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Summary

The theory of causal fermion systems provides a new mathematical framework which allows
for a unified description of contemporary fundamental physics. One essential ingredient of this
framework is the so-called causal action which is a certain functional of a measure defined on
a specific subset of the bounded linear operators on a Hilbert space. For a given measure, this
functional can be regarded as a quantifier of the weighted causal relation of all operators within
the support of the measure. Moreover, the functional is subject to the causal action principle
which aims at minimizing the causal action by varying the measure and in this way makes the
measure a dynamical variable. All of this, as well as further fundamental objects of the theory
which are relevant to this thesis, are introduced and explained in Chapter 1.

Within these structures and based on certain foundational conceptions, one can now model
concrete physical systems, which are always understood as a combination of some spacetime
manifold together with the fermionic particle content existing therein. The foundational conception
underlying the modelling is to regard fermions as the fundamental building blocks of nature and
to conceive the vacuum, according to Dirac’s interpretation, as the presence of all negative-energy
solutions of the Dirac equation in the respective spacetime. To get into the framework of the theory
of causal fermion systems, one chooses the above-mentioned Hilbert space as these negative-energy
solutions and simultaneously forgets about all the other geometrical and topological structures of
spacetime. In order to take into account a possibly existing, though yet not observed, non-trivial
microstructure of spacetime which leads to a modified high-energy behaviour of the Dirac solutions,
the elements of the Hilbert space are equipped with a so-called regularization. As will be explained
in further detail in Chapter 2, it is this regularization which in the modelling of a physical system
within the structures provided by the theory of causal fermion systems plays the role of the
measure and is thus dynamically determined through the causal action principle.

Embedded in this setting, the present thesis is concerned with the derivation and analysis of
the multipole expansion of second variations of the above-mentioned causal action which are
caused by variations of the regularization of the so-called regularized kernel of the fermionic
projector. The thesis is divided into three major parts: In Part I: Basics we lay the foundations
by first introducing and discussing the fundamental mathematical structures of the theory of
causal fermion systems and subsequently explaining in detail how concrete physical systems can
be realized within this abstract setting and what exactly the underlying foundational conceptions
are. Part II: Developments is devoted to the derivation of the multipole expansion of second
variations of the regularized causal action. More specifically, in Chapter 3 we derive second
variations of the regularized causal action for a homogeneous regularized kernel of the fermionic
projector having vector-scalar structure which results in Theorem 3.4.3. Starting from this result,
the multipole expansion of the second variation of the regularized causal action is derived and
simplified through several steps in Chapter 4, ultimately leading to Theorem 4.3.1 which expresses
the multipole moments of the second variation of the regularized causal action in terms of integral
operators. In Part III: Applications we then analyze the second variation of the regularized
causal action for special regularizations. More concretely, in Chapter 5 we consider an anisotropic
generalization of the so-called iε-regularization which is extensively studied in the literature and
demonstrate in Theorem 5.2.5 that Lorentz boosts of the velocity vector of this regularization leave
the regularized causal action invariant. Additionally, we prove that anisotropically iε-regularized
kernels of the fermionic projector lead to a non-vanishing second-order variation of the local particle
density compared with the symmetric situation. Finally, in Chapter 6 we outline a procedure
which, under certain simplifying assumptions, ultimately allows to demonstrate invertibility of
the lowest-order multipole moment of the second variation of the regularized causal action. A
generalization of this approach to higher multipole moments is part of a novel mechanism of
baryogenesis within the theory of causal fermion systems.
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Notation and Conventions

Color Legend
Definitions and definition-like environments such as notations, terminology, and conventions are
highlighted by a bar from the green color spectrum. Gray bars indicate lemmas and propositions,
while auxiliary calculations (which exclusively occur in the appendices) remain without any color
highlighting. Finally, theorems and remarks are highlighted by dark red bars and dark gray bars,
respectively.

Number Systems
For the natural numbers we use the convention N := {1, 2, 3, . . . } and denote the natural numbers
with zero included by N0. Likewise, for the positive real numbers we write R+ and denote the
case with zero included by R+

0 .

Matrices
For an n-component vector v ∈ Kn with K ∈ {R,C} we denote by Dv the associated n × n
diagonal matrix with entries (Dv)ii = vi. Furthermore, by 1m×n we denote the (m× n)-matrix of
ones. Similarly, the (m× n)-matrix of zeroes is denoted by 0m×n. For n× n square matrices, we
write 1n := 1n×n and 0n := 0m×n.

Elements of the Operator Set Fn and of Physical Spacetime M
To distinguish between elements of the operator set Fn and elements of physical spacetime M,
we consistently use different fonts x, y, z ∈ Fn in contrast with x, y, z ∈ M.1 Moreover, unless
otherwise specified, (M, g) denotes an m-dimensional semi-Riemannian manifold with signature
(+1,−1,−1, . . . ,−1).

Indices and Einstein Summation Convention
Concerning indices of four-vectors, we adopt Finster’s convention2 according to which Latin indices
denote the components of four-vectors while Greek indices are reserved exclusively for spatial
components. This is just the opposite of the convention commonly used in physics.[3, 4] We employ
the Einstein summation convention with the addition that for purely spatial indices (indicated
by Greek letters) also two upper or two lower indices trigger a summation over the spatial index set.

Multipole Indices
Multipole indices are denoted by (l,m) and (l′,m′). Furthermore, for summations over multipole
indices we often use the abbreviating notation

∑
l,m

:=
∞∑
l=0

l∑
m=−l

Regularization and Regularization Length
The superscript ( · )ε indicates regularized objects which includes both the type of regularization
as well as the regularization length. When talking about ε alone, the regularization length is meant.

Sesquilinear Form
For sesquilinear forms s : V ×V → C on complex vector spaces V , we adopt the physics convention
according to which s is conjugate-linear in the first argument and linear in the second argument.

1We remark that this convention was introduced by Finster and Kleiner.[1, Sec. 2]
2Note that this is the convention used by Hawking and Ellis.[2, Ch. 4, p. 82] For a listing of the different index

and sign conventions, we refer to the corresponding table by Misner, Thorne and Wheeler.[3]
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1
The Fundamental Mathematical Structures

of the Theory of Causal Fermion Systems

Contents
1.1 Causal Fermion Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Structuring the Hilbert Space: The Spin Spaces . . . . . . . . . . . . . 5
1.1.2 The Causal Structure of the Operator Set Fn . . . . . . . . . . . . . . 6
1.1.3 The Universal Measure . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 The Causal Lagrangian and the Causal Action . . . . . . . . . . . . . 7
1.2.1 Eigenvalue Representation of the Causal Lagrangian . . . . . . . . . . 8
1.2.2 The Causal Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 The Causal Action Principle . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Significance and Interpretation of the Constraints . . . . . . . . . . . . 11
1.3.2 Existence Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Further Structures and Objects . . . . . . . . . . . . . . . . . . . . . . 12
1.4.1 The Kernel of the Fermionic Projector and the Closed Chain . . . . . 12
1.4.2 Wavefunctions and the Wave Evaluation Operator . . . . . . . . . . . 14

The theory of causal fermion systems provides a rich framework of mathematical objects, structures
and mechanisms which together allow for a novel description of fundamental physics in a unified
way. The development of the theory of causal fermion systems by Felix Finster over the past
two decades has not only produced a steadily growing number of new objects and structures,
but also led to a gradual evolution regarding the presentation of the whole framework without
changing its conceptual core: While in the early days of the theory[5],[6] the emphasis was on the
so-called fermionic projector together with the associated principle of the fermionic projector,
the reformulation of the variational principle in terms of measures on certain Borel sets of finite-
rank linear operators on Hilbert spaces[7] marks the beginning[8],[9] of the transition1 to today’s
presentation in which the fermionic projector still plays the central role, but in a more general
setting which starts from the notion of causal fermion systems.[11] In order to have a solid basis
for all further chapters, we summarize the fundamental mathematical structures of the theory in
its “modern” formulation in Sections 1.1 to 1.3, before in Section 1.4 further structures which are
of particular importance for concrete calculations, are reviewed.

1The transition from the earlier to the current formulation occurred during Daniela Schiefeneder’s doctoral
studies and has accordingly found its reflection in chapter 2 of her doctoral thesis.[10, Ch. 2]
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4 1.1. Causal Fermion Systems

1.1 Causal Fermion Systems

The central and eponymous object of investigation in the theory of causal fermion systems are so-
called causal fermion systems which are a specific composition of mathematical structures.[11, Def. 1.1.1]

Definition 1.1.1 (Causal Fermion System)

A causal fermion system of spin dimension n is an ordered triple (HC,Fn, ρ) consisting of the
following structures:

(1) HC denotes a separable, complex Hilbert space (HC, 〈·|·〉HC)

(2) Fn denotes the subset Fn ⊂ L(HC,HC) of self-adjoint, finite-rank, bounded linear
operators on HC, which – counting multiplicities – have at most n ∈ N positive and at
most n ∈ N negative eigenvalues

(3) ρ denotes a positive measure ρ : B(Fn)→ R+
0 ∪{∞} on the measurable space (Fn,B(Fn))

and is referred to as universal measure where

(a) T‖ · ‖ denotes the topology induced by the operator norm ‖ · ‖L(HC,HC) on L(HC,HC)a

(b) B(Fn) denotes the Borel-σ-algebra on the topological space (Fn, TFn) where TFn is
the subspace topology on Fn with respect to the topological space (L(HC,HC), T‖ · ‖)

aThe operator norm ‖ · ‖L(HC,HC) is defined as ‖x‖L(HC,HC) := supu∈HC{‖xu‖HC | ‖u‖HC = 1}

Analyzing this definition, one recognizes that a causal fermion system may be regarded as a
three-layer system of structures as depicted in Figure 1.1: Based on an underlying Hilbert space

ρ

x

R
0

•

•

y

•

Sx

Sy

Fn

HC

L(HC ,HC )

BFn

B(Fn )

Figure 1.1: Graphical representation of the relation between the structures of a causal fermion system (HC,Fn, ρ).

https://arxiv.org/pdf/1605.04742#page=13


1. The Fundamental Mathematical Structures of the Theory of Causal Fermion Systems 5

(HC, 〈·|·〉HC) there is the subset Fn which contains certain finite-rank bounded linear operators
which, upon acting on the Hilbert space, trace out so-called spin spaces Sx, Sy ⊂ HC. On top
of those two structures there are positive measures which associate a non-negative real number
to the elements of the Borel-σ-algebra B(Fn). By specifying the Hilbert space (HC, 〈·|·〉HC) and
fixing the spin dimension n ∈ N, the universal measure ρ remains as the only indeterminate object
in the definition. This freedom in the choice of the universal measure is restricted, as will be
explained in greater detail below in Section 1.3, by the so-called causal action principle.

In the following subsections, the individual structures occurring in the definition of a causal
fermion system and their interrelations are subject of more detailed explanations. To keep the
presentation as compact and clear as possible, we agree on the following convention for all further
explanations.

Convention 1.1.2

Whenever we refer to the Hilbert space (HC, 〈·|·〉HC) and the operator set Fn, we tacitly take
an underlying causal fermion system (HC,Fn, ρ) of spin dimension n for granted.

1.1.1 Structuring the Hilbert Space: The Spin Spaces

The combination of a Hilbert space (HC, 〈·|·〉HC) and the set Fn consisting of bounded linear
operators with finite rank naturally leads to a structuring of the set HC induced by the individual
elements of Fn ⊂ L(HC,HC).

Definition 1.1.3 (Spin Space and Orthogonal Projection Operator)

For any x ∈ Fn the spin space at x ∈ Fn is defined as the image of HC under x

∀x ∈ Fn : Sx := x(HC) (1.1)

The corresponding operator πx : HC → Sx is referred to as the orthogonal projection on the
spin space Sx.

Being the image of a finite-rank linear operator, the spin space Sx ⊂ H at x ∈ Fn naturally is
a finite-dimensional complex subvector space of HC. As a consequence of this, all spin spaces
intersect in 0 ∈ HC as depicted in Figure 1.1. By equipping the individual subvector spaces with
indefinite inner products induced by the corresponding finite-rank operator, we obtain so-called
spin inner product spaces.

Definition 1.1.4 (Spin Inner Product Space)

The spin inner product space at x ∈ Fn is the ordered pair (Sx,≺ · | · �Sx) where Sx is the spin
space at x ∈ Fn and where ≺ · | · �Sx : Sx × Sx → C is the mapping defined as

(u1, u2) 7→ ≺u1|u2�Sx := −〈u1|xu2〉HC (1.2)

which is referred to as the spin space inner product on Sx.

The entirety of all spin inner product spaces can be thought of as forming a structure within the
Hilbert space HC which resembles a bristle ball. As will become apparent in Chapter 2 (Modelling
Physical Systems in the Framework of Causal Fermion Systems), the spin inner product spaces
are the abstract equivalent of fibres of a spinor bundle over physical spacetime.
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1.1.2 The Causal Structure of the Operator Set Fn

The elements of the set Fn not only give rise to an additional subset structure within the underlying
Hilbert space, but are interesting objects in their own right: Being linear operators, it is a natural
idea to study their eigenvalues. The theory of causal fermion systems, however, is not concerned
with the study of the eigenvalues of the operators themselves, but instead builds on the eigenvalues
of products xy of operators x, y ∈ Fn. This characteristic feature of the theory of causal fermion
systems lies at the heart of its inherent non-locality which will become more explicit in the
discussion of the causal action in Section 1.2.

For two arbitrary operators x, y ∈ Fn, which by definition of Fn satisfy rk(x), rk(y) ≤ 2n, also their
product clearly satisfies rk(xy) ≤ 2n. The 2n non-trivial2 eigenvalues of the operator product xy
will be denoted by λxyi where i ∈ {1, 2, . . . , 2n}. Based on these eigenvalues of operator products,
one introduces the following notion of causality on the operator set Fn.[11, Def. 1.1.2]

Definition 1.1.5 (Causal Structure on Fn)

Two operators x, y ∈ Fn are called spacelike-separated if the eigenvalues λxyi ∈ C of their
operator product xy satisfy the condition

∃λxy ∈ R+
0 ∀i ∈ {1, 2, . . . , 2n} : |λxyi | = λxy (1.3a)

while they are called timelike-separated if

∀i ∈ {1, 2, . . . , 2n} : λxyi ∈ R ∧ ∃i, j ∈ {1, 2, . . . , 2n} : |λxyi | 6=
∣∣λxyj ∣∣ (1.3b)

holds. In all other cases the operators x and y are referred to as being lightlike-separated.

Figure 1.2: Graphical representation of the
double-conical set Fn together with spacetime
M = supp(ρ) associated with a given causal
fermion system (HC,Fn, ρ) depicted in orange.

According to this definition, assessing the causal relation
of two operators x, y ∈ Fn requires to evaluate and
compare the eigenvalues λxyi of their operator product.
In Section 1.2 we will come back to this definition and
introduce the so-called causal Lagrangian, an object that
allows for a systematic distinction between spacelike-
separated operators x, y ∈ Fn on the one hand and
timelike-separated as well as lightlike-separated operators
on the other hand. Before, however, we introduce another
quantity which contains part of the information encoded
in the eigenvalues of pairs of operators from Fn.

Definition 1.1.6 (Spectral Weight)

The spectral weight of an operator x ∈ Fn is the
mapping | · | : Fn → R+

0 defined as

x 7→ |x| :=
2n∑
i=1
|λxi | (1.4)

To conclude this subsection we remark that, although the set of finite-rank operators within
L(HC,HC) forms a subvector space due to the fact that linear combinations of finite-rank operators
still have finite rank, the subset Fn ⊂ L(HC,HC), however, does not have the same property:
Since linear combinations x+ y for x, y ∈ Fn do in general have rk(x+ y) > 2n and thus violate

2For convenience, the non-trivial eigenvalues of xy are ordered such that λxyi 6= 0 for 1 ≤ i ≤ rk(xy) and λxyi = 0
for rk(xy) + 1 ≤ i ≤ 2n.

https://arxiv.org/pdf/1605.04742#page=15
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the rank condition in the definition of a causal fermion system, Fn is not a subvector space of
L(HC,HC). But since rescalings of x ∈ Fn with constants c ∈ R \ {0} do not affect the rank of
the operator x, the set Fn has a structure which is referred to as a double-conical set.[12, p. 3] As a
consequence, the operator set Fn may be depicted as an infinite collection of “rays” intersecting at
0 ∈ Fn as shown in Figure 1.2. For completeness of the discussion, we introduce one more definition.

Definition 1.1.7 (Regular Operators and Regular Causal Fermion Systems)

An operator x ∈ Fn is call regular if it has rank 2n. The subset of regular operators is defined
as

Freg
n := {x ∈ Fn | rk(x) = 2n} ⊂ Fn (1.5)

and a causal fermion system is thus called regular if Fn is replaced by Freg
n in the definition.

The subset Freg
n of regular operators is a dense open subset of Fn and plays an important role in

the modelling of physical systems as will become clear in Subsection 2.2.2.1.3

1.1.3 The Universal Measure

While the Hilbert space (HC, 〈·|·〉HC) and the operator set Fn can be understood as a rather
rigid underlying structure,4 the universal measure ρ may be interpreted as sitting on top of both
but without, at least at this point, being subject to any restrictions, except for being a positive
measure on the Borel-σ-algebra B(Fn) generated by the elements of the subspace topology TFn
with respect to the topological space (L(HC,HC), T‖ · ‖). In view of later applications we introduce
the following definition.

Definition 1.1.8 (Spacetime associated with a Causal Fermion System)

The spacetime M associated with a causal fermion system (HC,Fn, ρ) is defined as the support
of the universal measure

M := supp(ρ) := Fn \
⋃{

Ω ⊂ Fn
∣∣Ω ∈ B(Fn) ∧ ρ(Ω) = 0

}
(1.6)

The spacetime M associated with a given causal fermion system (HC,Fn, ρ) corresponds to the
orange portion of Fn in Figure 1.2. Without intending to violate our claim for a clear distinction
between the abstract mathematical framework and concrete physical applications, we nevertheless
want to mention that the spacetime associated with a causal fermion system is usually a low-
dimensional subset of Fn.5

1.2 The Causal Lagrangian and the Causal Action

Having expanded on the definition of a causal fermion system and the structures which it is built
from, we now come back to the causal structure of the operator set Fn already addressed in
Subsection 1.1.2 and introduce with the so-called causal Lagrangian a quantity that allows for a
systematic distinction of pairs of spacelike-separated operators.

3For a detailed discussion of regular causal fermion systems and, in particular, the Banach manifold structure of
F

reg
n we refer to the recent work by Finster and Lottner.[13]

4In this context, “rigidity” refers to the fact that the part (HC,Fn) of a causal fermion system (HC,Fn, ρ) is
completely determined by specifying two numbers: First, the Hilbert space dimension dim(HC) ∈ N0 ∪ {∞} must
be fixed. This effectively amounts to choosing either HC = Cdim(HC) in the finite-dimensional case or HC = `2(N,C)
in the infinite-dimensional setting since every separable Hilbert space is isometrically isomorphic to `2. Second and
finally, by fixing the spin dimension n ∈ N0 the universal measure remains as the only undetermined input.

5Numerical studies in simple examples such as distributions of points on the sphere demonstrate that the
universal measure has its support on low-dimensional elements of B(Fn).[8, 14]

https://arxiv.org/pdf/1812.00238.pdf#page=3
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Definition 1.2.1 (Causal Lagrangian)

The causal Lagrangian is the function L : Fn × Fn → R+
0 defined as

(x, y) 7→ L(x, y) (1.4):=
∣∣(xy)2∣∣− 1

2n |xy|
2 (1.7)

where
∣∣(xy)2

∣∣ and |xy| denote the spectral weights of the operators (xy)2 and xy, respectively.

From this abstract representation of the causal Lagrangian its relevance and the mentioned
connection with the causal structure on the operator set Fn cannot be recognized immediately.

1.2.1 Eigenvalue Representation of the Causal Lagrangian

To work out this connection, it is insightful to rewrite the causal Lagrangian, evaluated at the
operator pair (x, y) ∈ Fn × Fn, as stated in the following lemma.

Lemma 1.2.2 (Eigenvalue Representation of the Causal Lagrangian)

Let x, y ∈ Fn be operators. Then the causal Lagrangian L(x, y) can be expressed as

L(x, y) = 1
4n

2n∑
i,j=1

(∣∣λxyi ∣∣− ∣∣λxyj ∣∣)2
(1.8)

where λxyi for i ∈ {1, 2, . . . , 2n} are the non-trivial eigenvalues of the operator product xy.

Proof. Evaluating the causal Lagrangian at (x, y) ∈ Fn × Fn and inserting the definition of
the spectral weight, we obtain

L(x, y) (1.7)=
∣∣(xy)2∣∣− 1

2n |xy|
2 (1.4)=

2n∑
i=1

∣∣∣λ(xy)2

i

∣∣∣− 1
2n

( 2n∑
i=1

∣∣λxyi ∣∣
)2

To rewrite the first term, we make use of the fact that if λxyi is an eigenvalue of the operator
xy corresponding to the eigenvector v ∈ HC one can immediately conclude that the eigenvalue
of the operator (xy)2 corresponding to the same eigenvector v ∈ HC is given by the square of
the eigenvalue λxyi . Using this argument along with the multiplicativity of the absolute value,
we arrive at

L(x, y) =
2n∑
i=1

∣∣λxyi ∣∣2 − 1
2n

( 2n∑
i=1

∣∣λxyi ∣∣
)2

Introducing a factor 1 = 1
2n
∑2n
j=1 1 in the first term yields

L(x, y) = 1
2n

2n∑
i,j=1

∣∣λxyi ∣∣2 − 1
2n

( 2n∑
i=1

∣∣λxyi ∣∣
) 2n∑

j=1

∣∣λxyj ∣∣


Finally, by splitting up the first term, interchanging summation indices and completing the
square, we end up with an expression in terms of the eigenvalues of the operator product xy

L(x, y) = 1
4n

2n∑
i,j=1

∣∣λxyi ∣∣2 − 2 · 1
4n

2n∑
i,j=1

∣∣λxyi ∣∣∣∣λxyj ∣∣+ 1
4n

2n∑
i,j=1

∣∣λxyj ∣∣2 = 1
4n

2n∑
i,j=1

(∣∣λxyi ∣∣− ∣∣λxyj ∣∣)2

This concludes the proof.
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In this eigenvalue representation of the causal Lagrangian its already mentioned significance for
the assessment of the causal relation of two operators x, y ∈ Fn becomes apparent: According to
Definition 1.1.5 two operators x, y ∈ Fn are spacelike-separated if all eigenvalues of their operator
product xy have the same absolute value, which thus immediately implies that for such a pair of
operators the causal Lagrangian vanishes identically. Due to this property, the causal Lagrangian
can be used in order to identify those subsets within the operator set Fn whose elements are
spacelike-separated from a fixed operator x ∈ Fn. This usage of the causal Lagrangian will become
particularly relevant in Subsection 1.2.2 and Section 1.3.

Interpretation of the Causal Lagrangian
In addition to the usage of the causal Lagrangian as a quantity for the evaluation of the causal
relation of two operators x, y ∈ Fn, another yet not discussed interpretation shall be introduced
and explained here. If one defines for a given pair of operators x, y ∈ Fn the average absolute value
λxya ∈ R+

0 of all eigenvalues as λxya := 1
2n
∑2n
i=1
∣∣λxyi ∣∣ and adds 0 = λxya − λxya in the eigenvalue

representation of the causal Lagrangian as derived in Lemma 1.2.2, we obtain

L(x, y) (1.8)= 1
4n

2n∑
i,j=1

(∣∣λxyi ∣∣− ∣∣λxyj ∣∣)2
= 1

4n

2n∑
i,j=1

((∣∣λxyi ∣∣− λxya
)
−
(∣∣λxyj ∣∣− λxya

))2

=
2n∑
i=1

(∣∣λxyi ∣∣− λxya

)2
− 1

2n

( 2n∑
i=1

(∣∣λxyi ∣∣− λxya

))2
(1.9)

If one now inserts the definition of λxya in the second term, it vanishes identically and we are left with

L(x, y) =
2n∑
i=1

(∣∣λxyi ∣∣− λxya

)2
(1.10)

In structural terms, this representation of the causal Lagrangian resembles the expression for the
variance of a discrete random variable Λxy, which can take the values

∣∣λxyi ∣∣, whose associated
probabilities of occurrence are pi = 1

2n for all i ∈ {1, 2, . . . , 2n}. In view of this, the causal
Lagrangian may be written as

L(x, y) = 2nVar(Λxy) (1.11)

which allows to interpret the causal Lagrangian, for a fixed pair of operators x, y ∈ Fn, as a
measure of the dispersion of the absolute values of the eigenvalues λxyi around the average absolute
value λxya . If one allows for physical parlance, the causal Lagrangian thus corresponds to the
one-dimensional moment of inertia of the distribution of the absolute values

∣∣λxyi ∣∣ of the non-trivial
eigenvalues of two operators x, y ∈ Fn with respect to their average absolute value λxya .

1.2.2 The Causal Action

Having introduced the definition of the causal Lagrangian along with a discussion of its meaning,
we now come to the main object in the theory of causal fermion systems.

Definition 1.2.3 (Causal Action)

Let BFn denote the positive Borel measures on the measurable space (Fn,B(Fn)) introduced
in Definition 1.1.1. The causal action is the function S : BFn → R+

0 defined as

ρ 7→ S(ρ) (1.7):=
∫ ∫

Fn×Fn

L(x, y) dρ(x) dρ(y) (1.12)

where L(x, y) and ρ denote the causal Lagrangian and the universal measure, respectively.
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Interpretation of the Causal Action
Considering the measure ρ ∈ BFn as a prescription which assigns a certain weight to elements of
the Borel-σ-algebra B(Fn) and taking into account that the causal Lagrangian gives information
on the causal relation6 of two operators x, y ∈ Fn, the causal action can thus be understood
as a nonlocal, ρ-dependent device to quantify the total causal relations of all the operators
contained in supp(ρ) ⊂ Fn. For a given Hilbert space (HC, 〈·|·〉HC) and fixed spin dimension
n, the causal action thus provides a possibility to assign a numerical value to different causal
fermion systems (HC,Fn, ρ) which takes into account the causal structure on Fn in the sense that
spacelike-separated operators do not give a contribution.

1.3 The Causal Action Principle

The objects introduced in Section 1.1 and Section 1.2 form the skeleton of the theory of causal
fermion systems and allow for a classification of causal fermion systems according to the real
number S(ρ) assigned to a universal measure ρ via the causal action. In order to introduce some
kind of dynamics, however, it is not sufficient to only assign numerical values to universal measures,
but instead one has to specify which numerical value for S(ρ) is desirable. Only by designating
a distinguished value for S(ρ) it is possible to rate and not only classify different universal measures.

Definition 1.3.1 (Causal Action Principle)

The causal action principle consists in minimizing the causal action by varying the universal
measure ρ within the class of regulara Borel measures Breg

Fn
on the measurable space (Fn,B(Fn))

under the following constraints:

(1) Volume Constraint: For any choice of the universal measure ρ ∈ Breg
Fn

, the total volume
ρ(Fn) corresponding to Fn ∈ B(Fn) has to be kept fixed

∀ρ ∈ Breg
Fn

: ρ(Fn) = const > 0 (1.13a)

(2) Trace Constraint: For any choice of the universal measure ρ ∈ Breg
Fn

, the trHC-weighted
volume of Fn has to be kept fixed

∀ρ ∈ Breg
Fn

:
∫
Fn

trHC(x) dρ(x) = const (1.13b)

(3) Boundedness Constraint: For any choice of the universal measure ρ ∈ Breg
Fn

, the squared
spectral weight of the operator product xy (which equals the first term in the causal
Lagrangian) must be bounded from above

∀ρ ∈ Breg
Fn

:
∫ ∫

Fn×Fn

∣∣xy∣∣2 dρ(x)dρ(y) ≤ C (1.13c)

aWe remark that a measure µ defined on a measurable space (X,Σ) where Σ is a σ-algebra on the topological
space (X, T ) is called regular [15, § 52] if every Ω ∈ Σ is both an inner regular set with respect to µ

∀Ω ∈ Σ : µ(Ω) = sup{µ(A) |A ⊂ Ω ∧ A ∈ Σ ∧ A compact}

as well as an outer regular set with respect to µ

∀Ω ∈ Σ : µ(Ω) = inf{µ(B) |B ⊃ Ω ∧ B ∈ Σ ∧ B ∈ T }

By requiring to vary the universal measure such that the causal action is minimized, this definition
distinguishes zero as the desirable value for the causal action and thus allows to rate different
choices of the universal measure ρ for given (HC,Fn).

6In the sense that it vanishes for spacelike-separated operators x, y ∈ Fn.
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Interpretation of the Causal Action Principle
As discussed in the paragraph after the definition of a causal fermion system, the universal measure
ρ can a priori be chosen arbitrarily without any restrictions. As a consequence of the ρ-dependence
of the causal action and through the causal action principle, however, the universal measure can no
longer be chosen freely but instead becomes the central variable which is dynamically determined
through the interplay of conflicting tendencies: While the prescription to minimize the causal
action clearly favours universal measures whose support is chosen such that the contribution to
the causal action coming from spacelike-separated pairs of operators is maximized, the constraints
counterbalance this tendency and guarantee that trivial minimizers are excluded. As soon as a
minimizing measure ρmin is found, it automatically determines the spacetime associated with the
corresponding causal fermion system (HC,Fn, ρmin).

1.3.1 Significance and Interpretation of the Constraints

Having briefly discussed the interpretation of the causal action principle itself, we now focus on the
significance and interpretation of the associated constraints which have a two-fold function: First,
they guarantee that the causal action principle is well-posed in the sense of the direct method in
the calculus of variations[16, Sec. 39] and, secondly, that trivial minimizers are ruled out.

Volume Constraint The fact that the constraints are necessary in order to rule out trivial choices
for the universal measure can be seen particularly easily from the volume constraint: Without the
requirement ρ(Fn) = const > 0 one could simply choose ρ ≡ 0 for the universal measure and thus
trivially arrange that S(ρ) = 0 which is clearly pointless.

Trace Constraint If the universal measure is not allowed to vanish everywhere, one could
alternatively come up with the idea to construct the universal measure such that its support is at
least as small as possible. Choosing ρ as the Dirac measure which is supported at[11, p. 3/4]

x = (1, 1, . . . , 1︸ ︷︷ ︸
n times

,−1,−1, . . . ,−1︸ ︷︷ ︸
n times

, 0, 0, . . . ) ∈ Fn

we find that the causal action collapses to

S(ρ) = L(x, x) = 1
4n

2n∑
i,j=1

(∣∣λxxi ∣∣− ∣∣λxxj ∣∣)2

But since the operator product xx = (1, 1, . . . , 1, 0, 0, . . . ) has 2n unit entries, all eigenvalues λxxi
of this operator product coincide which, in turn, makes the causal action vanish. Finally, by
suitably rescaling the Dirac measure, one has constructed a trivial minimizer of the causal action
which is not ruled out by the volume constraint. In order to avoid also such situations, the trace
constraint is necessary.

Boundedness Constraint While the meaning of the above volume and trace constraint may
be summarized as a condition on the size of the support of the universal measure which, in a
sense, must not be “too small”, the boundedness constraint is of a different nature. To see this,
we first rewrite the boundedness constraint in terms of the eigenvalues of the operator product
xy in the same way as in Lemma 1.2.2 and subsequently express the sum of absolute values
of the eigenvalues through the average λxya which yields∫ ∫

Fn×Fn

∣∣xy∣∣2 dρ(x)dρ(y) (1.4)=
∫ ∫

Fn×Fn

( 2n∑
i=1

∣∣λxyi ∣∣
)2

dρ(x)dρ(y) = (2n)2
∫ ∫

Fn×Fn

(
λxya
)2 dρ(x)dρ(y)

In order for this expression to be bounded by some finite constant C > 0, neither the whole
support of the universal measure, nor non-null subsets of it are allowed to “run away” to infinity7
which suggests to interpret the boundedness constraint as a condition on the dispersion of the
support of the universal measure.

7This is basically the same situation as in Exercise 13.4 (i) of the Online Course on Causal Fermion Systems.

https://arxiv.org/pdf/1605.04742#page=15
https://causal-fermion-system.com/wp-content/uploads/2021/07/GQE13.pdf#page=2
https://causal-fermion-system.com/learning/online_course/
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1.3.2 Existence Theory
For the sake of completeness, we shall at least briefly address the question whether, and under what
conditions minimizers of the causal action principle exist at all. In the so-called finite-dimensional
setting, namely for causal fermion systems (HC,Fn, ρ) where the Hilbert space dimension dim(HC)
and the total volume ρ(Fn) are both finite, minimizers exist as was proven by Finster.[7] Unlike
one would expect, also in the so-called infinite-dimensional setting where dim(HC) = ∞ and
ρ(Fn) =∞, the causal action principle is still well-posed if one replaces the in this case obviously
meaningless volume constraint by the requirement that for two measures ρ, ρ̃ the total volume
difference (ρ− ρ̃)(Fn) vanishes and that the so-called total variation[17, Sec. 6.1],[15, § 29] |ρ− ρ̃|(Fn)
of the difference of two measures is finite.8 The question concerning the existence of minimizers in
this setting, however, has not been settled yet, although there are recent existence results in the so-
called non-compact setting[18, Sec. 2.1] by Finster and Langer.[19],[20] In physically relevant settings
which will be discussed in the following Chapter 2 and under the assumption that the regularized
kernel of the fermionic projector is homogeneous, minimizers exist also in the infinite-dimensional
setting.[7, Ch. 4] In contrast with the finite-dimensional and infinite-dimensional setting, the causal
action principle is ill-posed already from the outset if the dimension of the Hilbert space is infinite
while the total volume is finite.

1.4 Further Structures and Objects
The essence of the causal action principle presented in the previous section is to adjust the
weighting of elements of the Borel-σ-algebra B(Fn) for a given Hilbert space (HC, 〈·|·〉HC) and
operator set Fn through the universal measure ρ such that the causal action is minimized. This
being said, the question arises how the eigenvalues λxyi of products of pairs of operators x, y ∈ Fn
which serve as the building blocks of the causal Lagrangian and thus play a central role in the
whole framework, can actually be computed in a systematic and efficient way.

1.4.1 The Kernel of the Fermionic Projector and the Closed Chain
To answer the question concerning a systematic computation procedure for the eigenvalues of an
operator product xy of any two operators x, y ∈ Fn, we make use of the fact that for x, y ∈ Fn
also the product operator xy satisfies the rank condition rk(xy) ≤ 2n. This implies that for any
pair x, y ∈ Fn the Hilbert space HC can be orthogonally decomposed as follows

HC = Ixy ⊕ ker(xy) (1.14)

where Ixy ⊂ HC is the finite-dimensional sub-vector space which is mapped to itself by xy. If one
now defines the operator xy|Ixy : Ixy → Ixy restricted to this finite-dimensional subspace Ixy, its
eigenvalues coincide with the nontrivial eigenvalues of the original operator xy. By introducing
two mappings between spin spaces, referred to as the kernel of the fermionic projector and the
closed chain, this reasoning can be extended to an efficient algorithm to compute the nontrivial
eigenvalues of operator products xy for arbitrary x, y ∈ Fn.

Definition 1.4.1 (Kernel of the Fermionic Projector)

Let Sx and Sy be the spin spaces at x ∈ Fn and y ∈ Fn, respectively. The kernel of the
fermionic projector is the mapping P (x, y) : Sy → Sx defined as

u 7→
[
P (x, y)

]
(u) := (πxy|Sy )(u) (1.15)

where πx : HC → Sx is the orthogonal projection on the spin space Sx while y|Sy : Sy → Sy
denotes the restriction of the operator y ∈ Fn to the (finite-dimensional) spin space Sy.a

aThe restricted operator y|Sy : Sy → Sy is defined by u 7→ y|Sy (u) := yu for all u ∈ Sy .

8The latter condition actually means that the two measures may differ at most on a set of finite volume. For a
more in-depth discussion we refer to the work by Finster and Kleiner.[18, Sec. 2.1]
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From this operator, by interchanging arguments and taking the composition, the following operator
can be constructed which will eventually allow to compute the sought-after eigenvalues λxyi .

Definition 1.4.2 (Closed Chain)

Let Sx and Sy again be the spin spaces at x ∈ Fn and y ∈ Fn, respectively. The closed chain
is the mapping Axy : Sx → Sx defined in terms of the kernel of the fermionic projector as

u 7→ Axy(u) (1.15):=
[
P (x, y)P (y, x)

]
(u) (1.16)

Using this closed chain which is an endomorphism of the finite-dimensional spin space Sx, we can
now establish a relation between its eigenvalues and the eigenvalues of the operator product xy
for x, y ∈ Fn in the following way:[11, p. 5/6] We start by rewriting the Hilbert space trace trHC of
the operator product (xy)p for arbitrary p ≥ 1 by exploiting the cyclicity of the trace as

trHC

(
(xy)p

)
= trHC

(
x(yx)p−1y

)
= trHC

(
(yx)p−1yx

)
= trHC

(
(yx)p

)
Now, since x ∈ Fn satisfies rk(x) ≤ 2n by definition, the trace on the right-hand side reduces to

trHC

(
(yx)p

)
=
∑
i∈N
〈ei|(yx)pei〉HC

where (ei)i∈N is a basis of the separable Hilbert space HC. This result can be reproduced if one
instead considers the closely related operator πx(yx)p|Sx : Sx → Sx and takes the ordinary trace
TrSx on the (finite-dimensional) spin space Sx. We thus arrive at

trHC

(
(yx)p

)
= TrSx

(
πx(yx)p|Sx

)
Next, we have to establish the connection between the operator πx(yx)p|Sx and the closed chain
Axy which both are defined on the finite-dimensional spin space Sx. To this end, we take the
closed chain to the pth power and compute

(Axy)p (1.16)=
(
(πxy|Sy )(πyx|Sx)

)p =
(
πxyπyx|Sx

)p = [πx(yπy)x|Sx ] . . . [πx(yπy)x|Sx ]︸ ︷︷ ︸
p times

= πx {(yπy)(x|Sxπx)} . . . {(yπy)(x|Sxπx)}︸ ︷︷ ︸
(p− 1) times

(yπy)x|Sx = πx(yπyxπx)p−1y(πy)x|Sx

= π(yx)p|Sx

where for the second and fifth equality we used the definition of the restricted operators y|Sy and
x|Sx , respectively, while for the last equality we exploited the relations yπy = y and xπx = x.9
This demonstrates that for all p ≥ 1 the Hilbert space trace of powers of the operator product
xy can equivalently be computed by taking the trace of the pth power of the closed chain Axy
on the finite-dimensional spin space Sx

trHC

(
(xy)p

)
= TrSx

(
Apxy

)
With this result at hand, it only remains to remark that the coefficients of both the characteristic
polynomial of the operator product xy as well as the characteristic polynomial of the closed chain
Axy can be expressed in terms of combinations of traces of powers of xy and Axy, respectively.
Thus, we conclude that the eigenvalues of operator products xy for arbitrary operators x, y ∈ Fn
(acting on the possibly infinite-dimensional Hilbert space HC) can equivalently, but much more
conveniently be computed from the closed chain Axy which acts on the always at least 2n-
dimensional spin space Sx.

9This holds due to the fact that for self-adjoint operators their image and kernel are orthogonal.

https://arxiv.org/pdf/1605.04742#page=17
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Adjoint of the Kernel of the Fermionic Projector
Having equipped the spin spaces with an inner product which led to the spin inner product spaces,
it is natural to study the adjoint of the kernel of the fermionic projector with respect to the inner
products introduced in Definition 1.1.4. In view of the definition of the kernel of the fermionic
projector as a mapping P (x, y) : Sy → Sx between finite-dimensional inner product spaces (Sy,≺·|·
�Sy ) and (Sx,≺·|·�Sx), its adjoint clearly is a mapping P (x, y)∗ : Sx → Sy defined by the relation

∀u ∈ Sx ∀v ∈ Sy : ≺P (x, y)∗u|v�Sy = ≺u|P (x, y)v�Sx (1.17)

As a consequence of the definition of the spin space inner product, the kernel of the fermionic
projector and its adjoint are related in the following way.

Proposition 1.4.3 (Symmetry of the Kernel of the Fermionic Projector)

The kernel of the fermionic projector and its adjoint P (x, y)∗ are related via

P (x, y)∗ = P (y, x) (1.18)

which is usually referred to as symmetry of the kernel of the fermionic projector.

Proof. The symmetry of the kernel of the fermionic projector essentially traces back to the
self-adjointness of the building blocks of P (x, y) with respect to the Hilbert space inner product:
Inserting P (x, y) = πxy|Sy into (1.17) and making use of the definition of the spin space inner
product on Sx, we find for arbitrary u ∈ Sx and v ∈ Sy

≺P (x, y)∗u|v�Sy
(1.17)= ≺u|P (x, y)v�Sx

(1.2)=
(1.15)
−〈u|xπxy|Syv〉HC = −〈u|xyv〉HC

= −〈xu|yv〉HC = −〈πyxu|πyyv〉HC = −〈πyx|Sxu|yv〉HC

(1.2)=
(1.15)
≺P (y, x)u|v�Sy (1.19)

where for the third equality we used the relation xπx = x together with the definition of the
restricted operator, while for the sixth equality we employed the identity y = πyy along with
the self-adjointness of πy.

This concludes the proof.

1.4.2 Wavefunctions and the Wave Evaluation Operator

Besides the kernel of the fermionic projector and the closed chain, which both are of particular
importance for explicitly calculating the eigenvalues of products xy for arbitrary operators
x, y ∈ Fn, there are further objects which become relevant in concrete physical applications which
will be discussed in the following chapter.

Definition 1.4.4 (Wavefunction)

A wavefunction is a mapping ψ : M → HC which satisfies the condition

∀x ∈M : ψ(x) ∈ Sx (1.20)

where M denotes the spacetime associated with a causal fermion system (HC,Fn, ρ).

This definition does not specify the functional dependence of ψ(x) on x ∈M . By employing the
orthogonal projection on Sx, however, there is a natural way in which every element of the Hilbert
space gives rise to a unique wavefunction.
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Definition 1.4.5 (Physical Wavefunction)

The physical wavefunction of u ∈ HC is the wavefunction ψu : M → HC defined as

x 7→ ψu(x) := πxu (1.21)

In order to complete the definition of physical wavefunctions to a coherent overall picture, we
introduce one further mapping which to each element of the Hilbert space HC assigns the
corresponding physical wavefunction.

Definition 1.4.6 (Wave Evaluation Operator)

The wave evaluation operator is the mapping Ψ : HC → C(M,SM) defined as

u 7→ Ψ(u) := ψu (1.22)

where C(M,SM) denotes the set of continuous wavefunctions.a

aWe remark that a wavefunction ψ is continuous at x ∈M if it satisfies

∀ε > 0 ∃δ > 0 ∀y ∈M with ‖y − x‖ < δ :
∥∥|y|1/2ψ(y)− |x|1/2ψ(x)

∥∥
HC

< ε

where |x|1/2 denotes the square root of the absolute value[21, p. 196] |x| := (x∗x)1/2 of the operator x ∈M .[11, p. 8]

These objects are the most relevant ones for this thesis. As already mentioned in the introduction
to this chapter, the intensive work on the theory of causal fermion systems in different directions
during the past two decades has led to a variety of structures and objects which appear in different
contexts and can be grouped into inherent structures and analytic structures.

Inherent Structures
When talking about so-called inherent structures, one means structures which exclusively require
information already encoded in the data HC,Fn and ρ which together define a causal fermion
system. This category includes all the objects introduced in this chapter, namely spin spaces,
the kernel of the fermionic projector, the closed chain as well as the wavefunction and the wave
evaluation operator. Besides these structures there are the following:

� Geometric Structures Starting from symmetric linear endomorphisms of spin spaces, one
introduced so-called Clifford extensions which in turn allow to define tangent spaces to spin
spaces. Building on this, a spin connection as well as notions of curvature and parallel
transport can be developed for causal fermion systems of spin dimension n = 2.[22] The
corresponding investigations in case n = 1 are currently being conducted by Saeed Zafari.

� Topological Structures Complementary to the above differential geometric constructions,
causal fermion systems also contain topological information which was analyzed for the first
time by Finster and Kamran.[23]

� Surface Layer Integrals In the study of symmetries and conservation laws in the framework
of causal fermion systems, the concept of so-called surface layer integrals which are double-
integrals of short-range causal Lagrangian over “thickened” surfaces, were introduced by
Finster and Kleiner.[24]

Analytic Structures
Besides these structures and objects there are also analytic structures which include Euler-Lagrange
equations, linearized field equations, the surface layer one-form, the symplectic form as well as the
surface layer inner product where the latter three are formulated using surface layer integrals. For
a continuously updated overview we refer to the website on the theory of causal fermion systems.

https://arxiv.org/pdf/1605.04742#page=18
https://causal-fermion-system.com/theory/math/#inherent-structures-1
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In the previous chapter we introduced the fundamental mathematical structures of the theory of
causal fermion systems and explained their mutual interrelationship. Except for some physically-
inspired terminology we have paid particular attention not to establish any content-wise connection
to physics in order to maintain a clear distinction between the abstract mathematical structures
of the theory of causal fermion systems on the one hand, and the description of concrete physical
systems within this framework on the other hand. In this chapter we now address the latter
question, namely how physical systems can be modelled within the mathematical structures
provided by the theory of causal fermion systems. In Section 2.1 we start by discussing the
foundational conceptions which underlie the modelling, before in Section 2.2 we give a detailed
explanation how (HC, 〈·|·〉HC), (Fn,B(Fn)) and ρ have to be chosen in order to model spacetimes
described by Lorentzian manifolds. The resulting regularized analogues of all the objects introduced
in Sections 1.2 to 1.4 will serve as the starting point for the considerations in Part II. In the
final Section 2.3 we specialize to the Minkowski vacuum and derive an explicit expression for the
iε-regularized causal Lagrangian which will be needed in Part III.
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2.1 Foundational Conceptions underlying the Modelling

The initial question in the development of a physical theory aimed at describing nature is to
decide, usually based at least in part on measurements and experiments, which objects, structures
and principles one considers as being fundamental. Due to our principally incomplete knowledge
concerning the very essence of nature, this decision is inevitably subjective and, at least to a
certain degree, reflects the currently prevailing physical paradigms.[25] Before we enlarge on the
foundational conceptions underlying the modelling approach in the context of causal fermion
systems, we introduce the following terminology.

Terminology 2.1.1 (Physical System)

In what follows, the term physical system always means some physical spacetimea together
with all the particle and antiparticle content existing therein. Accordingly, a physical vacuum
system is a physical system without any particles or antiparticles present.

aTo avoid potential confusion caused by the notion of spacetime M = supp(ρ) as the support of the universal
measure ρ, we will always add the qualifier “physical” when talking about the inseparable fabric of space and
time from our everyday experience which is mathematically modelled as a possibly curved, semi-Riemannian
manifold.

Having specified what is meant when talking about physical systems, we now turn to the
foundational conceptions underlying the modelling of physical systems within the framework of
causal fermion systems, which are basically the following three:

(1) Fermions as the Fundamental Building Blocks The experimental observation from
high-energy physics that all fundamental matter particles in the standard model of particle
physics are fermions while the interaction particles have bosonic character, leads to the
plausible but nevertheless subjective conception that the different fermion species1 should be
regarded as the fundamental building blocks of a physical theory.[26, p. 11]

(2) Dirac Sea Interpretation of Negative-Energy Solutions The Feynman-Stückelberg
interpretation of the negative-energy solutions of the Dirac equation in quantum electrody-
namics is withdrawn and replaced by its predecessor, namely the Dirac sea interpretation,
according to which the total absence of particles and antiparticles (of one species) must be
understood as presence of the entirety of all negative-energy Dirac solutions (of this species).

While these first two conceptions are of course subjective, but nevertheless well-motivated from and
supported by experimental evidence, the third conception is quite different: Taking the conceptual
incompatibility of general relativity and quantum field theories as the starting point[26, p. 7], it
postulates a new feature of spacetime at small length scales.

(3) Microscopic Structure of Physical Spacetime The ultraviolet divergences in quantum
field theory suggest to assume that physical spacetime has some non-trivial structure on
microscopic length scales which is implemented by modifying the small-scale behaviour
of solutions of the Dirac equation and considering these regularized objects as being the
fundamental ones.[11, p. 15]

As will be explained further below in Subsection 2.2.2, it is this third item, namely the proposed
existence of some unknown but physically real microstructure of physical spacetime which together
with the causal action principle and the associated mathematical structures introduced in Chapter 1
is the main novelty of the theory of causal fermion systems. Before we further enlarge on the

1When talking about fermion species, we refer to the elementary spin-1/2-particles in the standard model of
particle physics, namely the six quarks (u, d, c, s, t, b) and six leptons (e, µ, τ, νe, νµ, ντ ) which are usually organized
in three so-called generations (u, d, e, νe), (c, s, µ, νµ), (t, b, τ, ντ ), each consisting of one up-type and down-type
quark as well as of one charged and one neutral lepton.

https://arxiv.org/pdf/1908.08451.pdf#page=11
https://arxiv.org/pdf/1908.08451.pdf#page=7
https://arxiv.org/pdf/1605.04742#page=15
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modelling of physical systems based on the above conceptions, however, we have to discuss the
Dirac sea interpretation of the negative-energy solutions of the Dirac equation in order to account
for the fact that it is both subject to ongoing discussions with the regular conclusion of being
an outdated and overruled concept, but at the same time is of central importance for our modelling.

The Dirac Sea Interpretation
The whole discussion traces back to the year 1928 when Dirac generalized Schrödinger’s equation
in order arrive at a wave equation which respects both the principles of quantum mechanics as
well as those of special relativity. Although this development was in principle highly desirable
and marks a great success, it came at the price of suddenly having to deal with a whole bunch
of previously absent negative-energy solutions – along with the necessity for a clear physical
interpretation of these experimentally unobserved solutions. In order to resolve this obvious
discrepancy between theoretical predictions and experimental observations, Dirac employed the
exclusion principle[27] formulated some years earlier by the Austrian physicist Wolfgang Pauli,
and proposed the following “solution of the negative energy difficulty” :[28, § 2]

“The most stable states for an electron (i. e. the states of lowest energy) are those with
negative energy and very high velocity. All the electrons in the world will tend to fall into these
states with emission of radiation. The Pauli exclusion principle, however, will come into play
and prevent more than one electron going into any one state. Let us assume there are so many
electrons in the world that all the most stable states are occupied, or, more accurately, that all
the states of negative energy are occupied except perhaps a few of small velocity. Any electrons
with positive energy will now have very little chance of jumping into negative-energy states
and will therefore behave like electrons are observed to behave in the laboratory. We shall have
an infinite number of electrons in negative-energy states, and indeed an infinite number per
unit volume all over the world, but if their distribution is exactly uniform we should expect
them to be completely unobservable. Only the small departures from exact uniformity, brought
about by some of the negative-energy states being unoccupied, can we hope to observe.”

Although Dirac in those days incorrectly concluded that one is “led to the assumption that the
holes in the distribution of negative-energy electrons are protons”, the idea of complete occupation
of all states of negative energy soon became known as the Dirac sea.2 During the development
of quantum electrodynamics, Dirac’s interpretation was superseded by the Feynman-Stückelberg
interpretation according to which negative-energy solutions of the Dirac equation should be
re-interpreted as positive-energy solutions propagating backwards in time.

Although quantum electrodynamics is without any doubt an excellent theory and has significantly
shaped our current understanding of nature due to the extremely accurate agreement of theoretically
predicted and experimentally measured values of quantities such as the anomalous magnetic
moment of the electron (also known as the Landé factor) or the Lamb shift in the hydrogen
atom, its success still does not logically rule out the older Dirac sea interpretation.3 In sharp
contrast with these results, the discovery of a discrepancy between the theoretically calculated and
experimentally measured decay rate of the neutral pion π0 which was later explained by Adler[34],
Bell and Jackiw[35] and became known as the chiral anomaly of quantum electrodynamics, indeed
suggests a quite different conclusion: As is nicely explained by Jackiw[36, p. 5-8], it is “[...] the
negative energy sea [which] is responsible for nonconservation of chirality even though the dynamics
is chirally invariant”. Based on this he argues that “[...] we must assign physical reality to Dirac’s

2Although Dirac’s identification of the vacant states with protons was wrong, the correct explanation of “duplexity
phenomena” as he called the discrepancy between the experimentally observed and theoretically predicted number
of stationary states of an electron in an atom,[29] led to the discovery of the “positive electron”, now referred to as
the positron, in 1932 by Anderson[30] and consequently a correction in later publications by Dirac.[31],[32]

3In this context, we shall not miss to point to an interesting discussion by Finster (in its original version in
German[5, Sec. 1.4] but later, in a slightly revised version, also available in English[33, Ch. 7]), where he argues that
the above-mentioned precision tests of quantum electrodynamics are not really suitable to justify the concept of
field quantization.

https://arxiv.org/pdf/hep-th/9903255.pdf#page=5
https://arxiv.org/pdf/gr-qc/9606040.pdf#page=36
https://arxiv.org/pdf/gr-qc/0601128.pdf#page=13
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negative energy sea, because it produces the chiral anomaly, whose effects are experimentally
observed, principally in the decay of the neutral pion to two photons, but there are other physical
consequences as well.” [36, p. 8],[37, p. 12] This brief comparison demonstrates that, although the
Feynman-Stückelberg interpretation is now widely considered as the favoured interpretation which
is due to the enormous success of quantum field theories, the situation is much more ambiguous
than it appears at first sight. In fact, the whole situation strikingly resembles the interpretational
problems which arose from Einstein’s explanation of the photoelectric effect and, later, from de
Broglie’s wave hypothesis roughly one century ago: In much the same way as the wave-particle
duality serves as a placeholder for our ignorance regarding the real nature of what in some cases
we conceive as particles but as waves at other times, the yet unanswered question concerning the
actual nature of the entirety of negative-energy solutions of the Dirac equation may analogously
be referred to as the fermionic vacuum state duality. Given this ambiguous situation, we opt for
Dirac’s original interpretation and model physical systems based on this assumption.

2.2 Modelling Physical Vacuum Systems
Having discussed the three foundational conceptions which underlie the modelling of physical
systems within the framework of causal fermion systems, we now explain in detail how to construct
a causal fermion system which models a given physical system. In order to clearly work out how
and where the foundational conceptions enter the construction such that there do not remain any
conceptual gaps, we deliberately decided to proceed in small steps. Furthermore, as the thesis may
be considered as part of the groundwork for a novel mechanism to explain baryogenesis within the
theory of causal fermion systems, we restrict attention to the modelling of physical vacuum systems.

2.2.1 The Hilbert Space of Negative-Energy Dirac Solutions
Modelling a given physical system within the structures provided by the theory of causal fermion
systems means to find a concrete realization of the structures (HC, 〈·|·〉HC), (Fn,B(Fn)) and
ρ : B(Fn) → R+

0 which together form a causal fermion system (HC,Fn, ρ), thereby taking into
account the foundational conceptions. According to the definition of a causal fermion system, the
first decision concerns the question how to choose the all-underlying Hilbert space (HC, 〈·|·〉HC).
Following up on the discussion in the paragraph on the Dirac sea interpretation, we make the
following foundational assumption.

Assumption 2.2.1 (Physical Vacuum System corresponds to One Dirac Sea)

In order to implement the first and second item on the list of foundational conceptions, we
equate a physical vacuum system with one completely filled Dirac sea corresponding to one
of the elementary fermionic particle species in the standard model of particle physics. This
means that the Hilbert space (HC, 〈·|·〉HC) has to be chosen such that it contains all the
negative-energy solutions of the Dirac equation (for this particle species) in the respective
physical spacetime under consideration.a

aWe would like to emphasize that the structure of a causal fermion system as introduced in Definition 1.1.1
does in no way suggest, nor require or even enforce this particular choice of the Hilbert space. It is only the
subjective conviction that the unobserved entirety of negative-energy solutions of the Dirac equation should be
interpreted as a Dirac sea which leads to this choice.

This assumption, namely to equate a physical vacuum system with only one Dirac sea, oversimplifies
the physical reality as the following remark shows.

Remark 2.2.2 (Number of Dirac Seas for Realistic Physical Vacuum System)

A full implementation of the first and second item on the list of foundational conceptions would
have required to equate a physical vacuum system with a total of 24 completely filled Dirac

https://arxiv.org/pdf/hep-th/9903255.pdf#page=9
https://arxiv.org/pdf/hep-th/9602122.pdf#page=13
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seas, each corresponding to one of the different elementary fermionic particle species (counting
the three different color charges of the six quarks) in the standard model of particle physics.a

aWe remark that the number of 24 Dirac seas comes about as follows: As the quarks come in three different
“versions” corresponding to the three colors charges, we need a total of eight Dirac seas to model the first
generation (u, d, e, νe), namely each three copies for the up-quark u and down-quark d as well as each one Dirac
sea for the electron e and the associated neutrino νe. Including also the other two generations by prolonging u,
d, e and νe to so-called families (u, c, t), (d, s, b), (e, µ, τ) and (νe, νµ, ντ ), we end up with the necessity for in
total 24 Dirac seas.[6, Sec. 2.3, 5.1]

The above assumption is realized by first constructing the Hilbert space (Hm, (·|·)m) of all
solutions of the Dirac equation of mass m ∈ R+

0 in the physical spacetime under consideration4
and subsequently choosing (H, 〈·|·〉H) as the closed subspace of negative-energy solutions with
the corresponding Hilbert space inner product being the restriction 〈·|·〉H := (·|·)m|H×H of
(·|·)m : Hm ×Hm → C to H ×H.5 Although the procedure appears clear at first sight, a closer
inspection reveals that there are several technical difficulties which call for closer inspection.6

Construction of the Hilbert Space (Hm, (·|·)m)
As our whole modelling approach is based on solutions of the Dirac equation, the first task is to
specify the underlying physical spacetime. Although explicit calculations in all following chapters
will exclusively take place in Minkowski space (M, η), we nevertheless sketch the construction of
the all-underlying Hilbert space (H, 〈·|·〉H) representing the Dirac sea in the more general case
where physical spacetime is described by some smooth Lorentzian manifold (M, g) which, at least
up to this point, is not subject to any restrictions.

The Guiding Principle The natural starting point for the construction of the Hilbert space
(Hm, (·|·)m) of solutions of the Dirac equation in some general smooth Lorentzian manifold (M, g)
is clearly Minkowski space (M, η): Here the Cauchy problem for given smooth initial data localized
in some compactly-supported region on, say, the hypersurface {(x0,~x) ∈M | x0 = 0}, exhibits a
unique global solution which, by exploiting the fact that the coefficients of the Dirac operator
are constant, can be straightforwardly constructed using the method of Fourier transforms. As
soon as Minkowski space (M, η) is replaced by some general smooth Lorentzian manifold (M, g),
however, this method does no longer apply which is due to the fact that the coefficients of the
Dirac operator are not constant any more. In order to still be able to construct a unique solution
to the Dirac equation for given smooth initial data localized in some compactly-supported region
of physical spacetime, we have to restrict the initial freedom in the choice of the smooth Lorentzian
manifold (M, g) by imposing additional geometric assumptions.7

The Necessity of Global Hyperbolicity Without intending to enter a detailed discussion at this
point, we remark that the necessary geometric assumption which is required to carry over the idea
to split physical spacetime into something as space and time in the first place and subsequently
construct a unique global solution of the Dirac equation in a smooth Lorentzian manifold for
some prescribed initial data localized in a compactly-supported subset at some initial time, is
to impose global hyperbolicity[40, Def. 1.3.8] of the Lorentzian manifold (M, g)[38, Sec. 3.5]. If we
furthermore assume M to be time-oriented, it can be shown that physical spacetime M admits
a smooth foliation M = (Nt)t∈R which can be chosen such that Nt := {t} × N is a smooth,

4Since, according to our current knowledge, we live in a spacetime which is mathematically best modeled as a
four-dimensional Lorentzian manifold locally looking like Minkowski space, we will restrict our attention to this
class of spacetimes.

5We reserve the notation (HC, 〈·|·〉HC) for an abstract Hilbert space and denote a concrete realization by
(H, 〈·|·〉H).

6We follow the presentation by Finster and Jokel[26, Sec. 2.5], enriched with additional material from a yet not
published introductory textbook by Finster, Kleiner and Treude.[38, Sec. 3.5]

7For a detailed treatment of Cauchy problems for Dirac operators, we refer to chapter 4 in the book on Wave
Equations on Lorentzian Manifolds by Bär et al.[39, Ch. 4] which is also available as a free online version.[40, Ch. 3]

By employing Leray’s results[41, Ch. 3] along with the Lichnerowicz-Weitzenböck formula which establishes a relation
between the Dirac operator and the Laplace-Beltrami operator, existence of fundamental solutions of the Dirac
equation in Lorentzian manifolds can also be shown as described by Dimock[42, Thm. 2.1].

https://arxiv.org/pdf/1908.08451.pdf#page=8
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spacelike Cauchy hypersurface in M.[40, Thm. 1.3.10], 8 Moreover, by restricting attention to four-
dimensional Lorentzian manifolds the existence of spin structures is ensured[45] and thus allows
to define the geometric Dirac operator as

D : Γ∞(M, SM)→ Γ∞(M, SM) with ψ 7→ Dψ := iγj∇jψ (2.1)

which acts on smooth sections Γ∞(M, SM) of the spinor bundle π : SM → M with fibres
π−1(x) := SxM ' C4 carrying an indefinite inner product ≺ · | · �SxM : SxM × SxM → C of
signature (2, 2) referred to as spinor space inner product. In the above definition ∇ denotes
the metric connection on the spinor bundle which is induced via the Levi-Civita connection
∇g on the tangent bundle. Furthermore, Clifford multiplication is described by the mapping
γ : TxM → L(SxM, SxM) which satisfies the anticommutation relation

γ(u)γ(v) + γ(v)γ(u) = 2g(u, v)idSxM (2.2)

and is written in components using the Dirac matrices γj . In this setting and under the assumption
of global hyperbolicity, the Cauchy problem for the Dirac equation with mass m ∈ R+

0 , namely
the task to find solutions ψ ∈ Γ∞(M, SM) of

(D −m)ψ = 0 under ψ|Nt0
= ψ0 ∈ Γ(Nt0 , SM) (2.3)

is now well-posed. Even more, due to the finite speed of propagation for solutions of hyperbolic
partial differential equations such as the Dirac equation, initial data ψ0 ∈ Γ∞sc (Nt0 , SM) with
compact support on a (spacelike) Cauchy hypersurface Nt0 evolve into solutions ψ ∈ Γ∞sc (Nt, SM)
with compact support on any other Cauchy hypersurface Nt.

Inner Product on Solutions of the Dirac Equation Again, by analogy with Minkowski space9,
we can define an inner product (·|·)m : Γ∞sc (Nt, SM) × Γ∞sc (Nt, SM) → C for solutions ψ, φ ∈
Γ∞sc (Nt, SM) of the Dirac equation as the integral over the (spacelike) Cauchy hypersurface
Nt (with future-directed normal ν) with respect to the Borel measure corresponding to the
Riemannian volume form induced by the Lorentzian volume form dVg as

(ψ|φ)m := 2π
∫

Nt

dµNt
(~x) ≺φ|νiγiφ�SxM (2.4)

where ≺·|·�SxM : SxM×SxM → C denotes the indefinite inner product on the fibre π−1(x) = SxM
defined above. Finally, by forming the completion of Γ∞sc (Nt, SM) with respect to the inner product
(·|·)m, we arrive at the Hilbert space (Hm, (·|·)m) of solutions of the Dirac equation where

Hm :=
{
ψ ∈ Γ∞sc (M, SM)

∣∣ (D −m)ψ = 0
}(·|·)m

(2.5)

Choice of the Closed Subspace (H, 〈·|·〉H)
Having outlined the construction of the Hilbert space of all solutions of the Dirac equation with
spatially compact support in a globally hyperbolic, time-oriented smooth Lorentzian manifold
(M, g), the question remains how to implement the Dirac sea interpretation, namely how to identify
the subspace corresponding to the negative-energy solutions. Just as before, it is instructive to first
consider the problem in Minkowski space: As already mentioned above and as will be discussed
further below in Subsection 2.3.1, the solutions of the Dirac equation in Minkowski space are
plane waves. This allows for a natural splitting of the whole solution space Hm into two subspaces

8In more basic terms, the underlying theorems are the so-called splitting theorem due to Geroch[43, Thm. 11] and
the results obtained by Bernal and Sánchez.[44, Thm. 1.1]

9Recall that in Minkowski space every solution ψ of the Dirac equation gives rise to a divergence-free Dirac
current jk := ≺ψ|γkψ�SxM. By using current conservation one finds that the spatial integral over ≺ψ|γ0ψ�SxM

is time-independent and thus allows to define a time-independent inner product by exploiting the polarization
identity for complex vector spaces.
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according to the sign of the frequency in the Fourier exponential which, via Planck’s constant, are
interpreted as the positive-energy and negative-energy solutions of the (free) Dirac equation. In
the generalized setting discussed above, however, this possibility fails just as Fourier methods fail
for the construction of solutions. Nevertheless, by making use of the so-called fermionic signature
operator introduced by Finster and Reintjes[46, Sec. 3.3] along with the mass oscillation property[47]
one can define a canonical splitting of the Hilbert space of all Dirac solutions into two subspaces
also in globally hyperbolic spacetimes. Since the main part of this thesis is concerned with causal
fermion systems modelling Minkowski space, we do not want to go into further detail.

2.2.2 The Set of Operators and the Regularized Universal Measure

By choosing the Hilbert space (H, 〈·|·〉H) as described above, we not only fixed one of the structures
necessary to determine a causal fermion system, but we also implemented the first and second
item on our list of foundational conceptions. This being said, it remains to answer the questions
how the set Fn of operators has to be chosen in this setting and, moreover, how the conception
that physical spacetime should carry some non-trivial microstructure is incorporated.

Informal Discussion To answer these questions, we recall from Section 1.3 that the causal action
principle is to vary the universal measure for a given Hilbert space (HC, 〈·|·〉HC) and operator
set Fn such that the causal action is minimized. In this way, namely by adjusting the weighting
assigned to the elements in B(Fn) by ρ such that S(ρ) is minimized, a certain measure ρmin is
singled out which, in turn, determines some distinguished subset supp(ρmin) ⊂ Fn. In short, the
causal action principle boils down to an abstract mechanism that distinguishes certain operators
within Fn. Now, if one wants to model a physical system within the structures provided by
the theory of causal fermion systems including the conception that physical spacetime has some
non-trivial microstructure, the above described mechanism can be used to determine this yet
unknown microstructure: In much the same way as the Einstein-Hilbert action along with the
principle of least action may be understood as a mechanism to single out metrics which are
“optimal” in the sense that they minimize the weighted scalar curvature of physical spacetime,
the causal action principle determines microstructures of physical spacetime which are “optimal”
in the sense that they minimize the weighted causal relations between physical spacetime points.
In order to implement this idea, the information on the non-trivial microstructure of physical
spacetime M must be encoded into the universal measure which requires to introduce a mapping

Fε : M → Fn (2.6)

and subsequently define ρε as the pushforward ρε := Fε∗µ of the measure µ on physical spacetime M.

2.2.2.1 Construction of the Local Correlation Function

Having motivated the necessity for a mapping Fε : M → Fn which allows to represent the
non-trivial microstructure of physical spacetime M on the operator set Fn, we now explain how to
construct this mapping. Taking the second and third item on our list of foundational conceptions
as the starting point, the information on the non-trivial microstructure must be extracted solely
from the elements of the Hilbert space (H, 〈·|·〉H) of negative-frequency solutions of the Dirac
equation. In order to be able to formalize this properly, we first have to introduce so-called
regularization operators.[11, Def. 1.2.3]

Definition 2.2.3 (Regularization Operator)

A family of regularization operators is a family (Rε)ε∈(0,εmax) of linear operators

Rε : H→ Γ(M, SM) (2.7)

which map the Hilbert space H to the set of continuous sections of the spinor bundle π : SM →
M and satisfy the following conditions:

https://arxiv.org/pdf/1605.04742#page=30
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(1) Pointwise Boundedness of Rε(H): For every memberRε of the family (Rε)ε∈(0,εmax),
the image Rε(H) ⊂ Γ(M, SM) is pointwise boundeda

∀ε ∈ (0, εmax)∀x ∈M ∃C > 0, ∀u ∈ H :
∣∣(Rεu

)
(x)
∣∣ ≤ C‖u‖H (2.8a)

where | · | is any pointwise norm on the spinor spaces.b

(2) Almost-everywhere Equicontinuity of Rε(H): For every member Rε of the family
(Rε)ε∈(0,εmax), the subset Rε(H) ⊂ Γ(M, SM) is equicontinuous almost everywherec

∀ε ∈ (0, εmax)∀x ∈ (M \N) ∀δ > 0 ∃U ∈ TM with x ∈ U, ∀u ∈ H ∀y ∈ U :∣∣(Rεu
)
(x)−

(
Rεu

)
(y)
∣∣ ≤ δ‖u‖H (2.8b)

(3) Weak Convergence to the Identity: In the limit ε→ 0 the family (Rε)ε∈(0,εmax)
converges weakly to the identity mapping

∀K ⊂M compact ∀δ > 0 ∃ε0 > 0, ∀ε ∈ (0, ε0) ∀u ∈ H ∀η ∈ C∞0 (K, SM) :∣∣∣∣∣
∫
M

≺η(x)|
(
Rεu− u

)
(x)�SxM d4x

∣∣∣∣∣ ≤ δ‖u‖H|η|C1(K) (2.8c)

aFor clarity, we remark that in this context pointwise clearly refers to the “points” in H. The pointwise
bound C(u) > 0 is realized as C(u) = C‖u‖H.

bThe first choice is to make use of the inner product (·|·)m introduced in (2.4) by setting | · |2 := (·|·)m.
However, other choices are equally possible.

cWithout having explicitly mentioned it, we assume a given measure space (M,B(M), µ) where N ∈ B(M)
is an element of the σ-algebra B(M) satisfying µ(N) = 0.

The significance of these regularization operators is that they cure an unwanted but inevitable
feature of the Hilbert space (H, 〈·|·〉H) which is due to construction: As the Hilbert space Hm is
obtained by taking the completion of the set of solutions ψ ∈ Γ∞sc (M, SM) of the Dirac equation,
its elements cannot be expected to be continuous functions; instead, since smooth, compactly
supported functions are dense in L2, the elements of Hm are merely L2-functions upon restriction
to arbitrary Cauchy hypersurfaces. But since regularized Dirac solutions as the fundamental
physical objects should at least be continuous functions according to our subjective conviction,
the regularization operators map the Hilbert space H to Γ(M, SM). As a consequence, for any
ψ ∈ H the object Rεψ ∈ Γ(M, SM) can be evaluated pointwise and thus allows for the following
definition which for any pair ψ1, ψ2 ∈ H provides information on the correlation of their regularized
counterparts at the physical spacetime point x ∈M.

Definition 2.2.4 (Regularized Sesquilinear Form on (H, 〈·|·〉H))

Let (H, 〈·|·〉H) be the Hilbert space constructed in Subsection 2.2.1. For any x ∈ M the
regularized sesquilinear form bεx : H ×H → C is defined in terms of the spinor space inner
product ≺ · | · �SxM : SxM × SxM → C on the fibres of the spinor bundle (SM, π,M) as

(u, v) 7→ bεx(u, v) := −≺(Rεu)(x)|(Rεv)(x)�SxM (2.9)

Before we proceed, note that bεx : H ×H → C is well-defined as a sesquilinear form on H due
to the fact that regularization operators Rε : H → Γ(M, SM) are by definition linear and
the spinor space inner product ≺ · | · �SxM : SxM × SxM → C introduced after (2.1) is an
inner product on the fibres of the spinor bundle π : SM → M which are four-dimensional
complex vector spaces. Using this sesquilinear form, we can now establish a connection between
regularized elements of H which can be thought of as representing negative-energy solutions of
the Dirac equation with a modified behaviour on microscopic length scales, and the operator set Fn.
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Lemma 2.2.5 (Sesquilinear Form gives rise to Local Correlation Operator)

For any x ∈M, the regularized sesquilinear form bεx : H×H→ C on the Hilbert space (H, 〈·|·〉H)
gives rise to a bounded linear operator Fε(x) : H→ H, referred to as local correlation operator ,
which has at most two positive and at most two negative eigenvalues and allows to express the
sesquilinear form in terms of the Hilbert space inner product 〈·|·〉H : H ×H→ C as

∀u, v ∈ H : bεx(u, v) = 〈u|Fε(x)v〉H (2.10)

Proof. To begin with, we remark that evaluating a regularization operator Rε : H→ Γ(M, SM)
at x ∈ M yields, by definition, a linear mapping (Rε( · ))(x) : H → SxM. Due to the
fact that the spinor spaces SxM are four-dimensional complex vector spaces, the operator
(Rε( · ))(x) is actually a finite-rank operator on H. Furthermore, by recalling that the mapping
(Rε( · ))(x) : H→ SxM is pointwise bounded and by using the Cauchy-Schwarz inequality, we
can conclude that bx is a bounded sesquilinear form on H.

As a consequence of this, the mapping bεx( · , v) : H→ C is a bounded, conjugate-linear form
on H and thus an element of the continuous dual space H∗ for any choice of v ∈ H. Now, by
the Fréchet-Riesz representation theorem there is a uniquely determined element w ∈ H such
that the continuous conjugate-linear functional bεx( · , v) ∈ H∗ can be expressed in terms of the
Hilbert space inner product as

∀u ∈ H : bεx(u, v) = 〈u|w〉H (2.11)

By making use of the linearity of the sesquilinear form bx in its second argument, we conclude
that w must depend linearly on the choice of v. Furthermore, in order to ensure that the
right-hand side in the above defining equation is bounded, the linear operator which maps v
to w must be bounded. Finally, by including the x-dependence, we find that the sesquilinear
form bεx can be described by a bounded linear operator Fε(x) : H→ H as

∀u, v ∈ H : bεx(u, v) = 〈u|Fε(x)v〉H (2.12)

Taking into account that bεx is defined in terms of an indefinite inner product of signature
(2, 2), the operator Fε(x) must both be self-adjoint (with respect to the Hilbert space inner
product 〈·|·〉H) and of rank at most four with at most two positive and at most two negative
eigenvalues. Thus, by choosing spin dimension n = 2, we have Fε(x) ∈ F2 for all x ∈M.

This concludes the proof.

Definition 2.2.6 (Local Correlation Function)

For any ε ∈ (0, εmax) the function Fε : M → F2 which is defined in terms of regularization
operators and the spinor space inner product as

∀u, v ∈ H : 〈u|Fε(x)v〉H
(2.9):=
(2.10)
−≺(Rεu)(x)|(Rεv)(x)�SxM (2.13)

is referred to as the local correlation function.

2.2.2.2 The Regularized Universal Measure

Having introduced the local correlation function which establishes a relation between physical
spacetime M and the operator set F2, we are finally in the position to specify how to choose the
universal measure in order to finally obtain a causal fermion system which models a Lorentzian
manifold without particles and antiparticles.
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Definition 2.2.7 (Regularized Universal Measure)

Let (M, g) be a smooth, oriented Lorentzian manifold, let

dVg = |det(g)|1/2dx1 ∧ · · · ∧ dxdim(M) (2.14)

denote the Lorentzian volume form in a given chart and let µg : B(M)→ R+
0 be the Lebesgue-

Borel measure corresponding to the volume form.a Then the regularized universal measure is
defined as the pushforward measure ρε : B(F2)→ R+

0 of µg defined as[11, eq. (1.2.5)]

Ω 7→ ρε(Ω) := (Fε∗µg)(Ω) := µg
(
(Fε)−1(Ω)

)
∀Ω ∈ σ(Fε) ⊂ B(F2) (2.15)

where σ(Fε) := {(Fε)−1(A) |A ∈ B(M)} denotes the σ-algebra generated by the local
correlation function.

aNote that the terminology Lebesgue-Borel measure has been chosen to indicate that the Lebesgue measure
has to be restricted to the Borel sets in order ensure compatibility with the definition of a causal fermion
system. For details on the Lebesgue measure corresponding to the volume form, we refer to the presentation in
the book by Amann and Escher.[48, Ch. 12]

Taking together all the ingredients, namely the Hilbert space (H, 〈·|·〉H) as constructed in
Subsection 2.2.1, as well as the operator set F2 and the regularized universal measure ρε which
both rely on the local correlation function, we end up with a family of causal fermion system
(H,F2, ρ

ε)10 which model a Lorentzian manifold without any particles or antiparticles present,
but with a non-trivial microstructure of physical spacetime on the length scale ε.

2.2.3 Further Regularized Objects

With the definition of the local correlation function at hand, we can now study how the spin
spaces, the kernel of the fermionic projector and the closed chain as introduced in Subsection 1.1.1
and Subsection 1.4.1, respectively, are realized in this setting. In order to maintain the distinction
between the structures of the theory of causal fermion systems and the modelling of a concrete
physical system within these structures, we introduce the following notation and terminology.

Terminology 2.2.8 (Regularized Objects)

In what follows, elements of the Lorentzian manifold (M, g) are consistently denoted by
x, y, z ∈M in order to distinguish them from operators x, y, z ∈ F2. Furthermore, whenever
an object depends on the chosen microstructure of physical spacetime via the local correlation
function Fε, we add a superscript ( · )ε to indicate the dependence on the regularization.a

aFor clarity, we remark that the superscript ( · )ε is meant to encode both information on the type of
regularization as well as on the length scale of the regularization, which is also denoted by ε.

2.2.3.1 Regularized Spin Spaces

Starting from the causal fermion system (H,F2, ρ
ε) constructed in the previous subsection, we

now explain how the spin spaces are realized in this setting.

Definition 2.2.9 (Regularized Spin Spaces)

For any x ∈M the regularized spin space Sεx at x ∈M is defined as the spin space at Fε(x) ∈ F2.
More explicitly, the regularized spin space Sεx at x ∈M is given by

10We remark that, as introduced by Oppio[49, Def. 4.9], it is reasonable to refer to the pair (H,Fε∗µg) as the
regularized causal fermion system (of H) since the Hilbert space (H, 〈·|·〉H) together with the regularization encoded
in the local correlation function Fε and the given measure µg completely determine the causal fermion system.
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∀x ∈M : Sεx := SFε(x)
(1.1)=
[
Fε(x)

]
(H) (2.16)

Together with the regularized spin space inner product on Sεx which by analogy with
Definition 1.1.4 is the mapping ≺ · | · �Sεx : Sεx × Sεx → C defined as

∀u1, u2 ∈ Sεx : ≺u1|u2�Sεx := −〈u1|Fε(x)u2〉H (2.17)

we arrive at the regularized spin inner product space (Sεx ,≺ · | · �Sεx ) at x ∈M. The operator
πFε(x) : H→ Sεx is referred to as the orthogonal projection on the regularized spin space Sεx .

Remark 2.2.10 (Regularized Spin Spaces)

The fact that the subset Sεx ⊂ H contains elements which are originally constructed from Dirac
spinors, one could argue to better use the terminology “regularized spinor space”. But since a
given physical system is modelled within the structures of the theory of causal fermion systems
and not the other way round, it is more consistent to refer to Sεx as regularized spin spaces.

2.2.3.2 The Regularized Kernel of the Fermionic Projector

Having introduced regularized spin spaces as the concrete realizations of the spin spaces in our
setting where the causal fermion system is given by (H,F2, ρ

ε), we can define the regularized
analogue of the kernel of the fermionic projector and the closed chain.

Definition 2.2.11 (Regularized Kernel of the Fermionic Projector)

Let x, y ∈ M be elements of physical spacetime and let Sεx and Sεy be the regularized spin
spaces at x ∈M and y ∈M, respectively. The regularized kernel of the fermionic projector is
the mapping P ε(x, y) : Sεy → Sεx defined as

u 7→
[
P ε(x, y)

]
(u) (2.13):=

(
πFε(x)Fε(y)|Sεy

)
(u) (2.18)

Definition 2.2.12 (Regularized Closed Chain)

Let x, y ∈M be elements of physical spacetime and let Sεx be the regularized spin space at
x ∈M. The regularized closed chain is the mapping Aε(x, y) : Sεx → Sεx defined in terms the
regularized kernel of the fermionic projector as

u 7→ Aε(x, y)(u) (2.18):= [P ε(x, y)P ε(y, x)](u) (2.19)

As a consequence of the fact that both Sεx and Sεy are four-dimensional complex vector spaces and
since P ε(x, y) is a bounded linear operator, we can regard it as an element P ε(x, y) ∈ L(Sεy , Sεx ).
Although this definition is perfectly fine and natural in view of the definition of the kernel of
the fermionic projector, we want to regard the regularized kernel of the fermionic projector as a
section in a yet undetermined vector bundle over the base space M ×M. In order to implement
this new point of view, we proceed as sketched in the following two paragraphs.

The Vector Bundle of Regularized Spin Spaces
As a first step towards a more geometric description we introduce the vector bundle π : Sε →M
over the smooth Lorentzian manifold (M, g) where for each x ∈M the corresponding fibre π−1(x)
is given by the regularized spin space Sεx at x ∈M which is a four-dimensional complex vector
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space.11 In this setting, the regularized kernel of the fermionic projector P ε(x, y) can be regarded
as a mapping between the fibres π−1(y) and π−1(x) of the vector bundle π : Sε →M. To arrive
at the desired description, however, this bundle is not sufficient. Instead, we have to go one step
further and construct a vector bundle over the base space M ×M as we now explain.

The Modified External Tensor Product Bundle
Having the smooth vector bundle π : Sε →M at our disposal, we take two copies and construct a
new vector bundle over M×M in the following way:12 First, we define for i = 1, 2 the projections
pri : M ×M →M onto the ith factor of the Cartesian product and subsequently introduce the
pullback bundles π̃i : pr∗iSε →M ×M with total spaces (again, for i = 1, 2) defined as

pr∗iSε :=
{

((z1, z2), ψ) ∈ (M ×M)× Sε
∣∣∣pri(z1, z2) = πi(ψ)

}
(2.20)

and projections given by π̃i(z1, z2, ψ) := (z1, z2).[52, Def. 5.8] From these two pullback bundles which
are defined over the same base space M ×M, we can now construct the sought-after vector
bundle Π : Sε ◊× Sε → M ×M whose total space is defined as

Sε ◊× Sε := Hom(pr∗2Sε,pr∗1Sε) (2.21)

and its fibres are given by Π−1((x1, x2)
)

= Hom
(
(pr∗2Sε)(x1,x2), (pr∗1Sε)(x1,x2)

)
.13 By employing

the definition of the pullback bundles, the fibres Π−1((x1, x2)
)
of this new vector bundle can be

specified even more explicitly as the following calculation shows

π̃−1
i

(
(x1, x2)

)
=
{

((z1, z2), ψ) ∈ (M ×M)× Sε
∣∣pri(z1, z2) = πi(ψ) ∧ π̃i((z1, z2), ψ) = (x1, x2)

}
=
{

((z1, z2), ψ) ∈ (M ×M)× Sε
∣∣ zi = πi(ψ) ∧ (z1, z2) = (x1, x2)

}
=
{{

((z1, z2), ψ) ∈ (M ×M)× Sε
∣∣ (π1(ψ), z2) = (x1, x2)

}
for i = 1{

((z1, z2), ψ) ∈ (M ×M)× Sε
∣∣ (z1, π2(ψ)) = (x1, x2)

}
for i = 2

=

S
ε
x1
× {x2} for i = 1

{x1} × Sεx2
for i = 2

(2.22)

Identifying π̃−1
1
(
(x1, x2)

)
= Sεx1

× {x2} with Sεx1
and analogously π̃−1

2
(
(x1, x2)

)
= {x1} × Sεx2

with
Sεx2

,14 we arrive at the characterization of the fibres of the new bundle as

Π−1((x1, x2)
)
' Hom

(
Sεx2

, Sεx1

)
(2.23)

By recalling that the regularized kernel of the fermionic projector as introduced in Definition 2.2.11
is an element P ε(x, y) ∈ L(Sεy , Sεx ) = Hom(Sεy , Sεx ), the above result allows to introduce a different,
bundle-theoretic interpretation of the regularized kernel of the fermionic projector.

11According to Lee’s Vector Bundle Chart Lemma, the vector bundle π : Sε →M is actually a smooth vector
bundle.[50, Lem. 10.6]

12Here we follow the construction as presented by Finster and Kraus.[51, Sec. 3]
13We remark that the non-standard notation has been deliberately chosen in order to both indicate the similarity

with the so-called external tensor product, but at the same time to emphasize a slight difference: While the external
tensor product of two vector bundles π1 : E1 → X1 and π2 : E2 → X2 is the vector bundle E1 � E2 on X1 ×X2
with the total space given by E1 �E2 = π∗1E1 ⊗ π∗2E2, our bundle has its order reversed and includes an additional
dualization.[53, Ch. 1, Sec. 4.9] Thus, in a sense, our bundle may be regarded as being “located halfway in between”
the vector bundle of homomorphisms and the external tensor product.

14The bundle maps ϕi : pr∗i S
ε → Sε from the pullback bundles pr∗i S

ε to Sε are given by ϕi((x1, x2), ψ) = ψ.
Each fibre of the pullback bundle is homeomorphic to the fibre of the original bundle.

https://arxiv.org/pdf/math/0501195.pdf#page=7


2. Modelling Physical Systems in the Framework of Causal Fermion Systems 29

Definition 2.2.13 (Regularized Kernel of the Fermionic Projector (Section))

The regularized kernel of the fermionic projector is the section Pε ∈ Γ(M×M, Sε ◊× Sε) of the
vector bundle Π : Sε ◊× Sε →M ×M, which upon evaluation at (x, y) ∈M ×M, reproduces
P ε(x, y)

Pε(x, y) := P ε(x, y) ∈ Hom(Sεy , Sεx ) (2.24)

where P ε(x, y) denotes the kernel of the fermionic projector as introduced in Definition 2.2.11.

We remark that the section Pε cannot be chosen independently of the vector bundle Π : Sε ◊× Sε →
M ×M as there is, by construction, an inextricable connection between both: Modifying the
microstructure of physical spacetime corresponds to a different choice of the regularization operators
Rε which in turn results in another local correlation function. But since the local correlation
function enters both the definition of the vector bundles πi : Sε →M as well as the definition of
P ε(x, y) without altering its basic structure (see (2.18)), the section Pε ∈ Γ(M ×M, Sε ◊× Sε) is
essentially completely determined by the choice of the microstructure of physical spacetime.

2.2.4 The Regularized Causal Lagrangian and Action

Comparing the structure of the present chapter with the previous one reveals that we have changed
the order in which objects are introduced. This is, of course, not accidental, but fully intentional:
Due to the fact that the causal Lagrangian ultimately depends on the kernel of the fermionic
projector via the closed chain and its eigenvalues, and furthermore taking into account that also
the foundational conceptions are built into the kernel of the fermionic projector, it becomes clear
that the regularized counterparts of the causal Lagrangian and the causal action are best regarded
as functionals depending on the regularized kernel of the fermionic projector in order to analyze
their dependence on the chosen regularization.

2.2.4.1 Classical Interpretation

The classical point of view is to regard the regularized objects as the “pullback” of the abstract
objects by the local correlation function Fε from the operator set Fn to physical spacetime M. In
this way, we obtain concrete realizations of the abstract objects which are defined on M.

Definition 2.2.14 (Regularized Causal Lagrangian)

The regularized causal Lagrangian is the function Lε : M ×M → R+
0 defined as

(x, y) 7→ Lε(x, y) (1.7):=
(2.13)
L(Fε(x),Fε(y)) (2.25)

where L and Fε denote the causal Lagrangian and the local correlation function, respectively.

Based on this definition, the regularized causal action is defined as follows.

Definition 2.2.15 (Regularized Causal Action)

Let (H,F2, ρ
ε) be the causal fermion system constructed in Section 2.2 which models the

physical vacuum system consisting of the Lorentzian manifold (M, g) without any particles or
antiparticles present. The regularized causal action Sε is defined as
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Sε := S(ρε) (1.12)=
(2.15)

∫ ∫
F2×F2

L(x, y) dρε(x) dρε(y) (2.26)

By making use of the change-of-variable formula for pushforward measures[54, Thm. 3.6.1], the
local correlation function contained in the regularized universal measure ρε can be combined
with the causal Lagrangian such that the regularized causal action can be expressed in terms
of the regularized causal Lagrangian as

Sε (2.25)=
∫ ∫

M×M

Lε(x, y) dµg(x) dµg(y) (2.27)

Especially in the second form it becomes apparent that the regularized causal action, for a given
physical spacetime (M, g), is basically a functional of the chosen regularization. In order to clarify
how Sε depends on the regularization and, as a consequence, how it changes due to variations of
the regularization, the following alternative point of view is beneficial.

2.2.4.2 Bundle-Theoretic Description

While in the classical interpretation the regularized causal Lagrangian is considered as a real-
valued function on physical spacetime which is obtained by combing the causal Lagrangian with
the local correlation function, an alternative point of view is to regard the regularized causal
Lagrangian as a functional of sections of the vector bundle Π : Sε ◊× Sε →M×M introduced above.

Definition 2.2.16 (Causal Lagrangian Evaluation Operator)

The causal Lagrangian evaluation operator is defined as the mapping Λ : Γ(M×M, Sε ◊× Sε)→
C∞(M ×M,R+

0 ) which to a regularized kernel of the fermionic projector Pε associates the
regularized causal Lagrangian

Λ : Pε 7→ Λ[Pε] := Lε (2.28)

This causal Lagrangian evaluation operator establishes the connection between the foundational
conceptions underlying the whole modelling approach (and, in particular, the microstructure
of physical spacetime M abstractly encoded in Pε) and the causal relation between all possible
pairs (x, y) ∈M ×M of points in physical spacetime.15 Continuing this line of thought, one is
directly led to introduce also the corresponding evaluation operator for the regularized causal action.

