colors in Figure 14) within the topography indicate similar functional connectivity
fingerprints of the respective voxels. On the group-level, the pattern of functional
connectivity similarity clearly follows a longitudinal gradient, in that the most anterior
portion of the hippocampus is entirely distinct from the most posterior portion. This
confirms the notion established by previous work that the anterior and posterior parts
of the hippocampus are implicated in different brain functions (e.g., Fanselow and
Dong, 2010).
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Figure 14: Functional long-axis differentiation in group-level connectopic maps

Here, group-level connectopic maps for the left and right hippocampus (left and right panel,
respectively) are overlayed onto sagittal plains of our group-specific brain template. At this
position, the hippocampus extends in its full length, with the posterior pole adjacent to the
trigone of the lateral ventricle (marked with V), the anterior pole neighboring parts of the
amygdala (A) and in one plain with the putamen (P). The colormap of the hippocampal
connectopic map displays the pattern of functional connectivity similarity, wherein similar
colors indicate similar functional connectivity fingerprints of the respective voxels. In line with
the established notion of an anterior-to-posterior functional distinction, the pattern of functional
connectivity similarity within both the left and right hippocampus points towards a functional
differentiation between the anterior and posterior hippocampal pole.

Having identified the long-axis as the dominant organizational axis of functional
connectivity similarity in the hippocampus, we next aimed to address question (1)
regarding the nature of the transition between the anterior and posterior hippocampal
pole. In the mere projection of the connectopic maps (Figure 14), the transition is
somewhat blurred and cannot be pinpointed. Therefore, Figure 15 shows the
group-level connectopic maps plotted as histograms with 75 bins, depicting the
absolute number of hippocampal voxels that are assigned a certain value within the
projection of functional connectivity similarity. Importantly, the x-axis displays a
projection of hippocampal voxels’ functional connectivity fingerprints independent of
their spatial information, as the connectopic mapping algorithm assigns the values
solely depending on the closeness of the respective voxels in terms of their functional
connectivity fingerprints (details in subsection 2.5.3). Interestingly, as in our case the

topography of functional connectivity similarity clearly follows a longitudinal gradient
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(Figure 14), the x-axis of the pertaining histograms roughly corresponds to the
hippocampal long-axis. Hence, histogram patterns allow for the precise assessment of
functional transitions along the long-axis organization. Theoretically, in case of a
perfectly smooth gradient regarding the anterior-to-posterior transition of functional
connectivity similarity, one would expect no significant clusters of voxels with a similar
value, i.e., no peaks of functional connectivity similarity. Therefore, a smooth gradient
of functional long-axis differentiation would correspond to a horizontal line in the
histogram (illustration in Figure 13, left panel). In contrast, a strictly modular
hippocampal organization would present itself in a histogram pattern with several
abrupt peaks separated by a flat line (Figure 13, right panel). Interestingly, the
group-level histograms of both the left and right hippocampus neither reveal a
horizontal line nor any radical peaks, but a rather irregular slope. On the one hand
every bin contains at least around 50 hippocampal voxels indicating a gradual change,
but on the other hand minor peaks point towards some granularity within this gradient.
Moreover, in both group-level histograms a major peak emerges at the posterior
hippocampal pole (reflected by the left edge of the histogram). Thus, the
group-averaged data suggest a rather blended topography of functional connectivity

similarity with several peaks superimposed on a yet not perfectly smooth gradient.
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Figure 15: Discrete pattern superimposed on gradient in group-level histograms

To assess the transition of an anterior-to-posterior functional differentiation in more detail, the
group-level connectopic maps of the left and right hippocampus (left and right panel,
respectively) are plotted as histograms with 75 bins. Each bin corresponds to the absolute
number of voxels that are assigned a certain value within the projection of functional
connectivity similarity. The emerging pattern reveals an irregular slope with several peaks
superimposed on a functional gradient.

3.2 Discrete organization of single-subject connectopic maps

However, it is possible that group averaging across 22 subjects obscured the true
individual organizational patterns of every single participant. In theory, given a smooth
organization in all participants, the average would perhaps not change much in
comparison to each individual map. But assuming a modular organization, the location
of transitions between putative hippocampal modules are likely to differ between
participants. Thus, averaging might have smoothed out potentially discrete
subject-specific patterns, making it necessary to analyze the connectopic maps on a
single-subject level. Hence, Figure 16 shows the histograms of an exemplary
participant with the same binning as Figure 15. Strikingly, both hippocampi of this
participant indeed exhibit a highly discretized pattern of functional connectivity
similarity with several clearly demarcated peaks, separated by a nearly flat line. This
pattern is especially pronounced in the right hippocampus. Note that similarly to the
group-level histograms there is a peak of functional connectivity similarity at the very
posterior end of the hippocampus (corresponding to the left-hand side of the

histogram). For illustration purposes, the mean number of voxels per bin is overlayed
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onto the histogram as a dotted line. Once again, in case of a smooth, continuous
gradient of functional connectivity similarity, the slope of the histogram would resemble
the course of this line, as all bins would contain the same number of voxels. This is not

the case in the exemplary participant.
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Figure 16: Discretized single-subject histograms

This illustration shows the histograms of the left and right hippocampus (left and right panel,
respectively) of an exemplary participant (henceforth referenced as participant #1). Both
histograms reveal a discretized pattern of functional connectivity similarity, which is more
pronounced in the right hippocampus. Dotted lines indicate the mean number of voxels per
bin (left hippocampus: 62.2 voxels, right hippocampus: 68.2 voxels).

Most of the other participants exhibit a similar topography with clearly discretized peaks
of functional connectivity similarity, however there is variability regarding the number
of peaks (all histograms in Figures 22a and 22b). With respect to research question (1),

this clearly points towards a modular functional organization in distinct subunits.

3.3 Validation of the modularity with respect to the null distribution

The next logical question emerging from this evidence, our research question (2), is of
course how many subunits the hippocampus is composed of. However, before we
scrutinize the single-subject histograms with regards to the number of subunits, it is
important to validate our underlying inference: If we base the conclusion of a
discretized functional organization on the occurrence of peaks in the respective

histograms, it is necessary to test whether the extent of ‘peakiness’ in our data could
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be expected based on chance, i.e., could be caused by random effects without an
actual underlying modular functional organization. Therefore, we generated a null
distribution of peak heights (details in subsection 2.7.1). Briefly, this null distribution
originates from 1080 simulated fMRI datasets, in which any functional integrity of
activity time-courses, and therefore hippocampal organization, is destroyed, while the
inherent fundamental statistical properties remain. These random datasets were
processed using the identical analysis pipeline as for our participants, eventually
yielding 1080 random connectopic maps. To assess the probability of obtaining
histogram peaks with a magnitude as in our sample of 22 participants, we measured
peak heights in our participants’ data as well as in the random data and compared the
ensuing quantified peak heights. Figure 17 illustrates this concept by showing the
mean height of the highest histogram peak in our 22 participants in comparison to the
95t percentile of the null distribution, reflecting the height of the highest peak in
randomly obtained histograms. Clearly, peak heights of the highest peak observed in
our sample of 22 participants by far exceed the 95™ percentile of the null distribution.
This implies that the highest peak in our participants is not caused purely by chance
and likely corresponds to an underlying discrete organizational pattern in contrast to a

smooth functional gradient.
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Figure 17: Null distribution of peak heights and observed mean peak heights
(peak order 1)

To test whether the height of the observed histogram peaks could be expected based on
chance, we created a null distribution of peak heights using a random shuffling procedure
(black histogram). The aim of this analysis is to compare the observed peak height averaged
across 22 participants for both the left and right hippocampus (blue and red dashed lines,
respectively) to the 95" percentile of the null distribution (gray dotted line). The chart illustrates
that for the highest peak the observed peak heights across 22 participants clearly exceed the
null distribution.

This finding raises the question how many peaks in the participants’ data exceed the
95t percentile of the null distribution. Answering this could not only provide further
validation of our results by indicating which peaks cannot be caused purely by chance
but potentially also point towards the number of hippocampal subunits that are
biologically meaningful, thereby providing evidence regarding our research
question (2). Specifically, only those observed peaks that are significantly higher than
the peaks based on random data most likely correspond to meaningful functional
modules. In contrast, the ones that are not significantly different or even lower than the
peaks originating from random data can probably be disregarded in the search for a

biologically meaningful functional parcellation.

Therefore, we examine the peak heights of not only the highest peak, but for several
peak orders, reaching from one (highest peak, see above) to ten (tenth highest peak).
Again, we compare the mean peak heights of our participants’ histograms to the 95t

percentile of the null distribution of peak heights obtained from random histograms.
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However, instead of showing these comparisons as ten separate plots following the
logic of Figure 17, we merge all these into one illustration (Figure 18), in which peak
heights of observed as well as random data are plotted as a function of peak order.
Each of the ten vertical sets of data in Figure 18 (consisting of three datapoints: Mean
peak height for left and right hippocampus, respectively, and the 95™ percentile of the
null distribution) can be viewed as a condensed version of a plot like Figure 17. For
visualization purposes, the observed peak heights of each peak order are normalized

to the respective 95" percentile of the null distribution by division.
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Figure 18: Participants’ mean peak heights vs. null distribution of peak heights

Random shuffling and peak averaging were performed for the highest ten histogram peaks,
yielding one null distribution for each peak order (highest, second highest etc., details in
subsection 2.7). This figure displays the observed peak heights of the left (blue line) and right
(red line) hippocampus averaged across 22 participants for all considered peak orders in
relation to the 95" percentile (gray line) of the respective null distribution. For better
comparison, the peak heights of the observed data are normalized to the 95" percentile of the
respective null distribution by division. Error bars depict the standard error of the mean across
22 participants.

Upon visual inspection, it appears that the mean peak heights of both the left and right
hippocampus exceed the 95" percentile in the highest up to fourth or fifth highest
peaks. To assess this statistically, we performed a t-test for each peak order in
MATLAB to test the null hypothesis of no difference between participants’ mean peak

heights and 95" percentile of the null distribution. All p values are reported in Table 1.
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Table 1: Testing the null hypothesis of no difference between participants’ mean
peak heights and 95" percentile of the null distribution using t-tests: p values
for peak orders 1 — 10 (significant p values at the 5% level in bold print, t values
in parentheses, degrees of freedom: 21)

1 2 3 4 5
Left | 3.571 x 10% 0.005 0.041 0.173 0.494
hpc | (t=6.224) | (t=3.170) = (t=2.180) = (t=1.411) (t=0.697)

Right = 1.579 x 10 0.004 0.054 0.156 0.653

hpc | (t=4.592) = (t=3.226)  (t=2.044) | (t=1.470)  (t=0.456)

6 7 8 9 10
Left 0.334 0.002 6.714 x 10°  2.936 x 10% | 8.947 x 10%
hpc | (t=-0.990) = (t=-3.491) (t=-3.986) (t=-5.304)  (t=-6.002)
Right 0.906 0.175 0.003 2.941 x 10* | 1.300 x 10

hpc = (t=-0.120) (t=-1.402) (t=-3.405) (t=-4.332) (t=-4.781)

These statistical tests point towards three preliminary conclusions: First, the highest
and second highest peaks of functional connectivity similarity in the participants’ data
may likely correspond to biologically meaningful functional modules in the
hippocampus. This is statistically based upon the observation that for the first and
second peak orders the mean absolute peak height of the participants’ data
significantly exceeds the 95™ percentile of the null distribution in the hippocampi of
both hemispheres. Second, in contrast, the fourth through tenth highest peaks in the
participants’ topographies of functional connectivity similarity may not correspond to
biologically meaningful modules in the hippocampus of either hemisphere, as for peak
orders four through ten, the peaks in the participants’ data are either not significantly
different from or even significantly lower than the 95" percentile of the null distribution
in terms of their absolute height. Third, however, for peak order three the statistical
tests yield different results between the left and right hippocampus: In the left
hippocampus, the third highest peak in the participants’ data is marginally significantly
higher than the 95" percentile of the null distribution in terms of the absolute peak
height (#(21) = 2.180, p = 0.041). However, in the right hippocampus the difference in

peak heights of participants’ data and 95™ percentile of the null distribution is marginally
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not significant, as the reported p value does not survive a strict significance level of 5%
(#(21) = 2.044, p = 0.054). Given this tight proximity of p values to the 0.05 significance
level for peak order three, we reason that perhaps our analyses do not provide
sufficient power to produce statistically reliable results, which may in part be due to our
restricted sample size of 22 participants. Therefore, the statistical analyses not yet
provide an exact answer to our question (2) regarding the number of subunits along
the hippocampal long-axis. However, they indicate that the highest and second highest
peaks, but not the fourth through tenth highest peaks may be biologically meaningful,
potentially pointing towards at least two distinct modules, whereas the importance of

the third highest peak remains ambiguous.

To further investigate the number of hippocampal subunits, we employed a different,
quite straightforward approach. Since functional clusters of hippocampal voxels
correspond to histogram peaks, we implemented a procedure to quantify the number
of peaks in each individual participant’s histograms. Specifically, we counted how
many clusters of adjacent bins exceeded the mean number of voxels per bin in the
respective histogram (details in subsection 2.6). Figure 16 in subsection 3.2 illustrates
this concept for an exemplary participant: In participant #1, three clusters of bins
exceed the mean in both hippocampi, implying three clusters of functional connectivity
similarity. In the entire sample of 22 participants, the mean number of peaks, identified
as adjacent bins above the mean, is 2.81 (standard deviation 1.01) for the left and 2.91
(standard deviation 0.87) for the right hippocampus. Regarding research question (2),

this suggests an organization in overall three functional modules.

