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Summary

The theory of causal fermion systems provides a new mathematical framework which allows
for a unified description of contemporary fundamental physics. One essential ingredient of this
framework is the so-called causal action which is a certain functional of a measure defined on
a specific subset of the bounded linear operators on a Hilbert space. For a given measure, this
functional can be regarded as a quantifier of the weighted causal relation of all operators within
the support of the measure. Moreover, the functional is subject to the causal action principle
which aims at minimizing the causal action by varying the measure and in this way makes the
measure a dynamical variable. All of this, as well as further fundamental objects of the theory
which are relevant to this thesis, are introduced and explained in Chapter 1.

Within these structures and based on certain foundational conceptions, one can now model
concrete physical systems, which are always understood as a combination of some spacetime
manifold together with the fermionic particle content existing therein. The foundational conception
underlying the modelling is to regard fermions as the fundamental building blocks of nature and
to conceive the vacuum, according to Dirac’s interpretation, as the presence of all negative-energy
solutions of the Dirac equation in the respective spacetime. To get into the framework of the theory
of causal fermion systems, one chooses the above-mentioned Hilbert space as these negative-energy
solutions and simultaneously forgets about all the other geometrical and topological structures of
spacetime. In order to take into account a possibly existing, though yet not observed, non-trivial
microstructure of spacetime which leads to a modified high-energy behaviour of the Dirac solutions,
the elements of the Hilbert space are equipped with a so-called regularization. As will be explained
in further detail in Chapter 2, it is this regularization which in the modelling of a physical system
within the structures provided by the theory of causal fermion systems plays the role of the
measure and is thus dynamically determined through the causal action principle.

Embedded in this setting, the present thesis is concerned with the derivation and analysis of
the multipole expansion of second variations of the above-mentioned causal action which are
caused by variations of the regularization of the so-called regularized kernel of the fermionic
projector. The thesis is divided into three major parts: In Part I: Basics we lay the foundations
by first introducing and discussing the fundamental mathematical structures of the theory of
causal fermion systems and subsequently explaining in detail how concrete physical systems can
be realized within this abstract setting and what exactly the underlying foundational conceptions
are. Part II: Developments is devoted to the derivation of the multipole expansion of second
variations of the regularized causal action. More specifically, in Chapter 3 we derive second
variations of the regularized causal action for a homogeneous regularized kernel of the fermionic
projector having vector-scalar structure which results in Theorem 3.4.3. Starting from this result,
the multipole expansion of the second variation of the regularized causal action is derived and
simplified through several steps in Chapter 4, ultimately leading to Theorem 4.3.1 which expresses
the multipole moments of the second variation of the regularized causal action in terms of integral
operators. In Part III: Applications we then analyze the second variation of the regularized
causal action for special regularizations. More concretely, in Chapter 5 we consider an anisotropic
generalization of the so-called ie-reqularization which is extensively studied in the literature and
demonstrate in Theorem 5.2.5 that Lorentz boosts of the velocity vector of this regularization leave
the regularized causal action invariant. Additionally, we prove that anisotropically ie-reqularized
kernels of the fermionic projector lead to a non-vanishing second-order variation of the local particle
density compared with the symmetric situation. Finally, in Chapter 6 we outline a procedure
which, under certain simplifying assumptions, ultimately allows to demonstrate invertibility of
the lowest-order multipole moment of the second variation of the regularized causal action. A
generalization of this approach to higher multipole moments is part of a novel mechanism of
baryogenesis within the theory of causal fermion systems.
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Notation and Conventions

Color Legend

Definitions and definition-like environments such as notations, terminology, and conventions are
highlighted by a bar from the green color spectrum. Gray bars indicate lemmas and propositions,
while auxiliary calculations (which exclusively occur in the appendices) remain without any color
highlighting. Finally, theorems and remarks are highlighted by dark red bars and dark gray bars,
respectively.

Number Systems

For the natural numbers we use the convention N := {1,2,3,...} and denote the natural numbers
with zero included by Ny. Likewise, for the positive real numbers we write R*™ and denote the
case with zero included by R .

Matrices

For an n-component vector v € K™ with K € {R,C} we denote by D, the associated n x n
diagonal matrix with entries (D,);; = v;. Furthermore, by 1,,x, we denote the (m x n)-matrix of
ones. Similarly, the (m x n)-matrix of zeroes is denoted by 0,,x,. For n X n square matrices, we
write 1,, := 1,,x» and 0,, := 0., xn.

Elements of the Operator Set F,, and of Physical Spacetime .

To distinguish between elements of the operator set F,, and elements of physical spacetime 4,
we consistently use different fonts z,y,z € JF,, in contrast with x,y,z € M .Y Moreover, unless
otherwise specified, (/,g) denotes an m-dimensional semi-Riemannian manifold with signature
(+1,-1,-1,...,-1).

Indices and Einstein Summation Convention

Concerning indices of four-vectors, we adopt Finster’s convention? according to which Latin indices
denote the components of four-vectors while Greek indices are reserved exclusively for spatial
components. This is just the opposite of the convention commonly used in physics.l* 4 We employ
the Einstein summation convention with the addition that for purely spatial indices (indicated
by Greek letters) also two upper or two lower indices trigger a summation over the spatial index set.

Multipole Indices
Multipole indices are denoted by (I, m) and (I, m’). Furthermore, for summations over multipole
indices we often use the abbreviating notation

0o !
l,m =0 m=—1

Regularization and Regularization Length
The superscript (- )¢ indicates regularized objects which includes both the type of regularization
as well as the regularization length. When talking about ¢ alone, the regularization length is meant.

Sesquilinear Form
For sesquilinear forms s : V' x V' — C on complex vector spaces V', we adopt the physics convention
according to which s is conjugate-linear in the first argument and linear in the second argument.

1We remark that this convention was introduced by Finster and Kleiner.[1: Sec. 2]

2Note that this is the convention used by Hawking and Ellis.[2: Ch- 4, p- 82] For a listing of the different index
and sign conventions, we refer to the corresponding table by Misner, Thorne and Wheeler. 3]
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The Fundamental Mathematical Structures
of the Theory of Causal Fermion Systems
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The theory of causal fermion systems provides a rich framework of mathematical objects, structures
and mechanisms which together allow for a novel description of fundamental physics in a unified
way. The development of the theory of causal fermion systems by Felix Finster over the past
two decades has not only produced a steadily growing number of new objects and structures,
but also led to a gradual evolution regarding the presentation of the whole framework without
changing its conceptual core: While in the early days of the theory!”:! the emphasis was on the
so-called fermionic projector together with the associated principle of the fermionic projector,
the reformulation of the variational principle in terms of measures on certain Borel sets of finite-
rank linear operators on Hilbert spaces!”) marks the beginning!®l"’! of the transition! to today’s
presentation in which the fermionic projector still plays the central role, but in a more general
setting which starts from the notion of causal fermion systems.!''] In order to have a solid basis
for all further chapters, we summarize the fundamental mathematical structures of the theory in
its “modern” formulation in Sections 1.1 to 1.3, before in Section 1.4 further structures which are
of particular importance for concrete calculations, are reviewed.

1The transition from the earlier to the current formulation occurred during Daniela Schiefeneder’s doctoral
studies and has accordingly found its reflection in chapter 2 of her doctoral thesis.[10> Ch- 2]


https://epub.uni-regensburg.de/21629/1/dissertation.pdf#page=10
https://epub.uni-regensburg.de/21629/1/dissertation.pdf#page=10

4 1.1. Causal Fermion Systems

1.1 Causal Fermion Systems

The central and eponymous object of investigation in the theory of causal fermion systems are so-
called causal fermion systems which are a specific composition of mathematical structures.[!!> Def- 1.1.1]

DEFINITION 1.1.1 (CAUSAL FERMION SYSTEM)

A causal fermion system of spin dimension n is an ordered triple (Hc, F,, p) consisting of the
following structures:

(1) Hc denotes a separable, complex Hilbert space (He, (-|-)9¢.)

(2) F, denotes the subset ¥, C L(Hc,Hc) of self-adjoint, finite-rank, bounded linear
operators on H¢, which — counting multiplicities — have at most n € N positive and at
most n € N negative eigenvalues

(3) p denotes a positive measure p : B(F,) — Rd U{oo} on the measurable space (F,,, B(F,))
and is referred to as universal measure where
(a) 7). denotes the topology induced by the operator norm || - ||r,(3¢.,5¢.) on L(Hc, Hc)®

(b) B(F,) denotes the Borel-o-algebra on the topological space (F,, Ty, ) where Tz, is
the subspace topology on F,, with respect to the topological space (L(H¢, Hc), UE H)

%The operator norm || - ”L(f’{ccyf’fc) is defined as ||m||L(9chCc) = supue%C{quH;{C [Jullgee =1}

Analyzing this definition, one recognizes that a causal fermion system may be regarded as a
three-layer system of structures as depicted in Figure 1.1: Based on an underlying Hilbert space

4%/

&
-
~~

=

Figure 1.1: Graphical representation of the relation between the structures of a causal fermion system (Hc¢, Fy,, p).
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(Hc, {-|-)3¢.) there is the subset F,, which contains certain finite-rank bounded linear operators
which, upon acting on the Hilbert space, trace out so-called spin spaces S;, S, C Hc. On top
of those two structures there are positive measures which associate a non-negative real number
to the elements of the Borel-o-algebra B(J,). By specifying the Hilbert space (Hc, (:|-)5¢.) and
fixing the spin dimension n € N, the universal measure p remains as the only indeterminate object
in the definition. This freedom in the choice of the universal measure is restricted, as will be
explained in greater detail below in Section 1.3, by the so-called causal action principle.

In the following subsections, the individual structures occurring in the definition of a causal
fermion system and their interrelations are subject of more detailed explanations. To keep the
presentation as compact and clear as possible, we agree on the following convention for all further
explanations.

CONVENTION 1.1.2

Whenever we refer to the Hilbert space (Hc, (:|-)5¢.) and the operator set F,,, we tacitly take
an underlying causal fermion system (Hc, F,, p) of spin dimension n for granted.

1.1.1 Structuring the Hilbert Space: The Spin Spaces

The combination of a Hilbert space (Hc, (:|-)5¢.) and the set F,, consisting of bounded linear

operators with finite rank naturally leads to a structuring of the set H¢ induced by the individual
elements of F,, C L(Hc, Hc).

DEFINITION 1.1.3 (SPIN SPACE AND ORTHOGONAL PROJECTION OPERATOR)

For any = € &F,, the spin space at v € F,, is defined as the image of H¢ under x
Ve € F, 0 Sy = x(Hc) (1.1)

The corresponding operator m, : He — S, is referred to as the orthogonal projection on the
spin space Sy.

Being the image of a finite-rank linear operator, the spin space S, C H at x € F,, naturally is
a finite-dimensional complex subvector space of H¢. As a consequence of this, all spin spaces
intersect in 0 € H¢ as depicted in Figure 1.1. By equipping the individual subvector spaces with
indefinite inner products induced by the corresponding finite-rank operator, we obtain so-called
spin inner product spaces.

DEFINITION 1.1.4 (SPIN INNER PRODUCT SPACE)

The spin inner product space at x € F, is the ordered pair (S, <-|->g,) where S, is the spin
space at © € F,, and where < - |- =g : S, x S, — C is the mapping defined as

(Ul,UQ) — <U1|U2>-Sm = 7<U1|I’U2>g{ (12)

C

which is referred to as the spin space inner product on S,.

The entirety of all spin inner product spaces can be thought of as forming a structure within the
Hilbert space H¢ which resembles a bristle ball. As will become apparent in Chapter 2 (Modelling
Physical Systems in the Framework of Causal Fermion Systems), the spin inner product spaces
are the abstract equivalent of fibres of a spinor bundle over physical spacetime.
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1.1.2 The Causal Structure of the Operator Set JF,

The elements of the set F,, not only give rise to an additional subset structure within the underlying
Hilbert space, but are interesting objects in their own right: Being linear operators, it is a natural
idea to study their eigenvalues. The theory of causal fermion systems, however, is not concerned
with the study of the eigenvalues of the operators themselves, but instead builds on the eigenvalues
of products zy of operators x,y € F,. This characteristic feature of the theory of causal fermion
systems lies at the heart of its inherent mon-locality which will become more explicit in the
discussion of the causal action in Section 1.2.

For two arbitrary operators x,y € F,,, which by definition of &F,, satisfy rk(z), rk(y) < 2n, also their
product clearly satisfies rk(zy) < 2n. The 2n non-trivial® eigenvalues of the operator product zy
will be denoted by A7¥ where i € {1,2,...,2n}. Based on these eigenvalues of operator products,
one introduces the following notion of causality on the operator set F,,.['1, Def- 1.1.2]

DEFINITION 1.1.5 (CAUSAL STRUCTURE ON F,,)

Two operators z,y € F, are called spacelike-separated if the eigenvalues ¥ € C of their
operator product zy satisfy the condition

INY e RE Vi€ {1,2,...,2n}: |ATY| =AY (1.3a)
while they are called timelike-separated if
Vie{l,2,....2n}: \[Y € R A Fi,je{l1,2,....2n}: [A]Y] # |A}Y| (1.3b)

holds. In all other cases the operators = and y are referred to as being lightlike-separated.

According to this definition, assessing the causal relation i N

of two operators z,y € F, requires to evaluate and ' :
compare the eigenvalues A" of their operator product. \\\ //// ‘
In Section 1.2 we will come back to this definition and \ \ | /
introduce the so-called causal Lagrangian, an object that
allows for a systematic distinction between spacelike- ‘
separated operators z,y € J, on the one hand and
timelike-separated as well as lightlike-separated operators
on the other hand. Before, however, we introduce another
quantity which contains part of the information encoded
in the eigenvalues of pairs of operators from F,.

DEFINITION 1.1.6 (SPECTRAL WEIGHT)

The spectral weight of an operator x € F, is the / / ‘ \ \Y
mapping |- | : F,, — RY defined as ; v

2
" . Figure 1.2: Graphical representation of the
T — |$‘ = E |)\Z | (14) double-conical set F,, together with spacetime
=1 M = supp(p) associated with a given causal

fermion system (Hc, Fn, p) depicted in orange.

To conclude this subsection we remark that, although the set of finite-rank operators within
L(Hc¢, Hc) forms a subvector space due to the fact that linear combinations of finite-rank operators
still have finite rank, the subset F,, C L(H¢,Hc), however, does not have the same property:
Since linear combinations z + y for x,y € F,, do in general have rk(z + y) > 2n and thus violate

2For convenience, the non-trivial eigenvalues of xy are ordered such that 7Y # 0 for 1 < i < rk(zy) and 7Y =0
for rk(zy) + 1 <13 < 2n.
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the rank condition in the definition of a causal fermion system, F, is not a subvector space of
L(Hc, Hc). But since rescalings of x € F,, with constants ¢ € R\ {0} do not affect the rank of
the operator z, the set F,, has a structure which is referred to as a double-conical set.'% P31 As a
consequence, the operator set &, may be depicted as an infinite collection of “rays” intersecting at
0 € F,, as shown in Figure 1.2. For completeness of the discussion, we introduce one more definition.

DEFINITION 1.1.7 (REGULAR OPERATORS AND REGULAR CAUSAL FERMION SYSTEMS)

An operator x € F,, is call regular if it has rank 2n. The subset of regular operators is defined
as
F8={x e F,|rk(x) =2n} C F, (1.5)

and a causal fermion system is thus called regular if F,, is replaced by J,°¢ in the definition.

The subset F7°% of regular operators is a dense open subset of F,, and plays an important role in
the modelling of physical systems as will become clear in Subsection 2.2.2.1.3

1.1.3 The Universal Measure

While the Hilbert space (Hg, (-|)3¢.) and the operator set F,, can be understood as a rather
rigid underlying structure, the universal measure p may be interpreted as sitting on top of both
but without, at least at this point, being subject to any restrictions, except for being a positive
measure on the Borel-o-algebra B(F,,) generated by the elements of the subspace topology Ts,
with respect to the topological space (L(Hc,Hc), 7). ). In view of later applications we introduce
the following definition.

DEFINITION 1.1.8 (SPACETIME ASSOCIATED WITH A CAUSAL FERMION SYSTEM)

The spacetime M associated with a causal fermion system (Hc,Fy, p) is defined as the support
of the universal measure

M = supp(p) = F \ | J{Q C Fn |Q € B(Fp) A p() =0} (1.6)

The spacetime M associated with a given causal fermion system (Hc, F,, p) corresponds to the
orange portion of F,, in Figure 1.2. Without intending to violate our claim for a clear distinction
between the abstract mathematical framework and concrete physical applications, we nevertheless
want to mention that the spacetime associated with a causal fermion system is usually a low-
dimensional subset of F,,.°

1.2 The Causal Lagrangian and the Causal Action

Having expanded on the definition of a causal fermion system and the structures which it is built
from, we now come back to the causal structure of the operator set &, already addressed in
Subsection 1.1.2 and introduce with the so-called causal Lagrangian a quantity that allows for a
systematic distinction of pairs of spacelike-separated operators.

3For a detailed discussion of regular causal fermion systems and, in particular, the Banach manifold structure of
FLe8 we refer to the recent work by Finster and Lottner.[!3]

4In this context, “rigidity” refers to the fact that the part (Hc,Fn) of a causal fermion system (Hc, Fn, p) is
completely determined by specifying two numbers: First, the Hilbert space dimension dim(Hc¢) € No U {oco} must
be fixed. This effectively amounts to choosing either H¢ = C4im(3c) in the finite-dimensional case or H¢ = £2 (N,C)
in the infinite-dimensional setting since every separable Hilbert space is isometrically isomorphic to £2. Second and
finally, by fixing the spin dimension n € Ng the universal measure remains as the only undetermined input.

5Numerical studies in simple examples such as distributions of points on the sphere demonstrate that the
universal measure has its support on low-dimensional elements of B(F,).[8: 14]


https://arxiv.org/pdf/1812.00238.pdf#page=3
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DEFINITION 1.2.1 (CAUSAL LAGRANGIAN)

The causal Lagrangian is the function £ : F,, x F,, — RJ defined as
(1.4) 2 1 2
(e,) = L) 2 [(@)?] - ol (17)

where |(xy)2f and |ry| denote the spectral weights of the operators (xy)? and xy, respectively.

From this abstract representation of the causal Lagrangian its relevance and the mentioned
connection with the causal structure on the operator set F,, cannot be recognized immediately.

1.2.1 Eigenvalue Representation of the Causal Lagrangian

To work out this connection, it is insightful to rewrite the causal Lagrangian, evaluated at the
operator pair (z,y) € F,, x F,,, as stated in the following lemma.