Definition 2.2.17 (Causal Action Evaluation Operator)

The causal action evaluation operator is the mapping Σ : Γ(M ×M, Sε ◊× Sε) → R+
0 which

to a given regularized kernel of the fermionic projector Pε associates the regularized causal
action Sε

Σ : Pε 7→ Σ[Pε] := Sε (2.27)=
(2.28)

∫ ∫
M×M

(
Λ[Pε]

)
(x, y) dµg(x) dµg(y) (2.29)

where the regularized causal Lagrangian Lε(x, y) at (x, y) ∈M ×M has been replaced by the
causal Lagrangian evaluation operator Λ[Pε] evaluated at (x, y) ∈M ×M.

15We remark that this point of view resembles the presentation in the earlier days of the theory where the causal
Lagrangian was regarded as a “real-valued functional on the endomorphisms of Sx ⊂ HC”.[6, Sec. 3.5] Here we go
one step further and regard the (regularized) Lagrangian basically as a functional of the (regularized) kernel of the
fermionic projector instead of the (regularized) closed chain.
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This alternative perspective will be the starting point for the derivation of variations of the
regularized causal action in Chapter 3 as it allows both for a more intuitive understanding as
well as a more direct relation between deformations of the regularization leading to a modified
regularized kernel of the fermionic projector and the resulting variations of the regularized causal
action. For a schematic graphical representation we refer to Figure 2.1.

2.3 Special Case: Modelling the Minkowski Vacuum

Now that we have explained how physical vacuum systems can be modelled within the theory
of causal fermion systems which hopefully will be of some use to future doctoral students as a
brief summary and complementation of the already existing literature, we conclude this chapter
by narrowing down our field of view to the case where the physical vacuum system is given by
Minkowski spacetime without any particles or antiparticles present which is usually referred to as
the Minkowski vacuum. This restriction has far-reaching consequences as it leads to a number of
simplifications and in this way makes it possible to perform explicit calculations in the following
chapters of Part II and Part III.

2.3.1 Construction of the iε-Regularized Causal Fermion System

Without intending to repeat the entire construction procedure for a causal fermion system
(H,F2, ρ

ε) as presented in Subsection 2.2.1 and Subsection 2.2.2, we merely want to point out
where the choice of Minkowski space as physical spacetime in the physical vacuum system affects
the construction and how this modification leads to considerable simplifications.16

The Hilbert Space of Negative-Frequency Dirac Solutions
In Subsection 2.2.1 we have seen that the crucial step to implement Assumption 2.2.1 in general
Lorentzian manifolds (M, g) was the insight that we need to impose global hyperbolicity of the
time-oriented Lorentzian manifold in order to ensure that the Cauchy problem for the Dirac
equation is well-posed. Due to the fact that Minkowski space (M, η) satisfies both the strong
causality condition as well as the compactness condition for causal diamonds, it is globally
hyperbolic and thus allows to find a unique global solution ψ ∈ Γ∞sc (Nt, SM) of the Dirac equation
with compact support on any other Cauchy hypersurface Nt for compactly-supported initial
data ψ0 ∈ Γ∞sc (Nt0 , SM) on a Cauchy hypersurface Nt0 . Furthermore, we can choose the trivial
spin connection and thus identify the spinor spaces SxM at different physical spacetime points
x ∈M with C4 such that the spinor bundle becomes the trivial vector bundle SM = M × C4.
Along with all this, the Dirac equation reduces to (iγj∂j −m)ψ = 0 and correspondingly also
the inner product (2.4) on solutions boils down to

(ψ|φ)m := 2π
∫
R3

dµR3(~x) ≺ψ|γ0φ�SxM (2.30)

where we have chosen the future-directed normal ν as νj = δj0 which corresponds to Cauchy
hypersurfaces Nt = {(t,~x ) ∈ M | t = const} ' R3. Just as before, the measure on the Cauchy
hypersurface is the Lebesgue-Borel measure corresponding to the Riemannian volume form which,
in turn, is induced by the Lorentzian volume form. Making use of the fact that solutions of the
Dirac equation in this setting are given by plane waves[55, Sec. 1.4]

ψ~pa±(x) = 1√
(2π)3

χ~pa±e−i(±ωp)x0+i~p·~x with ωp :=
√
|~p |2 +m2 (2.31)

16This subsection basically follows the presentation in the introductory article by Finster and Jokel[26, Sec. 4.3],
but in part also relies on the work by Finster and Grotz.[22, Sec. 4.1].
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ε → M ×M and the new vector bundle Π : Sε◊×Sε → M ×M as well as the causal action evaluation
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where the spinor χ~pa± ∈ C4 solves the algebraic equation (γjpj − m)χ~pa± = 0, we can form
so-called negative-frequency wave-packets

ψf (x) :=
∫
R3

d3~p f(~p )ψ~pa−(x) with f ∈ C∞0 (R3,C) (2.32)

and thus realize the Hilbert space (H, 〈·|·〉H) of negative-frequency solutions of the Dirac equation as

H :=
{
ψf ∈ C∞0 (M,C4)

∣∣ (iγj∂j −m)ψf = 0
}(·|·)m

(2.33)

without the necessity to first construct the Hilbert space (Hm, (·|·)m) of all solutions of the Dirac
equation and only afterwards choose the closed subspace (H, 〈·|·〉H) corresponding to the Dirac sea.

The Set of Operators and the Regularized Universal Measure
With the Hilbert space (H, 〈·|·〉H) corresponding to the negative-frequency solutions of the Dirac
equation at hand, we next have to specify the set of operators and the regularized universal measure
by constructing the local correlation function in the same way as described in Subsection 2.2.2.1.
To this end, we first of all have to specify how the regularization operators, which according to
Section 2.1 reflects a certain geometric idea regarding the microstructure of physical spacetime,
should be chosen. Due to the fact that the regularization is built into the regularized causal
Lagrangian in a rather complicated way, the complexity of the intended microstructure of physical
spacetime must be weighed against the technical manageability of its implementation. As it
turns out, however, even rudimentarily realistic regularizations such as the setting where the
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regularization operators are given by convolution operators, leads to an considerable technical
effort.17 For this reason the easily manageable, so-called iε-regularization is used almost without
exception in the literature. Taking the negative-frequency wave-packets as the starting point,
the regularization operators are thus defined as[26, Sec. 4.2]

(Rεψf )(x) :=
∫
R3

d3~p f(~p )ψ~pa−(x)e−εωp (2.34)

where the additional exponential factor leads to an ε-dependent suppression of high-frequency
contributions.18 By inserting this result into Definition 2.2.6 (Local Correlation Function) it can
be shown[22, Prop. 4.1] that for any x ∈ M the local correlation operator Fε(x) has two positive
and two negative eigenvalues and thus leads, together with the associated regularized universal
measure ρε, to a causal fermion system (H,F2, ρ

ε) of spin dimension n = 2 which corresponds to
the Dirac sea vacuum in Minkowski spacetime.

2.3.2 The iε-Regularized Kernel of the Fermionic Projector

The simplifications accompanying the specialization to Minkowski spacetime allow to regard the
regularized kernel of the fermionic projector as a function Pε ∈ C∞(M ×M,L(C4,C4)) rather
than a section in a vector bundle.19 Although the iε-regularized kernel of the fermionic projector
will not enter the stage before Part III, we nevertheless shall introduce it already at this point for
the sake of completeness. Taking the local correlation function as the starting point, it can be
shown that the iε-regularized kernel of the fermionic projector takes the following form, which we
state as a definition at this point.20

Definition 2.3.1 (iε-Regularized Kernel of the Fermionic Projector)

Let (M, η) be Minkowski spacetime and let ε > 0. For any two physical spacetime points
x, y ∈M, the iε-regularized kernel of the fermionic projector Pε ∈ C∞(M ×M,L(C4,C4)) is
the function which, upon evaluation at (x, y) ∈M ×M, is given by

(x, y) 7→ Pε(x, y) :=
∫
R4

d4p

(2π)4 (/p+ µ idC4)δ(p2 − µ2)Θ(−p0)e−ip(x−y)e−ε|p
0| (2.35)

where /p := γjpj denotes the Feynman slash and p2 := η(p, p) as well as p(x− y) := η(p, x− y)
are shorthand notations for the Minkowski space inner product. Note that in view of the fact
that m will be needed as one of the multipole parameters later on, we from now on denote the
mass parameter in the Dirac equation by µ.

One of the special properties of this iε-regularized kernel of the fermionic projector is its dependence
on the difference vector ξ := y − x which reflects invariance of Minkowski spacetime under
translations. This property of regularized kernels of the fermionic projectors is referred to as
homogeneity and is one of the foundational assumptions on the class of regularized kernels of the
fermionic projector which will be studied in the following Chapter 3. As will turn out below, the
following definition allows for a more compact notation.

17We point out that this must not be misunderstood as weakness of whole theory, but merely as a manifestation
of the yet unknown answer to the question how physical spacetime looks on microscopic length scales: In order not
to exclude certain microstructures right from the start, one has to accept a large degree of complexity.

18The terminology iε-regularization stems from the fact that combining the additional exponential factor with
the plane-wave factor contained in ψ~pq−(x) leads to the appearance of the factor (x0 + iε) in the exponential which
may be understood as resulting from the replacement x0 → x0 + iε.[11, Sec. 2.4.1]

19Note that the regularized kernel of the fermionic projector, in particular in the context of (regularized) Hadamard
states[56], is usually referred to as a tempered bi-distribution on M×M.[46, Thm. 3.12]

20The derivation of the iε-regularized kernel of the fermionic projector starting from (2.34) has been explained
by Finster and Grotz[22, Sec. 4.1] in such captivating clarity that we could not add anything of value to it and thus
shall directly refer to the corresponding section.

https://arxiv.org/pdf/1107.2026.pdf#page=28
https://arxiv.org/pdf/1107.2026.pdf#page=27
https://arxiv.org/pdf/1107.2026.pdf#page=27
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Definition 2.3.2 (Regularized Difference Vector)

The regularized difference vector ξε∓ is defined as ξε∓ = (ξ0∓ iε, ~ξ ) where ξ := y−x. Additionally,
the dimensionless regularized variable Ξε∓ is the function Ξε∓ : R× R+

0 → C defined as

(ξ0, r) 7→ Ξε∓(ξ0, r) := µ
√
−(ξε∓)2 (2.36)

where µ ∈ R+
0 is the mass appearing in (2.35) and r := |~ξ |.

After these preparatory considerations, we now derive an explicit expression for the iε-regularized
kernel of the fermionic projector by evaluating the Fourier integral in its definition.

Lemma 2.3.3 (iε-Regularized Kernel of the Fermionic Projector)

The Fourier integral in the definition of the iε-regularized kernel of the fermionic projector
evaluates to

Pε(x, y) =
3∑
j=0

gε−(ξ)(ξε−)jγj + hε−(ξ)idC4 (2.37)

where the functions gε−, hε− ∈ C∞(R4,C), expressed in terms of modified Bessel functions of
the second kind and the dimensionless regularized variable Ξε−, are given by

gε−(ξ) = −i µ4

(2π)3
K2(Ξε−)
(Ξε−)2 (2.37a) hε−(ξ) = µ3

(2π)3
K1(Ξε−)

Ξε−
(2.37b)

Here and in what follows we always identify {ξ := y− x | x, y ∈M} ' R4.

Proof. To evaluate the Fourier integral (2.35) we first rewrite the factor (/p+ µ idC4)e−ip(x−y)

as a derivative of the exponential factor with respect to ξ as

(/p+ µ idC4)e−ip(x−y) = (pjγj + µ idC4)e+ipξ =
(
− iγj ∂

∂ξj
+ µ idC4

)
eipξ

Furthermore, by employing the distributional relation

δ(p2 − µ2) = δ
(
(p0)2 − (|~p |2 + µ2)

) (2.31)= δ(p0 − ωp) + δ(p0 + ωp)
2ωp

where we used the definition ωp =
√
|~p |2 + µ2 introduced in (2.31), we find

Pε(x, y) (2.35)=
(
− iγj ∂

∂ξj
+ µ idC4

)∫
R3

d3~p

(2π)4

0∫
−∞

dp0 δ(p0 − ωp) + δ(p0 + ωp)
2ωp

eipξε−

=
(
− iγj ∂

∂ξj
+ µ idC4

)∫
R4

d3~p

(2π)4
e−iωp(ξε−)0

2ωp
ei~p·~ξ

Choosing a spherical coordinate system with its polar axis pointing in the direction of ~ξ,
carrying out the angular integrals and expressing everything in terms of trigonometric functions
results in

. . . =
(
− iγj ∂

∂ξj
+ µ idC4

) ∞∫
0

d|~p | |~p |2

(2π)3
e−iωp(ξε−)0

ωp

sin(|~p |r)
|~p |r
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To compute the remaining integral we interpret it as a Fourier sine transform, identify α ≡ r,
β ≡ i(ξ0 − iε) ≡ ε+ iξ0 and γ = µ evaluate it using (A.1b) such that we end up with

. . .
(A.1b)=
(
− iγj ∂

∂ξj
+ µ idC4

)
µ

(2π)3
K1(µ

√
r2 + (ε+ iξ0)2)√

r2 + (ε+ iξ0)2
(2.38)

Finally, by carrying out the derivatives[57, pp. 8.486/12] and expressing everything in terms of
the regularized difference vector ξε−, we end up with

Pε(x, y) = −i µ4

(2π)3

(
K0(Ξε−)
(Ξε−)2 + 2

K1(Ξε−)
(Ξε−)3

)
(ξε−)jγj + µ3

(2π)3
K1(Ξε−)

Ξε−
idC4

= −i µ4

(2π)3
K2(Ξε−)
(Ξε−)2 (ξε−)jγj + µ3

(2π)3
K1(Ξε−)

Ξε−
idC4 (2.39)

where we have used the recursion relation K2(z) = K0(z) + 2z−1K1(z)[57, 8.486/17] in the last
step.

This concludes the proof.

Remark 2.3.4 (Adjoint of iε-Regularized Kernel of the Fermionic Projector)

The adjoint Pε(x, y)∗ of the iε-regularized kernel of the fermionic projector can be expressed as
Pε(y, x) via the regularized analogue of Proposition 1.4.3. Taking homogeneity into account,
we thus find

Pε(y, x) =
3∑
j=0

gε+(ξ)(ξε+)jγj + hε+(ξ)idC4 (2.40)

where the functions gε+, hε+ ∈ C∞(R4,C) are given by

gε+(ξ) = +i µ4

(2π)3
K2(Ξε+)
(Ξε+)2 (2.40a) hε+(ξ) = µ3

(2π)3
K1(Ξε+)

Ξε+
(2.40b)

2.3.3 The Homogeneous Regularized Causal Action

For a regularized kernel of the fermionic projector which is homogeneous, the corresponding
regularized causal Lagrangian inherits this property via the eigenvalues of the regularized closed
chain and thus also depends only on the difference vector ξ := y− x. As a consequence, one can
change variables (x, y) → (x, ξ) in the double integral in Definition 2.2.15 (Regularized Causal
Action) and first integrate with respect to the relative variable ξ and only afterwards carry out
the integral with respect to x. The latter integration, however, gives a multiplicative infinite
constant which turns Sε into a divergent expression and thus suggests to introduce the following
definition.[11, Sec. 4.2.2]

Definition 2.3.5 (Homogeneous Regularized Lagrangian and Causal Action)

Let (H,F2, ρ
ε) be a causal fermion system describing Minkowski spacetime (M, η) with a

regularization chosen such that the regularized kernel of the fermionic projector is homogeneous.
Then the homogeneous regularized causal action Sεh is defined, by analogy with Definition 2.2.15,
as[7, Eq. (4.5)]
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Sεh :=
∫
R4

Lεh(ξ) d4ξ (2.41)

where Lεh : R4 → R+
0 is referred to as the homogeneous regularized causal Lagrangian.

For the sake of completeness we remark that a conceptually more thorough way to introduce
homogeneity is to consider symmetries of causal fermion systems[58, 59] and represent the (regular-
ized) kernel of the fermionic projector in the homogeneous case using so-called operator-valued
negative-definite measures[7, Def. 4.1] in a form which generalizes, but very much resembles the
Fourier decomposition in Definition 2.3.1.21

Notation 2.3.6 (Homogeneous Regularized Lagrangian and Causal Action)

Whenever there is no risk of confusion, we will drop the subscripts indicating homogeneity and
distinguish between the homogeneous and general setting only through the arguments.

2.3.4 The iε-Regularized Causal Lagrangian

To conclude this chapter, we want to discuss the iε-regularized causal Lagrangian in greater detail
in order to develop a sense of how the iε-regularization affects the causal relation among difference
vectors of physical spacetime points. To this end, we anticipate a result from Chapter 3, namely
the expression for the regularized causal Lagrangian in terms of the components a regularized
kernel of the fermionic projector with vector-scalar structure as derived in Lemma 3.4.1.

Lemma 2.3.7 (iε-Regularized Causal Lagrangian)

Let (M, η) be Minkowski space. Then, by anticipating the result from Lemma 3.4.1, the
iε-regularized causal Lagrangian Lεh : R4 → R+

0 evaluates to

Lεh(ξ) = 4
(
µ

2π

)12
[
µ4
((
|ξε|2

)2 − ∣∣(ξε+)2∣∣2)∣∣∣∣K2(Ξε−)
(Ξε−)2

∣∣∣∣4
+ 2µ2 Re

[
|ξε|2

∣∣∣∣K2(Ξε−)
(Ξε−)2

K1(Ξε−)
Ξε−

∣∣∣∣2 − (ξε−)2
(
K2(Ξε−)
(Ξε−)2

K1(Ξε+)
Ξε+

)2]]
(2.42)

and has length dimension ldim(Lεh) = −12.

Proof. To determine the explicit form of the regularized causal Lagrangian corresponding to
the iε-regularized kernel of the fermionic projector introduced in Definition 2.3.1, we exploit
its vector-scalar structure which allows to compute the iε-regularized causal Lagrangian via
Lemma 3.4.1 as follows

Lε(x, y) (2.25)=
(3.14)

4
[
(Bε(x, y))2 − |Cε(x, y)|2

]
(3.15)= 4

[(
|vε|2(x, y) + |sε|2(x, y)

)2 − ∣∣(vε)2(x, y)− (sε)2(x, y)
∣∣2] (2.43)

Identifying vεj (x, y) ≡ gε−(ξ)(ξε−)j , sε(x, y) ≡ hε−(ξ), vεj (x, y) ≡ gε+(ξ)(ξε+)j and sε(x, y) ≡ hε+(ξ)

21This idea was outlined by Christoph Langer in a seminar talk on Homogeneous Causal Fermion Systems, but
to the best of my knowledge, has not been published yet.
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together with |ξε|2 := η(ξε−, ξε+) and (ξε∓)2 := η(ξε∓, ξε∓) results in

Lεh(ξ) = 4
[(
|ξε|2|gε(ξ)|2 + |hε(ξ)|2

)2 − ∣∣(ξε+)2gε+(ξ)2 − hε+(ξ)2∣∣2]
= 4
[(
|ξε|2|ξε|2 − (ξε−)2(ξε+)2

)
(|gε−|2)2 + 2|ξε|2|gε−|2|hε−|2 + 2 Re

(
(ξε+)2(gε+)2(hε−)2

)]
= 4
(
µ

2π

)12
[
µ4
(
|ξε|2|ξε|2 − (ξε−)2(ξε+)2

)∣∣∣∣K2(Ξε−)
(Ξε−)2

∣∣∣∣4
+ 2µ2|ξε|2

∣∣∣∣K2(Ξε−)
(Ξε−)2

K1(Ξε−)
Ξε−

∣∣∣∣2 − 2µ2 Re
[
(ξε−)2

(
K2(Ξε−)
(Ξε−)2

K1(Ξε+)
Ξε+

)2]]

Taking into account that ξε, µ and Ξε∓ have length dimensions +1, −1 and 0, respectively, we
conclude that the regularized causal Lagrangian has length dimension ldim(Lεh) = −12.

This concludes the proof.

Now, in order to study the causal relation among physical spacetime points x, y ∈ M in the
homogeneous case, we are free to fix x ∈M and analyze all physical spacetime points y ∈M with
respect to x. In this way, spacelike-separatedness of x, y ∈M translates into Lεh(ξ) = 0 and thus
suggests to introduce the following definition.

Definition 2.3.8 (Demarcation Function)

Let Lεh : R4 → R+
0 be a homogeneous regularized causal Lagrangian. The region Rε of

non-spacelike-separated difference vectors is defined as

Rε :=
{
ξ ∈ R4 ∣∣Lεh(ξ) > 0

}
(2.44)

If Rε satisfies the conditions stated in Assumption 3.2.3, the function Rεmax : R × (0, π) ×
(0, 2π)→ R+

0 implicitly defined bya

Lεh(ξ0, Rεmax(ξ0, θ, ϕ), θ, ϕ) = 0 (2.45)

is referred to as demarcation function as it marks the border between spacelike-separated
difference vectors ξ ∈ R4 and non-spacelike-separated ones. In the special case when Rεmax has
no angular dependence, we often write

Rε = Xε × S2 with Xε := {(ξ0, r) ∈ R× R+
0 | 0 ≤ r ≤ Rεmax(ξ0)} (2.46)

aIf not otherwise stated, we will always work with spherical coordinates.

Due to the fact that the iε-regularized causal Lagrangian is spherically symmetric, also the
corresponding demarcation function does not contain any angular dependence. The remaining
two paragraphs are concerned with the analysis of the ε-dependence of this demarcation function.

Contour Lines of the iε-Regularized Causal Lagrangian
To get a first impression of the ε-dependence of the iε-regularized causal Lagrangian derived in
Lemma 2.3.7, we plotted the contour lines Lεh(ξ) = const for different values of the constant (see
Figure 2.2). Considering only Figure 2.2a for the moment, we recognize a sharp decay of the
iε-regularized causal Lagrangian for ξ0 → ±∞ in accordance with the asymptotic expansion of
the modified Bessel functions for large arguments.[57, 8.451/6] Analyzing the change of the contour
lines from Figure 2.2a to Figure 2.2d, one can see the following three simultaneously occurring
effects for decreasing regularization length ε: First, we observe that away from the lightcone
(i. e. for |ξ0| � r) the bunches of contour lines corresponding to small heights are pushed further
outwards. Secondly, near the lightcone (i. e. for |ξ| ≈ r) the contour lines are “folded” which
results in tails approaching the demarcation function and reaching further and further outwards
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for decreasing regularization length. Finally, the demarcation function (which corresponds to the
contour line of height zero) itself converges to the lightcone, but leaves an increasingly thinner
tubular-shaped passage between the set of timelike-separated distance vectors ξ with ξ0 > 0 and
ξ0 < 0 as long as the regularization length remains positive. These graphics illustrate the fact that
the regularization makes the region of spacelike-separated difference vectors larger.[11, Sec. 2.4.1]
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Figure 2.2: Contour plot of the iε-regularized causal Lagrangian for µ = 2π and different values of the regularization
length ε ∈ (0, 1): The bunches of blue, green, yellow, red and purple contour lines correspond to the contour line sets C0,0.1,
C2,1, C20,10, C200,100 and C2000,1000, respectively, which are defined as Ca,d := {a + n · d | a, d ∈ R+

0 , n = 0, 1, 2, . . . , 8}.
The black line represents the undeformed lightcone |ξ0| = r. Note that the partially discontinuous contour lines are an
unavoidable artifact of the plotting process of an implicitly-defined function using ContourPlot in Mathematica 12.

Behaviour of the Demarcation Function near the Origin ξ = 0
Having developed a basic sense of the behaviour of the iε-regularized causal Lagrangian, we now
focus on the region near the origin ξ = 0. Plotting the demarcation function for different values
of the regularization length ε (see Figure 2.3) and the mass parameter µ (see Figure 2.4), we
find that the diameter of the roughly tubular passage connecting timelike-separated distance
vectors ξ with ξ0 > 0 and ξ0 < 0 scales like

diameter ∼ µε2 (2.47)
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Figure 2.3: Contour graph of the demarcation function Rεmax(ξ0, r) corresponding to the iε-regularized causal Lagrangian
for m = 2π and different values of the regularization length ε: The bunches of blue and green contour lines correspond
to regularization lengths ε ∈ E0.1,1/√2 and ε ∈ E0.05,1/√2 where the sets are defined as Eε0,q := {ε = ε0 · qn |n = 0, 1, 2, 3}.
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µ ∈ M2π,1/2: A decrease of the mass parameter by a
factor 1/2 leads to a decrease of the diameter at the
thinnest point by roughly a factor 1/2.
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(b) Demarcation function for ε = 0.1 and mass parameter
µ ∈ Mπ,1/2: A decrease of the mass parameter by a factor
1/2 leads to a decrease of the diameter at the thinnest
point by roughly a factor 1/2.

Figure 2.4: Contour graph of the demarcation function Rεmax(ξ0, r) corresponding to the iε-regularized causal Lagrangian
for ε = 0.1 and different values of the mass parameter µ: The bunches of blue and green contour lines correspond to
µ ∈ M2π,1/2 and µ ∈ Mπ,1/2 where the sets are defined asMµ0,q := {µ = µ0 · qn |n = 0, 1, 2, 3}.

at leading order which is in perfect accordance with the scaling of the tubular-shaped re-
gion of timelike-separated difference vectors near the origin as derived by Curiel, Finster and
Isidro[60, Eq. (A. 13)] A closer numerical examination shows that the scaling behaviour is actually
given by

diameter ∼ µε2.15 (2.48)

https://arxiv.org/pdf/1910.06161.pdf#page=15
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Having introduced the fundamental structures of the theory of causal fermion systems in Chapter 1
and subsequently explained in Chapter 2 how a given physical vacuum system can be modelled
within these structures, the present chapter is concerned with the question how modifications of
the microstructure of physical spacetime affect the regularized causal action.

As discussed in Subsection 2.2.2.1, the microstructure of physical spacetime M enters the game via
regularization operators Rε : H→ Γ(M, SM) from which one can construct the local correlation
function Fε : M → Fn. This local correlation function, in turn, leads to the regularized kernel
of the fermionic projector Pε ∈ Γ(M ×M, Sε ◊× Sε) which encodes both the microstructure of
physical spacetime as well as the Dirac sea of all negative-frequency solutions of the Dirac equation
in the physical spacetime under consideration. Finally, by forming the regularized causal action Sε
and varying the regularization, the causal action principle ultimately determines a microstructure
which is optimal in the sense that the associated regularized kernel of the fermionic projector
minimizes the regularized causal action. This being said, it becomes clear that analyzing how
deformations of the microstructure of physical spacetime affect the regularized causal action,
requires to derive expressions for the variation of the regularized causal action in terms of the
variation of the regularized kernel of the fermionic projector. Based on this, one can subsequently
study how initial perturbations of the microstructure lead to a dynamics aimed at realizing a new
optimal microstructure of physical spacetime. This will be discussed in more detail in Chapter 5
and there, in particular, in Section 5.3.
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3.1 Basics of the Calculus of Variations

We start by introducing the necessary definitions required to formalize what exactly we mean when
talking about variations of the regularized causal action. According to Definition 2.2.17 (Causal
Action Evaluation Operator), the regularized causal action can be interpreted as the outcome of the
mapping

Σ : Γ(M ×M, Sε ◊× Sε)→ R+
0 with Pε 7→ Σ[Pε] := Sε (3.1)

In the cases relevant for us, namely in the setting where the underlying Lorentzian manifold is given
by Minkowski space (M, η) and the regularized kernel of the fermionic projector is homogeneous,
we are actually working with mappings Pε ∈ C∞(R4,L(C4,C4)).

In order to define what is meant by a variation of the causal action, it is instructive to briefly review
the definitions of variations commonly used in the literature. The simplest setting considered in
the classical calculus of variations is clearly the one where (real-valued) functions defined on an
open subset of Rn are analyzed by calculating first variations which in this case are realized as
ordinary directional derivatives. In more general situations one deals with functionals defined
on Banach spaces or even with functional defined on normed vector spaces. In both cases, first
and higher-order variations of the functionals are realized by generalizing the notion of ordinary
directional derivatives to Gâteaux derivatives.[61, Ch. 2, Appendix]

Definition 3.1.1 (Gâteaux Differentiability and Gâteaux Derivative)

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be normed vector spaces and let U ∈ T‖ · ‖X be an open set
of X where T‖ · ‖X denotes the norm-induced topology on X. A function f : U → Y is called
Gâteaux differentiable at x0 ∈ U if the limit

df(x0 + τv)
dτ

∣∣∣∣
τ=0

:= lim
τ→0

f(x0 + τv)− f(x0)
τ

(3.2)

referred to as the directional derivative of f at x0 in the direction v, exists for all directions
v ∈ X and if there is a continuous linear mapping df(x0) ∈ L(X,Y ), referred to as the Gâteaux
derivative of f at x0 ∈ U , such that

df(x0 + τv)
dτ

∣∣∣∣
τ=0

=
(
df(x0)

)
(v) (3.3)

Remark 3.1.2 (Gâteaux Derivative)

We remark that there is no consensus in the literature, neither regarding the definition
of Gâteaux differentiability nor regarding terminology: While some authors[61],[62, App. A]
introduce the Gâteaux differential/derivative as presented in Definition 3.1.1 and thus follow
the later works by Gâteaux[63, Sec. 3], other authors[64, Sec. 2.1C] drop the requirement of df(x0)
being continuous and linear (while keeping homogeneity of degree one) which is more in
accordance with Gâteaux’s original definition.[65] To distinguish between both situations, some
authors refer to df(x0) as the Gâteaux differential and reserve the term Gâteaux derivative for
the case where df(x0) is continuous and linear.

By employing the machinery of differential calculus on topological vector spaces,1 one can even
consider functionals defined on topological vector spaces which, in particular, covers the case of
functionals defined on Fréchet spaces. In this case which will be relevant for our purposes (see below
in Section 3.4), variations can be defined in terms of a generalized version of Gâteaux derivatives
which is consistently referred to as directional derivatives in the literature.[66, p. 6],[68, Sec. I.3]

1For details we refer to the textbook by Yamamuro.[66] For a treatment which uses so-called convenient vector
spaces, we refer to the textbook by Kriegl and Michor.[67, Sec. 13]



3. Derivation of the Second Variation of the Regularized Causal Action 45

Definition 3.1.3 (Directional Derivative on Topological Vector Spaces)

Let (X, TX) and (Y, TY ) be topological vector spaces over the real numbers R and let U ∈ TX
be an open set of X. A function f : U → Y is called differentiable at x0 ∈ U in the direction
v ∈ X if the limit(

df(x0)
)
(v) := df(x0 + τv)

dτ

∣∣∣∣
τ=0

:= lim
τ→0

f(x0 + τv)− f(x0)
τ

(3.4)

referred to as the directional derivative of f at x0 in the direction v ∈ X, exists.

With this definition of differentiability at hand, we can now formalize what in the classical calculus
of variations is usually referred to as the first variation of a functional on some function space.2

Definition 3.1.4 (First and Second Variation of a Functional)

Let J : X → Y be a mapping between topological vector spaces X,Y and let γ : (−τ0, τ0)→ X
for τ0 > 0 be a smooth curve in X. Then the first variation δJ of J at x0 ∈ X evaluated at
v := γ′(0) is defined as

(
δJ(x0)

)
(v) := dΦ(τ)

dτ

∣∣∣∣
τ=0

where Φ := J ◦ γ (3.5a)

Likewise, the second variation δ2J of J at x0 ∈ X evaluated at v = γ′(0) and w := γ′′(0) is
defined as (

δ2J(x0)
)
(v, w) := 1

2
d2Φ(τ)

dτ2

∣∣∣∣
τ=0

(3.5b)

Before we apply this definition to concrete examples, we shall at least briefly discuss the relationship
of these variations in the case Y = R with the definition of the first and second variations as
commonly used in the classical calculus of variations. Carrying out the derivative in the definition
of the first variation and using the chain rule we obtain

(
δJ(x0)

)
(v) (3.5a)= dΦ(τ)

dτ

∣∣∣∣
τ=0

= (dγ(0)J)
(
γ′(0)

)
= (dx0J)(v) (3.6)

where (dx0J)(v) denotes the directional derivative of J at x0 in the direction v. This result coincides
with the definition of the first variation in the standard textbooks on the classical calculus of
variations. If we now interpret (dγ(τ)J)

(
γ′(τ)

)
as a real-valued function Ψ : (−τ0, τ0) → R and

use the chain rule once more, the second variation of J can be expressed as

(
δ2J(x0)

)
(v, w) (3.5b)= 1

2
dΨ(τ)

dτ

∣∣∣∣
τ=0

= 1
2
(
d2
γ(0)J

)(
γ′(0), γ′(0)

)
+ 1

2(dγ(0)J)(γ′′(0)) (3.7)

The first term in this expression is the second directional derivative of J at x0 = γ(0) in the
direction v = γ′(0) what in the classical calculus of variations is referred to as the second
variation.[16, Sec. 24] The additional term, namely the first directional derivative at x0 = γ(0) in
the direction γ′′(0) is absent in classical treatments. For a thorough study of second variations
which takes into account all contributions at second order, however, this term must be included.

2For the classical calculus of variations, we refer to the standard literature, namely the textbooks by Courant
and Hilbert[69, Ch. 4] as well as the one by Gel’fand and Fomin[16, Sec. 3.2]. To complement both, we also
recommend the textbook by Giaquinta and Hildebrandt where the connection between derivatives and variations is
discussed.[70, p. 9-11]
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3.2 Foundational Assumptions on Pε

In Subsection 2.3.2 we introduced the iε-regularized kernel of the fermionic projector which is a
special case of Definition 2.2.13. In order to clarify the assumptions on the class of regularized
kernels of the fermionic projector which will be considered in this and the following chapters, we
list and briefly comment on them below.

Homogeneity of the Regularized Kernel of the Fermionic Projector
In the case where physical spacetime is given by Minkowski space (M, η), we assume that the
regularized kernel of the fermionic projector is homogeneous in the sense that it does not depend
on the pair x, y ∈M of physical spacetime points themselves, but rather on their difference vector
ξ := y− x and in this way preserves translation invariance of Minkowski spacetime.

Assumption 3.2.1 (Homogeneity of Pε)

Whenever physical spacetime is given by Minkowski space (M, η), we assume that the regularized
kernel of the fermionic projector Pε ∈ Γ∞(M ×M, Sε ◊× Sε) is the section which, upon
evaluation at (x, y) ∈M×M is homogeneous in the sense that it only depends on the difference
vector ξ := y− x rather than on the spacetime points x, y ∈M themselvesa

Pε(x, y) = Pε(y− x) (3.8)

In this case, as already discussed in Subsection 2.3.2, the regularized kernel of the fermionic
projector is regarded as a function Pε ∈ C∞(R4,L(C4,C4)).

aAs we exclusively consider homogeneous regularized kernels of the fermionic projector in all subsequent
chapters, we commit the mild sin of using the same symbol.

More generally speaking, homogeneity actually only requires that physical spacetime carries a
vector space structure in order for the difference vector to be defined at all. The second physically
relevant case besides Minkowski space which is discussed in the literature is the discrete case
where one considers a periodic lattice in Minkowski spacetime.[7, Sec. 4],[12]

Vector-Scalar Structure of the Regularized Kernel of the Fermionic Projector
According to the discussion of the foundational conceptions underlying the modelling of physical
systems within the framework of causal fermion systems and based on Assumption 2.2.1, we
constructed the regularized kernel of the fermionic projector from the local correlation function
which encodes both the regularization as well as the Dirac sea interpretation of the entirety
of negative-energy solutions of the Dirac equation. Later on, by restricting to Minkowski
spacetime and choosing the iε-regularization, we arrived at the iε-regularized kernel of the
fermionic projector which inherits its vector-scalar structure from the Dirac equation. Now, since
there is no experimental evidence which strongly suggests or even requires a modification of the
Dirac equation (except, maybe, at high energies which are not accessible to current accelerators),
we assume that any regularization preserves this vector-scalar structure.3

Assumption 3.2.2 (Vector-Scalar Structure of Pε)

Throughout all following chapters, we assume that the homogeneous regularized kernel of the
fermionic projector Pε ∈ C∞(R4,L(C4,C4)), upon evaluation at ξ ∈ R4, has the special form

ξ 7→ Pε(ξ) =
3∑
i=0

vεi (ξ)γi + sε(ξ)idC4 (3.9)

3For a more detailed discussion concerning the vector-scalar structure of the regularized kernel of the fermionic
projector, we refer to the last paragraph in section 4.1 of Finster’s first book.[6, Sec. 4.1]
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referred to as vector-scalar structure of the regularized kernel of the fermionic projector.a The
γi (for i ∈ {0, 1, 2, 3}) denote the Dirac matrices and the coefficient functions vεi ∈ C∞(R4,C)
and sε ∈ C∞(R4,C) are the so-called vector components and the scalar component of the
regularized kernel of the fermionic projector, respectively.

aThis terminology was introduced by Finster.[6, p. 94],[11, p. 32]

We note that the function space C∞(R4,C) must be replaced by a suitable Fréchet space when
variations of the regularized causal action are considered. In this case we have to interpret Sεh as
the functional Σh which takes Pε as input. We will come back to this issue in Section 3.4.

Shape of the Region of Non-Spacelike Separated Difference Vectors
Finally, the third foundational assumption does not concern the structure of the regularized kernel
of the fermionic projector, but rather the choice of the regularization itself.

Assumption 3.2.3 (Shape of the Region Rε)

Whenever physical spacetime is given by Minkowski space (M, η) and the regularized kernel of
the fermionic projector is homogeneous, we assume that the regularization is chosen such that
the region of non-spacelike separated difference vectors

Rε :=
{
ξ ∈ R4 ∣∣Lεh(ξ) > 0

}
(3.10)

is simply connected and that for every a ∈ R the subset Rεa := {ξ4 ∈ Rε | ξ0 = a} is star-shaped.

The assumption on the shape of the region Rε ensures that the set of timelike-separated difference
vectors does not split into two or more connected components, prevents an enclave of spacelike-
separated difference vectors within Rε and guarantees that the demarcation function is sufficiently
well-behaved.

Relation to Regularizations in the Literature As already mentioned in the paragraph on the choice
of the regularization operators in the case of the Minkowski vacuum, the study of regularizations
different from the iε-regularization comes at the cost of considerable technical effort. For this
reason, there is essentially only one paper[71] that systematically analyzes the effect of the choice
of the regularization on the regularized causal Lagrangian and the regularized causal action.4
More concretely, the paper considers a class of homogeneous, spherically-symmetric regularized
kernels of the fermionic projector which have vector-scalar structure and are composed of so-called
surface states. The detailed analysis in the different regions of physical spacetime referred to as
the outer strip, intermediate layers and inner layers unveils a highly complicated shape of the set
of non-spacelike separated difference vectors ξ ∈ R4.

Compared with this, our assumption on the shape of the region Rε aims in a different direction:
Instead of spherically-symmetric homogeneous regularized kernels of the fermionic projector
composed of surface states, we will ultimately consider anisotropically iε-regularized kernels of the
fermionic projector.

Notation 3.2.4 (Homogeneity)

Unless otherwise stated, the regularized kernel of the fermionic projector, the regularized closed
chain, the regularized causal Lagrangian and the regularized causal action are from now on
assumed to be homogeneous.

4Besides the paper by Finster[71], there is another paper by Curiel, Finster and Isidro[60, App. A] in which the
scaling of the regularized causal Lagrangian is studied.
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3.3 The Regularized Closed Chain

As already explained in Subsection 1.4.1, the closed chain Axy plays the central role in the
calculation of the eigenvalues λxyi of operator products xy for x, y ∈ Fn which in turn serve
as the building blocks of the causal Lagrangian. In this section, starting from a homogeneous
regularized kernel Pε of the fermionic projector with vector-scalar structure, we derive explicit
expressions for the corresponding regularized closed chain Aε(x, y), its eigenvalues λεi (x, y) as well
as the corresponding spectral projectors. Before, however, we take the opportunity to introduce
abbreviations for frequently occurring combinations of the vector and scalar component of the
regularized kernel of the fermionic projector.

Notation 3.3.1 (Combinations of the Vector and Scalar Components of Pε)

Given the symmetry of the kernel of the fermionic projector with respect to the spin space
inner product, the vector and scalar components of its adjoint, namely the complex-conjugates
vεi (ξ), sε(ξ), can be expressed in terms of vector and scalar components of a homogeneous
regularized kernel of the fermionic projector as

vεi (ξ) = vεi (−ξ) (3.11a) sε(ξ) = sε(−ξ) (3.11b)

In addition to this, we introduce combinations of the vector and scalar components as functions
(vε)2, (vε)2, (sε)2, (vε)2 ∈ C∞(R4,C) and |vε|2, |sε|2 ∈ C∞(R4,R) which are defined as follows

(vε)2 := ηijvεi v
ε
j (3.12a) (vε)2 := ηijvεi v

ε
j (3.12b) |vε|2 := ηijvεi v

ε
j (3.12c)

(sε)2 := sεsε (3.12d) (sε)2 := sε sε (3.12e) |sε|2 := sεsε (3.12f)

After these preparations, we now derive an expression for the regularized closed chain.

Lemma 3.3.2 (Decomposition of the Regularized Closed Chain)

Let Pε ∈ C∞(R4,L(C4,C4)) be a homogeneous regularized kernel of the fermionic projector
which has vector-scalar structure. Then the regularized closed chain can be decomposed as

Aε(x, y) = Aεij(ξ)[γi, γj ] +Aεi (ξ)γi +Aεs(ξ)idC4 (3.13)
where the functions Aεij ∈ C∞(R4,C) and Aεi , A

ε
s ∈ C∞(R4,R) referred to as the bilinear ,

vector and scalar component of the regularized closed chain, respectively, are given by

Aεij = 1
2v

ε
i v
ε
j (3.13a) Aεi = 2 Re (vεi sε) (3.13b) Aεs = |vε|2 + |sε|2 (3.13c)

Proof. Inserting the vector-scalar structure of the regularized kernel of the fermionic projector
into the definition of the regularized closed chain from Definition 2.2.12 yields
Aε(x, y) (2.19)=

(
vεi (ξ)γi + sε(ξ)idC4

)(
vεj (−ξ)γj + sε(−ξ)idC4

)
= vεi (ξ)vεj (−ξ)γiγj +

(
vεi (ξ)sε(−ξ) + sε(ξ)vεi (−ξ)

)
γi + sε(ξ)sε(−ξ)idC4

Decomposing the product of Dirac matrices by using the defining relation of the Clifford algebra
of the Dirac matrices

γiγj = 1
2[γi, γj ] + 1

2{γ
i, γj} = 1

2[γi, γj ] + ηij idC4
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and furthermore making use of the relations vεi (−ξ) = vεi (ξ) and sε(−ξ) = sε(ξ) which follow
from the symmetry properties of the (regularized) kernel of the fermionic projector, leads to

. . . = 1
2v

ε
i (ξ)vεj (ξ)[γ

i, γj ] +
(
vεi (ξ)sε(ξ) + sε(ξ)vεi (ξ)

)
γi +

(
ηijvεi (ξ)vεj (ξ) + sε(ξ)sε(ξ)

)
idC4

= 1
2v

ε
i (ξ)vεj (ξ)[γ

i, γj ] + 2 Re
(
vεi (ξ)sε(ξ)

)
γi +

(
|vε|2(ξ) + |sε|2(ξ)

)
idC4

Identifying the first and second term as the bilinear and vector contribution, respectively, and
the last term as the scalar part concludes this short proof.

At this point we introduce one more frequently occurring combination combination of the vector
and scalar components of the regularized kernel of the fermionic projector.

Definition 3.3.3 (Regularized Discriminant)

The regularized discriminanta Dε ∈ C∞(R4,R) is defined as

Dε(ξ) :=
(
Bε(ξ)

)2 − ∣∣Cε(ξ)∣∣2 (3.14)

where the functions Bε ∈ C∞(R4,R) and Cε ∈ C∞(R4,C) are given by

Bε(ξ) := |vε|2(ξ) + |sε|2(ξ) (3.15a) Cε(ξ) := (vε)2(ξ)− (sε)2(ξ) (3.15b)

aAs will become clear in Lemma 3.3.4, the terminology is motivated by the fact that Dε appears as the
radicand in the expression for the eigenvalues of the regularized closed chain.

3.3.1 Eigenvalues of the Regularized Closed Chain

Having derived the form of the regularized closed chain in the case where the regularized kernel
of the fermionic projector has vector-scalar structure, we now turn to the computation of the
eigenvalues of Aε(x, y).

Lemma 3.3.4 (Eigenvalues of the Regularized Closed Chain)

Let Aε(x, y) be the regularized closed chain as derived in Lemma 3.3.2. In this case, its
eigenvalues are given by

λε±(x, y) = Bε(ξ)±Dε(ξ)1/2 (3.16)

where Bε and Dε are the functions introduced in Definition 3.3.3.

Proof. In order to find the roots of the regularized closed chain Aε(x, y) as given in Lemma 3.3.2,
we derive a quadratic matrix equation for Aε(x, y) by exploiting the properties of the Dirac
matrices. Taking the square of the trace-free part of Aε(x, y) and suppressing arguments results
in(
Aε(x, y)− 1

4 Tr
[
Aε(x, y)

]
idC4

)2
(3.13)= AεijA

ε
kl[γi, γj ][γk, γl] +AεijA

ε
k

{
[γi, γj ], γk

}
+AεiA

ε
jγ
iγj

Here we exploited the fact that the trace of a single Dirac matrix as well as the trace of the
commutator of two Dirac matrices both vanish identically. The products of Dirac matrices in
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the first and second term can be rewritten as

[γi, γj ][γk, γl] = 2(ηjkγiγl + ηilγjγk)− {(γiγk), (γjγl)} − γj(γiγk)γl − γi(γjγl)γk{
[γi, γj ], γk

}
= 2(γiγkγj − γjγkγi)

where we repeatedly used the defining relation {γi, γj} = 2ηij idC4 of the Clifford algebra of
the Dirac matrices. Inserting these relations into the above equation and using the identity
aiajγ

iγj = ηijaiaj = a2 yields(
Aε(x, y)− 1

4 Tr
[
Aε(x, y)

]
idC4

)2
=

(3.13)=
(3.17)

1
2 |v

ε|2
(
vεi v

ε
l γ
iγl + vεjv

ε
kγ

jγk
)
− (vε)2(vε)2idC4

+���
���:

(1)
vεi γ

i(vε)2sε +���
���:

(2)
vεjγ

j(vε)2sε −���
���:

cancels (1)
vεi γ

i(vε)2sε −���
���:

cancels (2)
vεjγ

j(vε)2sε

+
(

(vε)2(sε)2 + 2|vε|2|sε|2 + (vε)2(sε)2
)

idC4

=
((
|vε|2

)2 − (vε)2(vε)2 + 2 Re
[
(vε)2(sε)2]+ 2|vε|2|sε|2

)
idC4

where we recognize the regularized discriminant Dε as introduced in (3.14). In this way we
find that the regularized closed chain has to satisfy the following quadratic matrix equation(

Aε(x, y)− 1
4 Tr

[
Aε(x, y)

]
idC4

)2
= Dε(ξ)idC4

Bringing both terms to the left-hand side, inserting the trace of the regularized closed chain
which evaluates to 1

4 Tr
[
Aε(x, y)

]
= Aεs(ξ) = |vε|2(ξ) + |sε|2(ξ) = Bε(ξ) as can be easily seen

from (3.13), factorizing and taking the determinant yields

0 = det
{[
Aε(x, y)−

(
Bε(ξ) + Dε(ξ)1/2

)
idC4

] [
Aε(x, y)−

(
Bε(ξ)−Dε(ξ)1/2

)
idC4

]}
This equation is a condition on the regularized closed chain which is satisfied if the regularized
closed chain solves the equations

0 = det
[
Aε(x, y)−

(
Bε(ξ) + Dε(ξ)1/2

)
idC4

]
∨ 0 = det

[
Aε(x, y)−

(
Bε(ξ)−Dε(ξ)1/2

)
idC4

]
But these equations are just the conditions for Bε(ξ) ± Dε(ξ)1/2 to be the roots of the
characteristic polynomial of Aε(x, y), that is the eigenvalues λε±(x, y).

This concludes the proof.

3.3.2 Regularized Spectral Projectors

In order to be able to derive the first and second variations of the regularized eigenvalues in
Subsection 3.3.3, we need the spectral projectors.

Lemma 3.3.5 (Spectral Projectors)

Let Aε(x, y) be the regularized closed chain as derived in Lemma 3.3.2 and let λε±(x, y) be the
corresponding eigenvalues from Lemma 3.3.4. Then the regularized spectral projectors F ε±(x, y)
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on the eigenspaces corresponding to the eigenvalue λεi (x, y), expressed in terms of the compo-
nents vεi , sε of the regularized kernel of the fermionic projector as given in Assumption 3.2.2,
take the form

F ε±(x, y) = F ε±,ij(ξ)[γi, γj ] + F ε±,i(ξ)γi + F ε±,s(ξ)idC4 (3.18)

where the scalar , vector and bilinear components are given by

F ε±,ij = ±1
4
vεi v

ε
j√

Dε
(3.18a) F ε±,i = ±Re(vεi sε)√

Dε
(3.18b) F ε±,s = 1

2 (3.18c)

Proof. The spectral projectors are defined as the Frobenius covariants[72, Sec. 1.10] of the
regularized closed chain Aε(x, y) corresponding to the eigenvalues λε±(x, y)

F ε±(x, y) =
Aε(x, y)− λε∓(x, y)idC4

λε±(x, y)− λε∓(x, y)

Suppressing arguments and rewriting the expression by inserting 0 = λε±−λε± in the numerator
yields

F ε±(x, y) = Aε

λε± − λε∓
− 1

2

(
λε∓ + λε±
λε± − λε∓

+
λε∓ − λε±
λε± − λε∓

)
idC4 = 1

2

(
idC4 +

2Aε −
(
λε∓ + λε±

)
idC4

λε± − λε∓

)
Inserting expression for the eigenvalues as derived in Lemma 3.3.4 and restoring the arguments
results in

F ε±(x, y) (3.16)= 1
2

(
idC4 ±

2Aε(x, y)− 2
(
|vε|2 + |sε|2

)
idC4

2
√
Dε

)
(3.19)

Finally, be observing that the term |vε|2 + |sε|2 appearing in the numerator cancels the scalar
component in the regularized closed chain, we end up with

F ε±(x, y) = 1
2

(
idC4 ±

Aεij(ξ)[γi, γj ] +Aεi (ξ)γi√
Dε(ξ)

)
(3.20)

Inserting the components of the regularized closed chain as calculated in Lemma 3.3.2 concludes
the proof.

Having completed the calculation of the eigenvalues of the regularized closed chain in terms of the
vector and scalar components of the homogeneous regularized kernel of the fermionic projector,
we next derive the variation of the eigenvalues which are caused by variations of the regularized
kernel of the fermionic projector.

3.3.3 Variation of the Eigenvalues of the Regularized Closed Chain

An important intermediate step in deriving expressions for δSε and δ2Sε is to calculate the variations
of the eigenvalues of the regularized closed chain which ultimately enter these expressions via
the variations δLε and δ2Lε. As will be explained in more detail in the proof of Theorem 3.4.3,
the variations of the regularized causal action in the sense of Definition 3.1.4 must actually
be regarded as variations δΣh and δ2Σh of the causal action evaluation operator introduced in
Definition 2.2.17 which maps Pε to Sε. Similarly, also variations of other objects such as the
regularized causal Lagrangian, the regularized closed chain and its eigenvalues, which are all built
from Pε, must be regarded as variations of the corresponding evaluation operators. However, in
order not to unnecessarily complicate the derivation, we only regard the regularized causal action
in the final Theorem 3.4.3 in this way, but otherwise choose a pragmatic approach and bear in
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mind that all variations are obtained by regarding the corresponding objects as functionals of
Pετ ∈ D′(R4,L(C4,C4)) and subsequently taking derivatives with respect to τ as explained in
Definition 3.1.4.

Lemma 3.3.6 (Variations of the Regularized Closed Chain)

Let Aε(x, y) be the regularized closed chain as derived in Lemma 3.3.2. Replacing Pεxy
by a perturbed version Pετxy, computing the first and second variations δAε and δ2Aε and
decomposing them in the same way as in Lemma 3.3.2 yields

δAε = δAεij [γi, γj ] + δAεiγ
i + δAεs (3.21a)

δ2Aε = δ2Aεij [γi, γj ] + δ2Aεiγ
i + δ2Aεs (3.21b)

Here the component functions δAεij ∈ D′(R4,C) and δAεi , δAεs ∈ D′(R4,R) of the first variation
are given by

δAεij = 1
2
(
δvεi v

ε
j + vεi δv

ε
j

)
(3.21a,i)

δAεi = 2 Re
(
δvεi s

ε + vεi δs
ε
)

(3.21a,ii)
δAεs = Re

(
2(viεδvεi ) + 2sεδsε

)
(3.21a,iii)

while at second order we have for δ2Aεij ∈ D′(R4,C) and δ2Aεi , δ
2Aεs ∈ D′(R4,R) the expressions

δ2Aεij = 1
2
(
δ2vεi v

ε
j + vεi δ

2vεj + δvεi δv
ε
j

)
(3.21b,i)

δ2Aεi = 2 Re
(
δ2vεi s

ε + vεi δ
2sε + δvεi δs

ε
)

(3.21b,ii)
δ2Aεs = Re

(
2(viεδ2vεi ) + 2sεδ2sε + (δviεδvεi ) + δsεδsε

)
(3.21b,iii)

respectively.a

Proof. Inserting the perturbed regularized kernel of the fermionic projector into the expression
for the regularized closed chain as given in (3.13), taking the derivative with respect to τ and
evaluating at τ = 0 yields

δAεij =
dAετ,ij(x, y)

dτ

∣∣∣∣
τ=0

= 1
2

(dvετ,i
dτ vετ,j + vετ,i

dvετ,j
dτ

)∣∣∣∣
τ=0

= 1
2
(
δvεi v

ε
j + vεi δv

ε
j

)

δAεi =
dAετ,i(x, y)

dτ

∣∣∣∣
τ=0

= 2 Re
(dvετ,i

dτ sετ + vετ,i
dsετ
dτ

)∣∣∣∣
τ=0

= 2 Re
(
δvεi s

ε + vεi δs
ε
)

δAεs =
dAετ,s(x, y)

dτ

∣∣∣∣
τ=0

=
(
ηij

dvετ,i
dτ vετ,j + ηijvετ,i

dvετ,j
dτ + dsετ

dτ s
ε
τ + sετ

dsετ
dτ

)∣∣∣∣
τ=0

= ηijδvεi v
ε
j + ηijvεi δv

ε
i + δsεsε + sεδsε

= 2 Re
(
(viεδvεi ) + sεδsε

)
where we have set vε0,i := vεi and sε0 := sε. Proceeding for the second variations in exactly the
same way and expressing everything in terms of first and second variations of the regularized
kernel of the fermionic projector by using δ(n)( · ) = 1

n!
dn( · )τ

dτn |τ=0 yields

δ2Aεij = 1
2 ·

1
2

(d2vετ,i
dτ2 vετ,j + vετ,i

d2vετ,j
dτ2 + 2

dvετ,i
dτ

dvετ,j
dτ

)∣∣∣∣
τ=0

= 1
2
(
δ2vεi v

ε
j + vεi δ

2vεj + δvεi δv
ε
j

)
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δ2Aεi = 1
2 · 2 Re

(d2vετ,i
dτ2 sετ + vετ,i

d2sετ
dτ2 + 2

dvετ,i
dτ

dsετ
dτ

)∣∣∣∣
τ=0

= 2 Re
(
δ2vεi s

ε + vεi δ
2sε + δvεi δs

ε
)

δ2Aεs = 1
2

(
ηij

d2vετ,i
dτ2 vετ,j + ηijvετ,i

d2vετ,j
dτ2 + d2sετ

dτ2 s
ε
τ + sετ

d2sετ
dτ2 + 2ηij

dvετ,i
dτ

dvετ,j
dτ + 2dsετ

dτ
dsετ
dτ

)∣∣∣∣
τ=0

=
(
ηijδ2vεi v

ε
j + ηijvεi δ

2vεj + δ2sεsε + sεδ2sε + ηijδvεi δv
ε
j + δsεδsε

)
= Re

(
2(viεδ2vεi ) + 2sεδ2sε + (δviεδvεi ) + δsεδsε

)
This concludes the proof.

aFor completeness, we remark that we have identified, without explicitly mentioning, δPε ∈
L(R,D′(R4,L(C4,C4))) ' D′(R4,L(C4,C4)) and similarly for the second variation.

Equipped with these intermediate results, we are now ready to derive expressions for the variation
of the eigenvalues of the regularized closed chain.

Lemma 3.3.7 (Variation of the Eigenvalues of Aετ (x, y))

Let Aετ (x, y) be the regularized closed chain as derived in Lemma 3.3.2 with the regularized
kernel of the fermionic projector Pε replaced by a perturbed version Pετ . Computing the
variation of the corresponding perturbed eigenvalues using Definition 3.1.4 yields

δλε± = 2 Re
[
(viεδvεi ) + sεδsε

]
± 2√

Dε
Re
[
Bε(viεδvεi )− Cε(viεδvεi ) +

(
Bεsε + Cεsε

)
δsε
]

(3.22a)

and

δ2λε± = Re
[
2(viεδ2vεi ) + 2sεδ2sε + (δviεδvεi ) + δsεδsε

]
± 1√

Dε
Re
[
2Bε(viεδ2vεi )− 2Cε(viεδ2vεi ) + 2

(
Bεsε + Cεsε

)
δ2sε

+ 2
(
sε(viεδvεi ) + sε(viεδvεi )

)
δsε − (viεδvεj )(viεδvεi )

+ (viεδvεi )(v
j
εδv

ε
j )− Cε(δvkε δvεk) +Bε(δvkε δvεk)

]
∓ 1

(Dε)3/2
Re
[
(Cε)2(vkε δvεk)2 − 2BεCε(vkε δvεk)(vkε δvεk)− 2BεCε(vkε δvεk)(vkε δvεk)

+ (Bε)2(vkε δvεk)(vkε δvεk) + |Cε|2(vkε δvεk)2 + (Bε)2(vkε δvεk)(vkε δvεk)
− 2Cε

(
Bεsε + Cεsε

)
(vkε δvεk)δsε + 2Cε

(
Bεsε + Cεsε

)
(vkε δvεk)δsε

+ 2Bε
(
Bεsε + Cεsε

)(
(vkε δvεk)δsε − (vkε δvεk)δsε

)
+
(
|(vε)2|2 − (|vε|2)2)(Cε(δsε)2 +Bεδsεδsε

)]
(3.22b)

respectively.

Proof. The derivation of the variation of the eigenvalues is complicated by the fact that
introducing a perturbation of the regularized closed chain may remove the initial twofold
degeneracy of the eigenvalues λε±(x, y). As a consequence, also the spectral projector operators
need to be modified as explained by Finster.[11, Sec. 2.6.3] In order to compute the variation of
the eigenvalues which traces back to perturbations of the regularized kernel of the fermionic
projector, we follow the approach by Kato[73, Ch. 2, § 2] according to which the variation of the
eigenvalues at first and second order are given bya

δλε±(x, y) = 1
2 Tr

(
F ε±(x, y)δAε(x, y)

)
(3.23a)
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δ2λε±(x, y) = 1
2 Tr

(
F ε±(x, y)δ2Aε(x, y) +

F ε±(x, y)δAε(x, y)F ε∓(x, y)δAε(x, y)
λε±(x, y)− λε∓(x, y)

)
(3.23b)

where the leading factors 1
2 account for the two-fold degeneracy of the unperturbed eigenvalues

and F ε±(x, y) denote the unperturbed spectral projectors on the corresponding eigenspaces.

(1) First Variation of the Eigenvalues
We start by inserting the decomposition of the regularized spectral projectors and the variation
of the regularized closed chain into bilinear, vector and scalar parts as derived in Lemma 3.3.5
and Lemma 3.3.6. Recalling that traces of an odd number of Dirac matrices vanish identically,
(3.23a) reads

δλε±
(3.23a)= 1

2 Tr
[
F ε±,sδA

ε
s idC4 + F ε±,sδA

ε
kl[γk, γl] + F ε±,iδA

ε
j(x, y)γiγj

+ F ε±,ijδA
ε
,s[γi, γj ] + F ε±,ij(x, y)δAεkl[γi, γj ][γk, γl]

]
= 1

2

[
4F ε±,sδAεs + 4ηijF ε±,iδAεj + F ε±,ijδA

ε
kl Tr

(
[γi, γj ][γk, γl]

)]
To proceed, we make use of the relation Tr

[
[γi, γj ][γk, γl]

]
= 16

(
− ηikηjl + ηilηjk

)
from (B.3c)

and insert the explicit expressions for the individual components of the regularized spectral
projector and the variation of the regularized closed chain from (3.18) and (3.21), respectively.
In this way we arrive at

. . .
(3.18)=
(3.21)

1
2

[
2 · 2 Re

(
(viεδvεi ) + sεδsε

)
± 8ηij

Re
(
vεi s

ε
)

√
Dε

Re
(
δvεjs

ε + vεjδs
ε
)

± 2
(
− ηikηjl + ηilηjk

) vεi vεj√
Dε

(
δvεkv

ε
l + vεkδv

ε
l

)]
Spelling out all the products (whereby using Re(x) Re(y) = 1

2 Re(xy + xy) for the second term
in the first line), sorting terms according to their power in Dε results in

. . . = 2 Re
[
(viεδvεi ) + sεδsε

]
± 2√

Dε
Re
[(

(sε)2 − (vε)2)(viεδvεi ) +
(
(vε)2sε + |vε|2sε

)
δsε +

(
|sε|2 + |vε|2

)
(viεδvεi )

]
Finally, expressing everything in terms of the functions Bε, Cε defined in Definition 3.3.3 and
using the relation (vε)2sε + |vε|2sε (3.15)=

(3.15)
Bεsε + Cεsε we end up with the claimed expression

δλε±
(3.15)=
(3.15)

2 Re
[
(viεδvεi ) + sεδsε

]
± 2√

Dε
Re
[
Bε(viεδvεi )− Cε(viεδvεi ) +

(
Bεsε + Cεsε

)
δsε
]

(2) Second Variation of the Eigenvalues
For the evaluation of the second variation we basically proceed in the same way. However, due
to the second term in (3.23b) which contains various products involving Dirac matrices and
commutators of Dirac matrices, explicit calculations become lengthy and extremely tedious.
In order to make the derivation comprehensible for the interested reader, we present the full
details in a structured manner in Appendix B: Second Variation of the Eigenvalues of the
Regularized Closed Chain.

This concludes the proof.
aEquivalently, these formulas can also be obtained from Finster’s discussion.[11, eq. (2.6.5)]
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3.4 The Regularized Causal Action

In this final section of the present chapter, we bring together all results from the previous sections
to eventually arrive at an expression for the variation of regularized causal action which in turn
will serve as the starting point for the following chapter.

3.4.1 Variation of the Regularized Causal Lagrangian

We start by customizing the regularized causal Lagrangian introduced in Definition 2.2.14 to our
specific case, namely for regularized kernels of the fermionic projector with vector-scalar structure.

Lemma 3.4.1 (Regularized Causal Lagrangian for Pε as in Assumption 3.2.2)

Let Pε be a regularized kernel of the fermionic projector which has vector-scalar structure.
Then the regularized causal Lagrangian takes the form

Lε(x, y) =
(
λε+(x, y)− λε−(x, y)

)2 = 4Dε(ξ) (3.24)

where Dε(ξ) denotes the regularized discriminant introduced in Definition 3.3.3.

Proof. Inserting the form of the eigenvalues as derived in Lemma 3.3.4 into the definition of
the causal Lagrangian, the term Bε(ξ) cancels and we immediately arrive at

Lε(x, y) =
(
λε+(x, y)− λε−(x, y)

)2 (3.16)=
(
2 ·Dε(ξ)1/2

)2 = 4Dε(ξ) (3.25)

This concludes the proof.

Based on this expression for the regularized causal Lagrangian, we are now ready to derive its
variations at first and second order in perturbation theory.

Lemma 3.4.2 (Variation of the Regularized Causal Lagrangian)

Let Lετ (x, y) be the regularized causal Lagrangian from Lemma 3.4.1 where the eigenvalues
λε±(x, y) have been replaced by perturbed versions λε±,τ (x, y). Computing the first and second
variations yields

δLε = 16 Re
[
Bε(viεδvεi )− Cε(viεδvεi ) +

(
Bεsε + Cεsε

)
δsε
]

(3.26a)

and

δ2Lε = 8 Re
[
2Bε(viεδ2vεi )− 2Cε(viεδ2vεi ) + 2

(
Bεsε + Cεsε

)
δ2sε

+ 2sε(viεδvεi )δsε + 4sε(viεδvεi )δsε + 2sε(viεδvεi )δs
ε

+ (viεδvεi )(v
j
εδv

ε
j )− 2(viεδvεi )(viεδvεi ) + (viεδvεi )2

− Cε(δvkε δvεk) +Bε(δvkε δvεk) + (vε)2(δsε)2 + |vε|2δsεδsε
]

(3.26b)

respectively.

Proof. In order to derive the claimed expressions for the variation of the regularized causal
Lagrangian, we recall that the regularized causal Lagrangian is proportional to the square of
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the difference of the eigenvalues of the regularized closed chain. Perturbing the eigenvalues
and taking derivatives with respect to τ yields

δLε = 1
1!

d
dτ
(
λε+,τ − λε−,τ

)2∣∣∣
τ=0

= 2
(
λε+,τ − λε−,τ

)(dλε+
dτ −

dλε−
dτ

)∣∣∣∣
τ=0

= 2
(
λε+ − λε−

)(
δλε+ − δλε−

)
(3.27)

For the second variation we analogously find

δ2Lε = 1
2

d2

dτ2

(
λε+,τ − λε−,τ

)2∣∣∣
τ=0

= d
dτ

[(
λε+,τ − λε−,τ

)(dλε+,τ
dτ −

dλε−,τ
dτ

)]∣∣∣∣
τ=0

=
(

dλε+
dτ −

dλε−
dτ

)2
+
(
λε+ − λε−

)(d2λε+
dτ2 −

d2λε−
dτ2

)
=
(
δλε+ − δλε−

)2 + 2
(
λε+ − λε−

)(
δ2λε+ − δ2λε−

)
(3.28)

where in the last step we used the relation δ2λε± = 1
2

d2λε±,τ
dτ2

∣∣
τ=0. To arrive at the claimed

expressions, it remains to insert the formulas for δλε± and δ2λε± from (3.22a) and (3.22b),
respectively, along with λε+ − λε− = 2

√
Dε. For the first variation of the regularized causal

Lagrangian we obtain in this way

δLε (3.27)=
(3.22a)

2 · 2
√
Dε · 4√

Dε
Re
[
Bε(viεδvεi )− Cε(viεδvεi ) +

(
Bεsε + Cεsε

)
δsε
]

= 16 Re
[
Bε(viεδvεi )− Cε(viεδvεi ) +

(
Bεsε + Cεsε

)
δsε
]

(3.29)

where the first term in (3.22a) drops out and only the term proportional to (Dε)−1/2 remains.
For the second variation the procedure is basically the same, though slightly more involved
due to the necessity to compute squares of differences which involve several terms. Inserting
(3.22a) and (3.22b) into (3.28) yields

δ2Lε (3.22a)=
(3.22b)

(
2 · 2√

Dε
Re
[
Bε(viεδvεi )− Cε(viεδvεi ) +

(
Bεsε + Cεsε

)
δsε
])2

+ 4
√
Dε ·

(
1√
Dε

Re
[
2Bε(viεδ2vεi )− 2Cε(viεδ2vεi ) + 2

(
Bεsε + Cεsε

)
δ2sε

+ 2
(
sε(viεδvεi ) + sε(viεδvεi )

)
δsε − (viεδvεj )(viεδvεi )

+ (viεδvεi )(v
j
εδv

ε
j )− Cε(δvkε δvεk) +Bε(δvkε δvεk)

]
− 2

(Dε)3/2
Re
[
(Cε)2(vkε δvεk)2 − 2BεCε(vkε δvεk)(vkε δvεk)− 2BεCε(vkε δvεk)(vkε δvεk)

+ (Bε)2(vkε δvεk)(vkε δvεk) + CεCε(vkε δvεk)2 + (Bε)2(vkε δvεk)(vkε δvεk)
− 2Cε

(
Bεsε + Cεsε

)
(vkε δvεk)δsε + 2Cε

(
Bεsε + Cεsε

)
(vkε δvεk)δsε

+ 2Bε
(
Bεsε + Cεsε

)
(vkε δvεk)δsε − 2Bε

(
Bεsε + Cεsε

)
(vkε δvεk)δsε

+ Cε
(
|(vε)2|2 − (|vε|2)2)(δsε)2 +Bε

(
|(vε)2|2 − (|vε|2)2)δsεδsε])

Making use of the relation (Re(x))2 = 1
2 Re(|x|2 + x2) and rearranging terms yields

. . . = 8 Re
[
2Bε(viεδ2vεi )− 2Cε(viεδ2vεi ) + 2

(
Bεsε + Cεsε

)
δ2sε

+ 2
(
sε(viεδvεi ) + sε(viεδvεi )

)
δsε − (viεδvεj )(viεδvεi )



3. Derivation of the Second Variation of the Regularized Causal Action 57

+ (viεδvεi )(v
j
εδv

ε
j )− Cε(δvkε δvεk) +Bε(δvkε δvεk)

]
+ 8

Dε
Re
[
(Cε)2

���
��: (1)

(viεδvεi )2 − 2BεCε���
���

�: (2)

(viεδvεi )(viεδvεi )− 2BεCε���
��

��: (3)

(viεδvεi )(v
i
εδv

ε
i )

+ CεCε(viεδvεi )(viεδvεi ) + (Bε)2(viεδvεi )2 + (Bε)2
���

���
�: (4)

(viεδvεi )(viεδvεi )

− 2Cε
(
Bεsε + Cεsε

)
���

��:
(5)

(viεδvεi )δsε + 2Bε
(
Bεsε + Cεsε

)
(viεδvεi )δsε

+ 2Bε
(
Bεsε + Cεsε

)
��

���:
(6)

(viεδvεi )δs
ε − 2Cε

(
Bεsε + Cεsε

)
(viεδvεi )δsε

+
(
Bεsε + Cεsε

)2(δsε)2 +
∣∣(Bεsε + Cεsε

)
δsε
∣∣2]

− 8
Dε

Re
[
(Cε)2

���
��: cancels (1)

(vkε δvεk)2 − 2BεCε���
��

��:
cancels (2)

(vkε δvεk)(vkε δvεk)− 2BεCε
��

���
��:

cancels (3)

(vkε δvεk)(vkε δvεk)

+ (Bε)2(vkε δvεk)(vkε δvεk) + CεCε(vkε δvεk)2 + (Bε)2
���

���
�: cancels (4)

(vkε δvεk)(vkε δvεk)

− 2Cε
(
Bεsε + Cεsε

)
���

���:
cancels (5)

(vkε δvεk)δsε + 2Cε
(
Bεsε + Cεsε

)
(vkε δvεk)δsε

+ 2Bε
(
Bεsε + Cεsε

)
��

���
�: cancels (6)

(vkε δvεk)δsε − 2Bε
(
Bεsε + Cεsε

)
(vkε δvεk)δsε

+ Cε
(
|(vε)2|2 − (|vε|2)2)(δsε)2 +Bε

(
|(vε)2|2 − (|vε|2)2)δsεδsε]

= 8 Re
[
2Bε(viεδ2vεi )− 2Cε(viεδ2vεi ) + 2

(
Bεsε + Cεsε

)
δ2sε

+ 2
(
sε(viεδvεi ) + sε(viεδvεi )

)
δsε − (viεδvεj )(viεδvεi )

+ (viεδvεi )(v
j
εδv

ε
j )− Cε(δvkε δvεk) +Bε(δvkε δvεk)

]
+ 8

Dε
Re
[
−Dε(viεδvεi )(viεδvεi ) + Dε(viεδvεi )2

+ 2Dεsε(viεδvεi )δsε + 2Dεsε(viεδvεi )δsε

+ Dε(vε)2(δsε)2 + Dε|vε|2δsεδsε
]

Finally, cancelling terms and combing the remaining ones results in

δ2Lε = 8 Re
[
2Bε(viεδ2vεi )− 2Cε(viεδ2vεi ) + 2

(
Bεsε + Cεsε

)
δ2sε

+ 2sε(viεδvεi )δsε + 4sε(viεδvεi )δsε + 2sε(viεδvεi )δs
ε

+ (viεδvεi )(v
j
εδv

ε
j )− 2(viεδvεi )(viεδvεi ) + (viεδvεi )2

− Cε(δvkε δvεk) +Bε(δvkε δvεk) + (vε)2(δsε)2 + |vε|2δsεδsε
]

(3.30)

This concludes the proof.

3.4.2 Variation of the Regularized Causal Action

With the expression for the variation of the regularized causal Lagrangian at first and second order
at hand, we are finally in the position to derive the corresponding variation of the regularized
causal action. In contrast with the above derivations, however, we restrict our considerations to
the homogeneous case introduced in Subsection 2.3.3.

Theorem 3.4.3 (First and Second Variation of the Regularized Causal Action)

Let Lεh : R4 → R+
0 as well as Sεh be the homogeneous regularized causal Lagrangian and the

homogeneous regularized causal action as introduced in Definition 2.3.5. Furthermore, we
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assume that Pε0 ∈ C∞(R4,L(C4,C4)) is a spherically-symmetric minimizer of Sεh. Then the first
and second variation of the regularized causal action arising from an anisotropically deformed
Pετ ∈ D′(R4,L(C4,C4)) (for τ ∈ (0, τmax) with τmax > 0) around Pε0 are given by

δSεh =
∫
R

dξ0
∫
S2

dΩξ

Rεmax(ξ0)∫
0

dr r2δLεh(ξ) (3.31a)

δ2Sεh =
∫
R

dξ0
∫
S2

dΩξ

 Rεmax(ξ0)∫
0

dr r2δ2Lεh(ξ)− 1
2

(
r2 δLεh(ξ)2

∂rLεh(ξ)

)∣∣∣∣∣
r=Rεmax(ξ0)

 (3.31b)

where Rεmax : R→ R+
0 denotes the spherically-symmetric demarcation function corresponding

to Pε0.

Proof. Before we start with the actual derivation, we shall first establish the connection
with Subsection 2.2.4: The homogeneous analogue Σh : C∞(R4,L(C4,C4)) → R+

0 of the
causal action evaluation operator associates to a given homogeneous regularized kernel of the
fermionic projector Pε the homogeneous regularized causal action Sεh. Now, in order to be
able to compute variations of Σh in the sense of Definition 3.1.4, we have to regard Σh as
a functional on the space D′(R4,L(C4,C4)) of tempered distributionsa and evaluate it for
some Pετ ∈ D′(R4,L(C4,C4)) which arises from the minimizer Pε0 by slightly deforming the
regularization.

As a consequence of this deformation, not only the regularized closed chain and its eigenvalues
(see Lemma 3.3.7) and thus also the regularized causal Lagrangian (see Lemma 3.4.2) vary, but
also the region Rε is affected. More specifically, for an anisotropic deformation, the initially
spherically-symmetric demarcation function acquires an angular dependence.

To analyze the effect of the deformation of the regularization on Sεh at first and second order
in τ , we have to determine the first and second variations δΣh and δ2Σh of Σh at Pε0 in the
sense of Definition 3.1.4.

(1) First Variation of the Homogeneous Regularized Causal Action
To derive the first variation δΣh, we evaluate Σh at Pετ which basically amounts to replacing
Lεh by Lεh,τ in (2.41). Due to the fact that Lεh,τ (ξ) vanishes for ξ ∈ R4 \Rετ , we can furthermore
replace the domain of integration R4 by Rετ . Now, by taking the derivative of this expression
with respect to the parameter τ and evaluating at τ = 0 gives exactly the first variation δΣh(

δΣh(Pε0)
)
(δPε) =

= d
dτ

 ∫
Rετ

d4ξLεh,τ (ξ)


∣∣∣∣∣∣∣
τ=0

= d
dτ

∫
R

dξ0
∫
S2

dΩξ

Rεmax,τ (ξ0,θ,ϕ)∫
0

dr r2Lεh,τ (ξ)


∣∣∣∣∣∣∣
τ=0

Suppressing arguments and carrying out the derivative by exploiting Leibniz’s integral rule for
differentiation under the integral sign yields

· · · =
∫
R

dξ0
∫
S2

dΩξ

 Rεmax,τ∫
0

dr r2 dLεh,τ
dτ +

(
r2Lεh,τ

)∣∣∣
r=Rεmax,τ

dRεmax,τ

dτ


∣∣∣∣∣∣∣
τ=0

(3.32)

Using that Rεmax,τ and Lεh,τ reduce to Rεmax and Lεh in the limit τ → 0 and employing the
definition of the demarcation function, we conclude that the second term vanishes identically.
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We thus end up with

(
δΣh(Pε0)

)
(δPε) =

∫
R

dξ0
∫
S2

dΩξ

Rεmax(ξ0)∫
0

dr r2δLεh(ξ) (3.33)

where the variation δLεh must be understood as a function of δPε as given in (3.26a). To arrive
at a more suggestive notation, we will from now on replace

(
δΣh(Pε0)

)
(δPε) by δSεh.

(2) Second Variation of the Homogeneous Regularized Causal Action
For the derivation of the second variation δ2Σh we proceed in the same way as above: Starting
from the same initial expression, suppressing arguments and taking second derivatives with
respect to τ yields(
δ2Σh(Pε0)

)
(δPε, δ2Pε) =

= 1
2

d2

dτ2

∫
R

dξ0
∫
S2

dΩξ

Rεmax,τ (ξ0,θ,ϕ)∫
0

dr r2Lεh,τ (ξ)


∣∣∣∣∣∣∣
τ=0

(3.32)= 1
2

∫
R

dξ0
∫
S2

dΩξ

 Rεmax,τ∫
0

dr r2 d2Lεh,τ
dτ2 +

(
r2 dLεh,τ

dτ

)∣∣∣∣
r=Rεmax,τ

dRεmax,τ

dτ

+ d
dτ

((
r2Lεh,τ

)∣∣∣
r=Rεmax,τ

dRεmax,τ

dτ

)
∣∣∣∣∣∣∣
τ=0

Spelling out the derivative in the last term and combining the resulting terms with the last
term in the first line yields

· · · = 1
2

∫
R

dξ0
∫
S2

dΩξ

 Rεmax,τ∫
0

dr r2 d2Lεh,τ
dτ2 +

(
2r2 dLεh,τ

dτ
dRεmax,τ

dτ + r2 ∂L
ε
h,τ

∂r

(dRεmax,τ

dτ

)2

+
Lεh,τ

3
d2(Rεmax,τ )3

dτ2

)∣∣∣∣∣
r=Rεmax,τ


∣∣∣∣∣∣∣
τ=0

Note that in order to arrive at this result we have used that Lεh,τ (ξ)|r=Rεmax,τ
depends on

the parameter τ in two different ways: On the one hand, the parameter τ represents the
change in the function Lεh itself, which traces back to the replacement Pε0 → Pετ and leads to
the intrinsic change denoted by dLεh,τ

dτ
∣∣
τ=0. On the other hand, however, also the argument

ξ = (ξ0, Rεmax,τ , θ, ϕ) depends on τ which leads to the appearance of partial derivatives of Lεh,τ
with respect to the radial variable r. By evaluating the expression at τ = 0 and using that
the regularized causal Lagrangian vanishes upon evaluation at r = Rεmax(ξ0), the term in the
second line vanishes and we are left with(
δ2Σh(Pε0)

)
(δPε, δ2Pε) =

= 1
2

∫
R

dξ0
∫
S2

dΩξ

 Rεmax(ξ0)∫
0

dr r2 d2Lεh,τ
dτ2

∣∣∣∣
τ=0

+
(

2r2 dLεh,τ
dτ

dRεmax,τ

dτ + r2 ∂L
ε
h,τ

∂r

(dRεmax,τ

dτ

)2
)∣∣∣∣∣

r=Rεmax,τ


∣∣∣∣∣∣∣
τ=0
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In contrast with the first variation calculated above, the deformation of the domain of integration
does give a contribution at second order. The deformation of the demarcation function compared
with Rεmax is encoded in the derivatives of Rεmax,τ with respect to τ . Due to the fact that the
demarcation function is defined in terms of the regularized causal Lagrangian, we can trade in
its derivatives for derivatives of the regularized causal Lagrangian. Considering the defining
conditions for the deformed and undeformed demarcation function

0 = Lεh(ξ)
∣∣
r=Rεmax(ξ0) and 0 = Lεh,τ (ξ)

∣∣
r=Rεmax,τ (ξ0,θ,ϕ)

and expanding their difference in a Taylor series in the parameter τ up to first order yields

0 = Lεh,τ (ξ)
∣∣
r=Rεmax,τ (ξ0,θ,ϕ) − L

ε(ξ)
∣∣
r=Rεmax(ξ0)

= Lεh,τ
(
ξ0, Rεmax,τ (ξ0, θ, ϕ), θ, ϕ

)
− Lε(ξ)

∣∣
r=Rεmax(ξ0)

= τ

1!

[
dLεh,τ (ξ)

dτ

∣∣∣∣
r=Rεmax,τ (ξ0,θ,ϕ)

+
∂Lεh,τ (ξ)

∂r

∣∣∣∣
r=Rεmax,τ (ξ0,θ,ϕ)

dRεmax,τ (ξ0, θ, ϕ)
dτ

]∣∣∣∣∣
τ=0

+O(τ2)

Solving for the derivative of Rεmax,τ (ξ0, θ, ϕ) with respect to τ and inserting the result into the
intermediate expression for the second variation of the regularized causal action leads to(
δ2Σh(Pε0)

)
(δPε, δ2Pε) =

= 1
2

∫
R

dξ0
∫
S2

dΩξ

 Rεmax(ξ0)∫
0

dr r2 d2Lεh,τ (ξ)
dτ2

∣∣∣∣
τ=0
−

[
r2

∂rLε(ξ)

(dLεh,τ (ξ)
dτ

∣∣∣∣
τ=0

)2
]∣∣∣∣∣
r=Rεmax(ξ0)


Expressing this result in terms of δLεh = dLε

dτ
∣∣
τ=0 and δ2Lε = 1

2
d2Lε
dτ2

∣∣
τ=0 and denoting the

second variation as δ2Sεh finally yields

δ2Sεh = 1
2

∫
R

dξ0
∫
S2

dΩξ

 Rεmax(ξ0)∫
0

dr 2r2δ2Lε(ξ)−
(
r2
(
δLε(ξ)

)2
∂rLε(ξ)

)∣∣∣∣
r=Rεmax(ξ0)


In the same way as before, the variations δLεh and δ2Lεh must be understood as functions of the
variations δPε and δ2Pε as given in (3.26a) and (3.26b), respectively.

This concludes the proof.
aThe point of view that the (unregularized) kernel of the fermionic projector is regarded as a tempered

distribution was already mentioned in Footnote 19 on page 33. For a more in-depth discussion we refer to
Finster’s second book.[11, Lem. 1.2.8]
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Having derived an expression for the variation of the regularized causal action in terms of the
variation of the regularized causal Lagrangian, we now take this result as our starting point and
go one step further: By first decomposing the variations of the regularized kernel of the fermionic
projector into Fourier modes and subsequently expanding the latter into scalar and vector spherical
harmonics, we can derive multipole expansions

δSε =
∞∑
l=0

δSεl
[
∆(1)
l

]
and δ2Sε =

∞∑
l=0

δ2Sεl
[
∆(1)
l ,∆(2)

l

]
where the multipole moments δSεl and δ2Sεl are functionals of the multipole moments ∆(n)

lm (for
−l ≤ m ≤ l) of the first (n = 1) and second (n = 2) variations of the regularized kernel of
the fermionic projector in momentum space. The significance of these multipole expansions can
best be understood from a comparison with theoretical physics: In much the same way as the
details of the angular dependence of electromagnetic and gravitational potentials can be described
using spherical harmonics and reflect the shape of the underlying charge and mass distributions,
the multipole expansions of the variations of the regularized causal action provide information
regarding the question how deviations from a spherically-symmetrically regularized kernel of the
fermionic projector affect the regularized causal action. The goal of this chapter is to derive, in a
step-by-step approach, expressions for the multipole moments δSεl and δ2Sεl which will ultimately
turn out to be regularization-dependent integral operators with matrix-valued integral kernels.
These expressions as given in Theorem 4.3.1 will, in turn, serve as the starting point for further
investigations in Part III: Applications.
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4.1 Multipole Expansion of the Variations of Pε and Lε

In Subsection 4.1.1 we start by expanding the variation of the regularized kernel of the fermionic
projector in momentum space into a multipole series which requires not only ordinary scalar
spherical harmonics but also their vectorial counterparts. Subsequently, in Subsection 4.1.2 we
decompose the variation of the regularized causal Lagrangian into multipole moments of the
Fourier modes of the variation of the regularized kernel of the fermionic projector computed before.

4.1.1 Variation of the Regularized Kernel of the Fermionic Projector

In the following sections and chapters we always consider regularized kernels P̂ετ ∈ D′(R4,L(C4,C4))
of the fermionic projector in momentum space which must be understood as the Fourier modes
of a regularized kernel of the fermionic projector as discussed in Section 3.2. The subscript τ
indicates that P̂ετ is obtained from the minimizer P̂ε0 by “slightly” deforming the regularization
such that P̂ετ does in general no longer minimize the regularized causal action.

Definition 4.1.1 (Perturbed Regularized Kernel of the Fermionic Projector)

In momentum space, the perturbed regularized kernel of the fermionic projector takes the form

P̂ετ (p) =
3∑
i=0

v̂ετ,i(p)γ
i + ŝε(p)idC4 (4.1)

where γ0, . . . , γ3 denote the Dirac gamma matrices and where the vector and scalar component
distributions are given in terms of the functions aτ , bατ , cτ ∈ D′(R4,R) as follows

v̂ετ,0(p) := aτ (p)δ
(
σετ (p)

)
Θ(−p0) (4.1a)

v̂ετ,α(p) := −bατ (p)δ
(
σετ (p)

)
Θ(−p0) (4.1b)

ŝετ (p) := cτ (p)δ
(
σετ (p)

)
Θ(−p0) (4.1c)

Here the argument of the Dirac δ-distributions is the deformed regularized mass shell given by

σετ (p) = p2 − µετ (p) with σε0(p) = p2 − µε0(p) (4.2)

where the functions µετ ∈ C∞(R4,R) are deformed versions of the regularized mass shell
µε0 ∈ C∞(R4,R) which reduces to µ0

0(p) = µ2 for vanishing regularization.a

aNote that the mass shell parameter will be denoted by µ rather than m in order to avoid confusion with
the multipole parameter m.

Starting from this expression, one can now calculate the variation of the regularized kernel of
the fermionic projector around the minimizer P̂ε0 which, according to the above ansatz, does
in principle yield two contributions: On the one hand, there are variations which are due to
changes in the coefficient functions a0, b

α
0 , c0 while, on the other hand, one also obtains variations

originating from a deformation of the mass shell µε0 ∈ C∞(R4,R). In the most general case, of
course, both contributions have to be taken into account – for reasons of manageability, however,
we restrict our considerations as follows.

Assumption 4.1.2 (Variation of P̂ε0 and Rank Condition)

In what follows, variations of the regularized kernel of the fermionic projector always mean
variations of the component functions a0, b

α
0 , c0 ∈ D′(R4,R) while variations of the regularized
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mass shell will be disregarded. Thus, the variation of the components of the regularized kernel
of the fermionic projector for n = 1, 2 always take the form

δ̂(n)vε0(p) = δ(n)a(p)δ
(
σε(p)

)
Θ(−p0) (4.3a)

δ̂(n)vεα(p) = −δ(n)bα(p)δ
(
σε(p)

)
Θ(−p0) (4.3b)

δ̂(n)sε(p) = δ(n)c(p)δ
(
σε(p)

)
Θ(−p0) (4.3c)

where σε ≡ σε0(p) = p2 − µε0(p) denotes the undeformed regularized mass shell.

In addition to this, only deformations for which P̂ετ still has rank two and projects onto the
subspace of negative-energy solutions of the Dirac equation are admissible.

Optimizing the Regularization
As already explained in Section 1.3, it is the causal action principle that introduces dynamics
within the theory of causal fermion systems. When applied to a concrete physical situation
where spacetime and its matter content is modelled through a regularized kernel of the fermionic
projector, the causal action principle is aimed at adjusting the regularization encoded in the
regularized kernel of the fermionic projector in such a way that the causal action is minimized. The
resulting regularization corresponds to an optimal microstructure of physical spacetime. In what
follows, we will replace a spherically-symmetrically regularized kernel of the fermionic projector
by an anisotropically regularized one and study the consequences on Sε.

Scalar and Vector Spherical Harmonics Expansion
In order to allow for a systematic analysis of the effect of anisotropic deformations of the
regularization on Sε, we have to work out the dependence of the variations δSε and δ2Sε on the
multipole moments of the momentum space variations δP̂ε and δ2P̂ε . To this end, we not only
need the ordinary scalar spherical harmonics, but also their vectorial analogues.