3.4 Functional parcellation

Having characterized the topography of functional connectivity similarity within the
hippocampus as a discretized pattern of functional organization with overall three
peaks, we next tackle our intent to provide a parcellation based on the identified
pattern. To this end, we applied k-means clustering to the participants’ connectopic

maps.
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3.4.1 Determining the optimal humber of clusters

K-means clustering is a widely used algorithm to group datapoints of a dataset into
separate clusters. Before applying k-means clustering, the user is required to specify
the desired number of clusters k. In fact, we already identified three as the number of
significant peaks in our participants’ connectopic maps, therefore suggesting a
clustering into k = 3 subunits. Nevertheless, we attempted to additionally corroborate
the choice of k in a data-driven manner. To this end, we applied the so-called elbow
method to compare the clustering errors of different numbers of clusters
(Kodinariya & Makwana, 2013). More precisely, we repeated k-means clustering for
different numbers of clusters k (1 — 15) and plotted the mean clustering error as a

function of k (details in subsection 2.8). Figure 19 shows the resulting curve.
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According to the elbow method, the ideal number of clusters is given by the
x-coordinate of the point where the curve begins to reach its plateau (‘elbow’ of the
curve). This plateau point of the curve is calculated as the specific k where increasing
the number of clusters would not yield a considerable improvement of the clustering

error, while reducing the number of clusters would result in a significantly increased
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error (computational details in subsection 2.8). Following this rationale, k=3 was
identified as the optimal number of clusters for the left as well as right hippocampus.
Taken together with the analyses above including the t-tests of peak heights in
participants’ data versus 95™ percentile of the null distribution and more importantly
the number of peaks across 22 participants, we opted for k=3 in the definitive
clustering procedure. This choice is furthermore supported by the fact that the bulk of
hippocampal parcellation studies suggesting a modular organization point towards a
tripartite functional long-axis organization. These findings include gene expression
studies (Thompson et al., 2008; Dong et al., 2009), behavioral experiments (Bast et
al., 2009), studies on synaptic plasticity (Kenney and Manahan-Vaughan, 2013) and
previous functional imaging analyses (Chase et al., 2015; Plachti et al., 2019;
Robinson et al., 2015, 2016).

3.4.2 Description of the parcellation
We therefore performed k-means clustering into three clusters on the group-level

connectopic maps (box in Figure 20) as well as on the subject-specific maps of our

22 participants (remaining renderings in Figure 20).
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Figure 20: Functional parcellation into three subunits using k-means clustering

Functional parcellations were obtained for the group-level connectopic maps (yellow box) and
all individual participants (rest, numbered 1 — 22). Orientation labels provided in the
group-level parcellation are analogous for all single-subject renderings. The colormap was
chosen such that changes from yellow to orange to red correspond to transitions from anterior
to intermediate to posterior parcels in most participants. The renderings were manually
arranged so that the parcellations yielding clearly longitudinally arranged subunits are shown
in the upper four rows, while the lower two rows depict less consistent parcellations.
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In most cases (e.g., participants #1 — #15), the three clusters are arranged along the
longitudinal axis to form an anterior, intermediate, and posterior functional subunit,
respectively. Regarding the volume of subunits, the posterior parcel generally appears
to be the biggest (with the mean number of voxels per parcel around 2500), followed
by the anterior (roughly 1500 voxels) and intermediate parcel (roughly 1000 voxels).
The exact numbers of voxels per parcel, indicating the volumes of subunits, are

depicted in Figure 21 for the left and right hippocampus, separately.
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Interestingly, in terms of the location of boundaries, the parcellations of the left and
right hippocampus are very similar within a participant, indicating a high intra-subject
consistency across hemispheres. However, there is quite some variability across
parcellations when comparing different participants. Besides, for some participants
(mainly #16 — #22) k-means clustering has apparently not been successful in capturing
a clearly arranged long-axis organization. Especially considering these partly
unsuccessful parcellations, it is interesting to view the individual participants’
histograms in relation with the boundaries that the clustering algorithm established.
This way, it may be possible to decide whether either the clustering algorithm did not

successfully capture the underlying histogram peaks or in contrast the clustering
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algorithm did perform well, however the histograms of the affected participants are
simply not as clear. Therefore, Figures22a and 22b illustrate all participants’
histograms with the color scheme indicating the boundaries between subunits
according to k-means clustering. The colors correspond to the color code from
parcellations in Figure 20 in that red histogram bars were integrated into the red
(posterior) parcel, orange bars into the orange (intermediate) parcel and yellow bars
into the yellow (anterior) parcel. Notably, in some histograms the pattern of functional
connectivity similarity is composed of a very high peak and several smaller peaks.
Thus, to show all peaks the histograms in Figures 22a and 22b are normalized and
enlarged so that the depicted area on the y-axis reaches from zero to the mean plus
one standard deviation. Hence, the tops of very high peaks are clipped and the visibility

of the remaining pattern of ‘peakiness’ is enhanced.
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Figure 22a: Single-subject histograms of all 22 participants (left hippocampus)

lllustrated are all participants’ histograms depicting the normalized numbers of hippocampal
voxels per similarity value. The absolute number of voxels is normalized so that only the area
below the mean + 1 standard deviation (SD) is plotted (illustrated in yellow box).
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Figure 22b: Single-subject histograms of all 22 participants (right hippocampus)

Histograms depicting the normalized numbers of hippocampal voxels per similarity value in
the right hippocampus. Normalization, visualization, and axes are identical to Figure 22a.
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It becomes apparent that k-means clustering was overall successful in capturing major
peaks of functional connectivity similarity, both in subjects with a clear parcellation
(#1 —#15) and the ones with inconclusive subunits (#16 — #22). However, in both
groups, there are histograms in which some peaks have been taken together into the
same cluster (e.g., #19 left or #15 right). Overall, it cannot be concluded that
unsuccessful parcellations are due to the clustering algorithm not capturing the

underlying peaks.

3.5 Summary of the results

The aim of this project was to investigate the functional long-axis organization of the
hippocampus in alive humans. We therefore analyzed an ultra-high-resolution fMRI
dataset that had been acquired on a 7 Tesla fMRI scanner. During scanning, the
22 participants performed a self-paced object-location memory task, which was
facilitated by a 3D virtual reality setup. This fMRI data was processed using the recently
developed, fully data-driven analysis algorithm connectopic mapping (Haak et al.,
2018). Using this method, we quantified the intra-hippocampal similarity of functional
connectivity, based on the functional connectivity of the hippocampus to the rest of the
brain, and then applied a nonlinear dimensionality reduction approach to extract the
dominant topography of functional connectivity similarity. This approach yielded
22 participant-specific connectopic maps and a group-averaged connectopic map for

the left and right hippocampus, respectively.

The group-level connectopic maps confirm the previously established notion of an
anterior-posterior differentiation in that the anterior portion of the hippocampus is
entirely distinct from the posterior portion with respect to the topography of functional
connectivity similarity (Figure 14). To investigate the nature of the transition between
the two functionally distinct hippocampal poles, we moved on to the single-subject
results. Interestingly, the participant-specific connectopic maps display clearly
discretized patterns of functional connectivity similarity, pointing towards a modular

hippocampal organization in several longitudinal subunits (Figure 16).

Next, we aimed to determine the number of hippocampal modules by assessing

whether and which peaks of functional connectivity similarity could or could not have
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occurred by chance. To this end, we compared our observations in the participants’
data to a simulated null distribution of connectopic maps and find that the observed
peaks of functional connectivity similarity are significantly higher in terms of their
absolute height than the 95™ percentile of the null distribution for peak orders one and
two (Figure 18). Statistically, the t-tests addressing the null hypothesis of no difference
between participants’ mean peak heights and the 95" percentile of the null distribution
yielded the following results for the left hippocampus: #(21) = 6.224, p = 3.571 x 10
(highest peak), t(21)=3.170, p =0.005 (second highest peak) and for the right
hippocampus: {(21) = 4.592, p = 1.579 x 10-* (highest peak), t(21) = 3.226, p = 0.004
(second highest peak). In contrast, the observed peaks are not significantly different
or even significantly lower than the null distribution for peak orders four to ten at the
5% significance level (Table 1). However, for peak order three, the left hippocampus
yields a significant difference (#21)=2.180, p=0.041), whereas the right
hippocampus yields no significant difference between observed and simulated data at
the 5% significance level (f(21) =2.044, p = 0.054). Given this inconsistency, we
implemented an additional approach to determine the number of functional subunits
within the hippocampus and quantified the peaks in each participant’s connectopic
map as sets of adjacent bins above the mean of the respective histogram. The number
of peaks, identified as described and averaged across all 22 participants, is 2.81
(standard deviation 1.01) for the left and 2.91 (standard deviation 0.87) for the right
hippocampus, suggesting an overall rounded mean of three functional modules. To
further corroborate the optimal number of clusters in the participants’ connectopic
maps, we applied the so-called elbow method (Kodinariya & Makwana, 2013), which

also points towards three as the ideal number of clusters (Figure 19).

With the goal of capturing the identified tripartite pattern of functional connectivity
similarity, we then parcellated each participant’s connectopic map into three clusters
using k-means clustering. Out of the 22 yielded parcellations, 15 exhibit clearly
longitudinally arranged subunits, whereas seven are rather problematic in that
clustering did not yield consistently arranged clusters in both hemispheres (Figure 20).
Parcellations exhibit a high within-participant consistency across hemispheres, but a
high variability between participants. In general, the posterior parcel is the biggest
across all participants (roughly containing 2500 voxels), followed by the anterior

(~ 1500 voxels) and intermediate (~ 1000 voxels) parcels (Figure 21).

76



4. Discussion

In this section, our findings shall be thoroughly discussed with regards to their
significance in relation to previous studies, but also regarding their potential
shortcomings. To this end, the first main subsection will highlight whether and at what
point within the analysis pipeline potential biases or limitations may have arisen. The
second, larger subsection will then put our results in perspective with major unresolved
questions addressing the hippocampal long-axis organization and discuss their
standing with previous literature. Herein, the focus will lie on human research, mostly
emerging from functional imaging studies, but for the bigger picture, some influential
studies from rodent and nonhuman primate research will be considered as well.
However, given the general popularity of hippocampal research and the limited scope
of this thesis, no claim for completeness is made. To conclude, subsection 4.3 will
briefly point out potential clinical applications of both our methodology and findings.
This will hopefully build a bridge from our conclusions, originating in fundamental
neuroscientific research, to the demands of the applied medical community regarding

the practical importance of our findings.

4.1 Potential methodological limitations and inconsistencies

Applying a data-driven analysis algorithm on ultra-high resolution fMRI data, we
provide evidence for a discretized pattern of functional connectivity similarity along the
hippocampal long-axis. Furthermore, using a validation approach based on randomly
generated data and a peak identification procedure, we argue for a modular functional
organization in overall three longitudinal subunits. Given the conclusion of a modular
organization, however, it is important to review our analyses in terms of potential biases
towards discrete results. Therefore, this subsection reconsiders several aspects of the
applied methodology, discusses potential limitations and highlights possible

improvements for future studies.
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4.1.1 Spatial resolution of 7 Tesla fMRI data

To investigate the functional organization of a brain structure using functional imaging,
it should be assured that the spatial resolution of the acquired data exceeds the
smallest expected organizational entity. Thus, it is a warrantable question whether our
fMRI data offers sufficient resolution to be able to capture the true topography of

functional organization within the hippocampus in an unbiased manner.

Generally, the spatial resolution in (f)MRI is determined by the magnetic field strength
of the employed scanner: Higher magnetic field strengths provide higher resolution.
Typical applications in the clinical routine, like structural MRI, but also an abundance
of neuroscientific functional MRI studies employ scanners operating at 1.5 or 3 Tesla.
In comparison, the dataset used for this thesis was acquired at a magnetic field
strength of 7 Tesla, yielding ultra-high, sub-millimeter resolution with a voxel size of
roughly 0.9 x 0.9 x 0.9 mm3. Although our dataset thus relies on state-of-the-art
technology and provides higher resolution than numerous previous imaging studies,
the critical reader may argue that even sub-millimeter resolution does not allow for
measuring the activity of individual neurons on a single-cell level, which is at the
micrometer scale. However, critically, functional imaging studies do not pursue the goal
of scrutinizing the firing patterns of individual neurons. In contrast, fMRI approaches
like ours usually aim to capture a larger-scale organizational pattern by visualizing
hemodynamic changes associated with the functional behavior of a set of neurons that
are combined into a voxel (for a more precise description of the underlying principles
see Introduction). Given this background, our analyses should be able to identify
potential hippocampal subunits under the condition that the size of these subunits
exceeds the voxel size. As a simple demonstration, an extreme case can be
considered: If hypothetically an imaging technique yielded such a low resolution that
the hippocampal long-axis was only mapped onto two voxels, analyses based on such
a dataset would not allow for conclusions regarding long-axis transitions. However, in
our case, the length of the hippocampal long-axis measures more than 40 voxels in
the sagittal plane, which by far exceeds the expected number of biologically meaningful
hippocampal subunits. Hence, we believe that in general the ultra-high resolution of
our employed fMRI data should be sufficient for mapping the true hippocampal

long-axis organization and does not introduce a significant bias. Note, however, that
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the effective spatial precision of functional imaging analyses is not purely determined
by the resolution of the original fMRI data but is also influenced by the preprocessing
procedure, particularly by spatial smoothing, which will be discussed in the following

subsection.

4.1.2 Influences of preprocessing

In general, preprocessing is a standard procedure in functional imaging studies to,
among other purposes, enhance the quality and validity of fMRI data by removing
noise. Potential sources of noise include head motion, other non-neuronal
physiological effects like respiratory motion, and scanner artifacts (Salimi-Khorshidi et
al., 2014). The mentioned effects are all accounted for in our study (procedural details

in subsection 2.3).