LEMMA 1.2.2 (EIGENVALUE REPRESENTATION OF THE CAUSAL LAGRANGIAN)

Let x,y € F,, be operators. Then the causal Lagrangian £(z,y) can be expressed as

2n

1 xT xr 2
Ly == > (I = 1x)) (1.8)
Q=1
where A7Y for i € {1,2,...,2n} are the non-trivial eigenvalues of the operator product zy.

Proof. Evaluating the causal Lagrangian at (z,y) € F,, x F,, and inserting the definition of
the spectral weight, we obtain

2n

Llxy) = |(@y)?| - %Ixyl2 = |\ (Z\ “’|>

=1

To rewrite the first term, we make use of the fact that if ;¥ is an eigenvalue of the operator
zy corresponding to the eigenvector v € H¢ one can immediately conclude that the eigenvalue
of the operator (y)? corresponding to the same eigenvector v € Hc is given by the square of
the eigenvalue \;Y. Using this argument along with the multiplicativity of the absolute value,
we arrive at

2n 2n 2
o =3 hef - 5 (350
=1

i=1

Introducing a factor 1 = ﬁ Zle 1 in the first term yields

e 20 b= o (Sohe) (o

i,j=1 i=1 j=1
Finally, by splitting up the first term, interchanging summation indices and completing the
square, we end up with an expression in terms of the eigenvalues of the operator product zy

2n

1 2n . . N m i ) 9
=i > -2 Z RYgIRvi +* Z x| = ‘ <|)‘vy| - ’/\jy‘)

1,7=1 3,7=1 1,5=1 3,7=1

This concludes the proof. O
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In this eigenvalue representation of the causal Lagrangian its already mentioned significance for
the assessment of the causal relation of two operators x,y € F,, becomes apparent: According to
Definition 1.1.5 two operators =,y € &, are spacelike-separated if all eigenvalues of their operator
product xzy have the same absolute value, which thus immediately implies that for such a pair of
operators the causal Lagrangian vanishes identically. Due to this property, the causal Lagrangian
can be used in order to identify those subsets within the operator set &, whose elements are
spacelike-separated from a fixed operator x € &F,. This usage of the causal Lagrangian will become
particularly relevant in Subsection 1.2.2 and Section 1.3.

Interpretation of the Causal Lagrangian

In addition to the usage of the causal Lagrangian as a quantity for the evaluation of the causal
relation of two operators z,y € F,, another yet not discussed interpretation shall be introduced
and explained here. If one defines for a given pair of operators z,y € &, the average absolute value
AV € RY of all eigenvalues as A2Y = - o |A7Y| and adds 0 = AZY — AZY in the eigenvalue
representation of the causal Lagrangian as derived in Lemma 1.2.2, we obtain

2n 2n

e = g 30 (=) = 5 3 (=) = (=)

o L=l i 1 . i,j=1 2
:;(!Afﬂ—)\iy) _%(;(|)\f9|_)\§y)> L9)

If one now inserts the definition of AZY in the second term, it vanishes identically and we are left with

2n

Ly =Y <|)\f-”| - Agy)z (1.10)

i=1

In structural terms, this representation of the causal Lagrangian resembles the expression for the
variance of a discrete random variable A™Y, which can take the values |/\ch , whose associated
probabilities of occurrence are p; = 5~ for all i € {1,2,...,2n}. In view of this, the causal

2n
Lagrangian may be written as

L(z,y) = 2nVar(A™Y) (1.11)

which allows to interpret the causal Lagrangian, for a fixed pair of operators =,y € F,, as a
measure of the dispersion of the absolute values of the eigenvalues A;¥ around the average absolute
value A\ZY. If one allows for physical parlance, the causal Lagrangian thus corresponds to the
one-dimensional moment of inertia of the distribution of the absolute values {)\fy‘ of the non-trivial
eigenvalues of two operators x,y € F,, with respect to their average absolute value AZY.

1.2.2 The Causal Action

Having introduced the definition of the causal Lagrangian along with a discussion of its meaning,
we now come to the main object in the theory of causal fermion systems.

DEFINITION 1.2.3 (CAUSAL ACTION)

Let Bg, denote the positive Borel measures on the measurable space (F,, B(F,)) introduced
in Definition 1.1.1. The causal action is the function S : By, — R defined as

pr S = [ [ £Gw0) dpto)dpty) (1.12)

T XTn

where L(z,y) and p denote the causal Lagrangian and the universal measure, respectively.
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Interpretation of the Causal Action

Considering the measure p € ‘Bg, as a prescription which assigns a certain weight to elements of
the Borel-o-algebra B(F,,) and taking into account that the causal Lagrangian gives information
on the causal relation® of two operators x,y € F,, the causal action can thus be understood
as a nonlocal, p-dependent device to quantify the total causal relations of all the operators
contained in supp(p) C F,. For a given Hilbert space (Hc, (-|-)5¢.) and fixed spin dimension
n, the causal action thus provides a possibility to assign a numerical value to different causal
fermion systems (Hc, I, p) which takes into account the causal structure on F,, in the sense that
spacelike-separated operators do not give a contribution.

1.3 The Causal Action Principle

The objects introduced in Section 1.1 and Section 1.2 form the skeleton of the theory of causal
fermion systems and allow for a classification of causal fermion systems according to the real
number S(p) assigned to a universal measure p via the causal action. In order to introduce some
kind of dynamics, however, it is not sufficient to only assign numerical values to universal measures,
but instead one has to specify which numerical value for S(p) is desirable. Only by designating
a distinguished value for S(p) it is possible to rate and not only classify different universal measures.

DEFINITION 1.3.1 (CAUSAL ACTION PRINCIPLE)

The causal action principle consists in minimizing the causal action by varying the universal
measure p within the class of regular® Borel measures B%5* on the measurable space (5, B(3,,))
under the following constraints:

1) Volume Constraint: For any choice of the universal measure p € B2, the total volume
y p T

p(Fy,) corresponding to F,, € B(F,,) has to be kept fixed

Vp e B5%:  p(F,) = const >0 (1.13a)

(2) Trace Constraint: For any choice of the universal measure p € B5®, the troc.-weighted
volume of F,, has to be kept fixed

Vp € B /tr}CC(SE) dp(z) = const (1.13Db)
Fn
(3) Boundedness Constraint: For any choice of the universal measure p € %;’f, the squared

spectral weight of the operator product zy (which equals the first term in the causal
Lagrangian) must be bounded from above

Vp € B // ’xy‘de(x)dp(y) <C (1.13c)
FnXFn

2We remark that a measure p defined on a measurable space (X, X) where ¥ is a o-algebra on the topological
space (X, T) is called regular('®: § 521 if every Q € ¥ is both an inner regular set with respect to p

vQeX: Q) =sup{u(A)|ACQAAEXE A Acompact}

as well as an outer regular set with respect to p

vQeX: wpQ)=inf{u(B)|BODQANBEXABET}

By requiring to vary the universal measure such that the causal action is minimized, this definition
distinguishes zero as the desirable value for the causal action and thus allows to rate different
choices of the universal measure p for given (Hc,F,).

6In the sense that it vanishes for spacelike-separated operators z,y € F,.
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Interpretation of the Causal Action Principle

As discussed in the paragraph after the definition of a causal fermion system, the universal measure
p can a priori be chosen arbitrarily without any restrictions. As a consequence of the p-dependence
of the causal action and through the causal action principle, however, the universal measure can no
longer be chosen freely but instead becomes the central variable which is dynamically determined
through the interplay of conflicting tendencies: While the prescription to minimize the causal
action clearly favours universal measures whose support is chosen such that the contribution to
the causal action coming from spacelike-separated pairs of operators is maximized, the constraints
counterbalance this tendency and guarantee that trivial minimizers are excluded. As soon as a
minimizing measure pp;, is found, it automatically determines the spacetime associated with the
corresponding causal fermion system (Hc, F, pPmin)-

1.3.1 Significance and Interpretation of the Constraints

Having briefly discussed the interpretation of the causal action principle itself, we now focus on the
significance and interpretation of the associated constraints which have a two-fold function: First,
they guarantee that the causal action principle is well-posed in the sense of the direct method in
the calculus of variations!'® 8¢¢ 391 and, secondly, that trivial minimizers are ruled out.

Volume Constraint The fact that the constraints are necessary in order to rule out trivial choices
for the universal measure can be seen particularly easily from the volume constraint: Without the
requirement p(%F,) = const > 0 one could simply choose p = 0 for the universal measure and thus
trivially arrange that S(p) = 0 which is clearly pointless.

Trace Constraint If the universal measure is not allowed to vanish everywhere, one could
alternatively come up with the idea to construct the universal measure such that its support is at
least as small as possible. Choosing p as the Dirac measure which is supported atl!®> P 3/4]

z=(1,1,...,1,—-1,-1,...,-1,0,0,...) € Fy,
—_—— ——
n times n times

we find that the causal action collapses to

2n

1 T xrxr 2
S(p) = L) = - > (13| = 7))
i,j=1
But since the operator product zz = (1,1,...,1,0,0,...) has 2n unit entries, all eigenvalues A¥*

of this operator product coincide which, in turn, makes the causal action vanish. Finally, by
suitably rescaling the Dirac measure, one has constructed a trivial minimizer of the causal action
which is not ruled out by the volume constraint. In order to avoid also such situations, the trace
constraint is necessary.

Boundedness Constraint While the meaning of the above volume and trace constraint may
be summarized as a condition on the size of the support of the universal measure which, in a
sense, must not be “too small”, the boundedness constraint is of a different nature. To see this,
we first rewrite the boundedness constraint in terms of the eigenvalues of the operator product
zy in the same way as in Lemma 1.2.2 and subsequently express the sum of absolute values
of the eigenvalues through the average AYY which yields

[ e as@an = [ [ (iwﬂfdmxmp(y)=<2n>2 [ 0 dpwin

FpXFp FpXFp FnXTFn

In order for this expression to be bounded by some finite constant C' > 0, neither the whole
support of the universal measure, nor non-null subsets of it are allowed to “run away” to infinity”
which suggests to interpret the boundedness constraint as a condition on the dispersion of the
support of the universal measure.

"This is basically the same situation as in Exercise 13.4 (i) of the Online Course on Causal Fermion Systems.


https://arxiv.org/pdf/1605.04742#page=15
https://causal-fermion-system.com/wp-content/uploads/2021/07/GQE13.pdf#page=2
https://causal-fermion-system.com/learning/online_course/
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1.3.2 Existence Theory

For the sake of completeness, we shall at least briefly address the question whether, and under what
conditions minimizers of the causal action principle exist at all. In the so-called finite-dimensional
setting, namely for causal fermion systems (Hc, F,, p) where the Hilbert space dimension dim(Hc)
and the total volume p(F,,) are both finite, minimizers exist as was proven by Finster.l”] Unlike
one would expect, also in the so-called infinite-dimensional setting where dim(H¢) = oo and
p(Fn) = 00, the causal action principle is still well-posed if one replaces the in this case obviously
meaningless volume constraint by the requirement that for two measures p, p the total volume
difference (p — 5)(F,) vanishes and that the so-called total variation!!™> Sec: 61115 § 291 |5 _ 5(F, )
of the difference of two measures is finite.® The question concerning the existence of minimizers in
this setting, however, has not been settled yet, although there are recent existence results in the so-
called non-compact setting!'® 5¢¢- 211 by Finster and Langer.['?22% In physically relevant settings
which will be discussed in the following Chapter 2 and under the assumption that the regularized
kernel of the fermionic projector is homogeneous, minimizers exist also in the infinite-dimensional
setting.l”> €™ 4l In contrast with the finite-dimensional and infinite-dimensional setting, the causal
action principle is ill-posed already from the outset if the dimension of the Hilbert space is infinite
while the total volume is finite.

1.4 Further Structures and Objects

The essence of the causal action principle presented in the previous section is to adjust the
weighting of elements of the Borel-o-algebra B(F,,) for a given Hilbert space (Hc, (:|-)5¢.) and
operator set J,, through the universal measure p such that the causal action is minimized. This
being said, the question arises how the eigenvalues A7 of products of pairs of operators z,y € F,,
which serve as the building blocks of the causal Lagrangian and thus play a central role in the
whole framework, can actually be computed in a systematic and efficient way.

1.4.1 The Kernel of the Fermionic Projector and the Closed Chain

To answer the question concerning a systematic computation procedure for the eigenvalues of an
operator product zy of any two operators x,y € F,,, we make use of the fact that for z,y € &F,
also the product operator xy satisfies the rank condition rk(zy) < 2n. This implies that for any
pair x,y € F, the Hilbert space H¢ can be orthogonally decomposed as follows

He = Iy @ ker(zy) (1.14)

where I, C Hc is the finite-dimensional sub-vector space which is mapped to itself by zy. If one
now defines the operator zy|z,, : Izy — Izy restricted to this finite-dimensional subspace I, its
eigenvalues coincide with the nontrivial eigenvalues of the original operator zy. By introducing
two mappings between spin spaces, referred to as the kernel of the fermionic projector and the
closed chain, this reasoning can be extended to an efficient algorithm to compute the nontrivial
eigenvalues of operator products xy for arbitrary =,y € .

DEFINITION 1.4.1 (KERNEL OF THE FERMIONIC PROJECTOR)

Let S, and Sy be the spin spaces at x € J,, and y € JF,,, respectively. The kernel of the
fermionic projector is the mapping P(z,y) : Sy — S, defined as

w [Pz,y)](w) = (moyls,)(u) (1.15)

where 7, : Hc — S, is the orthogonal projection on the spin space S, while y|s, : S, — S,
denotes the restriction of the operator y € F, to the (finite-dimensional) spin space S,.*

“The restricted operator y|s, : Sy — Sy is defined by u — y|s, (u) == yu for all u € Sy.

8The latter condition actually means that the two measures may differ at most on a set of finite volume. For a
more in-depth discussion we refer to the work by Finster and Kleiner.[!8, Sec. 2.1]
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From this operator, by interchanging arguments and taking the composition, the following operator
can be constructed which will eventually allow to compute the sought-after eigenvalues \;¥.

DEFINITION 1.4.2 (CLOSED CHAIN)

Let S, and Sy again be the spin spaces at x € F,, and y € JF,,, respectively. The closed chain
is the mapping Agy : Sz — S, defined in terms of the kernel of the fermionic projector as

L15)

u = Agy(u) = [P(%y)P(y,x)] (u) (1.16)

Using this closed chain which is an endomorphism of the finite-dimensional spin space S,, we can
now establish a relation between its eigenvalues and the eigenvalues of the operator product zy
for ,y € F,, in the following way:['"» P- 5/61 We start by rewriting the Hilbert space trace trge. of
the operator product (xy)? for arbitrary p > 1 by exploiting the cyclicity of the trace as

trac. ((zy)?) = trae. (z(yz)P~'y) = trac. ((y2)? 'yz) = trac. ((yz)?)

Now, since = € F,, satisfies rk(z) < 2n by definition, the trace on the right-hand side reduces to

trace (y2)?) = Y _(eil(ya)Pei)ace

i€EN

where (e;);en is a basis of the separable Hilbert space Hc. This result can be reproduced if one
instead considers the closely related operator 7, (yz)?|s, : Sz — Sz and takes the ordinary trace
Trg, on the (finite-dimensional) spin space S,. We thus arrive at

trac. ((yo)?) = Trs, (12 (yz)?|s,)

Next, we have to establish the connection between the operator 7, (yz)?|s, and the closed chain
Az, which both are defined on the finite-dimensional spin space S,. To this end, we take the
closed chain to the p*" power and compute

(Aay)” = ((mayls, ) (myz]s,))" = (maymyzls,)” = [ma(ymy)als,] - [ra(ymy)als,]

= o {(ymy)(2ls, ma)} - Alymy) (@ls, )} (ymy)zls, = ma(ymyzms)? ™ y(my )]s,

(p— 1) times

= 7(yz)"|s,

where for the second and fifth equality we used the definition of the restricted operators y|s, and
x|s,, respectively, while for the last equality we exploited the relations ym, = y and 7, = x.9
This demonstrates that for all p > 1 the Hilbert space trace of powers of the operator product
xy can equivalently be computed by taking the trace of the p'" power of the closed chain Azy
on the finite-dimensional spin space S,

trace ((‘Ty)p) = Trsr (Agy)

With this result at hand, it only remains to remark that the coefficients of both the characteristic
polynomial of the operator product zy as well as the characteristic polynomial of the closed chain
Azy can be expressed in terms of combinations of traces of powers of xy and A,,, respectively.
Thus, we conclude that the eigenvalues of operator products xy for arbitrary operators x,y € F,
(acting on the possibly infinite-dimensional Hilbert space Hc) can equivalently, but much more
conveniently be computed from the closed chain A;, which acts on the always at least 2n-
dimensional spin space S,.

9This holds due to the fact that for self-adjoint operators their image and kernel are orthogonal.
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Adjoint of the Kernel of the Fermionic Projector

Having equipped the spin spaces with an inner product which led to the spin inner product spaces,
it is natural to study the adjoint of the kernel of the fermionic projector with respect to the inner
products introduced in Definition 1.1.4. In view of the definition of the kernel of the fermionic
projector as a mapping P(z,y) : Sy — S, between finite-dimensional inner product spaces (Sy, <-|-
=s,) and (Sz, <-| =g, ), its adjoint clearly is a mapping P(z,y)* : Sz — S, defined by the relation

Vue S;YveS,: =<P(x,y)ulv-s, ==<ulP(z,y)v>s, (1.17)

As a consequence of the definition of the spin space inner product, the kernel of the fermionic
projector and its adjoint are related in the following way.

PROPOSITION 1.4.3 (SYMMETRY OF THE KERNEL OF THE FERMIONIC PROJECTOR)

The kernel of the fermionic projector and its adjoint P(x,y)* are related via
Pz, y)" = P(y, ) (1.18)

which is usually referred to as symmetry of the kernel of the fermionic projector.

Proof. The symmetry of the kernel of the fermionic projector essentially traces back to the
self-adjointness of the building blocks of P(z,y) with respect to the Hilbert space inner product:
Inserting P(x,y) = m,y|s, into (1.17) and making use of the definition of the spin space inner
product on S, we find for arbitrary v € S, and v € S}

<P(z,y) ulv>-g, = <u|P(x,y)v=s, = —(ulzmayls, v)ac. = —(ulzyv) o
= —(zulyv)sc. = —(myaulmyyv)se. = —(myzls, ulyv)sc
= <P(y,z)ulv>-s, (1.19)

where for the third equality we used the relation xm, = = together with the definition of the
restricted operator, while for the sixth equality we employed the identity y = m,y along with
the self-adjointness of .

This concludes the proof. O

1.4.2 Wavefunctions and the Wave Evaluation Operator

Besides the kernel of the fermionic projector and the closed chain, which both are of particular
importance for explicitly calculating the eigenvalues of products zy for arbitrary operators
x,y € Fy, there are further objects which become relevant in concrete physical applications which
will be discussed in the following chapter.