Definition 4.1.3 (Vector Spherical Harmonics)

For (l,m) ∈ N0 × Z with −l ≤ m ≤ l, the vector spherical harmonics ~Ylm, ~Ψlm, ~Φlm : S2 → C3

are the functions defined as[74]

(θ, ϕ) 7→ ~Ylm(θ, ϕ) := Ylm(θ, ϕ) ~r
|~r |

(4.4a)

(θ, ϕ) 7→ ~Ψlm(θ, ϕ) := |~r |(gradYlm)(θ, ϕ) (4.4b)

(θ, ϕ) 7→ ~Φlm(θ, ϕ) := ~r × (gradYlm)(θ, ϕ) (4.4c)

where Ylm : S2 → C are the ordinary (scalar) spherical harmonics which, in terms of the
associated Legendre polynomials Plm : [−1, 1]→ R, are explicitly given bya

(θ, ϕ) 7→ Ylm(θ, ϕ) := (−1)m
√

(2l + 1)
4π

(l −m)!
(l +m)!Plm(cos(θ))eimϕ (4.5a)

with

x 7→ Plm(x) := (1− x2)m2 dmPl
dxm (x) and x 7→ Pl(x) := 1

2ll!
dl

dxl (x
2 − 1)l (4.5b)

aNote that there exist different conventions concerning the prefactors of the spherical harmonics. Here we
follow the convention used in standard textbooks on quantum mechanics such as the one by Messiah[75, eq. (B. 93)].
We remark that this convention also coincides with the one used in the standard textbook on classical
electrodynamics by Jackson[76, eq. (3.53)], with the slight difference that in the latter the phase factor (−1)m is
absorbed in the definition of the associated Legendre polynomials.
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Making use of the ordinary spherical harmonics as well as their vectorial analogues, the vector
and scalar components of the variations of the regularized kernel of the fermionic projector as
given in Assumption 4.1.2 can be decomposed into multipole moments as follows

δ(n)a(p) =
∞∑
l=0

l∑
m=−l

δ(n)alm(p0, |~p |)Ylm (4.6a)

δ(n)bα(p) =
∞∑
l=0

l∑
m=−l

[
δ(n)b

(1)
lm(p0, |~p |)Y αlm + δ(n)b

(2)
lm(p0, |~p |)Ψα

lm + δ(n)b
(3)
lm(p0, |~p |)Φαlm

]
(4.6b)

δ(n)c(p) =
∞∑
l=0

l∑
m=−l

δ(n)clm(p0, |~p |)Ylm (4.6c)

where we have suppressed the arguments of the scalar and vector spherical harmonics.1 For the
vector variation δ(n)bα we implicitly defined Y αlm := ~Ylm · ~eα,Ψα

lm := ~Ψlm · ~eα,Φαlm := ~Φlm · ~eα as
the scalar products of the vector spherical harmonics with the αth Cartesian unit vector in R3.
For notational convenience we furthermore combine the multipole moments δ(n)alm, δ(n)b

(1,2,3)
lm

and δ(n)clm into five-component, complex-valued vectors.

Definition 4.1.4 (Vector of Multipole Moments of Variations)

For n ∈ {1, 2} and (l,m) ∈ N0 ×Z with −l ≤ m ≤ l, the functions (∆(n))lm ∈ D′(R×R+
0 ,C5),

referred to as the vectors of multipole moments at order n, are defined as

∆(1)
lm(p0, |~p |) =



δalm(p0, |~p |)

δb
(1)
lm(p0, |~p |)

δb
(2)
lm(p0, |~p |)

δb
(3)
lm(p0, |~p |)

δclm(p0, |~p |)


(4.7a) (∆(2))lm(p0, |~p |) =



δ2alm(p0, |~p |)

δ2b
(1)
lm(p0, |~p |)

δ2b
(2)
lm(p0, |~p |)

δ2b
(3)
lm(p0, |~p |)

δ2clm(p0, |~p |)


(4.7b)

4.1.2 Variation of the Regularized Causal Lagrangian

Having expanded the variation of the regularized kernel of the fermionic projector into a multipole
series, we next decompose the variation of the regularized causal Lagrangian from Lemma 3.4.2
into Fourier modes and subsequently express everything in terms of the multipole moments ∆(1)

lm

and (∆(2))lm. Before, however, we introduce some abbreviating notation and terminology for
frequently occurring expressions.

Definition 4.1.5 (Hadamard Product)

For any two matrices A,B ∈ Cm×n their Hadamard product A�B is defined as the entrywise
product

(A�B)ij = AijBij (4.8)

1We will employ this practice of simplification of notation whenever there is no risk of confusion. Furthermore,
we will abbreviate sums over multipole indices as

∑
l,m

without specifying (l,m) ∈ N0 × Z where −l ≤ m ≤ l.
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Definition 4.1.6 (Matrices of Spherical Harmonics)

The matrices of spherical harmonics are defined as

Υlm := diag
(
Ylm, ξ

αY αlm, ξ
αΨα

lm, ξ
αΦαlm, Ylm

)
(4.9a)

Υlm|l′m′ :=



YlmYl′m′ Ylmξ
β
[
Y βl′m′ Ψβ

l′m′ Φβl′m′
]

YlmYl′m′

ξα


Y αlm

Ψα
lm

Φαlm

Yl′m′ ξαξβ


Y αlmY

β
l′m′ Y αlmΨβ

l′m′ Y αlmΦβl′m′

Ψα
lmY

β
l′m′ Ψα

lmΨβ
l′m′ Ψα

lmΦβl′m′

ΦαlmY
β
l′m′ ΦαlmΨβ

l′m′ ΦαlmΦβl′m′

 ξα


Y αlm

Ψα
lm

Φαlm

Yl′m′
YlmYl′m′ Ylmξ

β
[
Y βl′m′ Ψβ

l′m′ Φβl′m′
]

YlmYl′m′


(4.9b)

∗
Υlm|l′m′ :=



0
[

0 0 0
]

0
0

0

0



Y αlmY

α
l′m′ Y αlmΨα

l′m′ Y αlmΦαl′m′
Ψα
lmY

α
l′m′ Ψα

lmΨα
l′m′ Ψα

lmΦαl′m′
ΦαlmY αl′m′ ΦαlmΨα

l′m′ ΦαlmΦαl′m′




0

0

0


0

[
0 0 0

]
0


(4.9c)

where ξα is the αth component of ~ξ ∈ R3 with respect to the standard basis. Furthermore,
doubly occurring Greek indices are understood as triggering a summation from 1 to 3.

The apparent internal block matrix structure of these matrices of spherical harmonics will
become relevant later on, especially for the explicit computations in Appendix C. For the sake of
completeness, we therefore introduce the following terminology for the different blocks of the matrix.

Terminology 4.1.7 (Dotted, Double-Dotted and Asterisked Terms)

For the different blocks of the matrices Υlm|l′m′ and
∗
Υlm|l′m′ we introduce the following

terminology, which is chosen with mnemonic aspectsa in mind:

� Dotted Terms

I Dotted-unprimed terms are those parts of the matrices which are proportional to
the (3× 1) block matrix (Y αlm,Ψα

lm,Φαlm)T

I Dotted-primed terms are those parts of the matrices which are proportional to the
(1× 3) block matrix (Y βl′m′ ,Ψ

β
l′m′ ,Φ

β
l′m′)

� Double-dotted terms are those parts of the matrices which are proportional to the (3× 3)
block matrix with entries Yα

lmYβ
l′m′ where ~Yl(′)m(′) ∈ {~Yl(′)m(′) , ~Φl(′)m(′) , ~Ψl(′)m(′)}

� Asterisked terms are those parts of the matrices which are proportional to the (3× 3)
block matrix with entries Yα

lmYα
l′m′ where ~Yl(′)m(′) ∈ {~Yl(′)m(′) , ~Φl(′)m(′) , ~Ψl(′)m(′)}

aThe underlying idea of this terminology is the following: Dotted and double-dotted terms all originate from
scalar products of vector spherical harmonics ~Yl(′)m(′) with ~ξ. The number of dots indicates the number of scalar
products involved, i. e. one scalar product in ~ξ · ~Ylm (dotted-unprimed terms) and ~ξ · ~Yl′m′ (dotted-primed
terms), but two scalar products in (~ξ · ~Ylm)(~ξ · ~Yl′m′ ). In contrast, the asterisk indicates that vector spherical
harmonics ~Yl(′)m(′) form scalar products with themselves.

Making use of these matrices of spherical harmonics, the variation of the regularized causal
Lagrangian can be expanded in a multipole series.
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Lemma 4.1.8 (Multipole Expansion of δLε)

Let the spatial part of the vector component functions vεα of the unperturbed regularized kernel
of the fermionic projector take the form

vεα(ξ) = −ξαvε(ξ) (4.10)

with vε ∈ D′(R4,C). Then the multipole expansion and Fourier decomposition of the first
variation δLε(ξ) of the regularized causal Lagrangian as derived in Lemma 3.4.2 takes the form

δLε(ξ) =
∑
l,m

Re


∫
R3

d3~p

(2π)4 11×5 K
ε
lm(ξ, ~p )∆ε

lm(|~p |)

 (4.11)

where the matrix-valued functions Kε
lm for all (l,m) ∈ N0 × Z with −l ≤ m ≤ l are defined in

terms of a Hadamard product as

Kε
lm(ξ, ~p ) (4.9a)=

[
CεK �Υlm

]
EεKe−i~p·~ξ (4.11a)

with the coefficient matrix CεK : R4 → C5×5 and the function EεK : R× R+
0 → C as given in

(4.13a) and (4.13b), respectively.

Proof. Decomposing the perturbations δvεi (ξ) and δsε(ξ) into Fourier modes according to

δvεi (ξ) =
∫
R4

d4p

(2π)4 δ̂vεi (p)e
ipξ (4.12a) δsε(ξ) =

∫
R4

d4p

(2π)4 δ̂sε(p)eipξ (4.12b)

and replacing all occurrences of δvεi (ξ) and δsε(ξ) in (3.26a) by these expressions, we find

δLε(ξ) (3.26a)=
(4.12)

16 Re


∫
R4

d4p

(2π)4

[
ηij
(
Bεvεi − C

εvεi
)
δ̂vεj (p) +

(
Bεsε + Cεsε

)
δ̂sε(p)

]
eipξ


where we suppress the position space argument ξ both in the functions Bε, Cε and in the
vector and scalar components vεi , sε. Next, we insert the variations of the vector and scalar
component from (4.3) along with their multipole expansion as given in (4.6) and thus arrive at

δLε(ξ) (4.3)=
(4.6)

16
∑
l,m

Re


∫
R

dp0
∫
R3

d3~p

(2π)4

[
δ
(
p0 + ωεp

)
Θ(−p0)eipξ∣∣∂p0σε(p0, |~p |)|p0=−ωεp

∣∣ +
δ
(
p0 − ωεp

)
Θ(−p0)eipξ∣∣∂p0σε(p0, |~p |)|p0=+ωεp

∣∣
]
×

×
[(
Bεvε0 − Cεvε0

)
δalm(p0, |~p |)Ylm +

(
Bεsε + Cεsε

)
δclm(p0, |~p |)Ylm

−
(
Bεvεα − Cεvεα

)(
δb

(1)
lm(p0, |~p |)Y αlm + δb

(2)
lm(p0, |~p |)Ψα

lm + δb
(3)
lm(p0, |~p |)Φαlm

)]
where we have rewritten the composition of the δ-distribution with the regularized mass shell
σε in terms of the zeroes p0 = ±ωεp of σε(p0, |~p |). Carrying out the p0-integral and expressing
the integrand in terms of the vector ∆lm of multipole moments and the matrix of spherical
harmonics Υlm as introduced in (4.7) and (4.9a), respectively, we end up with

δLε(ξ) (4.7)=
(4.9a)

∑
l,m

Re


∫
R3

d3~p

(2π)4 11×5

[(
CεK �Υlm

)
EεKe−i~p·~ξ

]
∆lm

(
− ωεp, |~p |

) (4.13)



4. Derivation of the Multipole Expansion of Variations of the Regularized Causal Action 67

where the coefficient matrix CεK : R4 → C5×5 and the function EεK : R× R+
0 → C are defined

as

CεK(ξ) = diag
((
Bεvε0 − Cεvε0

)
, −
(
Bεvε − Cεvε

)
idC3 ,

(
Bεsε + Cεsε

))
(4.13a)

EεK(ξ0, |~p |) = 16eip0ξ0∣∣∂p0σε(p0, |~p |)
∣∣
∣∣∣∣
p0=−ωεp

(4.13b)

respectively. Taken together, the expression in square brackets in (4.13) will be denoted by

Kε
lm(ξ, ~p ) :=

(
CεK �Υlm

)
EεKe−i~p·~ξ (4.14)

where we usually suppress all the arguments. As a consequence of the regularization of the
mass shell, the multipole moments ∆lm acquire a dependence on the regularization through
ωεp. We define

(∆(n))εlm(|~p |) := (∆(n))lm(−ωεp, |~p |) (4.15)

for every n ∈ N. This concludes the proof.

In the same way as for the first variation of the regularized causal Lagrangian, we also expand the
second variation into a multipole series, where now the matrices Υlm|l′m′ and

∗
Υlm|l′m′ appear.

Lemma 4.1.9 (Multipole Expansion of δ2Lε)

Let the spatial part of the vector component functions vεα of the unperturbed regularized kernel
of the fermionic projector again take the form

vεα(ξ) = −ξαvε(ξ) (4.16)

with vε ∈ D′(R4,C). Then the multipole expansion and Fourier decomposition of the second
variation δ2Lε(ξ) of the regularized causal Lagrangian as derived in Lemma 3.4.2 takes the
form

δ2Lε(ξ) (4.7)=
(4.9b)

∑
l,m

Re


∫
R3

d3~p

(2π)4 11×5 K
ε
lm(ξ, ~p )(∆2)εlm(|~p |)


+ 1

2
∑
l,m

l′,m′

Re


∫
R3

d3~p

(2π)4

∫
R3

d3~q

(2π)4 ∆ε
lm(|~p |)TMε

lm|l′m′(ξ, ~p, ~q )∆ε
l′m′(|~q |)


+ 1

2
∑
l,m

l′,m′

Re


∫
R3

d3~p

(2π)4

∫
R3

d3~q

(2π)4 ∆ε
lm(|~p |)TNε

lm|l′m′(ξ, ~p, ~q )∆ε
l′(−m′)(|~q |)

 (4.17)

where the matrix-valued functions Mε
lm|l′m′ ,N

ε
lm|l′m′ for all (l,m), (l′,m′) ∈ N0 × Z with

−m(′) ≤ l(′) ≤ m(′) are defined in terms of Hadamard products as

Mε
lm|l′m′(ξ, ~p, ~q ) =

[
CεM �Υlm|l′m′ + Cε

∗
Υlm|l′m′

]
EεMe−i(~p+~q )·~ξ (4.17a)

Nε
lm|l′m′(ξ, ~p, ~q ) =

[
CεN �Υlm|l′m′ −Bε

∗
Υlm|l′m′

]
EεNe−i(~p−~q )·~ξ (4.17b)

with the coefficient matrices CεM,CεN : R4 → C5×5 and the functions EεM, EεN : R× (R+
0 )2 → C

as given in (4.19a,i), (4.19b,i) and (4.19a,ii), (4.19b,ii), respectively.
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Proof. Decomposing the perturbations δvεi (ξ) and δsε(ξ) into Fourier modes according to

δ(n)vεi (ξ) =
∫
R4

d4p

(2π)4 δ̂(n)vεi (p)e
ipξ (4.18a) δ(n)sε(x, y) =

∫
R4

d4p

(2π)4 δ̂(n)sε(p)eipξ (4.18b)

and replacing all occurrences in (3.26b) by these expressions, we find

δ2Lε(ξ) (3.26b)= 16 Re


∫
R4

d4p

(2π)4

[
ηij
(
Bεvεi − C

εvεi
)
δ̂2vεj (p) +

(
Bεsε + Cεsε

)
δ̂2sε(p)

]
eipξ

+ 1
2

∫
R4

d4p

(2π)4

∫
R4

d4q

(2π)4

[(
ηijηklvεi v

ε
k δ̂v

ε
j (p)δ̂vεl (q)− η

ijCεδ̂vεi (p)δ̂vεj (q)

+ ηijvεi s
εδ̂vεj (p)δ̂sε(q) + ηijvεi s

εδ̂sε(p)δ̂vεj (q)

+ (vε)2δ̂sε(p)δ̂sε(q)
)

+
(
ηijηkl

(
vεi v

ε
k − 2vεi vεk

)
δ̂vεj (p)δ̂vεl (q) + ηijBεδ̂vεi (p)δ̂vεj (q)

+ ηijvεi s
ε
(
δ̂sε(p)δ̂vεj (q) + 2δ̂vεj (p)δ̂sε(q)

)
+ ηijvεi s

ε
(
δ̂sε(q)δ̂vεj (p) + 2δ̂vεj (q)δ̂sε(p)

)
+ |vε|2δ̂sε(p)δ̂sε(q)

)]
ei(p+q)ξ


where we symmetrized the terms containing first-order variations of both the vector and scalar
component with regard to complex conjugations by exploiting the presence of the real part.
Making use of the fact that variations and complex conjugations commute, which in momentum
space amounts to

δ̂vεi (p)e
ipξ = δ̂vεi (p)e

−ipξ

the second variation of the regularized causal Lagrangian turns into the form

δ2Lε(ξ) = 16 Re


∫
R4

d4p

(2π)4

[
ηij
(
Bεvεi − C

εvεi
)
δ̂2vεj (p) +

(
Bεsε + Cεsε

)
δ̂2sε(p)

]
eipξ

+ 1
2

∫
R4

d4p

(2π)4

∫
R4

d4q

(2π)4

[(
ηijηklvεi v

ε
k δ̂v

ε
j (p)δ̂vεl (q)− η

ijCεδ̂vεi (p)δ̂vεj (q)

+ ηijvεi s
εδ̂vεj (p)δ̂sε(q) + ηijvεi s

εδ̂sε(p)δ̂vεj (q)

+ (vε)2δ̂sε(p)δ̂sε(q)
)

ei(p+q)ξ

+
(
ηijηkl

(
vεi v

ε
k − 2vεi vεk

)
δ̂vεj (p)δ̂vεl (q) + ηijBεδ̂vεi (p)δ̂vεj (q)

+ ηijvεi s
ε
(
δ̂sε(p)δ̂vεj (q) + 2δ̂vεj (p)δ̂sε(q)

)
+ ηijvεi s

ε
(
δ̂vεj (p)δ̂sε(q) + 2δ̂sε(p)δ̂vεj (q)

)
+ |vε|2δ̂sε(p)δ̂sε(q)

)
ei(p−q)ξ

]
where we once more exploited the presence of the real part in order to switch complex
conjugations of the first term in the last line such that all variations which carry a complex-
conjugation depend on the variable q. In exactly the same way as we did in the proof of the
previous Lemma 4.1.8, we now decompose the momentum-space variations by combining (4.3)
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with the multipole expansions from (4.6). Along with the relation

̂δ(n)( • )(q) =
∞∑
l′=0

l′∑
m′=−l′

δ(n)( • )lm(q0, |~q |)Ylm(θq, ϕq)

=
∞∑
l′=0

l′∑
m′=−l′

δ(n)( • )l′m′(q0, |~q |)(−1)m
′
Yl′(−m′)(θq, ϕq)

=
∞∑
l′=0

l′∑
m′=−l′

[
(−1)−m

′
δ(n)( • )l′(−m′)(q0, |~q |)

]
Yl′m′(θq, ϕq)

where we defined m̃′ := −m′ and subsequently replaced m̃′ → m′ in the last equality, we obtain

δ2Lε(ξ) (4.7)=
(4.9b)

∑
l,m

Re


∫
R3

d3~p

(2π)4 11×5K
ε
lm(ξ, ~p )(∆2)εlm(|~p |)


+ 1

2
∑
l,m

l′,m′

Re


∫
R3

d3~p

(2π)4

∫
R3

d3~q

(2π)4 ∆ε
lm(|~p |)TMε

lm|l′m′(ξ, ~p, ~q )∆ε
l′m′(|~q |)


+ 1

2
∑
l,m

l′,m′

Re


∫
R3

d3~p

(2π)4

∫
R3

d3~q

(2π)4 ∆ε
lm(|~p |)TNε

lm|l′m′(ξ, ~p, ~q )∆ε
l′(−m′)(|~q |)


Without explicitly spelling out the individual steps, we have carried out the integrals with respect
to p0 and q0 and exploited the properties of the δ-distribution together with the assumption
that the implicit equation σε(p0, |~p |) = 0 has two regularization-dependent solutions p0 = ±ωεp.

By analogy with Lemma 4.1.8, the functions Mε
lm|l′m′ ,N

ε
lm|l′m′ for all (l,m), (l′m′) ∈ N0 × Z

with −m(′) ≤ l(′) ≤ m(′) are given by

Mε
lm|l′m′(ξ, ~p, ~q ) =

(
CεM �Υlm|l′m′ + Cε

∗
Υlm|l′m′

)
EεMe−i(~p+~q )·~ξ (4.19a)

Nε
lm|l′m′(ξ, ~p, ~q ) =

(
CεN �Υlm|l′m′ −Bε

∗
Υlm|l′m′

)
(−1)−m

′
EεNe−i(~p−~q )·~ξ (4.19b)

where the matrices CεM,CεN : R4 → C5×5, referred to as coefficient matrices corresponding to
Mε and Nε, respectively, take the form

CεM(ξ) =


(vε0)2 − Cε −vε vε011×3 vε0s

ε

−vε vε013×1 vε vε13×3 −vε sε13×1

vε0 s
ε −vε sε11×3 (vε)2

 (4.19a,i)

CεN(ξ) =


−|vε0|2 +Bε −(vε0gε − 2vε0vε)11×3 vε0s

ε + 2vε0sε

−(vε vε0 − 2vεvε0)13×1 (vεvε − 2vεvε)13×3 −(vε sε + 2vεsε)13×1

vε0s
ε + 2vε0sε −(vεsε + 2vεsε)11×3 |vε|2

 (4.19b,i)

and where the functions EεM, EεN : R× (R+
0 )2 → C are given by

EεM(ξ0, |~p |, |~q |) = 16ei(p0+q0)ξ0∣∣∂p0σε(p0, |~p |)
∣∣∣∣∂q0σε(q0, |~q |)

∣∣
∣∣∣∣∣ p0=−ωεp
q0=−ωεq

(4.19a,ii)

EεN(ξ0, |~p |, |~q |) = 16ei(p0−q0)ξ0∣∣∂p0σε(p0, |~p |)
∣∣∣∣∂q0σε(q0, |~q |)

∣∣
∣∣∣∣∣ p0=−ωεp
q0=−ωεq

(4.19b,ii)
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We remark that the asterisked terms
∗
Υlm|l′m′ arise from those terms in δ2Lε(ξ) in which

first-order variations of the regularized kernel of the fermionic projector are contracted with
each other.

For the sake of completeness, we shall take the opportunity at this point to introduce, by analogy
with Mε

lm|l′m′ and Nε
lm|l′m′ , two more matrix-valued functions which will become relevant in the

following section.

Definition 4.1.10 (Matrix-Valued Functions Vεlm|l′m′ and Wε
lm|l′m′)

The matrix-valued functions Vεlm|l′m′ ,Wε
lm|l′m′ : R4 × (R3)2 → C5×5 are defined as

Vεlm|l′m′(ξ, ~p, ~q ) (4.11a)= 1
2
Kε
lm(ξ, ~p )15 K

ε
l′m′(ξ, ~q )

∂rLε(ξ)

∣∣∣∣∣
r=Rεmax(ξ0)

(4.20a)

Wε
lm|l′m′(ξ, ~p, ~q ) (4.11a)= 1

2
Kε
lm(ξ, ~p )15 K

ε
l′(−m′)(ξ, ~q )

∂rLε(ξ)

∣∣∣∣∣
r=Rεmax(ξ0)

(4.20b)

where Rεmax denotes the demarcation function as defined in Definition 2.3.8 and Kε
lm(ξ, ~p ) is

the matrix-valued function from (4.11a).

4.2 Multipole Expansion of δSε and δ2Sε

Building on the preliminary work from the previous section, we can now tackle the derivation of
the multipole expansion of the variations δSε and δ2Sε. For this, we have to insert the multipole
expansions of δLε(ξ) and δ2Lε(ξ) as derived in Lemma 4.1.8 and Lemma 4.1.9 into the expressions
for δSε and δ2Sε from Theorem 3.4.3. By interchanging the position space integral over the
region Rε (coming from the causal action) with the momentum space integrals (coming from the
Fourier decomposition of δLε(ξ) and δ2Lε(ξ)) and recalling that the Fourier exponential factors
are included in the matrix-valued functions Kε

lm, Mε
lm|l′m′ , Nε

lm|l′m′ , Vεlm|l′m′ Wε
lm|l′m′ it will turn

out to be advantageous to introduce so-called incomplete Fourier transforms.

Definition 4.2.1 (Incomplete Fourier Transforms)

The incomplete Fourier transforms of the matrix-valued functions Kε
lm, Mε

lm|l′m′ and Nε
lm|l′m′

as introduced in (4.11a), (4.17a) and (4.17b), respectively, are defined as

F
[
Kε
lm

]
(~p ) (4.11a)=

∫
Xε

d(ξ0, r)
∫
S2

dΩξ r2Kε
lm(ξ, ~p ) (4.21a)

{
F
[
Mε
lm|l′m′

]
(~p, ~q )

F
[
Nε
lm|l′m′

]
(~p, ~q )

}
(4.17a)=
(4.17b)

∫
Xε

d(ξ0, r)
∫
S2

dΩξ r2

{
Mε
lm|l′m′(ξ, ~p, ~q )

Nε
lm|l′m′(ξ, ~p, ~q )

}
(4.21b)

where we have decomposed the domain of integration Rε as Rε = Xε × S2. Likewise, for the
functions Vεlm|l′m′ and Wε

lm|l′m′ as introduced in (4.20a) and (4.20b), the incomplete Fourier
transforms are defined as{

F
[
Vεlm|l′m′

]
(~p, ~q )

F
[
Wε
lm|l′m′

]
(~p, ~q )

}
(4.20a)=
(4.20b)

∫
R

dξ0
∫
S2

dΩξ Rεmax(ξ0)2

{
Vεlm|l′m′(ξ, ~p, ~q )

Wε
lm|l′m′(ξ, ~p, ~q )

}∣∣∣∣∣
r=Rεmax(ξ0)

(4.21c)
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Let us remark that the terminology incomplete Fourier transforms reflects the fact that the radial
integrals do not extend to infinity as would be the case for ordinary Fourier transforms (in spherical
coordinates). This can ultimately be traced back to the fact that the homogeneous regularized
causal Lagrangian Lεh(ξ) vanishes for ξ ∈ R4 \ Rε. Using these incomplete Fourier transforms, the
multipole expansions of the variations of the regularized causal action take the following form.

Lemma 4.2.2 (Multipole Expansion of δSε and δ2Sε)

The multipole moments in the expansions δSε =
∑
l,m δSεlm and δ2Sε =

∑
l,m,l′,m′ δ

2Sεlm|l′m′ ,
expressed in terms of the incomplete Fourier transforms (4.21), are given by

δSεlm = Re


∫
R3

d3~p

(2π)4 11×5 F
[
Kε
lm

]
(~p )∆ε

lm(|~p |)

 (4.22a)

and

δ2Sεlm|l′m′ = Re


∫
R3

d3~p

(2π)4 δll′δmm′11×5 F
[
Kε
lm

]
(~p )(∆2)εlm(|~p |) + 1

2

∫
R3

d3~p

(2π)4

∫
R3

d3~q

(2π)4×

×∆ε
lm(|~p |)T

[
(−1)m

′
F
[
Mε
lm|l′m′

]
(~p, ~q )− (−1)m

′
F
[
Vεlm|l′m′

]
(~p, ~q )

+ F
[
Nε
lm|l′m′

]
(~p, ~q )−F

[
Wε
lm|l′m′

]
(~p, ~q )

]
∆ε
l′(−m′)(|~q |)

 (4.22b)

respectively.

Proof. We proceed in two steps and start with the derivation of the multipole expansion
of δSε.

(1) Multipole Expansion of δSε
Inserting for δLε(ξ) in (3.31a) the multipole expansion as given in (4.11) and interchanging
the momentum and position space integrals using Fubini’s theorem, we obtain

δSε (3.31a)=
∫
R

dξ0
∫
S2

dΩξ

Rεmax(ξ0)∫
0

dr r2δLε(ξ)

(4.11)=
∑
l,m

Re


∫
R3

d3~p

(2π)4

∫
R

dξ0

Rεmax(ξ0)∫
0

dr
∫
S2

dΩξ 11×5r
2Kε

lm(ξ, ~p )∆ε
lm(|~p |)


Combing the ξ0-integral and the radial integral and employing the definition of the incomplete
Fourier transform of the matrix-valued function Kε

lm which was introduced in (4.21a), we find

δSε (4.21a)=
∑
l,m

Re


∫
R3

d3~p

(2π)4 11×5 F
[
Kε
lm

]
(~p )∆ε

lm(|~p |)

 (4.23)

which concludes the proof for the multipole expansion of δSε.

(2) Multipole Expansion of δ2Sε
For the derivation of the multipole expansion of δ2Sε the approach is basically the same as for
δSε, though slightly more involved. Inserting for δLε(ξ) and δ2Lε(ξ) in (3.31b) the multipole
expansions as given in (4.11) and (4.17), respectively, we obtain
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δ2Sε (3.31b)=
∫
R

dξ0
∫
S2

dΩξ

 Rεmax(ξ0)∫
0

dr r2δ2Lε(ξ)− 1
2

(
r2 δLε(ξ)2

∂rLε(ξ)

)∣∣∣∣∣
r=Rεmax(ξ0)


(4.17)=
(4.11)

∑
l,m

Re


∫
R3

d3~p

(2π)4

∫
R

dξ0

Rεmax(ξ0)∫
0

dr
∫
S2

dΩξ r2Kε
lm(ξ, ~p )(∆2)εlm(|~p |)

+ 1
2
∑
l′,m′

∫
R3

d3~p

(2π)4

∫
R3

d3~q

(2π)4

∫
R

dξ0

Rεmax(ξ0)∫
0

dr
∫
S2

dΩξ ×

× r2
(

∆ε
lm(|~p |)TMε

lm|l′m′(ξ, ~p, ~q )∆ε
l′m′(|~q |)

+ ∆ε
lm(|~p |)TNε

lm|l′m′(ξ, ~p, ~q )∆ε
l′(−m′)(|~q |)

)
− 1

4
∑
l′,m′

∫
R3

d3~p

(2π)4

∫
R3

d3~q

(2π)4

∫
R

dξ0
∫
S2

dΩξ
[

r2

∂rLε(ξ)
×

×
(
11×5 K

ε
lm(ξ, ~p )∆ε

lm(|~p |)11×5 K
ε
l′m′(ξ, ~q )∆ε

l′m′(|~q |)

+ 11×5 K
ε
lm(ξ, ~p )∆ε

lm(|~p |)11×5 K
ε
l′m′(ξ, ~q )∆ε

l′m′(|~q |)
)]∣∣∣∣

r=Rεmax(ξ0)


For the term containing the inverse of the radial derivative of the regularized causal Lagrangian
we made use of the relation Re(x)2 = 1

2 Re(x2 + |x|2) which leads to the appearance of an
additional factor 1

2 . By exploiting the fact that 11×5 K
ε
lm(ξ, ~p )∆lm(|~p |) is scalar-valued and

thus invariant under transposition, the integrands in the last two lines can be rewritten as

11×5K
ε
lm(ξ, ~p )∆ε

lm(|~p |)11×5K
ε
l′m′(ξε, ~q )∆ε

l′m′(|~q |) =

=
(
11×5K

ε
lm(ξ, ~p )∆ε

lm(|~p |)
)T
11×5K

ε
l′m′(ξε, ~q )∆ε

l′m′(|~q |)
= ∆ε

lm(|~p |)TKε
lm(ξ, ~p )T

15K
ε
l′m′(ξ, ~q )∆ε

l′m′(|~q |)

and ∑
l′,m′

11×5 K
ε
lm(ξ, ~p )∆ε

lm(|~p |)11×5 K
ε
l′m′(ξ, ~q ) ∆ε

l′m′(|~q |) =

=
∑
l′,m′

(
11×5K

ε
lm(ξ, ~p )∆ε

lm(|~p |)
)T
11×5 K

ε
l′m′(ξ, ~q ) ∆ε

l′m′(|~q |)

=
∑
l′,m′

∆ε
lm(|~p |)TKε

lm(ξ, ~p )T
15 K

ε
l′(−m′)(ξ, ~q ) ∆ε

l′(−m′)(|~q |)

where we defined m̃′ := −m′ and subsequently replaced m̃′ → m′ in the last equality. Recalling
that Kε

lm is a diagonal matrix (and thus invariant under transposition) and expressing the
above combination of matrices Kε

lm and Kε
l′m′ in terms of the matrices Vεlm|l′m′ and Wε

lm|l′m′

introduced in (4.20), we arrive at

δ2Sε (4.20)=
∑
l,m

l′,m′

Re


∫
R3

d3~p

(2π)4

∫
Xε

d(ξ0, r)
∫
S2

dΩξ δll′δmm′r2
11×5 K

ε
lm(ξ, ~p )(∆2)εlm(|~p |)

+ 1
2

∫
R3

d3~p

(2π)4

∫
R3

d3~q

(2π)4

∫
Xε

d(ξ0, r)
∫
S2

dΩξ r2
(

∆ε
lm(|~p |)TMε

lm|l′m′(ξ, ~p, ~q )∆ε
l′m′(|~q |)

+ ∆ε
lm(|~p |)TNε

lm|l′m′(ξ, ~p, ~q )∆ε
l′(−m′)(|~q |)

)
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− 1
2

∫
R3

d3~p

(2π)4

∫
R3

d3~q

(2π)4

∫
R

dξ0
∫
S2

dΩξ Rεmax(ξ0)2
(

∆ε
lm(|~p |)Vεlm|l′m′(ξ, ~p, ~q )∆ε

l′m′(|~q |)

+ ∆ε
lm(|~p |)Wε

lm|l′m′(ξ, ~p, ~q )∆ε
l′(−m′)(|~q |)

)
Inserting the definition of the incomplete Fourier transforms from Definition 4.2.1 and replacing
∆ε
l′m′ by (−1)m′∆ε

l′(−m′) by exploiting the symmetry properties of the spherical harmonics
along with the fact that variations of the regularized kernel of the fermionic projector in
momentum space are real-valued, results in

δ2Sε (4.21)=
∑
l,m

l′,m′

Re


∫
R3

d3~p

(2π)4 δll′δmm′11×5 F
[
Kε
lm

]
(~p )(∆2)εlm(|~p |) + 1

2

∫
R3

d3~p

(2π)4

∫
R3

d3~q

(2π)4 ×

×
[
∆ε
lm(|~p |)T

(
(−1)m

′
F
[
Mε
lm|l′m′

]
(~p, ~q )− (−1)m

′
F
[
Vεlm|l′m′

]
(~p, ~q )

+ F
[
Nε
lm|l′m′

]
(~p, ~q )−F

[
Wε
lm|l′m′

]
(~p, ~q )

)
∆ε
l′(−m′)(|~q |)

]
By analogy with Lemma 4.1.9, the matrix-valued functions Vεlm|l′m′(ξ, ~p, ~q ) andWε

lm|l′m′(ξ, ~p, ~q )
introduced in (4.20) can each be decomposed into a Hadamard product of coefficient matrices
CεV,C

ε
W : R4 → C5×5 with the matrix Υlm|l′m′ from (4.20) as

Vεlm|l′m′(ξ, ~p, ~q ) =
[
CεV �Υlm|l′m′

]
EεVe−i(~p+~q )·~ξ (4.24a)

Wε
lm|l′m′(ξ, ~p, ~q ) =

[
CεW �Υlm|l′m′

]
(−1)−m

′
EεWe−i(~p−~q )·~ξ (4.24b)

where the functions EεV and EεW are defined as

EεV(ξ0, |~p |, |~q |) := 1
2
EεK(ξ0, |~p |)EεK(ξ0, |~q |)

∂rLε(ξ)

∣∣∣∣
r=Rεmax(ξ0)

(4.24a,i)

EεW(ξ0, |~p |, |~q |) := 1
2
EεK(ξ0, |~p |)EεK(ξ0, |~q |)

∂rLε(ξ)

∣∣∣∣
r=Rεmax(ξ0)

(4.24b,i)

To arrive at the above Hadamard product form of the matrices Vεlm|l′m′ and Wε
lm|l′m′ , we used

the fact that a matrix product (Dv �Dw)1n(Dx �Dy) with diagonal (n × n)-matrices Dv

corresponding to n-component vectors v can be rewritten as follows[
(Dv �Dw)1n(Dx �Dy)

]
ij

=
[
(Dv �Dw)(1n � 1n)(Dx �Dy)

]
ij

= (Dv �Dw)ik(1n � 1n)kl(Dx �Dy)lj
= (Dv)ii(Dw)iiδik(1n)kl(1n)kl(Dx)jj(Dy)jjδlj
= (Dv)ii(1n)ij(Dx)jj(Dw)ii(1n)ij(Dy)jj
= (Dv)iiδki(1n)klδlj(Dx)jj(Dw)iiδri(1n)rsδsj(Dy)jj
=
[
(Dv)ik(1n)kl(Dx)lj

][
(Dw)ir(1n)rs(Dy)sj

]
=
[(
Dv1nDx

)
�
(
Dw1nDy

)]
ij

Applying this result to the matrices defined in (4.20) by identifying the diagonal matrices as
Dv, Dx ≡ CK, Dw ≡ Υlm, Dy ≡ Υl′m′ , we are let to defining

CεV := CεK15C
ε
K

∣∣
r=Rεmax(ξ0) (4.24a,ii)

CεW := CεK15C
ε
K

∣∣
r=Rεmax(ξ0) (4.24b,ii)

which, together with the relation Υlm|l′m′ = Υlm15Υl′m′ , concludes the proof.
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Having reached this point, we shall pause for a moment to place what has been achieved so far in
the larger context and to explain the next steps: As mentioned at the beginning of this chapter
as well as in the paragraph on the optimization of the regularization, the multipole expansions
of δSε and δ2Sε provide information on how anisotropic deformations of the regularization affect
the regularized causal action. In order to make this information accessible and to investigate
whether there are, for example, deformations that leave the regularized causal action invariant,
the remaining part of this chapter is concerned with simplifying the expressions for δSε and δ2Sε
obtained in the previous Lemma 4.2.2 by first performing the angular integrals in position space in
Subsection 4.2.1, before we also compute the momentum space angular integrals in Subsection 4.2.2
which ultimately results in Theorem 4.3.1.

Procedural Note Due to the fact that the following computations are lengthy and unwieldy, but
nevertheless important, we have outsourced them, graded according to their rank of importance as
lemmas, propositions and auxiliary calculations, to Appendix C and just kept the most important
steps and results as lemmas in the main body. As a consequence of this approach, the proofs of
these lemmas are rather short and text-intensive by only stating the main idea and referring to
(combinations of) propositions for the full calculations including all details.

4.2.1 Performing the Position Space Angular Integration

We start the simplification procedure by carrying out the position space angular integrals contained
in the incomplete Fourier transforms as given in (4.21a), (4.21b) and (4.21c). Due to the fact that
the regularization of the unperturbed kernel of the fermionic projector is assumed to be spherically
symmetric, the only dependence of the integrands of the incomplete Fourier transforms on the
position space angular variables enters via the Fourier exponentials contained in the functions Eε•.
As a consequence, the coefficient matrices Cε• whose entries are combinations of the components of
the regularized kernel of the fermionic projector, do not play a role in the computation of these
integrals. Before we start with the explicit calculations, we introduce the following definition.

Definition 4.2.3 (Generalized Spherical Bessel Functions)

For any n ∈ Z the functions j0,n, which will be referred to as generalized spherical Bessel
functions, are defined as

j0,n(x) := j0(x)
xn−1 (4.26)

where j0(x) = sinc(x) denotes the first spherical Bessel function.

In order to evaluate the position space angular integrals in the incomplete Fourier transforms, we
make use of the following proposition.

Proposition 4.2.4 (Position Space Angular Integration of Υlm, Υlm|l′m′ ,
∗
Υlm|l′m′)

Let h, k ∈ C1(R+
0 ,R). Then, when integrated on both sides against h(|~p |) and h(|~p |)k(|~q |)

over R3 and R3 × R3, respectively, the following equalities hold∫
S2

dΩξ Υlme−i~p·~ξ (C.39)= Ylm × k(1)j0,1(|~p |r) (4.27a)

∫
S2

dΩξ Υlm|l′m′e−i(~p±~q )·~ξ (C.32)=
(C.39)
YlmYl′m′ ×

5∑
n=−1
n odd

m(n)j0,n(|~p+ ~q |r) for ~p+ ~q

n(n)j0,n(|~p− ~q |r) for ~p− ~q
(4.27b)
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∫
S2

dΩξ
∗
Υlm|l′m′e−i(~p±~q )·~ξ (C.51)= YlmYl′m′ ×

5∑
n=1
n odd


∗
m(n)j0,n(|~p+ ~q |r) for ~p+ ~q

∗
n(n)j0,n(|~p− ~q |r) for ~p− ~q

(4.27c)

where k(1) and m(n), n(n), ∗m(n), ∗n(n) for n ∈ {−1, 1, 3, 5} denote the matrix-valued differential
operators with respect to r which are explicitly given in Definition C.4.2.

Proof. As the proof of these relations is rather lengthy, we only sketch the basic idea using the
example of (4.27b) and refer to Appendix Sections C.2 to C.4 for the full calculations including
all details.

Multiplying the left-hand side of (4.27b) with h(|~p |)k(|~q |), integrating over R3 × R3 and
inserting the definition of the matrix Υlm|l′m′ from (4.9b) yields

∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
∫
S2

dΩξ



YlmYl′m′ Ylmξ
β
[
Y βl′m′ Ψβ

l′m′ Φβl′m′
]

YlmYl′m′

ξα


Y αlm

Ψα
lm

Φαlm

Yl′m′ ξαξβ


Y αlmY

β
l′m′ Y αlmΨβ

l′m′ Y αlmΦβl′m′

Ψα
lmY

β
l′m′ Ψα

lmΨβ
l′m′ Ψα

lmΦβl′m′

ΦαlmY
β
l′m′ ΦαlmΨβ

l′m′ ΦαlmΦβl′m′

 ξα


Y αlm

Ψα
lm

Φαlm

Yl′m′
YlmYl′m′ Ylmξ

β
[
Y βl′m′ Ψβ

l′m′ Φβl′m′
]

YlmYl′m′


e−i(~p±~q )·~ξ (4.28)

To evaluate the expression, we make use of the block matrix structure introduced in
Terminology 4.1.7 and compute the integrals for the dotted, double-dotted and asterisked
terms separately which is done in Appendix Section C.2, Appendix Section C.3 and Appendix
Section C.4, respectively. The result for the matrix Υlm follows from Corollary C.2.2 to
Lemma C.2.1.

Having decomposed the matrices in this way, the central idea underlying all calculations is to
convert derivatives in momentum space (which enter through the vector spherical harmonics)
into derivatives with respect to the position space variable r. We achieve this by first rewriting
scalar products of ~ξ with vector spherical harmonics as gradients of the exponential factor with
respect to the momentum space variables. Subsequently, the position space angular integrals
can be easily carried out using Proposition C.1.1 which leads to the appearance of generalized
spherical Bessel functions. Afterwards, the momentum space gradients contained in the vector
spherical harmonics are converted into position space derivatives with respect to the radial
variable r by repeated integration by parts. Finally, the derivatives acting on the generalized
spherical Bessel functions are combined into matrix-valued differential operators m(n), n(n) and
∗
m(n), ∗n(n) (see Definition C.4.2).

This proposition now allows to express the incomplete Fourier transforms from Definition 4.2.1 as
a product of scalar spherical harmonics and regularization-dependent, matrix-valued functions
which exclusively depend on the momentum space variables |~p |, |~q | as well as on k± := |~p± ~q |.

Lemma 4.2.5 (Position Space Angular Integration in (4.21))

By carrying out the position space angular integrals using Proposition 4.2.4, the incomplete
Fourier transforms as introduced in Definition 4.2.1 evaluate to

F
[
Kε
lm

]
(~p ) =

∫
Xε

d(ξ0, r) r2Ylm × EεK
(
CεK � k(1))j0,1(|~p |r) (4.29a)

{
F
[
Mε
lm|l′m′

]
(~p, ~q )

F
[
Nε
lm|l′m′

]
(~p, ~q )

}
=

5∑
n=−1
n odd

∫
Xε

d(ξ0, r) r2YlmYl′m′×

×

{
EεM

(
CεM �m(n) + Cε

∗
m(n))j0,n(k+r)

(−1)−m′EεN
(
CεN � n(n) −Bε ∗n(n))j0,n(k−r)

}
(4.29b)
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{
F
[
Vεlm|l′m′

]
(~p, ~q )

F
[
Wε
lm|l′m′

]
(~p, ~q )

}
=

5∑
n=1
n odd

∫
R

dξ0 Rεmax(ξ0)2YlmYl′m′×

×

{
EεV
(
CεV �m(n))j0,n(k+r)

(−1)−m′EεW
(
CεW � n(n))j0,n(k−r)

}∣∣∣∣∣
r=Rεmax(ξ0)

(4.29c)

where Cε• denote the coefficient matrices (see (4.13a), (4.19a,i), (4.19b,i), (4.24a,ii), (4.24b,ii)),
Eε• the corresponding functions containing the exponential factor as well as the regularization
of the mass shell (see (4.13b), (4.19a,ii), (4.19b,ii), (4.24a,i), (4.24b,i)) and m(n), n(n), ∗m(n),
∗
n(n) stand for the matrix-valued differential operators as introduced in Definition C.4.2.

Proof. The assumption of spherical symmetry for the regularization of the unperturbed kernel
of the fermionic projector implies that within the matrix-valued functions Kε

lm, Mε
lm|l′m′ ,

Nε
lm|l′m′ , Vεlm|l′m′ , Wε

lm|l′m′ only the Fourier exponentials (which are contained in the functions
Eε•) as well as the matrices of spherical harmonics Υlm and Υlm|l′m′ depend on position
space angular variables. As a consequence of this, the position space angular integrals in
Definition 4.2.1 can be carried out using Proposition 4.2.4 while the coefficient matrices Cε• as
well as the functions Bε and Cε remain unchanged.

4.2.2 Performing the Momentum Space Angular Integrations

Having completed the computation of the position space angular integrals contained in the
incomplete Fourier transforms in the previous subsection, we have already come one big step
closer to our goal, namely to simplify the expressions for the multipole moments of δSε and δ2Sε
in Lemma 4.2.2.

In order to represent the multipole moments (4.22a) and (4.22b) as integral operators in momentum
space acting on functions in D′(R+

0 ,R), however, the remaining momentum space angular integrals
have to be carried out. By analogy with the previous subsection, we start by introducing so-called
angular-integrated incomplete Fourier transforms.

Definition 4.2.6 (Angular-Integrated Incomplete Fourier Transforms)

By slight abuse of notationa, we define angular-integrated incomplete Fourier transforms as

F
[
Kε
lm

]
(|~p |) (4.21a):=

∫
S2

dΩp F
[
Kε
lm

]
(~p ) (4.30a)

{
F
[
Mε
lm|l′m′

]
(|~p |, |~q |)

F
[
Nε
lm|l′m′

]
(|~p |, |~q |)

}
(4.21b):=
∫
S2

dΩp
∫
S2

dΩq

{
F
[
Mε
lm|l′m′

]
(~p, ~q )

F
[
Nε
lm|l′m′

]
(~p, ~q )

}
(4.30b)

{
F
[
Vεlm|l′m′

]
(|~p |, |~q |)

F
[
Wε
lm|l′m′

]
(|~p |, |~q |)

}
(4.21c):=
∫
S2

dΩp
∫
S2

dΩq

{
F
[
Vεlm|l′m′

]
(~p, ~q )

F
[
Wε
lm|l′m′

]
(~p, ~q )

}
(4.30c)

aIn order to avoid the appearance of another subscript or superscript, we denote the incomplete Fourier
transforms and their angular-integrated counterparts by the same symbol F [( • )ε

lm|l′m′ ] and distinguish both
only through their arguments (~p, ~q ) and (|~p |, |~q |), respectively.

To compute these angular-integrated incomplete Fourier transforms, we recall that the incomplete
Fourier transforms from Lemma 4.2.5 depend on the momentum space angular variables (θp, ϕp)
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and (θq, ϕq) through the (scalar) spherical harmonics Ylm(θp, ϕp) and Yl′m′(θq, ϕq) and via the
arguments k± := |~p± ~q | of the generalized spherical Bessel functions j0,n(k±r). Therefore, the
task in this subsection actually boils down to evaluate double integrals of the form∫

S2

dΩp
∫
S2

dΩq Ylm(θp, ϕp)Yl′m′(θq, ϕq)j0,n(|~p± ~q |r) (4.31)

for arbitrary n ∈ Z and (l,m), (l′,m′) ∈ N0 × Z with −l(′) ≤ m(′) ≤ l(′).

4.2.2.1 The Integral Operators T±n

In order to compute these double integrals in a systematic way, we first introduce the following
integral operators.

Definition 4.2.7 (Integral Operator)

Let ~p ∈ R3 and r, |~q | ∈ R+
0 be fixed parameters. Then, for any n ∈ Z, the integral operators

T±n : L2(S2,C)→ L2(S2,C) are defined as

[
T±n (ψ)

]
(~̂p ) (4.26):=

∫
S2

dΩq j0,n
(
|~p± ~q |r

)
ψ(~̂q ) (4.32)

where the integral kernel is given by the generalized spherical Bessel functions introduced in
Definition 4.2.3 and ~̂p := ~p/|~p | denotes the unit vector in the direction of ~p.

To benefit from this definition, we study the properties of this integral operator by first proving
its spherical symmetry and then calculating its eigenvalues.

Lemma 4.2.8 (Spherical Symmetry of the Integral Operator T±n )

For any n ∈ Z, the operators T±n as introduced in Definition 4.2.7 commute with unitary
representations UR : L2(S2,C)→ L2(S2,C) of R ∈ SO(3) which act on ψ ∈ L2(S2,C) as

ψ(~̂p ) 7→
[
UR(ψ)

]
(~̂p ) := ψ(R−1~̂p ) (4.33)

where ~̂p := ~p/|~p | again denotes the unit vector in the direction of ~p.

Proof. Let n ∈ Z be an arbitrary integer. To show that T±n commutes with the unitary
representation UR for arbitrary rotations R ∈ SO(3), we act with the combined operator URT±n
on ψ ∈ L2(S2,C) and use the action of UR as well as the definition of the integral operator
which yields[

(URT±n )(ψ)
]
(~̂p ) =

[
UR(T±n ψ)

]
(~̂p ) (4.33)= (T±n ψ)(R−1~̂p ) (4.32)=

∫
S2

dΩq j0,n(|R−1~p− ~q |r)ψ(~̂q )

Rewriting ~q = R−1(R~q ), defining the rotated integration variable ~qr := R~q and taking into
account that rotations do not alter the length of vectors, we find

. . . =
∫
S2

dΩq j0,n(|R−1(~p− ~qr)|r)ψ(R−1~̂qr) =
∫
S2

dΩqr j0,n(|~p− ~qr|r)ψ(R−1~̂qr)
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where for the last equality we exploited the fact that the domain of integration as well as the
length of vectors are both invariant under rotations. Rewriting ψ(R−1~̂qr) = (URψ)(~̂qr) and
making use of the definition of the integral operator, we finally end up with

. . .
(4.33)=
∫
S2

dΩqr j0,n(|~p− ~qr|r)(URψ)(~̂qr)
(4.32)=
[
T±(URψ)

]
(~̂p ) =

[
(T±UR)(ψ)

]
(~̂p )

This calculation demonstrates that for arbitrary, but fixed parameters ~p ∈ R3, r, |~q | ∈ R+
0 and

for arbitrary n ∈ Z, ψ ∈ L2(S2,C) the following relation holds[
(URT±)(ψ)

]
(~̂p ) =

[
(T±UR)(ψ)

]
(~̂p ) ⇔ [T±, UR] = 0 (4.34)

which means that for any n ∈ Z the integral operators T±n : L2(S2,C)→ L2(S2,C) commute
with unitary representations of R ∈ SO(3) and are therefore spherically symmetric.

The spherical symmetry of the integral operators introduced in Definition 4.2.7 greatly simplifies
the computation of the eigenvalues.

Lemma 4.2.9 (Eigenfunctions and Eigenvalues of the Integral Operators T±n )

For any n ∈ Z, the eigenfunctions of the integral operators T±n as defined in Definition 4.2.7 are
spherical harmonics Ylm. For fixed l, the eigenvalue t±n (l,m) corresponding to the eigenfunction
Ylm is independent of m.

Proof. Let n ∈ Z be arbitrary but fixed. According to Lemma 4.2.8, the integral operators
T±n as introduced in Definition 4.2.7 commute with unitary representations UR for arbitrary
rotations R ∈ SO(3). Due to the fact that the angular momentum operator is the generator of
rotations R ∈ SO(3), also the integral operators T±n commute with the angular momentum
operator

∀n ∈ Z :
[
T±n , ~L

]
= 0

This, in turn, implies via the theorem on eigenfunctions of commuting operators that T±n and
~L have the same set of eigenfunctions, namely the spherical harmonics Ylm.

Having said this, it remains to determine the eigenvalues t±n of the operators T±n and to figure
out their dependence on l and m. Supposing that the eigenvalues depend both on l and ma,
we obtain by acting with T±n on Ylm

∀(l,m) ∈ N0 × Z with − l ≤ m ≤ l : t±n (l,m)Ylm(~̂p ) = T±n Ylm(~̂p ) (4.35)

By exploiting the commutator relation [T±n , UR] (4.33)= 0, the operator T±n on the right-hand side

can be rewritten as follows

∀n ∈ Z : T±n = idT±n = U−1
R URT

±
n = U−1

R T±n UR (4.36)

which turns the above equation into

t±n (l,m)Ylm(~̂p ) = U−1
R T±n URYlm(~̂p ) (4.33)= U−1

R T±n Ylm(R−1~̂p ) (4.37)

At this point, we choose the so far unspecified rotation R ∈ SO(3) such that R−1~p coincides
with the z-axis. As a consequence of this choice we can make use of a special property of
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spherical harmonics: Evaluating Ylm(~̂p ) on the z-axis (i. e. for θp = 0), all spherical harmonics
except for those with m = 0 vanish identically. We thus find

t±n (l,m)Ylm(~̂p ) = U−1
R T±n Ylm(R−1~̂p ) = U−1

R T±n Yl0(0, ϕp)
(4.35)= U−1

R t±n (l, 0)Yl0(0, ϕp) (4.38)

Reexpressing Yl0(0, ϕp) by URYlm(~̂p ) finally results in

∀(l,m) ∈ N0 × Z with − l ≤ m ≤ l : t±n (l,m)Ylm(~̂p ) = t±n (l, 0)Ylm(~̂p ) (4.39)

which demonstrates that for fixed l the eigenvalues are independent of m. This concludes the
proof.

aAs the integral operators T±n according to Definition 4.2.7 also carry a (not explicitly indicated) dependence
on the parameters r, |~p |, |~q | ∈ R+

0 , the eigenvalues may also depend on those parameters. For the sake of clarity,
however, we suppress this dependence at this point.

This lemma together with the definition of the integral operators T±n allows to compute the double
integrals in (4.31) as follows.

Proposition 4.2.10 (Evaluation of Momentum Space Angular Integrals)

The momentum space angular integrals appearing in the angular-integrated incomplete Fourier
transforms evaluate to ∫

S2

dΩp Ylm(θp, ϕp)j0,1(|~p |r) = δl0δm0√
4π

t±1 (0, r, |~p |, 0) (4.40a)

∫
S2

dΩp
∫
S2

dΩq Ylm(θp, ϕp)Yl′m′(θq, ϕq)j0,n(|~p± ~q |r) = t±n (l′, r, |~p |, |~q |)×

× (−1)m
′
δll′δm(−m′) (4.40b)

where t±n (l′, r, |~p |, |~q |) denote the eigenvalues of the integral operators introduced in Defini-
tion 4.2.7.

Proof. For the angular-integrated incomplete Fourier transform of F
[
Kε
lm

]
(~p ) we have to

evaluate only one momentum space angular integral. Carrying out this integral by using the
orthogonality properties of the spherical harmonics yields∫

S2

dΩp Ylm(θp, ϕp)j0,1(|~p |r) =

√
4πj0,1(|~p |r)

∫
S2

dΩp Ylm(θp, ϕp)Y00(θp, ϕp) = δl0δm0√
4π

t±1 (0, r, |~p |, 0) (4.41)

Note that for the second equality we used the fact that the generalized spherical Bessel function
j0,1(|~p |r) is related to the eigenvalues t±n via 4πj0,1(|~p |r) = t±1 (0, r, |~p |, 0) which can be derived
in anticipation of Lemma 4.2.13.

For all other angular-integrated incomplete Fourier transforms there are two momentum space
angular integrals. Expressing them in terms of the integral operators T±n and making use of
Lemma 4.2.9 yields ∫

S2

dΩp
∫
S2

dΩq Ylm(θp, ϕp)Yl′m′(θq, ϕq)j0,n(|~p± ~q |r) =
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(4.32)=
∫
S2

dΩp Ylm(θp, ϕp)T±n Yl′m′(θp, ϕp)

= t±n (l′, r, |~p |, |~q |)
∫
S2

dΩp Ylm(θp, ϕp)Yl′m′(θp, ϕp)

= t±n (l′, r, |~p |, |~q |)(−1)m
′
δll′δm(−m′) (4.42)

where in the last step we again exploited the orthogonality relations for spherical harmonics.

Before we proceed, we recall that the matrix-valued differential operators m(n), n(n) and ∗
m(n), ∗n(n)

act on the generalized spherical Bessel functions j0,n(k±r). Combining this fact with the result
from Proposition 4.2.10 suggests to introduce the following matrix-valued functions.

Definition 4.2.11 (Multipole Matrices)

For l, l′ ∈ N0, the matrix-valued functions K0 : (R+
0 )2 → R5×5 and Mll′ ,Nll′ ,

∗
Mll′ ,

∗
Nll′ :

(R+
0 )3 → R5×5, referred to as multipole matrices, are defined as

K0(r, |~p |) := k(1)(r, |~p |)t±1 (0, r, |~p |, 0) (4.43a)

(∗)

Mll′(r, |~p |, |~q |) :=
5∑

n=−1
n odd

(∗)
m (n)(l, l′, r, |~p |, |~q |)t+n (l′, r, |~p |, |~q |) (4.43b)

(∗)

Nll′(r, |~p |, |~q |) :=
5∑

n=−1
n odd

(∗)
n (n)(l, l′, r, |~p |, |~q |)t−n (l′, r, |~p |, |~q |) (4.43c)

where k(1) and m(n), n(n) as well as their asterisked counterparts denote the matrix-valued
derivative operators with respect to r as defined in Definition C.4.2.

These matrix-valued functions, in turn, allow to express the angular integrated incomplete Fourier
transforms introduced in Definition 4.2.6 as follows.

Lemma 4.2.12 (Angular-Integrated Incomplete Fourier Transforms)

The non-vanishing angular-integrated incomplete Fourier transforms evaluate to

F
[
Kε

00
]
(|~p |) =

∫
Xε

d(ξ0, r) r2EεK√
4π
(
CεK � K0

)
(4.44a)

{
F
[
Mε
lm|l(−m)

]
(|~p |, |~q |)

F
[
Nε
lm|l(−m)

]
(|~p |, |~q |)

}
=
∫
Xε

d(ξ0, r)

 (−1)−mr2EεM
(
CεM �Mll + Cε

∗
Mll

)
r2EεN

(
CεN �Nll −Bε

∗
Nll

)
 (4.44b)

{
F
[
Vεlm|l(−m)

]
(|~p |, |~q |)

F
[
Wε
lm|l(−m)

]
(|~p |, |~q |)

}
=
∫
R

dξ0

{
(−1)−mr2EεV

(
CεV �Mll

)
r2EεW

(
CεW �Nll

) }∣∣∣∣∣
r=Rεmax(ξ0)

(4.44c)

where Cε• denote the coefficient matrices (see (4.13a), (4.19a,i), (4.19b,i), (4.24a,ii), (4.24b,ii)),
Eε• the corresponding functions containing the exponential factor as well as the regularization
of the mass shell (see (4.13b), (4.19a,ii), (4.19b,ii), (4.24a,i), (4.24b,i)) and K0, Mll, Nll as
well as their asterisked counterparts are the multipole matrices from Definition 4.2.11.
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Proof. To arrive at the claimed expressions, we insert the incomplete Fourier transforms from
Lemma 4.2.5 into Definition 4.2.6 and subsequently carry out the angular integrals using the
results from Proposition 4.2.10. Note that as a consequence of the orthogonality relations of
the spherical harmonics, only those angular-integrated incomplete Fourier transforms with
l = l′ and m = −m′ are non-vanishing. Finally, by expressing everything in terms of the
multipole matrices we end up with the claimed expressions. This concludes the proof.

We emphasize that these angular-integrated incomplete Fourier transforms contain the full infor-
mation about the chosen regularization of the unperturbed, spherically-symmetrically regularized
kernel of the fermionic projector (via the functions Rεmax and Eε• as well as the coefficient matrices
Cε•) and additionally provide information about the weight of the contribution depending on the
multipole order l.

4.2.2.2 Closed-Form Expression for the Eigenvalues of T±n

In Lemma 4.2.9 we have shown that the eigenvalues t±n of the integral operators T±n depend on
the multipole order l, but not on the parameter m. In order to quantify this dependence on l as
well as the dependence on the other variables r, |~p | and |~q |, it remains to work out an explicit
expression for the eigenvalues contained in the multipole matrices Mll, Nll and

∗
Mll,

∗
Nll.

Lemma 4.2.13 (Computation of the Eigenvalues of the Integral Operators T±n )

The eigenvalues t±n (l, r, |~p |, |~q |) of the integral operators T±n as introduced in Definition 4.2.7
are given by

t±n (l, r, |~p |, |~q |) =
(
∓ (|~p | ∓ |~q |)2

4|~p ||~q |

)l l∑
k=0

[(
l

k

)]2( |~p | ± |~q |
|~p | ∓ |~q |

)2k k∑
i=0

(
k

i

) l−k∑
j=0

(
l − k
j

)
×

×
(

−1
(|~p | ± |~q |)2

)i( −1
(|~p | ∓ |~q |)2

)j 2πI±n−2(i+j)(rσ, ρ)
rnσn−2(i+j) (4.45)

where the functions I±n−2(i+j) are those introduced in Definition D.1.1 and the parameters ρ, σ
are defined as

ρ := 2|~p ||~q |
|~p |2 + |~q |2 and σ :=

√
|~p |2 + |~q |2 (4.45a)

At multipole orders l = 0 and l = 1 the eigenvalues reduce to

t±n (0, r, |~p |, |~q |) = 2π
(rσ)n I

±
n (rσ, ρ) (4.46a)

t±n (1, r, |~p |, |~q |) = ∓ 2π
(rσ)n

1
ρ

[
I±n (rσ, ρ)− I±n−2(rσ, ρ)

]
(4.46b)

Proof. In order to compute the eigenvalues t±n (l, r, |~p |, |~q |), we make use of Lemma 4.2.9
according to which the eigenvalues are independent of m for fixed l. Thus, without loss of
generality, we can choose to act with T±n on Yl0(θp, ϕp) ≡ Yl0(~̂p ) which yields

t±n (l, r, |~p |, |~q |)Yl0(~̂p ) = T±n Yl0(~̂p ) (4.47)

Acting on this equation with UR for an arbitrary rotation R ∈ SO(3), exploiting the spherical
symmetry (which, according to Lemma 4.2.8, allows to replace URT±n by T±n UR) on the
right-hand side and dividing by URYl0(~̂p ) results in

t±n (l, r, |~p |, |~q |) = T±n URYl0(~̂p )
URYl0(~̂p )

(4.48)
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By choosing the rotation R ∈ SO(3) such that the vector R−1~p coincides with the z-axis in the
new, rotated coordinate system (we take the viewpoint of a passive transformation), we obtain

t±n (l, r, |~p |, |~q |) = T±n Yl0(R−1~̂p )
Yl0(R−1~̂p )

(4.32)= 1
Yl0(R−1~̂p )

∫
S2

dΩq j0,n(|R−1~p± ~q |r)Yl0(~̂q ) (4.49)

To proceed, we need the explicit form of Yl0(~̂q ) which according to Definition 4.1.3 is given by

Yl0(~̂q ) (4.5a)=
√

2l + 1
4π

1
2ll!

dl(x2 − 1)l

dxl

∣∣∣∣
x=cos(θq)

Carrying out the l-fold derivative by factorizing (x2 − 1)l = (x − 1)l(x + 1)l and using the
general Leibniz rule turns the expression into

Yl0(~̂q ) =
√

2l + 1
4π

1
2ll!

l∑
k=0

(
l

k

)
(l!)2

(l − k)!k! (cos(θq)− 1)k(cos(θq) + 1)l−k

Furthermore, as a consequence of the specific choice of the rotation R ∈ SO(3) such that R−1~p
coincides with the z-axis, we have

|R−1~p± ~q |2 = |R−1~p |2 + |~q |2 ± 2|R−1~p ||~q | cos(θq) = |~p |2 + |~q |2 ± 2|~p ||~q | cos(θq)

where we used the fact that rotations do not change lengths of vectors. Inserting the expression
for Yl0(~̂q ) into the formula for t±n (l, r, |~p |, |~q |) and replacing all occurrences of cos(θq) according
to the above relation in terms of |R−1~p± ~q |2 leads to

t±n (l, r, |~p |, |~q |) =

√
2l+1
4π

Yl0(R−1~̂p )
1

2ll!

l∑
k=0

(
l

k

)
(l!)2

(l − k)!k!

∫
S2

dΩq j0,n(|R−1~p± ~q |r)×

×
(
± |R

−1~p± ~q |2 − |~p |2 − |~q |2

2|~p ||~q | − 1
)k(

± |R
−1~p± ~q |2 − |~p |2 − |~q |2

2|~p ||~q | + 1
)l−k

=

√
2l+1
4π

Yl0(R−1~̂p )

(
1

4|~p ||~q |

)l l∑
k=0

[(
l

k

)]2 ∫
S2

dΩq j0,n(|R−1~p± ~q |r)×

×
(
± |R−1~p± ~q |2 ∓ (|~p | ± |~q |)2)k(± |R−1~p± ~q |2 ∓ (|~p | ∓ |~q |)2)l−k

Rewriting the two factors in the second line each using the binomial theorem gives

. . . =

√
2l+1
4π

Yl0(R−1~̂p )

(
∓1

4|~p ||~q |

)l l∑
k=0

[(
l

k

)]2
(|~p | ± |~q |)2k(|~p | ∓ |~q |)2(l−k)×

×
k∑
i=0

(
k

i

) l−k∑
j=0

(
l − k
j

)(
−1

(|~p | ± |~q |)2

)i( −1
(|~p | ∓ |~q |)2

)j
×

×
∫
S2

dΩq j0,n(|R−1~p± ~q |r)
(
|R−1~p± ~q |2

)i+j
Taking into account that according to our choice of the rotation the factor Yl0(R−1~̂p ) evaluates
to Yl0(R−1~̂p ) = Yl0(0, ϕ) =

√
2l+1
4π and that in the remaining integral |R−1~p ± ~q |2 can be

replaced by |~p |2 + |~q |2 ± 2|~p ||~q | cos(θq), we find the following expression for the eigenvalues

t±n (l, r, |~p |, |~q |) =
(
∓ (|~p | ∓ |~q |)2

4|~p ||~q |

)l l∑
k=0

[(
l

k

)]2( |~p | ± |~q |
|~p | ∓ |~q |

)2k
×
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×
k∑
i=0

(
k

i

) l−k∑
j=0

(
l − k
j

)(
−1

(|~p | ± |~q |)2

)i( −1
(|~p | ∓ |~q |)2

)j
×

× 1
rn

1∫
−1

dcos(θq)
2π∫
0

dϕq
sin
(
r
√
|~p |2 + |~q |2 ± 2|~p ||~q | cos(θq)

)
√
|~p |2 + |~q |2 ± 2|~p ||~q | cos(θq)

n−2(i+j)

By carrying out the azimuthal integral and defining parameters

ρ := 2|~p ||~q |
|~p |2 + |~q |2 and σ :=

√
|~p |2 + |~q |2

the remaining integral can be expressed in terms of the functions I±n introduced in Defini-
tion D.1.1 where we identify α = rσ such that we finally end up with

t±n (l, r, |~p |, |~q |) =
(
∓ (|~p | ∓ |~q |)2

4|~p ||~q |

)l l∑
k=0

[(
l

k

)]2( |~p | ± |~q |
|~p | ∓ |~q |

)2k k∑
i=0

(
k

i

) l−k∑
j=0

(
l − k
j

)
×

×
(

−1
(|~p | ± |~q |)2

)i( −1
(|~p | ∓ |~q |)2

)j 2πI±n−2(i+j)(rσ, ρ)
rnσn−2(i+j) (4.50)

This concludes the proof.

This lemma now allows us to evaluate the multipole matrices introduced in Definition 4.2.11. The
resulting explicit expressions for K0, Mll, Nll and their asterisked counterparts

∗
Mll,

∗
Nll at the

two lowest multipole orders l = 0 and l = 1 can be found in Appendix E.

4.3 Summary: Integral Operators for δSεl and δ2Sεl

Having derived a closed-form expression for the eigenvalues, we can evaluate the angular-integrated
incomplete Fourier transforms for arbitrary (l,m) ∈ N0×Z with −l ≤ m ≤ l. Putting together all
the above results, the multipole expansions of δSε and δ2Sε from Lemma 4.2.2 can be expressed
in terms of integral operators with matrix-valued integral kernels.

Theorem 4.3.1 (Multipole Expansion of δSε and δ2Sε)

Let δSε and δ2Sε be the variations of the regularized causal action as derived in Theorem 3.4.3.
The non-vanishing multipole moments in the multipole expansions

δSε =
∞∑
l=0

δSεl and δ2Sε =
∞∑
l=0

δ2Sεl (4.51)

are given by

δSε0 = Re
[〈〈
15×1,Rε

00∆00

〉〉]
(4.51a)

δ2Sεl = Re
[
δl0 ·

〈〈
15×1,Rε

00(∆2)00

〉〉
+ 1

2

l∑
m=−l

〈〈
∆lm,Sεlm∆lm

〉〉]
(4.51b)

where (∆(n))lm ∈ D′(R+
0 ,C5) denotes the vector of multipole moments of the variations of the

regularized kernel of the fermionic projector and where 〈〈·, ·〉〉 : C∞(R+
0 ,C5)×C∞(R+

0 ,C5)→ C
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is the sesquilinear form given by

(f, g) 7→ 〈〈f, g〉〉 :=
∞∫

0

d|~p | |~p |2

(2π)4

5∑
k=1

fk(|~p |)gk(|~p |) (4.52)

Furthermore, the multiplication operator Rε
00 : C∞(R+

0 ,C5) → C∞(R+
0 ,C5) as well as the

integral operators Sεlm : C∞(R+
0 ,C5) → C∞(R+

0 ,C5) for (l,m) ∈ N0 × Z with −l ≤ m ≤ l,
which are defined in terms of the angular-integrated incomplete Fourier transforms, read(

Rε
00∆lm

)
(|~p |) := F

[
Kε

00
]
(|~p |)∆lm(|~p |) (4.53a)

(
Sεlm∆lm

)
(|~p |) :=

∞∫
0

d|~q | |~q |2

(2π)4

[
F
[
Nε
lm|l(−m)

]
(|~p |, |~q |)−F

[
Wε
lm|l(−m)

]
(|~p |, |~q |)

+ (−1)−mF
[
Mε
lm|l(−m)

]
(|~p |, |~q |)

− (−1)−mF
[
Vεlm|l(−m)

]
(|~p |, |~q |)

]
∆lm(|~q |) (4.53b)

Proof. In order to arrive at the claimed expressions, we basically have to combine all the
results from the previous sections in the right way. To describe this procedure in some detail,
though without being too repetitive, we sketch the main steps using the example of one of the
terms in the sesquilinear contribution to the second variation.a

(1) Starting Point: Multipole Moment δ2Sεlm|l′m′ from Lemma 4.2.2
We start from the expressions for the multipole moments of δSε and δ2Sε as given in (4.22a)
and (4.22b). The latter, with respect to its structure, has the following schematic form

δ2Sεlm|l′m′
(4.22b)= Re


∫
R3

d3~p

(2π)4

(
linear contribution

in (∆2)εlm(|~p |)

)
+ 1

2

∫
R3

d3~p

(2π)4

∫
R3

d3~q

(2π)4 ×

×∆ε
lm(|~p |)T

[
(−1)m

′
F
[
Mε
lm|l′m′

]
(~p, ~q ) +

(
further terms in the
sesquilinear contrib.

)]
∆ε
l′(−m′)(|~q |)


Here the dependence on the scalar and vector spherical harmonics is encoded in the incomplete
Fourier transforms which, again illustrated by the example of F

[
Mε
lm|l′m′

]
, are given by

F
[
Mε
lm|l′m′

]
(~p, ~q ) (4.21b)=

∫
Xε

d(ξ0, r)
∫
S2

dΩξ r2(CεM �Υlm|l′m′ + Cε
∗
Υlm|l′m′

)
EεMe−i(~p+~q )·~ξ

(2) Simplification, Part 1: Position Space Angular Integration
To distill the effective dependence of δ2Sεlm|l′m′ on the multipole order l, we first eliminate the
position space angular variables by carrying out the corresponding integrals using Lemma 4.2.5
as described in Subsection 4.2.1. This, again focusing only on the term F

[
Mε
lm|l′m′

]
, results in

F
[
Mε
lm|l′m′

]
(~p, ~q ) (4.29b)=

5∑
n=−1
n odd

∫
Xε

d(ξ0, r) r2YlmYl′m′E
ε
M

(
CεM �m(n) + Cε

∗
m(n))j0,n(k+r)

The matrices Υlm|l′m′ and
∗
Υlm|l′m′ of spherical harmonics have turned into a product of scalar

spherical harmonics YlmYl′m′ and a sum of matrix-valued differential operators m(n) and ∗
m(n)

acting on the generalized spherical Bessel functions j0,n(k±(~p, ~q )r), while the coefficient matrix
CεM remains unchanged.b
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(3) Simplification, Part 2: Momentum Space Angular Integration
Next one can eliminate the momentum space angular variables by using the central result from
Subsection 4.2.2, namely Lemma 4.2.12. The angular-integrated incomplete Fourier transforms
F
[
Mε
lm|l′m′

]
(|~p |, |~q |) are non-vanishing only for (l′,m′) = (l,−m) and read

F
[
Mε
lm|l(−m)

]
(|~p |, |~q |) (4.44b)=

∫
Xε

d(ξ0, r) (−1)−mr2EεM
(
CεM �Mll + Cε

∗
Mll

)
In this way, the multipole moments δ2Sεlm|l′m′ reduce to

δ2Sεlm|l(−m)
(4.22b)= Re


∫
R3

d|~p | |~p |2

(2π)4

(
linear contribution

in (∆2)εlm(|~p |)

)
+ 1

2

∫
R3

d|~p | |~p |2

(2π)4

∫
R3

d|~q | |~q |2

(2π)4 ×

×∆ε
lm(|~p |)T

[
(−1)−mF

[
Mε
lm|l′m′

]
(|~p |, |~q |) +

(
further terms in the
sesquilinear contrib.

)]
∆ε
lm(|~q |)


(4) Definition of Sesquilinear Form and Integral Operators
Having arrived at this point it remains to rewrite the above expression by introducing the
sesquilinear form (4.52) along with operators Rε

00,Sεlm : C∞(R+
0 ,C5) → C∞(R+

0 ,C5) as in
(4.53). Finally, by pulling the sum over m inside, we end up with the claimed expressions for
the multipole moments.

This concludes the proof.
aNote that for all other terms in the sesquilinear contribution to the second variation the procedure is exactly

the same; for the linear contribution and the whole first variation (which, after replacing ∆2 by ∆ is the same
as the linear contribution to the second variation) a simplified version of the procedure applies.

bFor the linear term and the first variation, the dependence on the angular variables (θp, ϕp) only enters
through the spherical harmonics Ylm(θp, ϕp) which, in the next step, makes the angular momentum integration
in momentum space rather easy.
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In this chapter we take the multipole expansions of the variations of the regularized causal action
as derived in Theorem 4.3.1 for a certain class or regularized kernels of the fermionic projector as
our starting point and apply it to concrete problems where a specific regularization is given.

In Section 5.1 we start by customizing the expressions for the non-vanishing multipole moments δSε0
and δ2Sεlm as given in (4.51a) and (4.51b), respectively, to the case where the regularization of the
kernel of the fermionic projector is given by an anisotropic version of the ordinary iε-regularization.
By deriving explicit expressions for the variation of the regularized kernel of the fermionic projector
corresponding to Lorentz boosts, we show in Section 5.2 that the expressions for δSε and δ2Sε
as derived in Theorem 5.1.4 vanish and thus demonstrate that the iε-regularized causal action is
invariant under Lorentz boosts.

Afterwards, again building on the result from Theorem 5.1.4, we come back to general anisotropi-
cally deformed iε-regularized kernels of the fermionic projector and study how variations of the
regularized causal action can be balanced by so-called compensations. Finally, in Subsection 5.3.2
we derive an expression for the variation of the local particle density of the iε-regularized Dirac sea
configuration and show that it is vanishing at first order, but non-vanishing at second order even for
Lorentz boosts. This fact, in combination with the results from Theorem 5.2.5 and Theorem 6.3.3
motivates a novel mechanism of baryogenesis within the framework of causal fermion systems.[77]
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5.1 Anisotropic Perturbations of iε-Regularized P̂ε

The underlying assumption of the whole chapter is that the so-far unspecified regularization of the
perturbed regularized kernel of the fermionic projector from Definition 4.1.1 will be a deformed
version of the iε-regularization widely and almost exclusively used in the literature. While we have
not imposed many restrictions on the choice of the regularized kernel of the fermionic projector
except for its vector-scalar structure, we now make the following assumptions.

Assumption 5.1.1 (Anisotropic Perturbation of iε-Regularization)

Throughout this chapter, we consider perturbed regularized kernels of the fermionic projector
having vector-scalar structure as in (4.1) with the vector and scalar components in momentum
space given by

v̂ετ,i(p) = piδ
(
σ(p)

)
Θ(−p0)eεp

0fτ (p) (5.1a)

ŝετ (p) = µδ
(
σ(p)

)
Θ(−p0)eεp

0fτ (p) (5.1b)

The real-valued function fτ is assumed to be an L2-function with respect to its spatial arguments
and to have a perturbation expansion in the parameter τ which is given by

fτ (p) = 1 +
∞∑
n=1

τn

n! f
(n)
lm (p0, |~p |)Ylm(θp, ϕp) (5.1c)

where we have decomposed the functions f (n)(p) into a multipole series. Note that we have
replaced the deformed regularized mass shell σετ from (4.2) by its unperturbed, unregularized
counterpart σ(p) := σ0

0(p) = p2 − µ2.a For vanishing perturbation (τ = 0), the regularization
goes over to the ordinary iε-regularization.b

aAs a consequence of the replacement σετ (p)→ p2 − µ2, also the regularization-dependence of the vectors
(∆(n))εlm of multipole moments of variations of the regularized kernel of the fermionic projector disappears.

bA review of the iε-regularized kernel of the fermionic projector along with an explicit computation of its
vector and scalar components can be found in Subsection 2.3.2.

This perturbed regularized kernel of the fermionic projector describes an iε-regularization for
which the regularization length ε(~p ) does not only depend on p0 (as would be the case for the
ordinary iε-regularization), but which depends on the position on the mass shell. Thus, the decay
behavior of P̂ε as modelled by the exponential factor has the same overall tendency, namely a
stronger decay for higher frequencies, but with varying behaviour in different spatial directions.

5.1.1 Variation of P̂ε for Anisotropic iε-Regularization

Having specified the regularization, we can now tackle the question how deformations of the
regularized kernel of the fermionic projector around the spherically-symmetric configuration
translate into variations of the regularized causal action at different multipole orders. To answer
this question, we start by deriving the multipole moments ∆(n)

lm of the regularized kernel of the
fermionic projector in momentum space.

Lemma 5.1.2 (Multipole Expansion of Variations of P̂ε from Assumption 5.1.1)

The multipole moments of the variation of the regularized kernel of the fermionic projector as
given in Assumption 5.1.1 read

∆lm(p0, |~p |) = (εp0)f (1)
lm (p0, |~p |)eεp

0 (
p0 |~p | 0 0 µ

)T (5.2a)
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(∆2)lm(p0, |~p |) = 1
2

[
(εp0)f (2)

lm (p0, |~p |) + (εp0)2f
(1,1)
lm (p0, |~p |)

]
eεp

0 (
p0 |~p | 0 0 µ

)T (5.2b)

where the functions f (1,1)
lm for (l,m) ∈ N0 × Z with −l ≤ m ≤ l are given in terms of Wigner’s

3j-symbols by

f
(1,1)
lm (p0, |~p |) =

∑
l1,m1

∑
l2,m2

f
(1)
l1m1

(p0, |~p |)f (1)
l2m2

(p0, |~p |)
√

(2l + 1)(2l1 + 1)(2l2 + 1)
4π ×

× (−1)m
(
l1 l2 l

m1 m2 m

)(
l1 l2 l

0 0 0

)
(5.2b,i)

Proof. By expanding the anisotropically iε-regularized kernel of the fermionic projector with
respect to the perturbation parameter τ , we obtain

P̂ετ (p) = P̂ε0(p) + τδP̂ε(p) + τ2δ2P̂ε(p) +O(τ3) (5.3)

where the first-order variation is given by

δP̂ε(p) = 1
1!

d
dτ

[(
p0γ0 − ~p~γ + µ idC4

)
eεp

0fτ (p)δ(p2 − µ2)Θ(−p0)
]∣∣∣∣
τ=0

=
∑
l,m

(
p0γ0 − ~p~γ + µ idC4

)
εp0f

(1)
lm (p0, |~p |)Ylmeεp

0
δ(p2 − µ2)Θ(−p0)

=
∑
l,m

εp0f
(1)
lm (p0, |~p |)YlmP̂ε0(p) (5.4)

while the second-order variation reads

δ2P̂ε(p) = 1
2!

d2

dτ2

[(
p0γ0 − ~p~γ + µ idC4

)
eεp

0fτ (p)δ(p2 − µ2)Θ(−p0)
]∣∣∣∣
τ=0

=
(
p0γ0 − ~p~γ + µ idC4

)
2 δ(p2 − µ2)Θ(−p0)×

×

[ ∑
l1,m1

εp0
(
f

(2)
l1m1

(p0, |~p |)Yl1m1 +O(τ)
)

eεp
0fτ (p)

+
∑
l1,m1

∑
l2,m2

(εp0)2
(
f

(1)
l1m1

(p0, |~p |)Yl1m1 + τf
(2)
l1m1

(p0, |~p |)Yl1m1 +O(τ2)
)
×

×
(
f

(1)
l2m2

(p0, |~p |)Yl2m2 + τf
(2)
l2m2

(p0, |~p |)Yl2m2 +O(τ2)
)

eεp
0fτ (p)

]∣∣∣∣∣
τ=0

= εp0

2
∑
l1,m1

[
f

(2)
l1m1

(p0, |~p |)Yl1m1

+
∑
l2,m2

(εp0)f (1)
l1m1

(p0, |~p |)f (1)
l2,m2

(p0, |~p |)Yl1m1Yl2m2

]
P̂ε0(p) (5.5)

In order to obtain an expression which is proportional to only one spherical harmonic, we make
use of the following identity for the product of two spherical harmonics[78, p. 146],a

Yl1m1(θ, ϕ)Yl2m2(θ, ϕ) =
√

(1 + 2l1)(1 + 2l2)(1 + 2l)
4π ×

×
∑
l,m

(−1)m
(
l1 l2 l

m1 m2 −m

)(
l1 l2 l

0 0 0

)
Ylm(θ, ϕ) (5.6)
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where the admissible values for l,m are determined by the selection rules of Wigner’s 3j-symbols
which read

− li ≤ mi ≤ li, −l ≤ m ≤ l, m = −(m1 +m2), |l1 − l2| ≤ l ≤ l1 + l2 (5.7)

By defining

f
(1,1)
lm (p0, |~p |) :=

∑
l1,m1

∑
l2,m2

f
(1)
l1m1

(p0, |~p |)f (1)
l2m2

(p0, |~p |)
√

(1 + 2l1)(1 + 2l2)(1 + 2l)
4π ×

× (−1)m
(
l1 l2 l

m1 m2 −m

)(
l1 l2 l

0 0 0

)
(5.8)

the second variation thus takes the form

δ2P̂ε(p) = 1
2
∑
l,m

[
(εp0)f (2)

lm (p0, |~p |) + (εp0)2f
(1,1)
lm (p0, |~p |)

]
Ylm(θp, ϕp)P̂ε0(p) (5.9)

Decomposing (5.4) and (5.9) into vector spherical harmonics in the same way as in the paragraph
following Definition 4.1.3, we immediately recognize that due to the choice v̂ετ,i(p) ∝ pi in
(5.1a), terms proportional to ~Ψlm and ~Φlm are absent. As a consequence we end up with

∆lm(p0, |~p |) = (εp0)f (1)
lm (p0, |~p |)eεp

0 (
p0 |~p | 0 0 µ

)T (5.10a)

(∆2)lm(p0, |~p |) = 1
2

[
(εp0)f (2)

lm (p0, |~p |) + (εp0)2f
(1,1)
lm (p0, |~p |)

]
eεp

0 (
p0 |~p | 0 0 µ

)T (5.10b)

which concludes the proof.
aWe remark that the convention for the spherical harmonics as used by Brink and Satchler[78, p. 145] is

compatible with Definition 4.1.3.

5.1.2 Variation of Sε for Anisotropic iε-Regularization

Having derived the five-component vector of multipole moments of variations of an anisotropically
iε-regularized kernel of the fermionic projector, we can now customize the expression for the
multipole moments of the variation of the regularized causal action as derived in Theorem 4.3.1
to this special setting. Before, however, we exploit the fact that the multipole moments ∆lm

and (∆2)lm in (5.2a) and (5.2b) are all proportional to the same vector by introducing so-
called condensed incomplete Fourier transforms which turn the matrix-valued incomplete Fourier
transforms into scalar-valued functions.

Definition 5.1.3 (Condensed Incomplete Fourier Transforms)

For ( • ) ∈ {Mε,Nε,Vε,Wε} the condensed incomplete Fourier transforms {F
[
( • )εlm|l′m′

]
} are

defined as {
F
[
( • )εlm|l′m′

]}
:=
(
p0 |~p | 0 0 µ

)
F
[
( • )εlm|l′m′

] (
q0 |~q | 0 0 µ

)T (5.11)

where Mε,Nε,Vε,Wε are the incomplete Fourier transforms defined in Definition 4.2.1.
Analogously, we define for the incomplete Fourier transform Kε

lm{
F
[
Kε
lm

]}
:= 11×5 F

[
Kε
lm

] (
p0 |~p | 0 0 µ

)T (5.12)



5. Special Perturbations, Compensations and Variations of the Local Particle Density 93

Using this definition and the explicit form of the multipole moments ∆lm and (∆2)lm from
Lemma 5.1.2 it is now possible, starting from Theorem 4.3.1, to derive expressions for the
multipole moments of the variation of the regularized causal action in which the occurring integral
operators no longer have matrix-valued, but only scalar-valued integral kernels.

Theorem 5.1.4 (Variation of the Regularized Causal Action for Lemma 5.1.2)

The variation of the regularized causal action corresponding to an anisotropically iε-regularized
kernel of the fermionic projector as given in Assumption 5.1.1 takes the form

δSε = Re

 ∞∫
0

d|~p | |~p |2

(2π)4 Q0(|~p |)f (1)
00 (|~p |)

 (5.13a)

δ2Sε = Re

 ∞∫
0

d|~p | |~p |2

(2π)4
Qε0(|~p |)

2 f
(2)
00 (|~p |)

+1
2
∑
l,m

∞∫
0

d|~p | |~p |2

(2π)4

∞∫
0

d|~q | |~q |2

(2π)4 f
(1)
lm (|~p |)Qεlm(|~p |, |~q |)f (1)

lm (|~q |)

 (5.13b)

where the scalar-valued integral kernels are given by

Qε0(|~p |) = −εωpe−εωp
{
F
[
Kε

00
]
(|~p |)

}
(5.13a,i)

Qεlm(|~p |, |~q |) = −εωpQ
ε
0(|~p |)√
4π

(2π)4

|~q |2
δ(|~p | − |~q |) + ε2ωpωqe−ε(ωp+ωq)×

×
({
F
[
Mε
l0|l0

]
(|~p |, |~q |)

}
+
{
F
[
Nε
l0|l0

]
(|~p |, |~q |)

}
−
{
F
[
Vεl0|l0

]
(|~p |, |~q |)

}
−
{
F
[
Wε
l0|l0

]
(|~p |, |~q |)

})
(5.13b,i)

Proof. In order to derive the claimed expressions for the variation of the regularized causal
action, we basically have to insert (5.2a) and (5.2b) into (4.51a) and (4.51b), respectively, and
make use of Definition 5.1.3.

(1) Multipole Moments of δSε

According to Theorem 4.3.1, the only non-vanishing multipole moment of δSε is the one for
l = 0. Inserting (5.2a) into (4.51a) thus yields

δSε0
(4.51a)= Re

[〈〈
15×1,Rε

00∆00

〉〉]

(5.2a)=
(5.11)

Re

 ∞∫
0

d|~p | |~p |2

(2π)4

{
F
[
Kε

00
]
(|~p |)

}(
− εωp

)
f

(1)
00
(
− ωp, |~p |

)
e−εωp


= Re

 ∞∫
0

d|~p | |~p |2

(2π)4 Qε0(|~p |)f (1)
00
(
− ωp, |~p |

)
where we used the relation f

(1)
00 = f

(1)
00 and where the scalar-valued integral kernel Qε0

is defined as
Qε0(|~p |) := −εωpe−εωp

{
F
[
Kε

00
]
(|~p |)

}
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with {F
[
Kε

00
]
} denoting the condensed incomplete Fourier transform of F

[
Kε

00
]
as given in

(4.44a). To simplify notation, we replace f (n)
lm (−ωp, |~p |) by f (n)

lm (|~p |) from now on whenever
there is no risk of confusion.