In addition, most fMRI studies apply spatial smoothing as part of the preprocessing to
achieve certain improvements, including increasing the signal-to-noise ratio and
allowing for better inference across individuals as the influence of
between-subject-variability is reduced (Friston, 2003). However, smoothing comes
with certain disadvantages as it can decrease effective spatial resolution, blur
activation in adjacent areas, and merge adjacent peaks of activation (for a
comprehensive review see Mikl et al., 2008). Therefore, the smoothing kernel should
be carefully considered and adapted to the intended analyses. In the context of
massive univariate testing, which is to date a popular statistical approach for analyzing
fMRI data, a smoothing kernel measuring at least twice the voxel size typically serves
as an expedient recommendation, as previously established by Worsley and Friston
(1995). As the 7 Tesla fMRI dataset used for the analyses reported in this dissertation
had been acquired and preprocessed before the outset of the project presented here,
the smoothing kernel was chosen according to the mentioned recommendation as
roughly 2.5 times the voxel size (measuring 2.5 mm). However, in the specific context
of the hippocampal functional connectivity analyses performed in this project, it is
possible that smoothing blurred putatively discrete transitions between hippocampal
subunits and thereby obscured a modular organization. Hence, the applied smoothing
may have introduced a bias towards gradual transitions, thus limiting our ability to

detect modular, sharply demarcated clusters of functional similarity. Perhaps some of
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the ambiguities reported above, including for instance the inconsistent results
regarding the comparison of the participants’ data to the null distribution for peak order
three (subsection 3.3), may partly relate to this potential bias. Thus, it may be
worthwhile for future studies to consider performing the analyses on unsmoothed data
or even processing two sets of the same source fMRI data, one smoothed and one
unsmoothed, to determine the precise effect that can be attributed to spatial

smoothing.

Besides the potential effect of smoothing, an additional source of artificial smoothness
may have been introduced by the nonlinear normalization of every participant’s dataset
onto a group-specific brain template that was performed as part of the preprocessing.
The employed nonlinear normalization procedure involved the transformation and
reshaping of all participants’ individual brain scans into a uniform sample-specific
space with consistent coordinates. Such normalization processes not only render the
registration to structural MRI scans unnecessary, thereby eliminating a potential
source of noise, but can also allow for more efficient processing, for example by
facilitating the application of a uniform mask to all participants’ fMRI scans. Despite the
advantages, however, it is possible that this normalization process blurred
interindividual differences in terms of the hippocampal topography of functional
connectivity similarity, thereby favoring a smooth functional gradient. Thus, to
overcome this potential bias and characterize its magnitude, future projects may
consider abstaining from nonlinear normalization and instead perform the analyses
with participant-specific hippocampal masks to preserve any interindividual

differences.

4.1.3 Potential bias within the connectopic mapping algorithm

Next, it is important to consider potential sources of bias within the applied connectopic
mapping approach, especially given the data-driven and complex nature of the
algorithm. One possibility where a bias could have been introduced is the Laplacian
Eigenmaps algorithm (subsection 2.5.3). Briefly, the Laplacian Eigenmaps
implementation constitutes the final step of the algorithm, in which the graph
representation of functional connectivity fingerprint similarity between hippocampal

voxels is remapped onto a hippocampal map (subsection 2.5.3, especially Figure 12).
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According to the developers of Laplacian Eigenmaps (Belkin & Niyogi, 2003), the
algorithm implicitly emphasizes natural clusters that are inherent to the input data, as
neighborhood information of the source graph is optimally preserved in the ensuing
mapping. Therefore, a critical mind may argue that such an algorithm is prone to
over-emphasize clusters, even if a true topography was gradual. However, such a bias
is unlikely given the examples provided in the original publication: Belkin and Niyogi
apply Laplacian Eigenmaps to a so-called ‘Swiss roll' (Belkin & Niyogi, 2003;
Figures 1 and 2), which is a spiraled two-dimensional structure embedded in a
three-dimensional space. In this example, the organization of datapoints on said Swiss
roll exhibits rather smooth transitions as opposed to step-like clusters. Importantly, the
ensuing mapping of the Swiss roll's organization, produced by the Laplacian
Eigenmaps algorithm, is continuous and not artificially modular. In addition, a
previously published implementation of the connectopic mapping algorithm, applied on
the motor cortex, reports on a continuous pattern of gradual functional connectivity
change, mirroring the somatotopic organization of the motor cortex (Haak et al., 2018).
Therefore, we are convinced that connectopic mapping is an impartial means to

analyze data without an algorithm-inherent bias towards modular patterns.

4.1.4 Possible improvement of the null model

Furthermore, we implemented a validation approach to test whether the observed
peaks of functional connectivity similarity in fact corresponded to a modular
organization or could be caused by chance. To this end, we compared the yielded
peaks in the connectopic maps of our 22 participants to a null distribution of peak
heights originating from connectopic maps of random data (subsection 3.3). However,
our approach for generating random data needs to be addressed to decide whether
the performed comparison was fair. To preserve the fundamental statistical properties
of real fMRI data, we randomly shuffled hippocampal and extrahippocampal gray
matter voxels, respectively, and importantly, applied this shuffling throughout the
spatial and temporal dimensions (details in subsection 2.7.1). This disrupted the
integrity of hippocampal organization, as was intended and required to simulate a
random organizational pattern, but arguably, it may also have destroyed the integrity

of BOLD signal time-courses altogether. Although it is unclear in what way, if at all, this
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may have biased our results, it can be argued that a different approach may have been
fairer with regards to creating a random hippocampal organization but at the same time
pertaining realistic time-courses. Hence, for future studies a phase shuffling approach
may be an option to consider for the generation of random out of real fMRI data. Briefly,
in such an approach one could disintegrate the original time-courses using a fast
Fourier transform (FFT), which decomposes a given signal into a set of components
that are characterized by two characteristics, namely frequency and magnitude.
Importantly, the obtained frequencies could be randomly shifted, or ‘shuffled’, in phase.
Then, the original data structure, namely time-courses of BOLD signal, could be
reconstructed using the shuffled phases and the original magnitudes via an inverse
FFT. This approach would preserve the original amount of spatial autocorrelation,
which is an inherent feature in fMRI data, and thus represent a more realistic, therefore

fairer random dataset.

4.1.5 Threefold approach to finding the k in k-means

A final limitation potentially decreasing the validity of our results is the applied k-means
clustering. Chosen for its simplicity, speed, and good performance in previous
functional connectivity based parcellation studies, k-means clustering is not entirely
data-driven in that it requires the user to specify the desired number of clusters. Clearly,
if applied without careful consideration, this could provide a major bias, given that
hypothetically negligent experimenters may choose the number of clusters entirely to
their personal liking. To overcome this, we attempted to determine the optimal number
of clusters in three ways (details in subsections 3.3 and 3.4.1). In a histogram
visualization of the participants’ connectopic maps, functional clusters are represented
by histogram peaks. Therefore, first, we set out to statistically determine which peaks
are significantly higher than the peaks originating from randomly shuffled data. Given
the inconsistent results across hemispheres and the potential shortcomings of our
random data generation (discussed above), we applied a second approach to identify
the optimal number of clusters, namely the elbow method, which points towards three
as the optimal number of clusters. Third, we further aimed to corroborate the number
of hippocampal subunits by scrutinizing the histograms with regards to the number of

peaks, which coincidingly points towards an overall mean of three peaks of functional
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connectivity similarity across participants. Hence, we opted for parcellations into three
functional modules, which in most cases yield longitudinally arranged subunits.
However, it should be noted that the quantification of peaks, which we reasoned to be
a criterion that was as close to the data as possible, was not entirely data-driven in that
we applied the criterion of minimum peak distance (MPD, subsection 2.6). Although
we aimed to make as little assumptions about the data as possible, introducing a MPD
was necessary to be able to capture global peaks but conversely not over-emphasize
local peaks that are likely to pertain to the same functional cluster. In other words,
without the MPD criterion, our peak identification approach would have counted every
local peak as a separate functional unit, which would not correspond to the overall
underlying organization pattern (illustration in Figure 13). However, of course, the
choice of four bins as a MPD was somewhat arbitrary, thus future research may benefit

from a more data-driven way to quantify data peaks.

4.1.6 Challenges in hippocampal mask delineation

In addition to the potential biases discussed above it is worth considering the validity
of our hippocampal mask. The hippocampi of individuals may vary in terms of size,
shape, orientation, and position within the brain. However, as the hippocampus is a
highly conserved structure across mammalian species (Manns & Eichenbaum, 2006)
and furthermore its boundaries are more clearly delimitable than for instance cortical
areas, it likely exhibits only minor differences between participants. Furthermore, the
effective amount of inter-subject variability is reduced by transforming and reshaping
all participants’ brains into the same space and coordinates, so that global differences
in head orientation and brain size should have diminished. However, one may argue
that even if all brain volumes are universalized to the same size, maybe the size of
individual hippocampi still varies. We attempted to overcome this problem by applying
a rather liberal segmentation approach: Closely following the Harmonized Protocol for
Manual Hippocampal Segmentation (Boccardi et al., 2015), there is still some
ambiguity that leaves room for interpretation. In cases where the precise boundary of
the hippocampus was rather ambiguous, we opted for a more liberal segmentation in
that we rather included voxels that may not fully pertain to the hippocampus, instead

of risking to lose any hippocampal voxels. Therefore, despite interindividual differences
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our mask covered the hippocampi of participants overall well, which was additionally

confirmed by visual inspection.

In addition, all manual segmentation approaches based on MRI data accommodate
certain delineation challenges, especially in areas where extrahippocampal gray
matter voxels directly neighbor hippocampal gray matter voxels. Given the lacking
difference in signal intensity in these cases, the delineation is usually facilitated by the
use of anatomical landmarks as orientations. Thanks to the detailed and abundantly
illustrated instructions provided in the Harmonized Protocol, these challenges were
scarce. However, it is worthwhile to mention that hippocampal delineation was
particularly challenging in the area around the posterior pole. In the final coronal slices
where the hippocampus is visible, it directly neighbors the indusium griseum, a gray
matter structure adjacent to the corpus callosum (anatomical illustration in Figure 1).
Around this position, demarcation was rather ambiguous, and the help provided by
landmarks limited. Therefore, it is possible that at the posterior hippocampal pole our
mask covers gray matter voxels that may not pertain to the hippocampus. This provides
a potential explanation for the fact that the volume of the posterior hippocampal subunit
was consistently larger than the intermediate and anterior parcels (Figure 21),
especially given previous research pointing towards subunits of rather equal size
(Chase et al., 2015).

Additionally, an interesting consideration concerns the interhemispheric difference of
hippocampal masks. The hippocampal masks of each hemisphere were separately
delineated by the same experimenter, using the identical protocol, and with equal
careful attentiveness. Nonetheless, the masks exhibit a considerable difference in
volume, precisely of 448 voxels (4664 voxels in the left and 5112 voxels in the right
hippocampus). Although to our knowledge this has not been specifically addressed in
previous literature, it is interesting that many precursor studies report an analogous
difference in that the left hippocampal mask was larger than the right, although not as
considerable as in our case (Masouleh et al., 2020; Plachti et al., 2019;
Robinson et al., 2015). Of course, a definitive conclusion would require statistical
testing, but interestingly, this may suggest that the left hippocampus tends to be larger

than the right hippocampus.
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4.1.7 Plausibility of interhemispheric differences

If the above-mentioned interhemispheric difference in hippocampal volume would be
corroborated, the question emerges as to whether such differences may extend to the
organization and even implication in different functions. Indeed, previous studies have
suggested different functional roles (Burgess et al., 2002) and even a different
anterior-posterior organization for the left and right hippocampus (Robinson et al.,
2015). Hence, it is worthwhile to discuss to what extent our results support the
hypothesis of interhemispheric differences. In addition to the difference in hippocampal
mask volume (see above), another aspect that differs between the left and right
hippocampus regards the t-tests performed to compare the observed peak heights to
the 95" percentile of the null distribution (subsection 3.3, Table 1). To briefly
recapitulate, for the third highest peak, the peak heights of the participants’ data were
significantly higher than the null distribution in the left hippocampus, whereas the
difference in peak heights was marginally not significant in the right hippocampus.
However, since we did not perform a statistical test specifically addressing the
differences between left and right hippocampus, the reported results cannot be
interpreted as evidence for or against an interhemispheric difference in the number of
longitudinal hippocampal subunits. Previous studies explicitly addressing this question
did find such evidence, including for example a report by Robinson et al. (2015), who
for the first time suggested that the left hippocampus may be organized in three distinct
clusters, whereas the right hippocampus is organized in either two or five clusters.
Given this ambiguity, the authors argue that the right hippocampus may in fact have a
more gradual organization, opening the interesting perspective of different
organizational patterns between hemispheres. However, as Robinson and colleagues
state, this finding should be interpreted with caution due to insufficient power of the
underlying analyses. Regarding our results, the difference in t-statistics may possibly
relate to some interhemispheric difference, but it should be clarified that the observed

difference in significance is rather minor and was not explicitly statistically tested.

In contrast, several aspects of our results are in fact quite consistent across
hemispheres. First, the rounded mean number of peaks across 22 participants equals
three in the hippocampi of both hemispheres. Second, the elbow method yields nearly

identical results and lastly, the single-subject parcellations exhibit a high
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intra-individual consistency across hemispheres (with few exceptions, like participants
#3, #19, and #21 in Figure 20). However, although loosely pointing towards the notion
of high similarity between the left and right hippocampus, our analyses do not allow for
statistically backed conclusions regarding interhemispheric differences, which

therefore remains an interesting topic for future research.