DEFINITION 1.4.4 (WAVEFUNCTION)

A wavefunction is a mapping ¢ : M — H¢ which satisfies the condition
Ve e M :(x) €S, (1.20)

where M denotes the spacetime associated with a causal fermion system (Hc, F,, p).

This definition does not specify the functional dependence of ¥ (z) on € M. By employing the
orthogonal projection on S,, however, there is a natural way in which every element of the Hilbert
space gives rise to a unique wavefunction.
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DEFINITION 1.4.5 (PHYSICAL WAVEFUNCTION)

The physical wavefunction of u € Hc is the wavefunction ¥* : M — Hc defined as

x = PU(x) = mu (1.21)

In order to complete the definition of physical wavefunctions to a coherent overall picture, we
introduce one further mapping which to each element of the Hilbert space H¢ assigns the
corresponding physical wavefunction.

DEFINITION 1.4.6 (WAVE EVALUATION OPERATOR)

The wave evaluation operator is the mapping ¥ : He — C(M,SM) defined as
u = U(u) =y (1.22)

where C' (M, SM) denotes the set of continuous wavefunctions.®

“We remark that a wavefunction 1 is continuous at x € M if it satisfies

Ve > 035 > 0Vy € M with |ly —all <5 : ||ly]'"*¢(y) — 2| v (@)||,, <<

where |z|1/2 denotes the square root of the absolute value[2!: P- 196] || = (ac*:z)l/2 of the operator z € M.[11: p- 8]

These objects are the most relevant ones for this thesis. As already mentioned in the introduction
to this chapter, the intensive work on the theory of causal fermion systems in different directions
during the past two decades has led to a variety of structures and objects which appear in different
contexts and can be grouped into inherent structures and analytic structures.

Inherent Structures

When talking about so-called inherent structures, one means structures which exclusively require
information already encoded in the data Hc,F,, and p which together define a causal fermion
system. This category includes all the objects introduced in this chapter, namely spin spaces,
the kernel of the fermionic projector, the closed chain as well as the wavefunction and the wave
evaluation operator. Besides these structures there are the following:

= Geometric Structures Starting from symmetric linear endomorphisms of spin spaces, one
introduced so-called Clifford extensions which in turn allow to define tangent spaces to spin
spaces. Building on this, a spin connection as well as notions of curvature and parallel
transport can be developed for causal fermion systems of spin dimension n = 2.2/ The
corresponding investigations in case n = 1 are currently being conducted by Saeed Zafari.

= Topological Structures Complementary to the above differential geometric constructions,
causal fermion systems also contain topological information which was analyzed for the first
time by Finster and Kamran.[*"]

s Surface Layer Integrals In the study of symmetries and conservation laws in the framework
of causal fermion systems, the concept of so-called surface layer integrals which are double-
integrals of short-range causal Lagrangian over “thickened” surfaces, were introduced by
Finster and Kleiner. [

Analytic Structures

Besides these structures and objects there are also analytic structures which include Fuler-Lagrange
equations, linearized field equations, the surface layer one-form, the symplectic form as well as the
surface layer inner product where the latter three are formulated using surface layer integrals. For
a continuously updated overview we refer to the website on the theory of causal fermion systems.


https://arxiv.org/pdf/1605.04742#page=18
https://causal-fermion-system.com/theory/math/#inherent-structures-1
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In the previous chapter we introduced the fundamental mathematical structures of the theory of
causal fermion systems and explained their mutual interrelationship. Except for some physically-
inspired terminology we have paid particular attention not to establish any content-wise connection
to physics in order to maintain a clear distinction between the abstract mathematical structures
of the theory of causal fermion systems on the one hand, and the description of concrete physical
systems within this framework on the other hand. In this chapter we now address the latter
question, namely how physical systems can be modelled within the mathematical structures
provided by the theory of causal fermion systems. In Section 2.1 we start by discussing the
foundational conceptions which underlie the modelling, before in Section 2.2 we give a detailed
explanation how (Hg, (-|-)9¢.), (Fn, B(F,)) and p have to be chosen in order to model spacetimes
described by Lorentzian manifolds. The resulting regularized analogues of all the objects introduced
in Sections 1.2 to 1.4 will serve as the starting point for the considerations in Part II. In the
final Section 2.3 we specialize to the Minkowski vacuum and derive an explicit expression for the
ie-regularized causal Lagrangian which will be needed in Part III.
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2.1 Foundational Conceptions underlying the Modelling

The initial question in the development of a physical theory aimed at describing nature is to
decide, usually based at least in part on measurements and experiments, which objects, structures
and principles one considers as being fundamental. Due to our principally incomplete knowledge
concerning the very essence of nature, this decision is inevitably subjective and, at least to a
certain degree, reflects the currently prevailing physical paradigms.!?! Before we enlarge on the
foundational conceptions underlying the modelling approach in the context of causal fermion
systems, we introduce the following terminology.

TERMINOLOGY 2.1.1 (PHYSICAL SYSTEM)

In what follows, the term physical system always means some physical spacetime® together
with all the particle and antiparticle content existing therein. Accordingly, a physical vacuum
system is a physical system without any particles or antiparticles present.

%To avoid potential confusion caused by the notion of spacetime M = supp(p) as the support of the universal
measure p, we will always add the qualifier “physical” when talking about the inseparable fabric of space and
time from our everyday experience which is mathematically modelled as a possibly curved, semi-Riemannian
manifold.

Having specified what is meant when talking about physical systems, we now turn to the
foundational conceptions underlying the modelling of physical systems within the framework of
causal fermion systems, which are basically the following three:

(1) Fermions as the Fundamental Building Blocks The experimental observation from
high-energy physics that all fundamental matter particles in the standard model of particle
physics are fermions while the interaction particles have bosonic character, leads to the
plausible but nevertheless subjective conception that the different fermion species! should be
regarded as the fundamental building blocks of a physical theory.[26: p- 11]

(2) Dirac Sea Interpretation of Negative-Energy Solutions The Feynman-Stiickelberg
interpretation of the negative-energy solutions of the Dirac equation in quantum electrody-
namics is withdrawn and replaced by its predecessor, namely the Dirac sea interpretation,
according to which the total absence of particles and antiparticles (of one species) must be
understood as presence of the entirety of all negative-energy Dirac solutions (of this species).

While these first two conceptions are of course subjective, but nevertheless well-motivated from and
supported by experimental evidence, the third conception is quite different: Taking the conceptual
incompatibility of general relativity and quantum field theories as the starting point[2% P 71 it
postulates a new feature of spacetime at small length scales.

(3) Microscopic Structure of Physical Spacetime The ultraviolet divergences in quantum
field theory suggest to assume that physical spacetime has some non-trivial structure on
microscopic length scales which is implemented by modifying the small-scale behaviour
of solutions of the Dirac equation and considering these regularized objects as being the
fundamental ones.!'! P+ 19]

As will be explained further below in Subsection 2.2.2, it is this third item, namely the proposed
existence of some unknown but physically real microstructure of physical spacetime which together
with the causal action principle and the associated mathematical structures introduced in Chapter 1
is the main novelty of the theory of causal fermion systems. Before we further enlarge on the

I'When talking about fermion species, we refer to the elementary spin-1/2-particles in the standard model of
particle physics, namely the six quarks (u, d, ¢, s,t,b) and six leptons (e, u, T, Ve, vy, v+) which are usually organized
in three so-called generations (u,d, e, ve), (¢, s, p,vu), (t,b,7,v7), each consisting of one up-type and down-type
quark as well as of one charged and one neutral lepton.
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modelling of physical systems based on the above conceptions, however, we have to discuss the
Dirac sea interpretation of the negative-energy solutions of the Dirac equation in order to account
for the fact that it is both subject to ongoing discussions with the regular conclusion of being
an outdated and overruled concept, but at the same time is of central importance for our modelling.

The Dirac Sea Interpretation

The whole discussion traces back to the year 1928 when Dirac generalized Schrédinger’s equation
in order arrive at a wave equation which respects both the principles of quantum mechanics as
well as those of special relativity. Although this development was in principle highly desirable
and marks a great success, it came at the price of suddenly having to deal with a whole bunch
of previously absent negative-energy solutions — along with the necessity for a clear physical
interpretation of these experimentally unobserved solutions. In order to resolve this obvious
discrepancy between theoretical predictions and experimental observations, Dirac employed the
exclusion principlel*”) formulated some years earlier by the Austrian physicist Wolfgang Pauli,
and proposed the following “solution of the negative energy difficulty”:[>% § 2

“The most stable states for an electron (i. e. the states of lowest energy) are those with
negative energy and very high velocity. All the electrons in the world will tend to fall into these
states with emission of radiation. The Pauli exclusion principle, however, will come into play
and prevent more than one electron going into any one state. Let us assume there are so many
electrons in the world that all the most stable states are occupied, or, more accurately, that all
the states of megative energy are occupied except perhaps a few of small velocity. Any electrons
with positive energy will now have very little chance of jumping into negative-energy states
and will therefore behave like electrons are observed to behave in the laboratory. We shall have
an infinite number of electrons in negative-energy states, and indeed an infinite number per
unit volume all over the world, but if their distribution is exactly uniform we should expect
them to be completely unobservable. Only the small departures from exact uniformity, brought
about by some of the negative-energy states being unoccupied, can we hope to observe.”

Although Dirac in those days incorrectly concluded that one is “led to the assumption that the
holes in the distribution of negative-energy electrons are protons”, the idea of complete occupation
of all states of negative energy soon became known as the Dirac sea.? During the development
of quantum electrodynamics, Dirac’s interpretation was superseded by the Feynman-Stiickelberg
interpretation according to which negative-energy solutions of the Dirac equation should be
re-interpreted as positive-energy solutions propagating backwards in time.

Although quantum electrodynamics is without any doubt an excellent theory and has significantly
shaped our current understanding of nature due to the extremely accurate agreement of theoretically
predicted and experimentally measured values of quantities such as the anomalous magnetic
moment of the electron (also known as the Landé factor) or the Lamb shift in the hydrogen
atom, its success still does not logically rule out the older Dirac sea interpretation.? In sharp
contrast with these results, the discovery of a discrepancy between the theoretically calculated and
experimentally measured decay rate of the neutral pion 7° which was later explained by Adler(**,
Bell and Jackiw!*®! and became known as the chiral anomaly of quantum electrodynamics, indeed
suggests a quite different conclusion: As is nicely explained by Jackiwl*% P 58] it is “/...] the
negative energy sea [which] is responsible for nonconservation of chirality even though the dynamics
is chirally invariant”. Based on this he argues that “/...] we must assign physical reality to Dirac’s

2 Although Dirac’s identification of the vacant states with protons was wrong, the correct explanation of “duplexity
phenomena” as he called the discrepancy between the experimentally observed and theoretically predicted number
of stationary states of an electron in an atom,[2% led to the discovery of the “positive electron”, now referred to as
the positron, in 1932 by Anderson3%! and consequently a correction in later publications by Dirac.[311:[32]

3In this context, we shall not miss to point to an interesting discussion by Finster (in its original version in
German!® Sec- 1.4] byt later, in a slightly revised version, also available in English[33; Ch- 7]), where he argues that
the above-mentioned precision tests of quantum electrodynamics are not really suitable to justify the concept of
field quantization.
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negative energy sea, because it produces the chiral anomaly, whose effects are experimentally
observed, principally in the decay of the neutral pion to two photons, but there are other physical
consequences as well.”13% P 8L p- 121 Thig brief comparison demonstrates that, although the
Feynman-Stiickelberg interpretation is now widely considered as the favoured interpretation which
is due to the enormous success of quantum field theories, the situation is much more ambiguous
than it appears at first sight. In fact, the whole situation strikingly resembles the interpretational
problems which arose from Einstein’s explanation of the photoelectric effect and, later, from de
Broglie’s wave hypothesis roughly one century ago: In much the same way as the wave-particle
duality serves as a placeholder for our ignorance regarding the real nature of what in some cases
we conceive as particles but as waves at other times, the yet unanswered question concerning the
actual nature of the entirety of negative-energy solutions of the Dirac equation may analogously
be referred to as the fermionic vacuum state duality. Given this ambiguous situation, we opt for
Dirac’s original interpretation and model physical systems based on this assumption.

2.2 Modelling Physical Vacuum Systems

Having discussed the three foundational conceptions which underlie the modelling of physical
systems within the framework of causal fermion systems, we now explain in detail how to construct
a causal fermion system which models a given physical system. In order to clearly work out how
and where the foundational conceptions enter the construction such that there do not remain any
conceptual gaps, we deliberately decided to proceed in small steps. Furthermore, as the thesis may
be considered as part of the groundwork for a novel mechanism to explain baryogenesis within the
theory of causal fermion systems, we restrict attention to the modelling of physical vacuum systems.

2.2.1 The Hilbert Space of Negative-Energy Dirac Solutions

Modelling a given physical system within the structures provided by the theory of causal fermion
systems means to find a concrete realization of the structures (He, (-|)3¢.), (Fn, B(F,)) and
p: B(F,) — R which together form a causal fermion system (Hc, F,, p), thereby taking into
account the foundational conceptions. According to the definition of a causal fermion system, the
first decision concerns the question how to choose the all-underlying Hilbert space (Hc, {-|-)¢.)-
Following up on the discussion in the paragraph on the Dirac sea interpretation, we make the
following foundational assumption.

ASSUMPTION 2.2.1 (PHYSICAL VACUUM SYSTEM CORRESPONDS TO ONE DIRAC SEA)

In order to implement the first and second item on the list of foundational conceptions, we
equate a physical vacuum system with one completely filled Dirac sea corresponding to one
of the elementary fermionic particle species in the standard model of particle physics. This
means that the Hilbert space (Hc, (-|-)s¢.) has to be chosen such that it contains all the
negative-energy solutions of the Dirac equation (for this particle species) in the respective
physical spacetime under consideration.®

“We would like to emphasize that the structure of a causal fermion system as introduced in Definition 1.1.1
does in no way suggest, nor require or even enforce this particular choice of the Hilbert space. It is only the
subjective conviction that the unobserved entirety of negative-energy solutions of the Dirac equation should be
interpreted as a Dirac sea which leads to this choice.

This assumption, namely to equate a physical vacuum system with only one Dirac sea, oversimplifies
the physical reality as the following remark shows.

REMARK 2.2.2 (NUMBER OF DIRAC SEAS FOR REALISTIC PHYSICAL VACUUM SYSTEM)

A full implementation of the first and second item on the list of foundational conceptions would
have required to equate a physical vacuum system with a total of 24 completely filled Dirac
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seas, each corresponding to one of the different elementary fermionic particle species (counting
the three different color charges of the six quarks) in the standard model of particle physics.®

“We remark that the number of 24 Dirac seas comes about as follows: As the quarks come in three different
“versions” corresponding to the three colors charges, we need a total of eight Dirac seas to model the first
generation (u,d, e, ve), namely each three copies for the up-quark u and down-quark d as well as each one Dirac
sea for the electron e and the associated neutrino ve. Including also the other two generations by prolonging u,
d, e and v to so-called families (u,c,t), (d,s,b), (e,p,7) and (Ve,vu,vr), we end up with the necessity for in
total 24 Dirac seas.[0: Sec. 2.3, 5.1]

The above assumption is realized by first constructing the Hilbert space (H,,, (*]")m) of all
solutions of the Dirac equation of mass m € Rg in the physical spacetime under consideration®
and subsequently choosing (H, (-|-)5¢) as the closed subspace of negative-energy solutions with
the corresponding Hilbert space inner product being the restriction (:|)g3¢ == (| )m|scx3c of
() : H x Hpp — C to H x H.> Although the procedure appears clear at first sight, a closer
inspection reveals that there are several technical difficulties which call for closer inspection.®

Construction of the Hilbert Space (H,,, (:|')m)

As our whole modelling approach is based on solutions of the Dirac equation, the first task is to
specify the underlying physical spacetime. Although explicit calculations in all following chapters
will exclusively take place in Minkowski space (A, n), we nevertheless sketch the construction of
the all-underlying Hilbert space (3, (:|-)5¢) representing the Dirac sea in the more general case
where physical spacetime is described by some smooth Lorentzian manifold (A, g) which, at least
up to this point, is not subject to any restrictions.

The Guiding Principle The natural starting point for the construction of the Hilbert space
(FHm, (+|-)m) of solutions of the Dirac equation in some general smooth Lorentzian manifold (A4, g)
is clearly Minkowski space (/,n): Here the Cauchy problem for given smooth initial data localized
in some compactly-supported region on, say, the hypersurface {(x",%) € 4 |x° = 0}, exhibits a
unique global solution which, by exploiting the fact that the coefficients of the Dirac operator
are constant, can be straightforwardly constructed using the method of Fourier transforms. As
soon as Minkowski space (A7) is replaced by some general smooth Lorentzian manifold (4, g),
however, this method does no longer apply which is due to the fact that the coefficients of the
Dirac operator are not constant any more. In order to still be able to construct a unique solution
to the Dirac equation for given smooth initial data localized in some compactly-supported region
of physical spacetime, we have to restrict the initial freedom in the choice of the smooth Lorentzian
manifold (/,g) by imposing additional geometric assumptions.”

The Necessity of Global Hyperbolicity Without intending to enter a detailed discussion at this
point, we remark that the necessary geometric assumption which is required to carry over the idea
to split physical spacetime into something as space and time in the first place and subsequently
construct a unique global solution of the Dirac equation in a smooth Lorentzian manifold for
some prescribed initial data localized in a compactly-supported subset at some initial time, is
to impose global hyperbolicity!*"> Pef- 1381 of the Lorentzian manifold (/4 ,g)l% Sec: 351 If we
furthermore assume A to be time-oriented, it can be shown that physical spacetime 4 admits
a smooth foliation M = (N)ier which can be chosen such that N; == {t} x N is a smooth,

4Since, according to our current knowledge, we live in a spacetime which is mathematically best modeled as a
four-dimensional Lorentzian manifold locally looking like Minkowski space, we will restrict our attention to this
class of spacetimes.