(2) Multipole Moments of δ2Sε

For the second variation the procedure is basically the same, though slightly more involved due
to the fact that there are two terms in (4.51b): On the one hand there is the term depending
linearly on the second variation ∆2 while on the other hand there is the sesquilinear term
which involves the first variation ∆ twice.

(a) Linear Term (only present for l = 0)
We start by considering the former contribution, namely the one which involves the second-order
variation of the regularized kernel of the fermionic projector. Inserting (5.2b) into the first
term in (4.51b) yields

δ2Sεlin
(4.51b)= Re

[〈〈
15×1,Rε

00(∆2)00

〉〉]

(5.2b)=
(5.11)

Re

 ∞∫
0

d|~p | |~p |2

(2π)4

{
F
[
Kε

00
]
(|~p |)

}1
2

[(
− εωp

)
f

(2)
00 (|~p |) +

(
εωp
)2
f

(1,1)
00 (|~p |)

]
e−εωp


Recalling the definition of the functions f (1,1)

lm from (5.2b,i), choosing l = m = 0 and employing
the simplified notation where f (n)

lm (−ωp, |~p |) is abbreviated by f (n)
lm (|~p |), we find

f
(1,1)
00 (|~p |) (5.2b,i)=

∑
l1,m1

∑
l2,m2

f
(1)
l1m1

(|~p |)f (1)
l2m2

(|~p |)
√

(2l1 + 1)(2l2 + 1)
4π ×

×

(
l1 l2 0
m1 m2 0

)(
l1 l2 0
0 0 0

)

=
∑
l1,m1

∑
l2,m2

f
(1)
l1m1

(|~p |)f (1)
l2m2

(|~p |)
√

(2l1 + 1)(2l2 + 1)
4π ×

×
(

(−1)l1−m1

√
1 + 2l1

)(
(−1)l1√
1 + 2l1

)
δl1l2δm1(−m2)

= 1√
4π

∑
l1,m1

(−1)−m1f
(1)
l1m1

(|~p |)f (1)
l1(−m1)(|~p |)

= 1√
4π

∑
l1,m1

f
(1)
l1m1

(|~p |)f (1)
l1m1

(|~p |)

Here we used the relation f
(n)
lm (|~q |) = (−1)mf (n)

l(−m)(|~q |) for the coefficient functions in the
multipole expansion of a real-valued function in the last step. For the second equality we
evaluated Wigner’s 3j-symbols using formulas provided by Brink and Satchler[78, p. 138]. In
this way we find that δ2Sεlin actually contains functions f (1)

l̃m̃
of arbitrary high multipole orders

l̃ ∈ N0 and takes the form

δ2Sεlin = δ2Sεlin,0
[
f

(2)
00 , f

(1)
00

]
+
∞∑
l̃=1

δ2Sεlin,l̃
[
f

(1)
l̃m̃

]
(5.14)
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where the terms at lowest (l̃ = 0) and higher (l̃ ≥ 1) multipole orders are given by

δ2Sεlin
[
f

(2)
00 , f

(1)
00

]
= Re

 ∞∫
0

d|~p | |~p |2

(2π)4

(
Qε0(|~p |)

2 f
(2)
00 (|~p |)

+f (1)
00 (|~p |)

(
− εωpQ

ε
0(|~p |)√
16π

)
f

(1)
00 (|~p |)

)]

δ2Sεlin,l̃
[
f

(1)
l̃m̃

]
= Re

 l̃∑
m̃=−l̃

∞∫
0

d|~p | |~p |2

(2π)4 f
(1)
l̃m̃

(|~p |)
(
− εωpQ

ε
0(|~p |)√
16π

)
f

(1)
l̃m̃

(|~p |)


respectively. We remark that the tildes are added in order to clarify that, although the linear
term is present only for l = 0, we nevertheless obtain higher-order multipole contributions
which are “hidden” inside f (1,1)

00 .

(b) Sesquilinear Term
In contrast with the linear term, the sesquilinear term is not only present at multipole order
l = 0, but for arbitrary l ∈ N0. Proceeding in exactly the same way as before by inserting
(5.2a) into the second term in (4.51b) we thus obtain

δ2Sεsql,l
(4.51b)= Re

[
1
2

l∑
m=−l

〈〈
∆lm,Sεlm∆lm

〉〉]

(5.2a)=
(5.11)

l∑
m=−l

Re

1
2

∞∫
0

d|~p | |~p |2

(2π)4

∞∫
0

d|~q | |~q |2

(2π)4 ε2ωpωqe−εωpe−εωqf (1)
lm (|~p |)f (1)

lm (|~q |)×

×
(

(−1)−m
{
F
[
Mε
lm|l(−m)

]
(|~p |, |~q |)

}
− (−1)−m

{
F
[
Vεlm|l(−m)

]
(|~p |, |~q |)

}
+
{
F
[
Nε
lm|l(−m)

]
(|~p |, |~q |)

}
−
{
F
[
Wε
lm|l(−m)

]
(|~p |, |~q |)

})]
To simplify this expression we recall that according to Lemma 4.2.12 we have

F
[
Mε
lm|l(−m)

]
= (−1)mF

[
Mε
l0|l0

]
F
[
Vεlm|l(−m)

]
= (−1)mF

[
Vεl0|l0

] F
[
Nε
lm|l(−m)

]
= F

[
Nε
l0|l0

]
F
[
Wε
lm|l(−m)

]
= F

[
Wε
l0|l0

]

Using the relation f (n)
lm (|~q |) = (−1)mf (n)

l(−m)(|~q |) once more allows to combine terms such that
we arrive at

δ2Sεsql,l =
l∑

m=−l
Re

1
2

∞∫
0

d|~p | |~p |2

(2π)4

∞∫
0

d|~q | |~q |2

(2π)4 ε2ωpωqe−εωpe−εωq×

× f (1)
lm (|~p |)

({
F
[
Mε
l0|l0

]
(|~p |, |~q |)

}
+
{
F
[
Nε
l0|l0

]
(|~p |, |~q |)

}
−
{
F
[
Vεl0|l0

]
(|~p |, |~q |)

}
−
{
F
[
Wε
l0|l0

]
(|~p |, |~q |)

})
f

(1)
lm (|~q |)


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(3) Conclusion
Adding up the linear and sesquilinear contributions of the second variation of the regularized
causal action, we arrive at the following expression

δ2Sε = Re

 ∞∫
0

d|~p | |~p |2

(2π)4
Qε0(|~p |)

2 f
(2)
00 (|~p |)

+ 1
2

∞∑
l=0

l∑
m=−l

∞∫
0

d|~p | |~p |2

(2π)4

∞∫
0

d|~q | |~q |2

(2π)4 f
(1)
lm (|~p |)Qεlm(|~p |, |~q |)f (1)

lm (|~q |)


where for all (l,m) ∈ N0 × Z with −l ≤ m ≤ l the scalar-valued integral kernels Qεlm(|~p |, |~q |)
are given by

Qεlm(|~p |, |~q |) = −εωpQ
ε
0(|~p |)√
4π

(2π)4

|~q |2
δ(|~p | − |~q |)

+ ε2ωpωqe−ε(ωp+ωq)
({
F
[
Mε
l0|l0

]
(|~p |, |~q |)

}
+
{
F
[
Nε
l0|l0

]
(|~p |, |~q |)

}
−
{
F
[
Vεl0|l0

]
(|~p |, |~q |)

}
−
{
F
[
Wε
l0|l0

]
(|~p |, |~q |)

})
This concludes the proof.

Starting from this expression, we demonstrate in the next section the invariance of the regularized
causal action under Lorentz boosts of the velocity vector of the iε-regularization. Afterwards
we study so-called compensations, which counterbalance initial perturbations and thus leave the
regularized causal action unchanged. Also for the next chapter, in which we study the invertibility
of the second variation of the regularized causal action, Theorem 5.1.4 will be the starting point.

5.2 Invariance of Sε under Lorentz Boosts

In this section, we study the effect of Lorentz boosts on the regularized causal action with iε-
regularization and demonstrate, by using the above Theorem 5.1.4, that it is invariant.

5.2.1 Derivation of the Variation of P̂ε for Lorentz Boosts

To prove invariance of the iε-regularized causal action under Lorentz boosts of the velocity vector
of the regularization, we first derive the multipole expansion of the corresponding variation of
the regularized kernel of the fermionic projector and subsequently show that the variation of the
regularized causal action as derived in Theorem 5.1.4 vanishes for these variations.

Lemma 5.2.1 (Multipole Expansion of the Variation of P̂ε for Lorentz Boosts)

Let P̂ε0(p) be an unperturbed regularized kernel of the fermionic projector as given in
Assumption 5.1.1 (for τ = 0) with the vector and scalar components taking the form

v̂ε0(p) = p0δ
(
σ(p)

)
Θ(−p0)eεpu (5.16a)

v̂εα(p) = −pαδ
(
σ(p)

)
Θ(−p0)eεpu (5.16b)

ŝε(p) = µδ
(
σ(p)

)
Θ(−p0)eεpu (5.16c)

where u = (1, 0, 0, 0) denotes the four-velocity of the regularization. Under a Lorentz boost of
this four-velocity in direction ~n, the non-vanishing multipole moments of the first and second
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variation of P̂ε(p) are given by

∆1m(p0, |~p |) = ε|~p |eεp
0
√

4π
3


p0

|~p |
0
0
µ

×
 n3 for m = 0

∓n
1∓in2
√

2 for m = ±1
(5.17a)

(∆2)00(p0, |~p |) =
√
π

[
εp0 + 1

3ε
2|~p |2

]
eεp

0


p0

|~p |
0
0
µ

 (5.17b)

(∆2)2m(p0, |~p |) =
√

π

30ε
2|~p |2eεp

0


p0

|~p |
0
0
µ

×

√

2
3
[
3(n3)2 − 1

]
for m = 0

±2(n1 ± in2)n3 for m = ±1

(n1 ± in2)2 for m = ±2

(5.17c)

Proof. Acting with a Lorentz boost in direction ~n ∈ R3 which is explicitly given by

u 7→ Bζ(u) :=
(

u0 cosh(ζ)− sinh(ζ)~n · ~u
~u− (~n · ~u)~n+

[
cosh(ζ)(~n · ~u)− sinh(ζ)u0]~n

)
(5.18)

on the velocity vector of the regularized kernel of the fermionic projector as given in
Assumption 5.1.1 and expanding the result with respect to the boost parameter ζ, we obtain

P̂εζ(p) = P̂ε0(p) + ζδP̂ε(p) + ζ2δ2P̂ε(p) +O(ζ3) (5.19)

where the variations at first and second order are given by

δP̂ε(p) = 1
1!

d
dζ

[(
p0γ0 − ~p~γ + µ idC4

)
eεpBζ(u)δ

(
σ(p)

)
Θ(−p0)

]∣∣∣∣
ζ=0

=
[(
p0γ0 − ~p~γ + µ idC4

)(
εp0 sinh(ζ) + ε~p · ~n cosh(ζ)

)
eεpBζ(u)δ

(
σ(p)

)
Θ(−p0)

]∣∣∣∣
ζ=0

=
(
p0γ0 − ~p~γ + µ idC4

)
ε(~p · ~n)eεp

0
δ
(
σ(p)

)
Θ(−p0)

= ε(~p · ~n)P̂ε(p) (5.20)

and

δ2P̂ε(p) = 1
2!

d2

dζ2

[(
p0γ0 − ~p~γ + µ idC4

)
eεpBζ(u)δ

(
σ(p)

)
Θ(−p0)

]∣∣∣∣
ζ=0

= 1
2

[(
p0γ0 − ~p~γ + µ idC4

)(
εp0 cosh(ζ) + ε~p · ~n sinh(ζ)

)
eεpBζ(u)δ

(
σ(p)

)
Θ(−p0)

+
(
p0γ0 − ~p~γ + µ idC4

)(
εp0 sinh(ζ) + ε~p · ~n cosh(ζ)

)2eεpBζ(u)δ
(
σ(p)

)
Θ(−p0)

]∣∣∣∣
ζ=0

= 1
2
(
εp0 + ε2(~p · ~n )2)P̂ε(p) (5.21)

respectively. In order to find the multipole expansions of δP̂ε(p) and δ2P̂ε(p), we have to
expand the scalar product ~p ·~n in spherical harmonics. To this end, we make use of the relation

~p · ~n = n1|~p | sin(θp) cos(ϕp) + n2|~p | sin(θp) sin(ϕp) + n3|~p | cos(θp)
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as well as

sin(θp)
{

cos(ϕp)

sin(ϕp)

}
=
√

2π
3

{
−Y11(θp, ϕp) + Y1(−1)(θp, ϕp)

i
(
Y11(θp, ϕp) + Y1(−1)(θp, ϕp)

)}

cos(θp) =
√

4π
3 Y10(θp, ϕp)

for spherical harmonics at multipole order l = 1 and

sin2(θp)
{

cos2(ϕp)

sin2(ϕp)

}
=
√

4π
3

(
Y00 −

√
1
5Y20

)
±
√

2π
15
(
Y22 + Y2(−2)

)

sin2(θp) sin(ϕp) cos(ϕp) = −i
√

2π
15
(
Y22 − Y2(−2)

)
cos2(θp) =

√
4π
3

(
Y00 +

√
4
5Y20

)

sin(θp) cos(θp)
{

cos(ϕp)

sin(ϕp)

}
=
√

2π
15

{
−Y21 + Y2(−1)

i
(
Y21 + Y2(−1)

)}
for spherical harmonics at multipole order l = 2.

(1) Spherical Harmonic Expansion of δP̂ε(p)
For the first-order variation we obtain by using the above relations and sorting terms according
to the different spherical harmonics

δP̂ε(p) =
(
n1
√

2π
3
(
− Y11 + Y1(−1)

)
+ in2

√
2π
3
(
Y11 + Y1(−1)

)
+ n3

√
4π
3 Y10

)
ε|~p |P̂ε(p)

=
√

4π
3

(
− n1 − in2

√
2

Y11 + n1 + in2
√

2
Y1(−1) + n3Y10

)
ε|~p |P̂ε(p)

Inserting the vector-scalar form of the unperturbed regularized kernel of the fermionic projector,
we obtain for the multipole moments ∆lm(p0, |~p |) at first order in perturbation theory

∆1m(p0, |~p |) = ε|~p |eεp
0
√

4π
3


p0

|~p |
0
0
µ

×
 n3 for m = 0

∓n
1∓in2
√

2 for m = ±1
(5.22)

while all other multipole moments for l 6= 1 vanish identically at first order.a

(2) Spherical Harmonic Expansion of δ2P̂ε(p)
For the variation at second order in perturbation theory, things are slightly more complicated
due to the presence of the term (~p ·~n )2. Expanding the product ~p ·~n in the same way as before,
taking the square and making use of linear combinations of spherical harmonics at l = 2 as
derived above, we obtain

(~p · ~n )2 = |~p |2
[
(n1)2 sin2(θp) cos2(ϕp) + (n2)2 sin2(θp) sin2(ϕp) + (n3)2 cos2(θp)

+ 2n1n2 sin2(θp) cos(ϕp) sin(ϕp) + 2n1n3 cos(θp) sin(θp) cos(ϕp)

+ 2n2n3 cos(θp) sin(θp) sin(ϕp)
]

= |~p |2
[

(n1)2
[√

4π
3

(
Y00 −

√
1
5Y20

)
+
√

2π
15
(
Y22 + Y2(−2)

)]
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+ (n2)2
[√

4π
3

(
Y00 −

√
1
5Y20

)
−
√

2π
15
(
Y22 + Y2(−2)

)]
+ (n3)2

[√
4π
3

(
Y00 +

√
4
5Y20

)]
+ 2n1n2

[
− i
√

2π
15
(
Y22 − Y2(−2)

)]

+ 2n1n3
[√

2π
15
(
− Y21 + Y2(−1)

)]
+ 2n2n3

[
i
√

2π
15
(
Y21 + Y2(−1)

)]]

Sorting terms and making use of the fact that ~n is an unit vector, it remains

. . . = |~p |2
[√

4π
3 Y00 +

√
2
3
[
3(n3)2 − 1

]√2π
15Y20

+ (n1 − in2)2
√

2π
15Y22 + (n1 + in2)2

√
2π
15Y2(−2)

− 2(n1 − in2)n3
√

2π
15Y21 + 2(n1 + in2)n3

√
2π
15Y2(−1)

]
(5.23)

We thus end up with the following two non-vanishing multipole moments at second order in
perturbation theory for Lorentz boosts

(∆2)00(p0, |~p |) =
√
π

[
εp0 + 1

3ε
2|~p |2

]
eεp

0


p0

|~p |
0
0
µ



(∆2)2m(p0, |~p |) =
√

π

30ε
2|~p |2eεp

0


p0

|~p |
0
0
µ

×

√

2
3
[
3(n3)2 − 1

]
for m = 0

∓2(n1 ∓ in2)n3 for m = ±1

(n1 ± in2)2 for m = ±2

This concludes the proof.
aNote that due to our choice of the regularized kernel of the fermionic projector where v̂εα(p) ∝ pα, only the

radial spherical harmonics ~Y1m appear while the tangential components proportional to ~Ψ1m and ~Φ1m vanish
identically. This is exactly the same as already explained in Lemma 5.1.2.

In order to apply Theorem 5.1.4 to this result, it remains to determine the corresponding functions
f

(n)
lm to establish the connection with Lemma 5.1.2.

Corollary 5.2.2 (Functions f (n)
lm for Lorentz Boosts)

In order to reproduce Lorentz boosts of the four-velocity in direction ~n ∈ R3 as derived in
Lemma 5.2.1, the functions f (n)

lm in Lemma 5.1.2 have to be chosen as

f
(1)
1m(p0, |~p |) =

√
4π
3
|~p |
p0

 n3 for m = 0

∓n
1∓in2
√

2 for m = ±1
and f

(2)
00 (p0, |~p |) =

√
4π (5.24)

while all other functions f (n)
lm vanish identically.
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Proof. To determine the functions f (n)
lm for Lorentz boosts, we proceed order by order in the

perturbation index n and consider the different multipole orders l as substeps.

(1) Perturbation Order n = 1
As there exists no term at multipole order l = 0 in (5.17), we can immediately conclude that
f

(1)
00 vanishes identically. At multipole order l = 1 we find by comparison of (5.17a) with (5.2a)
that the functions f (1)

1m(|~p |) in Lemma 5.1.2 have to be chosen as

f
(1)
1m(p0, |~p |) =

√
4π
3
|~p |
p0

 n3 for m = 0

∓n
1∓in2
√

2 for m = ±1
(5.25)

in order to reproduce Lorentz boosts. For higher multipole orders l ≥ 2 we can conclude that
all functions f (1)

lm must vanish identically.

(2) Perturbation Order n = 2
As a consequence of the appearance of the functions f (1,1)

lm in (5.2b), the considerations at
second order in perturbation theory are slightly more involved.

(a) Multipole Order l = 0
While there was no term for l = 0 at first perturbation order, for n = 2 we now have a term
at multipole order l = 0. Comparing (5.17b) with (5.2b) order-by-order in ε leads to the
requirements

f
(2)
00 (p0, |~p |)

2
!=
√
π and f

(1,1)
00 (p0, |~p |)

2
!=
√
π

3

(
|~p |
p0

)2
(5.26)

where, according to the definition of f (1,1)
00 in (5.2b,i), the latter requirement must be understood

merely as a consistency condition. Explicitly, we have

f
(1,1)
00 (p0, |~p |) (5.2b,i)=

∑
l1,m1

∑
l2,m2

f
(1)
l1m1

(p0, |~p |)f (1)
l2m2

(p0, |~p |)
√

(2l1 + 1)(2l2 + 1)
4π ×

×

(
l1 l2 0
m1 m2 0

)(
l1 l2 0
0 0 0

)

Taking into account that the functions f (1)
lm vanish identically except for l = 1, the expression

reduces to

. . . =
1∑

m1,m2=−1
f

(1)
1m1

(p0, |~p |)f (1)
1m2

(p0, |~p |)
√

9
4π

(
1 1 0
m1 m2 0

)(
1 1 0
0 0 0

)

Evaluating the remaining Wigner 3j symbols where the first one vanishes except for m1 = −m2,
we finally arrive at[78, p. 138]

f
(1,1)
00 (p0, |~p |) (5.25)=

√
4π
3

(
|~p |
p0

)2
|~n|2 (5.27)

which, since ~n is a unit vector, proves that the claimed condition is satisfied.

(b) Multipole Order l = 1
At multipole order l = 1 there is no term, i. e. f (2)

1m = 0 for m ∈ {0,±1}.
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(c) Multipole Order l = 2
By analogy with the above considerations, we find two conditions at multipole order l = 2,
namely

f
(2)
2m(p0, |~p |) != 0 and f

(1,1)
2m (p0, |~p |)

2
!=
√

π

30

(
|~p |
p0

)2


√

2
3

[
3(n3)2 − 1

]
for m = 0

∓2(n1 ∓ in2)n3 for m = ±1

(n1 ∓ in2)2 for m = ±2

where the latter one is again a consistency condition. Taking into account that at perturbation
order n = 1 the only non-vanishing functions are those with l = 1, the condition collapses to

f
(1,1)
2m (p0, |~p |) != (−1)m

1∑
m1,m2=−1

√
45
4π

(
1 1 2
m1 m2 −m

)(
1 1 2
0 0 0

)
f

(1)
1m1

(p0, |~p |)f (1)
1m2

(p0, |~p |)

where the second Wigner 3j symbol evaluates to
√

2
15 . Taking into account that the condition

for the first Wigner 3j symbol to be non-vanishing is given by m1 +m2 −m = 0, we find for
m ∈ {0,±1,±2}

f
(1,1)
20 (p0, |~p |) !=

√
6

4π

[
2 ·
(

1 1 2
1 −1 0

)
f

(1)
11 (p0, |~p |)f (1)

1(−1)(p
0, |~p |)

+
(

1 1 2
0 0 0

)
f

(1)
10 (|~p |)f (1)

10 (|~p |)
]

=
√

8π
3

(
|~p |
p0

)2
[

2 ·
√

1
30

(
− (n1)2 + (n2)2

2

)
+
√

2
15(n3)2

]

=
√

16π
45

(
|~p |
p0

)2[
− (n1)2 + (n2)2 + (n3)2 − (n3)2

2 + (n3)2
]

=
√

4π
45

(
|~p |
p0

)2[
− 1 + 3(n3)2

]

f
(1,1)
2(±1)(p

0, |~p |) != (−2) ·
√

6
4π

(
1 1 2
±1 0 ∓1

)
f

(1)
1(±1)(p

0, |~p |)f (1)
10 (p0, |~p |)

=
√

8π
3

(
|~p |
p0

)2
· (−2) ·

(
−
√

1
10

)(
∓ n1 ∓ in2

√
2

)
n3

=
√

8π
15

(
|~p |
p0

)2[
∓
(
n1 ∓ in2)n3

]

f
(1,1)
2(±2)(p

0, |~p |) !=
√

6
4π

(
1 1 2
±1 ±1 ∓2

)
f

(1)
1(±1)(p

0, |~p |)f (1)
1(±1)(p

0, |~p |)

=
√

8π
3

(
|~p |
p0

)2√1
5

(
∓ n1 ∓ in2

√
2

)2

=
√

2π
15

(
|~p |
p0

)2(
n1 ∓ in2)2

which concludes the proof that the conditions at multipole order l = 2 are satisfied.

(d) Multipole Order l ≥ 3
At multipole order l ≥ 3 there are no terms, i. e. f (2)

lm = 0 for all l ≥ 3.
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(3) Conclusion
To summarize, we find that Lorentz boosts as derived in Lemma 5.2.1 can be reproduced from
(5.2) by choosing the functions f (n)

lm as

f
(1)
1m(p0, |~p |) =

√
4π
3
|~p |
p0

 n3 for m = 0

∓n
1∓in2
√

2 for m = ±1
and f

(2)
00 (p0, |~p |) =

√
4π

while all other functions vanish identically.

This concludes the proof.

5.2.2 Variation of the Regularized Causal Action for Lorentz Boosts

After the preparatory calculations in the previous section, we now combine the results from
Corollary 5.2.2 and Theorem 5.1.4 to evaluate the variation of the regularized causal action for
Lorentz boosts of the four-velocity of the regularization.

Lemma 5.2.3 (Variation of the Regularized Causal Action for Lorentz Boosts)

The variation of the regularized causal action as given in Theorem 5.1.4 evaluates for Lorentz
boosts of the four-velocity of the regularization to

δSε = 0 (5.28a)

δ2Sε = Re

 ∞∫
0

d|~p |
(
√
πQε0(|~p |) +

∞∫
0

d|~q | 2π
3
|~p ||~q |Qε10(|~p |, |~q |)

ωpωq

) (5.28b)

Proof. In order to evaluate the expression for the variation of the regularized causal action as
derived in Theorem 5.1.4, we consider the contributions at first and second perturbation order
separately.

(1) Evaluation of δSε for Lorentz Boosts
According to (5.13a), the first variation of the regularized causal action only depends on the
function f (1)

00 which vanishes identically in the case of Lorentz boosts. We thus immediately
conclude that the first variation of the regularized causal action vanishes

δSε
[(
f

(1)
00
)LB
]

= 0

which means that Lorentz boosts are candidates for stationary points of Sε.

(2) Evaluation of δ2Sε for Lorentz Boosts
Evaluating (5.13b) for Lorentz boosts by inserting (5.24) and taking into account that the
scalar-valued integral kernels Qεlm from (5.13b,i) satisfy the relation Qε1(±1) = Qε10, we find

δ2Sε
[(
f

(1)
1m
)LB

,
(
f

(2)
00
)LB
]

=

(5.13b)= Re

 ∞∫
0

d|~p | |~p |2

(2π)4

(
Qε0(|~p |)

2 f
(2)
00 (|~p |)

+1
2

1∑
m=−1

∞∫
0

d|~q | |~q |2

(2π)4 f
(1)
1m(|~p |)Qε1m(|~p |, |~q |)f (1)

1m(|~q |)
)
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(5.24)= Re

 ∞∫
0

d|~p | |~p |2

(2π)4

(
√
πQε0(|~p |) + 1

2

∞∫
0

d|~q | |~q |2

(2π)4
4π
3 Qε10(|~p |, |~q |)×

× |~p ||~q |
ωpωq

[
(n3)2 +

∣∣∣∣n1 − in2
√

2

∣∣∣∣2 +
∣∣∣∣n1 + in2
√

2

∣∣∣∣2
])

(5.24)= Re

 ∞∫
0

d|~p | |~p |2

(2π)4

(
√
πQε0(|~p |) +

∞∫
0

d|~q | |~q |2

(2π)4
2π
3
|~p ||~q |Qε10(|~p |, |~q |)

ωpωq

)
where in the last step we used that ~n has unit length. This concludes the proof.

According to this lemma, Lorentz boosts are candidates for stationary points of the regularized
causal action. To show that Lorentz boosts actually leave Sε invariant (at least up to second
order in perturbation theory), it remains to show that the second variation of the regularized
causal action as computed in (5.28b) vanishes. To this end, we need the following lemma.

Lemma 5.2.4 (Condition on Derivatives of the Regularized Causal Lagrangian)

The iε-regularized causal Lagrangian as given in (2.42) satisfies the condition

0 =
∫
Xε

d(ξ0, r)
[
r4

3 D
2Lε(ξ) + ξ0r2DLε(ξ)

]
−
∫
R

dξ0

[
r4

3

(
DLε(ξ)

)2
∂rLε(ξ)

]∣∣∣∣∣
r=Rεmax(ξ0)

(5.29)

where D denotes the differential operator with respect to ξ0 and r given by D = ∂ξ0 + ξ0

r ∂r.

Proof. In order to prove the claimed relation, we will repeatedly make use of the following two
equivalent ways to express the integral over the region Xε

∫
Xε

d(ξ0, r) f(ξ0, r) =
∞∫

0

dr

 −T
ε
min(r)∫
−∞

dξ0 +
∞∫

T εmin(r)

dξ0

 f(ξ0, r) (5.30a)

∫
Xε

d(ξ0, r) f(ξ0, r) =
∫
R

dξ0

Rεmax(ξ0)∫
0

dr f(ξ0, r) (5.30b)

which we refer to as the T εmin-representation and the Rεmax-representation of the bulk integral,
respectively. Here the function T εmin : R+

0 → R+
0 is defined as

T εmin(r) =
{

0 for 0 ≤ r ≤ Rεmax(0)

(Rεmax)−1(r) for r > Rεmax(0)
(5.31)

(1) Evaluation of the Bulk Term
We start by considering the first term in the expression, referred to as the bulk term. Splitting
up the outer differential operator D leads to∫

Xε

d(ξ0, r)
[
r4

3

(
∂

∂ξ0 + ξ0

r

∂

∂r

)
DLε(ξ) + ξ0r2DLε(ξ)

]

=
∫
Xε

d(ξ0, r)
[
r4

3
∂

∂ξ0 DL
ε(ξ) + ξ0r3

3
∂

∂r
DLε(ξ) + ξ0r2DLε(ξ)

]
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Making use of the T εmin-representation from (5.30a) to integrate by parts with respect to ξ0 in
the first term we arrive at

. . .
(5.30a)=
∞∫

0

dr r4

3

 −T
ε
min(r)∫
−∞

dξ0 ∂DLε

∂ξ0 +
∞∫

T εmin(r)

dξ0 ∂DLε

∂ξ0

+
∫
Xε

d(ξ0, r) ∂

∂r

[
ξ0r3

3 DLε(ξ)
]

=
∞∫

0

dr r4

3

([
DLε(ξ)

]−T εmin(r)

−∞
+
[
DLε(ξ)

]∞
T εmin(r)

)
+
∫
Xε

d(ξ0, r) ∂

∂r

[
ξ0r3

3 DLε(ξ)
]

where we have combined the second and third term into a partial derivative with respect to r
along the way. The integrand of the first term can be simplified by observing that derivatives
of Lε(ξ) both with respect to ξ0 and r vanish in the limit ξ0 → ±∞. This can be easily seen
from an asymptotic expansion of derivatives of the modified Bessel functions of the second
kind contained in (2.42).[57, 8.451/6] Thus, it remains

· · · =
∞∫

0

dr r4

3

[
DLε(ξ)

]−T εmin(r)

T εmin(r)
+
∫
Xε

d(ξ0, r) ∂

∂r

[
ξ0r3

3 DLε(ξ)
]

In this expression the second integral can also be simplified: Making use of the Rεmax-
representation of the bulk integral from (5.30b) and taking into account that DLε(ξ) yields a
finite value for r = 0 such that r3Lε(ξ) vanishes in the limit r → 0, we end up with∫

Xε

d(ξ0, r)
[
r4

3

(
∂

∂ξ0 + ξ0

r

∂

∂r

)
DLε(ξ) + ξ0r2DLε(ξ)

]

(5.30b)= −
∞∫

0

dr r4

3

[
DLε(ξ)

]T εmin(r)

−T εmin(r)
+
∫
R

dξ0
[
ξ0r3

3 DLε(ξ)
]∣∣∣∣
r=Rεmax(ξ0)

for the bulk term.

(2) Evaluation of the Boundary Term
Having simplified the bulk term, we now turn to the boundary term of the original expression.
Combining the factor

(
∂rLε(ξ)

)−1 with one of the factors DLε(ξ) yields

−
∫
R

dξ0

[
r4

3
1

∂rLε(ξ)
(
DLε(ξ)

)2]∣∣∣∣∣
r=Rεmax(ξ0)

=

= −
∫
R

dξ0

[
r4

3
1

∂rLε(ξ)

(
∂Lε(ξ)
∂ξ0 + ξ0

r

∂Lε(ξ)
∂r

)
DLε(ξ)

]∣∣∣∣∣
r=Rεmax(ξ0)

= −
∫
R

dξ0

[
r4

3

(
∂ξ0Lε(ξ)
∂rLε(ξ)

+ ξ0

r

)
DLε(ξ)

]∣∣∣∣∣
r=Rεmax(ξ0)

To proceed, we exploit the fact that the regularized causal Lagrangian by definition vanishes
at the boundary r = Rεmax(ξ0). By differentiating this relation with respect to ξ0 we obtain

0 = d
dξ0

(
Lε(ξ)

∣∣
r=Rεmax(ξ0)

)
= ∂Lε(ξ)

∂ξ0

∣∣∣∣
r=Rεmax(ξ0)

+ ∂Lε(ξ)
∂r

∣∣∣∣
r=Rεmax(ξ0)

dRεmax(ξ0)
dξ0

Solving for the derivative of Lε(ξ) with respect to ξ0 and inserting the result into the previous
expression results in

−
∫
R

dξ0
[
r4

3
1

∂rLε(ξ)
(
DLε(ξ)

)2]∣∣∣∣
r=Rεmax(ξ0)

=
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= −
∫
R

dξ0

[(
− r4

3
dRεmax(ξ0)

dξ0 + ξ0r3

3

)
DLε(ξ)

]∣∣∣∣∣
r=Rεmax(ξ0)

for the boundary term.

(3) Combining Bulk and Boundary Terms
Adding up the bulk and boundary contributions and cancelling terms we arrive at∫
Xε

d(ξ0, r)
[
r4

3 D
2Lε(ξ) + ξ0r2DLε(ξ)

]
−
∫
R

dξ0
[
r4

3
1

∂rLε(ξ)
(
DLε(ξ)

)2]∣∣∣∣
r=Rεmax(ξ0)

= −
∞∫

0

dr r4

3

[
DLε(ξ)

]T εmin(r)

−T εmin(r)
+
∫
R

dξ0 dRεmax(ξ0)
dξ0

[
r4

3 DL
ε(ξ)

]∣∣∣∣
r=Rεmax(ξ0)

To demonstrate that this expression vanishes, we split the domain of integration in the second
term into regions where ξ0 < 0 and ξ0 > 0, respectively. As a consequence of this splitting,
we can express ξ0 as ξ0 = −T εmin(Rεmax(ξ0)) and ξ0 = T εmin(Rεmax(ξ0)), respectively, and thus
obtain

· · · = −
∞∫

0

dr r4

3 DL
ε
(
T εmin(r), r

)
+
∞∫

0

dξ0 dRεmax(ξ0)
dξ0

[
r4

3 DL
ε
(
T εmin(r), r

)]∣∣∣∣
r=Rεmax(ξ0)

+
∞∫

0

dr r4

3 DL
ε
(
− T εmin(r), r

)
+

0∫
−∞

dξ0 dRεmax(ξ0)
dξ0

[
r4

3 DL
ε
(
− T εmin(r), r

)]∣∣∣∣
r=Rεmax(ξ0)

Splitting the integrals in the first and third term and changing variables in the second and
fourth term gives

· · · = −
( Rεmax(0)∫

0

dr +
∞∫

Rεmax(0)

dr
)
r4

3 DL
ε
(
T εmin(r), r

)
+ lim
τ→∞

Rεmax(τ)∫
Rεmax(0)

du u4

3 DL
ε
(
T εmin(u), u

)

+
( Rεmax(0)∫

0

dr +
∞∫

Rεmax(0)

dr
)
r4

3 DL
ε
(
− T εmin(r), r

)
+ lim
τ→∞

Rεmax(0)∫
Rεmax(−τ)

du u4

3 DL
ε
(
− T εmin(u), u

)
Recalling that the function Rεmax satisfies limτ→∞Rεmax(±τ) =∞, we realize that the second
and third term in the first line both describe the integral over the same set Cε+ = {(ξ0, r) | ξ0 ≥
0, r = Rεmax(ξ0)}, namely the upper regularized light-cone, and thus add up to zero. Likewise,
the two terms in the second line cancel as they both describe the integral over the same set
Cε− = {(ξ0, r) | ξ0 ≤ 0, r = Rεmax(ξ0)} being the lower regularized light-cone. We thus end up
with ∫

Xε

d(ξ0, r)
[
r4

3 D
2Lε(ξ) + ξ0r2DLε(ξ)

]
−
∫
R

dξ0
[
r4

3
1

∂rLε(ξ)
(
DLε(ξ)

)2]∣∣∣∣
r=Rεmax(ξ0)

= −
Rεmax(0)∫

0

dr r4

3 DL
ε
(
T εmin(r), r

)
+

Rεmax(0)∫
0

dr r4

3 DL
ε
(
− T εmin(r), r

)
(5.32)

But since T εmin(r) vanishes for 0 ≤ r ≤ Rεmax(0) according to (5.31), both terms add up to zero
such that the whole expression vanishes.

This concludes the proof.
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This lemma is the crucial ingredient in proving that the second variation of the regularized causal
action vanishes for Lorentz boosts of the velocity vector of the regularization. The missing link
which establishes the connection between Lemma 5.2.3 and Lemma 5.2.4 is to show that the
second variation as derived in (5.28b) is the same as the left-hand side in (5.29). Since this is a
rather technical task, we have deferred this to Appendix F and here in particular Lemma F.2.2.
Combining these results, we can now formulate the following theorem.

Theorem 5.2.5 (Invariance of Sε under Lorentz Boosts)

The iε-regularized causal action Sε is invariant under Lorentz boosts of the velocity vector of
the regularization.

Proof. In Lemma 5.2.3 we have shown that Lorentz boosts are at least stationary points of the
iε-regularized causal action as δSε vanishes, while the expression for δ2Sε reads

δ2Sε (5.28b)= Re

 ∞∫
0

d|~p |
(
√
πQε0(|~p |) +

∞∫
0

d|~q | 2π
3
|~p ||~q |Qε10(|~p |, |~q |)

ωpωq

)
Making use of Lemma F.2.2, this expression evaluates to

δ2Sε (F.7)= 2π

 ∫
Xε

d(ξ0, r)
(
ξ0r2DLε(ξ) + r4

3 D
2Lε(ξ)

)
−
∫
R

dξ0 r
4

3

(
DLε(ξ)

)2
∂rLε(ξ)

∣∣∣∣
r=Rεmax(ξ0)

 (5.29)= 0

which, according to Lemma 5.2.4, vanishes identically. Thus, Lorentz boosts of the velocity
vector of the regularization are not only stationary points of the iε-regularized causal action,
but they leave the causal action invariant.

Having studied special variations of the regularized kernel of the fermionic projector corresponding
to Lorentz boosts of the velocity vector of the regularization, we now come back to the more
general variations from Lemma 5.1.2 and examine how the regularized causal action reacts on
initial perturbations via the causal action principle.

5.3 Perturbations and Compensations

The starting point of our considerations is a spherically-symmetrically iε-regularized kernel of the
fermionic projector P̂ε0, which is assumed to be a minimizer of the regularized causal action. This
regularized kernel of the fermionic projector corresponds to a regularized Dirac sea configuration in
Minkowski spacetime equipped with a certain spherically-symmetric microstructure. Now, if this
spherically-symmetric situation is destroyed by some slight deformation of the microstructure, also
the regularized kernel of the fermionic projector changes. For reasons of manageability we assume
that the deformation only affects the exponential factor eε|p0| in the sense that it is replaced by an
anisotropic equivalent as defined in Assumption 5.1.1. The resulting anisotropically iε-regularized
kernel of the fermionic projector P̂ετ is no longer a minimizer of the regularized causal action.
According to the causal action principle, this non-optimal configuration causes a dynamics aimed
at restoring a potentially new configuration which again extremizes the regularized causal action.
In what follows, we give a simple model where an initial perturbation of the spherically symmetric
iε-regularization is counterbalanced by so-called compensations.
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5.3.1 Derivation of Compensations

On a technical level, we model the situation described above as follows: We assume that the
anisotropically iε-regularized kernel of the fermionic projector in momentum space takes the for

P̂ετ (p) =
(
/p+ µidC4

)
δ(p2 − µ2)Θ(−p0)eεp

0$τ (p) (5.33a)

where, according to Assumption 5.1.1, $τ (p) is given by

$τ (p) = 1 +
∞∑
n=1

∑
l,m

$
(n)
lm (p0, |~p |)Ylm(θp, ϕp) (5.33b)

For vanishing perturbation, namely in the limit τ → 0, the perturbed regularized kernel of the
fermionic projector P̂ετ (p) reduces to P̂ε0(p) = P̂ε(p). Due to the fact that P̂ετ (p) does in general no
longer extremalize the regularized causal action, the causal action principle tries to resolve this
dissatisfying situation by further modifying the anisotropic iε-regularization through a so-called
compensation. Once again, we assume for better manageability that the resulting regularized
kernel of the fermionic projector still has the structure as given in Assumption 5.1.1.

Lemma 5.3.1 (Stationarity Condition for the Compensation)

Let P̂ετ (p) be the compensated regularized kernel of the fermionic projector given by

P̂ετ (p) =
(
/p+ µidC4

)
δ(p2 − µ2)Θ(−p0)eεp

0[$τ (p)+κτ (p)] (5.34)

where

$τ (p) = 1 +
∞∑
n=1

τn

n!
∑
l,m

$
(n)
lm (p0, |~p |)Ylm(θp, ϕp) (5.34a)

represents the anisotropic iε-regularization induced by the initial perturbation, while

κτ (p) =
∞∑
n=1

τn

n!
∑
l,m

κ
(n)
lm (p0, |~p |)Ylm(θp, ϕp) (5.34b)

stands for the compensation. Then P̂ετ (p) is a stationary point of the regularized causal action,
if the multipole moments of the perturbation and the compensation satisfy the following
condition

∀(l,m) ∈ N0 × Z with − l ≤ m ≤ l ∀f (1)
lm ∈ C

∞(R+
0 ,C) :

Re

∑
l,m

∞∫
0

d|~p | |~p |2

(2π)4

∞∫
0

d|~q | |~q |2

(2π)4 κ
(1)
lm(|~p |)Qεlm(|~p |, |~q |)f (1)

lm (|~q |)


!= −Re

∑
l,m

∞∫
0

d|~p | |~p |2

(2π)4

∞∫
0

d|~q | |~q |2

(2π)4 $
(1)
lm (|~p |)Qεlm(|~p |, |~q |)f (1)

lm (|~q |)

 (5.35)

Proof. To prove the claimed relations, we recall that the first variation of the regularized causal
action has two dependences: On the one hand it is a functional of P̂ε while on the other hand
it also depends on the first variation δP̂ε around P̂ε. Therefore, the condition for P̂ε to be a
stationary point of the regularized causal action reads

∀δP̂εtest ∈ D′(R4,L(C4,C4)) : 0 !=
(
δSε
[
P̂ε
])[

δP̂εtest

]
(5.36)
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Based on this condition, we can now derive a relation between the initial perturbation and the
resulting compensation: Choosing P̂ε as the regularized kernel of the fermionic projector given
by

P̂ετ (p) =
(
/p+ µidC4

)
δ(p2 − µ2)Θ(−p0)eεp

0($τ+κτ ) (5.37)

where $τ and κτ correspond to the initial perturbation and the resulting compensation,
respectively, the condition for the compensated regularized kernel of the fermionic projector
P̂ετ to be a stationary point of the regularized causal action reads

∀δP̂εtest ∈ D′(R4,L(C4,C4)) : 0 !=
(
δSε
[
P̂ετ
])[

δP̂εtest

]
Expanding this condition into a Taylor series up to second order in the parameter τ yieldsa

0 !=
(
δSε
[
P̂ε0
])[

δP̂εtest

]
+ τ

(
δ2Sεsql

[
P̂ε0
])[

δP̂εpert + δP̂εcomp, δP̂εtest

]
+O(τ2)

Since P̂ε0 is assumed to be a stationary point of the regularized causal action, the first term
vanishes such that only the sesquilinear term remains. If we furthermore exploit sesquilinearity
(see (4.53)), we arrive at the condition(

δ2Sεsql

[
P̂ε0
])[

δP̂εcomp, δP̂εtest

]
!= −
(
δ2Sεsql

[
P̂ε0
])[

δP̂εpert, δP̂εtest

]
(5.38)

To arrive at the claimed expression, we now make use of the explicit expression for the
sesquilinear term in the second variation of the regularized causal action as given in (5.13b).
Denoting the multipole moments corresponding to the test variation by f (n)

lm , we find the
following condition which relates the multipole moments κ(1)

lm and $(1)
lm

∀(l,m) ∈ N0 × Z with − l ≤ m ≤ l ∀f (1)
lm ∈ C

∞(R+
0 ,C) :

Re

∑
l,m

∞∫
0

d|~p | |~p |2

(2π)4

∞∫
0

d|~q | |~q |2

(2π)4 κ
(1)
lm(|~p |)Qεlm(|~p |, |~q |)f (1)

lm (|~q |)


!= −Re

∑
l,m

∞∫
0

d|~p | |~p |2

(2π)4

∞∫
0

d|~q | |~q |2

(2π)4 $
(1)
lm (|~p |)Qεlm(|~p |, |~q |)f (1)

lm (|~q |)

 (5.39)

This concludes the proof.
aNote that the second variation of the regularized causal action contains two terms, namely the term which

depends linearly on the second variation of the regularized kernel of the fermionic projector and the sesquilinear
term where the first variation of the regularized kernel of the fermionic projector enters twice. Due to the fact
that in the present case the argument of the first variation is fixed already, we only obtain the sesquilinear term.

5.3.2 Variation of the Local Particle Density

To conclude this chapter, we finally want to analyze whether deformations of the regularization have
an effect on the local particle density and, if so, quantify its strength. As explained in Chapter 2,
the regularized kernel of the fermionic projector represents a certain Dirac sea configuration which,
in Minkowski spacetime, is the entirety of negative-frequency solutions of the Dirac equation. As
already mentioned in Footnote 9 on page 22, to every solution ψ of the Dirac equation one can
associate the so-called Dirac current which is a four-vector field defined as

jk(x) := ≺ψ|γkψ�Sx (5.40)

with γk denoting the kth Dirac matrix. The zeroth component j0(x) of this Dirac current can be
interpreted as the probability density of the fermionic particle corresponding to the Dirac solution
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ψ to be at the spacetime point x ∈M.1 If one now considers not only one solution of the Dirac
equation, but the entirety of all negative-frequency solutions described by the (regularized) kernel
of the fermionic projector, the probability density generalizes to the concept of the local particle
density.2

Definition 5.3.2 (Local Particle Density)

For a given homogeneous regularized kernel of the fermionic projector, the local particle
density f is defined as[6, p. 68]

f := Tr
(
γ0Pε(0)

)
= Tr

 ∫
R4

d4p

(2π)4 γ0 P̂ε(p)

 (5.41)

Starting from this definition, we can now study the effect of Lorentz boosts of the velocity of the
regularization on the local particle density.

Lemma 5.3.3 (Variation of the Local Particle Density for Lorentz Boosts)

Let δP̂ε(p) and δ2P̂ε(p) be the first and second order variations of the iε-regularized kernel of the
fermionic projector corresponding to Lorentz boosts as given in (5.20) and (5.21), respectively.
Then the corresponding variation of the local particle density is given by

δf = 0 (5.42a)

δ2f = − 2
(2π)3

[
µ2

ε

(
3K0(εµ) + 4K2(εµ)

)
+ 2µ

(
3
ε2 + µ2

)
K1(εµ)

]
(5.42b)

where Kn denote the modified Bessel functions of the second kind. The second variation has a
leading-order behaviour which is given by

δ2f = − 2
(2π)3

(
14
ε3 −

3µ2

2ε +O(ε)
)

(5.43)

Proof. As the local particle density depends linearly on the regularized kernel of the
fermionic projector, the corresponding variations at first and second order are clearly given by

δf = Tr

 ∫
R4

d4p

(2π)4 γ0 δP̂ε(p)

 (5.44a) δ2f = Tr

 ∫
R4

d4p

(2π)4 γ0 δ2P̂ε(p)

 (5.44b)

By inserting the explicit expression for δP̂ε(p) from (5.20) we find at first order

δf = ε

∫
R4

d4p

(2π)4 (~p · ~n ) Tr
(
γ0 P̂ε(p)

)
= 4ε

∫
R4

d4p

(2π)4 (~p · ~n )p0δ(p2 − µ2)Θ(−p0)eεp
0

(5.45)

where we for the second equality we have used the trace identities Tr(γkγl) = 4ηkl and
Tr(γk) = 0. To evaluate the remaining integral, we choose the coordinate system in momentum
space without loss of generality such that the z-axis coincides with ~n. In this way the scalar

1For more details, we refer to the discussion of this topic by Finster.[11, Sec. 1.2.1],[6, Sec. 1.2]
2Loosely speaking, one basically has to integrate j0(0) over all momenta and all negative frequencies. For a

detailed discussion, we refer to Finster’s first book.[6, Sec. 2.6]
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product ~p · ~n reduces to |~p ||~n| cos(θp) which in turn vanishes upon integration. Thus, the local
particle density does not change at first order.

For the second-order calculation we proceed in the same way: By inserting for δ2P̂ε(p) the
result obtained in (5.21) and using the trace identities for the Dirac matrices we obtain

δ2f = 2ε
∫
R4

d4p

(2π)4

(
p0 + ε(~p · ~n )2

)
p0δ(p2 − µ2)Θ(−p0)eεp

0
(5.46)

Choosing the coordinate system in the same way as before, carrying out the p0-integral as well
as the ϕp-integral and making use of the fact that ~n is a unit vector results in

δ2f = −2πε
∞∫

0

d|~p | |~p |2

(2π)4

1∫
−1

dcos(θp)
(
ωp + ε|~p |2 cos2(θp)

)
e−εωp

= −2πε
∞∫

0

d|~p | |~p |2

(2π)4

(
2ωp + 2

3ε|~p |
2
)

e−εωp

The remaining integrals can be evaluated using the table of integrals by Gradshteyn and
Ryzhik[57, 3.461(1, 2)] such that we finally end up with

δ2f = − 4πε
(2π)4

[
− ∂

∂ε

(
2µ
ε2 K1(εµ) + µ2

ε
K0(εµ)

)
+ ε

3

(
12µ2

ε3 K2(εµ) + 3µ3

ε2 K1(εµ)
)]

= − 2
(2π)3

[
3µ2

ε
K0(εµ) + 6µ

ε2 K1(εµ) + 2µ3K1(εµ) + 4µ2

ε
K2(εµ)

]
(5.47)

Expanding this result around ε = 0 yields the leading-order behaviour which is given by

δ2f = − 2
(2π)3

(
14
ε3 −

3µ2

2ε +O(ε)
)

(5.48)

This concludes the proof.

This lemma demonstrates that Lorentz boosts, although they leave the regularized causal action
invariant, nevertheless have an effect on the local particle density of the regularized Dirac sea
configuration. More precisely, for non-vanishing mass µ > 0 and regularization length ε > 0 the
local particle density (of the Dirac sea) decreases at leading order in the regularization length ε.3

3This fact, together with some other considerations, forms the starting point for the development of a novel
mechanism to explain baryogenesis within the framework of the theory of causal fermion systems.[77]
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In this last chapter we focus on the zeroth-order multipole moment of the second variation of the
regularized causal action and outline a procedure which allows to construct the inverse of the
integral operator Sε00 from (4.53b) under certain simplifying assumptions.

To better understand the necessity for simplifying assumptions, we briefly recall the achievements
from the previous chapters: In Chapter 3 we have derived an expression for δ2Sε (see (3.31b) in
Theorem 3.4.3) which depends on the so-called demarcation function Rεmax. In the homogeneous
setting, this function describes the regularization-dependent boundary between spacelike-separated
and timelike-separated difference vectors. Through the incomplete Fourier transforms, this
demarcation function ultimately enters the integral operators Sεlm which describe the multipole
moments of the sesquilinear contribution to δ2Sε. Although we were able to simplify the expression
for the multipole moments δ2Sεlm|l′m′ by carrying out both the position space angular integrals
and the momentum space angular integrals, one problem remained: Due to the fact that the
demarcation function Rεmax is implicitly defined through the condition (2.45), the ξ0-integral and
the r-integral appearing in the integral kernels of Sεlm cannot be evaluated, which, in turn, makes
it impossible to invert the integral operators Sεlm in full generality.

Nevertheless, to make at least a qualitative assessment regarding the invertibility, we consider the
zeroth-order multipole moment of δ2Sε and simplify the above-described setting by specifying the
function Rεmax and taking into account only the most singular contributions of the incomplete
Fourier transforms on the lightcone. In this way we are be able to construct a second-order differen-
tial operator, serving as the inverse of Sε00 and to determine its scaling in the regularization length ε.
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6.1 Computation of the Integral Operator Sε00

As mentioned in the above paragraph, the answer to the question whether it is possible to determine
the inverses of the integral operators Sεlm ultimately depends on the ability to carry out the position
space integrals contained in the incomplete Fourier transforms as introduced in Definition 4.2.1.
As this proves difficult in full generality, we simplify the setting by using the following observation:
The integrands of the incomplete Fourier transforms F [( · )εlm|l(−m)], namely the corresponding
coefficient matrices Cε( · ), diverge on the lightcone for vanishing regularization while they decay
polynomially away from the lightcone both for |ξ0| → ∞ and r →∞. As a consequence of this fact,
those regions within Rε which are closest to the lightcone, account for the dominant contribution
to the incomplete Fourier transforms. Thus, by determining the leading-order singularity of the
coefficient matrices on the lightcone and by making a reasonable ansatz for the function Rεmax, we
are in the position to determine at least the leading-order contribution to the integral operators Sεlm.

6.1.1 Lightcone Expansion of the Coefficient Matrices

We start by determining the most singular contributions to the coefficient matrices on the lightcone
using the lightcone expansion as introduced by Finster[11, Def. 2.2.1]. As we are primarily concerned
with a qualitative assessment and since the most singular terms are the same for all four incomplete
Fourier transforms appearing in the expression for Sε00 in (4.53b), we consider, without loss of
generality, only the incomplete Fourier transform F

[
Nε

00|00
]
.

Definition 6.1.1 (Lightcone Expansion of Distributions)

A distribution A(x, y) on M ×M is said to be of order O((y− x)2p) for p ∈ Z, if the product
(y− x)−2pA(x, y) is a locally integrable function. An expansion of the form

A(x, y) =
∞∑
j=g

A[j](x, y) with g ∈ Z (6.1a)

is called lightcone expansion if the terms A[j](x, y) are distributions of order O((y− x)2j) and
if A is approximated by the partial sums in the sense that for all p ≥ g the distribution

A(x, y)−
p∑
j=g

A[j](x, y) (6.1b)

is of order O((y− x)2p+2).

Based on this definition, we can now determine the leading-order term of the (regularized) lightcone
expansion of the coefficient matrix CεN as given in (4.19b,i). To keep the presentation as clear as
possible, we have deferred the detailed computations to Appendix A such that the (regularized)
lightcone expansion of the coefficient matrix CεN follows as a corollary from Lemma A.4.1 and the
following Lemma 6.1.2.

Lemma 6.1.2 (Close-to-Lightcone/Away-from-Origin Expansion of (Ξε∓)−2n)

In the region which is close to the lightcone (i. e. for |ξ
0|−r
r � 1) and simultaneously away

from the origin (i. e. for ε
r � 1), the following expansion holds

1
(Ξε∓)2n = (−1)n

(
√

2µr)2n

(
|ξ0| − r

r

)−n[
1 + (∓in)

[
ε(−ξ0)
|ξ0|−r
r

+O(1)
]
ε

r
+O

(
ε

r

)2
]
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where Ξε∓ denotes the dimensionless variable Ξε∓ = µ
√
−(ξε∓)2 as defined in (2.36) (with m

replaced by µ) and ε is the sign function.

Proof. Inserting the definition of Ξε∓ from (2.36), factorizing and subsequently expanding in a
Taylor series in ε

r yields

1
(Ξε∓)2n =

[
1

−µ2
(
(ξ0 ∓ iε)2 − r2

)]n
= (−1)n

(µr)2n

(
ξ0 + r

r

)−n(
ξ0 − r
r

)−n[
1− (∓in)

(
1

ξ0+r
r

+ 1
ξ0−r
r

)
ε

r
+O

(
ε

r

)2
]

To proceed, we consider the upper lightcone (ξ0 > 0) and the lower lightcone (ξ0 < 0) separately.
Rewriting the whole expression in terms of ξ

0−r
r and ξ0+r

r , respectively, and expanding around
zero gives

. . . = (−1)n

(
√

2µr)2n


(
ξ0−r
r

)−n[
1 + (∓in)

(
− 1

ξ0−r
r

+O(1)
)
ε
r +O

(
ε
r

)2] for ξ0 > 0

(−1)n
(
ξ0+r
r

)−n[
1 + (∓in)

(
− 1

ξ0+r
r

+O(1)
)
ε
r +O

(
ε
r

)2] for ξ0 < 0

Combining both results, we end up with

. . . = (−1)n

(
√

2µr)2n

(
|ξ0| − r

r

)−n[
1 + (∓in)

[
ε(−ξ0)
|ξ0|−r
r

+O(1)
]
ε

r
+O

(
ε

r

)2
]

Denoting equality up to higher-order terms in both ε
r and |ξ

0|−r
r by the symbol ◦= we thus find

1
(Ξε∓)2n

◦= (−1)n

(
√

2µr)2n

(
|ξ0| − r

r

)−n
= (−1)n

(2µ2)n
(|ξ0| − r)−n

rn

In case there is an additional factor ξ0 present in the numerator, the leading-order contribution
reads

ξ0

(Ξε∓)2n
◦= (−1)nε(ξ0)

(2µ2)n
(|ξ0| − r)−n

rn−1

where we have used the expansion

ξ0 = r · ξ
0 + r − r

r
= r ×

1 + ξ0−r
r for ξ0 > 0

−1 + ξ0+r
r for ξ0 < 0

This concludes the proof.

Combining this expansion with the result from Lemma A.4.1 we arrive at the following close-to-
the-lightcone/away-from-the-origin expansion of the coefficient matrix CεN.1

Corollary 6.1.3 (CTL/AFO Expansion of the Coefficient Matrix CεN)

Let CεN be the coefficient matrix as given in (4.19b,i) and customized to the iε-regularization
which corresponds to the incomplete Fourier transform F [Nε

lm|l(−m)]. The leading-order term

1As an abbreviation for the lengthy term “close-to-the-lightcone/away-from-the-origin expansion” we will from
now on use the shortcut CTL/AFO expansion.
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in the CTL/AFO expansion of the matrix is given by

CεN = 1
(2π)6

(|ξ0| − r)−4

4r3


−r ε(ξ0)11×3 0

ε(ξ0)13×1 − 1
r13×3 03×1

0 01×3 0

 (6.2)

Proof. To arrive at the claimed expression, we first have to customize the vector and scalar
components vε0, vεi , sε of the regularized kernel of the fermionic projector to the case of the
iε-regularization which, by comparing the general vector-scalar structure in (3.9) with the
one for the iε-regularized kernel of the fermionic projector in (2.37), amounts to the following
replacements

vεi (x, y)→ (ξε−)igε−(ξ) (A.5a)= (ξε−)ig̃−(Ξε−) and sε(x, y)→ hε−(ξ) (A.5b)= h̃(Ξε−) (6.3)

Together with the abbreviating notation introduced in Appendix Section A.3 and the definition
of the function Bε from (3.15), the coefficient matrix CεN becomes

CεN
(A.20)=


−r2|g|2 + |h|2 −((ξε+)0 − 2(ξε−)0)|g|211×3 (ξε+)0ḡh+ 2(ξε−)0gh̄

−((ξε−)0 − 2(ξε+)0)|g|213×1 −|g|213×3 −(ḡh+ 2gh̄)13×1

(ξε−)0gh̄+ 2(ξε+)0ḡh −(gh̄+ 2ḡh)11×3 |ξε|2|g|2

 (6.4)

Next, by using the leading-order contributions of the component functions g̃∓ and h̃ as derived
in (A.20) in Lemma A.4.1, we obtain

CεN = 4µ8

(2π)6
1
|Ξε|4


− r2

|Ξε|4 − (ξε+)0−2(ξε−)0

|Ξε|4 11×3
i

2µ

(
(ξε+)0

(Ξε+)2 −
2(ξε−)0

(Ξε−)2

)
− (ξε−)0−2(ξε+)0

|Ξε|4 13×1 − 1
|Ξε|413×3 − i

2µ

(
1

(Ξε+)2 − 2
(Ξε−)2

)
13×1

i
2µ

(
− (ξε−)0

(Ξε−)2 + 2(ξε+)0

(Ξε+)2

)
− i

2µ

(
− 1

(Ξε−)2 + 2
(Ξε+)2

)
11×3

|ξε|2
|Ξε|4

 (6.5)

where we kept the leading-order contributions in each entry. Making use of the expansion in
Lemma 6.1.2 we finally arrive at

CεN
◦= 1

(2π)6
(|ξ0| − r)−3

4r3


− r

(|ξ0|−r)
ε(ξ0)

(|ξ0|−r)11×3 iµr · ε(ξ0)
ε(ξ0)

(|ξ0|−r)13×1 − 1
r

1
(|ξ0|−r)13×3 −iµ13×1

−iµr · ε(ξ0) iµ11×3 1

 (6.6)

As can be seen from this expression, the leading-order contribution of the matrix as a whole is
given by the matrix where all entries except for those in the upper left (4× 4)-block matrix
are zero.

This concludes the proof.

6.1.2 Weak Evaluation of the Coefficient Matrix on the Lightcone

Having determined the leading-order contribution of the coefficient matrix CεN in the CTL/AFO
expansion, the next step consists in modelling the behaviour of the resulting incomplete Fourier
transform F [Nε

lm|l(−m)] near the lightcone. To this end we make use of the so-called weak
evaluation on the lightcone which is an integral part of the formalism of the continuum limit as
introduced by Finster.[6, Ch. 4]. In an nutshell, this formalism arises from the necessity to analyze
the regularization-dependence of the Euler-Lagrange equations in order to establish the connection
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with contemporary physics.2 For our purposes, however, we do not need the full machinery of the
formalism of the continuum limit, except for the weak evaluation on the lightcone which allows to
quantify the singular behaviour of regularized expressions in the limit ε→ 0. Technically, the weak
evaluation on the lightcone is implemented by integrating the respective regularization-dependent
expression (which in the limit ε→ 0 diverges on the lightcone) against a smooth test function with
respect to ξ0 for fixed r. Applying this concept in a slightly modified form to the leading-order
term in the CTL/AFO expansion of (Ξε∓)−2n as derived in Lemma 6.1.2 leads to the following result.

Lemma 6.1.4 (Weak Evaluation of (Ξε∓)−2n on the Lightcone)

Let the regularization be chosen such that the demarcation function Rmax as introduced in
Definition 2.3.8 takes the form

Rεmax(ξ0) = ξ0 − cεd with c > 0, d ∈ (0, 1) (6.7)

away from the origin.a Then, weakly evaluating the functions (|ξ0| − r)−nr−m and ε(ξ0)(|ξ0| −
r)−nr−m on the lightcone amounts to simultaneously replacing

∫
Xε

d(ξ0, r) →
∫
R

dξ0
∞∫

0

dr (6.8a)

and
(|ξ0| − r)−n

rm

{
1

ε(ξ0)

}
→ (cεd)1−n

n− 1
δ(ξ2)ε(ξ0)m−1

(ξ0)m−1

{
1

ε(ξ0)

}
(6.8b)

where ε denotes the sign function.

Proof. According to the preceding paragraph, the weak evaluation on the lightcone aims at
analyzing the singular behavior of a regularization-dependent expression on the lightcone by
determining its scaling in the regularization length ε. In our case, where we are interested in
evaluating incomplete Fourier transforms, namely integrals of the form∫

Xε

d(ξ0, r) (|ξ0| − r)−n

rm

{
1

ε(ξ0)

}
f(kr)e−iωξ0

(6.9)

the setting is slightly different: Unlike usual, here the regularization is encoded in the domain
of integration instead of the integrand. Nevertheless, the basic idea remains the same: In order
to determine the scaling in ε, we fix r � ε and integrate in ξ0-direction. For n ≥ 2 we obtain
in this way∫
Xε

d(ξ0, r) (|ξ0| − r)−n

rm

{
1

ε(ξ0)

}
=

=
∞∫

0

dr 1
rm

(−1)n
−Tmin(r)∫
−∞

dξ0 (ξ0 + r)−n
{

1

ε(ξ0)

}
+

∞∫
Tmin(r)

dξ0 (ξ0 − r)−n
{

1

ε(ξ0)

}
=
∞∫

0

dr 1
rm

(
(−1)n

{
1

−1

}[
(ξ0 + r)−n+1

−n+ 1

]−Tmin(r)

−∞
+
[

(ξ0 − r)−n+1

−n+ 1

]∞
Tmin(r)

)

2For the development of a deeper understanding of the formalism of the continuum limit we warmly recommend
the insightful, but rarely mentioned discussions by Finster[6, Sec. 3.6], [6, Sec. 4.1, 4.2], along with the computations
in [6, Sec. 4.3 - 4.5]. In order to get a first, rough overview, however, we refer to the explanations given in [11,
Sec. 2.4.1] and [11, Sec. 2.4.4] together with the introductory paragraph of [11, Sec. 2.4].
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=
∞∫

0

dr 1
rm

({
1

−1

}
(−1)n

(
− Tmin(r) + r

)−n+1

−n+ 1 −
(
Tmin(r)− r

)−n+1

−n+ 1

)

=
∞∫

0

dr 1
rm

({
1

−1

}
+ 1
)(

Tmin(r)− r
)1−n

n− 1

where we used that the boundary terms for ξ0 → ±∞ vanish identically. Choosing the
regularization such that the function Rεmax(ξ0) is given by Rεmax(ξ0) = ξ0 − cεd away from the
lightcone which translates into Tmin(r) = r + cεd for r > Rεmax(0), we obtainb

∫
Xε

d(ξ0, r) (|ξ0| − r)−n

rm

{
1

ε(ξ0)

}
=
∞∫

0

dr (cεd)1−n

n− 1
1
rm

{
1

0

}

Thus, away from the origin but on the lightcone, the expressions (|ξ0|−r)−nr−m and ε(ξ0)(|ξ0|−
r)−nr−m can be modelled by simultaneously replacing

∫
Xε

d(ξ0, r) →
∫
R

dξ0
∞∫

0

dr

and
(|ξ0| − r)−n

rm

{
1

ε(ξ0)

}
→ (cεd)1−n

n− 1
δ(ξ2)ε(ξ0)m−1

(ξ0)m−1

{
1

ε(ξ0)

}
This concludes the proof.

aNote that the parameter c must have length dimension dim(c) = 1− d in order to ensure that Rεmax has
length dimension dim(Rεmax) = 1.

bNote that in the lower case the expression vanishes due to the fact that the contributions for ξ0 > 0 and
ξ0 < 0 are non-vanishing but cancel each other.

6.1.3 Computing the Weakly Evaluated Incomplete Fourier Transforms

So far we have worked out the lightcone expansion of the coefficient matrix CεN and demonstrated
how its leading-order singularity on the lightcone can be modelled. With these results at hand we
are now able to compute the simplified position space integrals in Lemma 4.2.12 which leads us to
a manageable expression for the incomplete Fourier transform F [Nε

00|00].

Proposition 6.1.5 (Computation of Weakly Evaluated Fourier Integrals)

For any m ∈ N the integral functions If↑↓|m : R2 → R defined as

If↑↓|m(ω, k) :=
∫
R

dξ0
∞∫

0

dr δ(ξ2)ε(ξ0)m−1

(ξ0)m−1 f(kr)e−iωξ0

{
1

ε(ξ0)

}
(6.11a)

where the arrows refer to the upper and lower case, respectively, evaluate to Fourier cosine
transforms and Fourier sine transforms of the function f(kr)

rm

If↑|m(ω, k) = Fcos

(
f(kr)
rm

)
(ω) and If↓|m(ω, k) = −iFsin

(
f(kr)
rm

)
(ω) (6.11b)
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Proof. To prove the claimed relations, we start by rewriting the Dirac delta distribution using
the rule for composition with another function and thus obtain

If↑↓|m(ω, k) =
∫
R

dξ0
∞∫

0

dr e−iωξ0

(ξ0)m−1
f(kr)

2r

[
δ(ξ0 + r) + δ(ξ0 − r)

]
ε(ξ0)m−1

{
1

ε(ξ0)

}

Carrying out the ξ0-integral in the two different cases results in

. . . =
∞∫

0

dr f(kr)
2r ×

{
(−1)m−1 e−iω(−r)

(−r)m−1 + e−iωr

rm−1

−(−1)m−1 e−iω(−r)

(−r)m−1 + e−iωr

rm−1

}

=
∞∫

0

dr f(kr)
rm

×

cos(ωr) for ↑

−i sin(ωr) for ↓

This result demonstrates that the integral functions If↑↓|m can be interpreted as the Fourier
cosine transform (for ↑) and the Fourier sine transform (for ↓) of the function f(kr)r−m with
respect to the variable ω

If↑|m(ω, k) = Fcos

(
f(kr)
rm

)
(ω) and If↓|m(ω, k) = −iFsin

(
f(kr)
rm

)
(ω) (6.12)

This concludes the proof.

According to Lemma 4.2.12, the position space integrals also involve the multipole matrices Mll,
Nll as well as their asterisked counterparts

∗
Mll and

∗
Nll which all carry an r-dependence through

sines and cosines (see Appendix E.1). This means that the integral functions If↑↓|m have to be
evaluated for f ∈ {cos, sin} and, in the case relevant for us, for m ∈ {2, 3, 4}.

Lemma 6.1.6 (Evaluation of Integral Functions If↑↓|m for f ∈ {cos, sin})

For f ∈ {cos, sin} andm ∈ {2, 3, 4} the integral functions If↑|m as introduced in Proposition 6.1.5
evaluate to

2
π
Icos
↑|2(ω, k) = −|ω − k|+ |ω + k|

2 =
{
−|ω| for |ω| > |k|

−|k| for |k| ≥ |ω|
(6.13a)

2
π
Icos
↑|4(ω, k) = |ω − k|

3 + |ω + k|3

12 =
{ |ω|

6 (ω2 + 3k2) for |ω| > |k|
|k|
6 (3ω2 + k2) for |ω| ≤ |k|

(6.13b)

2
π
Isin
↑|3(ω, k) = |ω − k|(ω − k)− |ω + k|(ω + k)

4 =
{

ε(−k)|ω||k| for |ω| > |k|
ε(−k)

2 (ω2 + k2) for |ω| ≤ |k|
(6.13c)

while for If↓|m we analogously obtain

2
π
Icos
↓|3(ω, k) = i |ω − k|(ω − k) + |ω + k|(ω + k)

4 =
{

i ε(ω)
2 (ω2 + k2) for |ω| > |k|

iε(ω)|ω||k| for |ω| ≤ |k|
(6.13d)

2
π
Isin
↓|2(ω, k) = i |ω − k| − |ω + k|

2 =
{

iε(−ω)ε(k)|k| for |ω| > |k|

iε(−ω)ε(k)|ω| for |ω| ≤ |k|
(6.13e)
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Proof. To prove the claimed relations, we first of all remark that Fourier sine and cosine
transforms as defined in (6.11b) are related via

−iIsin
↑|m(k, ω) = Icos

↓|m(ω, k)

which directly implies that (6.13d) can be obtained from (6.13c) by interchanging arguments.
In addition to this, we furthermore have the relations

∂Icos
↑↓|m+1(ω, k)

∂k
= −Isin

↑↓|m(ω, k) and
∂Isin
↑↓|m+1(ω, k)

∂k
= Icos
↑↓|m(ω, k)

as well as

∂I•↑|m+1(ω, k)
∂ω

= −I•↓|m(ω, k) and
∂I•↓|m+1(ω, k)

∂ω
= I•↑|m(ω, k)

which allows to obtain both (6.13a) and (6.13e) from (6.13c) (or, equivalently, from (6.13d)).
Finally, by the same reasoning, we observe that (6.13c) (and, likewise, (6.13d)) can be computed
from (6.13b) which is sufficient to produce all claimed expressions via the above relations.
Evaluating If↑↓|m(ω, k) for f ∈ {cos, sin} by using the commands FourierCosTransform and
FourierSinTransform implemented in Mathematica 12 gives the result.a

For the sake of completeness we remark that the integral functions I•↑↓|m(ω, k) must be
understood in the distributional sense. The necessity for a distributional treatment can already
be recognized by trying to compute Icos

↑↓|2(ω, k) naively

Icos
↑↓|2(ω, k) =

∞∫
0

dr cos(ωr) cos(kr)
r2 =

∞∫
0

dr cos[(ω − k)r] + cos[(ω + k)r]
2r2

= −
∞∫

0

dr
sin2 [ω−k

2 r
]

+ sin2 [ω+k
2 r

]
r2 +

∞∫
0

dr 1
r2

where we exploited the double-angle formula cos(x) = 1− 2 sin2(x/2) in the last step. Making
use of the identity

∫∞
0 dx sin2(ax)/x2 = π

2 a which holds for a > 0[57, 3.821(9)], we obtain

2
π
Icos
↑↓|2(ω, k) = −|ω − k|+ |ω + k|

2 + 2
π

∞∫
0

dr 1
r2

which differs from the desired, finite result by an infinite constant. As one could have already
anticipated form the very definition of Icos

↑↓|2(ω, k), this divergence traces back to the sharp
singularity of the integrand at r = 0. The correct way to avoid the appearance of this constant
in the first place is to regularize Icos

↑↓|2(ω, k) using Hadamard’s method of dropping divergent
terms and keeping only the finite parts.[79, Book III, Ch. 2],b

aNote that the commands FourierSinTransform and FourierCosTransform include an additional factor
(2/π)1/2 compared with our definition. Explicitly, the command FourierCosTransform and If↑|m(ω, k) are
related via

If↑|m(ω, k) = (2/π)1/2 FourierCosTransform
[
f(kr)/rm, r, ω

]
(6.14)

and similarly for the Fourier sine transform.
bFor a systematic and detailed treatment of Hadamard’s finite part and its relation to the Cauchy principal

value, we refer to the book by Kanwal.[80, Sec. 4.2] Note that similar integrals, namely I1
↑↓|1(ω, k), I1

↑↓|2(ω, k)
and derivatives thereof, have already been computed by Finster[81], though with another method where the
integral functions in Proposition 6.1.5 are treated differently compared with our approach.

With these results at hand, we are now ready to compute the angular-integrated incomplete
Fourier transform F

[
Nε

00|00
]
(|~p |, |~q |) under the simplifying assumptions discussed above.
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Lemma 6.1.7 (Incomplete Fourier Transform for Weakly Evaluated Integrand)

The incomplete Fourier transform F
[
Nε

00|00
]
(|~p |, |~q |) from (4.44b) with its integrand replaced

by the weakly evaluated, leading-order contribution on the lightcone is given by

F
[
N
ε,lc
00|00

]
(|~p |, |~q |) = 1/3

(2π)3
(cεd)−3

ωpωq


−min

{ 1
|~p | ,

1
|~q |
}

min
{

0, |~p ||~q |2
ωp−ωq
|~p |

}
min

{
0, |~q ||~p |2

ωq−ωp
|~q |

}
− 1

3
min
{
|~p |2
|~q | ,

|~q |2
|~p |

}
|~p ||~q |

02×3

03×2 03×3

 (6.15)

where we have d ∈ (0, 1) as introduced in Lemma 6.1.4,

Proof. In order to derive the claimed expression, we start by recalling the explicit form of the
angular-integrated incomplete Fourier transform F

[
Nε

00|00
]
(|~p |, |~q |) which according to (4.44b)

is given by

F
[
Nε

00|00
]
(|~p |, |~q |) (4.44b)=

∫
Xε

d(ξ0, r) r2EεN
(
CεN �N00 −Bε

∗
N00

)
To compute the integral, we now make use of the groundwork carried out in the previous
sections: First, we take into account only the leading-order term of CεN in the lightcone
expansion as derived in Corollary 6.1.3. Concerning the prefactor Bε of the asterisked term
we remark that it is of next-to-leading-order compared with CεN and thus irrelevant for our
considerations. Next, by inserting the definition of EεN from (4.19b,ii) along with the explicit
form of N00 as given in (E.2a) and the leading-order contribution of CεN from (6.2) we find

F
[
Nε

00|00
]
(|~p |, |~q |)(4.19b,ii)=

(E.2a)

1
(2π)4

2
ωpωq|~p ||~q |

∫
Xε

d(ξ0, r) (|ξ0| − r)−4

r3 e−i(ωp−ωq)ξ0
×

×


r − iε(ξ0)

|~q |

iε(ξ0)
|~p |

1
r

1−|~p ||~q |r2

|~p ||~q |

02×3

03×2 03×3

 cos
[
(|~p |+ |~q |)r

]
+


−r iε(ξ0)

|~q |

− iε(ξ0)
|~p | − 1

r
1+|~p ||~q |r2

|~p ||~q |

02×3

03×2 03×3

 cos
[
(|~p | − |~q |)r

]

+


0 −irε(ξ0)

irε(ξ0) |~p |+|~q |
|~p ||~q |

02×3

03×2 03×3

 sin
[
(|~p |+ |~q |)r

]
+


0 −irε(ξ0)

−irε(ξ0) − |~p |−|~q ||~p ||~q |

02×3

03×2 03×3

 sin
[
(|~p | − |~q |)r

]
Having arrived at this point, the next step is to weakly evaluate the integrand on the lightcone
as explained in Lemma 6.1.4. Subsequently, by evaluating the resulting integrals using
Proposition 6.1.5 and Lemma 6.1.6, we obtain

F
[
N
ε,lc
00|00

]
(|~p |, |~q |) = 2/3

(2π)4
(cεd)−3

ωpωq|~p ||~q |


Icos
↑|2 (ω, k+)− Icos

↑|2 (ω, k−)
−i
[

1
|~q |

(
Icos
↓|3(ω,k+)−Icos

↓|3(ω,k−)
)

+
(
Isin
↓|2(ω,k+)+Isin

↓|2(ω,k−)
)]

i
[

1
|~p |

(
Icos
↓|3(ω,k+)−Icos

↓|3(ω,k−)
)

+
(
Isin
↓|2(ω,k+)−Isin

↓|2(ω,k−)
)] 1

|~p ||~q |

(
Icos
↑|4(ω,k+)−Icos

↑|4(ω,k−)
)
−
(
Icos
↑|2(ω,k+)+Icos

↑|2(ω,k−)
)

+ 1
|~q |

(
Isin
↑|3(ω,k+)−Isin

↑|3(ω,k−)
)

+ 1
|~p |

(
Isin
↑|3(ω,k+)+Isin

↑|3(ω,k−)
)


where we suppressed the zero rows and columns and defined ω := ωp − ωq and k± := |~p | ± |~q |.

It remains to further simplify the matrix entries by evaluating the expression in the two cases
|~p | > |~q | and |~p | < |~q |, each for |~p |, |~q | ≥ 0. To this end we first note that the functions
f±(|~p |) := ωp±|~p | =

√
|~p |2 + µ2±|~p | both start from f±(0) = µ > 0 and are strictly increasing

(for f+) and strictly decreasing (for f−) on R+
0 . As a consequence, both the relations

ωp − |~p | ≤ ωq + |~q | and ωq − |~q | ≤ ωp + |~p | (6.16)

hold for all |~p |, |~q | ≥ 0 which can be cast into the form |ω| ≤ |k+|. Similarly, we find

ωp − |~p | ≤ ωq − |~q | for |~p | ≥ |~q | and ωq − |~q | ≤ ωp − |~p | for |~p | ≤ |~q | (6.17)
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which is equivalent to |ω| ≤ |k−|. Taken together, we have |ω| ≤ |k±| which means that in
the expressions for I•↑↓|m as derived in Lemma 6.1.6 only the lower cases are relevant for the
evaluation of the above matrix. By considering, for example, the upper right entry of the
matrix, we find

− i
[

1
|~q |
(
Icos
↓|3 (ω, k+)− Icos

↓|3 (ω, k−)
)

+
(
Isin
↓|2(ω, k+) + Isin

↓|2(ω, k−)
)]

=

= −iπ2

[
iε(ω)|ω||k+| − iε(ω)|ω||k−|

|~q |
+
(
iε(−ω)ε(k+)|ω|+ iε(−ω)ε(k−)|ω|

)]
= π

2ω
[
|k+| − |k−|
|~q |

−
(
ε(k+) + ε(k−)

)]

= π

2ω


|~p |+|~q |−(|~p |−|~q |)

|~q | −
(
1 + 1

)
for |~p | ≥ |~q |

|~p |+|~q |−(|~q |−|~p |)
|~q | −

(
1 + (−1)

)
for |~p | < |~q |

 = πmin
{
ω
|~p |
|~q |

, 0
}

(6.18)

Evaluating all other entries in the same way, we finally end up with

F
[
N
ε,lc
00|00

]
(|~p |, |~q |) = 1/3

(2π)3
(cεd)−3

ωpωq

 −min
{ 1
|~p | ,

1
|~q |
}

min
{

0, |~p ||~q |2
ωp−ωq
|~p |

}
min

{
0, |~q ||~p |2

ωq−ωp
|~q |

}
− 1

3
min
{
|~p |2
|~q | ,

|~q |2
|~p |

}
|~p ||~q |


which concludes the proof.

6.2 Construction of the Inverse Operator for Sε00

Having found an explicit expression for the angular-integrated incomplete Fourier transform
F
[
Nε

00|00
]
(|~p |, |~q |) without remaining position space integrals present, we are now in the position

to construct the inverse operator of the term in the integral operator Sε00 corresponding to
F
[
N
ε,lc
00|00

]
(|~p |, |~q |). To this end, we recall that according to Theorem 4.3.1 the sesquilinear term

in the lth multipole moment of the second variation of the regularized causal action reads

δ2Sεsql,l = Re
[

1
2

l∑
m=−l

〈〈
∆lm,Sεlm∆lm

〉〉]

where the integral operators Sεlm for (l,m) ∈ N0 × Z with −l ≤ m ≤ l are given by

(Sεlm∆lm)(|~p |) (4.53b)=
∞∫

0

d|~q | |~q |2

(2π)4

[
F
[
Mε
lm|l(−m)

]
(|~p |, |~q |)−F

[
Vεlm|l(−m)

]
(|~p |, |~q |)

+ (−1)−mF
[
Nε
lm|l(−m)

]
(|~p |, |~q |)− (−1)−mF

[
Wε
lm|l(−m)

]
(|~p |, |~q |)

]
∆lm(|~q |)

Due to the fact that, as already mentioned at the beginning of Subsection 6.1.1, the principal
procedure is the same for all four terms in Sεlm, we again restrict attention to the contribution
coming from the incomplete Fourier transform F

[
Nε

00|00
]
(|~p |, |~q |), or rather F

[
N
ε,lc
00|00

]
(|~p |, |~q |).

Accordingly, the object of investigation in this section is

δ2Sεsql,0 = Re
[

1
2

〈〈
∆00

∣∣∣Sε,lc00 ∆00

〉〉]
where Sε,lc00 ∆00(|~p |) =

∞∫
0

d|~q | |~q |2

(2π)4 F
[
N
ε,lc
00|00

]
(|~p |, |~q |)∆00(|~q |)

As the entries of the matrix-valued integral kernel F [Nε,lc
00|00](|~p |, |~q |) vanish except for the upper

left (2× 2)-block matrix according to Lemma 6.1.7, we will suppress zero rows and columns in
what follows and only consider two-component functions ∆00 ∈ C∞(R+

0 ,C2).
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6.2.1 Construction of Green’s Operators for Entries of F [Nε,lc
00|00 ]

To begin with, we first construct differential operators which invert the diagonal entries of the
matrix-valued integral kernel F

[
N
ε,lc
00|00

]
(|~p |, |~q |) in the sense of Green’s operators.

Lemma 6.2.1 (Green’s Operators for Diagonal Entries of F [Nε,lc
00|00 ](|~p |, |~q |))

The non-vanishing diagonal entries

K1(|~p |, |~q |) := min
{

1
|~p |

,
1
|~q |

}
and K2(|~p |, |~q |) := min

{
|~q |2

|~p |
,
|~p |2

|~q |

}
(6.19a)

of the matrix F
[
N
ε,lc
00|00

]
(|~p |, |~q |) as given in (6.15) are Green’s functions of the differential

operators

A := −|~p |2
(

d
d|~p | + 2

|~p |

)
d

d|~p | and B := −1
3

(
d2

d|~p |2
− 2
|~p |2

)
(6.19b)

respectively.

Proof. In order to construct inverse operators for the non-vanishing diagonal entries of
F
[
N
ε,lc
00|00

]
(|~p |, |~q |), we construct differential operators which have K1 and K2 as their Green’s

functions.

(1) Constructing the Green’s Operator for K1

From the form of K1 we can immediately conclude that we need at least a second-order
differential operator A (with respect to |~p |) in order to achieve that AK1 vanishes for |~p | > |~q |.
Using the ansatz

A = α2(|~p |) d2

d|~p |2
+ α1(|~p |)

|~p |
d

d|~p | + α0(|~p |)
|~p |2

and demanding that the condition

AK1(|~p |, |~q |) != 0

holds for |~p | 6= |~q |, we obtain the following restrictions on the choice of the coefficient functions
α0, α1, α2 by considering the regions |~p | < |~q | and |~p | > |~q | separately

0 !=

α0 for |~p | < |~q |

2α2 − α1 + α0 for |~p | > |~q |

Setting α0 ≡ 0 and choosing α1 ≡ 2α2 we arrive at the intermediate result

A = α2(|~p |)
(

d2

d|~p |2
+ 2
|~p |

d
d|~p |

)
In order to fix the so far undetermined function α2, we integrate the defining condition
AK1(|~p |, |~q |) = δ(|~p | − |~q |) over R+

0 and thus obtain

∞∫
0

d|~p | α2(|~p |)
(

d2

d|~p |2
+ 2
|~p |

d
d|~p |

)
K1(|~p |, |~q |) != 1

Integrating the first term by parts and exploiting that ∂|~p |K1 identically vanishes in the region
|~p | < |~q | results in



122 6.2. Construction of the Inverse Operator for Sε00

∞∫
|~q |

d|~p | ∂K1(|~p |, |~q |)
∂|~p |

(
− dα2(|~p |)

d|~p | + 2α2(|~p |)
|~p |

)
+ lim
|~p |→∞

(
− α2(|~p |)
|~p |2

)
!= 1

By comparing the length dimensions on both sides of the equation we can immediately conclude
that α2 has to satisfy the condition dim(α2) = 2. This observation directly leads to the choice
α2(|~p |) = −|~p |2 which not only makes the integrand vanish but also ensures that the boundary
term converges to one. We conclude that the differential operator

A = −|~p |2
(

d2

d|~p |2
+ 2
|~p |

d
d|~p |

)
satisfies the condition

AK1(|~p |, |~q |) = δ(|~p | − |~q |) (6.20)

and is thus the sought-after Green’s operator for K1.

(2) Constructing the Green’s Operator for K2

In order to find a differential operator B which has K2 as Green’s function, we proceed in
precisely the same way as above and again start from an ansatz for a second-order differential
operator with respect to |~p |. By considering the regions |~p | < |~q | and |~p | > |~q | separately, we
obtain the following conditions

0 !=

2(β2 + β1) + β0 for |~p | < |~q |

2β2 − β1 + β0 for |~p | > |~q |

which implies β1 ≡ 0 by taking the difference of the two conditions. Choosing β0 ≡ −2β2 we
find

B = β2(|~p |)
(

d2

d|~p |2
− 2
|~p |2

)
In order to decide on how to choose the yet undetermined function β2, we integrate the
condition BK2(|~p |, |~q |) = δ(|~p | − |~q |) over R+

0 and thus obtain

∞∫
0

d|~p | β2(|~p |)
(

d2

d|~p |2
− 2
|~p |2

)
K2(|~p |, |~q |) = 1

Integration by parts in the first term turns the condition into the form
∞∫

0

d|~p |
(
− dβ2(|~p |)

d|~p |
∂K2(|~p |, |~q |)

∂|~p |
− 2β2(|~p |)

|~p |2
K2(|~p |, |~q |)

)
+
[
β2(|~p |)∂K2(|~p |, |~q |)

∂|~p |

]∞
0

!= 1

In contrast with the previous case, the partial derivative ∂|~p |K2 does not vanish for |~p | < |~q |.
Splitting the integral into the regions |~p | < |~q | and |~p | > |~q | and inserting the respective
expressions for the partial derivative ∂|~p |K2 leads to

2
|~q |

 |~q |∫
0

d|~p |
(
− β2(|~p |)− |~p |dβ2(|~p |)

d|~p |

)
− lim
|~p |→0

|~p |β2(|~p |)

+

+ |~q |2

 ∞∫
|~q |

d|~p |
(
− 2β2(|~p |)

|~p |3
+ 1
|~p |2

dβ2(|~p |)
d|~p |

)
− lim
|~p |→∞

β2(|~p |)
|~p |2

 != 1
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From dimensional considerations we conclude that the function β2 has to satisfy the condition
dim(β2) = 0. By choosing β2(|~p |) = c ∈ R and computing all integrals it remains

− 2
|~q |
· c|~q |+ |~q |2 ·

[
c

|~p |2

]∞
|~q |

!= 1

which implies c = − 1
3 . As a consequence, the differential operator B has to be chosen as

B = −1
3

(
d2

d|~p |2
− 2
|~p |2

)
in order for the Green’s functions condition

BK2(|~p |, |~q |) = δ(|~p | − |~q |) (6.21)

to be satisfied. This concludes the proof.

6.2.2 Differential Operator Representation of δ2Sεsql,0

Having constructed the Green’s operators for the non-vanishing diagonal entries of the matrix
F [Nε,lc

00|00] we can now, in a second step, make use of these results by expressing the contribution
to the multipole moment δ2Sεsql,0 in (4.53b) corresponding to F [Nε,lc

00|00] in terms of a second-order
differential operator with matrix potential.