4.1.8 Relevance of interindividual differences

Another interesting question emerges from the differences of functional parcellations
across participants (Figure 20). Although the parcellations of some participants exhibit
a striking similarity in that three clearly demarcated subunits are arranged along the
long-axis (e.g., participants #1 — #15), the boundaries between long-axis subunits vary
across subjects. This interindividual variability in terms of boundary locations most
likely is the cause for the observed blurring effect of the group-level connectopic maps
(detailed in subsection 3.2, patterns of group-level (Figure 15) versus single-subject
level histograms (Figure 16)). Besides these rather minor differences in the outlines of
subunits, there is an additional, larger amount of interindividual variability in that some
participants do not exhibit a consistent hippocampal parcellation into clearly arranged
subunits in both hippocampi (e.g., participants #16 — 22). In light of previous studies, it
is imaginable that the hippocampi of different participants exhibit different functional
organizations. This was suggested for example by Plachti et al. (2019) who argue that
depending on personal talents and prerequisites, every individual may have its own
distinct functional organization. One possible anatomical correlate of such
interindividual differences may be the so-called hippocampal digitations, referring to
irregularly folded bulges, similar to gyrification in the neocortex. These digitations,
which are present along the entire hippocampal long-axis but most prominent in the
anterior pole, have been shown to vary considerably between subjects and therefore
potentially explain interindividual differences (Chang et al., 2018; DeKraker et al.,
2018; Ding & Van Hoesen, 2015). In this study, we aimed to identify a coherent,
universal parcellation scheme across our entire sample of 22 participants and thus
performed the identical analysis pipeline on all participants. However, this may not

have done justice to a potentially existing individuality regarding the number of
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hippocampal subunits and may motivate future studies to perform parcellations into

different numbers of subunits for different participants.

4.2 Conceptual implications and further questions arising from our

findings

Having outlined potential shortcomings of our methodology, this subsection focuses
on the conceptual implications of our findings and highlights how our results fit in with
previous models. To this end, we will discuss our main conclusions in relation to the

current state of research and review previous studies on the hippocampal long-axis.

4.2 .1 Evidence for a hippocampal anterior-posterior differentiation

One of our main findings is an anterior-posterior functional distinction of the
hippocampus. Specifically, within the dominant topography of functional connectivity
similarity, identified using connectopic mapping, the posterior pole of the hippocampus
is very different from the anterior hippocampal pole in terms of the underlying functional

connectivity to the rest of the brain’s gray matter (subsection 3.1).

4.2.1.1 Long-axis versus transversal axis

Before relating this finding to other studies and addressing potential functional
correlates of a functional long-axis differentiation, it shall be discussed whether the
mere detection of an anterior-posterior distinction as the dominant axis of organization

in itself may constitute an interesting outcome.

In theory, the connectopic mapping approach applied here is an entirely data-driven
algorithm with the pure goal of identifying the dominant pattern of organization based
on neuronal functional connectivity. In other words, nowhere did we specify the
long-axis as our axis of interest beforehand. Therefore, on first sight the fact that the
algorithm detected the long-axis organization may imply that the longitudinal axis of
the hippocampus acts as its main functionally meaningful axis of organization.
However, it should be highlighted that despite the sub-millimeter resolution of our

7 Tesla fMRI dataset, the spatial smoothing applied within the preprocessing
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procedure has likely reduced this spatial precision and thus the sensitivity to detect
fine-grained modular changes within the hippocampal functional connectivity
topography (discussed in depth in subsection 4.1.2). Given the small scale of
transversal hippocampal subfields, typically measuring only a few millimeters in
diameter, our spatial resolution was likely insufficient to examine differences along the
transversal axis. Therefore, it would be rash to conclude solely based on our analyses
that the hippocampal long-axis is more functionally relevant than its transversal
axis. In fact, given the multi-dimensional scale of hippocampal organization
(Amaral & Witter, 1989), the transversal axis may equally come into question as the
dominant axis of functional organization. As outlined in the Introduction
(subsection 1.3.2), the microstructure of the hippocampus is intricately organized along
its transversal axis, allowing for the identification of several histologically sharply
demarcated transversal subfields (including dentate gyrus, Ammon’s horn, and
subiculum, illustrated in Figure 2). Interestingly, not only microscopically detectable
structural properties, like the morphology of neurons (Lorente De No, 1934;
Ramoén y Cajal, 1893), sustain this transversal organization, but in recent years
additional functional evidence has emerged: Advances in functional imaging
techniques allowing for fMRI data acquisition at ultra-high-resolution enabled the
in-vivo delineation of transversal subfields in the human hippocampus (Wisse et al.,
2012) and paved the way for a bulk of studies investigating functional differences
between transversal subfields. For example, transversal hippocampal subfields seem
to be differentially implicated in the encoding versus retrieval of a memory in healthy
humans (Carr et al., 2010; Suthana et al., 2011). Moreover, such differences may not
only play a role in health, but also in pathological conditions, including temporal lobe
epilepsy and Alzheimer’s disease (for comprehensive reviews see de Flores et al.,
2015 and Small et al., 2011). Specifically, transversal subfields have been shown to
exhibit different activation patterns (Das et al., 2011), variability in volume
(Mueller et al., 2011) and vulnerability to damage (Schobel et al., 2009). Hence, the
transversal axis remains an interesting candidate for the main axis of hippocampal

functional organization.

In addition to the issue of insufficient spatial precision, another challenge regarding the
examination of transversal subfields using functional imaging arises from the

anatomical complexity of the hippocampus: Its folded anatomy, especially around the
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anterior pole, renders analyses of the transversal axis challenging in conventional
data-driven analyses (DeKraker et al., 2018; Duvernoy, 2005). However, recently,
Vos de Wael et al. (2018) overcame this difficulty using a computational approach to
virtually unfold the hippocampus for functional analyses, and interestingly identified
both the longitudinal as well as the transversal axis as two equal axes of functional
connectivity transitions. These insights open up the possibility that there is no hierarchy
between the transversal and the longitudinal hippocampal axes, although this

hypothesis requires further testing in the future.

In sum, our analyses provide interesting insights into the functional topography of the
hippocampal long-axis but are not able to precisely address questions regarding the
transversal axis. Thus, more studies are needed to fairly assess the transversal
organization of the hippocampus in order to make claims with respect to the question
which axis serves as the dominant, functionally meaningful axis of organization.
Nonetheless, despite the remaining ambiguity regarding the hierarchy of longitudinal
and transversal organization, it is uncontroversial that the long-axis does indeed

sustain functional differences (Fanselow & Dong, 2010; Strange et al., 2014).

4.2.1.2 Functional correlates of an anterior-posterior differentiation

The notion of a functional differentiation along the hippocampal long-axis has been
well established and widely accepted over the last decades of hippocampal research.
In contrast, an emerging question of much debate concerns the functional correlates
of such an anterior-posterior differentiation. In other words, the scientific community
currently seems to agree on the fact that the anterior and posterior poles of the
hippocampus are implicated in different brain functions, however it is unclear what
concrete functions are sustained by anterior or posterior hippocampal portion,

respectively.

One model suggests an ‘emotional versus spatial’ distinction in that the anterior
hippocampus is implicated in emotional processing, including anxiety and
stress-related behaviors, whereas the posterior hippocampus mediates spatial
processing involving spatial memory (Bannerman et al., 2004; Moser & Moser, 1998).
Initial evidence for this theory stems from lesion studies in rodents showing impaired
spatial learning after damage to the dorsal, but not ventral hippocampus (Moser et al.,

1993; Moser et al., 1995), and vice versa altered (neuroendocrine) stress responses
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and fear behavior after damage to the ventral, but not dorsal hippocampus
(Henke, 1990; Kjelstrup et al., 2002). Note that the ventral-dorsal axis in rodents is
homolog to the anterior-posterior axis in primates (Sasaki et al., 2004;
Strange et al., 2014). Although originated in rodent research, this model likely
translates to primates, which was suggested by electrophysiological studies in
monkeys (Colombo et al., 1998) as well as structural and functional imaging studies in
humans (Maguire et al., 2000; Nadel et al., 2013).

Some authors extend this ‘emotional versus spatial’ model towards a more general
view of ‘emotion versus cognition’, postulating that the posterior portion preferentially
takes on cognitive tasks including the formation of declarative memory (not only spatial
memory) as compared to the anterior hippocampus being involved in emotions
(Fanselow & Dong, 2010). In contrast, other studies suggest that memory is
represented along the entire length of the hippocampal long-axis (Chase et al., 2015).
It has even been proposed that the anterior hippocampus exerts a special role
in high-level cognitive functions including the recall of scenes and events
(Zeidman & Maguire, 2016), which challenges a purely dichotomic ‘emotion versus

cognition” model.

However, even if the entire long-axis of the hippocampus takes part in mnemonic
processing, there might still be an anterior-posterior differentiation in terms of
subordinate aspects of memory. For example, Plachti et al. (2019) provided evidence
for a model in which the entire hippocampal long-axis is implicated in memory, but
intriguingly the center of information differs in that the anterior hippocampus processes
rather self-centered memories, such as personal or autobiographic information,
whereas the posterior hippocampus is involved in world-centered processing. This
‘self versus world’ view would even support the above-mentioned notion of an
‘emotional versus spatial processing’ distinction in that emotions usually relate to
processes within our inner self, while space is typically referring to the world and
landmarks around us. In addition, it has been proposed that not only the modality or
perspective of mnemonic processing changes along the hippocampal long-axis, but
also the scale of representation. This idea is underpinned by an influential study by
Kjelstrup et al. (2008), who studied so-called place cells in the rodent hippocampus.
Hippocampal place cells are pyramidal neurons that represent the spatial environment

around an individual in that each place cell only fires when the subject is located at a
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specific position within the environment (O’Keefe, 1976). Therefore, every place cell
maps a specific location in space, and this associated location, triggering a place cell
to fire, is termed the place cell's associated ‘place field’. Strikingly, Kjelstrup and
colleagues discovered that place cells, that can in fact be found along the entire
hippocampal long-axis (Jung et al., 1994), differ in terms of their spatial resolution.
Specifically, place fields pertaining to place cells in the anterior hippocampus were
significantly larger than the ones of place cells in the posterior hippocampus. This
suggests a model in which the anterior hippocampus is involved in the representation
of coarse spatial information, whereas the posterior hippocampus processes
fine-grained spatial information (Poppenk et al., 2013; Sekeres et al., 2018).
Translating these insights across species, a ‘coarse versus fine-grained’ differentiation
model is supported by several functional imaging studies in humans, pointing towards
a coarse, ‘gist-like’ representation of context anteriorly and precise spatial details
posteriorly (Brunec et al., 2018; Evensmoen et al., 2013; Nadel et al., 2013).
Theoretically, this model could also be in line with an ‘emotional versus spatial
processing’ view in that on the one hand (posteriorly), spatial navigation typically
requires knowledge of precise landmarks for successfully reaching a destination. On
the other hand (anteriorly), emotions can often be associated with rather broad spatial
contexts, which for instance fits with the observation that the feeling of distress in
patients with anxiety or post-traumatic stress disorder is often generalized to broader
contexts. In addition, from an evolutionary point of view, it would make sense for the
anterior hippocampus to represent space at a more coarse scale, considering its
implication in stress and emotion related behaviors: Detecting danger from as far away

as possible obviously is evolutionarily advantageous (Strange et al., 2014).

Having summarized the prevailing models regarding functional correlates of a
hippocampal long-axis segregation, it is arguable to which extent our results may be
able to confirm or refute these hypotheses. Specifically, the question remains whether
our experimental setup generally allows for conclusions regarding different aspects of
hippocampal function. Our ability to relate the detected discrete transitions of functional
connectivity similarity to specific functional correlates is limited mainly due to the choice
of our experimental task during fMRI acquisition: Since the employed spatial havigation
memory task (subsection 2.1) primarily requires spatial processing without for instance

specifically triggering emotional responses, the emotional component of hippocampal
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function may likely be underrepresented. Similarly, neither the difference between
self-related and world-centered nor between fine-grained and coarse (spatial)
processing was particularly addressed in the employed task and in our analyses. This
renders inferences regarding precise functional correlates of the detected functional
long-axis modules difficult. Hence, future studies with more sophisticated task designs

may be needed to precisely address this question.

4.2.1.3 Why an anterior-posterior distinction makes sense

We have now introduced several models regarding concrete functional correlates of
an anterior-posterior differentiation of the hippocampus. Although even more views
have been alluded in previous research, the described ‘emotional versus spatial’,
‘self versus world’ and ‘coarse versus fine-grained’” models are the most prevalent
notions discussed in the current literature. However, one might pose the question why
there is a functional differentiation within the hippocampus at all, as opposed to having
such different brain functions — e.g., emotion on the one hand, memory on the other

hand — incorporated in entirely distinct brain regions.

Generally, the view of a hippocampal functional differentiation is biologically coherent
as it is possible that the hippocampus once was a functionally uniform structure
processing only one kind of information. In the course of evolution, this single
processing mechanism might have been preserved, yet adapted to different instances
of information (Robinson et al., 2016). The consequential question is which
present-day hippocampal function constitutes the original, primary instance of
processed information and which hippocampal functions have come along later
through evolutionary development. A possible answer suggests (spatial) memory as
the original hippocampal function, since mnemonic processing and spatial navigation
have been shown to be hippocampus-dependent in various species, including
mammals (Manns & Eichenbaum, 2006) but also nonmammalian species, like reptiles
(Striedter, 2016). Interestingly, reptiles and mammals phylogenetically originate from
one branch of a bifurcation from a common ancestor roughly 320 million years ago
(Reiter et al., 2017). Therefore, a functional analogy between ancient reptiles and
humans would make a compelling case for the notion that the hippocampal implication
in memory and spatial navigation has developed early on in evolution and has been

phylogenetically preserved throughout the reptilian and mammalian lineages.
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However, it is difficult to confirm such hypotheses as today’s modern reptilian species
have of course also undergone independent evolution, therefore the hippocampus of

a given extant reptile is not necessarily identical to its ancestor’s.