5We reserve the notation (Hg,(:|-)3¢.) for an abstract Hilbert space and denote a concrete realization by
(3¢, ¢1)30)-

6We follow the presentation by Finster and Jokel[26: Sec- 2.5] "enriched with additional material from a yet not
published introductory textbook by Finster, Kleiner and Treude.[38: Sec. 3.5]

"For a detailed treatment of Cauchy problems for Dirac operators, we refer to chapter 4 in the book on Wave
Equations on Lorentzian Manifolds by Bér et al.[3% Ch- 4] which is also available as a free online version. [0 Ch- 3]
By employing Leray’s results[!> Ch- 3] along with the Lichnerowicz-Weitzenbéck formula which establishes a relation
between the Dirac operator and the Laplace-Beltrami operator, existence of fundamental solutions of the Dirac
equation in Lorentzian manifolds can also be shown as described by Dimock[42: Thm. 2.1]
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spacelike Cauchy hypersurface in . .[*0> Thm: 1.3.101, 8 N[oreover, by restricting attention to four-
dimensional Lorentzian manifolds the existence of spin structures is ensured*” and thus allows
to define the geometric Dirac operator as

DT, SM) — T=(M,SM) with o — Dip =iy V,9) (2.1)

which acts on smooth sections T'°° (M, SA) of the spinor bundle 7 : S — M with fibres
77 1(x) = Syl ~ C* carrying an indefinite inner product < - |- =g, 4 : Syl X Syt — C of
signature (2,2) referred to as spinor space inner product. In the above definition V denotes
the metric connection on the spinor bundle which is induced via the Levi-Civita connection
V, on the tangent bundle. Furthermore, Clifford multiplication is described by the mapping
v Tyl — L(SyM,SyM) which satisfies the anticommutation relation

Y(w)y(v) +y(0)y(w) = 29(u, v)ids, .« (2.2)

and is written in components using the Dirac matrices 7. In this setting and under the assumption
of global hyperbolicity, the Cauchy problem for the Dirac equation with mass m € RS‘ , namely
the task to find solutions ¢ € I'*°(M,SAM) of

(D - m)w =0 under ¢|1Nt0 = ¢0 S F("Ntms‘/%) (23)

is now well-posed. Even more, due to the finite speed of propagation for solutions of hyperbolic
partial differential equations such as the Dirac equation, initial data vy € T3 (N,, SA) with
compact support on a (spacelike) Cauchy hypersurface N, evolve into solutions ¢ € TS0 (N, SAM)
with compact support on any other Cauchy hypersurface ;.

Inner Product on Solutions of the Dirac Equation Again, by analogy with Minkowski space?,
we can define an inner product (+|-);, : TS (N, SA) x TS (N, SM) — C for solutions ), ¢ €
T (N, SA) of the Dirac equation as the integral over the (spacelike) Cauchy hypersurface
N (with future-directed normal v) with respect to the Borel measure corresponding to the
Riemannian volume form induced by the Lorentzian volume form dV; as

(016 =21 [ dity () <0l 05,0 2.4
Ny
where <-|-=g_g : Sy M x Sy M — C denotes the indefinite inner product on the fibre 7= (x) = S,

defined above. Finally, by forming the completion of I'SS (A;, S/ ) with respect to the inner product
(-|)m, we arrive at the Hilbert space (H,, (-|')m) of solutions of the Dirac equation where

I, = (6 € T (M. 54) | (D —m)p =0} " (2.5)

Choice of the Closed Subspace (I, (-|-)5)

Having outlined the construction of the Hilbert space of all solutions of the Dirac equation with
spatially compact support in a globally hyperbolic, time-oriented smooth Lorentzian manifold
(A, g), the question remains how to implement the Dirac sea interpretation, namely how to identify
the subspace corresponding to the negative-energy solutions. Just as before, it is instructive to first
consider the problem in Minkowski space: As already mentioned above and as will be discussed
further below in Subsection 2.3.1, the solutions of the Dirac equation in Minkowski space are
plane waves. This allows for a natural splitting of the whole solution space H,, into two subspaces

8In more basic terms, the underlying theorems are the so-called splitting theorem due to Geroch[43: Thm- 11] 5nq
the results obtained by Bernal and Sanchez.[44, Thm. 1.1]

9Recall that in Minkowski space every solution ¢ of the Dirac equation gives rise to a divergence-free Dirac
current j* = ‘<¢’|’Yk¢>sx./u- By using current conservation one finds that the spatial integral over -<1M'yow>sxm
is time-independent and thus allows to define a time-independent inner product by exploiting the polarization
identity for complex vector spaces.
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according to the sign of the frequency in the Fourier exponential which, via Planck’s constant, are
interpreted as the positive-energy and negative-energy solutions of the (free) Dirac equation. In
the generalized setting discussed above, however, this possibility fails just as Fourier methods fail
for the construction of solutions. Nevertheless, by making use of the so-called fermionic signature
operator introduced by Finster and Reintjes*0: Se¢- 3-3] along with the mass oscillation property!*”]
one can define a canonical splitting of the Hilbert space of all Dirac solutions into two subspaces
also in globally hyperbolic spacetimes. Since the main part of this thesis is concerned with causal
fermion systems modelling Minkowski space, we do not want to go into further detail.

2.2.2 The Set of Operators and the Regularized Universal Measure

By choosing the Hilbert space (H, {-|-)3¢) as described above, we not only fixed one of the structures
necessary to determine a causal fermion system, but we also implemented the first and second
item on our list of foundational conceptions. This being said, it remains to answer the questions
how the set JF,, of operators has to be chosen in this setting and, moreover, how the conception
that physical spacetime should carry some non-trivial microstructure is incorporated.

Informal Discussion To answer these questions, we recall from Section 1.3 that the causal action
principle is to vary the universal measure for a given Hilbert space (Hc, (-|-)3¢.) and operator
set F,, such that the causal action is minimized. In this way, namely by adjusting the weighting
assigned to the elements in B(F,) by p such that S(p) is minimized, a certain measure ppyi, is
singled out which, in turn, determines some distinguished subset supp(pmin) C F,. In short, the
causal action principle boils down to an abstract mechanism that distinguishes certain operators
within F,,. Now, if one wants to model a physical system within the structures provided by
the theory of causal fermion systems including the conception that physical spacetime has some
non-trivial microstructure, the above described mechanism can be used to determine this yet
unknown microstructure: In much the same way as the Einstein-Hilbert action along with the
principle of least action may be understood as a mechanism to single out metrics which are
“optimal” in the sense that they minimize the weighted scalar curvature of physical spacetime,
the causal action principle determines microstructures of physical spacetime which are “optimal”
in the sense that they minimize the weighted causal relations between physical spacetime points.
In order to implement this idea, the information on the non-trivial microstructure of physical
spacetime 4 must be encoded into the universal measure which requires to introduce a mapping

Fe:M — F, (2.6)
and subsequently define p as the pushforward p® := FSp of the measure p on physical spacetime AL .

2.2.2.1 Construction of the Local Correlation Function

Having motivated the necessity for a mapping F¢ : M — F, which allows to represent the
non-trivial microstructure of physical spacetime 4 on the operator set F,,, we now explain how to
construct this mapping. Taking the second and third item on our list of foundational conceptions
as the starting point, the information on the non-trivial microstructure must be extracted solely
from the elements of the Hilbert space (, (-|-)5¢) of negative-frequency solutions of the Dirac
equation. In order to be able to formalize this properly, we first have to introduce so-called
reqularization operators.['!, Def- 1.2.3]

DEFINITION 2.2.3 (REGULARIZATION OPERATOR)

A family of reqularization operators is a family (9%).¢(0,e,,.,) Of linear operators
REH - T(M,SM) (2.7)

which map the Hilbert space H to the set of continuous sections of the spinor bundle 7 : S —
A and satisfy the following conditions:



https://arxiv.org/pdf/1605.04742#page=30

24 2.2. Modelling Physical Vacuum Systems

(1) Pointwise Boundedness of 9i°(H(): For every member R* of the family (:%).c(0,c,...)5
the image R (H) C T'(M, SA) is pointwise bounded®

Ve € (0, emax) VX € M 3C > 0, Yu € H : |(Ru)(x)| < Cllulls (2.8a)
b

where | - | is any pointwise norm on the spinor spaces.

(2) Almost-everywhere Equicontinuity of 9°(H): For every member ¢ of the family
(R®)ce(0,emar)> the subset R (H) C T'(AM, SAL) is equicontinuous almost everywhere®

Ve € (0,emax) VX € (M\N)VI>03U € TywithxeU, Vvue HVyeU:
| () (x) — (R°u) ()| < 6ullsc (2.8b)

(3) Weak Convergence to the Identity: In the limit ¢ -0 the family (:0).c(0,c,0.,)
converges weakly to the identity mapping

VA C M compact V6 > 0 Jeg > 0, Ve € (0,e9) Yu € H Vn € C(K,SAM) :

‘/<ﬁ($)(meu—u)(x)>sxm d'x| < 8flullsclnler ) (2.8¢)
'

%For clarity, we remark that in this context pointwise clearly refers to the “points” in H. The pointwise
bound C(u) > 0 is realized as C(u) = C||u|5.

YThe first choice is to make use of the inner product (-|-)m introduced in (2.4) by setting | - |2 == (:|)m.
However, other choices are equally possible.

Without having explicitly mentioned it, we assume a given measure space (A, B(AM ), ) where N € B(AM)
is an element of the o-algebra B() satisfying u(N) = 0.

The significance of these regularization operators is that they cure an unwanted but inevitable
feature of the Hilbert space (3, (:|-)9¢) which is due to construction: As the Hilbert space H,, is
obtained by taking the completion of the set of solutions ¢ € T'SS (M, SA) of the Dirac equation,
its elements cannot be expected to be continuous functions; instead, since smooth, compactly
supported functions are dense in L?, the elements of H,, are merely L2-functions upon restriction
to arbitrary Cauchy hypersurfaces. But since regularized Dirac solutions as the fundamental
physical objects should at least be continuous functions according to our subjective conviction,
the regularization operators map the Hilbert space H to I'(#, SAL). As a consequence, for any
1 € H the object Ry € (M, SAM) can be evaluated pointwise and thus allows for the following
definition which for any pair ¥, s € H provides information on the correlation of their regularized
counterparts at the physical spacetime point x € 4 .

DEFINITION 2.2.4 (REGULARIZED SESQUILINEAR FORM ON (X, (-|-)5¢))

Let (X, (-|-)3¢) be the Hilbert space constructed in Subsection 2.2.1. For any x € 4 the
regularized sesquilinear form 05 : 3 x H — C is defined in terms of the spinor space inner
product < - |- =g, g : Sy M x SxA — C on the fibres of the spinor bundle (SA, 7, M) as

(u,v) = b5 (u, v) == — <(Ru) (%) |(R) (X) > 5,4 (2.9)

Before we proceed, note that b5 : H x H — C is well-defined as a sesquilinear form on H due
to the fact that regularization operators R* : H — T'(M,SA) are by definition linear and
the spinor space inner product < - |- g g4 : SyM X Sy — C introduced after (2.1) is an
inner product on the fibres of the spinor bundle 7w : S — M which are four-dimensional
complex vector spaces. Using this sesquilinear form, we can now establish a connection between
regularized elements of H which can be thought of as representing negative-energy solutions of
the Dirac equation with a modified behaviour on microscopic length scales, and the operator set F,,.
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LEMMA 2.2.5 (SESQUILINEAR FORM GIVES RISE TO LOCAL CORRELATION OPERATOR)

For any x € /4, the regularized sesquilinear form bS : HxH — C on the Hilbert space (H, (-|-)5()
gives rise to a bounded linear operator F¢(x) : H — X, referred to as local correlation operator,
which has at most two positive and at most two negative eigenvalues and allows to express the
sesquilinear form in terms of the Hilbert space inner product (-|-)g¢ : H x H — C as

Yu,v € I : bs(u,v) = (u|F®(x)v) g (2.10)

Proof. To begin with, we remark that evaluating a regularization operator ¢ : H — T'(AM, SA)
at x € M yields, by definition, a linear mapping (Re(-))(x) : H — SyA. Due to the
fact that the spinor spaces Sy are four-dimensional complex vector spaces, the operator
(R(-))(x) is actually a finite-rank operator on H. Furthermore, by recalling that the mapping
(Re(-))(x) : H — Sy is pointwise bounded and by using the Cauchy-Schwarz inequality, we
can conclude that b, is a bounded sesquilinear form on K.

As a consequence of this, the mapping bS(-,v) : H — C is a bounded, conjugate-linear form
on H and thus an element of the continuous dual space H* for any choice of v € H. Now, by
the Fréchet-Riesz representation theorem there is a uniquely determined element w € H such
that the continuous conjugate-linear functional b2(-,v) € 3* can be expressed in terms of the
Hilbert space inner product as

YueH: bS(u, v) = (ulw)gc (2.11)

By making use of the linearity of the sesquilinear form b, in its second argument, we conclude
that w must depend linearly on the choice of v. Furthermore, in order to ensure that the
right-hand side in the above defining equation is bounded, the linear operator which maps v
to w must be bounded. Finally, by including the x-dependence, we find that the sesquilinear
form b$ can be described by a bounded linear operator F¢(x) : H — H as

Yu,v € H: bs(u,v) = (u|F*(x)v)5¢ (2.12)

Taking into account that b5 is defined in terms of an indefinite inner product of signature
(2,2), the operator F¢(x) must both be self-adjoint (with respect to the Hilbert space inner
product (-|-)3¢) and of rank at most four with at most two positive and at most two negative
eigenvalues. Thus, by choosing spin dimension n = 2, we have F¢(x) € F5 for all x € A .

This concludes the proof. O

DEFINITION 2.2.6 (LoCcAL CORRELATION FUNCTION)

For any € € (0,max) the function F¢ : M — F5 which is defined in terms of regularization
operators and the spinor space inner product as

Yu,v e H: (ulFe (x)v)g¢ == — <(Ru) (%) (R%0) (x) = 5,4 (2.13)

(2.10)

is referred to as the local correlation function.

2.2.2.2 The Regularized Universal Measure

Having introduced the local correlation function which establishes a relation between physical
spacetime A and the operator set Fs, we are finally in the position to specify how to choose the
universal measure in order to finally obtain a causal fermion system which models a Lorentzian
manifold without particles and antiparticles.
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DEFINITION 2.2.7 (REGULARIZED UNIVERSAL MEASURE)

Let (M, g) be a smooth, oriented Lorentzian manifold, let
AV, = | det(g)|"2dxt A --- A dxdim0 (2.14)

denote the Lorentzian volume form in a given chart and let pq : B(J) — Rg be the Lebesgue-
Borel measure corresponding to the volume form.® Then the reqularized universal measure is
defined as the pushforward measure p° : B(F2) — Ry of y, defined as('!s ea- (1:2:5)]

Qo p°(Q) = (Fipg) (@) = g (F) Q) VR co(F) CBE)  (215)

where o(F¢) = {(F*)"1(A)|A € B(/)} denotes the o-algebra generated by the local
correlation function.

%Note that the terminology Lebesgue-Borel measure has been chosen to indicate that the Lebesgue measure
has to be restricted to the Borel sets in order ensure compatibility with the definition of a causal fermion
system. For details on the Lebesgue measure corresponding to the volume form, we refer to the presentation in
the book by Amann and Escher.[48, Ch- 12]

Taking together all the ingredients, namely the Hilbert space (X, (:|-)5¢) as constructed in
Subsection 2.2.1, as well as the operator set F5 and the regularized universal measure p® which
both rely on the local correlation function, we end up with a family of causal fermion system
(H, T2, p°)'° which model a Lorentzian manifold without any particles or antiparticles present,
but with a non-trivial microstructure of physical spacetime on the length scale €.

2.2.3 Further Regularized Objects

With the definition of the local correlation function at hand, we can now study how the spin
spaces, the kernel of the fermionic projector and the closed chain as introduced in Subsection 1.1.1
and Subsection 1.4.1, respectively, are realized in this setting. In order to maintain the distinction
between the structures of the theory of causal fermion systems and the modelling of a concrete
physical system within these structures, we introduce the following notation and terminology.

TERMINOLOGY 2.2.8 (REGULARIZED OBJECTS)

In what follows, elements of the Lorentzian manifold (/(,g) are consistently denoted by
X,Y,z € M in order to distinguish them from operators z,y, z € F5. Furthermore, whenever
an object depends on the chosen microstructure of physical spacetime via the local correlation
function F¢, we add a superscript (- )¢ to indicate the dependence on the regularization.®

%For clarity, we remark that the superscript (-)¢ is meant to encode both information on the type of
regularization as well as on the length scale of the regularization, which is also denoted by e.

2.2.3.1 Regularized Spin Spaces

Starting from the causal fermion system (H, Fs, p°) constructed in the previous subsection, we
now explain how the spin spaces are realized in this setting.

DEFINITION 2.2.9 (REGULARIZED SPIN SPACES)

For any x € A the reqularized spin space S at x € A is defined as the spin space at F¢(x) € Fs.
More explicitly, the regularized spin space S at x € A is given by

10We remark that, as introduced by Oppiol#?> Pef- 491 it is reasonable to refer to the pair (H,Fipg) as the
regularized causal fermion system (of H ) since the Hilbert space (X, (-|-)5¢) together with the regularization encoded
in the local correlation function F¢ and the given measure py completely determine the causal fermion system.
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Vx €l : Sy = Spe(y) = [Fe(x)](fH) (2.16)

Together with the regularized spin space inner product on S: which by analogy with
Definition 1.1.4 is the mapping < - |- =g : S¢ x S; — C defined as

Vui,ug € Sy @ <ug|ug-gs = —(u1|F(x)uz)ac (2.17)

we arrive at the regularized spin inner product space (S5, < |- >s:) at x € M. The operator

Tpe(y) © H — S5 is referred to as the orthogonal projection on the fegularz'zed spin space S%.

REMARK 2.2.10 (REGULARIZED SPIN SPACES)

The fact that the subset Sg C H contains elements which are originally constructed from Dirac
spinors, one could argue to better use the terminology “regularized spinor space”. But since a
given physical system is modelled within the structures of the theory of causal fermion systems
and not the other way round, it is more consistent to refer to S as regularized spin spaces.

2.2.3.2 The Regularized Kernel of the Fermionic Projector

Having introduced regularized spin spaces as the concrete realizations of the spin spaces in our
setting where the causal fermion system is given by (H, 2, p®), we can define the regularized
analogue of the kernel of the fermionic projector and the closed chain.

DEFINITION 2.2.11 (REGULARIZED KERNEL OF THE FERMIONIC PROJECTOR)

Let x,y € A be elements of physical spacetime and let S and SyS be the regularized spin
spaces at x € M and y € A, respectively. The regularized kernel of the fermionic projector is
the mapping P¢(x,y) : Sy — S5 defined as

2.13)

u— [Ps(x,y)] (u) = (WFE(X)Fg(y)|5;)(u) (2.18)

DEFINITION 2.2.12 (REGULARIZED CLOSED CHAIN)

Let x,y € A be elements of physical spacetime and let S; be the regularized spin space at
x € M. The regularized closed chain is the mapping A®(x,y) : S§ — 5% defined in terms the
regularized kernel of the fermionic projector as

u = A%(x,y) (u) = [PF(x,y) P2 (y, ) (u) (2.19)

As a consequence of the fact that both S§ and Sy‘S are four-dimensional complex vector spaces and
since P°(x,y) is a bounded linear operator, we can regard it as an element P°(x,y) € L(Sy, 55).
Although this definition is perfectly fine and natural in view of the definition of the kernel of
the fermionic projector, we want to regard the regularized kernel of the fermionic projector as a
section in a yet undetermined vector bundle over the base space A x (. In order to implement
this new point of view, we proceed as sketched in the following two paragraphs.