Lemma 6.2.2 (Differential Operator Representation of δ2Sεsql,0)

The contribution to the multipole moment δ2Sε0 of the second variation of the regularized causal
action corresponding to F [Nε,lc

00|00] can be expressed as

δ2Sεsql,0 = − (cεd)−3

24π3 Re

1
2

∞∫
0

d|~p | |~p |2

(2π)8

〈
f(|~p |),Hf(|~p |)

〉
C2

 (6.22a)

where the differential operator H and the two-component function f ∈ C∞(R+
0 ,C2) are given

by

H =
(

1 0

0 0

)
(−∆R3) +

(
0 − 1

2

− 1
2 1

)
1
|~p |2

and f = 1√
2

(
1 −1

1 1

)(
|~p |f0

|~p |f1

)
(6.22b)

respectively.

Proof. According to the discussion at the beginning of Section 6.2, the contribution to the
multipole moment δ2Sε0 relevant for us is given by

δ2Sεsql,0 = Re
[

1
2

〈〈
∆00,Sε,lc00 ∆00

〉〉]
with Sε,lc00 ∆00(|~p |) =

∞∫
0

d|~q | |~q |2

(2π)4 F
[
N
ε,lc
00|00

]
(|~p |, |~q |)∆00(|~q |)

where the integral kernel reads

F
[
N
ε,lc
00|00

]
(|~p |, |~q |) = 1/3

(2π)3
(cεd)−3

ωpωq

 −min
{ 1
|~p | ,

1
|~q |
}

min
{

0, |~p ||~q |2
ωp−ωq
|~p |

}
min

{
0, |~q ||~p |2

ωq−ωp
|~q |

}
− 1

3
min
{
|~p |2
|~q | ,

|~q |2
|~p |

}
|~p ||~q |


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To keep the discussion as simple as possible, we slightly simplify the discussion by only
considering the massless case µ = 0 where ωp =

√
|~p |2 + µ2 reduces to |~p |. This allows us

to express the off-diagonal entries of the matrix in terms of the functions K1 and K2 from
Lemma 6.2.1 as

min
{

0, |~p | − |~q |
|~q |2

}
(6.19a)= −

(
1
|~p |
− 1
|~p ||~q |

|~q |2

|~p |

)
= −Θ(|~q | − |~p |)

(
K1(|~p |, |~q |)− K2(|~p |, |~q |)

|~p ||~q |

)
min

{
0, |~q | − |~p |

|~p |2

}
(6.19a)= −

(
1
|~q |
− 1
|~p ||~q |

|~p |2

|~q |

)
= −Θ(|~p | − |~q |)

(
K1(|~p |, |~q |)− K2(|~p |, |~q |)

|~p ||~q |

)
and thus, in turn, makes it possible to cast the above integral kernel into the following
symmetrized form

F
[
N
ε,lc
00|00

]
(|~p |, |~q |)

∣∣∣
µ=0

(6.19a)= 1/3
(2π)3

(cεd)−3

|~p ||~q |

 −K1(|~p |, |~q |) − 1
2

(
K1(|~p |, |~q |)− K2(|~p |,|~q |)

|~p ||~q |

)
− 1

2

(
K1(|~p |, |~q |)− K2(|~p |,|~q |)

|~p ||~q |

)
− 1

3
K2(|~p |,|~q |)
|~p ||~q |


Based on this form of the integral kernel we can now rewrite δ2Sεsql,0 by using the Green’s
operators A,B derived in Lemma 6.2.1 in the following way: First, by exploiting that A and B
are invertible operators, the functions ∆00 ∈ C∞(R+

0 ,C2) can be expressed as

∆00(|~p |) =
(

Af0(|~p |)
3|~p |B|~p |f1(|~p |)

)
(6.23)

where f0, f1 ∈ C∞(R+
0 ,C) can be chosen arbitrarily. The appearance of additional factors |~p |

in the second component accounts for the fact that the length dimensions of K1 and K2 (and
thus also the length dimensions of the differential operators A and B) differ by two.a In this
way, we obtain

δ2Sεsql,0 = (cεd)−3

24π3 Re

1
2

∞∫
0

d|~p | |~p |
(2π)4

∞∫
0

d|~q | |~q |
(2π)4 ×

×
〈(

Af0(|~p |)

3|~p |B|~p |f1(|~p |)

)
,

 −K1 − 1
2

(
K1 − K2

|~p ||~q |

)
− 1

2

(
K1 − K2

|~p ||~q |

)
− 1

3
K2
|~p ||~q |

( Af0(|~q |)

3|~q |B|~q |f1(|~q |)

)〉
C2


where the prefactor 1

|~p ||~q | has already been compensated by (part of) the integration measures.
Now, by exploiting the fact that according to Lemma 6.2.1 the functions K1 and K2 are
Green’s functions of the differential operators A and B, respectively, they are inverses of the
integral operators T1, T2 : C∞(R+

0 ,C)→ C∞(R+
0 ,C) defined as

(Tif)(|~p |) :=
∞∫

0

d|~q | Ki(|~p |, |~q |)f(|~q |)

for i = 1, 2. The Green’s operator A (with respect to |~p |, as indicated by the subscript), for
example, then satisfies

A|~p |
[
(T1f)(|~p |)

]
=
∞∫

0

d|~q | A|~p |K1(|~p |, |~q |)f(|~q |) (6.20)=
∞∫

0

d|~q | δ(|~p | − |~q |)f(|~q |) = f(|~p |)

and likewise for the Green’s operator B. Using this, the above expression reduces to

δ2Sεsql,0 = (cεd)−3

24π3 Re

1
2

∞∫
0

d|~p | |~p |2

(2π)8

〈(
f0(|~p |)

f1(|~p |)

)
,

(
−A − 1

2 (3|~p |B|~p | − 3A)

− 1
2 (3|~p |B|~p | − 3A) −3|~p |B|~p |

)(
f0(|~p |)

f1(|~p |)

)〉
C2


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where we have already carried out the integral with respect to |~q |. As can be verified by a
quick computation, the differential operators A and B are related via 3|~p |B|~p | = A + 2. Using
this relation, we find that the integrand of the second variation of the regularized causal action
now takes the form of a matrix-valued differential operator with matrix potential given by

δ2Sεsql,0 = (cεd)−3

24π3 Re

1
2

∞∫
0

d|~p | |~p |2

(2π)8

〈(
f0(|~p |)

f1(|~p |)

)
,

[(
−1 1

1 −1

)
A +

(
0 −1

−1 −2

)](
f0(|~p |)

f1(|~p |)

)〉
C2


In order to turn this expression into the form as given in the statement, we perform a change
of basis such that the first matrix becomes diagonalb, rescale the functions f0, f1 as |~p |fi → fi
and use that the differential operator A can be expressed in terms of the radial part of the
Laplacian in R3 as A = −|~p |2∆R3 . In this way we finally end up with

δ2Sεsql,0 = − (cεd)−3

24π3 Re

1
2

∞∫
0

d|~p | |~p |2

(2π)8

〈
f(|~p |),Hf(|~p |)

〉
C2

 (4.52)= − (cεd)−3

192π7 Re
[

1
2 〈〈f,Hf〉〉

]

where the differential operator H and the two-component function f ∈ C∞(R+
0 ,C2) are given

by

H =
(

1 0

0 0

)
(−∆R3) +

(
0 − 1

2

− 1
2 1

)
1
|~p |2

and f = 1√
2

(
1 −1

1 1

)(
|~p |f0

|~p |f1

)

respectively.

This concludes the proof.
aRecall that A and B are both second-order differential operators with the difference that A includes an

additional factor |~p |2 compared with B.
bThe eigenvalues are λ1 = −2 and λ2 = 0 with the corresponding normalized eigenvectors being v1 =

1√
2

(1,−1)T and v2 = 1√
2

(1, 1)T, respectively

6.3 Invertibility of the Multipole Moment δ2Sεsql,0

In this final section we now put together all previous results and demonstrate that the contribution
δ2Sεsql,0 to the multipole moment δ2Sε0 is invertible. Due to the fact that the structure of the
other incomplete Fourier transforms is not fundamentally different from F [Nε,lc

00|00], the approach
presented in this chapter can be transferred to also evaluate these other contributions. Although
explicit calculations become increasingly lengthy, the procedure can in principle also be applied to
higher-order multipole moments.

Lemma 6.3.1 (Estimate for the Matrix Potential)

For any u = (u1, u2) ∈ C2 and for c ≥ −1+
√

2√
2 the following inequality holds〈(

u1

u2

)
,

(
0 −1/2

−1/2 1

)(
u1

u2

)〉
C2

≥ −c‖u‖2 (6.24)

where ‖u‖2 = |u1|2 + |u2|2.



126 6.3. Invertibility of the Multipole Moment δ2Sεsql,0

Proof. To prove the claimed inequality, we start by computing the scalar product〈(
u1

u2

)
,

(
0 −1/2

−1/2 1

)(
u1

u2

)〉
C2

= |u2|2 − Re
(
u1u2

)
and subsequently demand that the inequality

|u2|2 − Re
(
u1u2

)
≥ −c‖u‖2 ⇔ |u2|2 − Re

(
u1u2

)
+ c‖u‖2 ≥ 0

holds for some c > 0. Making use of the standard inequality Re(z1z2) ≤ |z1||z2| which holds
for arbitrary complex numbers z1, z2 ∈ C, we find the following estimate

|u2|2 − Re
(
u1u2

)
+ c‖u‖2 ≥ c|u1|2 + (1 + c)|u2|2 − |u1||u2|

= c

(
|u1|2 − 2 · 1

2c |u1||u2|
)

+ (1 + c)|u2|2

= c

(
|u1| −

|u2|
2c

)2
+ |u2|2

(
1 + c− 1

4c

)
where the first term, being the square of real numbers, is clearly non-negative. In order to
ensure that also the second term is non-negative, the parameter c > 0 has to satisfy the
condition

c ≥ −1 +
√

2
2 (6.25)

If this is condition is satisfied, the inequality

|u2|2 − Re
(
u1u2

)
+ c‖u‖2 ≥ c|u1|2 + (1 + c)|u2|2 − |u1||u2| ≥ 0 (6.26)

holds and thus concludes the proof.

In addition to this estimate which allows to handle the matrix potential term in (6.22), we need a
second inequality for the term containing the differential operator.

Lemma 6.3.2 (Inequality for the Scalar Hamiltonian)

For any compactly supported, complex-valued function ψ ∈ C∞0 (R3 \ {0},C) which vanishes in
a neighbourhood of 0 ∈ R3 the following inequality holds[82, Ch. 14]∫

R3

d3~x
∣∣ gradψ(~x)

∣∣2 ≥ ∫
R3

d3~x
|ψ(~x)|2

4r2 (6.27)

Proof. To prove the claimed relation, we follow the proof by John Baez[82, Ch. 14] and start
from the relation

grad
(
r

1/2ψ
)

= ~x

2r3/2
ψ + r

1/2 gradψ

where r := |~x |. Solving for the second term on the right-hand side and taking the square of
the absolute value results in the following inequality for the gradient

∣∣ gradψ
∣∣2 =

∣∣∣∣grad(r1/2ψ)
r1/2

− ~x

2r2ψ

∣∣∣∣2
=
∣∣ grad(r1/2ψ)

∣∣2
r

−
Re
(
~x · grad(r1/2ψ)ψ

)
r5/2

+ |ψ|
2

4r2
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≥ − 1
r3/2

Re
(
∂
(
r

1/2ψ
)

∂r
ψ

)
+ |ψ|

2

4r2

which holds for any r > 0. Rewriting the first term as

1
r3/2

Re
(
∂
(
r

1/2ψ
)

∂r
ψ

)
= 1

2r3/2

(
|ψ|2

r1/2
+ r

1/2 ∂ψ

∂r
ψ + r

1/2ψ
∂ψ

∂r

)
= 1

2r2
∂(r|ψ|2)
∂r

and inserting the whole expression into the left-hand side of the claimed relation yields∫
R3

d3~x
∣∣ gradψ(~x)

∣∣2 ≥ −∫
R3

d3~x
1
r3/2

Re
(
∂
(
r

1/2ψ
)

∂r
ψ

)
+
∫
R3

d3~x
|ψ(~x)|2

4r2

= −
∫
R3

d3~x
1

2r2
∂(r|ψ|2)
∂r

+
∫
R3

d3~x
|ψ(~x)|2

4r2

Note that it is this point where we have to assume that the function ψ vanishes in a
neighbourhood of 0 ∈ R3 in order to be able to use the above inequality. Taking into
account that in spherical coordinates the integration measure in the first integral yields a factor
r2, we actually have a boundary term with respect to the radial integral

. . . = −
∫
S2

dΩ
[
r|ψ|2

2

]∞
0

+
∫
R3

d3~x
|ψ(~x)|2

4r2

As we only consider compactly supported functions, this boundary term vanishes not only at
r = 0 but also for r →∞ such that we end up with the claimed relation∫

R3

d3~x
∣∣ gradψ(~x)

∣∣2 ≥ ∫
R3

d3~x
|ψ(~x)|2

4r2 (6.28)

which concludes the proof.

Armed with the estimates from Lemma 6.3.1 and Lemma 6.3.2 we can now prove that the
contribution δ2Sεsql,0 to the second variation of the regularized causal action is invertible.

Theorem 6.3.3 (Invertibility of the Multipole Moment δ2Sεsql,0)

The differential operator H from Lemma 6.2.2 which is given by

H (6.22)=
(

1 0

0 0

)
(−∆R3) +

(
0 − 1

2

− 1
2 1

)
1
|~p |2

(6.29)

satisfies the relation
∀f ∈ C∞0 (R+ \ {0},C2) :

〈〈
f(|~p |),Hf(|~p |)

〉〉
> 0 (6.30)

As a consequence, the contribution δ2Sεsql,0 to the second variation of the regularized causal
action as given in Lemma 6.2.2 is invertible on C∞0 (R+ \ {0},C2).

Proof. In order to prove the claimed inequality for the operator H, we start by inserting
the definition of H along with the radial part of the Laplacian which is given by ∆R3 =
|~p |−2∂|~p |

(
|~p |2∂|~p |

)
we finda〈〈

f(|~p |),Hf(|~p |)
〉〉

=
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(4.52)=
∞∫

0

d|~p | |~p |2

(2π)4

〈
f(|~p |),Hf(|~p |)

〉
C2

=
∞∫

0

d|~p | |~p |2

(2π)4

〈
f(|~p |),

[
−

(
1 0

0 0

)
1
|~p |2

∂

∂|~p |

(
|~p |2 ∂f(|~p |)

∂|~p |

)
+
(

0 − 1
2

− 1
2 1

)
f(|~p |)
|~p |2

]〉
C2

=
∞∫

0

d|~p |
(2π)4

〈
f(|~p |),

[
−

(
1 0

0 0

)
∂

∂|~p |

(
|~p |2 ∂f(|~p |)

∂|~p |

)
+
(

0 − 1
2

− 1
2 1

)
f(|~p |)

]〉
C2

Integrating by parts in the first term and spelling out the scalar products in the resulting terms
yields

· · · =
∞∫

0

d|~p | |~p |2

(2π)4

(∣∣∣∣∂f(|~p |)
∂|~p |

∣∣∣∣2 +
〈
f(|~p |),

(
0 − 1

2

− 1
2 1

)
f(|~p |)
|~p |2

〉
C2

)
−

[
|~p |2f(|~p |)

(2π)4
∂f(|~p |)
∂|~p |

]∞
0

As a consequence of the fact that the functions f are both compactly supported and vanish in
a neighbourhood of the origin in R3, the boundary term vanishes identically. Making use of
the inequalities from Lemma 6.3.1 and Lemma 6.3.2 for the first and second term, respectively,
we end up with

〈〈
f(|~p |),Hf(|~p |)

〉〉
(6.24)

≥
(6.27)

∞∫
0

d|~p | |~p |2

(2π)4

(
|f(|~p |)|2

4|~p |2 − −1 +
√

2
2

|f(|~p |)|2

|~p |2

)

= 3− 2
√

2
4

∞∫
0

d|~p |
(2π)4 |f(|~p |)|2 > 0

This concludes the proof that the differential operator H is positive and thus invertible. As the
contribution δ2Sεsql,0 to the second variation of the regularized causal action is proportional
to 〈〈f(|~p |),Hf(|~p |)〉〉 according to Lemma 6.2.2, we can conclude that δ2Sεsql,0 is invertible on
C∞0 (R+ \ {0},C2).

aNote that the sesquilinear form as given in (4.52) is actually defined on functions taking values in C5. Due
to our simplifications (see Lemma 6.1.7), however, it is sufficient to consider functions taking values in C2.
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In this appendix we derive various formulas for derivatives of the iε-regularized causal Lagrangian
as introduced in (2.42).

A.1 Frequently Used Integral Transforms

We start by introducing basic Fourier sine and cosine integral transforms which are required to
evaluate the iε-regularized kernel of the fermionic projector.

Lemma A.1.1 (Fourier Sine and Cosine Transforms)

Let α > 0, Re(β) > 0 and Re(γ) > 0. Then, according to Erdélyi and Bateman, the
Fourier sine transform of the functions xe−β

√
x2+γ2 and (x2 + γ2)−1/2xe−β

√
x2+γ2 are given

by[83, p. 75, eqns. (35), (36)]

∞∫
0

dx x sin(αx)e−β
√
x2+γ2 = αβγ2K2

(
γ
√
α2 + β2

)
α2 + β2 (A.1a)

∞∫
0

dx x sin(αx)√
x2 + γ2

e−β
√
x2+γ2 = αγ

K1
(
γ
√
α2 + β2

)√
α2 + β2

(A.1b)
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while the Fourier cosine transform of the functions e−β
√
x2+γ2 and (x2 + γ2)−1/2e−β

√
x2+γ2

evaluate to[83, p. 16/17, eqns. (26), (27)]

∞∫
0

dx cos(αx)e−β
√
x2+γ2 = βγ

K1
(
γ
√
α2 + β2

)√
α2 + β2

(A.2a)

∞∫
0

dx cos(αx)√
x2 + γ2

e−β
√
x2+γ2 = K0

(
γ
√
α2 + β2

)
(A.2b)

where K0,K1,K2 are referred to as the modified Bessel functions of the second kind.

Proof. See Tables of Integral Transforms, Vol. I by Erdélyi and Bateman.[83]

A.2 Components of Pε with iε-Regularization

In Lemma 2.3.3 we have derived the explicit expressions for the vector and scalar components gε−,
hε− of the iε-regularized kernel of the fermionic projector. In preparation for Appendix Section A.3
where certain combinations of derivatives of the iε-regularized causal Lagrangian are calculated,
we derive the derivatives of the components and re-express them in terms of the components of
themselves. Before, however, we introduce the following definition.

Definition A.2.1 (Components of Pε with iε-Regularization)

The vector and scalar components of the iε-regularized kernel of the fermionic projector (and
its adjoint) are given in (2.37a), (2.37b) in terms of modified Bessel functions of the second
kind, namely

gε∓(ξ) = ∓i µ4

(2π)3
K2(Ξε∓)
(Ξε∓)2 (A.3) hε∓(ξ) = µ3

(2π)3
K1(Ξε∓)

Ξε∓
(A.4)

For convenience, we reinterpret gε∓(ξ), hε∓(ξ) as functions g̃∓, h̃ : C→ C of the complex variable
Ξε∓ as

g̃∓(Ξε∓) := gε∓(ξ) (A.5a) h̃(Ξε∓) := hε∓(ξ) (A.5b)

Lemma A.2.2 (Derivatives of the Components of Pε with iε-Regularization)

The first and second derivatives of the component functions gε∓, hε∓ of the iε-regularized kernel
of the fermionic projector as introduced in Definition A.2.1 evaluate to

g̃′∓ = − 1
Ξε∓

(
4g̃∓ ∓ iµh̃

)
(A.6a)

g̃′′∓ = −5
g̃′∓
Ξε∓

+ g̃∓ (A.6b)

h̃′ = ∓i
Ξε∓
µ
g̃∓ (A.6c)

h̃′′ = ∓ i
µ

(
g̃∓ + Ξε∓g̃′∓

)
(A.6d)

where we suppress the arguments. Note that the length dimensions of these derivatives (with
respect to the dimensionless variable Ξε∓) are the same as those of g̃∓ and h̃.
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Proof. In order to compute the derivatives of the component functions g̃∓ and h̃, we use
the following derivative[57, pp. 8.486/12] and recursion relation[57, 8.486/17] for modified Bessel
functions

dKν(z)
dz = −

(
Kν−1(z) + ν

z
Kν(z)

)
(A.7a) K2(z) = K0(z) + 2K1(z)

z
(A.7b)

Expressing the results in terms of g̃∓ and h̃ we obtain

dg̃∓
dΞε∓

(A.7a)= ∓i µ4

(2π)3

(
− 4

K2(Ξε∓)
(Ξε∓)3 −

K1(Ξε∓)
(Ξε∓)2

)
= − 1

Ξε∓

(
4
[
∓ i µ4

(2π)3
K2(Ξε∓)
(Ξε∓)2

]
+
[
∓ i µ4

(2π)3
K1(Ξε∓)

Ξε∓

])
(A.3)=
(A.5b)
− 1

Ξε∓

(
4g̃∓ ∓ iµh̃

)
(A.8)

dh̃
dΞε∓

(A.7a)= µ3

(2π)3

(
− 2

K1(Ξε∓)
(Ξε∓)2 −

K0(Ξε∓)
Ξε∓

)
= − 1

Ξε∓

(
µ3

(2π)3

[
2
K1(Ξε∓)

Ξε∓
+K0(Ξε∓)

])
(A.5a)=
(A.7b)
∓i

Ξε∓
µ
g̃∓ (A.9)

Differentiating the above expressions once more and expressing the resulting expressions in
terms of g̃′∓, g̃∓ and h̃ we find for the second derivatives

d2g̃∓

d(Ξε∓)2 = 1
(Ξε∓)2

(
4g̃∓ ∓ iµh̃

)
− 1

Ξε∓

(
4g̃′∓ ∓ iµh̃′

)
(A.8)=
(A.9)
−
g̃′∓
Ξε∓
− 1

Ξε∓

(
4g̃′∓ ∓ iµ

[
∓ i

Ξε∓
µ
g̃∓

])
= −5

g̃′∓
Ξε∓

+ g̃∓ (A.10)

d2̃h

d(Ξε∓)2
(A.9)= ∓i 1

µ
g̃∓ ∓ i

Ξε∓
µ
g̃′∓ = ∓ i

µ

(
g̃∓ + Ξε∓g̃′∓

)
(A.11)

This concludes the proof.

Corollary A.2.3 (Derivatives of Fourier Sine and Fourier Cosine Transforms)

Setting α ≡ r, β ≡ (ε ± iξ0) and γ ≡ µ in Lemma A.1.1, defining ω(x) :=
√
x2 + µ2 and

expressing everything in terms of the functions g̃∓, h̃ as introduced in Definition A.2.1, we find
the following relations

∞∫
0

dx
(2π)3

{
x

x3

}
sin(rx)
ω(x) e−(ε±iξ0)ω(x) =


r
µ h̃

±ir
(

3g̃∓ + (µr)2 g̃
′
∓

Ξε∓

) (A.12a)

∞∫
0

dx
(2π)3

{
x

x3

}
sin(rx)e−(ε±iξ0)ω(x) =


−(ξε∓)0rg̃∓

µ2(ξε∓)0r
[
3 g̃
′
∓

Ξε∓
+ (µr)2

(Ξε∓)2

(
g̃′′∓ −

g̃′∓
Ξε∓

)] (A.12b)

∞∫
0

dx
(2π)3 x sin(rx)ω(x)e−(ε±iξ0)ω(x) = ∓ir

(
g̃∓ − µ2(ξε∓)0(ξε∓)0 g̃

′
∓

Ξε∓

)
(A.12c)
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∞∫
0

dx
(2π)3

{
x2

x4

}
cos(rx)
ω(x) e−(ε±iξ0)ω(x) =


1
µ

(
h̃∓ iµr2g̃∓

)
±i
[
3g̃∓ + 6(µr)2 g̃

′
∓

Ξε∓
+ (µr)4

Ξε∓

(
g̃′′∓ −

g̃′∓
Ξε∓

)]
 (A.12d)

∞∫
0

dx
(2π)3 x

2 cos(rx)e−(ε±iξ0)ω(x) = −(ξε∓)0
(
g̃∓ + (µr)2 g̃

′
∓

Ξε∓

)
(A.12e)

Proof. In order to derive the above relations, we set α ≡ r, β ≡ (ε ± iξ0) and γ ≡ µ in
Lemma A.1.1 and thus find the following relation for k ∈ N0

∞∫
0

dx x2k+1 sin(rx)e−(ε±iξ0)ω(x)

ω(x) =
(
− d2

dr2

)k
rµ
K1
(
µ
√
r2 + (ε± iξ0)2

)√
r2 + (ε± iξ0)2

Expressing the right-hand side in terms of the dimensionless variable Ξε∓ = µ
√
−(ξε∓)2 which

can be rewritten as

(ξε∓)2 = (ξ0 ∓ iε)2 − r2 = −(±i)2(ξ0 ∓ iε)2 − r2 = −
(
r2 + (ε± iξ0)2

)
and using the definition of the functions g̃∓ and h̃ as given in (A.5a) and (A.5b), respectively,
we arrive at the central relation

∞∫
0

dx
(2π)3 x sin(rx)e−(ε±iξ0)ω(x)

ω(x) = r

µ
h̃ (A.13)

Starting from this we can now derive all other relations. By taking the j-fold derivative with
respect to ξ0 and the k-fold derivative with respect to r2 and adjusting coefficients accordingly,
we obtain

∞∫
0

dx
(2π)3 x2k+1 sin(rx)ω(x)j−1e−(ε±iξ0)ω(x) =

(
± i ∂

∂ξ0

)j(
− ∂2

∂r2

)k
r

µ
h̃

The corresponding expressions (again for k ∈ N0) with sines replaced by cosines can be obtained
from the above result by adding one derivative with respect to r

∞∫
0

dx
(2π)3 x2k+2 cos(rx)ω(x)j−1e−(ε±iξ0)ω(x) = d

dr

(
± i d

dξ0

)j(
− d2

dr2

)k
r

µ
h̃

Evaluating the expressions containing sines for j = 0, 1, 2 and k = 0, 1 and those containing
cosines for j = 0, 1 and k = 0 by using the results from Lemma A.2.2 along with the relations

∂Ξε∓
∂ξ0 = −

µ2(ξε∓)0

Ξε∓
∂Ξε∓
∂r

= µ2r

Ξε∓

yields the claimed expressions and thus concludes the proof.

With these relations at hand, we can now derive formulas for combined derivatives of the iε-
regularized causal Lagrangian.
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A.3 Derivatives of Lε with iε-Regularization

Lemma A.3.1 (Derivatives of the Regularized Causal Lagrangian)

Let g, ḡ and h, h̄ be abbreviating notations defined as

g :− g̃−(Ξε−) (A.14a)
ḡ := g̃+(Ξε+) (A.14b)

h :− h̃(Ξε−) (A.14c)
h̄ := h̃(Ξε+) (A.14d)

and similarly for the derivatives. Then the first and second derivatives of the iε-regularized
causal Lagrangian as given in (2.42) with respect to the differential operator D := ∂ξ0 + ξ0

r ∂r
can be expressed as

DLε(ξ) = 16(εµ) Re
[
iµ g′

Ξε−

(
Bε|ξε|2ḡ − Cε(ξε−)2g

)
− i
µ
g
((
Bεḡ − Cεg

)
+ iµ

(
Bεh̄+ Cεh

))]
(A.15a)

D2Lε(ξ) = 16(εµ)2 Re
[
− µ2

(Ξε−)2

(
g′′ − g′

Ξε−

)(
Bε|ξε|2ḡ − Cε(ξε−)2g

)
− µ2

(
g′

Ξε−

)2[(
|ξε|2

)2
ḡ2 − Cε(ξε−)2

]
− µ2

∣∣∣∣ g′Ξε−

∣∣∣∣2[− (|ξε|2)2|g|2 + 2(ξε+)2(ξε−)2|g|2 −Bε|ξε|2
]

+ g′

Ξε−

[
iµ
(

2|g|2h̄|ξε|2 + 2ḡ2h|ξε|2 + 4|g|2h̄(ξε−)2 +
(
Bεh̄+ Cεh

))
+ 2
(

2|g|2ḡ(ξε−)2 − Cεg−
)

+
(
Bεḡ − Cεg

)
−
(
Bεḡ + Cεg

)]
+ 1
µ2

[
− 2
(
|g|2
)2 − iµ|g|2

(
3gh̄− ḡh

)
+ µ2

(
g2h̄2 − |g|2

∣∣h∣∣2 + g
(
Bεḡ + Cεg

))]]
(A.15b)

where the functions Bε and Cε are those introduced in Definition 3.3.3.

Proof. In order to make the computation of DLε(ξ) and D2Lε(ξ) as simple and straightforward
as possible, we first derive the expression for the first derivative of the functions g∓ and h∓
with respect to the differential operator D := ∂ξ0 + ξ0

r ∂r which yields{
Dg̃∓

Dh̃

}
=


dg̃∓
dΞε∓
dh̃

dΞε∓


(
∂Ξε∓
∂ξ0 + ξ0

r

∂Ξε∓
∂r

)
(A.6a)=
(A.6c)
±iεµ2


g̃′∓
Ξε∓
∓ i
µ g̃∓

 (A.16)

Using these expressions we can now compute the first and second derivatives of Lε(ξ) with
respect to D.

(1) First Derivative of Lε(ξ) with respect to D := ∂ξ0 + ξ0

r ∂r
Acting with the differential operatorD on the expression for the iε-regularized causal Lagrangian
as given in (2.42) and using the above relations, we obtain

DL(ξε) = −16ε2(Dr2)(|g|2)2 − 64ε2r2|g|2 Re
[
ḡDg

]
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+ 8 Re
[(
D(ξε−)2)g2h̄2 + 2(ξε−)2g(Dg)h̄2 + 2(ξε−)2g2h̄(Dh̄)

]
+ 8 Re

[(
D|ξε|2

)
|g|2|h|2 + 2|ξε|2 Re

[
ḡ(Dg)

]
|h|2 + 2|ξε|2|g|2 Re

[
h̄(Dh)

]]
Using the relations D|ξε|2 = 0, D(ξε∓) = ∓2iε and Dr2 = 2ξ0, the expression reduces to

. . . = −32ε2ξ0(|g|2)2 − 64ε2r2|g|2 Re
[
iεµ2ḡ

g′

Ξε−

]
+ 8 Re

[
2iεg2h̄2 + 2iεµ2(ξε−)2g

g′

Ξε−
h̄2 + 2εµ(ξε+)2ḡ2hg

]

+ 8 Re
[

2|ξε|2 Re
[
iεµ2ḡ

g′

Ξε−

]
|h|2 + 2εµ|ξε|2|g|2 Re

[
gh̄g

]]
where switched complex conjugations of the last term in the second line. Sorting terms
according to their number of derivatives of g, we arrive at the following expression for DLε(ξ)

. . . = 16(εµ) Re
[
iµ g′

Ξε−

(
− 4ε2r2|g|2ḡ + |ξε|2ḡ|h|2 + (ξε−)2gh̄2

)
− i
µ

(
g2h̄2 + iµ|g|2

(
(ξε+)2ḡh+ |ξε|2gh̄

)
− 2iεξ0(|g|2)2

)]
(A.17)

Rewriting this result in terms of the functions Bε and Cε as introduced in Definition 3.3.3 we
finally end up with

DLε(ξ) = 16(εµ) Re
[
iµ g′

Ξε−

(
Bε|ξε|2ḡ − Cε(ξε−)2g

)
− i
µ

((
Bε|g|2 − Cεg2)+ iµg

(
Bεh̄+ Cεh

)
− |g|2

(
2ε2|g|2 + |h|2

))]
= 16(εµ) Re

[
iµ g′

Ξε−

(
Bε|ξε|2ḡ − Cε(ξε−)2g

)
− i
µ
g
((
Bεḡ − Cεg

)
+ iµ

(
Bεh̄+ Cεh

))]
(A.18)

where in the final step we dropped the last term in the second line which vanishes as a
consequence of the presence of the real part.

(2) Second Derivative of Lε(ξ)
For the computation of the second derivative of Lε(ξ) with respect to D we take the expression
for DLε(ξ) from (A.18) as our starting point. By acting with D on every term and using the
relations D|ξε|2 = 0 and D(ξε∓)2 = ∓2iε once more as well as DΞε∓ = ±iε µ

2

Ξε∓
we obtain

D2Lε(ξ) = 16(εµ) Re
[
− εµ µ2

(Ξε−)2

(
g′′ − g′

Ξε−

)(
Bε|ξε|2ḡ − Cε(ξε−)2g

)
+ iµ g′

Ξε−

(
DBε|ξε|2ḡ +Bε|ξε|2Dḡ

−DCε(ξε−)2g + 2iεCεg − Cε(ξε−)2Dg
)

− i
µ
Dg
((
Bεḡ − Cεg

)
+ iµ

(
Bεh̄+ Cεh

))
− i
µ
g
((
DBεḡ +BεDḡ −DCεg − CεDg

)
+ iµ

(
DBεh̄+BεDh̄+DCεh+ CεDh

))]
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By making use of the derivatives of g̃∓ and h̃ we find for DBε and DCε the following relations

DBε = 2(εµ)
(
|ξε|2 Re

[
iµḡ g

′

Ξε−

]
+ Re

[
gh̄
])

DCε = 2(εµ)
(

i
µ
ḡ2 − iµ(ξε+)2ḡ

ḡ′

Ξε+
− ḡh̄

)
Inserting this into the above expression for D2Lε(ξ), simplifying the resulting expression and
sorting terms according to their number of derivatives gives

. . . = 16(εµ)2 Re
[
− µ2

(Ξε−)2

(
g′′ − g′

Ξε−

)(
Bε|ξε|2ḡ − Cε(ξε−)2g

)
− µ2

(
g′

Ξε−

)2[(
|ξε|2

)2
ḡ2 − Cε(ξε−)2

]
− µ2

∣∣∣∣ g′Ξε−

∣∣∣∣2[− (|ξε|2)2|g|2 + 2(ξε+)2(ξε−)2|g|2 −Bε|ξε|2
]

+ g′

Ξε−

[
iµ
(

2|g|2h̄|ξε|2 + 2ḡ2h|ξε|2 + 4|g|2h̄(ξε−)2 +
(
Bεh̄+ Cεh

))
+ 2
(

2|g|2ḡ(ξε−)2 − Cεg
)

+
(
Bεḡ − Cεg

)
−
(
Bεḡ + Cεg

)]
+ 1
µ2

[
− 2
(
|g|2
)2 − iµ|g|2

(
3gh̄− ḡh

)
+ µ2

(
g2h̄2 − |g|2

∣∣h∣∣2 + g
(
Bεḡ + Cεg

))]]
(A.19)

This concludes the proof.

A.4 Light-Cone Expansions

Lemma A.4.1 (Leading-Order Contributions of the Components of Pε)

The leading-order singularities of g̃∓(Ξε∓) and h̃(Ξε∓) are given by

g̃∓(Ξε∓) ◦= ∓i 2µ4

(2π)3
1

(Ξε∓)4 (A.20a) h̃(Ξε∓) ◦= µ3

(2π)3
1

(Ξε∓)2 (A.20b)

respectively.

Proof. Making use of the power series expansion of the modified Bessel functions Kn(z) for
n ∈ N0 around z = 0 which is given by[57, pp. 8.445, 8.446]

Kn(z) = 1
2

(
z

2

)−n n−1∑
k=0

(n− k − 1)!
k!

(
− z2

4

)k
+ (−1)n+1 ln

(
z

2

)
In(z)

+ (−1)n 1
2

(
z

2

)n ∞∑
k=0

ψ(k + 1) + ψ(n+ k + 1)
k!(n+ k)!

(
z

2

)2k
(A.21a)

where the functions ψ and In are defined in terms of the Γ-function as
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ψ(z) = Γ′(z)
Γ(z) and In(z) =

(
z

2

)n ∞∑
k=0

(
z
2
)2k

k!Γ(n+ k + 1) (A.21b)

As can be easily seen, the leading singularity of Kn(z) for n ≥ 1 is given by

Kn(z) ◦= 2n−1

zn
(A.22)

Applying this result to the functions g̃∓(Ξε∓) and h̃(Ξε∓) as introduced in (A.5a) and (A.5b),
respectively, we thus find

g̃∓(Ξε∓) ◦= ∓i 2µ4

(2π)3
1

(Ξε∓)4 and h̃(Ξε∓) ◦= µ3

(2π)3
1

(Ξε∓)2 (A.23)
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In this appendix we give the detailed calculations required in order to arrive at the expression
(3.22b) in Lemma 3.3.7 for the second variation of the eigenvalues of the regularized closed chain
which is, via the variation of the regularized causal Lagrangian as an intermediate step, one of the
central ingredients in the computation of the variation of the regularized causal action.

B.1 Trace Identities for Commutators of Dirac Matrices

We start by deriving trace identities for products of up to four commutators of Dirac matrices
which are needed to evaluate the second term in the general expression (3.23b) for the second
variation of the eigenvalues of the regularized closed chain.

B.1.1 Trace Identities involving two Dirac Matrices

Proposition B.1.1 (Trace Identities involving to Dirac Matrices)

For two Dirac matrices we have the following two identities

Tr
[
γiγj ] = 4ηij (B.1a) Tr

[
[γi, γj ]

]
= 0 (B.1b)

139
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Proof. To prove the first identity, we split the expression into two parts, exploit the cyclicity
of the trace and make use of {γi, γj} = 2ηij idC4 which thus results in

Tr
[
γiγj

]
= 1

2 Tr
[
γiγj

]
+ 1

2 Tr
[
γjγi

]
= 1

2 Tr
[
{γi, γj}

]
= ηij Tr

[
idC4

]
= 4ηij (B.2)

For the second identity we make use of the relation [γi, γj ] = 2(γiγj − ηij idC4) resulting from
γiγj = 1

2 [γi, γj ] + 1
2{γ

i, γj} = 1
2 [γi, γj ] + ηij idC4 . Along with the above result we find

Tr
[
[γi, γj ]

]
= 2 Tr

[
γiγj − ηij idC4

]
= 2
{

Tr
[
γiγj

]
− ηij Tr

[
idC4

]} (B.2)= 2
{

4ηij − 4ηij
}

= 0

This concludes the proof.

B.1.2 Trace Identities involving four Dirac Matrices

In the case where there are four Dirac matrices, we have three trace identities corresponding to
the number of possible commutators.

Proposition B.1.2 (Trace Identities involving Four Dirac Matrices)

For four Dirac matrices we have the following three identities

Tr
[
γiγjγkγl

]
= 4
(
ηijηkl − ηikηjl + ηilηjk

)
(B.3a)

Tr
[
γiγj [γk, γl]

]
= 8
(
− ηikηjl + ηilηjk

)
(B.3b)

Tr
[
[γi, γj ][γk, γl]

]
= 16

(
− ηikηjl + ηilηjk

)
(B.3c)

Proof. To prove the first identity we make use of the relation γiγj = 2ηij idC4 − γjγi resulting
from {γi, γj} = 2ηij idC4 . In this way we find

Tr
[
γiγjγkγl

]
= Tr

[
(2ηij − γjγi)γkγl

]
= 2ηij Tr

[
γkγl

]
− Tr

[
γj(2ηik − γkγi)γl

]
= 2ηij Tr

[
γkγl

]
− 2ηik Tr

[
γjγl

]
+ Tr

[
γjγk(2ηil − γlγi)

]
= 2ηij Tr

[
γkγl

]
− 2ηik Tr

[
γjγl

]
+ 2ηil Tr

[
γjγk

]
− Tr

[
γjγkγlγi

]
(B.4)

By exploiting the cyclicity of the trace, the last term can be combined with the left-hand side
which thus, together with (B.1a), results in

Tr
[
γiγjγkγl

]
= ηij Tr

[
γkγl

]
− ηik Tr

[
γjγl

]
+ ηil Tr

[
γjγk

]
(B.1a)= 4

(
ηijηkl − ηikηjl + ηilηjk

)
(B.5)

For the second identity we make use of the relation [γk, γl] = 2(γkγl − ηklidC4) resulting from
γkγl = 1

2 [γk, γl] + 1
2{γ

k, γl} = 1
2 [γk, γl] + ηklidC4 . Along with the above result we find

Tr
[
γiγj [γk, γl]

]
= 2 Tr

[
γiγj(γkγl − ηkl)

]
= 2
{

Tr
[
γiγjγkγl

]
− ηkl Tr

[
γiγj

]}
(B.5)= 2
{

4
(
��

��*
(1)

ηijηkl − ηikηjl + ηilηjk
)
−����:

(1)
4ηklηij

}
= 8
(
− ηikηjl + ηilηjk

)
(B.6)
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Finally, for the third identity we make repeated use of the relation [γi, γj ] = 2(γiγj − ηij idC4)
resulting from γiγj = 1

2 [γi, γj ] + 1
2{γ

i, γj} = 1
2 [γi, γj ] + ηij idC4 . Along with the results (B.1a)

and (B.5) we find

Tr
[
[γi, γj ][γk, γl]

]
= 4 Tr

[
(γiγj − ηij idC4)(γkγl − ηklidC4)

]
= 4
{

Tr
[
γiγjγkγl

]
− ηkl Tr

[
γiγj

]
− ηij Tr

[
γkγl

]
+ ηijηkl Tr

[
idC4

]}
(B.1a)=
(B.5)

4
{

4
(
��

��*
(1)

ηijηkl − ηikηjl + ηilηjk
)
−����:

(1)
4ηklηij −����:

(2)
4ηijηkl +����:

(2)
4ηijηkl

}
= 16

(
− ηikηjl + ηilηjk

)
This concludes the proof.

B.1.3 Trace Identities involving six Dirac Matrices

In the case where there are six Dirac matrices, the number of commutators no longer corresponds
to the number of possible trace identities: While for zero, one and three commutators we can
always arrange the commutators within the trace such that they appear at the last position, this
is not possible if there are to commutators: Either the commutators are adjacent to each other
(and thus can be commuted to the last position) or there is one Dirac matrix in between. All
other possible positions (i. e. two Dirac matrices in between the commutators) can be recovered
from those two standard cases by cyclic permutation and relabelling of the indices.

Proposition B.1.3 (Trace Identities involving Six Dirac Matrices)

For six Dirac matrices we have the following four identities which are relevant for the evaluation
of the second term in (3.23b)

Tr
[
γiγjγkγlγmγn

]
=

= 4
{
ηij
(
ηklηmn − ηkmηln + ηknηlm

)
− ηik

(
ηjlηmn − ηjmηln + ηjnηlm

)
+ ηil

(
ηjkηmn − ηjmηkn + ηjnηkm

)
− ηim

(
ηjkηln − ηjlηkn + ηjnηkl

)
+ ηin

(
ηjkηlm − ηjlηkm + ηjmηkl

)}
(B.7a)

Tr
[
γiγj [γk, γl][γm, γn]

]
=

= 16
{
ηij
(
− ηkmηln + ηknηlm

)
− ηik

(
− ηjmηln + ηjnηlm

)
+ ηil

(
− ηjmηkn + ηjnηkm

)
− ηim

(
ηjkηln − ηjlηkn

)
+ ηin

(
ηjkηlm − ηjlηkm

)}
(B.7b)

Tr
[
γi[γj , γk]γl[γm, γn]

]
=

= 16
{
ηij
(
− ηkmηln + ηknηlm

)
− ηik

(
− ηjmηln + ηjnηlm

)
+ ηil

(
− ηjmηkn + ηjnηkm

)
− ηim

(
− ηjlηkn + ηjnηkl

)
+ ηin

(
− ηjlηkm + ηjmηkl

)}
(B.7c)

Tr
[
[γi, γj ][γk, γl][γm, γn]

]
=

= 32
{
− ηik

(
− ηjmηln + ηjnηlm

)
+ ηil

(
− ηjmηkn + ηjnηkm

)
− ηim

(
ηjkηln − ηjlηkn

)
+ ηin

(
ηjkηlm − ηjlηkm

)}
(B.7d)
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Proof. To prove the first identity, we make repeated use of the relation γiγj = 2ηij idC4 − γjγi
resulting from {γi, γj} = 2ηij idC4 . In this way we find

Tr
[
γiγjγkγlγmγn

]
=

= Tr
[
(2ηij idC4 − γjγi)γkγlγmγn

]
= 2ηij Tr

[
γkγlγmγn

]
− Tr

[
γj(2ηikidC4 − γkγi)γlγmγn

]
= 2ηij Tr

[
γkγlγmγn

]
− 2ηik Tr

[
γjγlγmγn

]
+ Tr

[
γjγk(2ηilidC4 − γlγi)γmγn

]
= 2ηij Tr

[
γkγlγmγn

]
− 2ηik Tr

[
γjγlγmγn

]
+ 2ηil Tr

[
γjγkγmγn

]
− Tr

[
γjγkγl(2ηimidC4 − γmγi)γn

]
= 2ηij Tr

[
γkγlγmγn

]
− 2ηik Tr

[
γjγlγmγn

]
+ 2ηil Tr

[
γjγkγmγn

]
− 2ηim Tr

[
γjγkγlγn

]
+ Tr

[
γjγkγlγm(2ηinidC4 − γnγi)

]
= 2ηij Tr

[
γkγlγmγn

]
− 2ηik Tr

[
γjγlγmγn

]
+ 2ηil Tr

[
γjγkγmγn

]
− 2ηim Tr

[
γjγkγlγn

]
+ 2ηin Tr

[
γjγkγlγm

]
− Tr

[
γjγkγlγmγnγi

]
By exploiting the cyclicity of the trace, the last term can be combined with the left-hand side
which thus, together with (B.3a), yields

Tr
[
γiγjγkγlγmγn

]
=

= ηij Tr
[
γkγlγmγn

]
− ηik Tr

[
γjγlγmγn

]
+ ηil Tr

[
γjγkγmγn

]
− ηim Tr

[
γjγkγlγn

]
+ ηin Tr

[
γjγkγlγm

]
(B.3a)= 4ηij

(
ηklηmn − ηkmηln + ηknηlm

)
− 4ηik

(
ηjlηmn − ηjmηln + ηjnηlm

)
+ 4ηil

(
ηjkηmn − ηjmηkn + ηjnηkm

)
− 4ηim

(
ηjkηln − ηjlηkn + ηjnηkl

)
+ 4ηin

(
ηjkηlm − ηjlηkm + ηjmηkl

)
(B.8)

For the second identity we again make repeated use of the relation [γi, γj ] = 2(γiγj − ηij idC4)
resulting from γiγj = 1

2 [γi, γj ] + 1
2{γ

i, γj} = 1
2 [γi, γj ] + ηij idC4 . In this way we find

Tr
[
γiγj [γk, γl][γm, γn]

]
=

= 4 Tr
[
γiγj(γkγl − ηklidC4)(γmγn − ηmnidC4)

]
= 4
{

Tr
[
γiγjγkγlγmγn

]
− ηmn Tr

[
γiγjγkγl

]
− ηkl Tr

[
γiγjγmγn

]
+ ηklηmn Tr

[
γiγj

]}
(B.3a)=
(B.7a)

4
{

4ηij
(
ηklηmn − ηkmηln + ηknηlm

)
− 4ηik

(
ηjlηmn − ηjmηln + ηjnηlm

)
+ 4ηil

(
ηjkηmn − ηjmηkn + ηjnηkm

)
− 4ηim

(
ηjkηln − ηjlηkn + ηjnηkl

)
+ 4ηin

(
ηjkηlm − ηjlηkm + ηjmηkl

)
− 4ηmn

(
ηijηkl − ηikηjl + ηilηjk

)
− 4ηkl

(
ηijηmn − ηimηjn + ηinηjm

)
+ 4ηklηmnηij

}
= 4
{

4ηij
(
���

�: (1)
ηklηmn − ηkmηln + ηknηlm

)
− 4ηik

(
���

�: (2)
ηjlηmn − ηjmηln + ηjnηlm

)
+ 4ηil

(
���

�: (3)
ηjkηmn − ηjmηkn + ηjnηkm

)
− 4ηim

(
ηjkηln − ηjlηkn +��

��*
(4)

ηjnηkl
)

+ 4ηin
(
ηjkηlm − ηjlηkm +����:

(5)
ηjmηkl

)
− 4ηmn

(
�
��
�*

(1)

ηijηkl −��
��*

(2)

ηikηjl +��
��*

(3)

ηilηjk
)

− 4ηkl
(
���

�: (6)
ηijηmn −����:

(4)
ηimηjn +����:

(5)
ηinηjm

)
+���

���:
(6)

4ηklηmnηij
}

= 16
{
ηij
(
− ηkmηln + ηknηlm

)
− ηik

(
− ηjmηln + ηjnηlm

)
+ ηil

(
− ηjmηkn + ηjnηkm

)
− ηim

(
ηjkηln − ηjlηkn

)
+ ηin

(
ηjkηlm − ηjlηkm

)}
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For the third identity we once more make repeated use of the relation [γi, γj ] = 2(γiγj−ηij idC4)
resulting from γiγj = 1

2 [γi, γj ] + 1
2{γ

i, γj} = 1
2 [γi, γj ] + ηij idC4 . In this way we find

Tr
[
γi[γj , γk]γl[γm, γn]

]
=

= 4 Tr
[
γi(γjγk − ηjkidC4)γl(γmγn − ηmnidC4)

]
= 4
{

Tr
[
γiγjγkγlγmγn

]
− ηmn Tr

[
γiγjγkγl

]
− ηjk Tr

[
γiγlγmγn

]
+ ηjkηmn Tr

[
γiγl

]}
(B.3a)=
(B.7a)

4
{

4ηij
(
ηklηmn − ηkmηln + ηknηlm

)
− 4ηik

(
ηjlηmn − ηjmηln + ηjnηlm

)
+ 4ηil

(
ηjkηmn − ηjmηkn + ηjnηkm

)
− 4ηim

(
ηjkηln − ηjlηkn + ηjnηkl

)
+ 4ηin

(
ηjkηlm − ηjlηkm + ηjmηkl

)
− 4ηmn

(
ηijηkl − ηikηjl + ηilηjk

)
− 4ηjk

(
ηilηmn − ηimηln + ηinηlm

)
+ 4ηjkηmnηil

}
= 4
{

4ηij
(
���

�: (1)
ηklηmn − ηkmηln + ηknηlm

)
− 4ηik

(
���

�: (2)
ηjlηmn − ηjmηln + ηjnηlm

)
+ 4ηil

(
���

�: (3)
ηjkηmn − ηjmηkn + ηjnηkm

)
− 4ηim

(
��

��*
(4)

ηjkηln − ηjlηkn + ηjnηkl
)

+ 4ηin
(
���

�: (5)
ηjkηlm − ηjlηkm + ηjmηkl

)
− 4ηmn

(
�
��
�*

(1)

ηijηkl −��
��*

(2)

ηikηjl +��
��*

(3)

ηilηjk
)

− 4ηjk
(
��

��: (6)
ηilηmn −����:

(4)
ηimηln +����:

(5)
ηinηlm

)
+���

���:
(6)

4ηjkηmnηil
}

= 16
{
ηij
(
− ηkmηln + ηknηlm

)
− ηik

(
− ηjmηln + ηjnηlm

)
+ ηil

(
− ηjmηkn + ηjnηkm

)
− ηim

(
− ηjlηkn + ηjnηkl

)
+ ηin

(
− ηjlηkm + ηjmηkl

)}
Finally, for the fourth identity we again make repeated use of the relation [γi, γj ] = 2(γiγj −
ηij idC4) resulting from γiγj = 1

2 [γi, γj ] + 1
2{γ

i, γj} = 1
2 [γi, γj ] + ηij idC4 . In this way we find

Tr
[
[γi, γj ][γk, γl][γm, γn]

]
=

= 8 Tr
[
(γiγj − ηij idC4)(γkγl − ηklidC4)(γmγn − ηmnidC4)

]
= 8
{

Tr
[
γiγjγkγlγmγn

]
− ηmn Tr

[
γiγjγkγl

]
− ηkl

(
Tr
[
γiγjγmγn

]
− ηmn Tr

[
γiγj

])
− ηij

(
Tr
[
γkγlγmγn

]
− ηmn Tr

[
γkγl

]
− ηkl Tr

[
γmγn

]
+ ηklηmn Tr

[
idC4

])}
(B.3a)=
(B.7a)

8
{

4ηij
(
ηklηmn − ηkmηln + ηknηlm

)
− 4ηik

(
ηjlηmn − ηjmηln + ηjnηlm

)
+ 4ηil

(
ηjkηmn − ηjmηkn + ηjnηkm

)
− 4ηim

(
ηjkηln − ηjlηkn + ηjnηkl

)
+ 4ηin

(
ηjkηlm − ηjlηkm + ηjmηkl

)
− 4ηmn

(
ηijηkl − ηikηjl + ηilηjk

)
− ηkl

(
4
(
ηijηmn − ηimηjn + ηinηjm

)
− 4ηmnηij

)
− ηij

(
4
(
ηklηmn − ηkmηln + ηknηlm

)
− 4ηmnηkl − 4ηklηmn + 4ηklηmn

)}
= 8
{
���

���
���

���
���:

(1)

4ηij
(
ηklηmn − ηkmηln + ηknηlm

)
− 4ηik

(
���

�: (2)
ηjlηmn − ηjmηln + ηjnηlm

)
+ 4ηil

(
���

�: (3)
ηjkηmn − ηjmηkn + ηjnηkm

)
− 4ηim

(
ηjkηln − ηjlηkn +��

��*
(4)

ηjnηkl
)

+ 4ηin
(
ηjkηlm − ηjlηkm +����:

(5)
ηjmηkl

)
− 4ηmn

(
�
��
�*

(6)

ηijηkl −��
��*

(2)

ηikηjl +��
��*

(3)

ηilηjk
)

− ηkl
(

4
(
���

�: (7)
ηijηmn −����:

(4)
ηimηjn +����:

(5)
ηinηjm

)
−���

��: (7)
4ηmnηij

)
− ηij

(
��

���
���

���
���:

(1)

4
(
ηklηmn − ηkmηln + ηknηlm

)
−���

��: (6)
4ηmnηkl −���

��: (8)
4ηklηmn +���

��: (8)
4ηklηmn

)}
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= 8
{
− 4ηik

(
− ηjmηln + ηjnηlm

)
+ 4ηil

(
− ηjmηkn + ηjnηkm

)
− 4ηim

(
ηjkηln − ηjlηkn

)
+ 4ηin

(
ηjkηlm − ηjlηkm

)}
This concludes the proof.

B.1.4 Trace Identities involving eight Dirac Matrices

In the case where there are eight Dirac matrices, there are again several possible combinations.

Proposition B.1.4 (Trace Identities involving eight Dirac Matrices)

For eight Dirac matrices we have the following two identities which are relevant for the
evaluation of the second term in (3.23b)

Tr
[
γiγjγkγlγmγnγpγq

]
=

= ηij Tr
[
γkγlγmγnγpγq

]
− ηik Tr

[
γjγlγmγnγpγq

]
+ ηil Tr

[
γjγkγmγnγpγq

]
− ηim Tr

[
γjγkγlγnγpγq

]
+ ηin Tr

[
γjγkγlγmγpγq

]
− ηip Tr

[
γjγkγlγmγnγq

]
+ ηiq Tr

[
γjγkγlγmγnγp

]
(B.9a)

Tr
[
[γi, γj ][γk, γl][γm, γn][γp, γq]

]
=

= 64
{
− ηik

{
ηjl
(
− ηmpηnq + ηmqηnp

)
− ηjm

(
− ηlpηnq + ηlqηnp

)
+ ηjn

(
− ηlpηmq + ηlqηmp

)
− ηjp

(
ηlmηnq − ηlnηmq

)
+ ηjq

(
ηlmηnp − ηlnηmp

)}
+ ηil

{
ηjk
(
− ηmpηnq + ηmqηnp

)
− ηjm

(
− ηkpηnq + ηkqηnp

)
+ ηjn

(
− ηkpηmq + ηkqηmp

)
− ηjp

(
ηkmηnq − ηknηmq

)
+ ηjq

(
ηkmηnp − ηknηmp

)}
− ηim

{
ηjk
(
− ηlpηnq + ηlqηnp

)
− ηjl

(
− ηkpηnq + ηkqηnp

)
+ ηjn

(
− ηkpηlq + ηkqηlp

)
− ηjp

(
− ηknηlq + ηkqηln

)
+ ηjq

(
− ηknηlp + ηkpηln

)}
+ ηin

{
ηjk
(
− ηlpηmq + ηlqηmp

)
− ηjl

(
− ηkpηmq + ηkqηmp

)
+ ηjm

(
− ηkpηlq + ηkqηlp

)
− ηjp

(
− ηkmηlq + ηkqηlm

)
+ ηjq

(
− ηkmηlp + ηkpηlm

)}
− ηip

{
ηjk
(
ηlmηnq − ηlnηmq

)
− ηjl

(
ηkmηnq − ηknηmq

)
+ ηjm

(
− ηknηlq + ηkqηln

)
− ηjn

(
− ηkmηlq + ηkqηlm

)
+ ηjq

(
− ηkmηln + ηknηlm

)}
+ ηiq

{
ηjk
(
ηlmηnp − ηlnηmp

)
− ηjl

(
ηkmηnp − ηknηmp

)
+ ηjm

(
− ηknηlp + ηkpηln

)
− ηjn

(
− ηkmηlp + ηkpηlm

)
+ ηjp

(
− ηkmηln + ηknηlm

)}}
(B.9b)
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Proof. To prove the first identity, we make repeated use of the relation γiγj = 2ηij idC4 − γjγi
resulting from {γi, γj} = 2ηij idC4 . In this way we find

Tr
[
γiγjγkγlγmγnγpγq

]
=

= Tr
[
(2ηij − γjγi)γkγlγmγnγpγq

]
= 2ηij Tr

[
γkγlγmγnγpγq

]
− Tr

[
γj(2ηik − γkγi)γlγmγnγpγq

]
= 2ηij Tr

[
γkγlγmγnγpγq

]
− 2ηik Tr

[
γjγlγmγnγpγq

]
+ Tr

[
γjγk(2ηil − γlγi)γmγnγpγq

]
= 2ηij Tr

[
γkγlγmγnγpγq

]
− 2ηik Tr

[
γjγlγmγnγpγq

]
+ 2ηil Tr

[
γjγkγmγnγpγq

]
− Tr

[
γjγkγl(2ηim − γmγi)γnγpγq

]
= 2ηij Tr

[
γkγlγmγnγpγq

]
− 2ηik Tr

[
γjγlγmγnγpγq

]
+ 2ηil Tr

[
γjγkγmγnγpγq

]
− 2ηim Tr

[
γjγkγlγnγpγq

]
+ Tr

[
γjγkγlγm(2ηin − γnγi)γpγq

]
= 2ηij Tr

[
γkγlγmγnγpγq

]
− 2ηik Tr

[
γjγlγmγnγpγq

]
+ 2ηil Tr

[
γjγkγmγnγpγq

]
− 2ηim Tr

[
γjγkγlγnγpγq

]
+ 2ηin Tr

[
γjγkγlγmγpγq

]
− Tr

[
γjγkγlγmγn(2ηip − γpγi)γq

]
= 2ηij Tr

[
γkγlγmγnγpγq

]
− 2ηik Tr

[
γjγlγmγnγpγq

]
+ 2ηil Tr

[
γjγkγmγnγpγq

]
− 2ηim Tr

[
γjγkγlγnγpγq

]
+ 2ηin Tr

[
γjγkγlγmγpγq

]
− 2ηip Tr

[
γjγkγlγmγnγq

]
+ Tr

[
γjγkγlγmγnγp(2ηiq − γqγi)

]
= 2ηij Tr

[
γkγlγmγnγpγq

]
− 2ηik Tr

[
γjγlγmγnγpγq

]
+ 2ηil Tr

[
γjγkγmγnγpγq

]
− 2ηim Tr

[
γjγkγlγnγpγq

]
+ 2ηin Tr

[
γjγkγlγmγpγq

]
− 2ηip Tr

[
γjγkγlγmγnγq

]
+ 2ηiq Tr

[
γjγkγlγmγnγp

]
− Tr

[
γjγkγlγmγnγpγqγi

]
By exploiting the cyclicity of the trace, the last term can be combined with the left-hand side
which thus, together with (B.7a), yields

Tr
[
γiγjγkγlγmγnγpγq

]
=

(B.7a)= ηij Tr
[
γkγlγmγnγpγq

]
− ηik Tr

[
γjγlγmγnγpγq

]
+ ηil Tr

[
γjγkγmγnγpγq

]
− ηim Tr

[
γjγkγlγnγpγq

]
+ ηin Tr

[
γjγkγlγmγpγq

]
− ηip Tr

[
γjγkγlγmγnγq

]
+ ηiq Tr

[
γjγkγlγmγnγp

]
(B.10)

For the second identity we again make repeated use of the relation [γi, γj ] = 2(γiγj − ηij idC4)
resulting from γiγj = 1

2 [γi, γj ] + 1
2{γ

i, γj} = 1
2 [γi, γj ] + ηij idC4 . In this way we find

Tr
[
[γi, γj ][γk, γl][γm, γn][γp, γq]

]
=

= 16 Tr
[
(γiγj − ηij)(γkγl − ηkl)(γmγn − ηmn)(γpγq − ηpq)

]
= 16 Tr

[
(γiγjγkγl − ηklγiγj − ηijγkγl + ηijηkl)(γmγnγpγq − ηpqγmγn

− ηmnγpγq + ηmnηpq)
]

= 16
{

Tr
[
γiγjγkγlγmγnγpγq

]
− ηpq Tr

[
γiγjγkγlγmγn

]
− ηmn Tr

[
γiγjγkγlγpγq

]
+ ηmnηpq Tr

[
γiγjγkγl

]
− ηkl

(
Tr
[
γiγjγmγnγpγq

]
− ηpq Tr

[
γiγjγmγn

]
− ηmn Tr

[
γiγjγpγq

]
+ ηmnηpq Tr

[
γiγj

])
− ηij

(
Tr
[
γkγlγmγnγpγq

]
− ηpq Tr

[
γkγlγmγn

]
− ηmn Tr

[
γkγlγpγq

]
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+ ηmnηpq Tr
[
γkγl

])
+ ηijηkl

(
Tr
[
γmγnγpγq

]
− ηpq Tr

[
γmγn

]
− ηmn Tr

[
γpγq

]
+ ηmnηpq Tr

[
idC4

])}

= 16
{
��

���
���

���:
(1)

ηij Tr
[
γkγlγmγnγpγq

]
− ηik Tr

[
γjγlγmγnγpγq

]
+ ηil Tr

[
γjγkγmγnγpγq

]
− ηim Tr

[
γjγkγlγnγpγq

]
+ ηin Tr

[
γjγkγlγmγpγq

]
− ηip Tr

[
γjγkγlγmγnγq

]
+ ηiq Tr

[
γjγkγlγmγnγp

]
− ηpq Tr

[
γiγjγkγlγmγn

]
− ηmn Tr

[
γiγjγkγlγpγq

]
+ ηmnηpq Tr

[
γiγjγkγl

]
− ηkl

(
Tr
[
γiγjγmγnγpγq

]
− ηpq Tr

[
γiγjγmγn

]
− ηmn Tr

[
γiγjγpγq

]
+ ηmnηpq Tr

[
γiγj

])
− ηij

(
���

���
���

�: (1)

Tr
[
γkγlγmγnγpγq

]
− ηpq Tr

[
γkγlγmγn

]
− ηmn Tr

[
γkγlγpγq

]
+ ηmnηpq Tr

[
γkγl

])
+ ηijηkl

(
Tr
[
γmγnγpγq

]
− ηpq Tr

[
γmγn

]
−
���

���
�: (2)

ηmn Tr
[
γpγq

]
+
��

���
���:

(2)

ηmnηpq Tr
[
idC4

])}
16
{
− ηik Tr

[
γjγlγmγnγpγq

]
+ ηil Tr

[
γjγkγmγnγpγq

]
− ηim Tr

[
γjγkγlγnγpγq

]
+ ηin Tr

[
γjγkγlγmγpγq

]
− ηip Tr

[
γjγkγlγmγnγq

]
+ ηiq Tr

[
γjγkγlγmγnγp

]
− ηpq Tr

[
γiγjγkγlγmγn

]
− ηmn Tr

[
γiγjγkγlγpγq

]
− ηkl Tr

[
γiγjγmγnγpγq

]
+ ηmnηpq Tr

[
γiγjγkγl

]
+ ηklηpq Tr

[
γiγjγmγn

]
+ ηklηmn Tr

[
γiγjγpγq

]
+ ηijηpq Tr

[
γkγlγmγn

]
+ ηijηmn Tr

[
γkγlγpγq

]
+ ηijηkl Tr

[
γmγnγpγq

]
− ηklηmnηpq Tr

[
γiγj

]
− ηijηmnηpq Tr

[
γkγl

]
− ηijηklηpq Tr

[
γmγn

]}
(B.1a)=
(B.3a)

16
{
− ηik Tr

[
γjγlγmγnγpγq

]
+ ηil Tr

[
γjγkγmγnγpγq

]
− ηim Tr

[
γjγkγlγnγpγq

]
+ ηin Tr

[
γjγkγlγmγpγq

]
− ηip Tr

[
γjγkγlγmγnγq

]
+ ηiq Tr

[
γjγkγlγmγnγp

]
− ηpq Tr

[
γiγjγkγlγmγn

]
− ηmn Tr

[
γiγjγkγlγpγq

]
− ηkl Tr

[
γiγjγmγnγpγq

]
+ 4ηmnηpq

(
��

��*
(1)

ηijηkl − ηikηjl + ηilηjk
)

+ 4ηklηpq
(
ηijηmn − ηimηjn + ηinηjm

)
+ 4ηklηmn

(
�
��
�*

(2)

ηijηpq − ηipηjq + ηiqηjp
)

+ 4ηijηpq
(
ηklηmn − ηkmηln + ηknηlm

)
+ 4ηijηmn

(
��

��*
(3)

ηklηpq − ηkpηlq + ηkqηlp
)

+ 4ηijηkl
(
ηmnηpq − ηmpηnq + ηmqηnp

)
−���

��
��:

(1)

4ηklηmnηpqηij −���
��

��:
(2)

4ηijηmnηpqηkl −���
��

��:
(3)

4ηijηklηpqηmn
}

(B.7a)= 16
{
− ηik

{
4ηjl

(
��

��:
(1)

ηmnηpq − ηmpηnq + ηmqηnp
)
− 4ηjm

(
��

��*
(2)

ηlnηpq − ηlpηnq + ηlqηnp
)

+ 4ηjn
(
���

�: (3)
ηlmηpq − ηlpηmq + ηlqηmp

)
− 4ηjp

(
ηlmηnq − ηlnηmq +����:

(4)
ηlqηmn

)
+ 4ηjq

(
ηlmηnp − ηlnηmp +����:

(5)
ηlpηmn

)}
+ ηil

{
4ηjk

(
���

�: (6)
ηmnηpq − ηmpηnq + ηmqηnp

)
− 4ηjm

(
��

��: (7)
ηknηpq − ηkpηnq + ηkqηnp

)
+ 4ηjn

(
���

�: (8)
ηkmηpq − ηkpηmq + ηkqηmp

)
− 4ηjp

(
ηkmηnq − ηknηmq +���

�: (9)
ηkqηmn

)
+ 4ηjq

(
ηkmηnp − ηknηmp +���

�: (10)
ηkpηmn

)}
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− ηim
{

4ηjk
(
�
��
�*

(11)

ηlnηpq − ηlpηnq + ηlqηnp
)
− 4ηjl

(
��

��: (12)
ηknηpq − ηkpηnq + ηkqηnp

)
+ 4ηjn

(
��

��*
(13)

ηklηpq − ηkpηlq + ηkqηlp
)
− 4ηjp

(
��

��: (14)
ηklηnq − ηknηlq + ηkqηln

)
+ 4ηjq

(
���

�: (15)
ηklηnp − ηknηlp + ηkpηln

)}
+ ηin

{
4ηjk

(
���

�: (16)
ηlmηpq − ηlpηmq + ηlqηmp

)
− 4ηjl

(
���

�: (17)
ηkmηpq − ηkpηmq + ηkqηmp

)
+ 4ηjm

(
��

��*
(18)

ηklηpq − ηkpηlq + ηkqηlp
)
− 4ηjp

(
��

��: (19)
ηklηmq − ηkmηlq + ηkqηlm

)
+ 4ηjq

(
���

�: (20)
ηklηmp − ηkmηlp + ηkpηlm

)}
− ηip

{
4ηjk

(
ηlmηnq − ηlnηmq +����:

(21)
ηlqηmn

)
− 4ηjl

(
ηkmηnq − ηknηmq +���

�: (22)
ηkqηmn

)
+ 4ηjm

(
��

��: (23)
ηklηnq − ηknηlq + ηkqηln

)
− 4ηjn

(
��

��: (24)
ηklηmq − ηkmηlq + ηkqηlm

)
+ 4ηjq

(
���

�: (25)
ηklηmn − ηkmηln + ηknηlm

)}
+ ηiq

{
4ηjk

(
ηlmηnp − ηlnηmp +����:

(26)
ηlpηmn

)
− 4ηjl

(
ηkmηnp − ηknηmp +���

�: (27)
ηkpηmn

)
+ 4ηjm

(
��

��: (28)
ηklηnp − ηknηlp + ηkpηln

)
− 4ηjn

(
��

��: (29)
ηklηmp − ηkmηlp + ηkpηlm

)
+ 4ηjp

(
���

�: (30)
ηklηmn − ηkmηln + ηknηlm

)}

− ηpq
{

4ηij

���
���

���
���

��: (31)(
ηklηmn − ηkmηln + ηknηlm

)
− 4ηik

(
���

�: (1)
ηjlηmn −����:

(2)
ηjmηln +����:

(3)
ηjnηlm

)
+ 4ηil

(
���

�: (6)
ηjkηmn −���

�: (7)
ηjmηkn +���

�: (8)
ηjnηkm

)
− 4ηim

(
��

��*
(11)

ηjkηln −��
��*

(12)

ηjlηkn +��
��*

(13)

ηjnηkl
)

+ 4ηin
(
���

�: (16)
ηjkηlm −����:

(17)
ηjlηkm +����:

(18)
ηjmηkl

)}
− ηmn

{
4ηij

(
��

��*
(33)

ηklηpq −
��

���
���:

(32)

ηkpηlq + ηkqηlp
)
− 4ηik

(
��

��*
(4)

ηjlηpq −��
��*

(4)

ηjpηlq +��
��*

(5)

ηjqηlp
)

+ 4ηil
(
��

��: (35)
ηjkηpq −����:

(9)
ηjpηkq +����:

(10)
ηjqηkp

)
− 4ηip

(
��

��*
(21)

ηjkηlq −��
��*

(22)

ηjlηkq +��
��*

(36)

ηjqηkl
)

+ 4ηiq
(
��

��*
(6)

ηjkηlp −��
��*

(27)

ηjlηkp +��
��*

(37)

ηjpηkl
)}

− ηkl
{

4ηij

���
���

���
���

��: (38)(
ηmnηpq − ηmpηnq + ηmqηnp

)
− 4ηim

(
���

�: (39)
ηjnηpq −����:

(14)
ηjpηnq +����:

(15)
ηjqηnp

)
+ 4ηin

(
���

�: (40)
ηjmηpq −����:

(19)
ηjpηmq +����:

(20)
ηjqηmp

)
− 4ηip

(
���

�: (23)
ηjmηnq −����:

(24)
ηjnηmq +����:

(25)
ηjqηmn

)
+ 4ηiq

(
��

��:
(28)

ηjmηnp −���
�: (29)

ηjnηmp +����:
(30)

ηjpηmn
)}

+ 4ηmnηpq
(
−��

��*
(34)

ηikηjl +��
��*

(35)

ηilηjk
)

+ 4ηklηpq
(
��

��: (33)
ηijηmn −����:

(39)
ηimηjn +����:

(40)
ηinηjm

)
+ 4ηklηmn

(
−��

��*
(36)

ηipηjq +��
��*

(37)

ηiqηjp
)

+ 4ηijηpq

���
���

���
���

��: (31)(
ηklηmn − ηkmηln + ηknηlm

)
+ 4ηijηmn

���
���

���
�: (32)(

− ηkpηlq + ηkqηlp
)

+ 4ηijηkl

���
���

���
��

���:
(38)(

ηmnηpq − ηmpηnq + ηmqηnp
)}

= 64
{
− ηik

{
ηjl
(
− ηmpηnq + ηmqηnp

)
− ηjm

(
− ηlpηnq + ηlqηnp

)
+ ηjn

(
− ηlpηmq + ηlqηmp

)
− ηjp

(
ηlmηnq − ηlnηmq

)
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+ ηjq
(
ηlmηnp − ηlnηmp

)}
+ ηil

{
ηjk
(
− ηmpηnq + ηmqηnp

)
− ηjm

(
− ηkpηnq + ηkqηnp

)
+ ηjn

(
− ηkpηmq + ηkqηmp

)
− ηjp

(
ηkmηnq − ηknηmq

)
+ ηjq

(
ηkmηnp − ηknηmp

)}
− ηim

{
ηjk
(
− ηlpηnq + ηlqηnp

)
− ηjl

(
− ηkpηnq + ηkqηnp

)
+ ηjn

(
− ηkpηlq + ηkqηlp

)
− ηjp

(
− ηknηlq + ηkqηln

)
+ ηjq

(
− ηknηlp + ηkpηln

)}
+ ηin

{
ηjk
(
− ηlpηmq + ηlqηmp

)
− ηjl

(
− ηkpηmq + ηkqηmp

)
+ ηjm

(
− ηkpηlq + ηkqηlp

)
− ηjp

(
− ηkmηlq + ηkqηlm

)
+ ηjq

(
− ηkmηlp + ηkpηlm

)}
− ηip

{
ηjk
(
ηlmηnq − ηlnηmq

)
− ηjl

(
ηkmηnq − ηknηmq

)
+ ηjm

(
− ηknηlq + ηkqηln

)
− ηjn

(
− ηkmηlq + ηkqηlm

)
+ ηjq

(
− ηkmηln + ηknηlm

)}
+ ηiq

{
ηjk
(
ηlmηnp − ηlnηmp

)
− ηjl

(
ηkmηnp − ηknηmp

)
+ ηjm

(
− ηknηlp + ηkpηln

)
− ηjn

(
− ηkmηlp + ηkpηlm

)
+ ηjp

(
− ηkmηln + ηknηlm

)}}
This concludes the proof.

B.2 Derivation of (3.22b) in Lemma 3.3.7

Having derived all the trace identities for commutators of Dirac matrices which are necessary
to evaluate the second term in (3.23b), we are now ready to complete the proof of (3.22b) in
Lemma 3.3.7.

Continuation of Lemma 3.3.7 (Derivation of (3.22b))

The second variation of the eigenvalues of the regularized closed chain evaluates to

δ2λε±(x, y) =

= Re
[
2(viεδ2vεi ) + 2sεδ2sε + (δviεδvεi ) + δsεδsε

]
± 1√

Dε
Re
[
2Bε(viεδ2vεi )− 2Cε(viεδ2vεi ) + 2

(
Bεsε + Cεsε

)
δ2sε

+ 2
(
sε(viεδvεi ) + sε(viεδvεi )

)
δsε

− (viεδvεj )(viεδvεi ) + (viεδvεi )(v
j
εδv

ε
j )− Cε(δvkε δvεk) +Bε(δvkε δvεk)

]
∓ 1

(Dε)3/2
Re
[
(Cε)2(vkε δvεk)2 − 2BεCε(vkε δvεk)(vkε δvεk)− 2BεCε(vkε δvεk)(vkε δvεk)

+ (Bε)2(vkε δvεk)(vkε δvεk) + CεCε(vkε δvεk)2 + (Bε)2(vkε δvεk)(vkε δvεk)
− 2Cε

(
Bεsε + Cεsε

)
(vkε δvεk)δsε + 2Cε

(
Bεsε + Cεsε

)
(vkε δvεk)δsε
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+ 2Bε
(
Bεsε + Cεsε

)
(vkε δvεk)δsε − 2Bε

(
Bεsε + Cεsε

)
(vkε δvεk)δsε

+ Cε
(
|(vε)2|2 − (|vε|2)2)(δsε)2 +Bε

(
|(vε)2|2 − (|vε|2)2)δsεδsε] (B.11)

where Bε and Cε as well as the discriminant Dε are the functions introduced in Definition 3.3.3.

Proof. Following the approach by Kato[73, Ch. 2, § 2], the second variation of the eigenvalues is
given by

δ2λε±(x, y) = 1
2 Tr

[
F ε±(x, y)δ2Aε(x, y) +

F ε±(x, y)δAεF ε∓(x, y)δAε

λε±(x, y)− λε∓(x, y)

]
(B.12)

where the prefactor 1
2 accounts for the twofold degeneracy of the unperturbed eigenvalues

λε±(x, y). Suppressing arguments and making use of (3.16) which allows to turn the difference
of the eigenvalues into λε±(x, y)− λε∓(x, y) = ±2

√
Dε, the above formula simplifies to

δ2λε± = 1
2 Tr

[
F ε±δ

2Aε ±
F ε±δA

εF ε∓δA
ε

2
√
Dε

]
(B.13)

To keep the calculations as clear and structured as possible, we first evaluate the term
containing δ2Aε (which parallels the discussion in Item 1 in the proof of Lemma 3.3.7) and
subsequently turn to the second term which involves δAε twice. To evaluate the latter term,
we subdivide the expressions in manageable parts which can be simplified using the results
from Proposition B.1.1 and B.1.4.

(1) Evaluation of the first term in (B.13) (= one occurrence of δ2Aε)

Tr
[
F ε±δ

2Aε
]

=

= Tr
[(
F ε±,sidC4 + F ε±,iγ

i + F ε±,ij [γi, γj ]
)(
δ2Aεs idC4 + δ2Aεkγ

k + δ2Aεkl[γkγl]
)]

= F ε±,sδ
2Aεs Tr

[
idC4

]
+ F ε±,sδ

2Aεkl Tr
[
[γk, γl]

]
+ F ε±,iδ

2Aεk Tr
[
γiγk

]
+ F ε±,ijδ

2Aεs Tr
[
[γi, γj ]

]
+ F ε±,ijδ

2Aεkl Tr
[
[γi, γj ][γk, γl]

]
(B.1a)=
(B.3c)

4F ε±,sδ2Aεs + 4ηikF ε±,iδ2Aεk + 16
(
− ηikηjl + ηilηjk

)
F ε±,ijδ

2Aεkl

Inserting the components of F ε± from (3.18) as well as of δ2Aε from (3.21) we find

. . .
(3.18)=
(3.21)

2 Re
(
2(viεδ2vεi ) + 2sεδ2sε + (δviεδvεi ) + δsεδsε

)
± 4Re(viεsε)√

Dε
· 2 Re

(
sεδ2vεi + vεi δ

2sε + δvεi δs
ε
)

± 4
vεi v

ε
j√

Dε

(
− ηikηjl + ηilηjk

)
· 1

2
(
δ2vεkv

ε
l + vεkδ

2vεl + δvεkδv
ε
l

)
= 2 Re

(
2(viεδ2vεi ) + 2sεδ2sε + (δviεδvεi ) + δsεδsε

)
± 4√

Dε
Re
(

(sε)2(viεδ2vεi ) + |vε|2sεδ2sε + sε(viεδvεi )δsε

+ |sε|2(viεδ2vεi ) + (vε)2sεδ2sε + sε(viεδvεi )δsε
)

± 2√
Dε

(
− (viεδ2vεi )(vε)2 − (viεδvεi )(v

j
εδvεj )− (vε)2(viεδ2vεi )

+ |vε|2(viεδ2vεi ) + (viεδvεi )(v
j
εδv

ε
j ) + |vε|2(viεδ2vεi )

)
Collecting terms and forming real parts yields

· · · = 2 Re
[
2(viεδ2vεi ) + 2sεδ2sε + (δviεδvεi ) + δsεδsε

]
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± 2√
Dε

Re
[
2((sε)2 − (vε)2)(viεδ2vεi ) + 2(|sε|2 + |vε|2)(viεδ2vεi ) + 2

(
Bεsε + Cεsε

)
δ2sε

+ 2
(
sε(viεδvεi ) + sε(viεδvεi )

)
δsε − (viεδvεi )(v

j
εδvεj ) + (viεδvεi )(v

j
εδv

ε
j )
]

Expressing everything in terms of Bε (3.15)= |vε|2 + |sε|2 and Cε (3.15)= (vε)2 − (sε)2 finally results in

Tr
[
F ε±δ

2Aε
]

=

= 2 Re
[
2(viεδ2vεi ) + 2sεδ2sε + (δviεδvεi ) + δsεδsε

]
± 2√

Dε
Re
[
2Bε(viεδ2vεi )− 2Cε(viεδ2vεi ) + 2

(
Bεsε + Cεsε

)
δ2sε

+ 2
(
sε(viεδvεi ) + sε(viεδvεi )

)
δsε − (viεδvεj )(viεδvεi ) + (viεδvεi )(v

j
εδv

ε
j )
]

(B.14)

(2) Evaluation of the second term in (B.13) (= two occurrences of δAε)
In order to evaluate the second term in (B.13), we first simplify the expression structure-wise
by inserting the decompositions of the spectral projectors and the variation of the regularized
closed chain from Lemma 3.3.5 and Lemma 3.3.6. Only afterwards, in a second step, we insert
the explicit expressions for the components of the variation of the regularized closed chain.