Despite such methodological challenges, it is interesting to consider potential
implications of the suggested evolutionary model: Perhaps the hippocampus, initially
specialized solely for spatial navigation and memory, has developed over the millennia
towards more efficient emotional processing, which is necessary for mastering the
challenges of increasingly more complex social environments (Robinson et al., 2016).
Considering the current model of an ‘emotional versus spatial’ distinction, this would
imply that the posterior hippocampus corresponds to the phylogenetically conserved
memory-system, whereas today’s anterior hippocampus represents the substrate for
emotional processing that has developed later on. Interestingly, this view may be
underpinned by differences in hippocampal size and shape across species:
Comprehensive phylogenetic analyses demonstrate that the volume of the human
hippocampus significantly exceeds predicted values based on an extrapolation from
analyses of hippocampal volume in apes (Barger et al., 2014). In addition,
morphologically, the human hippocampus exhibits a more pronounced anterior pole,
the so-called hippocampal head, which is not as prominent in other species like
rodents, birds, or reptiles, whose hippocampi are in contrast characterized by a rather
elongate, bent shape (Reiter et al., 2017; Strange et al., 2014). These findings may
underpin the hypothesis that especially the anterior hippocampus has evolved and
taken on additional roles in humans, as compared to other species. Such a view,
however, is challenged by findings suggesting a hippocampal role beyond memory and
spatial navigation in other species (Bingman, 1992), for instance the involvement of
the avian hippocampus in anxiety and stress-related behaviors (Smulders, 2017).
Although these novel insights provide fascinating material for speculation, more
cross-species studies are needed to thoroughly illuminate the evolutionary story of the

hippocampus.

4.2.2 Transitions between anterior and posterior functional poles

As established above, an anterior-posterior functional differentiation of the

hippocampus is based on a substantial body of evidence and thus to date widely
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accepted. In contrast, the nature of the transition between the anterior and posterior
poles until now remains elusive. Previous approaches tackling this question can
methodologically be grouped into on the one hand studies that examine functional
properties, referring to the relevance of an organization for executing functions, and on
the other hand research relying on structural properties, corresponding to the
underlying anatomical and molecular characteristics. After we first outline three
important methodological challenges when addressing functional transitions, we will
dedicate two subsections to previous functional evidence in support of either modular

or smooth functional transitions.

4.2.2.1 Challenges of investigating functional transitions

When investigating the question ‘gradient versus modules’, researchers are faced with
several methodological challenges. These challenges become especially relevant

when reviewing previous research and will be referenced in the subsections below.

First, any given modular organization might appear smooth if the spatial resolution of
the applied imaging technique is insufficient. This is especially important in fMRI
studies, considering that the spatial resolution is confined by the voxel size, which to
date by far exceeds the size of the underlying structural entity, namely single neurons.
However, one might argue that even if fMRI does not provide a means to measure a
single neuron’s firing behavior, it is still able to map the pattern of activation stemming
from functional entities of voxel size. Therefore, in the concrete question of the
hippocampal functional organization, fMRI studies should be able to detect functional
modules if the voxel size is smaller than the estimated size of functionally meaningful
hippocampal subunits (see also subsection 4.1.1). Another challenge may arise from
data preprocessing, especially if it includes spatial smoothing, as smoothing may pose
a potential bias towards a continuous gradient in contrast to a modular organization
(details in subsection 4.1.2). Therefore, unbiased investigation of the functional pattern
of the hippocampal long-axis can be problematic in fMRI studies with a spatial
resolution that is lower than the size of putative subunits, which thereby become

unidentifiable, especially in combination with spatial smoothing.

Second, conversely, a putative smooth organization might be detected as modular, if
a parcellation scheme is artificially enforced. In other words, clustering algorithms

typically cluster the input data in the attempt of grasping an underlying modular
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organization, but they will always yield a parcellation even if transitions in the source
data are smooth. Therefore, it is important to analyze the underlying pattern of
organization and assess its ‘discreteness’ before clustering or to apply a data-driven

approach that makes as little assumptions about the data as possible.

Third, many studies investigating functional differences along the hippocampal
long-axis perform a parcellation of the hippocampal volume beforehand and analyze
functional properties of the ensuing hippocampal clusters (e.g., Bast et al., 2009;
Beaujoin et al., 2018; Brunec et al., 2018; Dalton et al., 2019; Kahn & Shohamy, 2013;
Libby et al., 2012). Although these studies provide important insights into the functional
correlates underlying a long-axis organization, it is impossible to answer the question
whether these correlates follow a gradient or exhibit a modular organization. Hence,
studies allowing for conclusions regarding hippocampal long-axis transitions are
scarce, which underlines the necessity of entirely data-driven approaches that do not

rely on a parcellation before the analyses.

4.2.2.2 Functional evidence for a discretized hippocampal organization

Although reliable insights into functional transitions of the hippocampal long-axis are
scarce given the challenges outlined above, our findings are in line with several

previous findings from studies addressing functional properties.

First, the concept of a modular functional organization of the human hippocampus is
corroborated by several recent functional imaging studies employing so-called
meta-analytic connectivity modelling (MACM) approaches (Robinson et al., 2010). The
typical goal of these studies is to examine the functional connectivity of a defined region
of interest. However, instead of analyzing a restricted dataset relying on a single
experimental paradigm, MACM approaches analyze functional connectivity across an
abundance of studies employing a variety of behavioral tasks and incorporating
thousands of subjects. An example for an MACM approach applied to investigate
hippocampal functional connectivity is a recent study by Robinson et al. (2015). The
authors took advantage of the BrainMap database (Fox & Lancaster, 2002), which at
the time comprised 2.630 papers, representing more than 12.000 experiments with
roughly 52.000 subjects in total. Based on the identified functional connectivity
estimates, Robinson and colleagues performed k-means clustering to achieve a

functional connectivity-based parcellation. Interestingly, they find that the most stable
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segmentation consists of three subunits in the left hippocampus and five subunits in
the right hippocampus. However, the five-cluster solution in the right hippocampus is
only slightly more favorable than a two-cluster solution, and the authors concede that
more research is needed to determine the number of subunits in the right
hippocampus. Using a similar methodology, also applied to the BrainMap database,
Chase et al. (2015) tackle the same question as Robinson and colleagues, but they
confine their analyses of the hippocampal long-axis to an isolated transversal subfield,
the subiculum. Importantly, in contrast to most studies performing analyses in the left
and right hippocampus separately, Chase and colleagues defined the subiculi of both
hemispheres as one common region of interest. More precisely, they performed a
parcellation based on meta-analytic functional connectivity without separating the left
and right hippocampus. Their results indicate a segmentation of both subiculi into five
functional clusters in total: A bilateral anterior cluster spanning the anterior parts of
both subiculi, as well as two additional clusters (intermediate and posterior,
respectively) in the subiculum of each hemisphere. Therefore, this study replicates
Robinson’s finding of a tripartite organization in the left hippocampus and furthermore
demonstrates the same organization in the right subiculum. Despite restriction of the
analyses to only one subfield, Chase et al. argue that the obtained parcellation is likely
to reflect the organization of the entire hippocampus due to the level of effective
resolution provided by the BrainMap database: Given that the traditional transversal
subfields (dentate gyrus, Ammon’s horn, and subiculum) closely follow and exist along
the entire hippocampal long-axis (Figure 2), it is likely that due to lower spatial
resolution and inference across numerous studies the detected effects not only reflect
the organization of a single subfield. In contrast, the results from within one subfield
may partly include other subfields and therefore describe the organization of the entire
hippocampal long-axis. A third study using an MACM approach was performed by
Plachti et al. (2019), who complemented previous studies by providing a parcellation
based on multimodal analyses including fMRI during rest and during task as well as
structural covariance. Although the authors do not make a strong claim regarding the
number of subunits, they report on biological relevance for parcellations into three, five

and seven subunits.

These MACM approaches lend support to the idea of a modular hippocampal

organization, providing more or less explicit evidence for a tripartite organizational
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pattern. MACM itself significantly propels functional imaging analyses and the
mentioned studies provide fascinating insights into functional connectivity differences
of the hippocampal long-axis. However, their importance regarding the concrete
question of modular versus gradual transitions may be limited, as they might not
entirely overcome the second problem outlined in subsection 4.2.1: Employing
k-means clustering on functional connectivity patterns without visualizing or quantifying
the underlying geometric structure may be problematic, as it cannot be entirely ruled
out that a parcellation scheme was artificially enforced. Therefore, it is important to

additionally consider studies pursuing a more data-driven approach.

An example for a recent data-driven approach is the work of Zarei et al. (2013), who
mapped the distribution of hippocampal functional connectivity to three cortical and
subcortical seed regions, namely the thalamus, prefrontal cortex (PFC) and posterior
cingulate cortex (PCC). Zarei and colleagues find differing connectivity profiles along
the hippocampal long-axis and use these differences for a functional connectivity
based parcellation. Specifically, they assign each hippocampal voxel to one of three
targets regions (thalamus, PFC, or PCC) according to which target region it had the
highest connectivity with. This so-called ‘hard segmentation’ yielded a parcellation into
three distinct, longitudinally arranged subunits. Although this arguably constitutes a
more data-driven approach than k-means clustering and of course allows for
interesting conclusions regarding differential subunit involvement in cortical and
subcortical functional networks, it may still not entirely overcome the second challenge
outlined in subsection 4.2.1: In hard segmentation processes implementing a
‘winner-takes-it-all' principle, one cannot distinguish a gradual versus discrete
underlying pattern as for instance, the boundary will be drawn between two voxels
regardless of whether the ratio of functional connectivity to region A versus region B is
90:10 or 51:49. Therefore, methodologically this study does not allow for conclusions
on the functional transition between subunits. Besides, the study by Zarei et al. is
based on fMRI data acquired on a 1.5 Tesla scanner, which may render an unbiased
investigation of the transitions difficult due to lower spatial resolution (first outlined

challenge in subsection 4.2.1).

Taken together, our findings, which strongly support the notion of a discretized
hippocampal organization, are in line with several previous studies, including MACM

based parcellation approaches as well as other more data-driven procedures applied
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to functional imaging data in humans. However, most of these studies do not allow for
explicit evaluation of the transitions between subunits. Thus, based on the current
literature the question of gradual versus discrete functional transitions cannot be
settled with certainty. Furthermore, among the mentioned studies, there is
considerable ambiguity regarding the exact number of functional subunits, ranging
from two to five. This ambiguity is partly reflected in our study, namely in the
inconclusive outcome of the statistical tests that aimed to determine which observed
peaks of functional connectivity similarity significantly exceed randomly generated
peaks and thus represent biologically relevant modules (subsection 3.3). As these
tests could not definitively distinguish between an organization in two and three
subunits, we performed additional analyses to identify the number of hippocampal
clusters, including the so-called elbow method and the quantification of the number of
peaks in each participant’s histogram, which both point towards three histogram peaks
and therefor three functional clusters in the hippocampi of both hemispheres
(subsection 3.3). However, we are aware that the implemented peak identification
algorithm may not be entirely unbiased due to the introduced criterion of a minimum
peak distance of four bins. This criterion was necessary to not capture every lower
local peak within a higher global peak (illustration in Figure 13), but it can be criticized
that the choice of explicitly four bins was arbitrary, as outlined in subsection 4.1.5. In
future studies aiming to replicate or refute our findings, it may be beneficial to
implement a different or even several different peak identification approaches for
determining the number of clusters that optimally captures the structure of the data. In
addition, k-means clustering may be replaced by a more data-driven parcellation

algorithm to avoid the problem of specifying k altogether.

4.2.2.3 Functional studies suggesting a hippocampal long-axis gradient

If, as shown above, the current literature does not allow for unequivocal confirmation
of a tripartite or at least discrete functional organization, one may ask themselves
whether perhaps this hypothesis is simply not correct. After all, there are previous
studies employing similar data-driven techniques that contradict a discretized

functional long-axis organization, which shall be outlined in this subsection.

For instance, Przezdzik et al. (2019) used the same connectopic mapping approach

as we applied here but, interestingly, came to an opposed conclusion: The authors
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report a continuous pattern of functional connectivity change, indicating gradual
functional transitions along the hippocampal long-axis. Though surprising at first, this
discrepancy can be comprehended considering several key differences between the
two studies: First, Przezdzik et al. applied connectopic mapping to resting-state fMRI
data. FMRI acquisition during resting-state is fundamentally different from
task-dependent fMRI, in that during the former, participants are instructed to relax, and
specifically not engage in any mental activity, but keep from falling asleep. Hence, it is
likely that neuronal activity, functional engagement, and therefore functional
connectivity measures of a region of interest differ between task and resting-state fMRI
(Di et al., 2013). This methodological difference between Przezdzik’'s and our study is
particularly interesting as it may suggest that the hippocampus exhibits different
patterns of functional organization depending on whether it is functionally active or not.
At first glance, the difference may manifest as a less modular pattern during
resting-state fMRI, as suggested by Przezdzik’s findings, versus a clearly modular
pattern in task data, as indicated by our work. However, this may not be a valid
conclusion as one could also argue for the opposite: Engagement in a specific task,
e.g., spatial navigation, may bring about a certain functional differentiation optimized
for the respective task, thereby stressing putative subunits responsible for spatial
processing, but possibly disregarding any modules involved in other brain functions. In
contrast, resting-state fMRI may drive all putative modules, irrespective of functional
specialization, as brain activity is not restricted to one functional task and might thus
be able to detect an even more multifaceted differentiation. To precisely determine the
difference between task and resting-state data, it would be interesting to employ
different paradigms while keeping all other experimental parameters including the
participants, preprocessing, and analysis pipeline constant. In fact, it is not only a
remaining question how the hippocampal long-axis organization varies between fMRI
without a task in comparison to fMRI with a task, but additionally how the nature of a
task may affect the resulting functional organization, especially given the functional

multiplicity of the hippocampus (subsections 1.3 and 4.2.1.2).