The Vector Bundle of Regularized Spin Spaces

As a first step towards a more geometric description we introduce the vector bundle 7 : §¢ —
over the smooth Lorentzian manifold (., g) where for each x € J the corresponding fibre 7~ (x)
is given by the regularized spin space SS at x € # which is a four-dimensional complex vector
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space.!! In this setting, the regularized kernel of the fermionic projector P¢(x,y) can be regarded
as a mapping between the fibres 771 (y) and 7~ (x) of the vector bundle 7 : S — (. To arrive
at the desired description, however, this bundle is not sufficient. Instead, we have to go one step
further and construct a vector bundle over the base space M x M as we now explain.

The Modified External Tensor Product Bundle

Having the smooth vector bundle 7 : S — M at our disposal, we take two copies and construct a
new vector bundle over 4 x /4 in the following way:'? First, we define for i = 1,2 the projections
pr; : M X M — A onto the ith factor of the Cartesian product and subsequently introduce the
pullback bundles 7; : pr;S® — M x M with total spaces (again, for ¢ = 1,2) defined as

prise = {((zl,zg),w) € (M x M) x S| pr,(z1,22) = m(u})} (2.20)

and projections given by 7;(z1, 22, V) == (z1,22).°> P 58] From these two pullback bundles which
are defined over the same base space M x M, we can now construct the sought-after vector
bundle II : S X S¢ — M x M whose total space is defined as

S¢ X S° := Hom(prsS®, pr;S®) (2.21)

and its fibres are given by H_l((xl,xQ)) = Hom((prgSE)(xlny), (pr’{SE)(th)).lS By employing
the definition of the pullback bundles, the fibres 11! ((xl,xg)) of this new vector bundle can be
specified even more explicitly as the following calculation shows

7 (01, %)) = {((z1,22),9) € (M x M) x S| pry(z1,22) = T () A Ti((21,22),9) = (x1,%2)}
= {((21722)’7/1) € (M x M) x S° }Zi =mY) A (z21,22) = (xl,xQ)}

{{((21,22),w) € (M x M) x S| (m1 (), z2) = (x1,x2)} fori=1
{((21722),’(/1) c (J% X J%) x S¢ | (21,71'2(1#)) = (xl,xg)} fori=2

S, X {xg} fori=1
- (2.22)
{x1} x 85, fori=2

Identifying 7' ((x1,x2)) = S5, x {x2} with S and analogously 75 ' ((x1,x2)) = {x1} x S5, with
S§2,14 we arrive at the characterization of the fibres of the new bundle as

I ((x1,x2)) ~ Hom (S5, , 55,) (2.23)
By recalling that the regularized kernel of the fermionic projector as introduced in Definition 2.2.11
is an element P*(x,y) € L(Sy, S%) = Hom(Sy, S5), the above result allows to introduce a different,
bundle-theoretic interpretation of the regularized kernel of the fermionic projector.

11 According to Lee’s Vector Bundle Chart Lemma, the vector bundle 7 : S — A is actually a smooth vector
bundle.[‘r’“’ Lem. 10.6]

12Here we follow the construction as presented by Finster and Kraus.!

13We remark that the non-standard notation has been deliberately chosen in order to both indicate the similarity
with the so-called external tensor product, but at the same time to emphasize a slight difference: While the external
tensor product of two vector bundles 71 : 1 — X1 and mg : F3 — Xag is the vector bundle E1 X E2 on X1 X X2

with the total space given by 1 X Fy = 7'I'TE1 ® 7r§ FE9, our bundle has its order reversed and includes an additional
53, Ch. 1, Sec. 4.9]

51, Sec. 3]

dualization. | Thus, in a sense, our bundle may be regarded as being “located halfway in between”
the vector bundle of homomorphisms and the external tensor product.

14The bundle maps ¢; : pr; 8¢ — S¢ from the pullback bundles prfS® to S¢ are given by ¢;((x1,%2),%) = ¥.
Each fibre of the pullback bundle is homeomorphic to the fibre of the original bundle.
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DEFINITION 2.2.13 (REGULARIZED KERNEL OF THE FERMIONIC PROJECTOR (SECTION))

The regularized kernel of the fermionic projector is the section P¢ € T'(AM x A, S€ X S¢) of the
vector bundle IT : §¢ X S¢ — A x A, which upon evaluation at (x,y) € 4 x A, reproduces

PE(x,y)
P(x,y) == P*(x,y) € Hom(Sy, S) (2.24)

where P¢(x,y) denotes the kernel of the fermionic projector as introduced in Definition 2.2.11.

We remark that the section P cannot be chosen independently of the vector bundle IT : S¢ X S§¢ —
M x M as there is, by construction, an inextricable connection between both: Modifying the
microstructure of physical spacetime corresponds to a different choice of the regularization operators
R® which in turn results in another local correlation function. But since the local correlation
function enters both the definition of the vector bundles 7; : S — M as well as the definition of
Pe=(x,y) without altering its basic structure (see (2.18)), the section P € T'(l x A, S X S¢) is
essentially completely determined by the choice of the microstructure of physical spacetime.

2.2.4 The Regularized Causal Lagrangian and Action

Comparing the structure of the present chapter with the previous one reveals that we have changed
the order in which objects are introduced. This is, of course, not accidental, but fully intentional:
Due to the fact that the causal Lagrangian ultimately depends on the kernel of the fermionic
projector via the closed chain and its eigenvalues, and furthermore taking into account that also
the foundational conceptions are built into the kernel of the fermionic projector, it becomes clear
that the regularized counterparts of the causal Lagrangian and the causal action are best regarded
as functionals depending on the regularized kernel of the fermionic projector in order to analyze
their dependence on the chosen regularization.

2.2.4.1 Classical Interpretation

The classical point of view is to regard the regularized objects as the “pullback” of the abstract
objects by the local correlation function F¢ from the operator set F,, to physical spacetime . In
this way, we obtain concrete realizations of the abstract objects which are defined on AL .

DEFINITION 2.2.14 (REGULARIZED CAUSAL LAGRANGIAN)

The regularized causal Lagrangian is the function £° : M x A — Ry defined as

(%) = L5(x,y) = LIF (), F*(y)) (2.25)

(213)

where £ and F¢ denote the causal Lagrangian and the local correlation function, respectively.

Based on this definition, the regularized causal action is defined as follows.

DEFINITION 2.2.15 (REGULARIZED CAUSAL ACTION)

Let (3, JFa, p°) be the causal fermion system constructed in Section 2.2 which models the
physical vacuum system consisting of the Lorentzian manifold (A4, g) without any particles or
antiparticles present. The reqularized causal action S°¢ is defined as
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S*=8(") = // L(x,y) dp(z)dp®(y) (2.26)

FoxFg

By making use of the change-of-variable formula for pushforward measures!?* Thm. 3.6.1] “the

local correlation function contained in the regularized universal measure p® can be combined
with the causal Lagrangian such that the regularized causal action can be expressed in terms
of the regularized causal Lagrangian as

50 / / £5(x,¥) dag(x) djrg () (2.27)

< M

Especially in the second form it becomes apparent that the regularized causal action, for a given
physical spacetime (A, g), is basically a functional of the chosen regularization. In order to clarify
how S&¢ depends on the regularization and, as a consequence, how it changes due to variations of
the regularization, the following alternative point of view is beneficial.

2.2.4.2 Bundle-Theoretic Description

While in the classical interpretation the regularized causal Lagrangian is considered as a real-
valued function on physical spacetime which is obtained by combing the causal Lagrangian with
the local correlation function, an alternative point of view is to regard the regularized causal
Lagrangian as a functional of sections of the vector bundle IT : S X S — A X A introduced above.

DEFINITION 2.2.16 (CAUSAL LAGRANGIAN EVALUATION OPERATOR)

The causal Lagrangian evaluation operator is defined as the mapping A : T'(M x AL, S€ X S¢) —
C( x M, Ra’) which to a regularized kernel of the fermionic projector P¢ associates the
regularized causal Lagrangian

A :Pf s A[PF] = £° (2.28)

This causal Lagrangian evaluation operator establishes the connection between the foundational
conceptions underlying the whole modelling approach (and, in particular, the microstructure
of physical spacetime  abstractly encoded in P¢) and the causal relation between all possible
pairs (x,y) € 4 x A of points in physical spacetime.'® Continuing this line of thought, one is
directly led to introduce also the corresponding evaluation operator for the regularized causal action.

DEFINITION 2.2.17 (CAUSAL ACTION EVALUATION OPERATOR)

The causal action evaluation operator is the mapping X : T'(M X M, S° X S°) — RS‘ which
to a given regularized kernel of the fermionic projector P¢ associates the regularized causal
action §¢

2P SP) = 5 2 [ [ (AP () dig ) diy () (229)
X M

where the regularized causal Lagrangian £°(x,y) at (x,y) € A x A has been replaced by the
causal Lagrangian evaluation operator A[P?] evaluated at (x,y) € A x A .

15We remark that this point of view resembles the presentation in the earlier days of the theory where the causal
Lagrangian was regarded as a “real-valued functional on the endomorphisms of Sz C H¢”.[6: Sec- 351 Here we go
one step further and regard the (regularized) Lagrangian basically as a functional of the (regularized) kernel of the
fermionic projector instead of the (regularized) closed chain.
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This alternative perspective will be the starting point for the derivation of variations of the
regularized causal action in Chapter 3 as it allows both for a more intuitive understanding as
well as a more direct relation between deformations of the regularization leading to a modified
regularized kernel of the fermionic projector and the resulting variations of the regularized causal
action. For a schematic graphical representation we refer to Figure 2.1.

2.3 Special Case: Modelling the Minkowski Vacuum

Now that we have explained how physical vacuum systems can be modelled within the theory
of causal fermion systems which hopefully will be of some use to future doctoral students as a
brief summary and complementation of the already existing literature, we conclude this chapter
by narrowing down our field of view to the case where the physical vacuum system is given by
Minkowski spacetime without any particles or antiparticles present which is usually referred to as
the Minkowski vacuum. This restriction has far-reaching consequences as it leads to a number of
simplifications and in this way makes it possible to perform explicit calculations in the following
chapters of Part IT and Part III.

2.3.1 Construction of the ic-Regularized Causal Fermion System

Without intending to repeat the entire construction procedure for a causal fermion system
(H,Fq, p°) as presented in Subsection 2.2.1 and Subsection 2.2.2, we merely want to point out
where the choice of Minkowski space as physical spacetime in the physical vacuum system affects
the construction and how this modification leads to considerable simplifications.'®

The Hilbert Space of Negative-Frequency Dirac Solutions

In Subsection 2.2.1 we have seen that the crucial step to implement Assumption 2.2.1 in general
Lorentzian manifolds (4, g) was the insight that we need to impose global hyperbolicity of the
time-oriented Lorentzian manifold in order to ensure that the Cauchy problem for the Dirac
equation is well-posed. Due to the fact that Minkowski space (A, n) satisfies both the strong
causality condition as well as the compactness condition for causal diamonds, it is globally
hyperbolic and thus allows to find a unique global solution ¥ € I'SS (AN, SAL) of the Dirac equation
with compact support on any other Cauchy hypersurface N; for compactly-supported initial
data ¢y € T (N, SA) on a Cauchy hypersurface A;,. Furthermore, we can choose the trivial
spin connection and thus identify the spinor spaces Sy at different physical spacetime points
x € M with C* such that the spinor bundle becomes the trivial vector bundle SA# = . x C*.
Along with all this, the Dirac equation reduces to (iy’ 0; —m)y = 0 and correspondingly also
the inner product (2.4) on solutions boils down to

(WV|d)m = 2ﬂ/duR3(f) ‘<’(/J|’70¢>‘SX'/% (2.30)
R3

where we have chosen the future-directed normal v as v; = 6;0 which corresponds to Cauchy
hypersurfaces N; = {(t,X) € A |t = const} ~ R3. Just as before, the measure on the Cauchy
hypersurface is the Lebesgue-Borel measure corresponding to the Riemannian volume form which,
in turn, is induced by the Lorentzian volume form. Making use of the fact that solutions of the
Dirac equation in this setting are given by plane waves!® Sec- 1.4]

1 —i(twp ) +ip-¥ : =
Ypat (X) = WXﬁaie (Fwp) " Hip'¥ with wp =/ |P]? +m? (2.31)

16This subsection basically follows the presentation in the introductory article by Finster and Jokel[20, Sec. 4.3]
but in part also relies on the work by Finster and Grotz.[22, Sec. 4.1]
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Figure 2.1: Schematic graphical representation of the relation between the vector bundles m; : S — J, the pullback
bundles 7; : pr; S® — M X M and the new vector bundle IT : S X S€ — M X M as well as the causal action evaluation

operator ¥ : I'(M x A, S*RS®) — R(T.

where the spinor xz.+ € C* solves the algebraic equation (v Pj — M)Xpaxr = 0, we can form
so-called negative-frequency wave-packets

by (x) = / CF [ (x)  with [ e CF(R?,C) (2.32)
Rf}

and thus realize the Hilbert space (H, (|-)¢) of negative-frequency solutions of the Dirac equation as

3= {07 € Coo(ll, C) | (790, —mydy = 0} " (2.33)

without the necessity to first construct the Hilbert space (H,,, (-|)m) of all solutions of the Dirac
equation and only afterwards choose the closed subspace (H, (-|-)4¢) corresponding to the Dirac sea.

The Set of Operators and the Regularized Universal Measure

With the Hilbert space (K, (:|-)5¢) corresponding to the negative-frequency solutions of the Dirac
equation at hand, we next have to specify the set of operators and the regularized universal measure
by constructing the local correlation function in the same way as described in Subsection 2.2.2.1.
To this end, we first of all have to specify how the regularization operators, which according to
Section 2.1 reflects a certain geometric idea regarding the microstructure of physical spacetime,
should be chosen. Due to the fact that the regularization is built into the regularized causal
Lagrangian in a rather complicated way, the complexity of the intended microstructure of physical
spacetime must be weighed against the technical manageability of its implementation. As it
turns out, however, even rudimentarily realistic regularizations such as the setting where the
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regularization operators are given by convolution operators, leads to an considerable technical
effort.!” For this reason the easily manageable, so-called ic-regularization is used almost without
exception in the literature. Taking the negative-frequency wave-packets as the starting point,
the regularization operators are thus defined asl?6: Sec- 4.2]

(R4) (x) = / & F(7)bpa_(x)e (2.34)

R3

where the additional exponential factor leads to an e-dependent suppression of high-frequency
contributions.'® By inserting this result into Definition 2.2.6 (Local Correlation Function) it can
be shown[?? Prop- 411 that for any x € 4 the local correlation operator F@ (x) has two positive
and two negative eigenvalues and thus leads, together with the associated regularized universal
measure p°, to a causal fermion system (H,Fs, p°) of spin dimension n = 2 which corresponds to
the Dirac sea vacuum in Minkowski spacetime.

2.3.2 The ie-Regularized Kernel of the Fermionic Projector

The simplifications accompanying the specialization to Minkowski spacetime allow to regard the
regularized kernel of the fermionic projector as a function P¢ € C°° (M x M ,L(C* C*)) rather
than a section in a vector bundle.!® Although the ie-regularized kernel of the fermionic projector
will not enter the stage before Part III, we nevertheless shall introduce it already at this point for
the sake of completeness. Taking the local correlation function as the starting point, it can be
shown that the ie-regularized kernel of the fermionic projector takes the following form, which we
state as a definition at this point.2°

DEFINITION 2.3.1 (ie-REGULARIZED KERNEL OF THE FERMIONIC PROJECTOR)

Let (A,n) be Minkowski spacetime and let ¢ > 0. For any two physical spacetime points
x,y € A, the ie-regularized kernel of the fermionic projector P¢ € C° (M x M ,L(C* C*)) is
the function which, upon evaluation at (x,y) € 4 x A, is given by

4
(.9) = P = [ 5B (o piden)0? = i@ (e O (235)

R4

where p := 47p; denotes the Feynman slash and p® := 7(p, p) as well as p(x — y) == n(p,x — y)
are shorthand notations for the Minkowski space inner product. Note that in view of the fact
that m will be needed as one of the multipole parameters later on, we from now on denote the
mass parameter in the Dirac equation by pu.

One of the special properties of this ie-regularized kernel of the fermionic projector is its dependence
on the difference vector £ := y — x which reflects invariance of Minkowski spacetime under
translations. This property of regularized kernels of the fermionic projectors is referred to as
homogeneity and is one of the foundational assumptions on the class of regularized kernels of the
fermionic projector which will be studied in the following Chapter 3. As will turn out below, the
following definition allows for a more compact notation.

17We point out that this must not be misunderstood as weakness of whole theory, but merely as a manifestation
of the yet unknown answer to the question how physical spacetime looks on microscopic length scales: In order not
to exclude certain microstructures right from the start, one has to accept a large degree of complexity.

18The terminology ie-regularization stems from the fact that combining the additional exponential factor with
the plane-wave factor contained in 15, (x) leads to the appearance of the factor (x0 + ig) in the exponential which
may be understood as resulting from the replacement x0 — x0 + g [11; Sec. 2.4.1]

L9Note that the regularized kernel of the fermionic projector, in particular in the context of (regularized) Hadamard
states®®], is usually referred to as a tempered bi-distribution on M x 146> Thm. 3.12]

20The derivation of the ie-regularized kernel of the fermionic projector starting from (2.34) has been explained
by Finster and Grotz[?2: Se¢- 411 in such captivating clarity that we could not add anything of value to it and thus
shall directly refer to the corresponding section.
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DEFINITION 2.3.2 (REGULARIZED DIFFERENCE VECTOR)

The regularized difference vector £ is defined as €5 = (€°Fie, f ) where & :== y—x. Additionally,

the dimensionless regularized varmble EZ is the function 2 : R x R; — C defined as

(€%,r) = ES(E%, 1) = py [ —(€5)? (2.36)

where p € RJ is the mass appearing in (2.35) and r == €.

After these preparatory considerations, we now derive an explicit expression for the ie-regularized
kernel of the fermionic projector by evaluating the Fourier integral in its definition.

LEMMA 2.3.3 (ie-REGULARIZED KERNEL OF THE FERMIONIC PROJECTOR)

The Fourier integral in the definition of the ie-regularized kernel of the fermionic projector
evaluates to

Zg )(€2);77 + hE.(€)ides (2.37)

where the functions ¢%,he € C* (R4 C), expressed in terms of modified Bessel functions of
the second kind and the dimensionless regularized variable Z¢ , are given by

4 o} 3
gi(£)=—i(2/;)3 ((;)) (2.37a) e () = L K(E=)

N)

=€
=2)
€

(2.37b)

[I]

Here and in what follows we always identify {¢ =y — x|x,y € M} ~ R*.