(a) Inserting the Decomposition of F ε±
Inserting the decompositions of the spectral projector F ε± as given in Lemma 3.3.5, the second
term in (B.13) becomes

Tr
[
F ε±︸︷︷︸
ij

δAε︸︷︷︸
kl

F ε∓︸︷︷︸
mn

δAε︸︷︷︸
pq

]
=

= Tr
[(
F ε±,sidC4 + F ε±,iγ

i + F ε±,ij [γi, γj ]
)
δAε
(
F ε∓,sidC4 + F ε∓,mγ

m + F ε∓,mn[γm, γn]
)
δAε
]

= F ε±,sF
ε
∓,s Tr

[
δAεδAε

]
+ F ε±,sF

ε
∓,m Tr

[
δAεγmδAε

]
+ F ε±,sF

ε
∓,mn Tr

[
δAε[γm, γn]δAε

]
+ F ε±,iF

ε
∓,s Tr

[
γiδAεδAε

]
+ F ε±,iF

ε
∓,m Tr

[
γiδAεγmδAε

]
+ F ε±,iF

ε
∓,mn Tr

[
γiδAε[γm, γn]δAε

]
+ F ε±,ijF

ε
∓,s Tr

[
[γi, γj ]δAεδAε

]
+ F ε±,ijF

ε
∓,m Tr

[
[γi, γj ]δAεγmδAε

]
+ F ε±,ijF

ε
∓,mn Tr

[
[γi, γj ]δAε[γm, γn]δAε

]
(3.18)= 1

4 Tr
[
δAεδAε

]
∓ vεms

ε + vεms
ε

4
√
Dε

Tr
[
δAεγmδAε

]
∓ vεmv

ε
n

8
√
Dε

Tr
[
δAε[γm, γn]δAε

]

± vεi s
ε + vεi s

ε

4
√
Dε

Tr
[
γiδAεδAε

]
− (vεi sε + vεi s

ε)(vεmsε + vεms
ε)

4Dε
Tr
[
γiδAεγmδAε

]
− (vεi sε + vεi s

ε)vεmvεn
8Dε

Tr
[
γiδAε[γm, γn]δAε

]
±

vεi v
ε
j

8
√
Dε

Tr
[
[γi, γj ]δAεδAε

]
−
vεi v

ε
j (vεmsε + vεms

ε)
8Dε

Tr
[
[γi, γj ]δAεγmδAε

]
−
vεi v

ε
jv
ε
mv

ε
n

16Dε
Tr
[
[γi, γj ]δAε[γm, γn]δAε

]
= 1

4 Tr
[
δAεδAε

]
− (vεi sε + vεi s

ε)(vεmsε + vεms
ε)

4Dε
Tr
[
γiδAεγmδAε

]
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− (vεi sε + vεi s
ε)vεmvεn

4Dε
Tr
[
γiδAε[γm, γn]δAε

]
−
vεi v

ε
jv
ε
mv

ε
n

16Dε
Tr
[
[γi, γj ]δAε[γm, γn]δAε

]
(b) Inserting the Decomposition of δAε±
To further simplify this expression, we insert the decomposition of δAε as given in Lemma 3.3.6
which results in

Tr
(
F ε±︸︷︷︸
ij

δAε︸︷︷︸
kl

F ε∓︸︷︷︸
mn

δAε︸︷︷︸
pq

)
=

= 1
4

{
δAεsδA

ε
s Tr[idC4 ] + δAεsδA

ε
pq Tr

[
[γp, γq]

]
+ δAεkδA

ε
p Tr

[
γkγp

]
+ δAεklδA

ε
s Tr

[
[γk, γl]

]
+ δAεklδA

ε
pq Tr

[
[γk, γl][γp, γq]

]}
− (vεi sε + vεi s

ε)(vεmsε + vεms
ε)

4Dε
×

×
{
δAεsδA

ε
s Tr

[
γiγm

]
+ δAεsδA

ε
pq Tr

[
γiγm[γp, γq]

]
+ δAεkδA

ε
p Tr

[
γiγkγmγp

]
+ δAεklδA

ε
s Tr

[
γi[γk, γl]γm

]
+ δAεklδA

ε
pq Tr

[
γi[γk, γl]γm[γp, γq]

]}
− (vεi sε + vεi s

ε)vεmvεn
4Dε

×

×
{
δAεsδA

ε
p Tr

[
γi[γm, γn]γp

]
+ δAεkδA

ε
s Tr

[
γiγk[γm, γn]

]
+ δAεkδA

ε
pq Tr

[
γiγk[γm, γn][γp, γq]

]
+ δAεklδA

ε
p Tr

[
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−
vεi v

ε
jv
ε
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ε
n

16Dε

{
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ε
s Tr

[
[γi, γj ][γm, γn]

]
+ δAεsδA

ε
pq Tr

[
[γi, γj ][γm, γn][γp, γq]

]
+ δAεkδA

ε
p Tr

[
[γi, γj ]γk[γm, γn]γp

]
+ δAεklδA

ε
s Tr

[
[γi, γj ][γk, γl][γm, γn]

]
+ δAεklδA

ε
pq Tr

[
[γi, γj ][γk, γl][γm, γn][γp, γq]

]}

= 1
4

{
δAεsδA

ε
s Tr[idC4 ] + 2δAεsδAεpq Tr

[
[γp, γq]

]
+ δAεkδA

ε
p Tr

[
γkγp

]
+ δAεklδA

ε
pq Tr

[
[γk, γl][γp, γq]

]}
− (vεi sε + vεi s

ε)(vεmsε + vεms
ε)

4Dε
×

×
{
δAεsδA

ε
s Tr

[
γiγm

]
+ 2δAεsδAεpq Tr

[
γiγm[γp, γq]

]
+ δAεkδA

ε
p Tr

[
γiγkγmγp

]
+ δAεklδA

ε
pq Tr

[
γi[γk, γl]γm[γp, γq]

]}
− (vεi sε + vεi s

ε)vεmvεn
4Dε

{
2δAεsδAεkηik Tr

[
[γm, γn]

]
+ δAεkδA

ε
pq Tr

[
γiγk[γm, γn][γp, γq]

]
+ δAεklδA

ε
p Tr

[
γi[γk, γl][γm, γn]γp

]}
−
vεi v

ε
jv
ε
mv

ε
n

16Dε

{
δAεsδA

ε
s Tr

[
[γi, γj ][γm, γn]

]
+ 2δAεsδAεpq Tr

[
[γi, γj ][γm, γn][γp, γq]

]
+ δAεkδA

ε
p Tr

[
[γi, γj ]γk[γm, γn]γp

]
+ δAεklδA

ε
pq Tr

[
[γi, γj ][γk, γl][γm, γn][γp, γq]

]}
(B.15)
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In order not to loose track, we split the expression and evaluate the four terms separately.
(i) First Term in (B.15)

(1) = 1
4

{
δAεsδA

ε
s Tr[idC4 ] + 2δAεsδAεpq���

���:
0

Tr
[
[γp, γq]

]
+ δAεkδA

ε
p Tr

[
γkγp

]︸ ︷︷ ︸
(B.1a)

+δAεklδAεpq Tr
[
[γk, γl][γp, γq]

]︸ ︷︷ ︸
(B.3c)

}
= δAεsδA

ε
s + δAεkδA

ε
pη
kp + 4δAεklδAεpq

(
− ηkpηlq + ηkqηlp

)
(B.16a)

(ii) Second Term in (B.15)

(2) = − (vεi sε + vεi s
ε)(vεmsε + vεms

ε)
4Dε

×

×
{
δAεsδA

ε
s Tr

[
γiγm

]︸ ︷︷ ︸
(B.1a)

+2δAεsδAεpq Tr
[
γiγm[γp, γq]

]︸ ︷︷ ︸
(B.3b)

+ δAεkδA
ε
p Tr

[
γiγkγmγp

]︸ ︷︷ ︸
(B.3a)

+δAεklδAεpq Tr
[
γi[γk, γl]γm[γp, γq]

]︸ ︷︷ ︸
(B.7c)

}

= − (vεi sε + vεi s
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ε)
4Dε

×

×
{

4δAεsδAεsηim + 16δAεsδAεpq
��

���
���

��: 0(
− ηipηmq + ηiqηmp

)
+ 4δAεkδAεp

(
��

��: (1)
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���
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���
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��: (3)(
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���
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���
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− ηkmηlp + ηkpηlm
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= − 1
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{
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ε
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+ δAεkδA
ε
p

[
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]
+ 4δAεklδAεpq

[
2(vkε sε + vkε s

ε)
(
��
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ε
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ε
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(B.16b)
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(iii) Third Term in (B.15)

(3) = − (vεi sε + vεi s
ε)vεmvεn

4Dε
×

×
{

2δAεsδAεkηik���
���
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[
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ε
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]︸ ︷︷ ︸
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]︸ ︷︷ ︸
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}
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(B.16c)

(iv) Fourth Term in (B.15)
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]︸ ︷︷ ︸
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)
+ ηin
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)
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+ 16δAεkδAεp
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2vkε
(
− ηlpvqε + ηlqvpε

)
− 2vlε

(
− ηkpvqε + ηkqvpε

)
+ (vε)2(− ηkpηlq + ηkqηlp

))
+ 4|vε|2

(
2vkε
(
−��

�*
=(4)

ηlpvqε +��
�*

=(6)
ηlqvpε

)
− 2vlε

(
−��

�*
=(3)

ηkpvqε +��
�*

=(5)
ηkqvpε

)
+ |vε|2

(
− ηkpηlq + ηkqηlp

)]}
= − 1

Dε

{
δAεsδA

ε
s
(
− (vε)2(vε)2 + (|vε|2)2)

+ δAεkδA
ε
p

[
− 2vkε

(
2|vε|2vpε − (vε)2vpε

)
+ (vε)2(2vkε vpε − (vε)2ηkp

)
+ (|vε|2)2ηkp

]
+ δAεklδA

ε
pq

[
− 4vkε

(
4vlε
(
− vpεv

q
ε + 2vqεv

p
ε

)
− 4|vε|2

(
− ηlpvqε + ηlqvpε

)
+ 2(vε)2(− 2ηlpvqε + ηlqvpε

))
+ 4vlε

(
4vkε vqεv

p
ε − 4|vε|2

(
− ηkpvqε + ηkqvpε

)
− 2(vε)2ηkpvqε

)
− 4(vε)2

(
2vkε
(
− ηlpvqε + ηlqvpε

)
− 2vlε

(
− ηkpvqε + ηkqvpε

)
+ (vε)2(− ηkpηlq + ηkqηlp

))
+ 4(|vε|2)2(− ηkpηlq + ηkqηlp

)]}
= − 1

Dε

{
δAεsδA

ε
s
(
− (vε)2(vε)2 + (|vε|2)2)



156 B.2. Derivation of (3.22b) in Lemma 3.3.7

+ δAεkδA
ε
p

[
− 4|vε|2vkε v

p
ε + 2

(
(vε)2vkε v

p
ε + (vε)2vkε v

p
ε

)
+
(
(|vε|2)2 − (vε)2(vε)2)ηkp]

+ δAεklδA
ε
pq

[
16
(
vkε v

l
ε

(
vpεv

q
ε − vpεvqε

)
+
(
vkε v

l
ε − vkε vlε

)
vpεv

q
ε

)
+ 8(vε)2

(
vkε
(
ηlpvqε − ηlqvpε

)
+
(
vkε η

lp − vlεηkp
)
vqε

)
+ 8
(
2|vε|2vkε − (vε)2vkε

)(
− ηlpvqε + ηlqvpε

)
− 8
(
2|vε|2vlε − (vε)2vlε

)(
− ηkpvqε + ηkqvpε

)
+ 4
(
(|vε|2)2 − (vε)2(vε)2)(− ηkpηlq + ηkqηlp

)]}
(B.16d)

Adding up all four contributions yields

Tr
(
F ε±δA

εF ε∓δA
ε
)

=
(B.16)=
{
��

��: (1.1)
δAεsδA

ε
s +���

���:
(2.1)

δAεkδA
ε
pη
kp +���

��:
(3.1)

4δAεklδAεpq
(
− ηkpηlq + ηkqηlp

)}

− 1
Dε

{
���

�: (1.2)
δAεsδA

ε
s

[
(vε)2(sε)2 + 2|vε|2|sε|2 + (vε)2(sε)2

]
+����:

(2.2)
δAεkδA

ε
p

[
2(vkε sε + vkε s

ε)(vpεsε + vpεs
ε)−

(
(vε)2(sε)2 + 2|vε|2|sε|2 + (vε)2(sε)2)ηkp]

+���
��:

(3.2)
4δAεklδAεpq

[
2(vkε sε + vkε s

ε)(vpεsε + vpεs
ε)ηlq + 2(vlεsε + vlεs

ε)(vqεsε + vqεs
ε)ηkp

− 4(vkε sε + vkε s
ε)(vqεsε + vqεs

ε)ηlp

+
(
(vε)2(sε)2 + 2|vε|2|sε|2 + (vε)2(sε)2)(− ηkpηlq + ηkqηlp

)]}

− 1
Dε

{
��

���:
(4)

8δAεkδAεpq
[
(vkε sε + vkε s

ε)
(
− vpεv

q
ε + vqεv

p
ε

)
−
(
Bεsε + Cεsε

)(
− ηkpvqε + ηkqvpε

)
+ (Bεsε + Cεsε)

(
− ηkpvqε + ηkqvpε

)
− (vpεsε + vpεs

ε)
(
vkε v

q
ε − vkε vqε

)
+ (vqεsε + vqεs

ε)
(
vkε v

p
ε − vkε vpε

)]}

− 1
Dε

{
���

�: (1.3)
δAεsδA

ε
s

[
− (vε)2(vε)2 + (|vε|2)2

]
+����:

(2.3)
δAεkδA

ε
p

[
− 4|vε|2vkε v

p
ε + 2

(
(vε)2vkε v

p
ε + (vε)2vkε v

p
ε

)
+
(
(|vε|2)2 − (vε)2(vε)2)ηkp]

+���
��:

(3.3)
4δAεklδAεpq

[
4
(
vkε v

l
ε

(
vpεv

q
ε − vpεvqε

)
+
(
vkε v

l
ε − vkε vlε

)
vpεv

q
ε

)
+ 2(vε)2

(
vkε
(
ηlpvqε − ηlqvpε

)
+
(
vkε η

lp − vlεηkp
)
vqε

)
+ 2
(
2|vε|2vkε − (vε)2vkε

)(
− ηlpvqε + ηlqvpε

)
− 2
(
2|vε|2vlε − (vε)2vlε

)(
− ηkpvqε + ηkqvpε

)
+
(
(|vε|2)2 − (vε)2(vε)2)(− ηkpηlq + ηkqηlp

)]}
Sorting and combining terms results in

. . . = δAεsδA
ε
s

{
���

(1)

1− 1
Dε

(
((vε)2(sε)2 + 2|vε|2|sε|2 + (vε)2(sε)2)− (vε)2(vε)2 + (|vε|2)2)︸ ︷︷ ︸

=��*
cancels (1)

Dε

}
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+ δAεkδA
ε
p

{
�
�>

(2)

ηkp − 1
Dε

[
2(vkε sε + vkε s

ε)(vpεsε + vpεs
ε)− 2((vε)2(sε)2 + 2|vε|2|sε|2

+ (vε)2(sε)2)ηkp − 4|vε|2vkε v
p
ε + 2

(
(vε)2vkε v

p
ε + (vε)2vkε v

p
ε

)
+
(
(|vε|2)2 − (vε)2(vε)2 + ((vε)2(sε)2 + 2|vε|2|sε|2 + (vε)2(sε)2)

)︸ ︷︷ ︸
=��*

cancels (2)
Dε

ηkp
]}

+ 4δAεklδAεpq
{
��

���
���

��: (3)(
− ηkpηlq + ηkqηlp

)
− 1

Dε

[
2(vkε sε + vkε s

ε)(vpεsε + vpεs
ε)ηlq + 2(vlεsε + vlεs

ε)(vqεsε + vqεs
ε)ηkp

− 4(vkε sε + vkε s
ε)(vqεsε + vqεs

ε)ηlp

+ 4
(
vkε v

l
ε

(
vpεv

q
ε − vpεvqε

)
+
(
vkε v

l
ε − vkε vlε

)
vpεv

q
ε

)
+ 2(vε)2

(
vkε
(
ηlpvqε − ηlqvpε

)
+
(
vkε η

lp − vlεηkp
)
vqε

)
+ 2
(
2|vε|2vkε − (vε)2vkε

)(
− ηlpvqε + ηlqvpε

)
− 2
(
2|vε|2vlε − (vε)2vlε

)(
− ηkpvqε + ηkqvpε

)
+
(
(|vε|2)2 − (vε)2(vε)2 + ((vε)2(sε)2 + 2|vε|2|sε|2 + (vε)2(sε)2)

)︸ ︷︷ ︸
=��*

cancels (3)
Dε

(
− ηkpηlq + ηkqηlp

)]}

− 8
Dε

δAεkδA
ε
pq

{
���

���
���

���
��: (4.1)

(vkε sε + vkε s
ε)
(
− vpεv

q
ε + vqεv

p
ε

)
−
(
Bεsε + Cεsε

)(
− ηkpvqε + ηkqvpε

)
+ (Bεsε + Cεsε)

(
− ηkpvqε + ηkqvpε

)
−
���

���
���

���
�: (4.2)

(vpεsε + vpεs
ε)
(
vkε v

q
ε − vkε vqε

)
+
���

���
���

���
�: (4.3)

(vqεsε + vqεs
ε)
(
vkε v

p
ε − vkε vpε

)}
= − 2

Dε
δAεkδA

ε
p

{
(vkε sε + vkε s

ε)(vpεsε + vpεs
ε)−

(
(vε)2(sε)2 + 2|vε|2|sε|2 + (vε)2(sε)2)ηkp

+ vkε
(
(vε)2vpε − |vε|2v

p
ε

)
+
(
(vε)2vkε − |vε|2vkε

)
vpε︸ ︷︷ ︸

k↔p

}

− 8
Dε

δAεklδA
ε
pq

{
(vkε sε + vkε s

ε)
(
(vpεsε + vpεs

ε)ηlq − (vqεsε + vqεs
ε)ηlp

)
+
(

(vlεsε + vlεs
ε)ηkp − (vkε sε + vkε s

ε)ηlp
)

(vqεsε + vqεs
ε)

+ 2
(
vkε v

l
ε

(
vpεv

q
ε − vpεvqε

)
+
(
vkε v

l
ε − vkε vlε

)
vpεv

q
ε︸ ︷︷ ︸

(kl)↔(pq)

)
+ (vε)2(vkε (ηlpvqε − ηlqvpε)+

(
vkε η

lp − vlεηkp
)
vqε
)

+
(
|vε|2vkε − (vε)2vkε

)(
ηlqvpε − ηlpvqε

)
−
(
|vε|2vlε − (vε)2vlε

)(
ηkqvpε − ηkpvqε

)
+ |vε|2vkε

(
− ηlpvqε + ηlqvpε

)
− |vε|2vlε

(
− ηkpvqε + ηkqvpε

)︸ ︷︷ ︸
(kl)↔(pq)

}

− 8
Dε

δAεkδA
ε
pq

[
2(vkε sε + vkε s

ε)
(
vpεv

q
ε − vpεv

q
ε

)
−
(
Bεsε + Cεsε

)(
ηkqvpε − ηkpvqε

)
+ (Bεsε + Cεsε)

(
ηkqvpε − ηkpvqε

)]}
(B.17)
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In order to break this expression down into terms containing vεi , sε as well as the variations δvεi
and δsε, we rewrite the individual terms inside the curly brackets as real and imaginary parts.
To this end, we interchange pairs of indices (kl)↔ (pq) in terms containing δAεklδAεpq as well
as indices k ↔ p in terms δAεkδAεp and thus obtain

Tr
(
F ε±δA

εF ε∓δA
ε
)

=

= − 2
Dε

δAεkδA
ε
p

{
4 Re

[
vkε s

ε
]

Re
[
vpεs

ε
]
−
(
(vε)2(sε)2 + 2|vε|2|sε|2 + (vε)2(sε)2)ηkp

+ 2 Re
[
vkε
(
(vε)2vpε − |vε|2v

p
ε

)]}

− 8
Dε

δAεklδA
ε
pq

{
4 Re

[
vkε s

ε
](

Re
[
vpεs

ε
]
ηlq − Re

[
vqεs

ε
]
ηlp
)

+ 4
(

Re
[
vlεs

ε
]
ηkp − Re

[
vkε s

ε
]
ηlp
)

Re
[
vqεs

ε
]
− 8 Im

[
vkε v

l
ε

]
Im
[
vpεv

q
ε

]
+ (vε)2vkε

(
ηlpvqε − ηlqvpε

)
+ (vε)2(vkε ηlp − vlεηkp)vqε

+
(
|vε|2vkε − (vε)2vkε

)(
ηlqvpε − ηlpvqε

)
−
(
|vε|2vlε − (vε)2vlε

)(
ηkqvpε − ηkpvqε

)
+ |vε|2vkε

(
ηlqvpε − ηlpvqε

)
− |vε|2

(
ηplvkε − ηpkvlε

)
vqε

}

− 8
Dε

δAεkδA
ε
pq

{
− 8i Re

[
vkε s

ε
]

Im
[
vpεv

q
ε

]
+ 2i Im

[
(Bεsε + Cεsε)

(
ηkqvpε − ηkpvqε

)]}

= − 2
Dε

δAεkδA
ε
p

{
4 Re

[
vkε s

ε
]

Re
[
vpεs

ε
]
−
(
(vε)2(sε)2 + 2|vε|2|sε|2 + (vε)2(sε)2)ηkp

+ 2 Re
[
vkε
(
(vε)2vpε − |vε|2v

p
ε

)]}

− 8
Dε

δAεklδA
ε
pq

{
4 Re

[
vkε s

ε
](

Re
[
vpεs

ε
]
ηlq − Re

[
vqεs

ε
]
ηlp
)

︸ ︷︷ ︸
(kl)↔(pq)

+ 4
(

Re
[
vlεs

ε
]
ηkp − Re

[
vkε s

ε
]
ηlp
)

Re
[
vqεs

ε
]
− 8 Im

[
vkε v

l
ε

]
Im
[
vpεv

q
ε

]
+ vkε

((
|vε|2vpε − (vε)2vpε

)
ηlq −

(
|vε|2vqε − (vε)2vqε

)
ηlp
)

+
(
−
���

���
���

��: (1.1)(
|vε|2vkε − (vε)2vkε

)
ηlp +

��
���

���
���:

(2.1)(
|vε|2vlε − (vε)2vlε

)
ηkp
)
vqε

+
(
|vε|2vkε − (vε)2vkε

)(
ηlqvpε︸ ︷︷ ︸

(kl)↔(pq)

−��
�*

(1.2)

ηlpvqε
)

−
(
|vε|2vlε − (vε)2vlε

)(
ηkqvpε︸ ︷︷ ︸

(kl)↔(pq)

−��
�*

(2.2)

ηkpvqε
)}

− 8
Dε

δAεkδA
ε
pq

{
− 8i Re

[
vkε s

ε
]

Im
[
vpεv

q
ε

]
+ 2i Im

[
(Bεsε + Cεsε)

(
ηkqvpε − ηkpvqε

)]}

= − 2
Dε

δAεkδA
ε
p

{
4 Re

[
vkε s

ε
]

Re
[
vpεs

ε
]
− ((vε)2(sε)2 + 2|vε|2|sε|2 + (vε)2(sε)2)ηkp

+ 2 Re
[
vkε
(
(vε)2vpε − |vε|2v

p
ε

)]}



B. Second Variation of the Eigenvalues of the Regularized Closed Chain 159

− 8
Dε

δAεklδA
ε
pq

{
4 Re

[
vpεs

ε
](

Re
[
vkε s

ε
]
ηql − Re

[
vlεs

ε
]
ηqk
)

+ 4
(

Re
[
vlεs

ε
]
ηkp − Re

[
vkε s

ε
]
ηlp
)

Re
[
vqεs

ε
]
− 8 Im

[
vkε v

l
ε

]
Im
[
vpεv

q
ε

]
+ vkε

((
|vε|2vpε − (vε)2vpε

)
ηlq −

(
|vε|2vqε − (vε)2vqε

)
ηlp
)

− 2 Re
[(
|vε|2vkε − (vε)2vkε

)
ηlpvqε

]
+ 2 Re

[(
|vε|2vlε − (vε)2vlε

)
ηkpvqε

]
+
(
|vε|2vpε − (vε)2vpε

)
ηqlvkε −

(
|vε|2vqε − (vε)2vqε

)
ηplvkε

}

− 8
Dε

δAεkδA
ε
pq

{
− 8i Re

[
vkε s

ε
]

Im
[
vpεv

q
ε

]
+ 2i Im

[
(Bεsε + Cεsε)

(
ηkqvpε − ηkpvqε

)]}

= − 2
Dε

δAεkδA
ε
p

{
4 Re

[
vkε s

ε
]

Re
[
vpεs

ε
]
− ((vε)2(sε)2 + 2|vε|2|sε|2 + (vε)2(sε)2)ηkp

+ 2 Re
[
vkε
(
(vε)2vpε − |vε|2v

p
ε

)]}

− 8
Dε

δAεklδA
ε
pq

{
4
(

Re
[
vkε s

ε
]
ηlq − Re

[
vlεs

ε
]
ηkq
)

Re
[
vpεs

ε
]

− 4
(

Re
[
vkε s

ε
]
ηlp − Re

[
vlεs

ε
]
ηkp
)

Re
[
vεqs

ε
]

− 8 Im
[
vkε v

l
ε

]
Im
[
vpεv

q
ε

]
+ 2 Re

[
vkε
(
|vε|2vpε − (vε)2vpε

)
ηlq
]

− 2 Re
[
vkε
(
|vε|2vqε − (vε)2vqε

)
ηlp
]

︸ ︷︷ ︸
(kl)↔(pq)

−2 Re
[(
|vε|2vkε − (vε)2vkε

)
ηlpvqε

]
+ 2 Re

[(
|vε|2vlε − (vε)2vlε

)
ηkpvqε

]}

− 8
Dε

δAεkδA
ε
pq

{
− 8i Re

[
vkε s

ε
]

Im
[
vpεv

q
ε

]
+ 2i Im

[
(Bεsε + Cεsε)

(
ηkqvpε − ηkpvqε

)]}
To proceed, we group terms according to the type of η’s in the second term which yields

Tr
(
F ε±δA

εF ε∓δA
ε
)

=

= − 2
Dε

δAεkδA
ε
p

{
4 Re

[
vkε s

ε
]

Re
[
vpεs

ε
]
− ((vε)2(sε)2 + 2|vε|2|sε|2 + (vε)2(sε)2)ηkp

+ 2 Re
[
vkε
(
(vε)2vpε − |vε|2v

p
ε

)]}

− 8
Dε

δAεklδA
ε
pq

{
ηlq
(

4 Re
[
vkε s

ε
]

Re
[
vpεs

ε
]

+ 2 Re
[
vkε
(
|vε|2vpε − (vε)2vpε

)])
− ηkq

(
4 Re

[
vlεs

ε
]

Re
[
vpεs

ε
]

+ 2 Re
[
vpε
(
|vε|2vlε − (vε)2vlε

)])
− ηlp

(
4 Re

[
vkε s

ε
]

Re
[
vqεs

ε
]

+ 2 Re
[(
|vε|2vkε − (vε)2vkε

)
vqε

])
+ ηkp

(
4 Re

[
vlεs

ε
]

Re
[
vqεs

ε
]

+ 2 Re
[(
|vε|2vlε − (vε)2vlε

)
vqε

])
− 8 Im

[
vkε v

l
ε

]
Im
[
vpεv

q
ε

]}

− 8
Dε

δAεkδA
ε
pq

{
− 8i Re

[
vkε s

ε
]

Im
[
vpεv

q
ε

]
+ 2i Im

[
(Bεsε + Cεsε)

(
ηkqvpε − ηkpvqε

)]}
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Rewriting products of real parts by using the relation Re(x) Re(y) = 1
2 Re

(
x(y+ ȳ)

)
as well as

the definitions Bε (3.15)= |vε|2 + |sε|2 and Cε (3.15)= (vε)2 − (sε)2 turns the expression into the form

. . . = − 2
Dε

δAεkδA
ε
p

{
4 Re

[
vkε s

ε
]

Re
[
vpεs

ε
]
− ((vε)2(sε)2 + 2|vε|2|sε|2 + (vε)2(sε)2)ηkp

+ 2 Re
[
vkε
(
(vε)2vpε − |vε|2v

p
ε

)]}

− 16
Dε

δAεklδA
ε
pq

{
ηlq
(
Bε Re

[
vkε v

p
ε

]
− Re

[
Cεvkε v

p
ε

])
− ηkq

(
Bε Re

[
vlεv

p
ε

]
− Re

[
Cεvlεv

p
ε

])
− ηlp

(
Bε Re

[
vkε v

q
ε

]
− Re

[
Cεvkε v

q
ε

])
︸ ︷︷ ︸

(kl)↔(pq)

+ηkp
(
Bε Re

[
vlεv

q
ε

]
− Re

[
Cεvlεv

q
ε

])
− 4 Im

[
vkε v

l
ε

]
Im
[
vpεv

q
ε

]}

− 8
Dε

δAεkδA
ε
pq

{
− 8i Re

[
vkε s

ε
]

Im
[
vpεv

q
ε

]
+ 2i Im

[
(Bεsε + Cεsε)

(
ηkqvpε − ηkpvqε

)]}
Pulling the components of the variation of the regularized closed chain inside the curly brackets,
we arrive at the following intermediate result

Tr
(
F ε±δA

εF ε∓δA
ε
)

=

= − 2
Dε

{
4
(
δAεk Re

[
vkε s

ε
]︸ ︷︷ ︸

(1)

)2
− 2 Re

[
(vε)2(sε)2 + |vε|2|sε|2

] (
δAεkδA

ε
pη
kp
)

︸ ︷︷ ︸
(2)

+ 2 δAεkδAεp Re
[
vkε
(
(vε)2vpε − |vε|2v

p
ε

)]
︸ ︷︷ ︸

(3)

}

− 16
Dε

{(
δAεklδA

ε
pqη

lq
)

︸ ︷︷ ︸
(4)

Re
[
Bεvkε v

p
ε − Cεvkε vpε

]
− 2

(
δAεklδA

ε
pqη

kq
)

︸ ︷︷ ︸
(5)

Re
[
Bεvlεv

p
ε − Cεvlεvpε

]
+
(
δAεklδA

ε
pqη

kp
)

︸ ︷︷ ︸
(6)

Re
[
Bεvlεv

q
ε − Cεvlεvqε

]
− 4
(
δAεkl Im

[
vkε v

l
ε

]︸ ︷︷ ︸
(7)

)2
}

− 8
Dε

{
− 8i

(
δAεk Re

[
vkε s

ε
])

︸ ︷︷ ︸
= (1)

(
δAεpq Im

[
vpεv

q
ε

])
︸ ︷︷ ︸

= (7)

+ 2i Im
[
(Bεsε + Cεsε)vpε

] (
δAεkδA

ε
pqη

kq
)

︸ ︷︷ ︸
(8)

− 2i Im
[
(Bεsε + Cεsε)vqε

] (
δAεkδA

ε
pqη

kp
)

︸ ︷︷ ︸
(9)

}
(B.18)

(c) Insertion of explicit expressions for components of δAε±
Having arrived at this point, we need to insert the explicit expressions for the components of
the first variation of the regularized closed chain as derived in Lemma 3.3.6.
(i) Evaluating the individual terms in (B.18)
By evaluating all the terms, we get summands which, irrespective of complex-conjugations,
take the form

(ηijvεi δvεj )(ηijvεi δvεj ) (ηijvεi δvεj )δsε δsεδsε (ηijδvεi δvεj ) (B.19)

Due to the fact that we have to take the real part of Tr
(
F ε±δA

εF ε∓δA
ε
)
at the very end, terms

involving three or four complex-conjugations can be converted into terms which only carry one
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or no complex-conjugation, respectively. Making use of the relation Re(x) Re(y) = 1
2 Re(xy+xȳ)

yields

(1) = δAεk Re
[
vkε s

ε
]

(3.21a,ii)= 2 Re
[
sεδvεk + δsεvεk

]
Re
[
vkε s

ε
]

= Re
[
(sε)2(vkε δvεk) + |vε|2sεδsε + |sε|2(vkε δvεk) + (vε)2sεδsε

]
= Re

[
(sε)2(vkε δvεk) + |sε|2(vkε δvεk) +

(
Bεsε + Cεsε

)
δsε
]

(B.20a)

(2) = δAεkδA
ε
pη
kp

(3.21a,ii)= 4 Re
[
sεδvεk + δsεvεk

]
Re
[
sεδvεp + δsεvεp

]
ηkp

= 2
(

Re
[(
sεδvεk + δsεvεk

)(
sεδvεp + δsεvεp

)
+
(
sεδvεk + δsεvεk

)(
sεδvεp + δsεvεp

)])
ηkp

= 2
(

Re
[
(sε)2(δvkε δvεk) + sεδsε(vkε δvεk) + sεδsε(vkε δvεk) + (vε)2(δsε)2]

+ Re
[
|sε|2(δvkε δvεk) + sεδsε(vkε δvεk) + sεδsε(vkε δvεk) + |vε|2δsεδsε

])
= 2 Re

[
(sε)2(δvkε δvεk) + |sε|2(δvkε δvεk) + 2sε(vkε δvεk)δsε

+
(
(vε)2(δsε)2 + |vε|2δsεδsε

)
+ 2sε(vkε δvεk)δsε

]
(B.20b)

(3) = δAεkδA
ε
p Re

[
vkε
(
(vε)2vpε − |vε|2v

p
ε

)]
(3.21a,ii)= 4 Re

[
sεδvεk + δsεvεk

]
Re
[
sεδvεp + δsεvεp

]
Re
[
vkε
(
(vε)2vpε − |vε|2v

p
ε

)]
= 2 Re

[
sεδvεk + δsεvεk

]
×

×
(

Re
[
sεvkε

(
(vε)2(vpεδvεp)− |vε|2(vpεδvεp)

)
+ δsεvkε

���
���

���
��: 0(

(vε)2|vε|2 − |vε|2(vε)2)]
+ Re

[
sεvkε

(
(vε)2(vpεδvεp)− |vε|2(vpεδvεp)

)
+ δsεvkε

(
(vε)2(vε)2 − (|vε|2)2)])

= 2 Re
[
sεδvεk + δsεvεk

]
×

× Re
[
vkε
(
(vε)2sε(vpεδvεp)− |vε|2sε(v

p
εδv

ε
p)
)

+ vkε
(
(vε)2sε(vpεδvεp)− |vε|2sε(vpεδvεp) + (vε)2(vε)2δsε − (|vε|2)2δsε

)]
= Re

[
sε(vkε δvεk)

(
(vε)2sε(vpεδvεp)−���

���
�: (1)

|vε|2sε(vpεδvεp)
)

+ sε(vkε δvεk)
(
(vε)2sε(vpεδvεp)−���

���
�:=(1)

|vε|2sε(vpεδvεp) +���
��

��: (2)
(vε)2(vε)2δsε −���

���:
(3)

(|vε|2)2δsε
)

+ δsε|vε|2
(
��

���
��:

(4)
(vε)2sε(vpεδvεp)−���

��
��:=(3)

|vε|2sε(vpεδvεp)
)

+ δsε(vε)2(
���

���
�:=(2)

(vε)2sε(vpεδvεp)−���
���

�: cancels (4)
|vε|2sε(vpεδvεp) + (vε)2(vε)2δsε − (|vε|2)2δsε

)]
+ Re

[
sε(vkε δvεk)

(
(vε)2sε(vpεδvεp)− |vε|2sε(v

p
εδv

ε
p)
)

+ sε(vkε δvεk)
(
(vε)2sε(vpεδvεp)− |vε|2sε(vpεδvεp) + (vε)2(vε)2δsε − (|vε|2)2δsε

)
+ δsε(vε)2((vε)2sε(vpεδvεp)−���

���
�: (5)

|vε|2sε(vpεδvεp)
)

+ δsε|vε|2
(
��

���
��:

cancels (5)

(vε)2sε(vpεδvεp)− |vε|2sε(vpεδvεp) + (vε)2(vε)2δsε − (|vε|2)2δsε
)]
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= Re
[
(vε)2(sε)2(vpεδvεp)2 − 2|vε|2(sε)2(vkε δvεk)(vpεδvεp)

+ (vε)2(sε)2(vpεδvεp)2 + 2
(
(vε)2(vε)2sε − (|vε|2)2sε

)
(vkε δvεk)δsε

+ (vε)2((vε)2(vε)2 − (|vε|2)2)(δsε)2 + (vε)2|sε|2(vpεδvεp)(vkε δvεk)

− |vε|2|sε|2(vpεδvεp)(vkε δvεk) + (vε)2|sε|2(vpεδvεp)(vkε δvεk)

− |vε|2|sε|2(vpεδvεp)(vkε δvεk) +
(
(vε)2(vε)2sε − (|vε|2)2sε

)
(vkε δvεk)δsε

+
(
(vε)2(vε)2sε − (|vε|2)2sε

)
(vpεδvεp)δsε +

(
|vε|2(vε)2(vε)2 − (|vε|2)3)δsεδsε]

= Re
[
(vε)2(sε)2(vpεδvεp)2 − 2|vε|2(sε)2(vkε δvεk)(vpεδvεp)

+ (vε)2(sε)2(vpεδvεp)2 + 2
(
(vε)2(vε)2sε − (|vε|2)2sε

)
(vkε δvεk)δsε

+ (vε)2((vε)2(vε)2 − (|vε|2)2)(δsε)2 + (vε)2|sε|2
���

���
�: (1)

(vpεδvεp)(vkε δvεk)

− |vε|2|sε|2(vpεδvεp)(vkε δvεk) + (vε)2|sε|2
���

���
�:=(1)

(vpεδvεp)(vkε δvεk)

− |vε|2|sε|2(vpεδvεp)(vkε δvεk) +
(
(vε)2(vε)2sε − (|vε|2)2sε

)
���

��:
(2)

(vkε δvεk)δsε

+
(
(vε)2(vε)2sε − (|vε|2)2sε

)
���

��:
=(2)

(vpεδvεp)δsε +
(
|vε|2(vε)2(vε)2 − (|vε|2)3)δsεδsε]

= Re
[
(vε)2(sε)2(vpεδvεp)2 − 2|vε|2(sε)2(vkε δvεk)(vpεδvεp)

+ 2(vε)2|sε|2(vpεδvεp)(vkε δvεk) + (vε)2(sε)2(vpεδvεp)2

− |vε|2|sε|2
(
(vpεδvεp)(vkε δvεk) + (vpεδvεp)(vkε δvεk)

)
+ 2sε

(
(vε)2(vε)2 − (|vε|2)2)((vkε δvεk)δsε + (vkε δvεk)δsε

)
+
(
(vε)2(vε)2 − (|vε|2)2)((vε)2(δsε)2 + |vε|2δsεδsε

)]
(B.20c)

(4) = δAεklδA
ε
pqη

lq

(3.21a,i)= 1
4
[
δvεkv

ε
l + vεkδv

ε
l

][
δvεpv

ε
q + vεpδv

ε
q

]
ηlq

= 1
4
[
(vε)2δvεkδv

ε
p + (ηlqvεqδvεl )δv

ε
kv
ε
p + (ηlqvεqδvεl )v

ε
kδv

ε
p + (ηlqδvεqδvεl )v

ε
kv
ε
p

]
= 1

4
[
(vε)2δvεkδv

ε
p + (vlεδvεl )(δv

ε
kv
ε
p + vεkδv

ε
p) + (δvlεδvεl )v

ε
kv
ε
p

]
(B.20d)

(5) = δAεklδA
ε
pqη

kq

(3.21a,i)= 1
4
[
δvεkv

ε
l + vεkδv

ε
l

][
δvεpv

ε
q + vεpδv

ε
q

]
ηkq

= 1
4
[
(vkε δvεk)vεl δv

ε
p + (δvkε δvεk)vεl v

ε
p + |vε|2δvεl δv

ε
p + (vkε δvεk)δvεl v

ε
p

]
(B.20e)

(6) = δAεklδA
ε
pqη

kp

(3.21a,i)= 1
4
[
δvεkv

ε
l + vεkδv

ε
l

][
δvεpv

ε
q + vεpδv

ε
q

]
ηkp

= 1
4
[
(ηkpδvεkδvεp)vεl vεq + (vkε δvεk)vεl δvεq + (vkε δvεk)δvεl vεq + (vε)2δvεl δv

ε
q

]
= 1

4
[
(δvkε δvεk)vεl vεq + (vkε δvεk)(vεl δvεq + δvεl v

ε
q) + (vε)2δvεl δv

ε
q

]
(B.20f)
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(7) = δAεpq Im
[
vpεv

q
ε

]
(3.21a,i)= 1

4i
[
δvεpv

ε
q + vεpδv

ε
q

][
vpεv

q
ε − vpεvεq

]
= 1

4i
[
(vε)2(vpεδvεp)− |vε|2(vpεδvεp) + (vε)2(vpεδvεp)− |vε|2(vpεδvεp)

]
= 1

2i Re
[
(vε)2(vpεδvεp)− |vε|2(vpεδvεp)

]
(B.20g)

(8) = δAεkδA
ε
pqη

kq

(3.21a,i)=
(3.21a,ii)

Re
[
sεδvεk + δsεvεk

][
δvεpv

ε
q + vεpδv

ε
q

]
ηkq

= 1
2

[
sεδvεk + sεδvεk + δsεvεk + δsεvεk

][
δvεpv

ε
q + vεpδv

ε
q

]
ηkq

= 1
2
[(
sε(vkε δvεk) + sε(vkε δvεk) + δsε(vε)2 + δsε|vε|2

)
δvεp

+
(
sε(δvkε δvεk) + sε(δvkε δvεk) + δsε(vkε δvεk) + δsε(vkε δvεk)

)
vεp

]
(B.20h)

(9) = δAεkδA
ε
pqη

kp

(3.21a,i)=
(3.21a,ii)

Re
[
sεδvεk + δsεvεk

][
δvεpv

ε
q + vεpδv

ε
q

]
ηkp

= 1
2

[
sεδvεk + sεδvεk + δsεvεk + δsεvεk

][
δvεpv

ε
q + vεpδv

ε
q

]
ηkp

= 1
2

[(
sε(δvkε δvεk) + sε(δvkε δvεk) + δsε(vkε δvεk) + δsε(vkε δvεk)

)
vεq

+
(
sε(vkε δvεk) + sε(vkε δvεk) + δsε|vε|2 + δsε(vε)2)δvεq] (B.20i)

(ii) Putting together the results
Inserting the above results for the terms (1)− (9) into the intermediate result (B.18), we find

Tr
(
F ε±δA

εF ε∓δA
ε
)

=
(B.18)=
(B.20)
− 2
Dε

{
4
(

Re
[
(sε)2(vkε δvεk) + |sε|2(vkε δvεk) +

(
Bεsε + Cεsε

)
δsε
])2

− 2 Re
[
(vε)2(sε)2 + |vε|2|sε|2

]
×

× 2 Re
[
(sε)2(δvkε δvεk) + |sε|2(δvkε δvεk) + 2sε(vkε δvεk)δsε

+
(
(vε)2(δsε)2 + |vε|2δsεδsε

)
+ 2sε(vkε δvεk)δsε

]
+ 2
(

Re
[
(vε)2(sε)2(vpεδvεp)2 − 2|vε|2(sε)2(vkε δvεk)(vpεδvεp)

+ 2(vε)2|sε|2(vpεδvεp)(vkε δvεk) + (vε)2(sε)2(vpεδvεp)2

− |vε|2|sε|2
(
(vpεδvεp)(vkε δvεk) + (vpεδvεp)(vkε δvεk)

)
+ 2sε

(
(vε)2(vε)2 − (|vε|2)2)((vkε δvεk)δsε + (vkε δvεk)δsε

)
+
(
(vε)2(vε)2 − (|vε|2)2)((vε)2(δsε)2 + |vε|2δsεδsε

)])}

− 16
Dε

{
1
4

[
(vε)2δvεkδv

ε
p + (vlεδvεl )(δv

ε
kv
ε
p + vεkδv

ε
p) + (δvlεδvεl )v

ε
kv
ε
p

]
Re
[
vkε
(
Bεvpε − Cεvpε

)]
︸ ︷︷ ︸

(1)

− 2 · 1
4

[
(vkε δvεk)vεl δv

ε
p + (δvkε δvεk)vεl v

ε
p + |vε|2δvεl δv

ε
p + (vkε δvεk)δvεl v

ε
p

]
×

× Re
[
vpε
(
Bεvlε − Cεvlε

)]
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+ 1
4

[
(δvkε δvεk)vεl vεq + (vkε δvεk)(vεl δvεq + δvεl v

ε
q) + (vε)2δvεl δv

ε
q

]
Re
[
vqε
(
Bεvlε − Cεvlε

)]
︸ ︷︷ ︸

replace (l, q)→ (p, k) and combine with (1)

− 4
( 1

2i Re
[
(vε)2(vpεδvεp)− |vε|2(vpεδvεp)

])2
}

− 8
Dε

{
− 8i Re

[
(sε)2(vkε δvεk) + |sε|2(vkε δvεk) +

(
Bεsε + Cεsε

)
δsε
]
×

× 1
2i Re

[
(vε)2(vpεδvεp)− |vε|2(vpεδvεp)

]
+ 2i Im

[
(Bεsε + Cεsε)vpε

]
×

× 1
2

[ (
sε(vkε δvεk) + sε(vkε δvεk) + δsε(vε)2 + δsε|vε|2

)
δvεp︸ ︷︷ ︸

(2)

+
(
sε(δvkε δvεk) + sε(δvkε δvεk) + δsε(vkε δvεk) + δsε(vkε δvεk)

)
vεp︸ ︷︷ ︸

(3)

]

− 2i Im
[
(Bεsε + Cεsε)vqε

]
︸ ︷︷ ︸

replace q → p

×

× 1
2

[ (
sε(δvkε δvεk) + sε(δvkε δvεk) + δsε(vkε δvεk) + δsε(vkε δvεk)

)
vεq︸ ︷︷ ︸

replace q → p and combine with (3)

+
(
sε(vkε δvεk) + sε(vkε δvεk) + δsε|vε|2 + δsε(vε)2)δvεq︸ ︷︷ ︸

replace q → p and combine with (2)

]}

Combining terms yields

= − 2
Dε

{
4
(

Re
[
(sε)2(vkε δvεk) + |sε|2(vkε δvεk) +

(
Bεsε + Cεsε

)
δsε
])2

− 4 Re
[
(vε)2(sε)2 + |vε|2|sε|2

]
×

× Re
[
(sε)2(δvkε δvεk) + |sε|2(δvkε δvεk) + 2sε(vkε δvεk)δsε

+
(
(vε)2(δsε)2 + |vε|2δsεδsε

)
+ 2sε(vkε δvεk)δsε

]
+ 2 Re

[
(vε)2(sε)2(vpεδvεp)2 − 2|vε|2(sε)2(vkε δvεk)(vpεδvεp)

+ 2(vε)2|sε|2(vpεδvεp)(vkε δvεk) + (vε)2(sε)2(vpεδvεp)2

− |vε|2|sε|2
(
(vpεδvεp)(vkε δvεk) + (vpεδvεp)(vkε δvεk)

)
+ 2sε

(
(vε)2(vε)2 − (|vε|2)2)((vkε δvεk)δsε + (vkε δvεk)δsε

)
+
(
(vε)2(vε)2 − (|vε|2)2)((vε)2(δsε)2 + |vε|2δsεδsε

)]}

− 16
Dε

{
1
2 Re

[
(vε)2δvεkδv

ε
p + (vlεδvεl )(δv

ε
kv
ε
p + vεkδv

ε
p) + (δvlεδvεl )v

ε
kv
ε
p

]
×

× Re
[
vkε
(
Bεvpε − Cεvpε

)]
− 1

2

[
(vkε δvεk)vεl δv

ε
p + (δvkε δvεk)vεl v

ε
p + |vε|2δvεl δv

ε
p + (vkε δvεk)δvεl v

ε
p

]
×

× Re
[
vpε
(
Bεvlε − Cεvlε

)]
+
(

Re
[
(vε)2(vpεδvεp)− |vε|2(vpεδvεp)

])2
}
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− 8
Dε

{
− 4 Re

[
(sε)2(vkε δvεk) + |sε|2(vkε δvεk) +

(
Bεsε + Cεsε

)
δsε
]
×

× Re
[
(vε)2(vpεδvεp)− |vε|2(vpεδvεp)

]
− 2 Im

[
(Bεsε + Cεsε)vpε

]
×

× Im
[(
sε(vkε δvεk) + sε(vkε δvεk) + δsε(vε)2 + δsε|vε|2

)
δvεp

+
(
sε(δvkε δvεk) + sε(δvkε δvεk) + δsε(vkε δvεk) + δsε(vkε δvεk)

)
vεp

]}
Expanding products of two real or two imaginary parts by using the relations Re(x) Re(y) =
1
2 Re(xy + xȳ) and Im(x) Im(y) = − 1

2 Re(x(y − ȳ)), respectively, and collecting terms with the
curly brackets gives

. . . = − 2
Dε

{
2 Re

[
((sε)2)2

���
��: (1.1)

(vkε δvεk)2 + |sε|2(sε)2
���

���
�: (2.1)

(vkε δvεk)(vkε δvεk)

+
(
Bεsε + Cεsε

)
(sε)2
��

����:
(3.1)

(vkε δvεk)δsε

+ (sε)2(sε)2
��

���
��:

(4.1)

(vkε δvεk)(vkε δvεk) + |sε|2(sε)2
���

���
�: (5.1)

(vkε δvεk)(vkε δvεk)

+
(
Bεsε + Cεsε

)
(sε)2
���

��:
(6.1)

(vkε δvεk)δsε

+ |sε|2(sε)2
���

���
�: (2.2)

(vkε δvεk)(vkε δvεk) + (|sε|2)2
���

��: (7.1)
(vkε δvεk)2

+
(
Bεsε + Cεsε

)
|sε|2���

���:
(8.1)

(vkε δvεk)δsε

+ |sε|2(sε)2
���

���
�: (5.2)

(vkε δvεk)(vkε δvεk) + (|sε|2)2
���

���
�: (9.1)

(vkε δvεk)(vkε δvεk)

+
(
Bεsε + Cεsε

)
|sε|2���

��:
(10.1)

(vkε δvεk)δsε

+
(
Bεsε + Cεsε

)
(sε)2
���

���:
(3.2)

δsε(vkε δvεk) +
(
Bεsε + Cεsε

)
|sε|2���

���:
(8.2)

(vkε δvεk)δsε

+
(
Bεsε + Cεsε

)2
��

��*
(11.1)

(δsε)2 +
(
Bεsε + Cεsε

)
(sε)2
��

���
�: (6.2)

(vkε δvεk)δsε

+
(
Bεsε + Cεsε

)
|sε|2���

���:
(10.2)

(vkε δvεk)δsε +
(
Bεsε + Cεsε

)(
Bεsε + Cεsε

)
���

�: (12.1)
δsεδsε

]

− 2 Re
[(

(vε)2(sε)2 + (vε)2(sε)2 + 2|vε|2|sε|2
)
×

×
(
(sε)2
���

��: (13.1)
(δvkε δvεk) + |sε|2���

��: (14.1)
(δvkε δvεk) + 2sε���

���:
(8.3)

(vkε δvεk)δsε

+ (vε)2
�
��
�*

(11.2)

(δsε)2 + |vε|2����:
(12.2)

δsεδsε + 2sε���
��:

(6.3)
(vkε δvεk)δsε

)]
+ 2 Re

[
(vε)2(sε)2

���
��: (1.2)

(vpεδvεp)2 − 2|vε|2(sε)2
���

���
�: (2.3)

(vkε δvεk)(vpεδvεp)

+ 2(vε)2|sε|2
���

���
�: (5.3)

(vpεδvεp)(vkε δvεk) + (vε)2(sε)2
���

��: (7.2)
(vpεδvεp)2

− |vε|2|sε|2
(
��

���
��:

(9.2)

(vpεδvεp)(vkε δvεk) +
���

���
�: (4.2)

(vpεδvεp)(vkε δvεk)
)

+ 2sε
(
(vε)2(vε)2 − (|vε|2)2)(

��
����:

(8.4)
(vkε δvεk)δsε +���

��:
(6.4)

(vkε δvεk)δsε
)

+ (vε)2((vε)2(vε)2 − (|vε|2)2)
��

��*
(11.3)

(δsε)2 + |vε|2
(
(vε)2(vε)2 − (|vε|2)2)����: (12.3)

δsεδsε
]}
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− 16
Dε

{
1
2B

ε Re
[
���

���
���:

(15)

(vε)2(vkε δvεk)(vpεδvεp) + (vlεδvεl )
(
���

�: (4.3)
(vkε δvεk)|vε|2 + (vε)2

�
��
�*

(5.4)

(vpεδvεp)
)

+���
��: (13.2)

(δvlεδvεl )(v
ε)2|vε|2

]
− 1

4 Re
[
Cε
(

(vε)2
���

���
�: (1.3)

(vkε δvεk)(vpεδvεp) + 2���
��

��:
(4.4)

(vlεδvεl )(v
k
ε δv

ε
k)(vε)2 +���

��: (13.3)
(δvlεδvεl )(v

ε)2(vε)2
)

+ Cε
(

(vε)2
���

���
�: (7.3)

(vkε δvεk)(vpεδvεp) + 2���
���

�: (5.5)

(vlεδvεl )(vkε δv
ε
k)|vε|2 +���

��: (13.4)
(δvlεδvεl )(|v

ε|2)2)
)]

− 1
2B

ε
(
��

���
���

���
�: cancels (15)

Re
[
(vkε δvεk)(vε)2(vpεδvεp)

]
+ Re

[
��

���
���

�: (7.4)

(vkε δvεk)|vε|2(vpεδvεp)
])

− 1
4B

ε
(
��

���:
(14.2)

(δvkε δvεk)(vε)2(vε)2 + |vε|2
��

���
��:

(4.5)

(vkε δvεk)(vpεδvεp)

+���
��: (14.3)

(δvkε δvεk)(|vε|2)2 + |vε|2
���

���
�: (9.3)

(vlεδvεk)(vpεδvεp)
)

+ 1
2 Re

[
Cε
(
��

���
���

�: (2.4)

(vkε δvεk)|vε|2(vpεδvεp) +���
��: (14.4)

(δvkε δvεk)|vε|2(vε)2

+ |vε|2
���

���
�: (5.6)

(vlεδvεl )(v
p
εδv

ε
p) +
��

���
��:

(7.5)

(vkε δvεk)(vlεδvεl )(v
ε)2
)]

+ 1
2 Re

[
((vε)2)2

���
��: (1.4)

(vpεδvεp)2 − 2|vε|2(vε)2
���

���
�: (2.5)

(vkε δvεk)(vpεδvεp) + (|vε|2)2
���

��: (7.6)
(vkε δvεk)2

+ (vε)2(vε)2
��

���
��:

(4.6)

(vkε δvεk)(vpεδvεp)− 2|vε|2(vε)2
��

���
��:

(5.7)

(vkε δvεk)(vpεδvεp)

+ (|vε|2)2
��

���
��:

(9.4)

(vkε δvεk)(vpεδvεp)
]}

− 8
Dε

{
− 2 Re

[
(vε)2(sε)2

���
��: (1.5)

(vkε δvεk)2 − |vε|2(sε)2
���

���
�: (2.6)

(vkε δvεk)(vpεδvεp)

+ (vε)2(sε)2
��

���
��:

(4.7)

(vkε δvεk)(vpεδvεp)− |vε|2(sε)2
��

���
��:

(5.8)

(vkε δvεk)(vpεδvεp)

+ (vε)2|sε|2
���

���
�: (2.7)

(vkε δvεk)(vpεδvεp)− |vε|2|sε|2���
��: (7.7)

(vkε δvεk)2

+ (vε)2|sε|2
���

���
�: (5.9)

(vkε δvεk)(vpεδvεp)− |vε|2|sε|2���
���

�: (9.5)

(vkε δvεk)(vpεδvεp)

+ (vε)2(Bεsε + Cεsε
)
���

��:
(3.3)

δsε(vpεδvεp)− |vε|2
(
Bεsε + Cεsε

)
��

���:
(8.5)

δsε(vpεδvεp)

+ (vε)2(Bεsε + Cεsε
)
��

���:
(6.5)

δsε(vpεδvεp)− |vε|2
(
Bεsε + Cεsε

)
���

��:
(10.3)

δsε(vpεδvεp)
]

+ Re
[(
Bεsε + Cεsε

)
sε
��

���
��:

(2.8)

(vpεδvεp)(vkε δvεk) +
(
Bεsε + Cεsε

)
sε
��

���
��:

(4.8)

(vpεδvεp)(vkε δvεk)

+
(
Bεsε + Cεsε

)
(vε)2

��
���:

(3.4)
(vpεδvεp)δsε +

(
Bεsε + Cεsε

)
|vε|2���

��:
(6.6)

(vpεδvεp)δsε

−
(
Bεsε + Cεsε

)
sε��

���:
(7.8)

(vkε δvεk)2 −
(
Bεsε + Cεsε

)
sε
���

���
�: (5.10)

(vpεδvεp)(vkε δvεk)

−
(
Bεsε + Cεsε

)
(vε)2

��
���:

(8.6)
(vpεδvεp)δsε −

(
Bεsε + Cεsε

)
|vε|2���

��:
(10.4)

(vpεδvεp)δsε

+
((
Bεsε + Cεsε

)
(vε)2 −

(
Bεsε + Cεsε

)
|vε|2

)
×
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×
(
sε���

��: (14.5)
(δvkε δvεk) + sε��

���:
(13.5)

(δvkε δvεk) + (vkε���
�: (6.7)

δvεk)δsε +���
���:

(8.7)
(vkε δvεk)δsε

)]}
Combining and cancelling terms finally yields

Tr
(
F ε±δA

εF ε∓δA
ε
)

=

= − 4
Dε

Re
[

(Cε)2(vkε δvεk)2︸ ︷︷ ︸
(1.1) – (1.5)

− 2BεCε(vkε δvεk)(vkε δvεk)︸ ︷︷ ︸
(2.1) – (2.8)

− 2Cε
(
Bεsε + Cεsε

)
(vkε δvεk)δsε︸ ︷︷ ︸

(3.1) – (3.4)

+ (Bε)2(vkε δvεk)(vkε δvεk)︸ ︷︷ ︸
(4.1) – (4.8)

− 2BεCε(vkε δvεk)(vkε δvεk)︸ ︷︷ ︸
(5.1) – (5.10)

− 2Bε
(
Bεsε + Cεsε

)
(vkε δvεk)δsε︸ ︷︷ ︸

(6.1) – (6.7)

+ CεCε(vkε δvεk)2︸ ︷︷ ︸
(7.1) – (7.8)

+ 2Cε
(
Bεsε + Cεsε

)
(vkε δvεk)δsε︸ ︷︷ ︸

(8.1) – (8.7)

+ (Bε)2(vkε δvεk)(vkε δvεk)︸ ︷︷ ︸
(9.1) – (9.5)

+ 2Bε
(
Bεsε + Cεsε

)
(vkε δvεk)δsε︸ ︷︷ ︸

(10.1) – (10.4)

+ Cε
(
|(vε)2|2 − (|vε|2)2)(δsε)2︸ ︷︷ ︸

(11.1) – (11.3)

+Bε
(
|(vε)2|2 − (|vε|2)2)δsεδsε︸ ︷︷ ︸

(12.1) – (12.3)

+ CεDε(δvkε δvεk)︸ ︷︷ ︸
(13.1) – (13.5)

−BεDε(δvkε δvεk)︸ ︷︷ ︸
(14.1) – (14.5)

]}
(B.21)

(3) Conclusion
As the last step we insert the intermediate results (B.14) and (B.21) into (B.13) and thus find
for the second variation of the eigenvalues

δ2λε±
(B.13)= 1

2 Tr
[
F ε±δ

2Aε
]︸ ︷︷ ︸

(B.14)

± 1
4
√
Dε

Tr
[
F ε±δA

εF ε∓δA
ε
]︸ ︷︷ ︸

(B.21)

(B.14)=
(B.21)

Re
[
2(viεδ2vεi ) + 2sεδ2sε + (δviεδvεi ) + δsεδsε

]
± 1√

Dε
Re
[
2Bε(viεδ2vεi )− 2Cε(viεδ2vεi ) + 2

(
Bεsε + Cεsε

)
δ2sε

+ 2
(
sε(viεδvεi ) + sε(viεδvεi )

)
δsε

− (viεδvεj )(viεδvεi ) + (viεδvεi )(v
j
εδv

ε
j )− Cε(δvkε δvεk) +Bε(δvkε δvεk)

]
∓ 1

(Dε)3/2
Re
[
(Cε)2(vkε δvεk)2 − 2BεCε(vkε δvεk)(vkε δvεk)− 2BεCε(vkε δvεk)(vkε δvεk)

+ (Bε)2(vkε δvεk)(vkε δvεk) + CεCε(vkε δvεk)2 + (Bε)2(vkε δvεk)(vkε δvεk)
− 2Cε

(
Bεsε + Cεsε

)
(vkε δvεk)δsε + 2Cε

(
Bεsε + Cεsε

)
(vkε δvεk)δsε

+ 2Bε
(
Bεsε + Cεsε

)
(vkε δvεk)δsε − 2Bε

(
Bεsε + Cεsε

)
(vkε δvεk)δsε

+ Cε
(
|(vε)2|2 − (|vε|2)2)(δsε)2 +Bε

(
|(vε)2|2 − (|vε|2)2)δsεδsε]

This concludes the proof.
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In this appendix we have collected the details of all the auxiliary calculations necessary to arrive
at Lemma 4.2.5 (Position Space Angular Integration in (4.21)) in the main body in Subsection 4.2.1.

C.1 Conventions and Auxiliary Calculations

Proposition C.1.1 (Angular Integration of Exponential Factor)

For any ~p ∈ R3 the integral of the exponential factor e±i~p·~ξ with respect to the angular variables
of ~ξ evaluates to ∫

S2

dΩξ e∓i~p·~ξ = 4π sin(|~p |r)
|~p |r

(4.26)= 4πj0,1(|~p |r) (C.1)

Proof. For the computation of the integral∫
S2

dΩξ e∓i~p·~ξ

169
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we choose, without loss of generality, a Cartesian coordinate system such that its z-axis points
in the direction of ~p. As a consequence, the scalar product ~p · ~ξ can be expressed as

~p · ~ξ = |~p ||~ξ | cos(θξ)

where θξ denotes the angle between ~ξ and the z-axis. Splitting dΩξ into azimuthal and polar
parts and defining r := |~ξ |, we obtain

∫
S2

dΩξ e∓i~p·~ξ =
1∫
−1

dcos(θξ)
2π∫
0

dϕξ e∓i|~p |r cos(θξ) = 2π
1∫
−1

dcos(θξ) e∓i|~p |r cos(θξ)

where in the last step we used the fact that the azimuthal integral can be carried out trivially
due to the absence of any dependences on ϕξ. Computing the remaining integral, we finally
end up with∫

S2

dΩξ e∓i~p·~ξ = 2π
[

e∓i|~p |r

∓i|~p |r −
e±i|~p |r

∓i|~p |r

]
= ∓4π sin(∓|~p |r)

|~p |r
(4.26)= 4πj0,1(|~p |r)

which concludes the proof.

In the rest of this appendix, the generalized spherical bessel functions will almost exclusively
appear with the argument |~p± ~q |r. For notational convenience we therefore introduce the function
k± : R3 × R3 → R+

0 defined as k±(~p, ~q ) := |~p ± ~q |. Whenever there is no risk of confusion, we
suppress the arguments of the function k± such that, unless otherwise stated, any appearance of
k±r must be understood as |~p± ~q |r.

Convention C.1.2 (Arguments of Spherical Harmonics)

For the sake of notational clarity, we suppress arguments of spherical harmonics whenever
there is no risk of confusion. We use the convention that scalar and vector spherical harmonics
with unprimed parameters lm come with arguments (θp, ϕp) while scalar and vector spherical
harmonics with primed parameters l′m′ always carry arguments (θq, ϕq).

C.1.1 Basic Derivatives of j0,n(k±r)

In the proofs of Lemma C.2.1 and Lemma C.4.1, various derivatives of j0,n(k±r) enter the game.
In order to keep these proofs as compact as possible, we outsource the computation of derivatives
and collect them in the following proposition.

Proposition C.1.3 (First and Second Derivatives of j0,n(k±r))

The first derivatives of j0,n(k±r), namely the gradients with respect to ~p, ~q and the derivatives
with respect to |~p |, |~q |, are given by{

grad~p j0,n(k±r)

grad~q j0,n(k±r)

}
=
{

1

±1

}
2(~p± ~q )r2

[
1 + r

2
d

dr

]
j0,n+2(k±r) (C.2a)

{
~p · grad~p j0,n(k±r)

~q · grad~q j0,n(k±r)

}
= r

2
d

dr j0,n(k±r) +
{

+1

−1

}
(|~p |2 − |~q |2)r2

[
1 + r

2
d

dr

]
j0,n+2(k±r)

(C.2b)
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{
~q · grad~p j0,n(k±r)

~p · grad~q j0,n(k±r)

}
= ±r2

d
dr j0,n(k±r)±

{
−1

+1

}
(|~p |2 − |~q |2)r2

[
1 + r

2
d

dr

]
j0,n+2(k±r)

(C.2c)|~p |
dj0,n(k±r)

d|~p |

|~q |dj0,n(k±r)
d|~q |

 = r

2
d

dr j0,n(k±r) +
{

+1

−1

}
(|~p |2 − |~q |2)r2

[
1 + r

2
d

dr

]
j0,n+2(k±r)

(C.2d)

The second-order derivatives, namely the divergence and curl of the gradients as well as the
mixed derivatives with respect to |~p | and |~q | read{

div~q grad~p j0,n(k±r)

div~p grad~q j0,n(k±r)

}
= ±4r2

[
3
2 + r

2
d

dr

][
1 + r

2
d

dr

]
j0,n+2(k±r) (C.3a)

{
curl~q grad~p j0,n(k±r)

curl~p grad~q j0,n(k±r)

}
= ~0 (C.3b)

|~p | d
d|~p | |~q |

dj0,n(k±r)
d|~q | =

[
r

2
d

dr

]2
j0,n(k±r)− (|~p |2 + |~q |2)r2

[
1 + r

2
d

dr

]
j0,n+2(k±r)

− (|~p |2 − |~q |2)2r4
[
2 + r

2
d

dr

][
1 + r

2
d

dr

]
j0,n+4(k±r) (C.3c)

Proof. To prove the above relations we will repeatedly make use of the identities

~p · (~p± ~q ) =
k2
± + |~p |2 − |~q |2

2 (C.4a) ~q · (~p± ~q ) = ±
k2
± − |~p |2 + |~q |2

2 (C.4b)

as well as

grad~p k± = ~p± ~q
k±

(C.5a) grad~q k± = ±~p± ~q
k±

(C.5b)

which immediately follow by straightforward computation and remembering that k± = |~p± ~q |.

(1) First Derivatives of j0,n(k±r)
Making use of these identities we find the following expressions for the gradients of j0,n(k±r)
with respect to ~p and ~q, respectively

grad~p j0,n(k±r) = dj0,n(k±r)
dk±

grad~p k±
(C.5a)= r

k±

dj0,n(k±r)
dr

~p± ~q
k±

(4.26)= (~p± ~q )r
d
(
r2j0,n+2(k±r)

)
dr = 2(~p± ~q )r2

[
1 + r

2
d

dr

]
j0,n+2(k±r) (C.6)

grad~q j0,n(k±r) = dj0,n(k±r)
dk±

grad~q k±
(C.5b)= ± r

k±

dj0,n(k±r)
dr

~p± ~q
k±

(4.26)= ±(~p± ~q )r
d
(
r2j0,n+2(k±r)

)
dr = ±2(~p± ~q )r2

[
1 + r

2
d

dr

]
j0,n+2(k±r) (C.7)

Due to the fact that gradients often occur in scalar products with ~p and ~q, we also compute
these expressions. For the scalar products of grad~p j0,n and grad~q j0,n with the corresponding
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momentum vectors ~p and ~q we find

~p · grad~p j0,n(k±r)
(C.6)= 2~p · (~p± ~q )r2

[
1 + r

2
d

dr

]
j0,n+2(k±r)

=
(
k2
± + |~p |2 − |~q |2

)
r2
[
1 + r

2
d

dr

]
j0,n+2(k±r)

(4.26)= r2
[
1 + r

2
d

dr

](
r−2j0,n(k±r)

)
+ (|~p |2 − |~q |2)r2

[
1 + r

2
d

dr

]
j0,n+2(k±r)

= r

2
d

dr j0,n(k±r) + (|~p |2 − |~q |2)r2
[
1 + r

2
d

dr

]
j0,n+2(k±r) (C.8)

~q · grad~q j0,n(k±r)
(C.7)= ±2~q · (~p± ~q )r2

[
1 + r

2
d

dr

]
j0,n+2(k±r)

=
(
k2
± − |~p |2 + |~q |2

)
r2
[
1 + r

2
d

dr

]
j0,n+2(k±r)

(4.26)= r2
[
1 + r

2
d

dr

](
r−2j0,n(k±r)

)
− (|~p |2 − |~q |2)r2

[
1 + r

2
d

dr

]
j0,n+2(k±r)

= r

2
d

dr j0,n(k±r)− (|~p |2 − |~q |2)r2
[
1 + r

2
d

dr

]
j0,n+2(k±r) (C.9)

For the mixed expressions we analogously find

~q · grad~p j0,n(k±r)
(C.7)= 2~q · (~p± ~q )r2

[
1 + r

2
d

dr

]
j0,n+2(k±r)

= ±
(
k2
± − |~p |2 + |~q |2

)
r2
[
1 + r

2
d

dr

]
j0,n+2(k±r)

(4.26)= ±r2
[
1 + r

2
d

dr

](
r−2j0,n(k±r)

)
∓ (|~p |2 − |~q |2)r2

[
1 + r

2
d

dr

]
j0,n+2(k±r)

= ±r2
d

dr j0,n(k±r)∓ (|~p |2 − |~q |2)r2
[
1 + r

2
d

dr

]
j0,n+2(k±r) (C.10)

~p · grad~q j0,n(k±r)
(C.7)= ±2~p · (~p± ~q )r2

[
1 + r

2
d

dr

]
j0,n+2(k±r)

= ±
(
k2
± + |~p |2 − |~q |2

)
r2
[
1 + r

2
d

dr

]
j0,n+2(k±r)

(4.26)= ±r2
[
1 + r

2
d

dr

](
r−2j0,n(k±r)

)
± (|~p |2 − |~q |2)r2

[
1 + r

2
d

dr

]
j0,n+2(k±r)

= ±r2
d

dr j0,n(k±r)± (|~p |2 − |~q |2)r2
[
1 + r

2
d

dr

]
j0,n+2(k±r) (C.11)

Next, we turn to the computation of derivatives of j0,n(k±r) with respect to |~p | and |~q |. For
this we need the relations

|~p | dk±d|~p | = |~p |
2k±

d
d|~p |

[
|~p |2 + |~q |2 ± 2|~p ||~q | cos

(
^(~̂ep, ~̂eq)

)]
= |~p |

|~p | ± |~q | cos
(
^(~̂ep, ~̂eq)

)
k±

=
k2
± + |~p |2 − |~q |2

2k±
(C.12)

|~q | dk±d|~q | = |~q |
2k±

d
d|~q |

[
|~p |2 + |~q |2 ± 2|~p ||~q | cos

(
^(~̂ep, ~̂eq)

)]
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= |~q |
|~q | ± |~p | cos

(
^(~̂ep, ~̂eq)

)
k±

=
k2
± − (|~p |2 − |~q |2)

2k±
(C.13)

where we used ~p · ~q = |~p ||~q | cos(^(~̂ep, ~̂eq)) with ^(~̂ep, ~̂eq) denoting the angle between the unit
vectors ~̂ep and ~̂q pointing in directions of ~p and ~q, respectively. Using this we find

|~p |dj0,n(k±r)
d|~p | = dj0,n(k±r)

dk±
|~p | dk±d|~p |

(C.12)= r

k±

dj0,n(k±r)
dr

k2
± + |~p |2 − |~q |2

2k±

(4.26)= r

2
dj0,n(k±r)

dr + r

2(|~p |2 − |~q |2)
d
(
r2j0,n+2(k±r)

)
dr

= r

2
d

dr j0,n(k±r) + r2(|~p |2 − |~q |2)
[
1 + r

2
d

dr

]
j0,n+2(k±r) (C.14)

|~q |dj0,n(k±r)
d|~q | = dj0,n(k±r)

dk±
|~q | dk±d|~q |

(C.13)= r

k±

dj0,n(k±r)
dr

k2
± − (|~p |2 − |~q |2)

2k±

(4.26)= r

2
dj0,n(k±r)

dr − r

2(|~p |2 − |~q |2)
d
(
r2j0,n+2(k±r)

)
dr

= r

2
d

dr j0,n(k±r)− r2(|~p |2 − |~q |2)
[
1 + r

2
d

dr

]
j0,n+2(k±r) (C.15)

(2) Second Derivatives of j0,n(k±r)
For the second derivatives of j0,n(k±r) there are various combinations possible. Taking the
gradients as our starting point, we can compute their divergence as well as their curl. For the
former we find

div~q grad~p j0,n(k±r) =
(C.6)= div~q

(
2(~p± ~q )r2

[
1 + r

2
d

dr

]
j0,n+2(k±r)

)
= ±6r2

[
1 + r

2
d

dr

]
j0,n+2(k±r) + 2r2

[
1 + r

2
d

dr

]
(~p± ~q ) · grad~q j0,n+2(k±r)

(C.5b)=
(4.26)
±6r2

[
1 + r

2
d

dr

]
j0,n+2(k±r)± 4r2

[
1 + r

2
d

dr

][
r2
[
1 + r

2
d

dr

](
r−2j0,n+2(k±r)

)]

= ±6r2
[
1 + r

2
d

dr

]
j0,n+2(k±r)± 4r2

[
1 + r

2
d

dr

][
r

2
d

dr

]
j0,n+2(k±r)

= ±4r2
[

3
2 + r

2
d

dr

][
1 + r

2
d

dr

]
j0,n+2(k±r) (C.16)

div~p grad~q j0,n(k±r) =
(C.7)= div~p

(
± 2(~p± ~q )r2

[
1 + r

2
d

dr

]
j0,n+2(k±r)

)
= ±6r2

[
1 + r

2
d

dr

]
j0,n+2(k±r)± 2r2

[
1 + r

2
d

dr

]
(~p± ~q ) · grad~p j0,n+2(k±r)

(C.5a)=
(4.26)
±6r2

[
1 + r

2
d

dr

]
j0,n+2(k±r)± 4r2

[
1 + r

2
d

dr

][
r2
[
1 + r

2
d

dr

](
r−2j0,n+2(k±r)

)]
(C.16)= div~q grad~p j0,n(k±r) (C.17)

Repeating the procedure for the curl gives
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curl~q grad~p j0,n(k±r)
(C.6)= curl~q

(
2(~p± ~q )r2

[
1 + r

2
d

dr

]
j0,n+2(k±r)

)
= 2r2

[
1 + r

2
d

dr

](
grad~q j0,n+2(k±r)

)
× (~p± ~q )

(C.7)= ±2r2
[
1 + r

2
d

dr

][
2r2
[
1 + r

2
d

dr

]
j0,n+4(k±r)

]
(~p± ~q )× (~p± ~q )

= ~0 (C.18)

curl~p grad~q j0,n(k±r)
(C.7)= curl~p

(
± 2(~p± ~q )r2

[
1 + r

2
d

dr

]
j0,n+2(k±r)

)
= ±2r2

[
1 + r

2
d

dr

](
grad~p j0,n+2(k±r)

)
× (~p± ~q )

(C.6)= ±2r2
[
1 + r

2
d

dr

][
2r2
[
1 + r

2
d

dr

]
j0,n+4(k±r)

]
(~p± ~q )× (~p± ~q )

= ~0 (C.19)

Here we used the rules for the curl as well as the properties of the cross product. Finally, for
mixed derivatives with respect to |~p | and |~q | we find

|~p | d
d|~p | |~q |

dj0,n(k±r)
d|~q | =

(C.13)= |~p | d
d|~p |

[
r

2
d

dr j0,n(k±r)− r2(|~p |2 − |~q |2)
[
1 + r

2
d

dr

]
j0,n+2(k±r)

]
(C.12)= r

2
d

dr

[
r

2
d

dr j0,n(k±r) + r2(|~p |2 − |~q |2)
[
1 + r

2
d

dr

]
j0,n+2(k±r)

]

− 2r2|~p |2
[
1 + r

2
d

dr

]
j0,n+2(k±r)

− r2(|~p |2 − |~q |2)
[
1 + r

2
d

dr

][
r

2
d

dr j0,n+2(k±r) + r2(|~p |2 − |~q |2)
[
1 + r

2
d

dr

]
j0,n+4(k±r)

]
=
[
r

2
d

dr

]2
j0,n(k±r)− (|~p |2 + |~q |2)r2

[
1 + r

2
d

dr

]
j0,n+2(k±r)

− (|~p |2 − |~q |2)2

[
r2
[
1 + r

2
d

dr

]]2

j0,n+4(k±r)

=
[
r

2
d

dr

]2
j0,n(k±r)− (|~p |2 + |~q |2)r2

[
1 + r

2
d

dr

]
j0,n+2(k±r)

− (|~p |2 − |~q |2)2r4
[
2 + r

2
d

dr

][
1 + r

2
d

dr

]
j0,n+4(k±r) (C.20)

This concludes the proof.

C.1.2 Auxiliary Calculations

In this subsection we collect auxiliary calculations which are needed in order to simplify intermediate
results appearing in Appendix Section C.2, Appendix Section C.3 and Appendix Section C.4. Being
straightforward though non-obvious calculations, they do not deserve the status of propositions
and thus come mainly without any further explanatory comments.
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C.1.2.1 Auxiliary Calculations for Dotted-Primed/Unprimed Terms

Auxiliary Calculation C.1.4 ((C.36) in Lemma C.2.1)

{
− d

d|~p |
[
|~p |~p · ~q j0,3(k±r)

]
+ |~p |2~q · grad~p j0,3(k±r)

− d
d|~q |

[
|~q |~p · ~q j0,3(k±r)

]
+ |~q |2~p · grad~q j0,3(k±r)

}
=

= ∓ 1
2r2

[
1 + r

2
d

dr

]
j0,1(k±r)± (|~p |2 + |~q |2)

[
1 + r

2
d

dr

]
j0,3(k±r)

∓ (|~p |2 − |~q |2)2

2 r2
[
1 + r

2
d

dr

]
j0,5(k±r) (C.21)

Proof.

− d
d|~p |

[
|~p |~p · ~q j0,3(k±r)

]
+ |~p |2~q · grad~p j0,3(k±r) =

= ∓1
2
(
k2
± − |~p |2 − |~q |2

)
j0,3(k±r)

∓ |~p | d
d|~p |

(
1
2
(
k2
± − |~p |2 − |~q |2

)
j0,3(k±r)

)
+ |~p |2~q · grad~p j0,3(k±r)

(4.26)= ∓ 1
2r2 j0,1(k±r)±

|~p |2 + |~q |2

2 j0,3(k±r)∓
1

2r2 |~p |
d

d|~p | j0,1(k±r)

± |~p |2j0,3(k±r)±
|~p |2 + |~q |2

2 |~p | d
d|~p | j0,3(k±r) + |~p |2~q · grad~p j0,3(k±r)

(C.2c)=
(C.2d)
∓ 1

2r2 j0,1(k±r)±
|~p |2 + |~q |2

2 j0,3(k±r)

∓ 1
2r2

(
r

2
d

dr j0,1(k±r) + (|~p |2 − |~q |2)r2
[
1 + r

2
d

dr

]
j0,3(k±r)

)
± |~p |2j0,3(k±r)±

|~p |2 + |~q |2

2

(
r

2
d

dr j0,3(k±r) + (|~p |2 − |~q |2)r2
[
1 + r

2
d

dr

]
j0,5(k±r)

)
± |~p |2

[
r

2
d

dr j0,3(k±r)− (|~p |2 − |~q |2)r2
[
1 + r

2
d

dr

]
j0,5(k±r)

]
= ∓ 1

2r2

[
1 + r

2
d

dr

]
j0,1(k±r)± (|~p |2 + |~q |2)

[
1 + r

2
d

dr

]
j0,3(k±r)

∓ (|~p |2 − |~q |2)2

2 r2
[
1 + r

2
d

dr

]
j0,5(k±r) (C.22)

− d
d|~q |

[
|~q |~p · ~q j0,3(k±r)

]
+ |~q |2~p · grad~q j0,3(k±r) =

= ∓1
2
(
k2
± − |~p |2 − |~q |2

)
j0,3(k±r)

∓ |~q | d
d|~q |

(
1
2
(
k2
± − |~p |2 − |~q |2

)
j0,3(k±r)

)
+ |~q |2~p · grad~q j0,3(k±r)

(4.26)= ∓ 1
2r2 j0,1(k±r)±

|~p |2 + |~q |2

2 j0,3(k±r)∓
1

2r2 |~q |
d

d|~q | j0,1(k±r)

± |~q |2j0,3(k±r)±
|~p |2 + |~q |2

2 |~q | d
d|~q | j0,3(k±r) + |~q |2~p · grad~q j0,3(k±r)
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(C.2c)=
(C.2d)
∓ 1

2r2 j0,1(k±r)±
|~p |2 + |~q |2

2 j0,3(k±r)

∓ 1
2r2

(
r

2
d

dr j0,1(k±r)− (|~p |2 − |~q |2)r2
[
1 + r

2
d

dr

]
j0,3(k±r)

)
± |~q |2j0,3(k±r)±

|~p |2 + |~q |2

2

(
r

2
d

dr j0,3(k±r)− (|~p |2 − |~q |2)r2
[
1 + r

2
d

dr

]
j0,5(k±r)

)
± |~q |2

[
r

2
d

dr j0,3(k±r) + (|~p |2 − |~q |2)r2
[
1 + r

2
d

dr

]
j0,5(k±r)

]
= ∓ 1

2r2

[
1 + r

2
d

dr

]
j0,1(k±r)± (|~p |2 + |~q |2)

[
1 + r

2
d

dr

]
j0,3(k±r)

∓ (|~p |2 − |~q |2)2

2 r2
[
1 + r

2
d

dr

]
j0,5(k±r) (C.23)

This concludes the proof.

C.1.2.2 Auxiliary Calculations for Double-Dotted Terms

Auxiliary Calculation C.1.5 ((C.44) in Lemma C.3.1)

(
~p · grad~p

)(
~q · grad~q

)
j0,1(k±r) =

[
r

2
d

dr

]2
j0,1(k±r)− (|~p |2 + |~q |2)r2

[
1 + r

2
d

dr

]
j0,3(k±r)

− (|~p |2 − |~q |2)2r4
[
2 + r

2
d

dr

][
1 + r

2
d

dr

]
j0,5(k±r) (C.24)

Proof. To show the claimed relation we first insert (C.2b) for the gradient with respect to ~q and
thus obtain(

~p · grad~p
)(
~q · grad~q

)
j0,1(k±r) =

(C.2b)=
(
~p · grad~p

)(r
2

d
dr j0,1(k±r)− (|~p |2 − |~q |2)r2

[
1 + r

2
d

dr

]
j0,3(k±r)

)
Carrying out the gradient with respect to ~p results in

· · · = r

2
d

dr ~p · grad~p j0,1(k±r)− 2|~p |2r2
[
1 + r

2
d

dr

]
j0,3(k±r)

− (|~p |2 − |~q |2)r2
[
1 + r

2
d

dr

]
~p · grad~p j0,3(k±r)

Using (C.2b) for a second time turns the expression into the form

. . .
(C.2b)=
[
r

2
d

dr

]2
j0,1(k±r) + (|~p |2 − |~q |2)

[
r

2
d

dr

][
r2 + r3

2
d

dr

]
j0,3(k±r)

− 2|~p |2r2
[
1 + r

2
d

dr

]
j0,3(k±r)− (|~p |2 − |~q |2)r2

[[
1 + r

2
d

dr

]
r

2
d

dr j0,3(k±r)

+ (|~p |2 − |~q |2)
[
1 + r

2
d

dr

][
r2 + r3

2
d

dr

]
j0,5(k±r)

]
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By collecting terms we finally end up with

· · · =
[
r

2
d

dr

]2
j0,1(k±r)− (|~p |2 + |~q |2)r2

[
1 + r

2
d

dr

]
j0,3(k±r)

− (|~p |2 − |~q |2)2r4
[
2 + r

2
d

dr

][
1 + r

2
d

dr

]
j0,5(k±r)

This concludes the proof.

C.1.2.3 Auxiliary Calculations for Asterisked Terms

For the position space integration of asterisked terms, i. e. terms where two vector spherical
harmonics are contracted with each other1, calculations become rather lengthy. Especially in the
cases ~Ψlm(θp, ϕp)·~Ψl′m′(θq, ϕq) and ~Φlm(θp, ϕp)·~Φl′m′(θq, ϕq) the necessity to evaluate complicated
derivatives arises in the course of the calculations.

Auxiliary Calculation C.1.6 (Integrand of ~Ylm · ~Ψl′m′ in (C.54) in Lemma C.4.1)

d
d|~q |

[
(~p · ~q )|~q |j0,1(k±r)

]
− |~q |2~p · grad~q j0,1(k±r) =

= ± 1
2r2

[
1 + r

2
d

dr

]
j0,−1(k±r)∓ (|~p |2 + |~q |2)

[
1 + r

2
d

dr

]
j0,1(k±r)

± (|~p |2 − |~q |2)2

2 r2
[
1 + r

2
d

dr

]
j0,3(k±r) (C.25)

Proof.

d
d|~q |

[
(~p · ~q )|~q |j0,1(k±r)

]
− |~q |2~p · grad~q j0,1(k±r) =

= (~p · ~q )j0,1(k±r) + |~q | d
d|~q |

[
(~p · ~q )j0,1(k±r)

]
− |~q |2~p · grad~q j0,1(k±r)

= ±
k2
± − (|~p |2 + |~q |2)

2 j0,1(k±r)

+ |~q | d
d|~q |

[
±
k2
± − (|~p |2 + |~q |2)

2 j0,1(k±r)
]
− |~q |2~p · grad~q j0,1(k±r)

(4.26)= ± 1
2r2 j0,−1(k±r)∓

|~p |2 + |~q |2

2 j0,1(k±r)

± |~q | d
d|~q |

[
1

2r2 j0,−11(k±r)−
|~p |2 + |~q |2

2 j0,1(k±r)
]
− |~q |2~p · grad~q j0,1(k±r)

= ± 1
2r2 j0,−11(k±r)∓

|~p |2 + |~q |2

2 j0,1(k±r)±
1

2r2 |~q |
d

d|~q | j0,−11(k±r)

∓ |~q |2j0,1(k±r)−
|~p |2 + |~q |2

2 |~q | d
d|~q | j0,1(k±r)− |~q |2~p · grad~q j0,1(k±r)

(C.2c)=
(C.2d)
± 1

2r2 j0,−1(k±r)∓
|~p |2 + |~q |2

2 j0,1(k±r)

1For the definition of asterisked terms, recall Terminology 4.1.7.
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± 1
2r2

[
r

2
d

dr j0,−1(k±r)− (|~p |2 − |~q |2)r2
[
1 + r

2
d

dr

]
j0,1(k±r)

]
∓ |~q |2j0,1(k±r)

∓ |~p |
2 + |~q |2

2

[
r

2
d

dr j0,1(k±r)− (|~p |2 − |~q |2)r2
[
1 + r

2
d

dr

]
j0,3(k±r)

]
− |~q |2

[
± r

2
d

dr j0,1(k±r)± (|~p |2 − |~q |2)r2
[
1 + r

2
d

dr

]
j0,3(k±r)

]

= ± 1
2r2

[
1 + r

2
d

dr

]
j0,−1(k±r)∓ (|~p |2 + |~q |2)

[
1 + r

2
d

dr

]
j0,1(k±r)

± (|~p |2 − |~q |2)2

2 r2
[
1 + r

2
d

dr

]
j0,3(k±r) (C.26)

This concludes the proof.

Auxiliary Calculation C.1.7 (Integrand of ~Ψlm · ~Ψl′m′ in (C.56) in Lemma C.4.1)

d
d|~q |

[
|~q | d

d|~p |

[
|~p |(~p · ~q )j0,n(k±r)

]]
− |~p |2 d

d|~q |

[
|~q |~q · grad~p j0,n(k±r)

]
− |~q |2 d

d|~p |

[
|~p |~p · grad~q j0,n(k±r)

]
+ |~p |2|~q |2div~p grad~q j0,n(k±r) =

= ±
{

1
2r2

[
1 + r

2
d

dr

]2
j0,n−2(k±r)− (|~p |2 + |~q |2)

[
2 + 3r

4
d

dr

][
1 + r

2
d

dr

]
j0,n(k±r)

+ (|~p |2 − |~q |2)2r2

[
1 + 2(|~p |4 + |~q |4) + (|~p |2 + |~q |2)2

2(|~p |2 − |~q |2)2

[
1 + r

2
d

dr

]]
×

×
[
1 + r

2
d

dr

]
j0,n+2(k±r)

− (|~p |2 + |~q |2)(|~p |2 − |~q |2)2

2 r4
[
2 + r

2
d

dr

][
1 + r

2
d

dr

]
j0,n+4(k±r)

}
(C.27)

Proof.

d
d|~q |

[
|~q | d

d|~p |

[
|~p |(~p · ~q )j0,n(k±r)

]]
− |~p |2 d

d|~q |

[
|~q |~q · grad~p j0,n(k±r)

]
− |~q |2 d

d|~p |

[
|~p |~p · grad~q j0,n(k±r)

]
+ |~p |2|~q |2div~p grad~q j0,n(k±r) =

= (~p · ~q )j0,n(k±r) + |~q | d
d|~q |

[
(~p · ~q )j0,n(k±r)

]
+ |~p | d

d|~p |

[
(~p · ~q )j0,n(k±r)

]
+ |~q | d

d|~q | |~p |
d

d|~p |

[
(~p · ~q )j0,n(k±r)

]
− |~p |2~q · grad~p j0,n(k±r)− |~p |2|~q |

d
d|~q |

[
~q · grad~p j0,n(k±r)

]
− |~q |2~p · grad~q j0,n(k±r)− |~q |2|~p |

d
d|~p |

[
~p · grad~q j0,n(k±r)

]
+ |~p |2|~q |2div~p grad~q j0,n(k±r) (C.28)
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To proceed, we make use of (C.2b) in order to rewrite the scalar products of gradients with ~p
and ~q, respectively. Furthermore, by expressing factors ~p · ~q in terms of k± using (C.4) and by
inserting (C.3a) for div~p grad~q j0,n(k±r) we find

· · · = ±
[

1
2r2 j0,n−2(k±r)−

|~p |2 + |~q |2

2 j0,n(k±r)
]

± |~q | d
d|~q |

[
1

2r2 j0,n−2(k±r)−
|~p |2 + |~q |2

2 j0,n(k±r)
]

± |~p | d
d|~p |

[
1

2r2 j0,n−2(k±r)−
|~p |2 + |~q |2

2 j0,n(k±r)
]

± |~q | d
d|~q | |~p |

d
d|~p |

[
1

2r2 j0,n−2(k±r)−
|~p |2 + |~q |2

2 j0,n(k±r)
]

∓ |~p |2
[
r

2
d

dr j0,n(k±r)− (|~p |2 − |~q |2)r2
[
1 + r

2
d

dr

]
j0,n+2(k±r)

]
∓ |~p |2|~q | d

d|~q |

[
r

2
d

dr j0,n(k±r)− (|~p |2 − |~q |2)r2
[
1 + r

2
d

dr

]
j0,n+2(k±r)

]
∓ |~q |2

[
r

2
d

dr j0,n(k±r) + (|~p |2 − |~q |2)r2
[
1 + r

2
d

dr

]
j0,n+2(k±r)

]
∓ |~q |2|~p | d

d|~p |

[
r

2
d

dr j0,n(k±r) + (|~p |2 − |~q |2)r2
[
1 + r

2
d

dr

]
j0,n+2(k±r)

]
± 4|~p |2|~q |2r2

[
3
2 + r

2
d

dr

][
1 + r

2
d

dr

]
j0,n+2(k±r)

Next, we carry out derivatives with respect to |~p | and |~q | which results in

· · · = ±
[

1
2r2 j0,n−2(k±r)−

|~p |2 + |~q |2

2 j0,n(k±r)
]

±
[

1
2r2 |~q |

dj0,n−2(k±r)
d|~q | − |~q |2j0,n(k±r)−

|~p |2 + |~q |2

2 |~q |dj0,n(k±r)
d|~q |

]
±
[

1
2r2 |~p |

dj0,n−2(k±r)
d|~p | − |~p |2j0,n(k±r)−

|~p |2 + |~q |2

2 |~p |dj0,n(k±r)
d|~p |

]
±
[

1
2r2 |~q |

d
d|~q | |~p |

d
d|~p | j0,n−2(k±r)− |~p |2|~q |

dj0,n(k±r)
d|~q |

− |~q |2|~p |dj0,n(k±r)
d|~p | − |~p |

2 + |~q |2

2 |~q | d
d|~q | |~p |

d
d|~p | j0,n(k±r)

]
∓ |~p |2

[
r

2
d

dr j0,n(k±r)− (|~p |2 − |~q |2)r2
[
1 + r

2
d

dr

]
j0,n+2(k±r)

]
∓ |~p |2

[
r

2
d

dr |~q |
dj0,n(k±r)

d|~q | + 2|~q |2r2
[
1 + r

2
d

dr

]
j0,n+2(k±r)

− (|~p |2 − |~q |2)r2
[
1 + r

2
d

dr

]
|~q |dj0,n+2(k±r)

d|~q |

]
∓ |~q |2

[
r

2
d

dr j0,n(k±r) + (|~p |2 − |~q |2)r2
[
1 + r

2
d

dr

]
j0,n+2(k±r)

]
∓ |~q |2

[
r

2
d

dr |~p |
dj0,n(k±r)

d|~p | + 2|~p |2r2
[
1 + r

2
d

dr

]
j0,n+2(k±r)

+ (|~p |2 − |~q |2)r2
[
1 + r

2
d

dr

]
|~p |dj0,n+2(k±r)

d|~p |

]
± 4|~p |2|~q |2r2

[
3
2 + r

2
d

dr

][
1 + r

2
d

dr

]
j0,n+2(k±r)
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Due to the structural similarity of the derivatives of j0,n(k±r) with respect to |~p | and |~q | (see
(C.2d)), it is advantageous to group terms such that there are sums and differences of derivatives
of j0,n(k±r) with respect to |~p | and |~q |. In this way, we find

· · · = ±
[

1
2r2 j0,n−2(k±r)− 3 |~p |

2 + |~q |2

2 j0,n(k±r)
]

± 1
2r2

[
|~q |dj0,n−2(k±r)

d|~q | + |~p |dj0,n−2(k±r)
d|~p |

]
∓ |~p |

2 + |~q |2

2

[
|~q |dj0,n(k±r)

d|~q | + |~p |dj0,n(k±r)
d|~p |

]
± 1

2r2 |~q |
d

d|~q | |~p |
d

d|~p | j0,n−2(k±r)∓
|~p |2 + |~q |2

2 |~q | d
d|~q | |~p |

d
d|~p | j0,n(k±r)

∓
[
(|~p |2 + |~q |2)r2

d
dr j0,n(k±r)− (|~p |2 − |~q |2)2r2

[
1 + r

2
d

dr

]
j0,n+2(k±r)

]
∓
[
1 + r

2
d

dr

][
|~p |2|~q |dj0,n(k±r)

d|~q | + |~q |2|~p |dj0,n(k±r)
d|~p |

]
± (|~p |2 − |~q |2)r2

[
1 + r

2
d

dr

][
|~p |2|~q |dj0,n+2(k±r)

d|~q | − |~q |2|~p |dj0,n+2(k±r)
d|~p |

]
± 4|~p |2|~q |2r2

[
1
2 + r

2
d

dr

][
1 + r

2
d

dr

]
j0,n+2(k±r)

Now we make use of the explicit formulas (C.2d) and (C.3c) which turn the expression into the
following form

· · · = ±
[

1
2r2 j0,n−2(k±r)− 3 |~p |

2 + |~q |2

2 j0,n(k±r)
]

± 1
2r2

[
r

d
dr

]
j0,n−2(k±r)∓

|~p |2 + |~q |2

2

[
r

d
dr

]
j0,n(k±r)

± 1
2r2

[[
r

2
d

dr

]2
j0,n−2(k±r)− (|~p |2 + |~q |2)r2

[
1 + r

2
d

dr

]
j0,n(k±r)

− (|~p |2 − |~q |2)2r4
[
2 + r

2
d

dr

][
1 + r

2
d

dr

]
j0,n+2(k±r)

]

∓ |~p |
2 + |~q |2

2

[[
r

2
d

dr

]2
j0,n(k±r)− (|~p |2 + |~q |2)r2

[
1 + r

2
d

dr

]
j0,n+2(k±r)

− (|~p |2 − |~q |2)2r4
[
2 + r

2
d

dr

][
1 + r

2
d

dr

]
j0,n+4(k±r)

]

∓
[
(|~p |2 + |~q |2)r2

d
dr j0,n(k±r)− (|~p |2 − |~q |2)2r2

[
1 + r

2
d

dr

]
j0,n+2(k±r)

]
∓
[
1 + r

2
d

dr

][
(|~p |2 + |~q |2)r2

d
dr j0,n(k±r)− (|~p |2 − |~q |2)2r2

[
1 + r

2
d

dr

]
j0,n+2(k±r)

]
± (|~p |2 − |~q |2)r2

[
1 + r

2
d

dr

][
(|~p |2 − |~q |2)r2

d
dr j0,n+2(k±r)

− r2(|~p |4 − |~q |4)
[
1 + r

2
d

dr

]
j0,n+4(k±r)

]
± 4|~p |2|~q |2r2

[
1
2 + r

2
d

dr

][
1 + r

2
d

dr

]
j0,n+2(k±r)
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By sorting and grouping terms according to their indices we finally end up with

· · · = ±
{

1
2r2

[
1 + r

2
d

dr

]2
j0,n−2(k±r)− (|~p |2 + |~q |2)

[
2 + 3r

4
d

dr

][
1 + r

2
d

dr

]
j0,n(k±r)

+ (|~p |2 − |~q |2)2r2

[
1 + 2(|~p |4 + |~q |4) + (|~p |2 + |~q |2)2

2(|~p |2 − |~q |2)2

[
1 + r

2
d

dr

]]
×

×
[
1 + r

2
d

dr

]
j0,n+2(k±r)

− (|~p |2 + |~q |2)(|~p |2 − |~q |2)2

2 r4
[
2 + r

2
d

dr

][
1 + r

2
d

dr

]
j0,n+4(k±r)

}
(C.29)

This concludes the proof.