A second difference between Przezdzik’'s and our study is that Przezdzik and
colleagues consider only the functional connectivity to the neocortex, disregarding any
coactivation of the hippocampus with subcortical structures. Although it is difficult to

make precise predictions on how that specifically alters functional connectivity profiles,

99



previous studies suggest that it may have an influence. For instance, Kahn and
Shohamy (2013) found that the hippocampus exhibits considerable functional
connectivity with the nucleus accumbens and the ventral tegmental area, which are
both subcortical structures. Especially because the authors show that this connectivity
is not constant along the long-axis, it can be argued that subcortical regions should

also be considered for an overall analysis of hippocampal long-axis connectivity.

Third, on a technical note, the acquisition specifics are different in that Przezdzik et al.
analyze data from the Human Connectome Project originating from a 3 Tesla fMRI
scanner and apply smoothing with a kernel of 6 mm. In contrast, in the study presented
here, we used 7 Tesla fMRI with a smoothing kernel of 2.5 mm, which provides a
higher spatial resolution and may potentially have pertained a putative granularity more

accurately.

Lastly, Przezdzik et al. corroborate the biological significance of the identified gradient
by showing a correlation of the gradients with behavioral data from the same
participants, including performance in a memory task. Specifically, the authors
compare the gradient model to a dichotomy model with two subunits regarding how
well each model explains the differences between task performance and find that the
gradient model is superior. However, although a gradient may predict behavioral data
better than a two-partite model, it is unclear as to whether this holds true when

comparing a gradient to a tripartite model.

Therefore, Przezdzik’s and our findings do not contradict or invalidate each other, but
in contrast work together to open interesting perspectives for future research,
especially regarding functional differences during rest versus task engagement and

the importance of connectivity with cortical versus subcortical regions.

However, Przezdzik and colleagues were not the only ones suggesting a functional
long-axis gradient in the hippocampus. For instance, a very recent functional imaging
study by Masouleh et al. (2020) demonstrates a smooth transition of structural
covariance along the longitudinal axis. Per definition, structural covariance is based
on the similarity of macrostructural variations between two brain regions
(Alexander-Bloch et al., 2013; Mechelli et al., 2005). Hence, it is thought to be primarily
determined by structural aspects including direct monosynaptic connections

(Yee et al., 2018) or common genetic cues during early development (Raznahan et al.,
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2011). However, structural covariance may not only reflect purely structural information
but to some extent also accommodate the underlying functional organization, which is
supported by the finding that high structural covariance between two regions correlates
to high functional connectivity (Kotkowski et al., 2018). Like Przezdzik et al., Masouleh
and colleagues apply the structural covariance approach to a large cohort from the
Human Connectome Project acquired at 3 Tesla, but additionally replicate their
findings in an independent dataset from the enhanced Rockland cohort. Additional
parallels to the methodology in Przezdzik’s study include the use of resting-state fMRI
data and spatial smoothing with a similar kernel size of 5 mm. Thus, the same potential
limitations as discussed above regarding the lower spatial resolution and differences
between task and resting-state fMRI data may be present. Besides, Masouleh et al.
base their conclusion of a smooth long-axis transition on the group-level results, which
demonstrate a continuous change of structural covariance. At this point, it may be
relevant to revisit an observation from our study, namely that individual modular
patterns were merged into an overall smooth looking gradient on the group-level
(subsection 3.2). Clearly, with a sample size of 377 individuals it is unfeasible to
thoroughly evaluate single-subject patterns, however it would be very interesting to

view a random sample of single-subject patterns from Masouleh’s study.

In sum, although considerable differences between studies providing evidence for a
modular organization and studies demonstrating a smooth gradient can be discussed,
one can currently only speculate to what extent these differences may explain the
opposing findings. To accurately determine the role of these differences, more
data-driven approaches investigating functional transitions along the hippocampal
long-axis are needed, perhaps with an emphasis on the difference between

task-dependent and resting-state fMRI.

4.2.3 Functional correlates of a putative tripartite organization

Although more studies are needed to settle the matter regarding a modular or smooth
hippocampal long-axis, one can already discuss the potential roles of putative
longitudinal subunits. As our results are in line with a tripartite functional long-axis
organization, this subsection will focus on the potential roles of an anterior,

intermediate, and posterior functional parcel. Within the frameworks provided by the
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above-mentioned models of anterior-posterior distinction (subsection 4.2.1), there is a
substantial body of evidence regarding the roles of an anterior and posterior parcel
(for review see e.g., Poppenk et al., 2013). For a brief recapitulation, the anterior
hippocampus may be implicated in the processing of emotional, coarse, and
self-centered information, whereas the posterior hippocampus may engage in spatial,
fine-grained, and world-related processing. However, few publications broach the
issue regarding the specific role of an intermediate subunit. One of the first studies to
explicitly address the intermediate hippocampus was conducted by Bast et al. (2009),
who examined the effects of partial hippocampal damage on rats’ performance in a
rapid, one-trial spatial learning task. Interestingly, dorsal or ventral lesions sparing the
intermediate hippocampus left performance largely intact, whereas lesions
compromising the integrity of the intermediate hippocampus severely impaired
performance. Furthermore, using electrophysiological models Bast and colleagues
demonstrate that despite the lack of successful behavioral performance following
damage to the intermediate hippocampus, the dorsal hippocampal residue is still able
to encode spatial information rapidly and accurately. Hence, the authors suggest that
the intermediate hippocampus is essential for translating rapid spatial learning into the
appropriate behavior and acts as an integrative interface between the dorsal and

ventral portions. However, this finding yet remains to be replicated in humans.

Evidence for a specific role of the human intermediate hippocampus has emerged from
functional imaging studies demonstrating significant differences in functional
connectivity profiles between the three longitudinal subunits (e.g., Cheng & Fan, 2014;
Robinson et al., 2015; Zarei et al., 2013). Strikingly, Kahn and Shohamy (2013)
demonstrate that the resting-state functional connectivity of the hippocampus with two
subcortical structures prominently involved in motivation and reward processing,
namely ventral tegmental area and nucleus accumbens, is localized to a rather
circumscribed region in the middle of the hippocampus. The authors propose that the
involvement of the intermediate hippocampus in a motivation and reward network
could provide a pathway for the enhancing effect of motivation on memory formation
(Miendlarzewska et al., 2016). Like in the model suggested by Bast et al., this may
regard the intermediate hippocampus as an interface between the anterior and
posterior portion. Additionally, the suggested role may be compatible with the

‘emotional versus cognitive’ view of an anterior-posterior distinction (subsection 4.2.1).
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After all, motivation typically reflects personal goals which are based on intrinsic
emotional processes and therefore can be seen as pertaining to emotional processing:
Perhaps the intermediate hippocampus mediates the influences of emotional content,
namely motivation and goal-orientation, on memory encoding. Of course, this

speculation requires future studies for evaluation and validation.

An entirely different role of the intermediate hippocampus in humans was suggested
in a recent study by Robinson et al. (2015), who performed an MACM based
hippocampal parcellation and yielded a division into three subunits in the left and five
subunits in the right hippocampus (detailed in subsection 4.2.2). In addition to the
parcellation, Robinson and colleagues aimed for a functional characterization of the
obtained subdivisions using the behavioral taxonomy provided by the employed
BrainMap database (http://brainmap.org/taxonomy/paradigms.html). Interestingly,
within the proposed three-cluster solution for the left hippocampus, Robinson et al.
report an association of the anterior cluster with emotional processes, an association
of the intermediate cluster with cognition-based processes including more specific
tasks like recall of a previously learnt association of items and more general processes
like encoding of stimuli, and lastly an association of the posterior cluster with
perception-based processing. Although these findings roughly confirm the model of
‘emotional versus cognitive processing’ along the hippocampal long-axis and
furthermore suggest a distinct role for the intermediate hippocampus, it is surprising
that no association of memory tasks and especially spatial memory was found for the
posterior parcel. This may be partly because navigation tasks are scarce in fMRI
research due to arising challenges for data acquisition and therefore also not contained
in considerable number in the BrainMap taxonomy. In addition, the functional
distinction emotion (anterior) — encoding (intermediate) — perception (posterior) is
rather inconclusive, especially given the current controversy regarding the role of the
hippocampus in perception (Suzuki & Baxter, 2009), and poses more questions for

future research.

Interestingly, Robinson and colleagues were not the only ones applying an MACM
based parcellation and characterizing subunits regarding their behavioral relevance.
A study by Chase et al. (2015), introduced in subsection 4.2.2, suggests that activation
in the right intermediate hippocampus is consistently related to the imagination of

objects or scenes. Although this insight requires replication and further testing, it may
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fit into the above-mentioned ‘self versus world’ model, in which the anterior
hippocampus takes part in self-centered processing, whereas the posterior pole is
involved in world-related contents (Plachti et al., 2019): Imagination of objects or
scenes is on the one hand partly self-related in that imagination evidently takes place
inside one’s mind and is influenced by one’s emotional experiences, but on the other
hand also relates to world-centered processing in that it requires the mental modelling
of external stimuli. Therefore, it may be speculated that the intermediate parcel takes
on a role within the ‘self versus world’ framework by dealing with content that is not

purely attributed to a single of these two modalities but rather takes place in between.

All'in all, current studies propose diverging evidence regarding the functional role of a
distinct intermediate hippocampal subunit and clearly more research is needed to
corroborate a common view. Especially the investigation of functional connectivity in
task-based fMRI may provide further insights, as most previous functional connectivity
quantifications stem from resting-state data. Although hitherto a clear framework
incorporating the mentioned evidence into a common view is lacking, existing studies
lend support to the idea of a modular hippocampal organization with a distinct

intermediate subunit exerting a specific function.

4.2.4 Structural underpinning of a functional discretization

Having outlined previous studies addressing the functional long-axis organization and
having discussed potential functional correlates of a modular, tripartite organization,
so far only evidence from functional studies has been presented. Although the
correlation of structure to function is a matter of current debate and requires
more studies to draw definitive conclusions, it is widely assumed that generally
functional anatomy to some extent reflects an underlying structural anatomy
(Eickhoff & Grefkes, 2011). Therefore, it is an interesting and unresolved question as
to which structural aspects may underpin the hippocampal long-axis organization and

correlate to a modular or gradual change of function.

An obvious, yet important structural property that may sustain a hippocampal long-axis
differentiation is anatomical connectivity. In contrast to functional connectivity, which is

quantified computationally and reflects the occurrence of functionally coactive brain
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regions, anatomical or neuronal connectivity is a more tangible measurement as it
refers to direct axonal projections of neurons. These projections can be divided into
extrinsic connections, including projections to and from cortical and subcortical
structures, versus intrinsic connections, reflecting the inherent wiring of neurons within
the hippocampus itself. Regarding extrinsic connectivity, most projections originating
from various brain regions reach the hippocampus via the entorhinal cortex
(Duvernoy, 2005). As has first been shown more than three decades ago, these
entorhinal-hippocampal connections are topographically organized and were initially
thought to follow a smooth gradient (Amaral & Witter, 1989; Witter et al., 1989).
Specifically, neurons from more lateral parts of the entorhinal cortex reach more dorsal
parts of the hippocampus, while neurons from more medial parts of the entorhinal
cortex project to more ventral hippocampal neurons. However, subsequent studies
demonstrate that despite being topographically organized, these projections can be
divided into three segregated domains that show relatively little overlap
(Dolorfo & Amaral, 1998; Witter et al., 2000). This tripartite pattern of extrinsic
connectivity may even extend to connections with other subcortical brain regions, as
hippocampal projections to the lateral septal nucleus can be divided into three broad
domains (Risold & Swanson, 1996). In addition, projections from the amygdala to the
hippocampus were shown to be restricted to the ventral portion of the hippocampal
long-axis (Fudge et al., 2012; Krettek & Price, 1977), which further supports the
hypothesis of discrete rather than gradual changes in anatomical connectivity. As
opposed to extrinsic projections, studies regarding intrinsic hippocampal connectivity
are also consistent with discrete demarcations: Both major associational fiber systems
of the hippocampus are organized in two hardly overlapping divisions (Li et al., 1994;
Ishizuka et al., 1990; Amaral & Witter, 1989; Fricke & Cowan, 1978; Swanson et al.,
1978): Although few fibers cross between the two divisions, there is a remarkable
divergence of axons within either the ventral one-third or the dorsal two-thirds of the
hippocampus, respectively, pointing towards a discrete segregation of intrinsic
connectivity (Kondo et al., 2008; 2009). These latter findings appear to suggest a rather
dichotomic distinction between ventral one-third and dorsal two-thirds, yet they might
still be in line with a tripartite model of functional specialization considering the putative
functional role of an intermediate hippocampal subunit, as discussed in
subsection 4.2.2: If one speculates that the intermediate hippocampus combines

aspects of the anterior and posterior portions into a new functional entity and if each
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module comprises approximately a third of the hippocampal mass along the
longitudinal axis, the intermediate third might share certain properties, like its intrinsic

wiring, with the dorsal or ventral third.