Proof. To evaluate the Fourier integral (2.35) we first rewrite the factor (p + pides)ePO=Y)
as a derivative of the exponential factor with respect to £ as

i . : .0
(p + pidea)e PO = (pjy? + pides)e P = ( iy %6 + uldc4) ip¢
Furthermore, by employing the distributional relation

)) ) 5(170 - wp) + 5(170 + wp)

S(p* — ) = 5((0°)* = (15 + 12 2w,

where we used the definition w, = \/[7|?> + p? introduced in (2.31), we find

0
a5 d3p o(p° — 5(p° e
R

(2m)4 2w,
3 —o0

9 By eiwn€) o
_ d ip-§
< i’ o TH @“> / emt 2w,
R4

Choosing a spherical coordinate system with its polar axis pointing in the direction of 5,
carrying out the angular integrals and expressing everything in terms of trigonometric functions

results in
9 TAlp| 1712 e € sin(|p
L= ( iy + pides )/ 7] ‘Zy € bln(_'.pm
o6 J e e
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To compute the remaining integral we interpret it as a Fourier sine transform, identify o = r,

B=1i(€% —ie) = ¢ +i£Y and v = u evaluate it using (A.1b) such that we end up with
po Ki(py/r? 4 (€ +18°)%)

(2m)? 2+ (e +i€0)2

(A1b) . 9 a .
R (l’}/']agj +ﬂld@4> (238)

57, pp. 8.486/12

Finally, by carrying out the derivatives! I'and expressing everything in terms of

the regularized difference vector &2, we end up with

§OK)E) | KIED)N . @ Ki(EE),
P = -igge (T + )€ g e

where we have used the recursion relation Ko(z) = Ko(z) + 227 1K (2)°7> 8486/17] ip the last
step.

This concludes the proof. O

REMARK 2.3.4 (ADJOINT OF ie-REGULARIZED KERNEL OF THE FERMIONIC PROJECTOR)

The adjoint P¢(x,y)* of the ie-regularized kernel of the fermionic projector can be expressed as
P¢(y, x) via the regularized analogue of Proposition 1.4.3. Taking homogeneity into account,

we thus find s

PE(y,x) = Y g5 (&)(£5);7 + he(&)ides (2.40)

Jj=0

where the functions g5, h5 € C*°(R?*, C) are given by

4 =e 3 =
95.(&) = +i (2/; E I%E(:);) (2.40a) e (€) = (2’;)3]{15(:” (2.40b)

2.3.3 The Homogeneous Regularized Causal Action

For a regularized kernel of the fermionic projector which is homogeneous, the corresponding
regularized causal Lagrangian inherits this property via the eigenvalues of the regularized closed
chain and thus also depends only on the difference vector £ :=y — x. As a consequence, one can
change variables (x,y) — (x,€) in the double integral in Definition 2.2.15 (Regularized Causal
Action) and first integrate with respect to the relative variable £ and only afterwards carry out
the integral with respect to x. The latter integration, however, gives a multiplicative infinite

constant which turns S¢ into a divergent expression and thus suggests to introduce the following
definition.[t1: Sec- 4.2.2]

DEFINITION 2.3.5 (HOMOGENEOUS REGULARIZED LAGRANGIAN AND CAUSAL ACTION)

Let (K, T2, p®) be a causal fermion system describing Minkowski spacetime (A,n) with a
regularization chosen such that the regularized kernel of the fermionic projector is homogeneous.

Then the homogeneous regularized causal action Si is defined, by analogy with Definition 2.2.15,
(7, BEq. (4.5)]
as
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si= [ £ da'e (2.41)
R4
where £ : R* — R{ is referred to as the homogeneous reqularized causal Lagrangian.

For the sake of completeness we remark that a conceptually more thorough way to introduce
homogeneity is to consider symmetries of causal fermion systems”® 91 and represent the (regular-
ized) kernel of the fermionic projector in the homogeneous case using so-called operator-valued
negative-definite measures!” Pt 411 in a form which generalizes, but very much resembles the
Fourier decomposition in Definition 2.3.1.2!

NOTATION 2.3.6 (HOMOGENEOUS REGULARIZED LAGRANGIAN AND CAUSAL ACTION)

Whenever there is no risk of confusion, we will drop the subscripts indicating homogeneity and
distinguish between the homogeneous and general setting only through the arguments.

2.3.4 The ie-Regularized Causal Lagrangian

To conclude this chapter, we want to discuss the ie-regularized causal Lagrangian in greater detail
in order to develop a sense of how the ie-regularization affects the causal relation among difference
vectors of physical spacetime points. To this end, we anticipate a result from Chapter 3, namely
the expression for the regularized causal Lagrangian in terms of the components a regularized
kernel of the fermionic projector with vector-scalar structure as derived in Lemma 3.4.1.

LEMMA 2.3.7 (ie-REGULARIZED CAUSAL LAGRANGIAN)

Let (A,n) be Minkowski space. Then, by anticipating the result from Lemma 3.4.1, the
ie-regularized causal Lagrangian £ : R* — R{ evaluates to

o =1(L) KEr

n () - 1) e
2—(??(@@)1] (2.42)

(E)2 E

K5 (22) K1(29)
+24° Re {Iﬁel2 = -

and has length dimension ldim(£f) = —12.

Proof. To determine the explicit form of the regularized causal Lagrangian corresponding to
the ie-regularized kernel of the fermionic projector introduced in Definition 2.3.1, we exploit
its vector-scalar structure which allows to compute the ie-regularized causal Lagrangian via
Lemma 3.4.1 as follows

£5(x,y) 2 4[(B(xy)* — [C° ()]

[Py + P - [0y - @Rl @)

Identifying 5 (x,y) = g° (6)(6°);, 5°(x,y) = h° (€), 02 (x,y) = g5 (6)(€5); and (x,y) = A (€)

21This idea was outlined by Christoph Langer in a seminar talk on Homogeneous Causal Fermion Systems, but
to the best of my knowledge, has not been published yet.
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together with |£5]% == (£, £5) and (£5)? = n(£5, £5) results in
£56) =4[ (IEPlo"©F + 1°(©)F)” — |(653)%05. (&) = 15 (&[]
= 4[(I€7 2167 = (€2)2(€5)?) Ig= )2 + 2167 219 21 P + 2Re ((€5)%(95)%(h)?)
i(£) [/ﬁ(m%sﬁ ) TS

(E2)?

KE)[ 24% Re [(56)2 (IZH(EE;)]GE(?F)YH

Taking into account that £°, p and =% have length dimensions +1, —1 and 0, respectively, we
conclude that the regularized causal Lagrangian has length dimension ldim(L£f) = —12.

This concludes the proof. O
Now, in order to study the causal relation among physical spacetime points x,y € A in the
homogeneous case, we are free to fix x € 4 and analyze all physical spacetime points y € 4 with

respect to x. In this way, spacelike-separatedness of x,y € A translates into £§(£) = 0 and thus
suggests to introduce the following definition.

DEFINITION 2.3.8 (DEMARCATION FUNCTION)

Let £f : R* — ]Rar be a homogeneous regularized causal Lagrangian. The region R® of
non-spacelike-separated difference vectors is defined as

R = {£ e RY| L (€) > 0} (2.44)

If R satisfies the conditions stated in Assumption 3.2.3, the function RZ,, : R x (0,7) X
(0,27) — R¢ implicitly defined by®

Efl(fo7 anax(foa 07 30)7 07 <p) = 0 (2'45)

is referred to as demarcation function as it marks the border between spacelike-separated
difference vectors ¢ € R* and non-spacelike-separated ones. In the special case when RS, has
no angular dependence, we often write

RE=X°xS? with  X°:={(r) eRxR|0<r <R, (€9} (2.46)

max

°If not otherwise stated, we will always work with spherical coordinates.

Due to the fact that the ie-regularized causal Lagrangian is spherically symmetric, also the
corresponding demarcation function does not contain any angular dependence. The remaining
two paragraphs are concerned with the analysis of the e-dependence of this demarcation function.

Contour Lines of the ie-Regularized Causal Lagrangian

To get a first impression of the e-dependence of the ie-regularized causal Lagrangian derived in
Lemma 2.3.7, we plotted the contour lines £ (§) = const for different values of the constant (see
Figure 2.2). Considering only Figure 2.2a for the moment, we recognize a sharp decay of the
ie-regularized causal Lagrangian for £€° — 400 in accordance with the asymptotic expansion of
the modified Bessel functions for large arguments.l””> 8:451/6] Analyzing the change of the contour
lines from Figure 2.2a to Figure 2.2d, one can see the following three simultaneously occurring
effects for decreasing regularization length e: First, we observe that away from the lightcone
(i. e. for |€°] > r) the bunches of contour lines corresponding to small heights are pushed further
outwards. Secondly, near the lightcone (i. e. for |{] &~ r) the contour lines are “folded” which
results in tails approaching the demarcation function and reaching further and further outwards
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for decreasing regularization length. Finally, the demarcation function (which corresponds to the
contour line of height zero) itself converges to the lightcone, but leaves an increasingly thinner
tubular-shaped passage between the set of timelike-separated distance vectors & with ¢° > 0 and
€0 < 0 as long as the regularization length remains positive. These graphics illustrate the fact that
the regularization makes the region of spacelike-separated difference vectors larger.[!!: Sec: 2.4.1]

(a) Level sets for ¢ = 1071 (b) Level sets for e = 1072

(c) Level sets for e = 1073 (d) Level sets for e = 1074

Figure 2.2: Contour plot of the ie-regularized causal Lagrangian for p = 27w and different values of the regularization
length € € (0,1): The bunches of blue, green, yellow, red and purple contour lines correspond to the contour line sets Cy,0.1,

C2,1, C20,10, C200,100 and C2000,1000, respectively, which are defined as Cq,q := {a+n-d|a,d € Rg’,n =0,1,2,...,8}.
The black line represents the undeformed lightcone \§0| = r. Note that the partially discontinuous contour lines are an
unavoidable artifact of the plotting process of an implicitly-defined function using ContourPlot in Mathematica 12.

Behaviour of the Demarcation Function near the Origin ¢ =0

Having developed a basic sense of the behaviour of the ie-regularized causal Lagrangian, we now
focus on the region near the origin £ = 0. Plotting the demarcation function for different values
of the regularization length ¢ (see Figure 2.3) and the mass parameter p (see Figure 2.4), we
find that the diameter of the roughly tubular passage connecting timelike-separated distance
vectors € with €Y > 0 and £° < 0 scales like

diameter ~ pe? (2.47)
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(b) Demarcation function for m = 27 and regularization
lengths € € £p.05,1/,3: A decrease of the regularization
length by a factor 1/vz leads to a decrease of the diameter
at the thinnest point by roughly a factor 1/2.

(a) Demarcation function for 4 = 27 and regularization
lengths ¢ € &£p.1,1/5: A decrease of the regularization
length by a factor 1/vz leads to a decrease of the diameter
at the thinnest point by roughly a factor 1/2.

Figure 2.3: Contour graph of the demarcation function R (EO, r) corresponding to the ie-regularized causal Lagrangian
for m = 27 and different values of the regularization length e: The bunches of blue and green contour lines correspond
to regularization lengths € € £y.1,1/y5 and € € &g.05,1/z Where the sets are defined as €., == {e =€0-¢" |n =0,1,2,3}.
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(a) Demarcation function for e = 0.1 and mass parameter
B € Moaor s A decrease of the mass parameter by a
factor 1/2 leads to a decrease of the diameter at the
thinnest point by roughly a factor 1/2.

(b) Demarcation function for e = 0.1 and mass parameter
€ My 1zt A decrease of the mass parameter by a factor
1/2 leads to a decrease of the diameter at the thinnest
point by roughly a factor 1/2.

Figure 2.4: Contour graph of the demarcation function R, (50, r) corresponding to the ie-regularized causal Lagrangian
for € = 0.1 and different values of the mass parameter pu: The bunches of blue and green contour lines correspond to
€ Mar iy and p € My 1y, where the sets are defined as M, ¢ = {p = po - ¢" |n =0,1,2,3}.

at leading order which is in perfect accordance with the scaling of the tubular-shaped re-
gion of timelike-separated difference vectors near the origin as derived by Curiel, Finster and
Isidrol®0: Ea- (A-13)]' A closer numerical examination shows that the scaling behaviour is actually

given by

diameter ~ pe?1? (2.48)


https://arxiv.org/pdf/1910.06161.pdf#page=15
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Having introduced the fundamental structures of the theory of causal fermion systems in Chapter 1
and subsequently explained in Chapter 2 how a given physical vacuum system can be modelled
within these structures, the present chapter is concerned with the question how modifications of
the microstructure of physical spacetime affect the regularized causal action.

As discussed in Subsection 2.2.2.1, the microstructure of physical spacetime 4 enters the game via
regularization operators R : H — T'(, S ) from which one can construct the local correlation
function F¢ : M — F,. This local correlation function, in turn, leads to the regularized kernel
of the fermionic projector P € T'(M x A ,S° X S¢) which encodes both the microstructure of
physical spacetime as well as the Dirac sea of all negative-frequency solutions of the Dirac equation
in the physical spacetime under consideration. Finally, by forming the regularized causal action S¢
and varying the regularization, the causal action principle ultimately determines a microstructure
which is optimal in the sense that the associated regularized kernel of the fermionic projector
minimizes the regularized causal action. This being said, it becomes clear that analyzing how
deformations of the microstructure of physical spacetime affect the regularized causal action,
requires to derive expressions for the variation of the regularized causal action in terms of the
variation of the regularized kernel of the fermionic projector. Based on this, one can subsequently
study how initial perturbations of the microstructure lead to a dynamics aimed at realizing a new
optimal microstructure of physical spacetime. This will be discussed in more detail in Chapter 5
and there, in particular, in Section 5.3.

43
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3.1 Basics of the Calculus of Variations

We start by introducing the necessary definitions required to formalize what exactly we mean when
talking about variations of the regularized causal action. According to Definition 2.2.17 (Causal
Action Evaluation Operator), the regularized causal action can be interpreted as the outcome of the
mapping

S:T(M x M, SR S?) = RS with P° s X[P] := S° (3.1)

In the cases relevant for us, namely in the setting where the underlying Lorentzian manifold is given
by Minkowski space (A,n) and the regularized kernel of the fermionic projector is homogeneous,
we are actually working with mappings P € C>°(R*, L(C*,C%)).

In order to define what is meant by a variation of the causal action, it is instructive to briefly review
the definitions of variations commonly used in the literature. The simplest setting considered in
the classical calculus of variations is clearly the one where (real-valued) functions defined on an
open subset of R™ are analyzed by calculating first variations which in this case are realized as
ordinary directional derivatives. In more general situations one deals with functionals defined
on Banach spaces or even with functional defined on normed vector spaces. In both cases, first
and higher-order variations of the functionals are realized by generalizing the notion of ordinary
directional derivatives to Gateaux derivatives.[01, Ch- 2, Appendix]

DEFINITION 3.1.1 (GATEAUX DIFFERENTIABILITY AND GATEAUX DERIVATIVE)

Let (X, - |lx) and (Y,| - |y) be normed vector spaces and let U € 7 .||, be an open set
of X where 7)., denotes the norm-induced topology on X. A function f: U — Y is called
Gateauz differentiable at xy € U if the limit

df(zo + Tv)

— lim f(zo +7v) — f(w0)
dr

7—0 T

(3.2)

7=0

referred to as the directional derivative of f at xo in the direction v, exists for all directions
v € X and if there is a continuous linear mapping df (z¢) € L(X,Y), referred to as the Gateaux
derivative of f at x¢ € U, such that

df(zo + Tv)

- = (df(20)) (v) (3.3)

=0

REMARK 3.1.2 (GATEAUX DERIVATIVE)

We remark that there is no consensus in the literature, neither regarding the definition
of Gateaux differentiability nor regarding terminology: While some authors®!162, App- Al
introduce the Gateaux differential/derivative as presented in Definition 3.1.1 and thus follow
the later works by Gateaux!®? Se¢ 3l other authors[%* Se¢ 21C1 drop the requirement of df ()
being continuous and linear (while keeping homogeneity of degree one) which is more in
accordance with Gateaux’s original definition.[%"] To distinguish between both situations, some
authors refer to df (xg) as the Gateaux differential and reserve the term Gateaux derivative for
the case where df (xg) is continuous and linear.

By employing the machinery of differential calculus on topological vector spaces,! one can even
consider functionals defined on topological vector spaces which, in particular, covers the case of
functionals defined on Fréchet spaces. In this case which will be relevant for our purposes (see below
in Section 3.4), variations can be defined in terms of a generalized version of Gateaux derivatives
which is consistently referred to as directional derivatives in the literature.[5% P- 61,08, Sec. 1.3]

LFor details we refer to the textbook by Yamamuro.[%0] For a treatment which uses so-called convenient vector
spaces, we refer to the textbook by Kriegl and Michor.[67; Sec. 13]
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DEFINITION 3.1.3 (DIRECTIONAL DERIVATIVE ON TOPOLOGICAL VECTOR SPACES)

Let (X, Tx) and (Y, Ty') be topological vector spaces over the real numbers R and let U € Tx
be an open set of X. A function f: U — Y is called differentiable at xo € U in the direction
v € X if the limit

df(zo + 1v) iy @0+ 7V) — f20)

dr g ™0 T

(df (z0)) (v) = (3.4)

referred to as the directional derivative of f at xg in the direction v € X, exists.

With this definition of differentiability at hand, we can now formalize what in the classical calculus
of variations is usually referred to as the first variation of a functional on some function space.?

DEFINITION 3.1.4 (FIRST AND SECOND VARIATION OF A FUNCTIONAL)

Let J : X — Y be a mapping between topological vector spaces X,Y and let v : (—79,7) = X
for 79 > 0 be a smooth curve in X. Then the first variation 6J of J at xg € X evaluated at
v :=+/(0) is defined as

do(7)

(6J(z0)) (v) := I

where O:=Joxy (3.5a)

7=0

Likewise, the second variation §°J of J at xg € X evaluated at v = ~'(0) and w := ~"(0) is
defined as

2 T
(52 x0)) (0, ) = 22

(3.5b)

7=0

Before we apply this definition to concrete examples, we shall at least briefly discuss the relationship
of these variations in the case Y = R with the definition of the first and second variations as
commonly used in the classical calculus of variations. Carrying out the derivative in the definition
of the first variation and using the chain rule we obtain

(5760 0) = S5

=) 0) = @)e) (36)

where (dy,J)(v) denotes the directional derivative of J at x in the direction v. This result coincides
with the definition of the first variation in the standard textbooks on the classical calculus of
variations. If we now interpret (d.(,)J)(7'(7)) as a real-valued function ¥ : (—79,79) — R and
use the chain rule once more, the second variation of J can be expressed as

1

230 BN OA0) + SN O) @)

(52J(:c0))(v,w) =3 a4

T=

The first term in this expression is the second directional derivative of J at xg = «(0) in the
direction v = +/(0) what in the classical calculus of variations is referred to as the second
variation.['% Se¢- 24] The additional term, namely the first directional derivative at 29 = v(0) in
the direction 4”(0) is absent in classical treatments. For a thorough study of second variations
which takes into account all contributions at second order, however, this term must be included.