Auxiliary Calculation C.1.8 (Integrand of ~Φlm · ~Φl′m′ in (C.58) in Lemma C.4.1)

div~p
[
h(|~p |) grad~q

(
k(|~q |)(~p · ~q )j0,1(k±r)

)]
− ~q · grad~p

[
h(|~p |)

(
~p · grad~q

(
k(|~q |)j0,1(k±r)

))]
= h′(|~p |)|~p |k(|~q |)j0,1(k±r)

+ h(|~p |)k(|~q |)
[[

3 + r

2
d

dr

]
j0,1(k±r) + (|~p |2 − |~q |2)r2

[
1 + r

2
d

dr

]
j0,3(k±r)

]
(C.30)

Proof.

div~p
[
h(|~p |) grad~q

(
k(|~q |)(~p · ~q )j0,1(k±r)

)]
− ~q · grad~p

[
h(|~p |)

(
~p · grad~q

(
k(|~q |)j0,1(k±r)

))]
=

= h′(|~p |)
|~p |

~p · grad~q
(
k(|~q |)(~p · ~q )j0,1(k±r)

)
+ h(|~p |)div~p grad~q

(
k(|~q |)(~p · ~q )j0,1(k±r)

)
− h′(|~p |)
|~p |

(~q · ~p )
(
~p · grad~q

(
k(|~q |)j0,1(k±r)

))
− h(|~p |)~q · grad~p

(
~p · grad~q

(
k(|~q |)j0,1(k±r)

))
Combining the first and third term as well as the second and fourth one we find

· · · = h′(|~p |)
|~p |

[
~p · grad~q

(
k(|~q |)(~p · ~q )j0,1(k±r)

)
− (~q · ~p )

(
~p · grad~q

(
k(|~q |)j0,1(k±r)

))]
+ h(|~p |)

[
div~p

(
k(|~q |)j0,1(k±r)~p+ (~p · ~q ) grad~q

(
k(|~q |)j0,1(k±r)

))
− ~q ·

(
grad~q

(
k(|~q |)j0,1(k±r)

)
+ ~pdiv~p grad~q

(
k(|~q |)j0,1(k±r)

))]
Simplifying term proportional to h′(|~p |) and expanding the term proportional to h(|~p |) yields

= h′(|~p |)
|~p |

[
k(|~q |)j0,1(k±r)~p · grad~q (~p · ~q )

]
+ h(|~p |)

[
div~p

(
k(|~q |)j0,1(k±r)~p

)
+
(

grad~p (~p · ~q )
)
· grad~q

(
k(|~q |)j0,1(k±r)

)
+ (~p · ~q )div~p grad~q

(
k(|~q |)j0,1(k±r)

)
− ~q · grad~q

(
k(|~q |)j0,1(k±r)

)
− (~p · ~q )div~p grad~q

(
k(|~q |)j0,1(k±r)

)]
By using grad~p (~p · ~q ) = ~q and grad~q (~p · ~q ) = ~p and cancelling terms, the expression reduces to

· · · = h′(|~p |)|~p |k(|~q |)j0,1(k±r) + h(|~p |)div~p
(
k(|~q |)j0,1(k±r)~p

)
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Pulling k(|~q |) outside the second term, computing the divergence and using (C.2a), we finally end
up with

· · · = h′(|~p |)|~p |k(|~q |)j0,1(k±r) + h(|~p |)k(|~q |)
(

3j0,n(k±r) + ~p · grad~p j0,1(k±r)
)

(C.2a)= h′(|~p |)|~p |k(|~q |)j0,1(k±r)

+ h(|~p |)k(|~q |)
[[

3 + r

2
d

dr

]
j0,1(k±r) + (|~p |2 − |~q |2)r2

[
1 + r

2
d

dr

]
j0,3(k±r)

]
(C.31)

This concludes the proof.

C.2 Evaluation of Dotted Terms

The computation of the position space angular integrals (4.27a) and (4.27b) in Proposition 4.2.4 (Po-
sition Space Angular Integration of Υlm, Υlm|l′m′ ,

∗
Υlm|l′m′) requires to evaluate the integrals∫

S2

dΩξ ~ξ · ~Ylm(θp, ϕp)e−i~p·~ξ where ~Ylm ∈ {~Ylm, ~Ψlm, ~Φlm}

appearing in the entries of the integral of Υlm as well as the integrals∫
S2

dΩξ ~ξ · ~Ylm(θp, ϕp)e−i(~p±~q )·~ξ and
∫
S2

dΩξ ~ξ · ~Yl′m′(θq, ϕq)e−i(~p±~q )·~ξ

which correspond to the dotted-unprimed and dotted-primed terms of Υlm|l′m′ , respectively. All
these integrals can be computed systematically using the following lemma.

Lemma C.2.1 (Angular Integration of Dotted Terms)

For any functions h, k ∈ C1(R+
0 ,R) and for ~Yl(′)m(′) ∈ {~Yl(′)m(′) , ~Φl(′)m(′) , ~Ψl(′)m(′)} the relation

∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
∫
S2

dΩξ

{
~ξ · ~Ylm(θp, ϕp)
~ξ · ~Yl′m′(θq, ϕq)

}
e−i(~p±~q )·~ξ =

= 4πi
∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
5∑

n=1



Ylm
|~p |

ṁ
(n)
~Y
j0,n(k+r)

ṅ
(n)
~Y
j0,n(k−r)

Yl′m′
|~q |


˙́m

(n)
~Y′
j0,n(k+r)

˙́n
(n)
~Y′
j0,n(k−r)


(C.32)

holds, where the differential operators ṁ(n)
~Y

, ṅ(n)
~Y

, ˙́m
(n)
~Y′

and ˙́n
(n)
~Y′

with respect to r are entries of
operator-valued, dimensionless (3× 1)-matrices ṁ(n), ṅ(n), ˙́m(n) and ˙́n (n) which are explicitly
given by

{
ṁ(1)

ṅ(1)

}
=

 1[
1 + r

2
d

dr
]

0

[r2 d
dr

]
(C.32a)
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{
ṁ(3)

ṅ(3)

}
=


(|~p |2 − |~q |2)r2

−2(|~p |2 + |~q |2)r2[1 + r
2

d
dr
]

0

[1 + r

2
d

dr

]
(C.32b)

{
ṁ(5)

ṅ(5)

}
= (|~p |2 − |~q |2)2r4


0

1

0

[2 + r

2
d

dr

][
1 + r

2
d

dr

]
(C.32c)

{
˙́m(1)

˙́n (1)

}
=
{

+1

−1

} 1[
1 + r

2
d

dr
]

0

[r2 d
dr

]
(C.32d)

{
˙́m(3)

˙́n (3)

}
=
{
−1

+1

}
(|~p |2 − |~q |2)r2

2(|~p |2 + |~q |2)r2[1 + r
2

d
dr
]

0

[1 + r

2
d

dr

]
(C.32e)

{
˙́m(5)

˙́n (5)

}
=
{

+1

−1

}
(|~p |2 − |~q |2)2r4


0

1

0

[2 + r

2
d

dr

][
1 + r

2
d

dr

]
(C.32f)

Proof. We start by rewriting the scalar products ~ξ · ~Ylm(θp, ϕp) and ~ξ · ~Yl′m′(θq, ϕq) as gradients
of the exponential factor with respect to ~p and ~q, respectively, and subsequently compute the
angular integral in position space using Proposition C.1.1. In this way, we obtain∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
∫
S2

dΩξ

{
~ξ · ~Ylm(θp, ϕp)
~ξ · ~Yl′m′(θq, ϕq)

}
e−i(~p±~q )·~ξ =

=
∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
∫
S2

dΩξ

{
i~Ylm(θp, ϕp) · grad~p
±i~Yl′m′(θq, ϕq) · grad~q

}
e−i(~p±~q )·~ξ

(C.1)= 4πi
∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
{

~Ylm(θp, ϕp) · grad~p
±~Yl′m′(θq, ϕq) · grad~q

}
j0,1(k±r)

Computing the gradients of j0,1(k±r) with respect to ~p and ~q using (C.2a) and (C.2a),
respectively, turns the expression into the form

. . .
(C.2a)=
(C.2a)

8πi
∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
{
~Ylm(θp, ϕp) · (~p± ~q )
~Yl′m′(θq, ϕq) · (~p± ~q )

}
r2
[
1 + r

2
d

dr

]
j0,3(k±r) (C.33)

To proceed, we have to consider the three possible choices for ~Yl(′)m(′) separately.

(1) ~Ylm = ~Ylm

In the first case, namely for the radial spherical harmonic ~Yl(′)m(′) = ~Yl(′)m(′) , we insert the
definitions ~Ylm

(4.4a)= ~p
|~p |Ylm and ~Yl′m′

(4.4a)= ~q
|~q |Yl′m′ into (C.33), make use of the relations (C.4a),
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(C.4b) and thus obtain∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
∫
S2

dΩξ

{
~ξ · ~Ylm(θp, ϕp)
~ξ · ~Yl′m′(θq, ϕq)

}
e−i(~p±~q )·~ξ =

(C.33)=
(C.4)

4πi
∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)r2
[
1 + r

2
d

dr

]


Ylm
|~p |

[
r−2j0,1(k±r)

+(|~p |2 − |~q |2)j0,3(k±r)
]

±Yl′m′|~q |
[
r−2j0,1(k±r)

−(|~p |2 − |~q |2)j0,3(k±r)
]



= 4πi
∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)



Ylm
|~p |

[
r
2

d
dr j0,1(k±r)

+(|~p |2 − |~q |2)r2[1 + r
2

d
dr
]
j0,3(k±r)

]
±Yl′m′|~q |

[
r
2

d
dr j0,1(k±r)

−(|~p |2 − |~q |2)r2[1 + r
2

d
dr
]
j0,3(k±r)

]



= 4πi
∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
3∑

n=1



Ylm
|~p |

ṁ
(n)
~Y
j0,n(k+r)

ṅ
(n)
~Y
j0,n(k−r)

Yl′m′
|~q |


˙́m

(n)
~Y ′
j0,n(k+r)

˙́n
(n)
~Y ′
j0,n(k−r)


(C.34)

Here ṁ
(n)
~Y

, ṅ(n)
~Y

and ˙́m
(n)
~Y ′

, ˙́n
(n)
~Y ′

are differential operators with respect to r, explicitly given byṁ
(1)
~Y

ṅ
(1)
~Y

 = r

2
d

dr (C.35a)

ṁ
(3)
~Y

ṅ
(3)
~Y

 = (|~p |2 − |~q |2)r2
[
1 + r

2
d

dr

]
(C.35b)


˙́m

(1)
~Y ′

˙́n
(1)
~Y ′

 =
{

+1

−1

}
r

2
d

dr (C.35c)


˙́m

(3)
~Y ′

˙́n
(3)
~Y ′

 =
{
−1

+1

}
(|~p |2 − |~q |2)r2

[
1 + r

2
d

dr

]
(C.35d)

Here we have implicitly chosen the convention that operators m always act on j0,n(k+r) while
operators n act on j0,n(k−r). Additionally, dotted-unprimed terms always come with Ylm
while dotted-primed terms come with Yl′m′ .

(2) ~Ylm = ~Ψlm

In the second case, namely for the first tangential vector spherical harmonic ~Yl(′)m(′) = ~Ψl(′)m(′) ,
we again insert the definitions ~Ψlm

(4.4b)= |~p | grad~p Ylm and ~Ψl′m′
(4.4b)= |~q | grad~q Yl′m′ into (C.33) and

make use of the fact that the parts ~p · ~Ψlm and ~q · ~Ψl′m′ vanish for reasons of orthogonality.
We are thus left with∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
∫
S2

dΩξ

{
~ξ · ~Ψlm(θp, ϕp)
~ξ · ~Ψl′m′(θq, ϕq)

}
e−i(~p±~q )·~ξ =

(C.33)= 8πi
∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
{
±|~p | grad~p Ylm · ~q

|~q | grad~q Yl′m′ · ~p

}
r2
[
1 + r

2
d

dr

]
j0,3(k±r)
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To get rid of the derivatives of spherical harmonics, we integrate by parts with respect to ~p
and ~q, respectively, which results in

· · · = 8πir2
[
1 + r

2
d

dr

] ∫
R3

d3~p

∫
R3

d3~q



±k(|~q |)
[
div~p

(
h(|~p |)|~p |Ylmj0,3(k±r)~q

)
−Ylmdiv~p

(
h(|~p |)|~p |j0,3(k±r)~q

)]
h(|~p |)

[
div~q

(
k(|~q |)|~q |Yl′m′j0,3(k±r)~p

)
−Yl′m′div~q

(
k(|~q |)|~q |j0,3(k±r)~p

)]


Making use of the divergence theorem to rewrite the first term in both cases, and carrying out
the derivative in the second term results in

· · · = 8πir2
[
1 + r

2
d

dr

]
±
∫
R3

d3~q k(|~q |) lim
|~p |→∞

[
h(|~p |)|~p |2

∫
S2

dΩp Ylmj0,3(k±r)(~p · ~q )
]

∫
R3

d3~p h(|~p |) lim
|~q |→∞

[
k(|~q |)|~q |2

∫
S2

dΩq Yl′m′j0,3(k±r)(~p · ~q )
]


− 8πir2
[
1 + r

2
d

dr

] ∫
R3

d3~p

∫
R3

d3~q



±k(|~q |)Ylm ·
[

(h(|~p |)|~p |)′
|~p | (~p · ~q )j0,3(k±r)

+h(|~p |)|~p |~q · grad~p j0,3(k±r)
]

h(|~p |)Yl′m′
[

(k(|~q |)|~q |)′
|~q | (~p · ~q )j0,3(k±r)

+k(|~q |)|~q |~p · grad~q j0,3(k±r)
]


Integrating the terms which contain derivatives of h(|~p |) and k(|~q |) with respect to |~p | and |~q |,
respectively, and taking into account that the boundary terms at |~p | = 0 and |~q | = 0 vanish as
h, k ∈ C1(R+

0 ,R), we find

· · · = 8πir2
[
1 + r

2
d

dr

]
±
∫
R3

d3~q k(|~q |) lim
|~p |→∞

[
h(|~p |)|~p |2

∫
S2

dΩp Ylmj0,3(k±r)(~p · ~q )
]

∫
R3

d3~p h(|~p |) lim
|~q |→∞

[
k(|~q |)|~q |2

∫
S2

dΩq Yl′m′j0,3(k±r)(~p · ~q )
]


− 8πir2
[
1 + r

2
d

dr

]
±
∫
R3

d3~q k(|~q |) lim
|~p |→∞

[
h(|~p |)|~p |2

∫
S2

dΩp Ylm(~p · ~q )j0,3(k±r)
]

∫
R3

d3~p h(|~p |) lim
|~q |→∞

[
k(|~q |)|~q |2

∫
S2

dΩq Yl′m′(~p · ~q )j0,3(k±r)
]


− 8πir2
[
1 + r

2
d

dr

] ∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)



±Ylm|~p |
[
− d

d|~p |
[
|~p |~p · ~q j0,3(k±r)

]
+|~p |2~q · grad~p j0,3(k±r)

]
Yl′m′
|~q |

[
− d

d|~q |
[
|~q |~p · ~q j0,3(k±r)

]
+|~q |2~p · grad~q j0,3(k±r)

]


Cancelling the first term against the second and making use of Auxiliary Calculation C.1.4 we
finally arrive at

. . .
(C.21)= 4πi

∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
5∑

n=1



Ylm
|~p |

ṁ
(n)
~Ψ
j0,n(k+r)

ṅ
(n)
~Ψ
j0,n(k−r)

Yl′m′
|~q |


˙́m

(n)
~Ψ′
j0,n(k+r)

˙́n
(n)
~Ψ′
j0,n(k−r)


(C.36)
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where ṁ
(1)
~Ψ

ṅ
(1)
~Ψ

 =
[
r

2
d

dr

][
1 + r

2
d

dr

]
(C.37a)

ṁ
(3)
~Ψ

ṅ
(3)
~Ψ

 = −2(|~p |2 + |~q |2)r2
[
1 + r

2
d

dr

]2
(C.37b)

ṁ
(5)
~Ψ

ṅ
(5)
~Ψ

 = (|~p |2 − |~q |2)2r4
[
2 + r

2
d

dr

][
1 + r

2
d

dr

]
(C.37c)


˙́m

(1)
~Ψ′

˙́n
(1)
~Ψ′

 =
{

+1

−1

}[
r

2
d

dr

][
1 + r

2
d

dr

]
(C.37d)


˙́m

(3)
~Ψ′

˙́n
(3)
~Ψ′

 =
{
−1

+1

}
2(|~p |2 + |~q |2)r2

[
1 + r

2
d

dr

]2
(C.37e)


˙́m

(5)
~Ψ′

˙́n
(5)
~Ψ′

 =
{

+1

−1

}
(|~p |2 − |~q |2)2r4

[
2 + r

2
d

dr

][
1 + r

2
d

dr

]
(C.37f)

(3) ~Ylm = ~Φlm
In the third case, namely for the second tangential vector spherical harmonic ~Yl(′)m(′) = ~Φl(′)m(′) ,
we once more insert the definitions ~Ψlm = ~p×grad~p Ylm and ~Ψl′m′ = ~q×grad~q Yl′m′ into (C.33)
and make use of the fact that the parts ~p · ~Ψlm and ~q · ~Ψl′m′ vanish for orthogonality reasons.
We are thus left with∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
∫
S2

dΩξ

{
~ξ · ~Φlm(θp, ϕp)
~ξ · ~Φl′m′(θq, ϕq)

}
e−i(~p±~q )·~ξ =

(C.33)= 8πi
∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
{
±
(
~p× grad~p Ylm

)
· ~q(

~q × grad~q Yl′m′
)
· ~p

}
r2
[
1 + r

2
d

dr

]
j0,3(k±r)

To get rid of the derivatives of spherical harmonics, we exploit the cyclicity of the triple product
and subsequently integrate by parts with respect to ~p and ~q, respectively, which leaves us with

· · · = 8πir2
[
1 + r

2
d

dr

] ∫
R3

d3~p

∫
R3

d3~q



±k(|~q |)
[
div~p

(
h(|~p |)Ylmj0,3(k±r)(~q × ~p )

)
−Ylmdiv~p

(
h(|~p |)j0,3(k±r)(~q × ~p )

)]
h(|~p |)

[
div~q

(
k(|~q |)Yl′m′j0,3(k±r)(~p× ~q )

)
−Yl′m′div~q

(
k(|~q |)j0,3(k±r)(~p× ~q )

)]


Making use of the divergence theorem to rewrite the first term in both cases and carrying out
the derivative in the second term results in

· · · = 8πir2
[
1 + r

2
d

dr

]
±
∫
R3

d3~q k(|~q |) lim
|~p |→∞

[
h(|~p |)|~p |2

∫
S2

dΩp Ylmj0,3(k±r)(~q × ~p ) · ~p
]

∫
R3

d3~p h(|~p |) lim
|~q |→∞

[
k(|~q |)|~q |2

∫
S2

dΩq Yl′m′j0,3(k±r)(~p× ~q ) · ~q
]

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− 8πir2
[
1 + r

2
d

dr

] ∫
R3

d3~p

∫
R3

d3~q



±Ylm ·
[
h′(|~p |)
|~p | ~p · (~q × ~p )j0,3(k±r)

+h(|~p |)j0,3(k±r)div~p (~q × ~p )

+h(|~p |)(~q × ~p ) · grad~p j0,3(k±r)
]

Yl′m′
[
k′(|~q |)
|~q | ~q · (~p× ~q )j0,3(k±r)

+k(|~q |)j0,3(k±r)div~q (~p× ~q )

+k(|~q |)(~p× ~q ) · grad~q j0,3(k±r)
]


(C.38)

In this expression the boundary terms as well as the terms containing derivatives h′(|~p |) an
k′(|~q |) vanish by exploiting the cyclicity of the triple product and the properties of the cross
product. Recalling that according to (C.2a) and (C.2a) the gradients of j0,3(k±r) with respect
to ~p and ~q are both proportional to (~p± ~q ), also these terms vanish by the same reasoning.
Finally, the terms containing divergences also vanish due to the relation div~p (~q × ~p ) =
(curl~p ~q ) · ~p− ~q · (curl~p ~p ) = ~0 and analogously for the divergence with respect to ~q. Therefore,
the whole expression vanishes identically, which means that ṁ(n)

~Φ
= ṅ

(n)
~Φ

= ˙́m
(n)
~Φ′

= ˙́n
(n)
~Φ′

= 0 for
all n ∈ Z.

This concludes the proof.

From this result which allows to compute the integrals in (4.27b), we can obtain the integrals in
(4.27a) by means of the following corollary.

Corollary C.2.2 (Angular Integration of Simplified Dotted-Unprimed Terms)

For any h ∈ C1(R+
0 ,R) and for vanishing ~q the upper case in (C.32) reduces to∫

R3

d3~p h(|~p |)
∫
S2

dΩξ ~ξ · ~Ylm(θp, ϕp)e−i~p·~ξ = 4πi
∫
R3

d3~p h(|~p |)Ylm(θp, ϕp)
|~p |

k̇
(1)
~Y
j0,1(|~p |r) (C.39)

where k̇
(1)
~Y

are entries of the operator-valued, dimensionless (3× 1)-matrix ˙k(1) given by

k̇(1) =
(
r d

dr 0 0
)T (C.39a)

Proof. Taking the limit |~q | → 0 in the expression
∑5
n=1 ṁ

(n)j0,n(k±r) we find for the first
component

lim
|~q |→0

5∑
n=1

ṁ
(n)
~Y
j0,n(k±r) =

= r

2
d

dr j0,1(|~p |r) + |~p |2r2
[
1 + r

2
d

dr

]
j0,3(|~p |r)

(4.26)= r

2
d

dr j0,1(|~p |r) + r2
[
1 + r

2
d

dr

](
r−2j0,1(|~p |r)

)
= r

d
dr j0,1(|~p |r) =: k̇(1)

~Y
j0,1(|~p |r) (C.40)

For the second component we similarly obtain

lim
|~q |→0

5∑
n=1

ṁ
(n)
~Ψ
j0,n(k±r) =
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=
[
1 + r

2
d

dr

][
r

2
d

dr

]
j0,1(|~p |r)− 2|~p |2r2

[
1 + r

2
d

dr

]2
j0,3(|~p |r)

+ |~p |4r4
[
2 + r

2
d

dr

][
1 + r

2
d

dr

]
j0,5(|~p |r)

(4.26)=
[
1 + r

2
d

dr

][
r

2
d

dr

]
j0,1(|~p |r)− 2r2

[
1 + r

2
d

dr

]2(
r−2j0,1(|~p |r)

)
+ r4

[
2 + r

2
d

dr

][
1 + r

2
d

dr

](
r−4j0,1(|~p |r)

)
=
[[

1 + r

2
d

dr

][
r

2
d

dr

]
− 2r2

[
1 + r

2
d

dr

]
1
2r

d
dr −

[
r

2
d

dr

][
1− r

2
d

dr

]]
j0,1(|~p |r)

=
[

2
[
r

2
d

dr

]2
− r d

dr −
r3

2
d

dr

[
1
r

d
dr

]]
j0,1(|~p |r) = 0 (C.41)

which means that k̇(1)
~Ψ

= 0. Together with k̇
(1)
~Φ

= 0 we therefore end up with

k̇(1) =
(
r d

dr 0 0
)T (C.42)

which concludes the proof.

C.3 Evaluation of Double-Dotted Terms

The computation of the position space angular integral (4.27b) in Proposition 4.2.4 (Position
Space Angular Integration of Υlm, Υlm|l′m′ ,

∗
Υlm|l′m′) requires to evaluate integrals of the form

∫
S2

dΩξ
(
~ξ · ~Ylm(θp, ϕp)

)(
~ξ · ~Yl′m′(θq, ϕq)

)
e−i(~p±~q )·~ξ with ~Yl(′)m(′) ∈ {~Yl(′)m(′) , ~Φl(′)m(′) , ~Ψl(′)m(′)}

which correspond to the double-dotted terms of Υlm|l′m′ . All these integrals can be computed
systematically using the following lemma.

Lemma C.3.1 (Angular Integration of Double-Dotted Terms)

For any functions h, k ∈ C1(R+
0 ,R) and for ~Yl(′)m(′) ∈ {~Yl(′)m(′) , ~Φl(′)m(′) , ~Ψl(′)m(′)} the relation∫

R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
∫
S2

dΩξ
(
~ξ · ~Ylm(θp, ϕp)

)(
~ξ · ~Yl′m′(θq, ϕq)

)
e−i(~p±~q )·~ξ =

= 4π
∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)Ylm(θp, ϕp)
|~p |

Yl′m′(θq, ϕq)
|~q |

5∑
n=1

m̈
(n)
~Y~Y′

j0,n(k+r)

n̈
(n)
~Y~Y′

j0,n(k−r)
(C.43)

holds, where the sum runs only over odd indices and where m̈
(n)
~Y~Y′

and n̈
(n)
~Y~Y′

are entries of
operator-valued, dimensionless (3× 3)-matrices m̈(n) and n̈(n). The non-vanishing matrices are
explicitly given by
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{
m̈(1)

n̈(1)

}
=
{
−1

+1

} [
r
2

d
dr
]2

l(l + 1)
[
r
2

d
dr
]

0
l′(l′ + 1)

[
r
2

d
dr
]
−l(l + 1)l′(l′ + 1) 0

0 0 0

 (C.43a)

{
m̈(3)

n̈(3)

}
=
{

+1

−1

} (|~p |2 + |~q |2) −l′(l′ + 1)(|~p |2 − |~q |2) 0
l(l + 1)(|~p |2 − |~q |2) 0 0

0 0 0

 r2
[
1 + r

2
d

dr

]
(C.43b)

{
m̈(5)

n̈(5)

}
=
{

+1

−1

}1 0 0
0 0 0
0 0 0

 (|~p |2 − |~q |2)2r4
[
2 + r

2
d

dr

][
1 + r

2
d

dr

]
(C.43c)

Proof. The guiding principle of this proof is to first rewrite factors of ~ξ as gradients of the
exponential factor with respect to ~p and ~q, respectively, as we already did in Lemma C.2.1,
and subsequently to carry out the position space angular integral using Proposition C.1.1.
Afterwards, whenever necessary, we integrate by parts with respect to ~p and ~q in order to
achieve that spherical harmonics appear with an even number of gradients acting on them.

(1) ~Ylm = ~Ylm and ~Yl′m′ ∈ {~Yl′m′ , ~Ψl′m′ , ~Φl′m′}
We start by fixing ~Ylm as the radial vector spherical harmonic ~Ylm = ~Ylm and systematically
consider all possible choices for ~Yl′m′ .

(a) ~Yl′m′ = ~Yl′m′

In the first case we find∫
S2

dΩξ
(
~ξ · ~Ylm(θp, ϕp)

)(
~ξ · ~Yl′m′(θq, ϕq)

)
e−i(~p±~q )·~ξ =

(C.1)= ∓4π
(
~Ylm(θp, ϕp) · grad~p

)(
~Yl′m′(θq, ϕq) · grad~q

)
j0,1(k±r)

Inserting the definition of ~Ylm and observing that the gradient with respect to ~p does not act
on ~Yl′m′(θq, ϕq) gives

· · · = ∓4πYlm
|~p |

Yl′m′

|~q |
(
~p · grad~p

)(
~q · grad~q

)
j0,1(k±r)

By inserting the result from Auxiliary Calculation C.1.5 for the two-fold gradient of j0,1(k±r)
we find ∫

S2

dΩξ
(
~ξ · ~Ylm(θp, ϕp)

)(
~ξ · ~Yl′m′(θq, ϕq)

)
e−i(~p±~q )·~ξ =

(C.24)= 4πYlm
|~p |

Yl′m′

|~q |

5∑
n=1

m̈
(n)
~Y ~Y ′

j0,n(k+r)

n̈
(n)
~Y ~Y ′

j0,n(k−r)
(C.44)

where m̈
(n)
~Y ~Y ′

and m̈
(n)
~Y ~Y ′

are differential operators with respect to r given bym̈
(1)
~Y ~Y ′

n̈
(1)
~Y ~Y ′

 =
{
−1

+1

}[
r

2
d

dr

]2
(C.44a)
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m̈
(3)
~Y ~Y ′

n̈
(3)
~Y ~Y ′

 =
{

+1

−1

}
(|~p |2 + |~q |2)r2

[
1 + r

2
d

dr

]
(C.44b)

m̈
(5)
~Y ~Y ′

n̈
(5)
~Y ~Y ′

 =
{

+1

−1

}
(|~p |2 − |~q |2)2r4

[
2 + r

2
d

dr

][
1 + r

2
d

dr

]
(C.44c)

(b) ~Yl′m′ = ~Ψl′m′

In the second case, namely for ~Yl′m′ = ~Ψl′m′ , we find∫
R3

d3~q k(|~q |)
∫
S2

dΩξ
(
~ξ · ~Ylm(θp, ϕp)

)(
~ξ · ~Ψl′m′(θq, ϕq)

)
e−i(~p±~q )·~ξ =

(C.1)= ∓4πYlm
|~p |

∫
R3

d3~q k(|~q |)|~q |
(

grad~q Yl′m′ · grad~q
)(
~p · grad~p

)
j0,1(k±r)

where we interchanged the two factors
(
~ξ · ~Ylm(θp, ϕp)

)
and

(
~ξ · ~Ψl′m′(θq, ϕq)

)
before rewriting

the factors ~ξ as derivatives of the exponential. Next, in order to arrange that both gradients
with respect to ~q act on the spherical harmonic Yl′m′ , we integrate by parts with respect to ~q
and thus obtain

· · · = ∓4πYlm
|~p |

∫
R3

d3~q

[
div~q

(
~p · grad~p j0,1(k±r)k(|~q |)|~q | grad~q Yl′m′

)
− ~p · grad~p j0,1(k±r)div~q

(
k(|~q |)|~q | grad~q Yl′m′

)]
Rewriting the first term using the divergence theorem and computing the divergence in the
second term results in

· · · = ∓4πYlm
|~p |

lim
|~q |→∞

[
k(|~q |)|~q |2

∫
S2

dΩq ~p · grad~p j0,1(k±r)k(|~q |)~q · grad~q Yl′m′
]

± 4πYlm
|~p |

∫
R3

d3~q ~p · grad~p j0,1(k±r)
[
k′(|~q |)~q · grad~q Yl′m′ + k(|~q |)div~q

(
|~q | grad~q Yl′m′

)]
As a consequence of the fact that grad~q Yl′m′ is tangential to S2, its scalar product with ~q
vanishes. Thus, the boundary term and the first term in the second line both disappear such
that we are left with

· · · = ±4πYlm
|~p |

∫
R3

d3~q k(|~q |)~p · grad~p j0,1(k±r)div~q
(
|~q | grad~q Yl′m′

)
Carrying out the divergence and using div~q grad~q Yl′m′ = ∆~qYl′m′ = −l′(l′ + 1)Yl′m′|~q |2 , we arrive
at

· · · = ±4πYlm
|~p |

∫
R3

d3~q k(|~q |)~p · grad~p j0,1(k±r)
[

1
|~q |
~q · grad~q Yl′m′ − |~q |l′(l′ + 1)Yl′m′

]

In this expression, the first term again vanishes for orthogonality reasons. Evaluating ~p ·
grad~p j0,1(k±r) using (C.2b) we ultimately end up with

· · · = 4π
∫
R3

d3~p k(|~q |)Ylm
|~p |

Yl′m′

|~q |
∑
n=

m̈
(n)
~Y ~Ψ′

j0,n(k+r)

n̈
(n)
~Y ~Ψ′

j0,n(k−r)
(C.45a)
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where the derivative operators are given bym̈
(1)
~Y ~Ψ′

n̈
(1)
~Y ~Ψ′

 =
{
−1

+1

}
l′(l′ + 1)

[
r

2
d

dr

]
(C.45b)

m̈
(3)
~Y ~Ψ′

n̈
(3)
~Y ~Ψ′

 =
{
−1

+1

}
l′(l′ + 1)r2(|~p |2 − |~q |2)

[
1 + r

2
d

dr

]
(C.45c)

(c) ~Yl′m′ = ~Φl′m′
In the third case, namely for ~Yl′m′ = ~Φl′m′ , we find∫

R3

d3~q k(|~q |)
∫
S2

dΩξ
(
~ξ · ~Ylm(θp, ϕp)

)(
~ξ · ~Φl′m′(θq, ϕq)

)
e∓i(~p±~q )·~ξ =

(C.1)= ∓4πYlm
|~p |

∫
R3

d3~q k(|~q |)
[(
~q × grad~q Yl′m′

)
· grad~q

](
~p · grad~p

)
j0,1(k±r)

where we interchanged the two factors
(
~ξ · ~Ylm(θp, ϕp)

)
and

(
~ξ · ~Φl′m′(θq, ϕq)

)
before rewriting

the factors ~ξ as derivatives of the exponential. Next, in order to arrange that both gradients
with respect to ~q act on the spherical harmonic Yl′m′ , we integrate by parts with respect to ~q
and thus obtain

· · · = ∓4πYlm
|~p |

∫
R3

d3~q

[
div~q

(
~p · grad~p j0,1(k±r)k(|~q |)

(
~q × grad~q Yl′m′

))
− ~p · grad~p j0,1(k±r)div~q

(
k(|~q |)

(
~q × grad~q Yl′m′

))]
Rewriting the first term using the divergence theorem and computing the divergence in the
second term results in

· · · = ∓4πYlm
|~p |

lim
|~q |→∞

[
k(|~q |)|~q |

∫
S2

dΩq ~p · grad~p j0,1(k±r)k(|~q |)~q ·
(
~q × grad~q Yl′m′

)]

± 4πYlm
|~p |

∫
R3

d3~q ~p · grad~p j0,1(k±r)
[
k′(|~q |)
|~q |

~q ·
(
~q × grad~q Yl′m′

)
+ k(|~q |)div~q

(
~q × grad~q Yl′m′

)]
By exploiting the cyclicity of the triple product ~q ·

(
~q × grad~q Yl′m′

)
and the properties of the

cross product, both the boundary term as well as the first term in the second line disappear
such that we are left with

· · · = ±4πYlm
|~p |

∫
R3

d3~q k(|~q |)~p · grad~p j0,1(k±r)div~q
(
~q × grad~q Yl′m′

)
(C.46)

Using the relation div~q
(
~q × grad~q Yl′m′

)
=
(

grad~q Yl′m′
)
·
(
curl~q ~q

)
− ~q ·

(
curl~q grad~q Yl′m′

)
together with the fact that both radial vectors and gradients have vanishing curl, it follows that
also the remaining term vanishes identically. We thus have m̈

(n)
~Y ~Φ′

= n̈
(n)
~Y ~Φ′

= 0 for all n ∈ Z.

(2) ~Ylm = ~Ψlm and ~Yl′m′ ∈ {~Ψl′m′ , ~Φl′m′}
Having gone through all possible choices for ~Yl′m′ for fixed ~Ylm = ~Ylm, we now set ~Ylm = ~Ψlm

and consider the two possibilities ~Yl′m′ = ~Ψl′m′ and ~Yl′m′ = ~Φl′m′ one after the other. Due
to the fact that in both cases all involved spherical harmonics carry a derivative, we can no
longer suppress one of the momentum integrals.
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(a) ~Yl′m′ = ~Ψl′m′

Inserting the definitions of ~Ψlm and ~Ψl′m′ yields∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
∫
S2

dΩξ
(
~ξ · ~Ψlm(θp, ϕp)

)(
~ξ · ~Ψl′m′(θq, ϕq)

)
e−i(~p±~q )·~ξ =

= ∓4π
∫
R3

d3~p h(|~p |)|~p |
∫
R3

d3~q k(|~q |)|~q |
(

grad~p Ym · grad~p
)(

grad~q Yl′m′ · grad~q
)
j0,1(k±r)

Integrating by parts with respect to ~p in order to make both gradients with respect to ~p act on
Ylm yields

· · · = ∓4π
∫
R3

d3~p

∫
R3

d3~q k(|~q |)|~q |
[
div~p

(
h(|~p |)|~p | grad~p Ylm

(
grad~q Yl′m′ · grad~q

)
j0,1(k±r)

)
− grad~q Yl′m′ · grad~q j0,1(k±r)div~p

(
h(|~p |)|~p | grad~p Ylm

)]
Rewriting the first term using the divergence theorem and computing the divergence in the
second term turns the expression into the following form

· · · = ∓4π lim
|~p |→∞

[
h(|~p |)|~p |2

∫
S2

dΩp
∫
R3

d3~q k(|~q |)|~q |~p · grad~p Ylm
(

grad~q Yl′m′ · grad~q
)
j0,1(k±r)

]

± 4π
∫
R3

d3~p

∫
R3

d3~q k(|~q |)|~q | grad~q Yl′m′ · grad~q j0,1(k±r)
[(
h(|~p |)|~p |

)′
|~p |

~p · grad~p Ylm

+ h(|~p |)|~p |div~p grad~p Ylm
]

By the same reasoning employed earlier, namely due to the orthogonality of ~p and grad~p Ylm,
the boundary term as well as the first term in the second line vanish. Furthermore, by using
div~p grad~p Ylm = −l(l + 1) Ylm|~p |2 we arrive at

· · · = ±4πl(l + 1)
∫
R3

d3~p h(|~p |)Ylm
|~p |

∫
R3

d3~q k(|~q |)|~q | grad~q Yl′m′ · grad~q j0,1(k±r)

It remains to make both remaining gradients with respect to ~q act on Yl′m′ . To this end, we
again integrate by parts, but now with respect to ~q and thus find

· · · = ±4πl(l + 1)
∫
R3

d3~p h(|~p |)Ylm
|~p |

∫
R3

d3~q

[
div~q

(
k(|~q |)|~q | grad~q Yl′m′j0,1(k±r)

)
− j0,1(k±r)div~q

(
k(|~q |)|~q |grad~qYl′m′

)]
Rewriting the first term using the divergence theorem and carrying out the divergence in the
second term, we are obtain

· · · = ±4πl(l + 1)
∫
R3

d3~p h(|~p |)Ylm
|~p |

lim
|~q |→∞

[
k(|~q |)|~q |2

∫
S2

dΩq ~q · grad~q Yl′m′j0,1(k±r)
]

∓ 4πl(l + 1)
∫
R3

d3~p h(|~p |)Ylm
|~p |

∫
R3

d3~q j0,1(k±r)
[(
k(|~q |)|~q |

)′
|~q |

~q · grad~q Yl′m′

+ k(|~q |)|~q |div~q grad~qYl′m′
]
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Once more, the terms containing ~q · grad~q Yl′m′ vanish due to orthogonality. Using the relation
div~q grad~qYl′m′ = ∆~qYl′m′ = −l′(l′ + 1)Yl′m′|~q |2 we finally end up with

· · · = 4π
∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)Ylm
|~p |

Yl′m′

|~q |

m̈
(1)
ΨΨ′j0,1(k+r)

n̈
(1)
ΨΨ′j0,1(k−r)

where the non-vanishing derivative operators are given bym̈
(1)
ΨΨ′

m̈
(1)
ΨΨ′

 =
{

+1

−1

}
l(l + 1)l′(l′ + 1) (C.47)

(b) ~Yl′m′ = ~Φl′m′
Inserting the definitions of ~Ψlm and ~Φl′m′ yields∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
∫
S2

dΩξ
(
~ξ · ~Ψlm(θp, ϕp)

)(
~ξ · ~Φl′m′(θq, ϕq)

)
e∓i(~p±~q )·~ξ =

= ∓4π
∫
R3

d3~p h(|~p |)|~p |
∫
R3

d3~q k(|~q |)|~q |
(

grad~p Ym · grad~p
)((

~q × grad~q Yl′m′
)
· grad~q

)
j0,1(k±r)

Integrating by parts with respect to ~p in order to make both gradients with respect to ~p act on
Ylm yields

· · · = ∓4π
∫
R3

d3~p

∫
R3

d3~q k(|~q |)
[
div~p

(
h(|~p |)|~p | grad~p Ylm

((
~q × grad~q Yl′m′

)
· grad~q

)
j0,1(k±r)

)
−
(
~q × grad~q Yl′m′

)
· grad~q j0,1(k±r)div~p

(
h(|~p |)|~p | grad~p Ylm

)]
Rewriting the first term using the divergence theorem and computing the divergence in the
second term turns the expression into the following form

· · · = ∓4π lim
|~p |→∞

[
h(|~p |)|~p |2

∫
S2

dΩp
∫
R3

d3~q k(|~q |)|~q |
(
~p · grad~p Ylm

)((
~q × grad~q Yl′m′

)
· grad~q

)
j0,1(k±r)

]
± 4π

∫
R3

d3~p

∫
R3

d3~q k(|~q |)
(
~q × grad~q Yl′m′

)
·

· grad~q j0,1(k±r)
[(
h(|~p |)|~p |

)′
|~p |

~p · grad~p Ylm + h(|~p |)|~p |div~p grad~p Ylm
]

Once more, due to the orthogonality of ~p and grad~p Ylm, the boundary term as well as the first
term in the second line vanish. Using div~p grad~p Ylm = −l(l + 1) Ylm|~p |2 the remaining part reads

· · · = ∓4πl(l + 1)
∫
R3

d3~p h(|~p |)Ylm
|~p |

∫
R3

d3~q k(|~q |)
(
~q × grad~q Yl′m′

)
· grad~q j0,1(k±r)

In order get rid of the gradient with respect to ~q acting on the spherical harmonic Yl′m′ we
first exploit the cyclicity of the triple product and subsequently integrate by parts with respect
to ~q. We find

· · · = ∓4πl(l + 1)
∫
R3

d3~p h(|~p |)Ylm
|~p |

∫
R3

d3~q

[
div~q

(
Yl′m′k(|~q |)

(
grad~q j0,1(k±r)× ~q

))
− Yl′m′div~q

(
k(|~q |)grad~qj0,1(k±r)× ~q

)]
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Rewriting the first term using the divergence theorem and carrying out the divergence in the
second term, we arrive at

· · · = ∓4πl(l + 1)
∫
R3

d3~p h(|~p |)Ylm
|~p |

lim
|~q |→∞

[
k(|~q |)|~q |2

∫
S2

dΩq
Yl′m′

|~q |
~q ·
(

grad~q j0,1(k±r)× ~q
)]

± 4πl(l + 1)
∫
R3

d3~p h(|~p |)Ylm
|~p |

∫
R3

d3~q Yl′m′

[(
k(|~q |)|~q |

)′
|~q |

~q ·
(

grad~q j0,1(k±r)× ~q
)

+ k(|~q |)|~q |div~q
(
grad~qj0,1(k±r)× ~q

)]
According to the properties of the triple product and the cross product, terms containing the
factor ~q ·

(
grad~q j0,1(k±r)× ~q

)
vanish such that only the last term remains

· · · = ±4πl(l + 1)
∫
R3

d3~p h(|~p |)Ylm
|~p |

∫
R3

d3~q k(|~q |)Yl
′m′

|~q |
|~q |2div~q

(
grad~q j0,1(k±r)× ~q

)
To simplify this expression, we use (C.2a) and find

· · · = ∓4πl(l + 1)
∫
R3

d3~p h(|~p |)Ylm
|~p |

∫
R3

d3~q k(|~q |)Yl
′m′

|~q |
|~q |2

div~q
(
± 2(~p× ~q )r2

[
1 + r

2
d

dr

]
j0,3(k±r)

)
Carrying out the divergence, we obtain

· · · = −8πr2l(l + 1)
∫
R3

d3~p h(|~p |)Ylm
|~p |

∫
R3

d3~q k(|~q |)Yl
′m′

|~q |
|~q |2

[
1 + r

2
d

dr

]
×

×
[
div~q (~p× ~q )j0,3(k±r) + (~p× ~q ) · grad~q j0,3(k±r)

]
(C.48)

The first term in this expression vanishes due to the relation div~q (~p × ~q ) = (curl~q ~p ) ·
~q − ~p · (curl~q ~q ) · ~q = ~0 while the second term vanishes as a consequence of the fact that
grad~q j0,n(k±r) ∝ (~p ± ~q ) together with the properties of the triple product. All in all the
whole expression vanishes which means that m̈(n)

~Ψ~Φ′
= 0 and n̈

(n)
~Ψ~Φ′

= 0 for all n ∈ Z.

(3) ~Ylm = ~Φlm and ~Yl′m′ = ~Φl′m′
Finally, we fix ~Ylm = ~Φlm and consider the only remaining case ~Yl′m′ = ~Φl′m′ . Inserting the
definitions, we obtain∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
∫
S2

dΩξ
(
~ξ · ~Φlm(θp, ϕp)

)(
~ξ · ~Φl′m′(θq, ϕq)

)
e−i(~p±~q )·~ξ =

= ∓4π
∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
((
~p× grad~p Ym

)
· grad~p

)((
~q × grad~q Yl′m′

)
· grad~q

)
j0,1(k±r)

Integrating by parts with respect to ~p yields

· · · = ∓4π
∫
R3

d3~p

∫
R3

d3~q k(|~q |)
[
div~p

(
h(|~p |)~p× grad~p Ylm

((
~q × grad~q Yl′m′

)
· grad~q

)
j0,1(k±r)

)
−
(
~q × grad~q Yl′m′

)
· grad~q j0,1(k±r)div~p

(
h(|~p |)~p× grad~p Ylm

)]
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Rewriting the first term using the divergence theorem and computing the divergence in the
second term turns the expression into the following form

· · · = ∓4π lim
|~p |→∞

[
h(|~p |)|~p |2

∫
S2

dΩp
∫
R3

d3~q k(|~q |)|~q |~p ·
(
~p× grad~p Ylm

)
×((

~q × grad~q Yl′m′
)
· grad~q

)
j0,1(k±r)

]

± 4π
∫
R3

d3~p

∫
R3

d3~q k(|~q |)
(
~q × grad~q Yl′m′

)
· grad~q j0,1(k±r)×

×
[
h′(|~p |)
|~p |

~p ·
(
~p× grad~p Ylm

)
+ h(|~p |)div~p

(
~p× grad~p Ylm

)]
(C.49)

Due to the cyclicity of the triple product and the properties of the cross product, terms
containing ~p ·

(
~p×grad~p Ylm

)
vanish. The remaining term also vanishes as can be seen by using

the relation div~p
(
~p× grad~p Ylm

)
=
(
curl~p ~p

)
· grad~q Ylm− ~p · curl~p grad~p Ylm and recalling that

both the curl of a radial vector as well as the curl of a gradient vanish identically. We thus
have m̈

(n)
~Φ~Φ′

= 0 and n̈
(n)
~Φ~Φ′

= 0 for all n ∈ Z.

Up to this point the we have only determined the entries of the operator-valued matrices m̈(n)

and n̈(n) lying on or above the diagonal. By simultaneously interchanging the functions h↔ k,
the variables ~p↔ ~q and the parameters (l,m)↔ (l′m′) the expression∫

R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
∫
S2

dΩξ
(
~ξ · ~Ylm(θp, ϕp)

)(
~ξ · ~Yl′m′(θq, ϕq)

)
e−i(~p±~q )·~ξ (C.50)

remains unchanged except for an additional factor (±1) appearing in the exponential. However,
due to Proposition C.1.1 this factor disappears upon carrying out the position space angular
integral. As a consequence, the entries of the matrices m̈(n) and n̈(n) below the diagonal can
be found by interchanging ~p↔ ~q and (l,m)↔ (l′m′) in the corresponding entries above the
diagonal.

This concludes the proof.

C.4 Evaluation of Asterisked Terms

The computation of the position space angular integral (4.27c) in Proposition 4.2.4 (Position
Space Angular Integration of Υlm, Υlm|l′m′ ,

∗
Υlm|l′m′) requires to evaluate integrals of the form∫

S2

dΩξ ~Ylm(θp, ϕp) · ~Yl′m′(θq, ϕq)e−i(~p±~q )·~ξ with ~Yl(′)m(′) ∈ {~Yl(′)m(′) , ~Φl(′)m(′) , ~Ψl(′)m(′)}

which correspond to the matrix
∗
Υlm|l′m′ . All these integrals can be computed systematically using

the following lemma.

Lemma C.4.1 (Angular Integration of Asterisked Terms)

For any functions h, k ∈ C1(R+
0 ,R) and for ~Yl(′)m(′) ∈ {~Yl(′)m(′) , ~Φl(′)m(′) , ~Ψl(′)m(′)} the relation∫

R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
∫
S2

dΩξ ~Ylm(θp, ϕp) · ~Yl′m′(θq, ϕq)e−i(~p±~q )·~ξ =



196 C.4. Evaluation of Asterisked Terms

= 4π
∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)YlmYl′m′
5∑

n=−1
n odd


∗
m

(n)
~Y~Y′

j0,n(k+r)
∗
n

(n)
~Y~Y′

j0,n(k−r)
(C.51)

holds, where ∗
m

(n)
~Y~Y′

and ∗
n

(n)
~Y~Y′

are entries of operator-valued, dimensionless (3 × 3)-matrices
∗
m(n) and ∗n(n), respectively, which are explicitly given by

{ ∗
m(−1)

∗
n(−1)

}
=
{

+1

−1

}
1

2|~p ||~q |r2


1

[
1 + r

2
d

dr
]

0[
1 + r

2
d

dr
] [

1 + r
2

d
dr
]2 0

0 0 0

 (C.51a)

{ ∗
m(1)

∗
n(1)

}
=
{
−1

+1

}
|~p |2 + |~q |2

|~p ||~q |


1
2

[
1 + r

2
d

dr
]

0[
1 + r

2
d

dr
] [

2 + 3r
4

d
dr
][

1 + r
2

d
dr
]

0

0 0 0

 (C.51b)

{ ∗
m(3)

∗
n(3)

}
=
{

+1

−1

}
(|~p |2 − |~q |2)2

|~p ||~q |
r2


0 1 0

1 1 + 2(|~p |4+|~q |4)+(|~p |2+|~q |2)2

2(|~p |2−|~q |2)2

[
1 + r

2
d

dr
]

0

0 0 0

[1 + r

2
d

dr

]
(C.51c)

{ ∗
m(5)

∗
n(5)

}
=
{
−1

+1

}
(|~p |2 + |~q |2)(|~p |2 − |~q |2)2

2|~p ||~q | r4

0 0 0
0 1 0
0 0 0

[2 + r

2
d

dr

][
1 + r

2
d

dr

]
(C.51d)

Proof. The guiding principle in this proof is similar to the one in Lemma C.2.1: First, we
carry out the position space angular integral using Proposition C.1.1 before we start to remove
all derivatives from the spherical harmonics via repeated integration by parts with respect to
~p and ~q. As a consequence of this procedure, the derivatives reappear as h′(|~p |) and k′(|~q |)
which in turn have to be removed via integrating by parts with respect to |~p | and |~q |.

We start by computing the position space angular integral. Due to the fact that only the
exponential factor carries a dependence on the variables (θξ, ϕξ), the corresponding integration
can be carried out trivially such that we obtain∫

R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
∫
S2

dΩξ ~Ylm(θp, ϕp) · ~Yl′m′(θq, ϕq)e−i(~p±~q )·~ξ =

= 4π
∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)~Ylm(θp, ϕp) · ~Yl′m′(θq, ϕq)j0,1(k±r) (C.52)

In what follows, we systematically consider all possible combinations of scalar products of
~Ylm ∈ {~Ylm, ~Ψlm, ~Φlm} and ~Yl′m′ ∈ {~Yl′m′ , ~Ψl′m′ , ~Φl′m′}. The order of calculation is as follows:

(1) ~Ylm = ~Ylm and ~Yl′m′ ∈ {~Yl′m′ , ~Ψl′m′ , ~Φl′m′}

(2) ~Ylm = ~Ψlm and ~Yl′m′ ∈ {~Ψl′m′ , ~Φl′m′}

(3) ~Ylm = ~Φlm and ~Yl′m′ = ~Φl′m′

At the end of the proof a symmetry argument will extend the validity of the following calculations
to the missing combinations.
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(1) ~Ylm = ~Ylm and ~Yl′m′ ∈ {~Yl′m′ , ~Ψl′m′ , ~Φl′m′}
We start by fixing ~Ylm as the radial vector spherical harmonic ~Ylm = ~Ylm and systematically
consider all possible choices for ~Yl′m′ .

(a) ~Yl′m′ = ~Yl′m′

In the first case, namely for ~Yl′m′ = ~Yl′m′ , we do not need any momentum space integrals as
there are no derivatives of the spherical harmonics involved. Thus, inserting the definitions
of ~Ylm and ~Yl′m′ into (C.52) and making use of the relation k2

± = |~p |2 + |~q |2 ± 2~p · ~q, we
immediately obtain∫

S2

dΩξ ~Ylm · ~Yl′m′j0,1(k±r) = YlmYl′m′
~p · ~q
|~p ||~q |

e−i(~p±~q )·~ξ

= YlmYl′m′

(
±
k2
± − |~p |2 − |~q |2

2|~p ||~q |

)
j0,1(k±r)

= YlmYl′m′
1∑

n=−1
n odd


∗
m

(n)
~Y ~Y ′

j0,n(k+r)
∗
n

(n)
~Y ~Y ′

j0,n(k−r)
(C.53)

where ∗
m

(n)
~Y ~Y ′

and ∗n(n)
~Y ~Y ′

are differential operators with respect to r given by


∗
m

(−1)
~Y ~Y ′

∗
n

(−1)
~Y ~Y ′

 =
{

+1

−1

}
1

2|~p ||~q |r2 (C.53a)


∗
m

(1)
~Y ~Y ′

∗
n

(1)
~Y ~Y ′

 =
{
−1

+1

}
|~p |2 + |~q |2

2|~p ||~q | (C.53b)

(b) ~Yl′m′ = ~Ψl′m′

In the second case, namely ~Yl′m′ = ~Ψl′m′ , we have to perform one integration by parts with
respect to ~q which implies that the ~p -integral can be suppressed. Inserting the definitions of
~Ylm and ~Ψl′m′ yields∫

R3

d3~q k(|~q |)
∫
S2

dΩξ ~Ylm · ~Ψl′m′e−i(~p±~q )·~ξ =

= Ylm
|~p |

∫
R3

d3~q k(|~q |)|~q |
(
~p · grad~q Yl′m′

)
j0,1(k±r)

Integrating by parts with respect to ~q yields

· · · = Ylm
|~p |

∫
R3

d3~q
[
div~q

(
k(|~q |)|~q |Yl′m′j0,1(k±r)~p

)
− Yl′m′div~q

(
k(|~q |)|~q |j0,1(k±r)~p

)]
Rewriting the first term using the divergence theorem and converting the divergence in the
second term into a gradient by pulling ~p outside, we arrive at

· · · = Ylm
|~p |

lim
|~q |→∞

[
k(|~q |)|~q |2

∫
S2

dΩq Yl′m′j0,1(k±r)(~p · ~q )
]

− Ylm
|~p |

∫
R3

d3~q Yl′m′

[
(~p · ~q )

(
k(|~q |)|~q |

)′
|~q |

j0,1(k±r) + k(|~q |)|~q |~p · grad~q j0,1(k±r)
]
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In order to get rid of the derivative of k(|~q |) in the second line, we have to integrate by parts
with respect to |~q | which turns the expression into

· · · = Ylm
|~p |

lim
|~q |→∞

[
k(|~q |)|~q |2

∫
S2

dΩq Yl′m′j0,1(k±r)(~p · ~q )
]

− Ylm
|~p |

lim
|~q |→∞

[
k(|~q |)|~q |2

∫
S2

dΩq Yl′m′(~p · ~q )j0,1(k±r)
]

+ Ylm
|~p |

∫
R3

d3~q k(|~q |)Yl′m′
[

1
|~q |

d
d|~q |

[
(~p · ~q )|~q |j0,1(k±r)

]
− |~q |~p · grad~q j0,1(k±r)

]

In evaluating the |~q |-integral at its boundaries we exploited the fact that the integrand vanishes
at the lower boundary |~q | = 0 as k ∈ C1(R+

0 ,R). In the resulting expression, the first and second
term cancel each other while for the third term we find by using Auxiliary Calculation C.1.6

. . .
(C.25)=
∫
R3

d3~q k(|~q |)YlmYl′m′
3∑

n=−1


∗
m

(n)
~Y ~Ψ′

j0,n(k+r)
∗
n

(n)
~Y ~Ψ′

j0,n(k−r)
(C.54)

where 
∗
m

(−1)
~Y ~Ψ′
∗
n

(−1)
~Y ~Ψ′

 =
{

+1

−1

}
1

2|~p ||~q |r2

[
1 + r

2
d

dr

]
(C.54a)


∗
m

(1)
~Y ~Ψ′
∗
n

(1)
~Y ~Ψ′

 =
{
−1

+1

}
|~p |2 + |~q |2

|~p ||~q |

[
1 + r

2
d

dr

]
(C.54b)


∗
m

(3)
~Y ~Ψ′
∗
n

(3)
~Y ~Ψ′

 =
{

+1

−1

}
(|~p |2 − |~q |2)2

|~p ||~q |
r2
[
1 + r

2
d

dr

]
(C.54c)

(c) ~Yl′m′ = ~Φl′m′
Just as above, in the third case, namely for ~Yl′m′ = ~Φl′m′ , we have to perform one integration
by parts with respect to ~q which implies that again the ~p -integral can be suppressed. Inserting
the definitions of ~Ylm and ~Φl′m′ yields∫
R3

d3~q k(|~q |)
∫
S2

dΩξ ~Ylm · ~Φl′m′e−i(~p±~q )·~ξ =

= Ylm
|~p |

∫
R3

d3~q k(|~q |)~p ·
(
~q × grad~q Yl′m′

)
j0,1(k±r)

= Ylm
|~p |

∫
R3

d3~q k(|~q |) grad~q Yl′m′ · (~p× ~q )j0,1(k±r)

where in the last step we exploited the cyclicity of the triple product. Integrating by parts
with respect to ~q yields

· · · = Ylm
|~p |

∫
R3

d3~q

[
div~q

(
k(|~q |)(~p× ~q )Yl′m′j0,1(k±r)

)
− Yl′m′div~q

(
k(|~q |)(~p× ~q )j0,1(k±r)

)]



C. Position Space Angular Integration 199

Rewriting the first term using the divergence theorem and computing the divergence in the
second term we are left with

· · · = Ylm
|~p |

lim
|~q |→∞

[
k(|~q |)|~q |

∫
S2

dΩq Yl′m′j0,1(k±r)(~p× ~q ) · ~q
]

− Ylm
|~p |

∫
R3

d3~q Yl′m′

[
k′(|~q |)
|~q |

~q · (~p× ~q )j0,1(k±r) + k(|~q |)div~q (~p× ~q )j0,1(k±r)

+ k(|~q |)(~p× ~q ) · grad~q j0,1(k±r)
]

(C.55)

In this expression, all terms containing the factor (~p× ~q ) · ~q vanish as a consequence of the
properties of the triple product. Recalling that grad~q j0,1(k±r) ∝ (~p ± ~q ), also the term
containing the gradient vanishes by the same reasoning. Finally, the divergence term also
vanishes due to the relation div~q (~p× ~q ) = (curl~q ~p ) · ~q+ ~p · (curl~q ~q ) = ~0 because ~q · (~p× ~q ) = ~0
and ~q · (~p× ~q ) = ~0.

This concludes the computation for ~Ylm = ~Ylm and ~Yl′m′ ∈ {~Yl′m′ , ~Ψl′m′ , ~Φl′m′}. (1)

(2) ~Ylm = ~Ψlm and ~Yl′m′ ∈ {~Ψl′m′ , ~Φl′m′}
Now we fix ~Ylm to be the first tangential vector spherical harmonic ~Ylm = ~Ψlm and consider
the two possibilities ~Yl′m′ = ~Ψl′m′ and ~Yl′m′ = ~Φl′m′ one after the other. Since in every of
the two cases both spherical harmonics carry a derivative, we can no longer suppress one of
the momentum integrals.

(a) ~Yl′m′ = ~Ψl′m′

Inserting the definitions of ~Ψlm and ~Ψl′m′ yields∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
∫
S2

dΩξ ~Ψlm · ~Ψl′m′e−i(~p±~q )·~ξ =

=
∫
R3

d3~p h(|~p |)|~p |
∫
R3

d3~q k(|~q |)|~q |
(

grad~p Ylm · grad~q Yl′m′
)
j0,1(k±r)

Integrating by parts with respect to ~q gives

· · · =
∫
R3

d3~p h(|~p |)|~p |
∫
R3

d3~q

[
div~q

(
k(|~q |)|~q |Yl′m′j0,1(k±r) grad~p Ylm

)
− Yl′m′div~q

(
k(|~q |)|~q |j0,1(k±r) grad~p Ylm

)]
Rewriting the first term using the divergence theorem and carrying out the divergence in the
second term results in

· · · =
∫
R3

d3~p h(|~p |)|~p | lim
|~q |→∞

[
k(|~q |)|~q |2

∫
S2

dΩq Yl′m′j0,1(k±r)~q · grad~p Ylm
]

−
∫
R3

d3~p h(|~p |)|~p |
∫
R3

d3~q Yl′m′ grad~p Ylm ·
[

d
d|~q |

[
k(|~q |)|~q |

] ~q
|~q |
j0,1(k±r)

+ k(|~q |)|~q | grad~q j0,1(k±r)
]

To get rid of the derivative of k(|~q |), we integrate the respective term by parts with respect to
|~q |. Taking into account that the boundary term at |~q | = 0 vanishes due to k ∈ C1(R+

0 ,R), we
obtain

· · · =
∫
R3

d3~p h(|~p |)|~p | lim
|~q |→∞

[
k(|~q |)|~q |2

∫
S2

dΩq Yl′m′j0,1(k±r)~q · grad~p Ylm
]
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−
∫
R3

d3~p h(|~p |)|~p | lim
|~q |→∞

[
k(|~q |)|~q |2

∫
S2

dΩq Yl′m′~q · grad~p Ylmj0,1(k±r)
]

+
∫
R3

d3~p h(|~p |)|~p |
∞∫

0

d|~q | k(|~q |)|~q |
∫
S2

dΩq Yl′m′
d

d|~q |

[
|~q |~q · grad~p Ylmj0,1(k±r)

]
−
∫
R3

d3~p h(|~p |)|~p |
∫
R3

d3~q k(|~q |)Yl′m′ |~q | grad~p Ylm · grad~q j0,1(k±r)

where the first two terms add up to zero. Next, we have to eliminate the gradients of Ylm. To
this end we integrate by parts with respect to ~p and thus find

· · · =
∫
R3

d3~p

∫
R3

d3~q k(|~q |)Yl′m′
1
|~q |

d
d|~q |

[
|~q |
[
div~p

(
h(|~p |)|~p |Ylmj0,1(k±r)~q

)
− Ylmdiv~p

(
h(|~p |)|~p |j0,1(k±r)~q

)]]
−
∫
R3

d3~p

∫
R3

d3~q k(|~q |)Yl′m′ |~q |
[
div~p

(
h(|~p |)|~p |Ylm grad~q j0,1(k±r)

)
− Ylmdiv~p

(
h(|~p |)|~p | grad~q j0,1(k±r)

)]
Repeating the above procedure, namely rewriting the first and third line using the divergence
theorem and computing the remaining divergences in the second and fourth line, results in

· · · = lim
|~p |→∞

[
h(|~p |)|~p |2

∫
S2

dΩp Ylm
∫
R3

d3~q k(|~q |)Yl′m′
1
|~q |

d
d|~q |

[
|~q |j0,1(k±r)(~q · ~p )

]]

−
∫
R3

d3~p Ylm

∫
R3

d3~q k(|~q |)Yl′m′
1
|~q |

d
d|~q |

[
|~q |~q · grad~p

(
h(|~p |)|~p |j0,1(k±r)

)]
− lim
|~p |→∞

[
h(|~p |)|~p |2

∫
S2

dΩp Ylm
∫
R3

d3~q k(|~q |)Yl′m′ |~q |~p · grad~q j0,1(k±r)
]

+
∫
R3

d3~p Ylm

∫
R3

d3~q k(|~q |)Yl′m′ |~q |div~p
(
h(|~p |)|~p | grad~q j0,1(k±r)

)
At this point we have to compute the gradient with respect to ~p and divergence with respect
to ~q in the second and fourth term, respectively. We obtain

~q · grad~p
(
h(|~p |)|~p |j0,1(k±r)

)
=
(
h(|~p |)|~p |

)′
|~p |

(~q · ~p )j0,1(k±r) + h(|~p |)|~p |~q · grad~p j0,1(k±r)

div~p
(
h(|~p |)|~p | grad~q j0,1(k±r)

)
=
(
h(|~p |)|~p |

)′
|~p |

~p · grad~q j0,1(k±r) + h(|~p |)|~p |div~p grad~q j0,1(k±r)

Inserting this yields

· · · = lim
|~p |→∞

[
h(|~p |)|~p |2

∫
S2

dΩp Ylm
∫
R3

d3~q k(|~q |)Yl′m′
1
|~q |

d
d|~q |

[
|~q |j0,1(k±r)(~q · ~p )

]]

−
∫
R3

d3~p Ylm

∫
R3

d3~q k(|~q |)Yl′m′
1
|~p ||~q |

d
d|~q |

[
|~q | d

d|~p |

[
h(|~p |)|~p |

]
(~q · ~p )j0,1(k±r)

+ |~p ||~q |h(|~p |)|~p |~q · grad~p j0,1(k±r)
]

− lim
|~p |→∞

[
h(|~p |)|~p |2

∫
S2

dΩp Ylm
∫
R3

d3~q k(|~q |)Yl′m′ |~q |~p · grad~q j0,1(k±r)
]
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+
∫
R3

d3~p Ylm

∫
R3

d3~q k(|~q |)Yl′m′
[
|~q |
|~p |

d
d|~p |

[
h(|~p |)|~p |

]
~p · grad~q j0,1(k±r)

+ |~q |h(|~p |)|~p |div~p grad~q j0,1(k±r)
]

To cancel the boundary terms, we have to integrate by parts with respect to |~p | in the second
and fifth line and thus obtain

· · · = lim
|~p |→∞

[
h(|~p |)|~p |2

∫
S2

dΩp Ylm
∫
R3

d3~q k(|~q |)Yl′m′
1
|~q |

d
d|~q |

[
|~q |j0,1(k±r)(~q · ~p )

]]

− lim
|~p |→∞

[
h(|~p |)|~p |2

∫
S2

dΩp Ylm
∫
R3

d3~q k(|~q |)Yl′m′
1
|~q |

d
d|~q |

[
|~q |(~q · ~p )j0,1(k±r)

]]

+
∞∫

0

d|~p |
∫
S2

dΩp Ylm
∫
R3

d3~q k(|~q |)Yl′m′
1
|~q |

d
d|~q |

[
|~q |h(|~p |)|~p | d

d|~p |

[
|~p |(~q · ~p )j0,1(k±r)

]]

−
∫
R3

d3~p Ylm

∫
R3

d3~q k(|~q |)Yl′m′
1
|~q |

d
d|~q |

[
|~q |h(|~p |)|~p |~q · grad~p j0,1(k±r)

]
− lim
|~p |→∞

[
h(|~p |)|~p |2

∫
S2

dΩp Ylm
∫
R3

d3~q k(|~q |)Yl′m′ |~q |~p · grad~q j0,1(k±r)
]

+ lim
|~p |→∞

[
h(|~p |)|~p |2

∫
S2

dΩp Ylm
∫
R3

d3~q k(|~q |)Yl′m′ |~q |~p · grad~q j0,1(k±r)
]

−
∞∫

0

d|~p | Ylm
∫
R3

d3~q k(|~q |)Yl′m′ |~q |h(|~p |)|~p | d
d|~p |

[
|~p |~p · grad~q j0,1(k±r)

]
+
∫
R3

d3~p h(|~p |)Ylm
∫
R3

d3~q k(|~q |)Yl′m′ |~p ||~q |div~p grad~q j0,1(k±r)

Cancelling the boundary terms and combining the remaining terms we are left with

· · · =
∫
R3

d3~p h(|~p |)Ylm
∫
R3

d3~q k(|~q |)Yl′m′
[

1
|~p ||~q |

d
d|~q |

[
|~q | d

d|~p |

[
|~p |(~q · ~p )j0,1(k±r)

]]

− |~p |
|~q |

d
d|~q |

[
|~q |~q · grad~p j0,1(k±r)

]
− |~q |
|~p |

d
d|~p |

[
|~p |~p · grad~q j0,1(k±r)

]
+ |~p ||~q |div~p grad~q j0,1(k±r)

]
Making use of the result in Auxiliary Calculation C.1.7 we end up with

. . .
(C.27)=
∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)YlmYl′m′
5∑

n=−1
n odd


∗
m

(n)
~Ψ~Ψ′

j0,n(k+r)
∗
m

(n)
~Ψ~Ψ′

j0,n(k−r)
(C.56)

where
∗
m

(−1)
~Ψ~Ψ′
∗
n

(−1)
~Ψ~Ψ′

 =
{

+1

−1

}
1

2|~p ||~q |r2

[
1 + r

2
d

dr

]2
(C.56a)


∗
m

(1)
~Ψ~Ψ′
∗
n

(1)
~Ψ~Ψ′

 =
{
−1

+1

}
|~p |2 + |~q |2

|~p ||~q |

[
2 + 3r

4
d

dr

][
1 + r

2
d

dr

]
(C.56b)
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
∗
m

(3)
~Ψ~Ψ′
∗
n

(3)
~Ψ~Ψ′

 =
{

+1

−1

}
(|~p |2 − |~q |2)2

|~p ||~q |
r2

[
1 + 2(|~p |4 + |~q |4) + (|~p |2 + |~q |2)2

2(|~p |2 − |~q |2)2

[
1 + r

2
d

dr

]][
1 + r

2
d

dr

]
(C.56c)

∗
m

(5)
~Ψ~Ψ′
∗
n

(5)
~Ψ~Ψ′

 =
{
−1

+1

}
(|~p |2 + |~q |2)(|~p |2 − |~q |2)2

2|~p ||~q | r4
[
2 + r

2
d

dr

][
1 + r

2
d

dr

]
(C.56d)

(b) Ỹlm = ~Ψ and ~Yl′m′ = ~Φl′m′
Inserting the definitions of ~Ψlm and ~Φl′m′ yields∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
∫
S2

dΩξ ~Ψlm · ~Φl′m′e−i(~p±~q )·~ξ =

=
∫
R3

d3~p h(|~p |)|~p |
∫
R3

d3~q k(|~q |) grad~p Ylm ·
(
~q × grad~q Yl′m′

)
j0,1(k±r)

=
∫
R3

d3~p h(|~p |)|~p |
∫
R3

d3~q k(|~q |)
(

grad~p Ylm × ~q
)
· grad~q Yl′m′j0,1(k±r)

where we exploited the cyclicity of the triple product in the last equality. Integrating by parts
with respect to ~q yields

· · · =
∫
R3

d3~p h(|~p |)|~p |
∫
R3

d3~q

[
div~q

(
k(|~q |)|~q |Yl′m′j0,1(k±r) grad~p Ylm × ~q

)
− Yl′m′div~q

(
k(|~q |)|~q |j0,1(k±r) grad~p Ylm × ~q

)]
Rewriting the first term using the divergence theorem and computing the divergence in the
second term using div~q

(
grad~p Ylm× ~q

)
= ~q · curl~q grad~p Ylm− grad~p Ylm · curl~q ~q = ~0 results in

· · · =
∫
R3

d3~p h(|~p |)|~p | lim
|~q |→∞

[
k(|~q |)|~q |2

∫
S2

dΩq Yl′m′j0,1(k±r)~q ·
(

grad~p Ylm × ~q
)]

−
∫
R3

d3~p h(|~p |)|~p |
∫
R3

d3~q Yl′m′
(

grad~p Ylm × ~q
)
· grad~q

(
k(|~q |)|~q |j0,1(k±r)

)
By exploiting the cyclicity of the triple product once more and using ~q × ~q = ~0, the first term
vanishes identically. Carrying out the gradient with respect to ~q in the second term turns the
expression into

· · · = −
∫
R3

d3~p h(|~p |)|~p |
∫
R3

d3~q Yl′m′
(

grad~p Ylm × ~q
)
·
[

d
d|~q |

[
k(|~q |)|~q |

] ~q
|~q |
j0,1(k±r)

+ k(|~q |)|~q | grad~q j0,1(k±r)
]

Using the same reasoning as above, the term containing the derivative of k(|~q |) vanishes. Using
the cyclicity of the triple product the remaining term can be rewritten as follows

· · · = −
∫
R3

d3~p h(|~p |)|~p |
∫
R3

d3~q k(|~q |)|~q |Yl′m′ grad~p Ylm ·
(
~q × grad~q j0,1(k±r)

)
In order to get rid of the gradient of Ylm we integrate by parts with respect to ~p and thus find

· · · = −
∫
R3

d3~p

∫
R3

d3~q k(|~q |)|~q |Yl′m′
[
div~p

(
h(|~p |)|~p |Ylm

(
~q × grad~q j0,1(k±r)

))
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− Ylmdiv~p
(
h(|~p |)|~p |

(
~q × grad~q j0,1(k±r)

))]
Rewriting the first term using the divergence theorem and carrying out the divergence in the sec-
ond term using div~p

(
~q×grad~q j0,1(k±r)

)
= grad~q j0,1(k±r) ·curl~p ~q−~q ·curl~p grad~q j0,1(k±r) =

−~q · (curl~p grad~q j0,1(k±r)), the expression becomes

· · · = − lim
|~p |→∞

[
h(|~p |)|~p |2

∫
S2

dΩp Ylm
∫
R3

d3~q k(|~q |)|~q |Yl′m′
(
~q × grad~q j0,1(k±r)

)
· ~p
]

+
∫
R3

d3~p h(|~p |)|~p |Ylm
∫
R3

d3~q k(|~q |)|~q |Yl′m′~q · curl~p grad~q j0,1(k±r) (C.57)

Recalling form (C.2a) that grad~q j0,1(k±r)
)
∝ (~p± ~q ), the first term vanishes as a consequence

of the cyclicity of the triple product and the properties of the cross product. Due to the fact
that according to (C.3b) also the integrand of the second term vanishes, we find that the
whole expression vanishes. This means that we have ∗

m
(n)
~Ψ~Φ′

= 0 = ∗
n

(n)
~Ψ~Φ′

for all n ∈ Z.

This concludes the computation for ~Ylm = ~Ψlm and ~Yl′m′ ∈ {~Ψl′m′ , ~Φl′m′}. (2)

(3) ~Ylm = ~Φlm and ~Yl′m′ = ~Φl′m′
Finally, we fix ~Ylm to be the second tangential vector spherical harmonic ~Ylm = ~Φlm and
consider the only remaining case ~Yl′m′ = ~Φl′m′ . Just as before, again both momentum integrals
are needed. Inserting the definitions of ~Φlm and ~Φl′m′ yields∫

R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
∫
S2

dΩξ ~Φlm(θp, ϕp) · ~Φl′m′(θq, ϕq)e−i(~p±~q )·~ξ =

=
∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
(
~p× grad~p Ylm

)
·
(
~q × grad~q Yl′m′

)
j0,1(k±r)

=
∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
[
(~p · ~q )

(
grad~p Ylm · grad~q Yl′m′

)
−
(
~q · grad~p Ylm

)(
~p · grad~q Yl′m′

)]
j0,1(k±r)

where in the last equality we employed the identity (~v1 × ~v2) · (~v3 × ~v4) = (~v1 · ~v3)(~v2 · ~v4)−
(~v2 · ~v3)(~v1 · ~v4) to rewrite the scalar product of two cross products. Integrating by parts with
respect to ~q yields

· · · =
∫
R3

d3~p h(|~p |)
∫
R3

d3~q
[
div~q

(
k(|~q |)Yl′m′(~p · ~q ) grad~p Ylmj0,1(k±r)

)
− Yl′m′div~q

(
k(|~q |)(~p · ~q ) grad~p Ylmj0,1(k±r)

)
− div~q

(
k(|~q |)Yl′m′

(
~q · grad~p Ylm

)
~pj0,1(k±r)

)
+ Yl′m′div~q

(
k(|~q |)

(
~q · grad~p Ylm

)
~pj0,1(k±r)

)]
By applying the divergence theorem, the first and third term can be converted into surface
integrals, while the divergences with respect to ~q in the second and fourth term can be rewritten
as gradients with respect to ~q. Rearranging terms gives

· · · =
∫
R3

d3~p h(|~p |) lim
|~q |→∞

[
k(|~q |)|~q |2

∫
S2

dΩq Yl′m′j0,1(k±r)×
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×
[
(~p · ~q ) grad~p Ylm −

(
~q · grad~p Ylm

)
~p
]
· ~q
|~q |

]
−
∫
R3

d3~p h(|~p |)
∫
R3

d3~q Yl′m′ grad~p Ylm · grad~q
(
k(|~q |)(~p · ~q )j0,1(k±r)

)
+
∫
R3

d3~p h(|~p |)
∫
R3

d3~q Yl′m′~p · grad~q
(
k(|~q |)

(
~q · grad~p Ylm

)
j0,1(k±r)

)
As can be easily seen in this form, the difference in the integrand of the first term vanishes
identically. In the last term, the gradient with respect to ~q can be rewritten as follows

grad~q
(
k(|~q |)

(
~q · grad~p Ylm

)
j0,1(k±r)

)
=

= grad~q
(
k(|~q |)j0,1(k±r)

)(
~q · grad~p Ylm

)
+ k(|~q |)j0,1(k±r) grad~q

(
~q · grad~p Ylm

)
= grad~q

(
k(|~q |)j0,1(k±r)

)(
~q · grad~p Ylm

)
+ k(|~q |)j0,1(k±r) grad~p Ylm

Upon scalar multiplication with ~p, the second term vanishes for orthogonality reasons due to
the fact that grad~p Ylm is tangential to S2 while ~p is radial. Inserting the remaining term, we
therefore end up with

· · · = −
∫
R3

d3~p h(|~p |)
∫
R3

d3~q Yl′m′ grad~p Ylm · grad~q
(
k(|~q |)(~p · ~q )j0,1(k±r)

)
+
∫
R3

d3~p h(|~p |)
∫
R3

d3~q Yl′m′~p · grad~q
(
k(|~q |)j0,1(k±r)

)(
~q · grad~p Ylm

)
Integrating by parts for a second time, but now with respect to ~p, results in

· · · = −
∫
R3

d3~p

∫
R3

d3~q Yl′m′

[
div~p

[
h(|~p |)Ylm grad~q

(
k(|~q |)(~p · ~q )j0,1(k±r)

]
− Ylmdiv~p

[
h(|~p |) grad~q

(
k(|~q |)(~p · ~q )j0,1(k±r)

)]]
+
∫
R3

d3~p

∫
R3

d3~q Yl′m′

[
div~p

[
h(|~p |)Ylm~q

(
~p · grad~q

(
k(|~q |)j0,1(k±r)

))]
− Ylmdiv~p

[
h(|~p |)~q

(
~p · grad~q

(
k(|~q |)j0,1(k±r)

))]]
By applying the divergence theorem for a second time and rewriting divergences as gradients
whenever possible, we arrive at

· · · = − lim
|~p |→∞

[
h(|~p |)|~p |

∫
S2

dΩp Ylm
∫
R3

d3~q Yl′m′~p · grad~q
(
k(|~q |)(~p · ~q )j0,1(k±r)

)]

+
∫
R3

d3~p

∫
R3

d3~q Yl′m′Ylmdiv~p
(
h(|~p |) grad~q

(
k(|~q |)(~p · ~q )j0,1(k±r)

)
+ lim
|~p |→∞

[
h(|~p |)|~p |

∫
S2

dΩp Ylm
∫
R3

d3~q Yl′m′(~q · ~p )
(
~p · grad~q

(
k(|~q |)j0,1(k±r)

))]

−
∫
R3

d3~p

∫
R3

d3~q Yl′m′Ylm~q · grad~p
(
h(|~p |)

(
~p · grad~q

(
k(|~q |)j0,1(k±r)

)))
By combining the first and third term and using grad~q (~p · ~q ) = ~p we obtain

· · · = − lim
|~p |→∞

[
h(|~p |)|~p |3

∫
S2

dΩp Ylm
∫
R3

d3~q Yl′m′k(|~q |)j0,1(k±r)
]
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+
∫
R3

d3~p

∫
R3

d3~q YlmYl′m′
1
|~p ||~q |

[
div~p

[
h(|~p |) grad~q

(
k(|~q |)(~p · ~q )j0,1(k±r)

)]
− ~q · grad~p

[
h(|~p |)

(
~p · grad~q

(
k(|~q |)j0,1(k±r)

))]]
Making use of the result from Auxiliary Calculation C.1.8 gives

. . .
(C.30)= − lim

|~p |→∞

[
h(|~p |)|~p |3

∫
S2

dΩp Ylm
∫
R3

d3~q Yl′m′k(|~q |)j0,1(k±r)
]

+
∫
R3

d3~p

∫
R3

d3~q k(|~q |)YlmYl′m′h′(|~p |)|~p |j0,1(k±r)

+
∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)YlmYl′m′×

×
[[

3 + r

2
d

dr

]
j0,1(k±r) + (|~p |2 − |~q |2)r2

[
1 + r

2
d

dr

]
j0,3(k±r)

]
(C.58)

Integrating the term containing h′(|~p |) by parts with respect to |~p | gives

· · · = − lim
|~p |→∞

[
h(|~p |)|~p |3

∫
S2

dΩp Ylm
∫
R3

d3~q Yl′m′k(|~q |)j0,1(k±r)
]

+ lim
|~p |→∞

[
h(|~p |)|~p |3

∫
S2

dΩp Ylm
∫
R3

d3~q k(|~q |)Yl′m′j0,1(k±r)
]

−
∞∫

0

d|~p |
∫
S2

dΩp Ylm
∫
R3

d3~q k(|~q |)Yl′m′h(|~p |) d
d|~p |

[
|~p |3j0,1(k±r)

]
+
∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)YlmYl′m′×

×

[[
3 + r

2
d

dr

]
j0,1(k±r) + (|~p |2 − |~q |2)r2

[
1 + r

2
d

dr

]
j0,3(k±r)

]
Cancelling the boundary terms yields

. . .
(C.2d)=
∫
R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)YlmYl′m′
[
− 1
|~p |2

d
d|~p |

[
|~p |3j0,1(k±r)

]
+

+
[
3 + r

2
d

dr

]
j0,1(k±r) + (|~p |2 − |~q |2)r2

[
1 + r

2
d

dr

]
j0,3(k±r)

]

Evaluating d
d|~p |

[
|~p |3j0,1(k±r)

]
using (C.2d) gives

1
|~p |2

d
d|~p |

[
|~p |3j0,1(k±r)

]
=

= 3j0,1(k±r) + |~p | d
d|~p | j0,1(k±r)

(C.2d)= 3j0,1(k±r) + r

2
d

dr j0,n(k±r) + (|~p |2 − |~q |2)r2
[
1 + r

2
d

dr

]
j0,n+2(k±r)

which exactly cancels the second line in the above equation and thus makes the whole
expression vanish. This means that ∗m(n)

~Φ~Φ′
= 0 = ∗

n
(n)
~Φ~Φ′

for all n ∈ Z.
This concludes the computation for ~Ylm = ~Φlm and ~Yl′m′ = ~Φl′m′ . (3)
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Up to this point the we have only determined the entries of the operator-valued matrices ∗m(n)

and ∗n(n) lying on or above the diagonal. By simultaneously interchanging the functions h↔ k,
the variables ~p↔ ~q and the parameters (l,m)↔ (l′m′) the expression∫

R3

d3~p h(|~p |)
∫
R3

d3~q k(|~q |)
∫
S2

dΩξ ~Ylm(θp, ϕp) · ~Yl′m′(θq, ϕq)e−i(~p±~q )·~ξ (C.59)

remains unchanged except for an additional factor (±1) appearing in the exponential. However,
due to Proposition C.1.1 this factor disappears upon carrying out the position space angular
integral. As a consequence, the entries of the matrices ∗m(n) and ∗n(n) below the diagonal can
be found by interchanging ~p↔ ~q and (l,m)↔ (l′m′) in the corresponding entries above the
diagonal.

This concludes the proof.

Having computed all the relevant integrals, we finally combine the derivative operators as deduced
in Lemma C.2.1, Corollary C.2.2, Lemma C.3.1 and Lemma C.4.1, into (5× 5)-matrices.

Definition C.4.2 (Matrix-Valued Derivative Operators)

For n ∈ {−1, 1, 3, 5} the (5× 5)-matrix-valued derivative operators m(n), ∗m(n) and n(n), ∗n(n)

are defined in terms of Hadamard products as

m(n) = 4πc�


m̊(n) ˙́m(n)T

m̊(n)

ṁ(n) m̈(n) ṁ(n)

m̊(n) ˙́m(n)T
m̊(n)

 (C.60a) ∗
m(n) = 4π


0 01×3 0

03×1
∗
m(n) 03×1

0 01×3 0

 (C.60b)

n(n) = 4πc�


n̊(n) ˙́n(n)T

n̊(n)

ṅ(n) n̈(n) ṅ(n)

n̊(n) ˙́n(n)T
n̊(n)

 (C.60c) ∗
n(n) = 4π


0 01×3 0

03×1
∗
n(n) 03×1

0 01×3 0

 (C.60d)

where the entries are the dimensionless, matrix-valued derivative operators from Lemma C.2.1,
Lemma C.3.1 and Lemma C.4.1, respectively. The circled entries m̊(n) and n̊(n) are given by

m̊(n) = n̊(n) = δn1

Likewise, the matrix-valued derivative operator k(1) is defined as

k(1) = 4πck �


1 01×3 0

03×1 Dk̇(1) 03×1

0 01×3 1

 (C.61)

where Dk̇(1) denotes the (3 × 3)-matrix with the entries of k̇(1) (see Corollary C.2.2) on its
diagonal. Finally, the matrices c and ck are given by

c =


1 i

|~q |11×3 1
i
|~p |13×1

1
|~p ||~q |13×3

i
|~p |13×1

1 i
|~q |11×3 1

 and ck =


1 01×3 0

03×1
i
|~p |13×3 03×1

0 01×3 1

 (C.62)
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In this appendix we derive closed-form expressions for the integrals I±n (α, ρ) appearing in the
derivation of explicit formulas for the eigenvalues of the integral operators T±n in Lemma 4.2.13.

Before we start, we briefly sketch our overall approach: To derive a closed-form expression for the
functions I±n (α, ρ) for any n ∈ Z, we start in Proposition D.1.3 by explicitly evaluating I±n (α, ρ)
in the cases n ∈ {0, 1, 2, 3}. Subsequently, in Proposition D.2.1 we derive recursion relations for
n ≥ 4 (increasing power n in the denominator in (D.1)) and for n ≤ 0 (decreasing power n in the
denominator in (D.1)) which allows to recursively determine I±n (α, ρ) for any n ∈ Z \ {0, 1, 2, 3}.
Based on these relations, we afterwards derive closed-form expressions in the cases n ≥ 4 and n ≤ 0
which ultimately results in a closed-form expression for the functions I±n (α, ρ) in Lemma D.2.3.

D.1 Basic Definitions and Preparatory Propositions

To begin with, we give the definition of the functions I±n and introduce auxiliary functions which
will frequently appear throughout the rest of this appendix.

Definition D.1.1 (Functions I±n (α, ρ))

For any n ∈ Z the functions I±n : R+
0 × (−1, 1)→ R are defined as

I±n (α, ρ) :=
1∫
−1

dx sin (α
√

1± ρx)
√

1± ρxn
(D.1)

207
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Definition D.1.2 (Auxiliary Cosine and Sine Functions)

For any n ∈ Z the auxiliary cosine and sine functions cn, sn : R+
0 × (−1, 1)→ R are defined as

cn(α, ρ) = cos(α
√

1 + ρ)
(1 + ρ)n/2

− cos(α
√

1− ρ)
(1− ρ)n/2

(D.2a)

sn(α, ρ) = sin(α
√

1 + ρ)
(1 + ρ)n/2

− sin(α
√

1− ρ)
(1− ρ)n/2

(D.2b)

We now start with the actual derivations by first evaluating the functions I±n for n ∈ {0, 1, 2, 3}.

Proposition D.1.3 (Evaluation of the Functions I±n (α, ρ) for n ∈ {0, 1, 2, 3})

For n ∈ {0, 1, 2, 3} the functions I±n introduced in Definition D.1.1 evaluate to

I±n (α, ρ) = 2
ρ



− c−1(α,ρ)
α + s0(α,ρ)

α2 for n = 0

− c0(α,ρ)
α for n = 1

Si(α
√

1 + ρ)− Si(α
√

1− ρ) for n = 2

α
[
Ci(α

√
1 + ρ)− Ci(α

√
1− ρ)

]
− s1(α, ρ) for n = 3

(D.3)

where Ci and Si denote the usual cosine and sine integral functions while cn and sn are the
auxiliary cosine and sine functions introduced above in Definition D.1.2.