In addition to anatomical connectivity, which may provide a structural foundation for a
tripartite functional organization, another structural property that was studied along the
hippocampal long-axis is synaptic plasticity. Generally, synaptic plasticity is
understood as the ability of synapses to strengthen or weaken over time and can occur
on a shorter (short-term plasticity) or longer (long-term plasticity) timescale.
Terminologically, the long-term strengthening of synapses is mediated by effects of
so-called long-term potentiation, and conversely synaptic weakening is mediated by
long-term depression. As this flexible means of synaptic rearrangement is thought to
pivotally govern mechanisms of memory formation (Bliss & Collingridge, 1993),
synaptic plasticity is a much-investigated structural feature, especially in regions that
are essential for mnemonic processing, like the hippocampus (Martin et al., 2000;
Morris et al., 1990). One way of studying synaptic plasticity in a brain region is by
applying electrical stimulation, which induces long-term potentiation or depression
depending on the applied stimulation frequency, and subsequently recording neuronal
responses, which allows for measuring specific characteristics of synaptic plasticity,
including for instance frequency-dependency and persistence over time. Using such
an electrophysiological approach in alive rats, Kenney and Manahan-Vaughan (2013)
compared synaptic plasticity in the adorsal and intermediate portion of a transversal
hippocampal subfield, namely the dentate gyrus (transversal subfields illustrated in
Figure 2). Importantly, the authors find major differences in the mechanisms of
long-term potentiation and long-term depression between the dorsal and intermediate
hippocampal subunits. Briefly, the intermediate dentate gyrus is more susceptible to
expression of long-term potentiation and less able to exhibit long-term depression than
the dorsal portion. Kenney and Manahan-Vaughan conclude that the intermediate
hippocampus is more than just a transitional zone within a smooth dorsal-ventral

hippocampal gradient and may constitute a distinct functional entity.

In addition to anatomical connectivity and synaptic plasticity, the investigation of
genomic data has received increased attention in recent years. The implementation of
comprehensive genome-wide gene expression libraries paved the way for studies

examining in-depth genomic specificities in different brain regions across various
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species (Lein et al., 2007; Shen et al., 2012). A prominent line of evidence emerges
from work in rodents by Thompson et al. (2008), who mapped gene expression
patterns of hippocampal subfield cornu Ammonis (CA) 3 and reveal a molecular
organization in several discrete, sharply demarcated gene expression domains.
Specifically, Thompson and colleagues demonstrate that the hippocampal long-axis
can be divided into nine distinct genetic subdivisions. Building upon these findings,
Dong et al. (2009) suggested that these nine subdomains can be grouped into three
major genetic domains. The authors corroborate this conclusion by revealing three
molecular subunits in hippocampal subfield CA1 and argue that both CA1 and CAS3,
and presumably cornu Ammonis as a whole are divided into three molecular subunits.
A very recent study investigated the genomic anatomy of the hippocampal long-axis
for the first time in humans: Vogel and colleagues (2020) employed an extensive
methodology based on gene expression data from several databases in the endeavor
to bridge the gaps between brain structure and function, behavior, and moreover
vulnerability to disease. Among other analyses, the authors demonstrate that the
position of a tissue sample on the anterior-posterior hippocampal axis can be
accurately predicted using expression patterns of a restricted set of genes. Although
this supports the notion of a smooth long-axis organization in a genomic gradient, there
may still be a chance that these findings are in line with a discretized organization: The
employed prediction model is based on merged datasets incorporating tissue samples
from six deceased individuals, hence group-level averaging may have potentially
obscured single-subject organizations. Furthermore, the authors argue that their
conclusions may be limited by the fact that the gene expression data originated from a
restricted number of samples. However, despite the limitation in terms of
generalizability from six individuals to larger populations, Vogel et al. used 188 tissue
samples in total and examined at least 14 (to a maximum of 31) samples along the
hippocampal long-axis of each individual, which theoretically seems sufficient for an
unbiased detection of either gradual or discrete transitions. All in all, Vogel and
colleagues’ analyses can hardly be interpreted as coinciding with previous suggestions
of discrete genetic domains, although it would be interesting to scrutinize their findings

on a single-subject level.

It should be noted that the notion of a long-axis gradient in terms of structural properties

is also supported by previous research, including a study in rodents by Kjelstrup et al.
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(2008). As mentioned in subsection 4.2.1, Kjelstrup and colleagues used in-vivo
electrophysiological recordings to map the receptive fields of hippocampal place cells,
which are responsible for creating a cognitive map of space in the hippocampus. They
find that not only the size of place fields is considerably larger in the anterior than in
the posterior hippocampus, but also this change in scale occurs linearly in a
gradient-like manner from the ventral to the dorsal hippocampal pole. However, there
may be a possibility to reunite this conclusion with a modular organization: First, it
should be noted that although the general inference of a linear change in place field
size is based on the results pooled across 21 animals, the authors show striking
recordings from individual animals, which clearly reveal that the firing patterns of
individual place cells differ between ventral and dorsal locations (Kjelstrup et al. (2008),
Figure 1 and Supplementary Figure 5). However, it is unclear how many recordings
stem from each single animal, thus it is possible that although ventral place fields are
significantly larger than dorsal ones, the amount of recorded cells per an individual
animal’'s hippocampus may not have been sufficient to reliably deduce information

regarding the transition of place field size.

4.2.5 Bottom line: Reconciling modular and gradual transition models

As hopefully conveyed throughout the subsections above, the hippocampal long-axis
is an intriguing topic of much debate in the neuroscientific community and diverging
findings regarding the long-axis organization of functional and structural characteristics
open up different perspectives. Specifically, an abundance of studies across different
modalities and species points towards a long-axis specialization with different
functional implications of the anterior and posterior hippocampal poles
(subsection 4.2.1), whereas there is a plurality of theories regarding the functional roles
of these portions and even more ambiguity regarding the transition between the
anterior and posterior hippocampal poles (subsection 4.2.2). Two lines of evidence
point towards on the one hand a smooth gradient of functional specialization with the
intermediate hippocampus solely acting as a transition zone between two functional
entities and on the other hand a modular organization of function with presumably three
sharply demarcated, distinct subunits, in which the intermediate hippocampus takes

on an additional specific function.
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To reconcile these seemingly opposed findings, namely smooth versus discrete
transitions, Strange et al. (2014) proposed that there may not be a single, universal
model of functional organization but instead different organizational patterns may be
superimposed on the hippocampal long-axis. As Strange and colleagues outlined in
their review, future studies are required to disambiguate the relative contributions of
differing structural characteristics, namely discrete modules, i.e., gene expression
domains, and smooth gradients, i.e., continuous transitions of place field size, to given
behaviors. Moreover, Strange and colleagues’ unified model provides a starting point
for further contemplations, for instance regarding the way in which different models
may be superimposed. As mentioned in subsection 4.2.2, the hippocampus may
exhibit different organizational patterns during rest as opposed to during engagement
in a task. This may imply that differential task engagement may bring about different
functional organizations which are optimized for the respective, specific task. Another
possibility is that the detection of different organizational patterns stems from
differences between transversal hippocampal subfields: In fact, many studies assume
that the transversal hippocampal subfields exhibit an analogous wiring and generalize
inferences from individual subfields to the entire hippocampus (e.g., Dong et al., 2009).
Nonetheless, it is possible that transversal subfields exhibit different functional patterns
of organization, which may explain differences between findings originating from
studies each investigating a single subfield. To substantiate this idea and potentially
disentangle different organizations across transversal subfields, future studies with
high anatomical precision are needed. Lastly, sharp and smooth transitions may be
superimposed in the sense that different modalities are organized differently. This may
relate to structure — function differences in that some structural properties may be
reflected to a bigger extent as a gradient, whereas function may be predominantly

organized in modules.

An especially intriguing aspect about Strange and colleagues’ reconciling view
regarding hippocampal functional organization is its potential generalizability.
Specifically, when reviewing literature regarding the organization of the neocortex as
a whole, one similarly stumbles across diverging hypotheses: On the one hand, it has
been established more than a century ago that the cortical surface can be divided into
numerous sharply demarcated units, which until now remains an accepted view

(Brodmann, 1909; Kaas, 1987). These so-called Brodmann areas have first been
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described using microstructural properties but are moreover thought to represent
distinct functional entities (Schaefer et al., 2018; Strotzer, 2009). Other evidence for a
modular neocortical organization emerges from more recent functional imaging studies
that describe the cortex as a compilation of several modules exerting distinct functions
(Bertolero et al., 2015), therefore stressing the importance of functional connectivity
based parcellations (Eickhoff et al., 2018). However, not all researchers view the
cortical organization as purely modular (Amunts & Zilles, 2015). Given the complexity
and multiplicity of organizational axes, others have asked the question whether a
discrete nomenclature corresponding to functionally distinct cortical areas is just an
erroneous attempt to force a finite taxonomy on in truth continuous distributions
(Goldberg, 1989). Contrasting a modular view, studies have investigated the
continuous nature of the cerebral cortex and found gradients with respect to
microstructural properties like gene expression (Hawrylycz et al., 2015) as well as
functional characteristics like functional connectivity (Fornito et al.,, 2019;
Margulies et al., 2016). Based on microstructural, genomic, and connectivity data,
Huntenburg et al. (2018) suggested a large-scale cortical gradient spanning from
sensorimotor areas on the one end to transmodal cortices on the other. Therefore,
similarly to the hippocampal reconciliation model suggested by Strange et al., the
entire cerebral cortex may be viewed as a system in which on the one hand distinct
and on the other hand smooth transitions of functional organization are superimposed.
In addition, one may speculate that this analogy between the hippocampus and the
entirety of the cerebral cortex is in fact not a coincidence but hints at an evolutionary
mechanism: According to the dual origin hypothesis, the cerebral cortex may have
developed radially from specific phylogenetically conserved structures of the limbic
system over the course of evolution. Specifically, a ventral/anterior system may have
emanated from the perirhinal and amygdalar cortex, whereas a dorsal/posterior system
may have evolved from the hippocampus and parahippocampal gyri (Giaccio, 2006).
Therefore, intriguingly, the hippocampal long-axis may serve as a microcosm to study
large-scale organizational patterns of the cerebral cortex, which may have evolved

from and therefore are mirrored by the hippocampal organization (Vogel et al., 2020).

Although these contemplations serve as fascinating matter of debate in the current
literature, clearly more evidence is required to eventually accept or refute these

speculations.
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4.3 Clinical implications

Despite the unequivocally fascinating nature of fundamental research questions
regarding the hippocampal long-axis organization, readers with a clinical background
may ask themselves whether these findings are relevant for them and how they may
someday be implemented in the clinical practice. To provide potential answers, this
final subsection highlights the potential of both our methodology as well as our results
for possible clinical applications. Hence, this subsection provides an outlook, in which
some of the outlined possibilities are already quite tangible, whereas currently some

aspects rather remain hopes for the farther future.

4.3.1 Automated segmentation tool for neuroscientific research questions

As outlined in the Introduction, hippocampal integrity is critically impaired in a variety
of neuropsychiatric diseases, for instance neurodegenerative illnesses, like most
prominently Alzheimer’s disease (La Joie et al., 2014) and frontotemporal dementia
(Vogel et al., 2020), but also schizophrenia (Harrison, 2004), bipolar disease
(Altshuler et al., 2000), major depressive disorder (Kemmotsu et al., 2013), anxiety
(Cha et al., 2016), and post-traumatic stress disorder (Karl et al., 2006). Importantly,
similar to the functional differentiation of brain functions along the hippocampal long-
axis, the vulnerability to disease has also been shown to exhibit longitudinal differences
(Llad6 et al.,, 2018; Ranganath & Ritchey, 2012; Vogel et al., 2020). Therefore,
fundamental as well as clinical studies addressing the organization of the hippocampal
long-axis and its role in pathophysiological processes are important tools to advance
our understanding of the underlying diseases and promote treatment options.
However, to date comparison between such studies is majorly impaired by
methodological inconsistencies, especially regarding the delineation and segmentation
of the hippocampus and its subunits. For example, the current literature shows
considerable disagreement across existing protocols for the delineation of transversal
subfields (Yushkevich et al., 2015), which led to the formation of a dedicated scientific
consortium, the Hippocampal Subfields Group (www.hippocampalsubfields.com), in
the endeavor to develop a harmonized protocol for transversal subfield segmentation

(Wisse et al., 2017). Analogous, previous studies examining long-axis differences have
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also used a variety of methods for the definition of boundaries between anterior,
(intermediate,) and posterior parcels: Some authors divide the hippocampus by volume
percentage (Bast et al., 2009), some use anatomical landmarks (Poppenk et al., 2013)
or the position along the longitudinal length (Fernandez et al., 1998), whereas others
forego a delineation altogether by showing all transversal slices along the entire
anterior-posterior axis (Small et al., 2001). Given this heterogeneity, the scientific
community in fundamental as well as clinical hippocampal research would strongly
benefit from a unified method for segmenting longitudinal subunits, that may ideally be
data-driven and automated. In contrast to the endeavors of the Hippocampal Subfield
Group aiming to harmonize transversal subfield segmentation protocols, there is not
yet a joint effort to unify segmentation protocols for long-axis subunits, which is most
likely due to the relatively recent discovery of a functionally meaningful long-axis
organization. Providing a solution to the problem of heterogeneity between protocols,
we believe that the methodology applied here, namely connectopic mapping in
combination with k-means clustering, has the potential to serve as a unified approach
for automated hippocampal long-axis segmentation. Of course, k-means clustering
does not provide an entirely data-driven clustering tool, which is discussed in depth
above, therefore such a protocol would not allow for conclusions regarding the number
of subunits or the nature of long-axis transitions. However, regarding the bulk of studies
solely aiming to quantify differences along the hippocampal long-axis, our proposed
method may alleviate the burden of a pre-analysis parcellation for the individual
experimenter, and furthermore facilitate comparison between findings on a global level

if universally applied across studies.