2For the classical calculus of variations, we refer to the standard literature, namely the textbooks by Courant
and Hilbert[6% Ch- 4] a5 well as the one by Gelfand and Fominl!6: Sec- 321 To complement both, we also
recommend the textbook by Giaquinta and Hildebrandt where the connection between derivatives and variations is
discussed.[70> p- 9-11]
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3.2 Foundational Assumptions on P°

In Subsection 2.3.2 we introduced the ie-regularized kernel of the fermionic projector which is a
special case of Definition 2.2.13. In order to clarify the assumptions on the class of regularized
kernels of the fermionic projector which will be considered in this and the following chapters, we
list and briefly comment on them below.

Homogeneity of the Regularized Kernel of the Fermionic Projector

In the case where physical spacetime is given by Minkowski space (A ,n), we assume that the
regularized kernel of the fermionic projector is homogeneous in the sense that it does not depend
on the pair x,y € A of physical spacetime points themselves, but rather on their difference vector
¢ :=y — x and in this way preserves translation invariance of Minkowski spacetime.

ASSUMPTION 3.2.1 (HOMOGENEITY OF P¢)

Whenever physical spacetime is given by Minkowski space (4, 1), we assume that the regularized
kernel of the fermionic projector P* € T (Ml x A,S® X S¢) is the section which, upon
evaluation at (x,y) € M x A is homogeneous in the sense that it only depends on the difference
vector £ :=y — x rather than on the spacetime points x,y € # themselves®

P(x,y) = P*(y — x) (3.8)

In this case, as already discussed in Subsection 2.3.2, the regularized kernel of the fermionic
projector is regarded as a function P € C°°(R*, L(C*, C*)).

%As we exclusively consider homogeneous regularized kernels of the fermionic projector in all subsequent
chapters, we commit the mild sin of using the same symbol.

More generally speaking, homogeneity actually only requires that physical spacetime carries a
vector space structure in order for the difference vector to be defined at all. The second physically
relevant case besides Minkowski space which is discussed in the literature is the discrete case
where one considers a periodic lattice in Minkowski spacetime. (7> Sec- 41,[12]

Vector-Scalar Structure of the Regularized Kernel of the Fermionic Projector
According to the discussion of the foundational conceptions underlying the modelling of physical
systems within the framework of causal fermion systems and based on Assumption 2.2.1, we
constructed the regularized kernel of the fermionic projector from the local correlation function
which encodes both the regularization as well as the Dirac sea interpretation of the entirety
of negative-energy solutions of the Dirac equation. Later on, by restricting to Minkowski
spacetime and choosing the ie-regularization, we arrived at the ie-regularized kernel of the
fermionic projector which inherits its vector-scalar structure from the Dirac equation. Now, since
there is no experimental evidence which strongly suggests or even requires a modification of the
Dirac equation (except, maybe, at high energies which are not accessible to current accelerators),
we assume that any regularization preserves this vector-scalar structure.?

ASSUMPTION 3.2.2 (VECTOR-SCALAR STRUCTURE OF P¢)

Throughout all following chapters, we assume that the homogeneous regularized kernel of the
fermionic projector P¢ € C°°(R* L(C*, C*)), upon evaluation at £ € R%, has the special form

3

£ P& =) vf (&) + 5°(&)iden (3.9)

=0

3For a more detailed discussion concerning the vector-scalar structure of the regularized kernel of the fermionic
projector, we refer to the last paragraph in section 4.1 of Finster’s first book.[6: Sec. 4.1]
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referred to as vector-scalar structure of the regularized kernel of the fermionic projector.” The

4% (for i € {0,1,2,3}) denote the Dirac matrices and the coefficient functions v; € C>(R*, C)
and s € O°(R*, C) are the so-called vector components and the scalar component of the
regularized kernel of the fermionic projector, respectively.

%This terminology was introduced by Finster.[6; - 94L,[11, p. 32]

We note that the function space C°°(R*, C) must be replaced by a suitable Fréchet space when
variations of the regularized causal action are considered. In this case we have to interpret Sy as
the functional ¥} which takes P¢ as input. We will come back to this issue in Section 3.4.

Shape of the Region of Non-Spacelike Separated Difference Vectors
Finally, the third foundational assumption does not concern the structure of the regularized kernel
of the fermionic projector, but rather the choice of the regularization itself.

ASSUMPTION 3.2.3 (SHAPE OF THE REGION R¢)

Whenever physical spacetime is given by Minkowski space (#,n) and the regularized kernel of
the fermionic projector is homogeneous, we assume that the regularization is chosen such that
the region of non-spacelike separated difference vectors

R = {¢ e RY| L} (€) > 0} (3.10)

is simply connected and that for every a € R the subset RS := {¢* € R | €0 = a} is star-shaped.

The assumption on the shape of the region R® ensures that the set of timelike-separated difference
vectors does not split into two or more connected components, prevents an enclave of spacelike-
separated difference vectors within R® and guarantees that the demarcation function is sufficiently
well-behaved.

Relation to Regularizations in the Literature As already mentioned in the paragraph on the choice
of the regularization operators in the case of the Minkowski vacuum, the study of regularizations
different from the ie-regularization comes at the cost of considerable technical effort. For this
reason, there is essentially only one paper(™ that systematically analyzes the effect of the choice
of the regularization on the regularized causal Lagrangian and the regularized causal action.*
More concretely, the paper considers a class of homogeneous, spherically-symmetric regularized
kernels of the fermionic projector which have vector-scalar structure and are composed of so-called
surface states. The detailed analysis in the different regions of physical spacetime referred to as
the outer strip, intermediate layers and inner layers unveils a highly complicated shape of the set
of non-spacelike separated difference vectors & € R*.

Compared with this, our assumption on the shape of the region R¢ aims in a different direction:
Instead of spherically-symmetric homogeneous regularized kernels of the fermionic projector
composed of surface states, we will ultimately consider anisotropically ie-regularized kernels of the
fermionic projector.

NOTATION 3.2.4 (HOMOGENEITY)

Unless otherwise stated, the regularized kernel of the fermionic projector, the regularized closed
chain, the regularized causal Lagrangian and the regularized causal action are from now on
assumed to be homogeneous.

4Besides the paper by Finster[7!]| there is another paper by Curiel, Finster and Isidrol60: APP- Al in which the
scaling of the regularized causal Lagrangian is studied.
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3.3 The Regularized Closed Chain

As already explained in Subsection 1.4.1, the closed chain A, plays the central role in the
calculation of the eigenvalues \/¥ of operator products zy for z,y € F, which in turn serve
as the building blocks of the causal Lagrangian. In this section, starting from a homogeneous
regularized kernel P¢ of the fermionic projector with vector-scalar structure, we derive explicit
expressions for the corresponding regularized closed chain A¢(x,y), its eigenvalues A; (x,y) as well
as the corresponding spectral projectors. Before, however, we take the opportunity to introduce
abbreviations for frequently occurring combinations of the vector and scalar component of the
regularized kernel of the fermionic projector.

NOTATION 3.3.1 (COMBINATIONS OF THE VECTOR AND SCALAR COMPONENTS OF P*¢)

Given the symmetry of the kernel of the fermionic projector with respect to the spin space
inner product, the vector and scalar components of its adjoint, namely the complex-conjugates
v$(€),55(€), can be expressed in terms of vector and scalar components of a homogeneous
regularized kernel of the fermionic projector as

v; (§) = v; (=€) (3.11a) 52(§) = s°(=¢) (3.11Db)

In addition to this, we introduce combinations of the vector and scalar components as functions
(v%)2, (v%)2, (s%)%, (v9)? € C(R*,C) and [v°|?, |s°|*> € C°°(R*, R) which are defined as follows

(v°)? :==n"v5v5  (3.12a) (v%)? == n"vF

(55)% := s°5° (3.12d) (55)% :=5%5°  (3.12¢) |s°]? := s%s° (3.12f)

vs  (3.12b) |v¢|? := r]ijvajs- (3.12¢)

After these preparations, we now derive an expression for the regularized closed chain.

LEMMA 3.3.2 (DECOMPOSITION OF THE REGULARIZED CLOSED CHAIN)

Let P¢ € C*(R* L(C* C*)) be a homogeneous regularized kernel of the fermionic projector
which has vector-scalar structure. Then the regularized closed chain can be decomposed as

A% (x,y) = A5 (O 7] + A5 ()7 + AS(§)ides (3.13)

where the functions A, € C>°(R*,C) and A§, AS € C°(R*,R) referred to as the bilinear,
vector and scalar component of the regularized closed chain, respectively, are given by

Aszlv.sﬁ (3.13a)  AF=2Re(vf55) (3.13b) AZ =[P +|s?  (3.13c)

2

Proof. Inserting the vector-scalar structure of the regularized kernel of the fermionic projector
into the definition of the regularized closed chain from Definition 2.2.12 yields

A (x,y) = (05 ()7 + 57 (&)iden ) (05 (=677 + 57(—€)iden)
=05 ()05 (=)' + (v ()57 (=€) + 5°()vf (—€))7" + 57(€) 5™ (—€)ides
Decomposing the product of Dirac matrices by using the defining relation of the Clifford algebra

of the Dirac matrices

i Yo 1o Lo ij
7y =50+ S = 50 YT+ nYides
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and furthermore making use of the relations vf(—¢) = v£(€) and s°(—¢) = s7(¢) which follow
from the symmetry properties of the (regularized) kernel of the fermionic projector, leads to

- = SE (V5O 7] + (vF(€)5F(€) + 57 (OvF (€))7 + (0 vF (€)w5(€) + 57(§)5%(8) )ides

= %vf(ﬁ)vf(i)hiﬁj] +2Re (v](§)57(€))7" + ([v°[*(€) + [s°*(€))idcs

Identifying the first and second term as the bilinear and vector contribution, respectively, and
the last term as the scalar part concludes this short proof. O

At this point we introduce one more frequently occurring combination combination of the vector
and scalar components of the regularized kernel of the fermionic projector.

DEFINITION 3.3.3 (REGULARIZED DISCRIMINANT)

The reqularized discriminant® D € C*°(R* R) is defined as
€ 154 2 € 2
DE(E) = (B*(€))” — |C°(¢)] (3.14)

where the functions B € C°°(R* R) and C* € C>(R*,C) are given by

Bo() = (&) + [s°(§)  (3.15a) Co(§) = (v9)*(§) — (59)%(§)  (3.15b)

?As will become clear in Lemma 3.3.4, the terminology is motivated by the fact that D¢ appears as the
radicand in the expression for the eigenvalues of the regularized closed chain.

3.3.1 Eigenvalues of the Regularized Closed Chain

Having derived the form of the regularized closed chain in the case where the regularized kernel
of the fermionic projector has vector-scalar structure, we now turn to the computation of the
eigenvalues of A%(x,v).

LEMMA 3.3.4 (EIGENVALUES OF THE REGULARIZED CLOSED CHAIN)

Let A®(x,y) be the regularized closed chain as derived in Lemma 3.3.2. In this case, its
eigenvalues are given by
AL(xy) = BE(€) £ D°(€)" (3.16)

where B¢ and D¢ are the functions introduced in Definition 3.3.3.

Proof. In order to find the roots of the regularized closed chain A®(x,y) as given in Lemma 3.3.2,
we derive a quadratic matrix equation for A%(x,y) by exploiting the properties of the Dirac
matrices. Taking the square of the trace-free part of A°(x,y) and suppressing arguments results
in

1 . 2 (313) Ag 5 7 1 5 5 7 i E NEAEAT
<A€(x, y)— 7 Tr [A%(x, y)]ldc4) =2 AGALNS I+ AGAL {1 )+ AFASY Y

Here we exploited the fact that the trace of a single Dirac matrix as well as the trace of the
commutator of two Dirac matrices both vanish identically. The products of Dirac matrices in
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the first and second term can be rewritten as
b1 A = 2(77”“717 +0'7 ") = {(), (7)) = A (A = A (I
{7, 71,7} = 2(v*v*7 — vivF+h)

where we repeatedly used the defining relation {v,~7} = 2n%¥idcs of the Clifford algebra of
the Dirac matrices. Inserting these relations into the above equation and using the identity
aia; vy =na;a; = a® yields

(Aa(x y) — }Tr [A°(x, y)]idc4>2 =

(3.13)

2 2o (v +vvw) (v°)%(0%)%ides

cancels ( cancels (2)
PP T PR S Sl P
(@250 4+ 200" PIs° + (0°)2()? ) ide
_ ((|v8|2)2 — (15)2(7)2 + 2Re [(09)2(s%)%] + 2|v5\2|55\2>id(c4

where we recognize the regularized discriminant D¢ as introduced in (3.14). In this way we
find that the regularized closed chain has to satisfy the following quadratic matrix equation

1 2
(Aa(x, y) — 7T [Ag(x7y)]idc4> = D(¢)ides

Bringing both terms to the left-hand side, inserting the trace of the regularized closed chain
which evaluates to ; Tr [A%(x,y)] = AS(&) = [v°]2(€) + |s°[2(€) = B°(€) as can be easily seen
from (3.13), factorizing and taking the determinant yields

0 =det {[4°(x,y) = (B*(€) + D*()""*)ides | [4°(v,) — (B7(§) - D*(&)"* )ideu ] }

This equation is a condition on the regularized closed chain which is satisfied if the regularized
closed chain solves the equations

0 = det [Af (x,y) — (Bs(g) + 936(5)1/2)1@}
Vo 0=det [Ae (x,y) — (Bs(g) - 96(5)1/2)1%4}

But these equations are just the conditions for B*(¢) + D*(£)"* to be the roots of the
characteristic polynomial of A%(x,y), that is the eigenvalues A% (x,y).

This concludes the proof. O

3.3.2 Regularized Spectral Projectors

In order to be able to derive the first and second variations of the regularized eigenvalues in
Subsection 3.3.3, we need the spectral projectors.

LEMMA 3.3.5 (SPECTRAL PROJECTORS)

Let A%(x,y) be the regularized closed chain as derived in Lemma 3.3.2 and let A5 (x,y) be the
corresponding eigenvalues from Lemma 3.3.4. Then the regularized spectral projectors F§ (x,y)



3. Derivation of the Second Variation of the Regularized Causal Action 51

on the eigenspaces corresponding to the eigenvalue A (x,vy), expressed in terms of the compo-
nents v, s° of the regularized kernel of the fermionic projector as given in Assumption 3.2.2,
take the form

FE(x,y) = F§ (O 27] + FL (67" + Fi ((§)ides (3.18)

where the scalar, vector and bilinear components are given by

. 1 vjvs . _  Re(vis®) T 3.18
Fly=+j e (318) Fig=+—p=" (318b) Ts= 5 (3.18¢)

Proof. The spectral projectors are defined as the Frobenius covariants[” Se¢- 110 of the
regularized closed chain A®(x,y) corresponding to the eigenvalues A% (x,vy)

. _Af (x,y) — AL (x,y)idca
By = ey - ey

Suppressing arguments and rewriting the expression by inserting 0 = A% — A% in the numerator
yields

€ AS + A8 AE — )8 2A° — (A& 4 )& )idea
Fi(x,y)—EAE—1< j+ :: j ::>id<c4—l<id(c4+ (6$+6i)1 C >
)‘i_)‘:F 2 )‘i_)‘q: )‘i_)‘:F 2 )‘i_)‘:F

Inserting expression for the eigenvalues as derived in Lemma 3.3.4 and restoring the arguments
results in
o 1 24° (x,y) = 2(Jv°|? + |s°f*)idcs
Fi(x,y) == |ides + 3.19
2x.9) 2<<c4 L (3.19)

Finally, be observing that the term |v¢|? + |s¥|? appearing in the numerator cancels the scalar
component in the regularized closed chain, we end up with

A5 (O] + A§(£)7i>
D=(€)

F{(x,y) = % (id@; + (3.20)

Inserting the components of the regularized closed chain as calculated in Lemma 3.3.2 concludes
the proof. O

Having completed the calculation of the eigenvalues of the regularized closed chain in terms of the
vector and scalar components of the homogeneous regularized kernel of the fermionic projector,
we next derive the variation of the eigenvalues which are caused by variations of the regularized
kernel of the fermionic projector.

3.3.3 Variation of the Eigenvalues of the Regularized Closed Chain

An important intermediate step in deriving expressions for S and §%S¢ is to calculate the variations
of the eigenvalues of the regularized closed chain which ultimately enter these expressions via
the variations 6£° and 6%C%. As will be explained in more detail in the proof of Theorem 3.4.3,
the variations of the regularized causal action in the sense of Definition 3.1.4 must actually
be regarded as variations 6%y, and 2%}, of the causal action evaluation operator introduced in
Definition 2.2.17 which maps P¢ to S§%. Similarly, also variations of other objects such as the
regularized causal Lagrangian, the regularized closed chain and its eigenvalues, which are all built
from P¢, must be regarded as variations of the corresponding evaluation operators. However, in
order not to unnecessarily complicate the derivation, we only regard the regularized causal action
in the final Theorem 3.4.3 in this way, but otherwise choose a pragmatic approach and bear in
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mind that all variations are obtained by regarding the corresponding objects as functionals of
Ps € D'(R*, L(C% C*)) and subsequently taking derivatives with respect to 7 as explained in
Definition 3.1.4.