Proof. In order to prove the claimed relations, we distinguish between the rather straightforward
cases n = 0 and n = 2 on the one hand, and the slightly more involved cases n = 1 and n = 3
on the other hand.

(1) Evaluation of I±n (α, ρ) for n = 0 and n = 2
We start by considering the case n = 0 and afterwards compute I±n (α, ρ) for n = 2. Note
that we treat the expressions where sin(α

√
1± x) in I±n (α, ρ) is replaced by cos(α

√
1± x)

simultaneously.

(a) I±n (α, ρ) for n = 0
By substituting y = α

√
1± ρx in the expression for I±0 (α, ρ) (and the analogous expression

with sine replaced by cosine) we obtain

1∫
−1

dx
{

sin (α
√

1± ρx)

cos (α
√

1± ρx)

}
= ±2

ρ

1
α2

α
√

1±ρ∫
α
√

1∓ρ

dy y
{

sin(y)

cos(y)

}

Integrating by parts leads to

· · · = ±2
ρ

1
α2

− α
√

1±ρ∫
α
√

1∓ρ

dy
{
− cos(y)

sin(y)

}

+ α

{
−
√

1± ρ cos(α
√

1± ρ) +
√

1∓ ρ cos(α
√

1∓ ρ)
√

1± ρ sin(α
√

1± ρ)−
√

1∓ ρ sin(α
√

1∓ ρ)

}
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Evaluating the remaining integral results in

· · · = ±2
ρ

1
α2

[{
sin(α

√
1± ρ)− sin(α

√
1∓ ρ)

cos(α
√

1± ρ)− cos(α
√

1∓ ρ)

}

+α
{
−
√

1± ρ cos(α
√

1± ρ) +
√

1∓ ρ cos(α
√

1∓ ρ)
√

1± ρ sin(α
√

1± ρ)−
√

1∓ ρ sin(α
√

1∓ ρ)

}]

Taking the overall prefactor (±1) into account, we recognize that both cases ± lead to the
same result, namely

· · · = 2
ρ

1
α2

[{
sin(α

√
1 + ρ)− sin(α

√
1− ρ)

cos(α
√

1 + ρ)− cos(α
√

1− ρ)

}

+α
{
−
√

1 + ρ cos(α
√

1 + ρ) +
√

1− ρ cos(α
√

1− ρ)
√

1 + ρ sin(α
√

1 + ρ)−
√

1− ρ sin(α
√

1− ρ)

}]
Making use of the functions cn, sn introduced Definition D.1.2, the result can be displayed in
the following compact form

1∫
−1

dx
{

sin (α
√

1± ρx)

cos (α
√

1± ρx)

}
= 2
ρ

1
α2

[{
s0(α, ρ)

c0(α, ρ)

}
+ α

{
−c−1(α, ρ)

s−1(α, ρ)

}]
(D.4)

(b) I±n (α, ρ) for n = 2
For the expression I±2 (α, ρ) and the analogous expression with sine replaced by cosine, the
computations are slightly different. Changing variables y = α

√
1± ρx just as before, we obtain

for I±2 (α, ρ)

1∫
−1

dx 1
1± ρx

{
sin (α

√
1± ρx)

cos (α
√

1± ρx)

}
= ±2

ρ

α
√

1±ρ∫
α
√

1∓ρ

dy 1
y

{
sin(y)

cos(y)

}

At this point, the computations for the upper and lower case are slightly different: In the
upper case we rewrite the integral as the difference of two integrals with domains

[
0, α
√

1± ρ
]

and
[
0, α
√

1∓ ρ
]
while in the lower case, however, we rewrite the integral as the difference of

two integrals with domains
[
α
√

1∓ ρ,∞
]
and

[
α
√

1± ρ,∞
]
. In this way we obtain

· · · = ±2
ρ


α
√

1±ρ∫
0

dy sin(y)
y −

α
√

1∓ρ∫
0

dy sin(y)
y

∞∫
α
√

1∓ρ
dy cos(y)

y −
∞∫

α
√

1±ρ
dy cos(y)

y


Identifying the remaining integrals as the sine and cosine integral functions Si(x) =∫ x

0 dy sin(y)/y and Ci(x) = −
∫∞
x

dy cos(y)/y, respectively, we finally end up with

· · · = ±2
ρ

{
Si
(
α
√

1± ρ
)
− Si

(
α
√

1∓ ρ
)

Ci
(
α
√

1± ρ
)
− Ci

(
α
√

1∓ ρ
)}

Taking the prefactor (±1) into account, both cases ± again lead to the same result which reads

1∫
−1

dx 1
1± ρx

{
sin (α

√
1± ρx)

cos (α
√

1± ρx)

}
= 2
ρ

{
Si
(
α
√

1 + ρ
)
− Si

(
α
√

1− ρ
)

Ci
(
α
√

1 + ρ
)
− Ci

(
α
√

1− ρ
)} (D.5)
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(2) Evaluation of I±n (α, ρ) for n = 1 and n = 3
In order to derive the claimed expressions for I±n (α, ρ) in the cases n = 1 and n = 3, we make
use of the identity

(1± ρx)−n2 = ±2
ρ

1
(2− n)

d
dx (1± ρx)−n2 +1 (D.6)

which holds for n ∈ Z \ {2}. Replacing the factor (1± ρx)−n2 in the definition of I±n (α, ρ) by
the above identity and integrating by parts yields

1∫
−1

dx sin (α
√

1± ρx)
√

1± ρxn
(D.6)= ±2

ρ

1
(2− n)

1∫
−1

dx sin
(
α
√

1± ρx
) d

dx (1± ρx)−n2 +1

= ±2
ρ

1
(2− n)

∓ρα2
1∫
−1

dx cos
(
α
√

1± ρx
)
(1± ρx)−

n−1
2

+
[

sin
(
α
√

1± ρx
)
(1± ρx)−n2 +1

]∣∣∣∣1
−1

 (D.7)

Evaluating this expression for n = 1 and making use of the lower case in (D.4) yields

I±1 (α, ρ) (D.7)= ±2
ρ

∓ρα2
1∫
−1

dx cos
(
α
√

1± ρx
)

+
[

sin
(
α
√

1± ρx
)√

1± ρx
]∣∣∣∣1
−1


(D.4)= −2

ρ

c0(α, ρ)
α

(D.8)

Repeating the procedure for n = 3 and making use of the lower case in (D.5) gives

I±3 (α, ρ) (D.7)= ∓2
ρ

∓ρα2
1∫
−1

dx cos(α
√

1± ρx)
1± ρx +

[ sin
(
α
√

1± ρx
)

√
1± ρx

]∣∣∣∣∣
1

−1


(D.5)= 2

ρ
α
[
Ci(α

√
1 + ρ)− Ci(α

√
1− ρ)

]
− 2
ρ
s1(α, ρ) (D.9)

This concludes the proof.

D.2 Derivation of Recursion Relations

Having found explicit expressions for the functions I±n in the cases n ∈ {0, 1, 2, 3}, we now extend
these results to arbitrary n ∈ Z by deriving recursion relations.

Proposition D.2.1 (Recursion Relations for I±n (α, ρ))

For n ∈ Z with n ≥ 4 and n ≤ 0, respectively, the functions I±n (α, ρ) satisfy the following
recursion relations

I±n (α, ρ) =

fn(α)I±n−2(α, ρ) + gn(α, ρ) for n ≥ 4

kn(α)I±n+2(α, ρ) + ln(α, ρ) for n ≤ 0
(D.10)

where the functions fn, kn : R+
0 → R (for n ≥ 4) and gn, ln : R+

0 × (−1, 1)→ R are given by
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fn(α) := − α2

(2− n)(3− n) and gn(α, ρ) := −2
ρ

[
αcn−3(α, ρ)

(2− n)(3− n) −
sn−2(α, ρ)

(2− n)

]
(D.10a)

kn(α) := −n(n− 1)
α2 and `n(α, ρ) := −2

ρ

[
(n− 1)sn(α, ρ)

α2 + cn−1(α, ρ)
α

]
(D.10b)

Proof. To prove the stated recursion relations, we consider the two cases separately.

(1) Derivation of a recursion relation for I±n (α, ρ) with n ≥ 4
In order to derive the claimed recursion relation for I±n (α, ρ) in the case n ≥ 4, we will
repeatedly make use of the identity

(1± ρx)−n2 = ±2
ρ

1
(2− n)

d
dx (1± ρx)−n2 +1 (D.11)

which holds for n ∈ Z \ {2}. Replacing the factor (1± ρx)−n2 in the definition of I±n (α, ρ) by
the above identity and integrating by parts yields

1∫
−1

dx sin (α
√

1± ρx)
√

1± ρxn
(D.11)= ±2

ρ

1
(2− n)

1∫
−1

dx sin
(
α
√

1± ρx
) d

dx (1± ρx)−n2 +1

I.b.p.= ±2
ρ

1
(2− n)

∓ρα2
1∫
−1

dx cos
(
α
√

1± ρx
)
(1± ρx)−

n−1
2

+
[

sin
(
α
√

1± ρx
)
(1± ρx)−n2 +1

]∣∣∣∣1
−1

 (D.12)

Rewriting the second factor in the remaining integral using the identity (D.11) (with the
replacement n→ n− 1 with thus holds for n ∈ Z \ {3}) and integrating by parts for a second
time results in

. . .
(D.11)= ±2

ρ

1
(2− n)

− α

(3− n)

1∫
−1

dx cos
(
α
√

1± ρx
) d

dx (1± ρx)−
n−1

2 +1

+
[

sin
(
α
√

1± ρx
)
(1± ρx)−n2 +1

]∣∣∣∣1
−1


I.b.p.= ±2

ρ

1
(2− n)

− α

(3− n)

±ρα2
1∫
−1

dx sin
(
α
√

1± ρx
)
(1± ρx)−

n−1
2 + 1

2

+
[

cos
(
α
√

1± ρx
)
(1± ρx)−

n−1
2 +1

]∣∣∣∣1
−1


+
[

sin
(
α
√

1± ρx
)
(1± ρx)−n2 +1

]∣∣∣∣1
−1


Simplifying this expression by multiplying out and taking into account that for the second and
third terms both cases ± lead to the same result, we obtain for n ∈ Z with n ≥ 4 the following
recursion relation

I±n (α, ρ) = −
α2I±n−2(α, ρ)

(2− n)(3− n) −
2
ρ

α

(2− n)(3− n)

[
cos (α

√
1 + ρ)

√
1 + ρ

n−3 − cos (α
√

1− ρ)
√

1− ρn−3

]



212 D.2. Derivation of Recursion Relations

+ 2
ρ

1
(2− n)

[
sin (α

√
1 + ρ)

√
1 + ρ

n−2 − sin (α
√

1− ρ)
√

1− ρn−2

]
= −

α2I±n−2(α, ρ)
(2− n)(3− n) −

2
ρ

αcn−3(α, ρ)
(2− n)(3− n) + 2

ρ

sn−2(α, ρ)
(2− n) (D.13)

where for the last equality we again used the definitions of cn(α, ρ) and sn(α, ρ) introduced in
Definition D.1.2. By defining the functions

fn(α) := − α2

(2− n)(3− n) and gn(α, ρ) := −2
ρ

[
αcn−3(α, ρ)

(2− n)(3− n) −
sn−2(α, ρ)

(2− n)

]
(D.14)

the recursion relation for n ≥ 4 takes the schematic form

I±n (α, ρ) (D.13)=
(D.14)
fn(α)I±n−2(α, ρ) + gn(α, ρ) (D.15)

(2) Derivation of a recursion relation for I±n (α, ρ) with n ≤ 0
To derive the recursion relation for n ≤ 0, we need the identities

sin(α
√

1± ρx) = ∓2
ρ

√
1± ρx
α

d
dx cos(α

√
1± ρx) (D.16)

cos(α
√

1± ρx) = ±2
ρ

√
1± ρx
α

d
dx sin(α

√
1± ρx) (D.17)

Replacing the factor sin(α
√

1± ρx) in the definition of I±n (α, ρ) using the first of the above
identities and subsequently integrating by parts, we obtain for n ≤ 0

1∫
−1

dx sin(α
√

1± ρx)
√

1± ρxn
(D.16)= ∓2

ρ

1
α

1∫
−1

dx 1
√

1± ρxn−1
d

dx cos(α
√

1± ρx)

I.b.p.= ∓2
ρ

1
α

±ρ2(n− 1)
1∫
−1

dx 1
√

1± ρxn+1 cos(α
√

1± ρx) +
[

cos(α
√

1± ρx)
√

1± ρxn−1

]∣∣∣∣∣
1

−1


Rewriting the second factor in the remaining integral using the second of the above identities
and integrating by parts for a second time leads to

. . .
(D.17)= ∓2

ρ

1
α

 (n− 1)
α

1∫
−1

dx 1
√

1± ρxn
d

dx sin(α
√

1± ρx) +
[

cos(α
√

1± ρx)
√

1± ρxn−1

]∣∣∣∣∣
1

−1


I.b.p.= ∓2

ρ

1
α

 (n− 1)
α

±ρ2n
1∫
−1

dx sin(α
√

1± ρx)
√

1± ρxn+2 +
[

sin(α
√

1± ρx)
√

1± ρxn
]∣∣∣∣∣

1

−1


+
[

cos(α
√

1± ρx)
√

1± ρxn−1

]∣∣∣∣∣
1

−1


Simplifying this expression by multiplying out and taking into account that for the second and
third terms both cases ± lead to the same result, we obtain for n ≤ 0 the following recursion
relation

I±n (α, ρ) = −n(n− 1)
α2 I±n+2(α, ρ)− 2

ρ

(n− 1)
α2

[
sin(α

√
1 + ρ)

√
1 + ρ

n − sin(α
√

1− ρ)
√

1− ρn
]

− 2
ρ

1
α

[
cos(α

√
1 + ρ)

√
1 + ρ

n−1 − cos(α
√

1− ρ)
√

1− ρn−1

]
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= −n(n− 1)
α2 I±n+2(α, ρ)− 2

ρ

(n− 1)sn(α, ρ)
α2 − 2

ρ

cn−1(α, ρ)
α

(D.18)

where for the last equality we once more employed the definitions of sn(α, ρ) and cn(α, ρ)
defined at the beginning. By Defining the functions

kn(α) := −n(n− 1)
α2 and `n(α, ρ) := −2

ρ

[
(n− 1)sn(α, ρ)

α2 + cn−1(α, ρ)
α

]
(D.19)

the recursion relation takes the schematic form

I±n (α, ρ) = kn(α)I±n+2(α, ρ) + `n(α, ρ) (D.20)

Note that for n = 0 this formula correctly reproduces

I±0 (α, ρ) = −2
ρ

[
− s0(α, ρ)

α2 + c−1(α, ρ)
α

]
(D.21)

in accordance with (D.3) in Proposition D.1.3.

This concludes the proof.

This proposition allows to recursively evaluate the functions I±n for arbitrary n ∈ Z. In order to
arrive at an explicit formula for any n ∈ Z, we make use of the above recursion relations to derive
a closed-form expression.

Proposition D.2.2 (Closed-Form Expressions for I±n for n ∈ Z \ {0, 1, 2, 3})

Let FN,n : R+
0 → R and GN,n : R+

0 × (−1, 1)→ R be functions defined as

FN,n(α) =
n∏
i=1

fN+2i(α) (D.22a)

GN,n(α, ρ) =
n−1∑
i=0

( i−1∏
j=0

fN+2(n−j)(α)
)
gN+2(n−i)(α, ρ) (D.22b)

where fn, gn are the functions introduced in (D.10a). Then, provided that I±n (α, ρ) satisfies
the recursion relation

I±n (α, ρ) (D.10)= fn(α)I±n−2(α, ρ) + gn(α, ρ) (D.22c)

for n ≥ 4, the following closed-form relation holds

I±n (α, ρ) =

F2,n−2
2

(α)I±2 (α, ρ) +G2,n−2
2

(α, ρ) for n ≥ 4 ∧ n even

F3,n−3
2

(α)I±3 (α, ρ) +G3,n−3
2

(α, ρ) for n ≥ 5 ∧ n odd
(D.22d)

Furthermore, let KN,n : R+
0 → R and LN,n : R+

0 × (−1, 1)→ R be functions defined as

KN,n(α) :=
n∏
i=1

kN−2i(α) (D.23a)

LN,n(α, ρ) :=
n−1∑
i=0

( i−1∏
j=0

kN−2(n−j)(α)
)
`N−2(n−i)(α, ρ) (D.23b)
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where kn, ln are the functions introduced in (D.10b). Then, provided that I±n (α, ρ) satisfies
the recursion relation

I±n (α, ρ) (D.10)= kn(α)I±n+2(α, ρ) + ln(α, ρ) (D.23c)

for n ≤ −1, the following closed-form relation holds

I±n (α, ρ) =

K0,−n2 (α)I±0 (α, ρ) + L0,−n2 (α, ρ) n ≤ −2 ∧ n even

K1, 1−n
2

(α)I±1 (α, ρ) + L1, 1−n
2

(α, ρ) n ≤ −1 ∧ n odd
(D.23d)

Proof. We consider the two cases, namely the closed-form expression for n ≥ 4 (increasing
power n in the denominator of the function I±n ) and n ≤ 0 (decreasing power n in the
denominator of the function I±n ), separately.

(1) Closed-Form Expression for n ≥ 4
To prove the claimed relation, we demonstrate via a proof by induction on n that

I±N+2n(α, ρ) = FN,n(α)I±N (α, ρ) +GN,n(α, ρ) (D.24)

holds for all n ≥ 1 where N ∈ N0 is an arbitrary, but fixed natural number.

(a) Base Case n = 1
In the initial case, namely for n = 1, the claimed relations reduces to

I±N+2(α, ρ) = FN,1(α)I±N (α, ρ) +GN,1(α, ρ)

(D.22a)=
(D.22b)

( 1∏
i=1

fN+2i(α)
)
I±N (α, ρ) +

1−1∑
i=0

( i−1∏
j=0

fN+2(1−j)(α)
)
gN+2(1−i)(α, ρ)

= fN+2(α)I±N (α, ρ) +
( 0−1∏
j=0

fN+2(1−j)(α)
)
gN+2(α, ρ)

= fN+2(α)I±N (α, ρ) + gN+2(α, ρ) (D.25)

which precisely is the given recursion relation (D.10) for n replaced by N + 2. As we assumed
N ∈ N0 this demonstrates that the claimed relation holds for n = 1.

(b) Inductive Step n0 → n0 + 1
For the inductive step we again fixed N ∈ N0 and assume that (D.24) holds for one particular
n0 ∈ N and demonstrate that it then also holds for n0 + 1. We find

I±N+2(n0+1)(α, ρ) =
(D.22c)= fN+2(n0+1)(α)I±N+2(n0+1)−2(α, ρ) + gN+2(n0+1)(α, ρ)

(D.24)= fN+2(n0+1)(α)
[
FN,n0(α)I±N (α, ρ) +GN,n0(α, ρ)

]
+ gN+2(n0+1)(α, ρ)

(D.22a)=
(D.22b)
fN+2(n0+1)(α)

( n0∏
i=1

fN+2i(α)
)
I±N (α, ρ)

+ fN+2(n0+1)(α)
[
n0−1∑
i=0

( i−1∏
j=0

fN+2(n0−j)(α)
)
gN+2(n0−i)(α, ρ)

]
+ gN+2(n0+1)



D. Momentum Space Angular Integration: Computation of Integrals I±n (α, ρ) 215

Absorbing the factors fN+2(n0+1)(α) in the first and second term into the products and rewriting
the last term as gN+2(n0+1)(α, ρ) =

∑−1
i=−1 Πi

s=0fN+2(n0−(s−1))(α)gN+2(n0−i)(α, ρ) we find

· · · =
( n0+1∏

i=1
fN+2i(α)

)
I±N (α, ρ) +

[
n0−1∑
i=0

( i−1∏
j=−1

fN+2(n0−j)(α)
)
gN+2(n0−i)(α, ρ)

]

+
−1∑
i=−1

( i∏
s=0

fN+2(n0−(s−1))(α)
)
gN+2(n0−i)(α, ρ)

Performing an index shift in the product contained in the second term of the first line by
setting s = j + 1 we obtain

· · · =
( n0+1∏

i=1
fN+2i(α)

)
I±N (α, ρ) +

[
n0−1∑
i=0

( i∏
s=0

fN+2(n0−(s−1))(α)
)
gN+2(n0−i)(α, ρ)

]

+
−1∑
i=−1

( i∏
s=0

fN+2(n0−(s−1))(α)
)
gN+2(n0−i)(α, ρ)

Combining the second term of the first line with the term in the second line and subsequently
performing another index shift by setting r = i+ 1 we arrive at

· · · =
( n0+1∏

i=1
fN+2i(α)

)
I±N (α, ρ) +

n0−1∑
i=−1

( i∏
s=0

fN+2(n0−(s−1))(α)
)
gN+2(n0−i)(α, ρ)

=
( n0+1∏

i=1
fN+2i(α)

)
I±N (α, ρ) +

n0∑
r=0

( r−1∏
s=0

fN+2(n0−(s−1))(α)
)
gN+2(n0−(r−1))(α, ρ)

=
( n0+1∏

i=1
fN+2i(α)

)
I±N (α, ρ) +

(n0+1)−1∑
r=0

( r−1∏
s=0

fN+2((n0+1)−s)(α)
)
gN+2((n0+1)−r)(α, ρ)

(D.22a)=
(D.22b)
FN,n0+1(α)I±N (α, ρ) +GN,n0+1(α, ρ) (D.26)

which demonstrates that indeed

I±N+2ñ(α, ρ) = FN,ñ(α)I±N (α, ρ) +GN,ñ(α, ρ) (D.27)

holds for all ñ ≥ 1.

(c) Conclusion
Now, the claimed closed-form expression for I±n with even n ≥ 4 and odd n ≥ 5 follow from
the above result by replacing ñ→ n−N

2 and setting N = 2 and N = 3, respectively.

(2) Closed-Form Expression for n ≥ 1
To prove the claimed relation, we demonstrate via a proof by induction on n that

I±N−2n(α, ρ) = KN,n(α)I±N (α, ρ) + LN,n(α, ρ) (D.28)

holds for all n ≥ 1 where N ∈ (−N0) ∪ {0, 1, 2} is an arbitrary, but fixed integer.

(a) Base Case n = 1
In the initial case, namely for n = 1, the claimed relations reduces to

I±N−2(α, ρ) = KN,1(α)I±N (α, ρ) + LN,1(α, ρ)
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(D.23b)=
(D.23a)

( 1∏
i=1

kN−2i(α)
)
I±N (α, ρ) +

1−1∑
i=0

( i−1∏
j=0

kN−2(1−j)(α)
)
lN−2(1−i)(α, ρ)

= kN−2(α)I±N (α, ρ) +
( 0−1∏
j=0

kN−2(1−j)(α)
)
lN−2(α, ρ)

= kN−2(α)I±N (α, ρ) + lN−2(α, ρ) (D.29)

which precisely is the given recursion relation (D.10) for n replaced by N − 2. As we assumed
N ∈ (−N0) ∪ {0, 1, 2} this demonstrates that the claimed relation holds for n = 1.

(b) Inductive Step n0 → n0 + 1
For the inductive step we again fixed N ∈ (−N0) ∪ {0, 1, 2} and assume that (D.28) holds for
one particular n0 ∈ N and demonstrate that it then also holds for n0 + 1. We find

I±N−2(n0+1)(α, ρ) =
(D.22c)= kN−2(n0+1)(α)I±N−2(n0+1)+2(α, ρ) + lN−2(n0+1)(α, ρ)

(D.28)= kN−2(n0+1)(α)
[
FN,n0(α)I±N (α, ρ) +GN,n0(α, ρ)

]
+ lN−2(n0+1)(α, ρ)

(D.23a)=
(D.23b)
kN−2(n0+1)(α)

( n0∏
i=1

kN−2i(α)
)
I±N (α, ρ)

+ kN−2(n0+1)(α)
[
n0−1∑
i=0

( i−1∏
j=0

kN−2(n0−j)(α)
)
lN−2(n0−i)(α, ρ)

]
+ lN−2(n0+1)

Absorbing the factors kN−2(n0+1)(α) in the first and second term into the products and
rewriting the last term as lN−2(n0+1)(α, ρ) =

∑−1
i=−1 Πi

s=0kN−2(n0−(s−1))(α)lN−2(n0−i)(α, ρ)
we find

· · · =
( n0+1∏

i=1
kN−2i(α)

)
I±N (α, ρ) +

[
n0−1∑
i=0

( i−1∏
j=−1

kN−2(n0−j)(α)
)
lN−2(n0−i)(α, ρ)

]

+
−1∑
i=−1

( i∏
s=0

kN−2(n0−(s−1))(α)
)
lN−2(n0−i)(α, ρ)

Performing an index shift in the product contained in the second term of the first line by
setting s = j + 1 we obtain

· · · =
( n0+1∏

i=1
kN−2i(α)

)
I±N (α, ρ) +

[
n0−1∑
i=0

( i∏
s=0

kN−2(n0−(s−1))(α)
)
lN−2(n0−i)(α, ρ)

]

+
−1∑
i=−1

( i∏
s=0

kN−2(n0−(s−1))(α)
)
lN−2(n0−i)(α, ρ)

Combining the second term of the first line with the term in the second line and subsequently
performing another index shift by setting r = i+ 1 we arrive at

· · · =
( n0+1∏

i=1
kN−2i(α)

)
I±N (α, ρ) +

n0−1∑
i=−1

( i∏
s=0

kN−2(n0−(s−1))(α)
)
lN−2(n0−i)(α, ρ)

=
( n0+1∏

i=1
kN−2i(α)

)
I±N (α, ρ) +

n0∑
r=0

( r−1∏
s=0

kN−2(n0−(s−1))(α)
)
lN−2(n0−(r−1))(α, ρ)
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=
( n0+1∏

i=1
kN−2i(α)

)
I±N (α, ρ) +

(n0+1)−1∑
r=0

( r−1∏
s=0

kN−2((n0+1)−s)(α)
)
lN−2((n0+1)−r)(α, ρ)

(D.23b)=
(D.23a)
KN,n0+1(α)I±N (α, ρ) + LN,n0+1(α, ρ) (D.30)

which demonstrates that indeed

I±N−2ñ(α, ρ) = KN,ñ(α)I±N (α, ρ) + LN,ñ(α, ρ) (D.31)

holds for all ñ ≥ 1.

(c) Conclusion
Now, the claimed closed-form expression for I±n with odd n ≤ −1 and even n ≤ −2 follow
from the above result by replacing ñ→ −n−N2 and setting N = 1 and N = 0, respectively.

This concludes the proof.

We can now put together all the results to arrive at the following lemma which provides a closed-
form expression for the functions I±n for any n ∈ Z.

Lemma D.2.3 (Closed-Form Expression for Functions I±n for n ∈ Z)

For n ∈ Z the functions I±n : R+
0 × (−1, 1)→ R introduced in Definition D.1.1 evaluate to

I±n (α, ρ) =



K0,−n2 (α)I±0 (α, ρ) + L0,−n2 (α, ρ) n ≤ −2 ∧ n even

K1, 1−n
2

(α)I±1 (α, ρ) + L1, 1−n
2

(α, ρ) n ≤ −1 ∧ n odd
2
ρ
s0(α,ρ)
α2 − 2

ρ
c−1(α,ρ)

α for n = 0

− 2
ρ
c0(α,ρ)
α for n = 1

2
ρ

[
Si(α
√

1 + ρ)− Si(α
√

1− ρ)
]

for n = 2

2
ρα
[
Ci(α

√
1 + ρ)− Ci(α

√
1− ρ)

]
− 2

ρs1(α, ρ) for n = 3

F2,n−2
2

(α)I±2 (α, ρ) +G2,n−2
2

(α, ρ) for n ≥ 4 ∧ n even

F3,n−3
2

(α)I±3 (α, ρ) +G3,n−3
2

(α, ρ) for n ≥ 5 ∧ n odd

(D.32)

where the functions FN,n, GN,n,KN,n, LN,n are those introduced in (D.22a), (D.22b), (D.23a)
and (D.23b), respectively.

Proof. To arrive at the claimed expression, we combine the explicit expressions for I±n where n ∈
{0, 1, 2, 3} from Proposition D.1.3 with the closed-form expressions derived in Proposition D.2.2
which together cover all cases n ∈ Z.





E
Explicit Form of Multipole Matrices at

Multipole Orders l = 0 and l = 1

Contents

E.1 Multipole Matrices for l = 0 . . . . . . . . . . . . . . . . . . . . . . . . 219
E.1.1 Factorized Form of Trigonometric Functions . . . . . . . . . . . . . . . 219
E.1.2 Non-Factorized Form of Trigonometric Functions . . . . . . . . . . . . 220

E.2 Multipole Matrices at Multipole Order l = 1 . . . . . . . . . . . . . . 221

In this short appendix we give explicit expressions for the multipole matrices K0, Mll, Nll and their
asterisked counterparts

∗
Mll,

∗
Nll at the lowest multipole orders l = 0 and l = 1 which are obtained

by evaluating Definition 4.2.11 along with the explicit expression for the eigenvalues t±n derived in
Lemma 4.2.13. For better readability and to reduce the size of the matrices, we have chosen a
block representation which ultimately traces back to Definition 4.1.6 and Terminology 4.1.7.

E.1 Multipole Matrices for l = 0

E.1.1 Factorized Form of Trigonometric Functions

Auxiliary Calculation E.1.1 (Multipole Matrices for l = 0 in Factorized Form)

At multipole order l = 0 the multipole matrices introduced in Definition 4.2.11 read

K0

16π2 =



0 01×3 0

03×1

i
|~p | 01×2

03×102×1 02×2

0 01×3 0


cos(|~p |r) +



1 01×3 0

03×1
− i
|~p | 01×2

03×102×1 02×2

0 01×3 1


sin(|~p |r)
|~p |r

(E.1a)

219



220 E.1. Multipole Matrices for l = 0

M00

16π2 =



0 01×3 0

03×1
− 1
|~p ||~q | 01×2

03×102×1 02×2

0 01×3 0


cos(|~p |r) cos(|~q |r) +



1 − i
|~q | 01×2 1

− i
|~p | −

1
|~p ||~q | 01×2 − i

|~p |

02×1 02×1 02×2 02×1

1 − i
|~q | 01×2 1


sin(|~p |r)
|~p |r

sin(|~q |r)
|~q |r

+



0 i
|~q | 01×2 0

03×1

1
|~p ||~q | 01×2

03×102×1 02×2

0 i
|~q | 01×2 0


sin(|~p |r)
|~p |r

cos(|~q |r) +



0 01×3 0

i
|~p |

1
|~p ||~q | 01×2 i

|~p |

02×1 02×1 02×2 02×1

0 01×3 0


cos(|~p |r) sin(|~q |r)

|~q |r
(E.1b)

N00

16π2 =



0 01×3 0

03×1

1
|~p ||~q | 01×2

03×102×1 02×2

0 01×3 0


cos(|~p |r) cos(|~q |r) +



1 i
|~q | 01×2 1

− i
|~p |

1
|~p ||~q | 01×2 − i

|~p |

02×1 02×1 02×2 02×1

1 i
|~q | 01×2 1


sin(|~p |r)
|~p |r

sin(|~q |r)
|~q |r

+



0 − i
|~q | 01×2 0

03×1
− 1
|~p ||~q | 01×2

03×102×1 02×2

0 − i
|~q | 01×2 0


sin(|~p |r)
|~p |r

cos(|~q |r) +



0 01×3 0

i
|~p | − 1

|~p ||~q | 01×2 i
|~p |

02×1 02×1 02×2 02×1

0 01×3 0


cos(|~p |r) sin(|~q |r)

|~q |r
(E.1c)

∗
M00

16π2 =



0 01×3 0

03×1
− 1
|~p ||~q | 01×2

03×102×1 02×2

0 01×3 0


cos(|~p |r)
|~p |r

cos(|~q |r)
|~q |r

+



0 01×3 0

03×1
− 1
|~p ||~q | 01×2

03×102×1 02×2

0 01×3 0


sin(|~p |r)
(|~p |r)2

sin(|~q |r)
(|~q |r)2

+



0 01×3 0

03×1

1
|~p ||~q | 01×2

03×102×1 02×2

0 01×3 0


sin(|~p |r)
(|~p |r)2

cos(|~q |r)
|~q |r

+



0 01×3 0

03×1

1
|~p ||~q | 01×2

03×102×1 02×2

0 01×3 0


cos(|~p |r)
|~p |r

sin(|~q |r)
(|~q |r)2 (E.1d)

∗
N00

16π2 =



0 01×3 0

03×1

1
|~p ||~q | 01×2

03×102×1 02×2

0 01×3 0


cos(|~p |r)
|~p |r

cos(|~q |r)
|~q |r

+



0 01×3 0

03×1

1
|~p ||~q | 01×2

03×102×1 02×2

0 01×3 0


sin(|~p |r)
(|~p |r)2

sin(|~q |r)
(|~q |r)2

+



0 01×3 0

03×1
− 1
|~p ||~q | 01×2

03×102×1 02×2

0 01×3 0


sin(|~p |r)
(|~p |r)2

cos(|~q |r)
|~q |r

+



0 01×3 0

03×1
− 1
|~p ||~q | 01×2

03×102×1 02×2

0 01×3 0


cos(|~p |r)
|~p |r

sin(|~q |r)
(|~q |r)2 (E.1e)

Proof. To arrive at the claimed expressions we insert the explicit form of the eigenvalues t±n as
derived in Lemma 4.2.13 into Definition 4.2.11, evaluate at l = 0 and factorize the trigonometric
functions.

E.1.2 Non-Factorized Form of Trigonometric Functions

The calculations in Subsection 6.1.3 simplify considerably if the matrices are given with trigono-
metric functions having arguments |~p | ± |~q |.
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Auxiliary Calculation E.1.2 (Multipole Matrix N00 in Non-Factorized Form)

At multipole order l = 0 the multipole matrix N00 in non-factorized form reads

N00

8π2 =



−1 − i
|~q | 01×2 −1

i
|~p |

(|~p |r)(|~q |r)−1
|~p ||~q | 01×2 i

|~p |

02×1 02×1 02×2 02×1

− 1 − i
|~q | 01×2 −1


cos
[
(|~p |+ |~q |)r

]
(|~p |r)(|~q |r) +



1 i
|~q | 01×2 1

− i
|~p |

(|~p |r)(|~q |r)+1
|~p ||~q | 01×2 − i

|~p |

02×1 02×1 02×2 02×1

1 i
|~q | 01×2 1


cos
[
(|~p | − |~q |)r

]
(|~p |r)(|~q |r)

+



0 −ir 01×2 0

ir − (|~p |+|~q |)r
|~p ||~q | 01×2 ir

02×1 02×1 02×2 02×1

0 −ir 01×2 0


sin
[
(|~p |+ |~q |)r

]
(|~p |r)(|~q |r) +



0 −ir 01×2 0

− ir (|~p |−|~q |)r
|~p ||~q | 01×2 −ir

02×1 02×1 02×2 02×1

0 −ir 01×2 0


sin
[
(|~p | − |~q |)r

]
(|~p |r)(|~q |r) (E.2a)

Proof. To arrive at the claimed expressions we insert the explicit form of the eigenvalues t±n as
derived in Lemma 4.2.13 into Definition 4.2.11, evaluate at l = 0 and factorize the trigonometric
functions.

E.2 Multipole Matrices at Multipole Order l = 1

For the evaluation of the second variation of the iε-regularized causal action for Lorentz boosts in
Appendix F it is most convenient to have the multipole matrices for l = 1 with the trigonometric
functions in factorized form.

Auxiliary Calculation E.2.1 (Multipole Matrices for l = 1 in Factorized Form)

At multipole order l = 1 the multipole matrices introduced in Definition 4.2.11 read

M11

16π2 =



−1 2i
|~q | − 2i

|~q | 0 −1

2i
|~p |

4
|~p ||~q | − 4

|~p ||~q | 0 2i
|~p |

− 2i
|~p | −

4
|~p ||~q | −

4
|~p ||~q | 0 − 2i

|~p |

0 0 0 0 0

− 1 2i
|~q | − 2i

|~q | 0 −1


cos(|~p |r)
|~p |r

cos(|~q |r)
|~q |r

+



−1 − i[(|~q |r)2−2]
|~q | − 2i

|~q | 0 −1

− i[(|~p |r)2−2]
|~p |

[(|~p |r)2−2][(|~q |r)2−2]
|~p ||~q |

2[(|~p |r)2−2]
|~p ||~q | 0 − i[(|~p |r)2−2]

|~p |

− 2i
|~p |

2[(|~q |r)2−2]
|~p ||~q | − 4

|~p ||~q | 0 − 2i
|~p |

0 0 0 0 0

− 1 − i[(|~q |r)2−2]
|~q | − 2i

|~q | 0 −1


sin(|~p |r)
(|~p |r)2

sin(|~q |r)
(|~q |r)2

+



1 − 2i
|~q |

2i
|~q | 0 1

i[(|~p |r)2−2]
|~p |

2[(|~p |r)2−2]
|~p ||~q | − 2[(|~p |r)2−2]

|~p ||~q | 0 i[(|~p |r)2−2]
|~p |

2i
|~p |

4
|~p ||~q |

4
|~p ||~q | 0 2i

|~p |

0 0 0 0 0

1 − 2i
|~q |

2i
|~q | 0 1


sin(|~p |r)
(|~p |r)2

cos(|~q |r)
|~q |r

+



1 i[(|~q |r)2−2]
|~q |

2i
|~q | 0 1

− 2i
|~p |

2[(|~q |r)2−2]
|~p ||~q |

4
|~p ||~q | 0 − 2i

|~p |

2i
|~p | − 2[(|~q |r)2−2]

|~p ||~q |
4

|~p ||~q | 0 2i
|~p |

0 0 0 0 0

1 i[(|~q |r)2−2]
|~q |

2i
|~q | 0 1


cos(|~p |r)
|~p |r

sin(|~q |r)
(|~q |r)2 (E.3a)
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N11

16π2 =



1 2i
|~q | − 2i

|~q | 0 1

− 2i
|~p |

4
|~p ||~q | − 4

|~p ||~q | 0 − 2i
|~p |

2i
|~p | − 4

|~p ||~q | −
4

|~p ||~q | 0 2i
|~p |

0 0 0 0 0

1 2i
|~q | − 2i

|~q | 0 1


cos(|~p |r)
|~p |r

cos(|~q |r)
|~q |r

+



1 − i[(|~q |r)2−2]
|~q | − 2i

|~q | 0 1

i[(|~p |r)2−2]
|~p |

[(|~p |r)2−2][(|~q |r)2−2]
|~p ||~q |

2[(|~p |r)2−2]
|~p ||~q | 0 i[(|~p |r)2−2]

|~p |

2i
|~p |

2[(|~q |r)2−2]
|~p ||~q | − 4

|~p ||~q | 0 2i
|~p |

0 0 0 0 0

1 − i[(|~q |r)2−2]
|~q | − 2i

|~q | 0 1


sin(|~p |r)
(|~p |r)2

sin(|~q |r)
(|~q |r)2

+



−1 − 2i
|~q |

2i
|~q | 0 −1

− i[(|~p |r)2−2]
|~p |

2[(|~p |r)2−2]
|~p ||~q | − 2[(|~p |r)2−2]

|~p ||~q | 0 − i[(|~p |r)2−2]
|~p |

− 2i
|~p |

4
|~p ||~q |

4
|~p ||~q | 0 − 2i

|~p |

0 0 0 0 0

− 1 − 2i
|~q |

2i
|~q | 0 −1


sin(|~p |r)
(|~p |r)2

cos(|~q |r)
|~q |r

+



−1 i[(|~q |r)2−2]
|~q |

2i
|~q | 0 −1

2i
|~p |

2[(|~q |r)2−2]
|~p ||~q |

4
|~p ||~q | 0 2i

|~p |

− 2i
|~p | −

2[(|~q |r)2−2]
|~p ||~q |

4
|~p ||~q | 0 − 2i

|~p |

0 0 0 0 0

− 1 i[(|~q |r)2−2]
|~q |

2i
|~q | 0 −1


cos(|~p |r)
|~p |r

sin(|~q |r)
(|~q |r)2 (E.3b)

∗
M11

4π2 =



0 01×3 0

03×1

24 −24 0

03×1−24 [((|~p |r)2 − (|~q |r)2)2 + 24] 0

0 0 0

0 01×3 0


cos(|~p |r)
(|~p |r)2

cos(|~q |r)
(|~q |r)2

+



0 01×3 0

03×1

4[(|~p |r)2(|~q |r)2

−2((|~p |r)2+(|~q |r)2)+6]
−[((|~p |r)2−(|~q |r)2)2

−8((|~p |r)2+(|~q |r)2)+24] 0

03×1−[((|~p |r)2−(|~q |r)2)2

−8((|~p |r)2+(|~q |r)2)+24]
4[((|~p |r)4+(|~q |r)4)
−2((|~p |r)2+(|~q |r)2)+6] 0

0 0 0

0 01×3 0



sin(|~p |r)
(|~p |r)3

sin(|~q |r)
(|~q |r)3

+



0 01×3 0

03×1

8[(|~p |r)2 − 3] [(|~p |r)2((|~p |r)2−(|~q |r)2))
−8(|~p |r)2+24] 0

03×1[(|~p |r)2((|~p |r)2−(|~q |r)2)
−8(|~p |r)2+24]

−[−5(|~p |r)2(|~q |r)2+(|~q |r)4

+4(|~p |r)4−8(|~p |r)2+24] 0

0 0 0

0 01×3 0



sin(|~p |r)
(|~p |r)3

cos(|~q |r)
(|~q |r)2

+



0 01×3 0

03×1

8[(|~q |r)2 − 3] [(|~q |r)2((|~q |r)2−(|~p |r)2))
−8(|~q |r)2+24] 0

03×1[(|~p |r)2((|~q |r)2−(|~p |r)2)
−8(|~p |r)2+24]

−[−5(|~p |r)2(|~q |r)2+(|~p |r)4

+4(|~q |r)4−8(|~q |r)2+24] 0

0 0 0

0 01×3 0



cos(|~p |r)
(|~p |r)2

sin(|~q |r)
(|~q |r)3 (E.3c)
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∗
N11

4π2 =



0 01×3 0

03×1

24 −24 0

03×1−24 [((|~p |r)2 − (|~q |r)2)2 + 24] 0

0 0 0

0 01×3 0


cos(|~p |r)
(|~p |r)2

cos(|~q |r)
(|~q |r)2

+



0 01×3 0

03×1

4[(|~p |r)2(|~q |r)2

−2((|~p |r)2+(|~q |r)2)+6]
−[((|~p |r)2−(|~q |r)2)2

−8((|~p |r)2+(|~q |r)2)+24] 0

03×1−[((|~p |r)2−(|~q |r)2)2

−8((|~p |r)2+(|~q |r)2)+24]
4[((|~p |r)4+(|~q |r)4)
−2((|~p |r)2+(|~q |r)2)+6] 0

0 0 0

0 01×3 0



sin(|~p |r)
(|~p |r)3

sin(|~q |r)
(|~q |r)3

+



0 01×3 0

03×1

8[(|~p |r)2 − 3] [(|~p |r)2((|~p |r)2−(|~q |r)2))
−8(|~p |r)2+24] 0

03×1[(|~p |r)2((|~p |r)2−(|~q |r)2)
−8(|~p |r)2+24]

−[−5(|~p |r)2(|~q |r)2+(|~q |r)4

+4(|~p |r)4−8(|~p |r)2+24] 0

0 0 0

0 01×3 0



sin(|~p |r)
(|~p |r)3

cos(|~q |r)
(|~q |r)2

+



0 01×3 0

03×1

8[(|~q |r)2 − 3] [(|~q |r)2((|~q |r)2−(|~p |r)2))
−8(|~q |r)2+24] 0

03×1[(|~p |r)2((|~q |r)2−(|~p |r)2)
−8(|~p |r)2+24]

−[−5(|~p |r)2(|~q |r)2+(|~p |r)4

+4(|~q |r)4−8(|~q |r)2+24] 0

0 0 0

0 01×3 0



cos(|~p |r)
(|~p |r)2

sin(|~q |r)
(|~q |r)3 (E.3d)

Proof. To arrive at the claimed expressions we insert the explicit form of the eigenvalues t±n as
derived in Lemma 4.2.13 into Definition 4.2.11, evaluate at l = 0 and factorize the trigonometric
functions.
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In this appendix we evaluate the angular-integrated incomplete Fourier transforms which enter
the calculation of δ2Sε for Lorentz boosts.

F.1 Condensed Incomplete Fourier Transforms

In order to benefit from the compact notation provided by the Hadamard product, we start by
rewriting the incomplete Fourier transforms from Lemma 4.2.12 as traces of Hadamard products
involving the coefficient matrices and the multipole matrices.

Proposition F.1.1 (Hadamard Product Form of Lemma 4.2.12)

The non-vanishing condensed incomplete Fourier transforms as defined in Definition 5.1.3 can
be expressed in terms of Hadamard products as{

F
[
Kε

00
]}

=
∫
Xε

d(ξ0, r) r2EεK√
4π

tr
[
CεK
(
ZK � KT

0
)]

(F.1a)


{
F
[
Mε
lm|l(−m)

]}{
F
[
Nε
lm|l(−m)

]}
 =

∫
Xε

d(ξ0, r)

(−1)mr2EεM tr
[
CεM
(
Z�MT

ll

)
+ Cε15

(
Z�

∗
MT
ll

)]
r2EεN tr

[
CεN
(
Z�NT

ll

)
−Bε15

(
Z�

∗
NT
ll

)]


(F.1b)
{
F
[
Vεlm|l(−m)

]}{
F
[
Wε
lm|l(−m)

]}
 =

∫
R

dξ0

 (−1)mr2EεV tr
[
CεV
(
Z�MT

ll

)]
r2EεW tr

[
CεW
(
Z�NT

ll

)]

∣∣∣∣∣∣
r=Rεmax(ξ0)

(F.1c)
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where we suppressed the momentum arguments of the incomplete Fourier transforms. The
matrices ZK and Z appearing in the above expressions are defined as

ZK =



−ω(|~p |) −ω(|~p |) 01×2 −ω(|~p |)

|~p | |~p | 01×2 |~p |

02×1 02×1 02×2 02×1

µ µ 01×2 µ


(F.2a) Z =



ω(|~p |)ω(|~q |) −|~p |ω(|~q |) 01×2 −µω(|~q |)

− ω(|~p |)|~q | |~p ||~q | 01×2 µ|~q |

02×1 02×1 02×2 02×1

− µω(|~p |) µ|~p | 01×2 µ2


(F.2b)

Proof. To prove the statement, we make use of the following property of the Hadamard product:
Let A,B ∈ Cn×n and v, w ∈ Cn be given matrices and vectors, respectively, and let Dv, Dw

denote the n× n diagonal matrices with entries given by

(Dv)ij = δijvi and (Dw)ij = δijwi

By making use of the definition of the Hadamard product and the matrices Dv, Dw, an inner
product of the form vT(A�B)w can be rewritten as a trace in the following way

vT(A�B)w =
n∑

i,j=1
vi(A�B)ijwj =

n∑
i,j=1

viAijwj(BT)ji

=
n∑

i,j=1

n∑
k,l=1

viδikAklδljwj(BT)ji =
n∑
i=1

[
n∑

j,k,l=1
(Dv)ikAkl(Dw)lj(BT)ji

]

= tr
(
DvADwB

T
)

In order to combine the matrices Dv and Dw into one object, we first exploit the cyclicity of
the trace and subsequently make use the relation(

DwB
TDv

)
ij

=
n∑

k,l=1
(Dw)ik(BT)kl(Dv)lj =

n∑
k,l=1

wiδik(BT)klδljvj

= wi(BT)ijvj = (wvT)ij(BT)ij =
(

(wvT)�BT
)
ij

In this way, the initial inner product can be cast into the form

vT(A�B)w = tr
[
A
(
Z�BT)] where Z := wvT

By identifying the matrices A,B and vectors v, w in the above relation as

A ≡ CεM, B ≡Mll′ and v ≡


p0

|~p |
0
0
µ

 , w ≡


q0

|~q |
0
0
µ


the condensed incomplete Fourier transform of F

[
Mε
lm|l(−m)

]
as given in (4.44b) takes the

form{
F
[
Mε
lm|l(−m)

]}
=
∫
Xε

d(ξ0, r) (−1)mr2EεM

(
tr
[
CεM
(
Z�MT

ll

)]
+ Cε tr

[
15
(
Z�

∗
MT
ll′
)])

where for the asterisked term we identified the matrix A as A ≡ 15. For the condensed
incomplete Fourier transform of F

[
Nε
lm|l(−m)

]
, F
[
Vεlm|l(−m)

]
and F

[
Wε
lm|l(−m)

]
we proceed in
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precisely the same way with the slight difference that the latter two do not involve asterisked
terms. In all four cases the matrix Z is given by

Z =



ω(|~p |)ω(|~q |) −|~p |ω(|~q |) 01×2 −µω(|~q |)

− ω(|~p |)|~q | |~p ||~q | 01×2 µ|~q |

02×1 02×1 02×2 02×1

− µω(|~p |) µ|~p | 01×2 µ2


For the condensed incomplete Fourier transform of F

[
Kε

00
]
we have to identify the matrices A,

B and vectors v, w as

A ≡ CεK, B ≡ K0 and v ≡ 15×1, w ≡


p0

|~p |
0
0
µ


and thus obtain {

F
[
Kε

00
]}

=
∫
Xε

d(ξ0, r) r2EεK√
4π

tr
[
CεK
(
ZK � KT

0
)]

(F.3)

where the matrix ZK is given by

ZK =



−ω(|~p |) −ω(|~p |) 01×2 −ω(|~p |)

|~p | |~p | 01×2 |~p |

02×1 02×1 02×2 02×1

µ µ 01×2 µ


(F.4)

This concludes the proof.

By using the Hadamard product form of the condensed incomplete Fourier transforms as derived
in this proposition, the integrals of the momentum-dependent parts appearing in (5.28b) can be
computed more conveniently.

F.2 Momentum Integration in δ2Sε for Lorentz Boosts

In order to demonstrate that the iε-regularized causal action is invariant under Lorentz boosts of
the velocity vector of the regularization, the corresponding second variation as derived in (5.28b)
has to vanish. For the sake of clarity and to streamline the proof of Lemma F.2.2, we outsourced
the lengthy computations to the following preparatory proposition.

Proposition F.2.1 (Momentum Integrals for Lorentz Boosts)

Let EεK, EεM, EεN, EεV, EεW be the regularization-dependent functions introduced in (4.13b),
(4.19a,ii), (4.19b,ii), (4.24a,i), (4.24b,i), let Z, ZK be the matrices from (F.2a), (F.2b) and let
furthermore K0, M11, N11,

∗
M11,

∗
N11 denote the first multipole matrices as explicitly given in

Auxiliary Calculation E.2.1. Then the following relations hold
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∞∫
0

d|~p | |~p |2

(2π)3 ωpe−εωp EεK
(
ZK � KT

0
)

=

= 128π2



i
(
g − µ2(ξε−)0(ξε−)0 g′

Ξε−

)
0 01×2 0

0 −i(ξε−)0(µr)2 g′

Ξε−
01×2 0

02×1 02×1 02×2 02×1

0 0 01×2 −µ(ξε−)0g


(F.5a)

∞∫
0

d|~p | |~p |2

(2π)3 |~p |2e−εωp EεK
(
ZK � KT

0
)

=

= 128π2



−µ2(ξε−)0
[
3 g′

Ξε−
+ (µr)2

(Ξε−)2

(
g′′ − g′

Ξε−

)]
0 01×2 0

0 −
[
5(µr)2 g′

Ξε−
+ (µr)4

Ξε−

(
g′′ − g′

Ξε−

)]
01×2 0

02×1 02×1 02×2 02×1

0 0 01×2 iµ
(

3g + (µr)2 g′

Ξε−

)


(F.5b)

∞∫
0

d|~p | |~p |2

(2π)3 |~p |e
−εωp

∞∫
0

d|~q | |~q |2

(2π)3 |~q |e
−εωq

{
EεM

EεV

}(
Z�MT

11
)

=

= 64π2

{
1
8

∂rLε(ξ)

}

−(µr)4
[
(ξε−)0 g′

Ξε−

]2
−(ξε−)0r2(µr)2 g′

Ξε−

(
g + (µr)2 g′

Ξε−

)
01×2 i(ξε−)0r(µr)3g g′

Ξε−

− (ξε−)0r2(µr)2 g′

Ξε−

(
g− + (µr)2 g′

Ξε−

)
−r4

(
g− + (µr)2 g′

Ξε−

)2
01×2 ir3(µr)

(
g2 + (µr)2g g′

Ξε−

)
02×1 02×1 02×2 02×1

i(ξε−)0r(µr)3g g′

Ξε−
ir3(µr)

(
g2 + (µr)2g g′

Ξε−

)
01×2 r2(µr)2g2


(F.5c)

∞∫
0

d|~p | |~p |2

(2π)3 |~p |e
−εωp

∞∫
0

d|~q | |~q |2

(2π)3 |~q |e
−εωq

{
EεN

EεW

}(
Z�NT

11
)

=

= 64π2

{
1
8

∂rLε(ξ)

}

(µr)4
∣∣∣(ξε−)0 g′

Ξε−

∣∣∣2 (ξε+)0r2(µr)2 ḡ′

Ξε+

(
g + (µr)2 g′

Ξε−

)
01×2 −i(ξε+)0r(µr)3g ḡ′

Ξε+

(ξε−)0r2(µr)2 g′

Ξε−

(
ḡ + (µr)2 ḡ′

Ξε+

)
r4
∣∣∣g + (µr)2 g′

Ξε−

∣∣∣2 01×2 −ir3(µr)
(
|g|2 + (µr)2g ḡ′

Ξε+

)
02×1 02×1 02×2 02×1

i(ξε−)0r(µr)3ḡ g′

Ξε−
ir3(µr)

(
|g|2 + (µr)2ḡ g′

Ξε−

)
01×2 (mr2)2|g|2


(F.5d)

∞∫
0

d|~p | |~p |2

(2π)3 |~p |e
−εωp

∞∫
0

d|~q | |~q |2

(2π)3 |~q |e
−εωq EεM

(
Z�

∗
MT

11
)

=

= 64π2



0 0 01×2 0

0 −3g2 − 2(µr)2g g′

Ξε−
− (µr)4

(
g′

Ξε−

)2
01×2 0

02×1 02×1 02×2 02×1

0 0 01×2 0


(F.5e)

∞∫
0

d|~p | |~p |2

(2π)3 |~p |e
−εωp

∞∫
0

d|~q | |~q |2

(2π)3 |~q |e
−εωq EεN

(
Z�

∗
NT

11
)

=

= 64π2



0 0 01×2 0

0 3|g|2 + 2(µr)2 Re
[
ḡ g′

Ξε−

]
+ (µr)2

∣∣∣ g′Ξε−

∣∣∣2 01×2 0

02×1 02×1 02×2 02×1

0 0 01×2 0


(F.5f)
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Proof. To prove the stated relations, we make use of the Hadamard product form of the
condensed incomplete Fourier transforms as given in Proposition F.1.1 and consider the
different terms separately.

(1) Expressions containing K0
We start by evaluating the simplest expression, namely the one containing K0. Inserting the
definition of the matrix ZK from (F.2b), the explicit form of the function EεK from (4.13b) as
well as the matrix K0 from (E.1a), we obtain

∞∫
0

d|~p | |~p |2

(2π)3 ωpe−εωp EεK
(
ZK � KT

0
)

=

(4.13b)=
(F.2a)

256π2
∞∫

0

d|~p | |~p |2

(2π)3
ωpe−(ε+iξ0)ωp

2ωp



−ω(|~p |) −ω(|~p |) 01×2 −ω(|~p |)

|~p | |~p | 01×2 |~p |

02×1 02×1 02×2 02×1

µ µ 01×2 µ


�

�

[
diag

(
0, i
|~p |

, 0, 0, 0
)

cos(|~p |r) + diag
(

1,− i
|~p |

, 0, 0, 1
)

sin(|~p |r)
|~p |r

]

Carrying out the Hadamard product yields

· · · = 128π2
∞∫

0

d|~p | |~p |2

(2π)3 e−(ε+iξ0)ωp

[
diag

(
0, i, 0, 0, 0

)
cos(|~p |r)

+ diag
(
− ωp,−i, 0, 0, µ

) sin(|~p |r)
|~p |r

]

Having arrived at this point, the integral can be computed explicitly using the corresponding
relation from Corollary A.2.3. Simplifying the resulting expression by cancelling and combining
terms results in

∞∫
0

d|~p | |~p |2

(2π)3 ωpe−εωp EεK
(
ZK � KT

0
)

=

(A.12)= 128π2



i
(
g − µ2(ξε−)0(ξε−)0 g′

Ξε−

)
0 01×2 0

0 −i(ξε−)0(µr)2 g′

Ξε−
01×2 0

02×1 02×1 02×2 02×1

0 0 01×2 −µ(ξε−)0g



For the same integral with the factor ωp replaced by two more powers of |~p | in the integrand,
we analogously find the following similar, though slightly more complicated expression

∞∫
0

d|~p | |~p |2

(2π)3 |~p |2e−εωp EεK
(
ZK � KT

0
)

=

(A.12)= 128π2



−µ2(ξε−)0
[
3 g′

Ξε−
+ (µr)2

(Ξε−)2

(
g′′ − g′

Ξε−

)]
0 01×2 0

0 −
[
5(µr)2 g′

Ξε−
+ (µr)4

Ξε−

(
g′′ − g′

Ξε−

)]
01×2 0

02×1 02×1 02×2 02×1

0 0 01×2 iµ
(

3g + (µr)2 g′

Ξε−

)


(F.6)

(2) Expressions containing M11 and N11
Next, we consider terms which contain the multipole matrices M11 and N11, respectively.
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(a) Terms containing M11
Inserting the definition of the matrix Z from (F.2b) (with zero rows and columns suppressed),
the explicit form of the function EεM from (4.19a,ii) as well as the matrix M11 from (E.3a)
(again, with zero rows and columns suppressed), we obtain

∞∫
0

d|~p | |~p |2

(2π)3 |~p |e
−εωp

∞∫
0

d|~q | |~q |2

(2π)3 |~q |e
−εωq

{
EεM

EεV

}(
Z�MT

11
)

=

(4.19a,ii)=
(F.2b)

256π2

{
1
8

∂rLε(ξ)

} ∞∫
0

d|~p | |~p |2

(2π)3
|~p |e−(ε+iξ0)ωp

2ωp

∞∫
0

d|~q | |~q |2

(2π)3
|~q |e−(ε+iξ0)ωq

2ωq
×

×


ω(|~p |)ω(|~q |) −|~p |ω(|~q |) −µω(|~q |)

−ω(|~p |)|~q | |~p ||~q | µ|~q |

−µω(|~p |) µ|~p | µ2

�
 −1 2 i

|~p | −1

2 i
|~q | 4 1

|~p ||~q | 2 i
|~q |

−1 2 i
|~p | −1

cos(|~p |r)
|~p |r

cos(|~q |r)
|~q |r

+


−1

[
2− (|~p |r)2] i

|~p | −1[
2− (|~q |r)2] i

|~q |
[
2− (|~p |r)2][2− (|~q |r)2] 1

|~p ||~q |
[
2− (|~q |r)2] i

|~q |

−1
[
2− (|~p |r)2] i

|~p | −1

 sin(|~p |r)
(|~p |r)2

sin(|~q |r)
(|~q |r)2

+


1 −

[
2− (|~p |r)2] i

|~p | 1

−2 i
|~q | −2

[
2− (|~p |r)2] 1

|~p ||~q | −2 i
|~q |

1 −
[
2− (|~p |r)2] i

|~p | 1

 sin(|~p |r)
(|~p |r)2

cos(|~q |r)
|~q |r

+


1 −2 i

|~p | 1

−
[
2− (|~q |r)2] i

|~q | −2
[
2− (|~q |r)2] 1

|~p ||~q | −
[
2− (|~q |r)2] i

|~q |

1 −2 i
|~p | 1

cos(|~p |r)
|~p |r

sin(|~q |r)
(|~q |r)2


Carrying out the remaining Hadamard products and factoring out powers of r, we find

· · · = 64π2

{
1
8

∂rLε(ξ)

} ∞∫
0

d|~p |
(2π)3

e−(ε+iξ0)ωp

ωp

∞∫
0

d|~q |
(2π)3

e−(ε+iξ0)ωq

ωq
×

×

[
1
r2


−ωpωq −2iωq µωq

−2iωp 4 2iµ

µωp 2iµ −µ2

|~p |2 cos(|~p |r)|~q |2 cos(|~q |r)

+ 1
r4


−ωpωq −i

[
2− (|~p |r)2]ωq µωq

−iωp
[
2− (|~q |r)2] [

2− (|~p |r)2][2− (|~q |r)2] iµ
[
2− (|~q |r)2]

µωp iµ
[
2− (|~p |r)2] −µ2

|~p | sin(|~p |r)|~q | sin(|~q |r)

+ 1
r3


ωpωq i

[
2− (|~p |r)2]ωq −µωq

2iωp −2
[
2− (|~p |r)2] −2iµ

−µωp −iµ
[
2− (|~p |r)2] µ2

|~p | sin(|~p |r)|~q |2 cos(|~q |r)

+ 1
r3

 ωpωq 2iωq −µωq
iωp
[
2− (|~q |r)2] −2

[
2− (|~q |r)2] −iµ

[
2− (|~q |r)2]

−µωp −2iµ µ2

|~p |2 cos(|~p |r)|~q | sin(|~q |r)
]

Having arrived at this point, the integrals can by computed explicitly using the relations from
Corollary A.2.3. Simplifying the resulting expression by cancelling and combining terms and
restoring the zero rows and columns results in

∞∫
0

d|~p | |~p |2

(2π)3 |~p |e
−εωp

∞∫
0

d|~q | |~q |2

(2π)3 |~q |e
−εωq

{
EεM
EεV

}(
Z�MT

11
)

=
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(A.12)= 64π2

{
1
8

∂rLε(ξ)

}

−(µr)4
[
(ξε−)0 g′

Ξε−

]2
−(ξε−)0r2(µr)2 g′

Ξε−

(
g + (µr)2 g′

Ξε−

)
01×2 i(ξε−)0r(µr)3g g′

Ξε−

− (ξε−)0r2(µr)2 g′

Ξε−

(
g− + (µr)2 g′

Ξε−

)
−r4

(
g− + (µr)2 g′

Ξε−

)2
01×2 ir3(µr)

(
g2 + (µr)2g g′

Ξε−

)
02×1 02×1 02×2 02×1

i(ξε−)0r(µr)3g g′

Ξε−
ir3(µr)

(
g2 + (µr)2g g′

Ξε−

)
01×2 r2(µr)2g2



(b) Terms containing N11
For terms containing N11 we basically proceed in the same way as before, though with a slight
difference: As a consequence of different signs in the exponential factors contained in the
function EεN compared with EεM as well as the different form of the matrix N11 itself, we will
end up with a different matrix in comparison to the previous result. Inserting the definition of
the matrix Z from (F.2b) (with zero rows and columns suppressed), the explicit form of the
function EεN from (4.19b,ii) as well as the matrix N11 from (E.3b) (again, with zero rows and
columns suppressed), we obtain
∞∫

0

d|~p | |~p |2

(2π)3 |~p |e
−εωp

∞∫
0

d|~q | |~q |2

(2π)3 |~q |e
−εωq

{
EεN

EεW

}(
Z�NT

11
)

=

(4.19b,ii)=
(F.2b)

256π2

{
1
8

∂rLε(ξ)

} ∞∫
0

d|~p | |~p |2

(2π)3
|~p |e−(ε+iξ0)ωp

2ωp

∞∫
0

d|~q | |~q |2

(2π)3
|~q |e−(ε−iξ0)ωq

2ωq
×

×


ω(|~p |)ω(|~q |) −|~p |ω(|~q |) −µω(|~q |)

−ω(|~p |)|~q | |~p ||~q | µ|~q |

−µω(|~p |) µ|~p | µ2

�
 1 −2 i

|~p | 1

2 i
|~q | 4 1

|~p ||~q | 2 i
|~q |

1 −2 i
|~p | 1

cos(|~p |r)
|~p |r

cos(|~q |r)
|~q |r

+


1 −

[
2− (|~p |r)2] i

|~p | 1[
2− (|~q |r)2] i

|~q |
[
2− (|~p |r)2][2− (|~q |r)2] 1

|~p ||~q |
[
2− (|~q |r)2] i

|~q |

1 −
[
2− (|~p |r)2] i

|~p | 1

 sin(|~p |r)
(|~p |r)2

sin(|~q |r)
(|~q |r)2

+


−1

[
2− (|~p |r)2] i

|~p | −1

−2 i
|~q | −2

[
2− (|~p |r)2] 1

|~p ||~q | −2 i
|~q |

−1
[
2− (|~p |r)2] i

|~p | −1

 sin(|~p |r)
(|~p |r)2

cos(|~q |r)
|~q |r

+


−1 2 i

|~p | −1

−
[
2− (|~q |r)2] i

|~q | −2
[
2− (|~q |r)2] 1

|~p ||~q | −
[
2− (|~q |r)2] i

|~q |

−1 2 i
|~p | −1

cos(|~p |r)
|~p |r

sin(|~q |r)
(|~q |r)2


Carrying out the remaining Hadamard products and factoring out powers of r, we find

· · · = 64π2

{
1
8

∂rLε(ξ)

} ∞∫
0

d|~p |
(2π)3

e−(ε+iξ0)ωp

ωp

∞∫
0

d|~q |
(2π)3

e−(ε−iξ0)ωq

ωq
×

×

[
1
r2


ωpωq 2iωq −µωq
−2iωp 4 2iµ

−µωp −2iµ µ2

|~p |2 cos(|~p |r)|~q |2 cos(|~q |r)

+ 1
r4


ωpωq i

[
2− (|~p |r)2]ωq −µωq

−iωp
[
2− (|~q |r)2] [

2− (|~p |r)2][2− (|~q |r)2] iµ
[
2− (|~q |r)2]

−µωp −iµ
[
2− (|~p |r)2] µ2

|~p | sin(|~p |r)|~q | sin(|~q |r)

+ 1
r3


−ωpωq −i

[
2− (|~p |r)2]ωq µωq

2iωp −2
[
2− (|~p |r)2] −2iµ

µωp iµ
[
2− (|~p |r)2] −µ2

|~p | sin(|~p |r)|~q |2 cos(|~q |r)

+ 1
r3

 −ωpωq −2iωq µωq

iωp
[
2− (|~q |r)2] −2

[
2− (|~q |r)2] −iµ

[
2− (|~q |r)2]

µωp 2iµ −µ2

|~p |2 cos(|~p |r)|~q | sin(|~q |r)
]
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Having arrived at this point, the integrals can by computed explicitly using the relations from
Corollary A.2.3. Simplifying the resulting expression by cancelling and combining terms and
restoring zero rows and columns finally results in

∞∫
0

d|~p | |~p |2

(2π)3 |~p |e
−εωp

∞∫
0

d|~q | |~q |2

(2π)3 |~q |e
−εωq

{
EεN

EεW

}(
Z�NT

11
)

=

(A.12)= 64π2

{
1
8

∂rLε(ξ)

}

(µr)4
∣∣∣(ξε−)0 g′

Ξε−

∣∣∣2 (ξε+)0r2(µr)2 ḡ′

Ξε+

(
g + (µr)2 g′

Ξε−

)
01×2 −i(ξε+)0r(µr)3g ḡ′

Ξε+

(ξε−)0r2(µr)2 g′

Ξε−

(
ḡ + (µr)2 ḡ′

Ξε+

)
r4
∣∣∣g + (µr)2 g′

Ξε−

∣∣∣2 01×2 −ir3(µr)
(
|g|2 + (µr)2g ḡ′

Ξε+

)
02×1 02×1 02×2 02×1

i(ξε−)0r(µr)3ḡ g′

Ξε−
ir3(µr)

(
|g|2 + (µr)2ḡ g′

Ξε−

)
01×2 (mr2)2|g|2



(3) Asterisked Terms
Having completed the calculation for terms without asterisks, we now turn to the computation
of terms carrying asterisks.

(a) Terms containing
∗
M11

Inserting the definition of the matrix Z from (F.2b) (with zero rows and columns suppressed),
the explicit form of the function EεM from (4.19a,ii) as well as the matrix

∗
M11 from (E.3c)

(again, with zero rows and columns suppressed), we obtain
∞∫

0

d|~p | |~p |2

(2π)3 |~p |e
−εωp

∞∫
0

d|~q | |~q |2

(2π)3 |~q |e
−εωq EεM

(
Z�

∗
MT

11
)

=

(4.19a,ii)=
(F.2b)

64π2
∞∫

0

d|~p | |~p |2

(2π)3
|~p |e−(ε+iξ0)ωp

2ωp

∞∫
0

d|~q | |~q |2

(2π)3
|~q |e−(ε+iξ0)ωq

2ωq
×

×


ω(|~p |)ω(|~q |) −|~p |ω(|~q |) −µω(|~q |)

−ω(|~p |)|~q | |~p ||~q | µ|~q |

−µω(|~p |) µ|~p | µ2

�
[
diag

(
0, 24, 0, 0, 0

)cos(|~p |r)
(|~p |r)2

cos(|~q |r)
(|~q |r)2

+ diag
(

0, 4
[
6− 2

(
(|~p |r)2 + (|~q |r)2)+ (|~p |r)2(|~q |r)2], 0, 0, 0) sin(|~p |r)

(|~p |r)3
sin(|~q |r)
(|~q |r)3

+ diag
(

0,−8
[
3− (|~p |r)2], 0, 0, 0) sin(|~p |r)

(|~p |r)3
cos(|~q |r)
(|~q |r)2

+diag
(

0,−8
[
3− (|~q |r)2] 1

|~p ||~q |
, 0, 0, 0

)
cos(|~p |r)
(|~p |r)2

sin(|~q |r)
(|~q |r)3

]
Carrying out the remaining Hadamard product and factoring out powers of r we find

· · · = 16π2
∞∫

0

d|~p |
(2π)3

e−(ε+iξ0)ωp

ωp

∞∫
0

d|~q |
(2π)3

e−(ε+iξ0)ωq

ωq
×

×
[

1
r4 diag

(
0, 24, 0, 0, 0

)
|~p |2 cos(|~p |r)|~q |2 cos(|~q |r)

+ 1
r6 diag

(
0, 4
[
6− 2

(
(|~p |r)2 + (|~q |r)2)+ (|~p |r)2(|~q |r)2], 0, 0, 0)|~p | sin(|~p |r)|~q | sin(|~q |r)

+ 1
r5 diag

(
0,−8

[
3− (|~p |r)2], 0, 0, 0)|~p | sin(|~p |r)|~q |2 cos(|~q |r)

+ 1
r5 diag

(
0,−8

[
3− (|~q |r)2], 0, 0, 0)|~p |2 cos(|~p |r)|~q | sin(|~q |r)

]
Having arrived at this point, the integrals can by computed explicitly using the relations from
Corollary A.2.3. Simplifying the resulting expression by cancelling and combining terms and
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restoring zero rows and columns results in
∞∫

0

d|~p | |~p |2

(2π)3 |~p |e
−εωp

∞∫
0

d|~q | |~q |2

(2π)3 |~q |e
−εωq EεM

(
Z�

∗
MT

11
)

=

(A.12)= 64π2



0 0 01×2 0

0 −3g2 − 2(µr)2g g′

Ξε−
− (µr)4

(
g′

Ξε−

)2
01×2 0

02×1 02×1 02×2 02×1

0 0 01×2 0



(b) Terms containing
∗
N11

Inserting the definition of the matrix Z from (F.2b) (with zero rows and columns suppressed),
the explicit form of the function EεN from (4.19b,ii) as well as the matrix

∗
N11 from (E.3d)

(again, with zero rows and columns suppressed), we obtain
∞∫

0

d|~p | |~p |2

(2π)3 |~p |e
−εωp

∞∫
0

d|~q | |~q |2

(2π)3 |~q |e
−εωq EεN

(
Z�

∗
NT

11
)

=

(4.19b,ii)=
(F.2b)

64π2
∞∫

0

d|~p | |~p |2

(2π)3
|~p |e−(ε+iξ0)ωp

2ωp

∞∫
0

d|~q | |~q |2

(2π)3
|~q |e−(ε−iξ0)ωq

2ωq


ω(|~p |)ω(|~q |) −|~p |ω(|~q |) −µω(|~q |)

−ω(|~p |)|~q | |~p ||~q | µ|~q |

−µω(|~p |) µ|~p | µ2

�

�
[
diag

(
0, 24, 0, 0, 0

)cos(|~p |r)
(|~p |r)2

cos(|~q |r)
(|~q |r)2

+ diag
(

0, 4
[
6− 2

(
(|~p |r)2 + (|~q |r)2)+ (|~p |r)2(|~q |r)2], 0, 0, 0) sin(|~p |r)

(|~p |r)3
sin(|~q |r)
(|~q |r)3

+ diag
(

0,−8
[
3− (|~p |r)2], 0, 0, 0) sin(|~p |r)

(|~p |r)3
cos(|~q |r)
(|~q |r)2

+diag
(

0,−8
[
3− (|~q |r)2] 1

|~p ||~q |
, 0, 0, 0

)
cos(|~p |r)
(|~p |r)2

sin(|~q |r)
(|~q |r)3

]
Carrying out the remaining Hadamard product and factoring out powers of r we find

· · · = 64π2
∞∫

0

d|~p |
(2π)3

e−(ε+iξ0)ωp

2ωp

∞∫
0

d|~q |
(2π)3

e−(ε−iξ0)ωq

2ωq
×

×
[

1
r4 diag

(
0, 24, 0, 0, 0

)
|~p |2 cos(|~p |r)|~q |2 cos(|~q |r)

+ 1
r6 diag

(
0, 4
[
6− 2

(
(|~p |r)2 + (|~q |r)2)+ (|~p |r)2(|~q |r)2], 0, 0, 0)|~p | sin(|~p |r)|~q | sin(|~q |r)

+ 1
r5 diag

(
0,−8

[
3− (|~p |r)2], 0, 0, 0)|~p | sin(|~p |r)|~q |2 cos(|~q |r)

+ 1
r5 diag

(
0,−8

[
3− (|~q |r)2], 0, 0, 0)|~p |2 cos(|~p |r)|~q | sin(|~q |r)

]
Having arrived at this point, the integrals can by computed explicitly using the relations from
Corollary A.2.3. Simplifying the resulting expression by cancelling and combining terms and
restoring zero rows and columns results in

∞∫
0

d|~p | |~p |2

(2π)3 |~p |e
−εωp

∞∫
0

d|~q | |~q |2

(2π)3 |~q |e
−εωq EεN

(
Z�

∗
NT

11
)

=
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(A.12)= 64π2



0 0 01×2 0

0 3|g|2 + 2(µr)2 Re
[
ḡ g′

Ξε−

]
+ (µr)2

∣∣∣ g′Ξε−

∣∣∣2 01×2 0

02×1 02×1 02×2 02×1

0 0 01×2 0



This concludes the proof.

Having completed these preparatory computations of the momentum integrals appearing in
Lemma 5.2.3, we can now further evaluate the expression for δ2Sε for Lorentz boosts as given in
(5.28b).

Lemma F.2.2 (Momentum Integration in Lemma 5.2.3)

By performing the momentum integrals, the expression for the second variation of the iε-
regularized causal action for Lorentz boosts of the velocity vector of the regularization as
derived in (5.28b) evaluates to

1
2π Re

 ∞∫
0

d|~p | |~p |2

(2π)4

(
√
πQε0(|~p |) +

∞∫
0

d|~q | |~q |2

(2π)4
2π
3
|~p ||~q |Qε10(|~p |, |~q |)

ωpωq

)
=
∫
Xε

d(ξ0, r)
(
ξ0r2DLε(ξ) + r4

3 D
2Lε(ξ)

)
−
∫
R

dξ0 r
4

3

(
DLε(ξ)

)2
∂rLε(ξ)

∣∣∣∣
r=Rεmax(ξ0)

(F.7)

Proof. In order to prove the claimed equality, we compute the momentum integrals by invoking
the results from Proposition F.2.1 and subsequently express the result in terms of combinations
of the derivatives DLε(ξ) and D2Lε(ξ) of the regularized causal Lagrangian as computed in
Appendix A.

(1) Evaluation of parts containing Qε0
We start by evaluating those parts of the given expression which contain the function Qε0.
These are the first term as well as the δ-contribution implicitly contained in Qε10 in the second
term.a By inserting the definition of Qε0 from (5.13a,i) we thus obtain

Re

 ∞∫
0

d|~p | |~p |2

(2π)4
√
πQε0(|~p |)

+ Re

 ∞∫
0

d|~p | |~p |2

(2π)4

∞∫
0

d|~q | |~q |2

(2π)4
2π
3
|~p ||~q |Qε10(|~p |, |~q |)

ωpωq

δ-contr.

(5.13b,i)= Re

 ∞∫
0

d|~p | |~p |2

(2π)4
√
π

(
1− ε

3
|~p |2

ωp

)
Qε0(|~p |)


(5.13a,i)= − ε

2
√
π

Re

 ∞∫
0

d|~p | |~p |2

(2π)3

(
1− ε

3
|~p |2

ωp

)
ωp

{
F
[
Kε

00
]
(|~p |)

}
Inserting the Hadamard product form of {F

[
Kε

00
]
(|~p |)} as given in (F.1a) we arrive at

. . .
(F.1a)= − ε

4π Re

 ∫
Xε

d(ξ0, r) tr
[
r2CεK

∞∫
0

d|~p | |~p |2

(2π)3

(
ωp −

ε

3 |~p |
2
)

e−εωpEεK
(
ZK � KT

0
)]



F. Evaluation of δ2Sε for Lorentz Boosts 235

The momentum integrals appearing in this expression have already been evaluated in (F.5a)
and (F.5b), respectively. Inserting these results along with the explicit form of the coefficient
matrix CεK from (4.13a), computing the matrix product and finally taking the trace results in

· · · = −32πRe

εµ∫
Xε

d(ξ0, r) ξ0r2
[
− iµ g′

Ξε−

(
Bε|ξε|2ḡ − Cε(ξε−)2g

)
+ i
µ
g
((
Bεḡ − Cεg

)
+ iµ

(
Bεh̄+ Cεh

))]
+ (εµ)2

∫
Xε

d(ξ0, r) r2
[
− g

µ2

(
Bεḡ + Cεg

)]

+ (εµ)2

3

∫
Xε

d(ξ0, r) r4
[

µ2

(Ξε−)2

(
g′′ − g′

Ξε−

)(
Bε|ξε|2ḡ − Cε(ξε−)2g

)
− g′

Ξε−

(
2
(
Bεḡ − Cεg

)
+ iµ

(
Bεh̄+ Cεh

))]
Comparing the integrand of the first term with the expression for DLε(ξ) as derived in (A.15a)
we find that the result can be expressed in terms of DLε(ξ) such that we end up with the
following intermediate result

. . .
(A.15a)= 2π

∫
Xε

d(ξ0, r) ξ0r2DLε(ξ)

− 32πRe

(εµ)2
∫
Xε

d(ξ0, r) r2
[
− g

µ2

(
Bεḡ + Cεg

)]

+ (εµ)2

3

∫
Xε

d(ξ0, r) r4
[

µ2

(Ξε−)2

(
g′′ − g′

Ξε−

)(
Bε|ξε|2ḡ − Cε(ξε−)2g

)
− g′

Ξε−

(
2
(
Bεḡ − Cεg

)
+ iµ

(
Bεh̄+ Cεh

))]
(2) Evaluation of parts containing Qε10
Having evaluated the parts which contain Qε0, we now turn to the evaluation of the remaining
parts of Qε10, namely the bulk and boundary contributions.

(a) Bulk Contribution
We start by evaluating the bulk parts of the initial expression, i. e. those parts of Qε10 which
contains the incomplete Fourier transforms {F

[
Mε

10|10
]
(|~p |, |~q |)} and {F

[
Nε

10|10
]
(|~p |, |~q |)}. By

inserting the definition of Qε10 from (5.13b,i) (without the already treated δ-contribution) we
thus have

Re

 ∞∫
0

d|~p | |~p |2

(2π)4

∞∫
0

d|~q | |~q |2

(2π)4
2π
3
|~p ||~q |Qε10(|~p |, |~q |)

ωpωq

bulk

=

(5.13b,i)= Re

 ε2

6π

∞∫
0

d|~p | |~p |3

(2π)3 e−εωp
∞∫

0

d|~q | |~q |3

(2π)3 e−εωq×

×
({
F
[
Mε

10|10
]
(|~p |, |~q |)

}
+
{
F
[
Nε

10|10
]
(|~p |, |~q |)

})
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Inserting the Hadamard product form of {F
[
Mε

10|10
]
(|~p |, |~q |)} and {F

[
Nε

10|10
]
(|~p |, |~q |)} from

(F.1b) and commuting asterisked terms to the end, we arrive at

. . .
(F.1b)= Re

 ε2

6π

∫
Xε

d(ξ0, r) ×

r2 tr
[
CεM

∞∫
0

d|~p | |~p |3

(2π)3 e−εωp
∞∫

0

d|~q | |~q |3

(2π)3 e−εωqEεM
(
Z�MT

11
)

+ CεN

∞∫
0

d|~p | |~p |3

(2π)3 e−εωp
∞∫

0

d|~q | |~q |3

(2π)3 EεNe−εωq
(
Z�NT

11
)

+ Cε15

∞∫
0

d|~p | |~p |3

(2π)3 e−εωp
∞∫

0

d|~q | |~q |3

(2π)3 EεMe−εωq
(
Z�

∗
MT

11
)

−Bε15

∞∫
0

d|~p | |~p |3

(2π)3 e−εωp
∞∫

0

d|~q | |~q |3

(2π)3 e−εωqEεN
(
Z�

∗
NT

11
)]

The momentum integrals appearing in this expression have already been computed in (F.5c) -
(F.5f). Inserting these results along with the explicit expressions for the coefficient matrices
CεM and CεN from (4.19a,i) and (4.19b,i), respectively, carrying out the matrix multiplication,
taking the trace and grouping terms according to their number and type of derivatives results in

. . .
(F.5c)=
(F.5f)

Re

32π
3 (εµ)2

∫
Xε

d(ξ0, r) r4×

[
− µ2

(
g′

Ξε−

)2((
|ξε|2

)2
ḡ2 − (ξε−)2Cε

)
− µ2

∣∣∣∣ g′Ξε−

∣∣∣∣2((|ξε|2)2|g|2 − |ξε|2Bε + 4r2|g|2 Re
[
|ξε|2 − (ξε−)2

])
+ g′

Ξε−

(
iµ
(

2ḡ2|ξε|2h+ 4|g|2(ξε−)2h̄+ 2|g|2|ξε|2h̄
)

+ 4|g|2ḡ(ξε−)2 − 2
(
Cεg +Bεḡ

))
+ 1
µ2

(
− 2
(
|g|2
)2 − iµ|g|2

(
3gh̄− ḡh

)
+ µ2(|g|2)2(|ξε|2 + (ξε+)2

))
− 3

(µr)2

(
Cεg2 +Bε|g|2

)]
Comparing this expression with that of D2Lε(ξ) from (A.15b), we recognize a high degree of
similarity though no equality. Expressing the above formula in terms of D2Lε(ξ) by adding
and subtracting terms in a suitable way, we end up with

. . .
(A.15b)= 2π

3

∫
Xε

d(ξ0, r) r4D2Lε(ξ)− Re

32πε2
∫
Xε

d(ξ0, r) r2(Cεg2 +Bε|g|2
)

+ Re

32π
3 (εµ)2

∫
Xε

d(ξ0, r) r4

[
µ2

(Ξε−)2

(
g′′ − g′

Ξε−

)(
Bε|ξε|2ḡ − Cε(ξε−)2g

)
+ g′

Ξε−

(
2
(
Cεg −Bεḡ

)
− iµ

(
Bεh̄+ Cεh

))]
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(b) Boundary Contribution
Having computed the bulk contribution we now turn to the evaluation of the boundary terms,
i. e. those parts of Qε10 which contains the incomplete Fourier transforms {F

[
Vε10|10

]
(|~p |, |~q |)}

and {F
[
Wε

10|10
]
(|~p |, |~q |)}. By inserting the definition of Qε10 from (5.13b,i) (without the already

treated δ-contribution and the bulk contribution) we thus have

Re

 ∞∫
0

d|~p | |~p |2

(2π)4

∞∫
0

d|~q | |~q |2

(2π)4
2π
3
|~p ||~q |Qε10(|~p |, |~q |)

ωpωq

bndry

=

= −Re

 ε2

6π

∞∫
0

d|~p | |~p |3

(2π)3 e−εωp
∞∫

0

d|~q | |~q |3

(2π)3 e−εωq×

×
({
F
[
Vε10|10

]
(|~p |, |~q |)

}
+
{
F
[
Wε

10|10
]
(|~p |, |~q |)

})
Inserting the Hadamard product form of {F

[
Vε10|10

]
(|~p |, |~q |)} and {F

[
Wε

10|10
]
(|~p |, |~q |)} from

(F.1c) we arrive at

· · · = −Re

 ε2

6π

∫
R

dξ0 tr
[
r2CεV

∞∫
0

d|~p | |~p |3

(2π)3 e−εωp
∞∫

0

d|~q | |~q |3

(2π)3 e−εωqEεV
(
Z�MT

11
)

+r2CεW

∞∫
0

d|~p |
(2π)3 |~p |

3e−εωp
∞∫

0

d|~q |
(2π)3 |~q |

3e−εωqEεW
(
Z�NT

11
)]∣∣∣∣∣

r=Rεmax(ξ0)


The momentum integrals appearing in this expression have already been computed in (F.5c)
and (F.5d). Inserting these results along with the explicit expressions for the coefficient matrices
CεV and CεW from (4.24a,ii) and (4.24b,ii), respectively, carrying out the matrix multiplication,
taking the trace and grouping terms according to their number and type of derivatives results
in

· · · = −Re

256π
3 (εµ)2

∫
R

dξ0 r4

∂rLε(ξ)

[

−
[
µ
(
Bε|ξε|2ḡ − Cε(ξε−)2g

) g′
Ξε−
− 1
µ
g
((
Bεḡ − Cεg

)
+ iµ

(
Bεh̄+ Cεh

))]2

+
∣∣∣∣µ(Bε|ξε|2ḡ − Cε(ξε−)2g

) g′
Ξε−
− 1
µ
g
((
Bεḡ − Cεg

)
+ iµ

(
Bεh̄+ Cεh

))∣∣∣∣2
]

· · · = −2π
3

∫
R

dξ0 r4

∂rLε(ξ)

[
8(εµ) Re

[
iµ
(
Bε|ξε|2ḡ − Cε(ξε−)2g

) g′
Ξε−

− i
µ
g
((
Bεḡ − Cεg

)
+ iµ

(
Bεh̄+ Cεh

))]]2

where in the last equality we exploited the relation 2 Re(ix)2 = Re(−x2 + |x|2). Comparing
this expression with DLε(ξ) from (A.15a) we find that the integrand is proportional to the
square of

(
DLε(ξ)

)
such that we end up with

Re

 ∞∫
0

d|~p | |~p |2

(2π)4

∞∫
0

d|~q | |~q |2

(2π)4
2π
3
|~p ||~q |Qε10(|~p |, |~q |)

ωpωq

bndry

(A.15a)= −2π
∫
R

dξ0 r
4

3

(
DLε(ξ)

)2
∂rLε(ξ)

∣∣∣∣
r=Rεmax(ξ0)

(F.8)
for the boundary term.
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(3) Conclusion
Adding up all the contributions computed above, we end up with

Re

 ∞∫
0

d|~p | |~p |2

(2π)4

(
√
πQε0(|~p |) +

∞∫
0

d|~q | |~q |2

(2π)4
2π
3
|~p ||~q |Qε10(|~p |, |~q |)

ωpωq

)
= 2π

∫
Xε

d(ξ0, r) ξ0r2DLε(ξ)

− 32πRe

(εµ)2
∫
Xε

d(ξ0, r) r2
[
− g

µ2���
���

�: (1)(
Bεḡ + Cεg

)]

+ (εµ)2

3

∫
Xε

d(ξ0, r) r4
[

µ2

(Ξε−)2
��

�
��
�*

(2)(
g′′ − g′

Ξε−

)(
Bε|ξε|2ḡ − Cε(ξε−)2g

)
−
�
�
���

(3)

g′

Ξε−

(
2
(
Bεḡ − Cεg

)
+ iµ

(
Bεh̄+ Cεh

))]
+ 2π

3

∫
Xε

d(ξ0, r) r4D2Lε(ξ)− 32πRe

ε2
∫
Xε

d(ξ0, r) r2
���

���
��: cancels (1)(

Cεg2 +Bε|g|2
)

+ 32πRe

 (εµ)2

3

∫
Xε

d(ξ0, r) r4

[
µ2

(Ξε−)2
��

��
��*

cancels (2)(
g′′ − g′

Ξε−

)(
Bε|ξε|2ḡ − Cε(ξε−)2g

)

+
�
�
���

cancels (3)

g′

Ξε−

(
2
(
Cεg −Bεḡ

)
− iµ

(
Bεh̄+ Cεh

))]
− 2π

∫
R

dξ0 r
4

3

(
DLε(ξ)

)2
∂rLε(ξ)

∣∣∣∣
r=Rεmax(ξ0)

= 2π
∫
Xε

d(ξ0, r)
(
ξ0r2DLε(ξ) + r4

3 D
2Lε(ξ)

)
− 2π

∫
R

dξ0 r
4

3

(
DLε(ξ)

)2
∂rLε(ξ)
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r=Rεmax(ξ0)

(F.9)

This concludes the proof.
aSee the expression for Qεlm as given in (5.13b,i).
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