Furthermore, the possible benefit of the proposed method is not necessarily restricted
to application on the hippocampus. In fact, the connectopic mapping algorithm as itself
(i.e., not combined with k-means clustering) has already been successfully applied to
other brain areas including primary motor and visual cortices (Haak et al., 2018),
entorhinal cortex (Navarro Schréder et al., 2015), striatum (Marquand et al., 2017), as
well as the cerebral cortex as a whole (Margulies et al., 2016). Thus, connectopic
mapping combined with k-means clustering may serve as a useful tool to determine
the functional organization of any given brain region and produce a parcellation based
on the topography of functional connectivity similarity. Such a parcellation can provide

interesting insights for itself but can also constitute a methodological basis for limitless
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further analyses, for instance examining functional or structural differences along the

identified main axis of organization in healthy versus diseased individuals.

4.3.2 Clinical predictive tool for neurodegenerative diseases

In addition to the possible benefits of our methodology for (clinical) neuroscientific
research throughout a wide spectrum of applications, our findings may provide an
avenue for advanced diagnostics and progression tracing in neurodegenerative
diseases. This shall be elaborated using Alzheimer’'s disease as an example.
Diagnostic standards for this condition are set in the current S3 guideline for dementia,
jointly issued by the German Association for Psychiatry, Psychotherapy and
Psychosomatics (DGPPN) and the German Society of Neurology (DGN). Regarding
the initial diagnosis of Alzheimer’s disease, the guideline mentions structural imaging
as a complementary tool in that it shall be used to exclude other causes of dementia,
like vascular dementia, and to assess the extent of overall cerebral and specifically
temporal lobe atrophy (DGPPN & DGN, 2016). Apart from this suggestion of an initial
structural MRI scan, imaging techniques are not recommended for follow-up controls
or progression monitoring unless the disease shows an atypical progress in individual
patients. According to the guideline, the rather minor importance of structural imaging
is due to the low specificity of MRI regarding the discrimination between different forms
of dementia. In contrast to structural MRI, functional MRI is not yet included in the
guideline at all. However, previous fMRI studies in patients with Alzheimer’s disease
have demonstrated several parameters that may come into question as a diagnostic
or disease progression marker, including for instance the resting-state functional
connectivity of certain brain networks (Greicius et al., 2004) and of the hippocampus
(Wang et al., 2006). A problem of some of these suggested parameters is the expected
low specificity for a single disease, as for example the overall hippocampal functional
connectivity is disrupted not only in Alzheimer’s disease but in numerous other
neuropsychiatric conditions as well (Garrity et al., 2007). This problem of insufficient
specificity may potentially be overcome using a more sophisticated approach to
quantifying functional connectivity, for instance using an accurate mapping of the
functional connectivity topography or even a functional connectivity-based parcellation,

which we used here. This proposition is based upon a line of evidence suggesting that
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longitudinal hippocampal subunits exhibit selective changes in functional connectivity
patterns in early stages of Alzheimer’s disease (Zarei et al., 2013; Zhang et al., 2010).
It is likely that functional connectivity differences between long-axis subunits are more
specific for a disease than the overall hippocampal connectivity, as it has already been
shown that diseases differentially target the hippocampal long-axis (Vogel et al., 2020)
and that for example in schizophrenia the functional connectivity appears to be
selectively altered in the anterior hippocampus (Zhou et al., 2008). Therefore, the
accurate topography of functional connectivity similarity along the hippocampal
long-axis is likely to display differentially impaired patterns in Alzheimer’s and other
diseases, which may each be specific for the respective condition. To test this, future
studies are needed to examine whether hippocampal connectopic maps are indeed
significantly different between healthy and diseased individuals, and across different
illnesses. Furthermore, it is an open question whether size, shape, or arrangement of
functional subunits change depending on whether the subject is healthy, aged, or
affected by disease in different stages. If so, our approach, combining connectopic
mapping and k-means clustering, would become even more interesting as a potential
clinical predictive tool. Generalizing from the described example of Alzheimer's
disease to other neurodegenerative diseases, potential applications are limitless given
the multiplicity of conditions that the hippocampus is involved in: The use of fMRI as a
clinical tool may not be restricted to diagnostics or progression tracing but could also
be expanded to monitoring a patient’s treatment response, thereby advancing our
understanding of the mechanisms underlying neuropharmacological manipulations
(Wise & Preston, 2010). To further explore these clinical applications of fMRI analyses,
more research is needed to bridge the gap between the hippocampal long-axis
organization in health to specific alterations in various diseases. However, it is far from
unrealistic to imagine that the hippocampal long-axis organization, or parcellation, may

serve as a clinical predictive tool for neuropsychiatric diseases one day.

However, critics may argue that fMRI requires the patient to lie still for a longer time
than for instance a structural MRI scan, which may be difficult for cognitively affected
individuals. Other disadvantages refer to high cost and lower availability of fMRI
scanners and protocols, although of course collective financial reasoning should not
replace considerations prioritizing an individual patient’s wellbeing. On the other hand,

fMRI is a noninvasive, painless, and virtually riskless examination, therefore posing
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fewer risks for the patient than more invasive methods including for instance a lumbar
puncture, which is also part of the current S3 guideline for dementias including
Alzheimer’s disease. In addition, fMRI is more independent of the patient’s intrinsic
motivation than for example neuropsychological testing of a patient suffering from
major psychological impairment: In many tasks currently used for the assessment of a
patient’s cognitive status, noncompliance cannot be reliably be differentiated from
malperformance. Of course, however, it would be similarly challenging to convince a
noncompliant patient to perform a task in the MRI scanner. Therefore, in patients
exhibiting problematic noncompliance, resting-state fMRI would be more feasible than
task-based fMRI, although one may argue that even noncompliant patients could more
easily be convinced to perform a game-like task in the scanner than to for instance
perform mathematical operations (which is part of the Mini Mental State Test widely
used for neuropsychological testing in dementias (Tombaugh & Myintyre, 1992)).
Nonetheless, as mentioned in subsection 4.2.2 and 4.2.5, the hippocampal
organization and therefore connectopic maps derived from resting-state fMRI data may
differ from task-based results. Thus, before connectopic mapping can be applied in a
clinical setting and tested as a diagnostic biomarker, future studies should investigate

the difference between resting-state and task-based results.

In conclusion, state-of-the-art fundamental neuroscientific research has already
provided and is working to solidify the foundation for potential applications of fMRI in a
clinical setting. Although fMRI may someday outperform previous clinical methods, its
current implementation in the clinical routine is hindered by impracticability and dubiety
regarding its additional benefit. However, at least the latter doubts may be resolved by
further research in the coming years so that fMRI, and specifically mapping the
functional topography of the hippocampal long-axis, proceeds towards being used as

a cutting-edge clinical predictive tool.
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4. Summary and outlook

In this thesis, we set out to investigate the functional organization of the human
hippocampus in healthy adults. To this end, we analyzed an ultra-high-resolution fMRI
dataset that had been acquired on a 7 Tesla fMRI scanner. During scanning, the
22 participants performed a self-paced object-location memory task, which was
facilitated by a 3D virtual reality setup. The fMRI data was processed with a novel,
data-driven analysis algorithm, connectopic mapping (Haak et al., 2018), to determine
the dominant topography of functional connectivity similarity within the hippocampus,

based on its functional connectivity to the rest of the brain.

The obtained connectopic maps reveal a pattern of functional connectivity similarity
that clearly follows the hippocampal long-axis, suggesting a functional
anterior-posterior differentiation. Interestingly, this distinction exhibits a discretized
pattern with several peaks of functional connectivity similarity, pointing towards a
modular hippocampal long-axis organization. To determine the number of functional
subunits, we performed a validation approach based on a simulated null distribution of
functional connectivity similarity peaks. Comparison of the observed peaks to the 95"
percentile of the null distribution suggests that the first and second highest peaks likely
correspond to biologically meaningful modules, whereas the forth through tenth highest
peaks could equally be caused by chance. However, the validation approach yielded
inconsistent results regarding the significance of the third order peak between the left
and right hippocampus, pointing towards either two or three longitudinal modules.
Hence, to further specify the number of functional subunits, we quantified the number
of peaks across participants, which indicated an overall rounded mean of three
modules. Additionally, we applied the so-called elbow method (Kodinariya & Makwana,
2013) to determine the optimal number of clusters, providing further evidence for three
functional subunits. Thus, we performed functional parcellations of participant-specific
connectopic maps into three clusters using k-means clustering. Critically, 15 out of
22 participants exhibited consistent, longitudinally arranged subunits, whereas seven

parcellations yielded rather irregularly arranged clusters.

Taken together, our findings provide evidence for a discretized functional organization
of the hippocampal long-axis in healthy humans and lend support to the notion of a

tripartite parcellation into an anterior, intermediate, and posterior functional subunit.
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These results coincide with an abundance of previous literature indicating a tripartition
of the hippocampal long-axis, including insights from recent functional imaging and
behavioral studies. In contrast, there is a second line of research, supported by other
functional imaging approaches, pointing towards a smooth functional long-axis
gradient. Due to different methodologies and potential limitations, contradicting studies
are often not entirely comparable and to date, controversial findings have not yet been
fully conciliated. The analyses presented in this thesis are not able to definitively settle
the matter, as certain shortcomings of our methodology cannot be ruled out, foremost
including some ambiguity regarding the number of subunits and a potential lack of

spatial precision due to the applied spatial smoothing during data preprocessing.

Despite the mentioned controversy in the literature and potential inconsistencies of our
methodology, intriguing questions arise from the possibility of a tripartite hippocampal
organization, including for instance the precise functional roles of three putative
longitudinal modules. Previous studies have corroborated the general view that the
anterior hippocampus takes part in emotional processing, whereas the posterior
hippocampus is involved in spatial and cognitive processes. Within this
anterior-posterior distinction, the role of an intermediate module is more ambiguous.
Recent work suggests that the intermediate hippocampus may on the one hand
mediate emotional influences on memory encoding and on the other hand take part in
translating spatial learning into behavior, hence potentially providing an integrative
interface between the anterior and posterior cluster. However, the analyses presented
in this thesis rely on data acquired during an experimental task that involved spatial
memory and navigation behavior but did not distinguish between different aspects of
hippocampal function. Hence, our ability to assess the full functional spectrum of the

hippocampus may be limited.

Moreover, it is an open question to what extent a functional tripartition may be reflected
in structural aspects along the hippocampal long-axis. On the one hand, extrinsic and
intrinsic neuronal projections of the hippocampus can be segregated into three
scarcely overlapping divisions. Coincidingly, electrophysiological and genetic studies
indicate that mechanisms of synaptic plasticity as well as gene expression are
organized in three distinct domains. On the other hand, however, especially in terms
of gene expression, a contradicting view is currently discussed, as other recent studies

suggest a smooth genomic gradient.
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In sum, previous research on the functional and structural organization of the
hippocampal long-axis produced diverging hypotheses, namely modular versus
gradual transitions of functional specialization. However, the two opposing theories
could be reconciled by a recently suggested view that different patterns of long-axis
organization may be superimposed. Within this framework, different modalities,
i.e., different structural or functional aspects, may be organized in different ways,

potentially even depending on if the hippocampus is functionally active or at rest.

Future studies will be able to corroborate or refute this proposed conciliation model.
Specifically, ultra-high-resolution fMRI studies may be combined with fully data-driven
analysis algorithms to fairly assess the data with as little assumptions as possible.
Special care may be taken regarding the preprocessing pipeline to rule out that any
applied procedure limits the spatial precision to detect the precise pattern of
organization. Moreover, a sophisticated experimental setup involving various tasks
may be considered to determine potential differences in the hippocampal long-axis
organization during different task modalities and to tackle the question of functional
correlates pertaining to potential modules. In addition, multimodal approaches will have

the potential to bridge the gap between functional and structural insights.

In addition to these contemplations relating our findings to the unresolved question of
the hippocampal long-axis organization, the analyses presented here may provide a
methodological basis for numerous future applications. Not only could our data-driven
approach, specifically connectopic mapping combined with k-means clustering, serve
as a unified approach for hippocampal segmentation, which could benefit future
hippocampal research and harmonize hitherto heterogeneous segmentation protocols.
Moreover, the presented approach can be applied to any given region of interest and

thereby be of use for limitless other neuroscientific questions.

Besides, our approach could not only be applied in the fundamental neurosciences,
but has the potential to be used in a clinical setting: Since hippocampal integrity is
disrupted in various conditions, including Alzheimer’s disease, schizophrenia, and
major depressive disorder, mapping the functional connectivity topography of the
hippocampus comes into question as a clinical predictive tool for diagnostic purposes,

for tracing a disease’s progression, or quantifying treatment responses.
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All in all, the thesis at hand provides novel insights into the functional organization of
the human hippocampus, based on data-driven analyses of a 7 Tesla fMRI dataset.
Despite potential shortcomings and the need for future research to fully elucidate the
structural and functional anatomy of the hippocampus, our findings complement
previous research and lend support to the discretized, tripartite view of hippocampal
long-axis organization. Not only given numerous open questions arising from our
analyses but also regarding future clinical applications of our methodology, it will be
thrilling to observe what future approaches in fundamental and clinical hippocampal

research may bring with regards to these and additional questions.
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