LEMMA 3.3.6 (VARIATIONS OF THE REGULARIZED CLOSED CHAIN)

Let A°(x,y) be the regularized closed chain as derived in Lemma 3.3.2. Replacing Pexy
by a perturbed version Pxy, computing the first and second variations §4° and §%4° and
decomposing them in the same way as in Lemma 3.3.2 yields
0A® = 6AZ [, ¥ ] + 0AGY" + 0AS (3.21a)
524 = JzAfj[ 7] 4 6245yt 4 6%A° (3.21b)
Here the component functions dA5; € D'(R*,C) and 045, 645 € D’ (R*,R) of the first variation
are given by

5 ]' E"E ECE .
0A3; = 5(501 V5 + 5 5vj) (3.21a,i)
6AS = 2Re (v s + v 65°) (3.21a,ii)
A = Re (2(vidv5) + 25%65°) (3.21a,iii)

while at second order we have for §?A5; € D'(R*,C) and 6?45, 0°AS € D'(R*, R) the expressions

52Afj = (5 005 + v€§r+ ov§ ovs ) (3.21b,i)
55 = 2 Re (6255 + v567%5° + 0v§ s°) (3.21b,ii)
§%4S = Re (2(1);52111-5) + 2556%5% + (Ovlov%) + 65°65° ) (3.21b,iii)

respectively.®

Proof. Inserting the perturbed regularized kernel of the fermionic projector into the expression
for the regularized closed chain as given in (3.13), taking the derivative with respect to 7 and
evaluating at 7 = 0 yields

dAZ;;(x,y) 1 /dvi; dve . 1
JAE. = T,1J —— TV E e _7TJ - &]e ¥
Y dr =0 2( dr T s dr ) =0 2( v e, )
dAS ,(x, dvg ; o dsE _
5A5:M 2Re< “sE +v Vi ST) *2Re(&)i€s€+vf 55)
dr —0 dr d —0
dAs (x,y) dvs dvs dss __ dsg
JAE = 78 TATE E i T,J T ¢ e T
: | (" T R P T ) L

= n”&ufv; + 0" 6vF + 8555 + s°0s°
= 2Re ((vidvf) + 550s°)
where we have set vf , := v and s := s°. Proceeding for the second variations in exactly the

same way and expressing everything in terms of first and second variations of the regularized
kernel of the fermionic projector by using 6" (-) = % 4"C)r

n! drn»

1 1/d%s,. d%e dve , dve

§245. — = . = T s e _ T 49 i T
2 2<d2v’J+U” 2 Ty @

r—o yields

1 51} U5 +v5(5r—|—5u5511
2

=0
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1 d2e, d%se dvs ; dse _
52A§:2-2Re< LR SRS B ST) = 2Re (0%§s° + v5675° + 0v§6s°)

drz 7 Tt dr? dr dr /|, _,
1/ . d%s d@E . d%s d%sz dvg, dvs; _dst dsz
52145:* 17 TAT s a ij 7,J TSE ) ij Tt 7, 9-°T T
. 2( a2 Ura TniTg T g S s R dT+deT)T_O
=(n ERRT v + nmvfér 82555F + s°6%F + n”&ue&) + 05057
= Re (2(v0%5) + 2576%% + (8L 00F) + d5°05°)
This concludes the proof. O

%For completeness, we remark that we have identified, without explicitly mentioning, 0P &€
L(R, D’ (R*,L(C*, C*%))) ~ D' (R*,L(C4,C*)) and similarly for the second variation.

Equipped with these intermediate results, we are now ready to derive expressions for the variation
of the eigenvalues of the regularized closed chain.

LEMMA 3.3.7 (VARIATION OF THE EIGENVALUES OF AZ(x,y))

Let AZ(x,y) be the regularized closed chain as derived in Lemma 3.3.2 with the regularized
kernel of the fermionic projector P¢ replaced by a perturbed version PS. Computing the
variation of the corresponding perturbed eigenvalues using Definition 3.1.4 yields

A = 2Re [(Fgavf) + 3—5581

+ \/% Re [BE (vi0oE) — C=(vi0vf) + (B + 0535)556] (3.22a)

and
525 = Re [2@5% ) + 255625° + (002 00%) + O5° 55}
[235(1;25201.5) _ 20&(1)252@?) + 2(35875 + 0555)5255
+ 2(s (02005 ) + 5% (vEdvs) ) 8% — (vLdvS) (vEovT)
+ (V200 (vL6v5) — C(dvkduf) + BE(&vkévk)}

1
\/7

Re [(CF)2(uhouf)? — 2B°CF (v duf) (vF0uf) — 2B°CF (vEauf) (v 6vf)
+ (B%)?(0E 00} ) (vESUR) + |C° P (B 87 )? + (BF)? (vEdug) (v 0vF)
— 90° (BF5F + C°5°) (v du )57 + 20° (B s° + O 57) (vFuf ) 0s°
+ 2B (B s® + C°s%) ((vFovg)0s® — (vEéug)o57)
(102 = (10 2)2) (CF(65°)? + Bros76) | (3.22b)

1
? (DE)S/Q

respectively.

Proof. The derivation of the variation of the eigenvalues is complicated by the fact that
introducing a perturbation of the regularized closed chain may remove the initial twofold
degeneracy of the eigenvalues A5 (x,y). As a consequence, also the spectral projector operators
need to be modified as explained by Finster.['!» S¢¢- 2:6:3] Tn order to compute the variation of
the eigenvalues which traces back to perturbations of the regularized kernel of the fermionic
projector, we follow the approach by Katol™ €h 2§ 2 according to which the variation of the
eigenvalues at first and second order are given by?

N (x,y) = Tr (Fi(x y)3AS (x, y)) (3.23a)
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(3.23b)

F3 0A° Fe 0A°®
52>\§:(X,]/) _ %TI‘ (Fi(x,y)ézAE(x,y) + :I:(xay) (X,]/) $(xay) (x’]/))

/\ft(x’ y) - /\EF(X’ 3/)

where the leading factors % account for the two-fold degeneracy of the unperturbed eigenvalues

and F§ (x,y) denote the unperturbed spectral projectors on the corresponding eigenspaces.

(1) First Variation of the Eigenvalues
We start by inserting the decomposition of the regularized spectral projectors and the variation
of the regularized closed chain into bilinear, vector and scalar parts as derived in Lemma 3.3.5

and Lemma 3.3.6. Recalling that traces of an odd number of Dirac matrices vanish identically,
(3.23a) reads

(3.23a) 1 . 7 y
NG 23 T [FL A%ides + FE AL 4] + FE 045 (v, y)y'
+ FE AL A7)+ FE (e )dAnb 2l 4]
1 g o
= 5 [4FL 045 + 4 FE 3045 + FL, 15645 Tr (' 710" 2]
To proceed, we make use of the relation Tr [[v¢,77][v*,~']] = 16( — n*n?' + n''n/*) from (B.3c)
and insert the explicit expressions for the individual components of the regularized spectral

projector and the variation of the regularized closed chain from (3.18) and (3.21), respectively.
In this way we arrive at

o 1 — _ ,: Re (v§s® _
g [2 -2Re ((vidv5) + s76s°) £ 8n 3\5#) Re (&UJE-SE +j§ 35)

7)€
v, ’Uj

v/ De
1

Spelling out all the products (whereby using Re(x) Re(y) = 5 Re(zy + Ty) for the second term

in the first line), sorting terms according to their power in D results in

+2( =™’ +n'"r’") (&)}ivﬂvi&f)}

...=2Re [(F;&;f)Jr?sasﬂ
2 —z\2 —Z\2 Q%€ eN27F €12 e 12 €12\ (11i 5\
£ = Re [ ()7 = (7)) Qhdof) o (075 o+ [0 P57) 5+ (157 + o) (o) |

Finally, expressing everything in terms of the functions B¢, C¢ defined in Definition 3.3.3 and
using the relation (v9)%s® + [v¥|?s% = Bs® + C®s® we end up with the claimed expression

(3.15)

L L 2Re [(Fg&ﬁ) + 5057 £ \/% Re [Ba(vz&uf) — Co(vi6uf) + (B5 + 0656)536}

(2) Second Variation of the Eigenvalues

For the evaluation of the second variation we basically proceed in the same way. However, due
to the second term in (3.23b) which contains various products involving Dirac matrices and
commutators of Dirac matrices, explicit calculations become lengthy and extremely tedious.
In order to make the derivation comprehensible for the interested reader, we present the full
details in a structured manner in Appendix B: Second Variation of the Eigenvalues of the
Regularized Closed Chain.

This concludes the proof. O

“Equivalently, these formulas can also be obtained from Finster’s discussion.[!! ed- (2.6.5)]
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3.4 The Regularized Causal Action

In this final section of the present chapter, we bring together all results from the previous sections
to eventually arrive at an expression for the variation of regularized causal action which in turn
will serve as the starting point for the following chapter.

3.4.1 Variation of the Regularized Causal Lagrangian

We start by customizing the regularized causal Lagrangian introduced in Definition 2.2.14 to our
specific case, namely for regularized kernels of the fermionic projector with vector-scalar structure.

LEMMA 3.4.1 (REGULARIZED CAUSAL LAGRANGIAN FOR P¢ AS IN ASSUMPTION 3.2.2)

Let P¢ be a regularized kernel of the fermionic projector which has vector-scalar structure.
Then the regularized causal Lagrangian takes the form

£(x,y) = (A% (v, y) — A2 (x,y))° = 4D°(€) (3.24)

where D?(€) denotes the regularized discriminant introduced in Definition 3.3.3.

Proof. Inserting the form of the eigenvalues as derived in Lemma 3.3.4 into the definition of
the causal Lagrangian, the term B¢(§) cancels and we immediately arrive at

Lo(xy) = (N (ny) = A2 (1)) 2 (2-D%(6))? = 4D°(¢) (3.25)

This concludes the proof. O

Based on this expression for the regularized causal Lagrangian, we are now ready to derive its
variations at first and second order in perturbation theory.

LEMMA 3.4.2 (VARIATION OF THE REGULARIZED CAUSAL LAGRANGIAN)

Let £2(x,y) be the regularized causal Lagrangian from Lemma 3.4.1 where the eigenvalues
AZ (x,y) have been replaced by perturbed versions Ay _(x,y). Computing the first and second
variations yields

5L° = 16Re [BE (vZ6v5) — C=(vl6v5) + (BT + 0636)586} (3.26a)
and
§%° = 8Re [236 (VE0%F) — 2C° (v} 6%F) + 2(BF5F + C°57)0%°
+ 25 (VIS ) 0% + 4% (v 0vE) 55T + 25F (vEuT)ds®
+ (0E0U) (vL005) — 2(vE0u ) (100 + (vZovf)?
— CE(00FduT) + BE(00kouT) + (19)2(65%)2 + [vF| 2057 s} (3.26b)
respectively.

Proof. In order to derive the claimed expressions for the variation of the regularized causal
Lagrangian, we recall that the regularized causal Lagrangian is proportional to the square of
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the difference of the eigenvalues of the regularized closed chain. Perturbing the eigenvalues
and taking derivatives with respect to 7 yields

1.d,,. —)\8,)2

oL = - (N

=0
dAg da®
— 92()\E — A€ + —
( +,7 ’T)(d’r dr )‘ —0

—2(A\% =A%) (M5 —ox) (3.27)

For the second variation we analogously find

1 d2 2
e =L ]

AT, CofAN L, A,
= ol ()]

d g dxs . A S D
_<d7' dr ) ()\"'_/\_)(de B dT2)

= (A — )7 +2(A =A%) (8 — 6%\ (3.28)
where in the last step we used the relation 62\ = %d(j\f ~|,_o- To arrive at the claimed

expressions, it remains to insert the formulas for A% and 62\5 from (3.22a) and (3.22b),

respectively, along with A5 — A® = 2v/D¢. For the first variation of the regularized causal
Lagrangian we obtain in this way

6L =2-2VDe - \/?Re [BE(UZ&UE) C* (vLdv§) + (BE?EJFCfsE)&sﬂ
= 16 Re | B=(vvs) — C=(vi0vF) + (B5 + 0686)556} (3.29)

where the first term in (3.22a) drops out and only the term proportional to (D¢)~"/* remains.
For the second variation the procedure is basically the same, though slightly more involved

due to the necessity to compute squares of differences which involve several terms. Inserting
(3.22a) and (3.22b) into (3.28) yields

2
5L (2 : V% Re [ B*(v[0uf) — C° (vidvf) + (B + C°57) s’ >

+4V'De - ( Re [238(1726%5) — 20°(v20%) + 2(B75° + C°57) 0%
+ 2(s% (ViS4 57 (vEov5)) 0sF — (vl &UE-)(W&J )

+ (01 6F) (vl605) — © wmw+W@%m}

1
,/DE

Re [(C%)*(vkdf)? — 2B°C=(vlauf) (vEdu) — 2B°C% (oL oop) (v ovf)
+ (BF)(vk0f) (vE6F) + C7C(vFdvf)? + (B7)(vEovf) (vFovf)
— 20 (B7s® + C°s%) (vF v )0s® + 2C° (B s° + C= 5% ) (vE g, )0s°
+2B° (B 57 4 C°s°) (vFov5)ds® — 2B° (Bs® + C°s°) (vE o) ds®
+ﬁ«ﬂ¥—@#ﬁ@#+ﬁ«ﬂ%—@#ﬂwﬁD

2
(De)

Making use of the relation (Re(z))? = 1 Re(|z|? + 2%) and rearranging terms yields

..=8Re [238(1726211?) — 2C° (vL6%5) + 2(B°s® 4+ C°s°)6%s°
+2(s% (vidvf) + 55 (0L0v7) ) 8% — (vidvs) (vidvf)
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+ (02807) (vd6vs) — O (ol avf) + BEW@]

+ o Re [(C*) (a0t QBECEW— ZBECEW

+ C°CE (vi0v5 ) (vidvE) + (BF)? (vl &va) + (B)? (viiXot Uf)

—20° (B + C°s°) W L ope (BT + C°s°) (vidvs)ds°
L I
+2B°(B°5F + C°5°) (v185)05° — 2C° (B®s° + C%5% ) (vl6v5)ds®
+ (B"s® + 0585)2(535 >+ (BT + C°5°) 535‘2]

cancels (2) cancels (3)

8 cancels (1)
— - Re (072 ha = 25°C (BTN — 2B7C (P BpHtEE)

cancels (4)
+ (35)2(?}5&02)(?}5(5@)+C€§(v’“&v€)2 (B°)? (vkdviytotovy)
cancels (5)
— 2C° (B + C°5°) (uF8viy05° + 2C° (Bs° + C=5%) (vFév ) 6s°
cancels (6)

+ 2B (Bs® + C°s°) (vEswT)0s° — 2B° (B s® + C°s°) (vFévg ) 0s®
+ O ()27 = (Jo°*)%) (65%)% + B (1(v)?)* - (IUEI2)2)5SE<5?}
— 8Re [236(17;'5%5) — 205 (v16%7) + 2(BTFF + C°5°)6%°
+2(s% (02005) + 5% (v2005) ) 857 — (v2dv5) (vidvs)
+ (uE007) (v005) — C2(ooboug) + B (8l ovf)|

+ o Re [ — D (vl ) (o1605) + D (5’
+ 2D5F (vidv$ ) ds® + 2D sF (VoS ) ds®
+ D ()2 (65°)2 + D5|v5\258€é?]

Finally, cancelling terms and combing the remaining ones results in

0% = 8 Re [2B° (v10%) — 20° (v16%7) + 2( B + C°s°) 0%°
+ 255 (V1005 ) 0% + 4% (v 0v5) 5T + 25F (vEduE)ds®
+ (0L007) (v2d0%) — 2(viovs) (vI6VT) + (views)?
— C(ovFovg) + B (owFovs) + (v9)2(65%)% + |v°|?05°0s® (3.30)

This concludes the proof. O

3.4.2 Variation of the Regularized Causal Action

With the expression for the variation of the regularized causal Lagrangian at first and second order
at hand, we are finally in the position to derive the corresponding variation of the regularized
causal action. In contrast with the above derivations, however, we restrict our considerations to
the homogeneous case introduced in Subsection 2.3.3.

THEOREM 3.4.3 (FIRST AND SECOND VARIATION OF THE REGULARIZED CAUSAL ACTION)

Let £5 : R* — Rar as well as S§ be the homogeneous regularized causal Lagrangian and the
homogeneous regularized causal action as introduced in Definition 2.3.5. Furthermore, we
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assume that P§ € C°°(R* L(C* C*)) is a spherically-symmetric minimizer of S£. Then the first
and second variation of the regularized causal action arising from an anisotropically deformed
Ps € D/(R*, L(C*,C*)) (for T € (0, Tmax) With Tiax > 0) around P§ are given by

Riax (€°)
0S; = / de® / dQ / dr r26L5(€) (3.31a)
R Sz 0
Riax (€9) ) SC5 (612
58y = / d¢’ / S / dr r?6°C(6) — 5 72 SRS (3.31D)
2\ 0.L5(6)
R 52 0 r=R5,.. (€°)
where R; . 'R — Rsr denotes the spherically-symmetric demarcation function corresponding
to Pg.

Proof. Before we start with the actual derivation, we shall first establish the connection
with Subsection 2.2.4: The homogeneous analogue ¥, : C*(R* L(C* C*)) — R{ of the
causal action evaluation operator associates to a given homogeneous regularized kernel of the
fermionic projector P the homogeneous regularized causal action S;. Now, in order to be
able to compute variations of Xy in the sense of Definition 3.1.4, we have to regard Xy, as
a functional on the space D'(R* L(C%, C*)) of tempered distributions® and evaluate it for
some PS¢ € D'(R*, L(C* C*)) which arises from the minimizer P§ by slightly deforming the
regularization.

As a consequence of this deformation, not only the regularized closed chain and its eigenvalues
(see Lemma 3.3.7) and thus also the regularized causal Lagrangian (see Lemma 3.4.2) vary, but
also the region R° is affected. More specifically, for an anisotropic deformation, the initially
spherically-symmetric demarcation function acquires an angular dependence.

To analyze the effect of the deformation of the regularization on &, at first and second order
in 7, we have to determine the first and second variations 6%, and 622y of ¥y, at P§ in the
sense of Definition 3.1.4.

(1) First Variation of the Homogeneous Regularized Causal Action

To derive the first variation 6%y, we evaluate X, at PS which basically amounts to replacing
i by £f , in (2.41). Due to the fact that £ (£) vanishes for £ € R*\ RE, we can furthermore

replace the domain of integration R* by RS. Now, by taking the derivative of this expression

with respect to the parameter 7 and evaluating at 7 = 0 gives exactly the first variation §2

(65(P)) (4P°) =
anax,'r(govevtp)
d 1> d I
-2 Jaees©|| | fa faae [ a e
RE =0 R S2 0 7=0

Suppressing arguments and carrying out the derivative by exploiting Leibniz’s integral rule for
differentiation under the integral sign yields

RE

max,T

dcy dR:
e fue o] Tt e, ] s
0

max,T
R S2

7=0

Using that Ry, » and Lj | reduce to Ry, and Lf in the limit 7 — 0 and employing the

definition of the demarcation function, we conclude that the second term vanishes identically.
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We thus end up with

Ry 10 (€9)
(6Zn(P§)) (0P°) = [ d&° [ Qe dr r26L5(€) (3.33)
[e]m ]

where the variation 6£ must be understood as a function of 6P as given in (3.26a). To arrive
at a more suggestive notation, we will from now on replace (SEh(PS)) (0P¢) by 6S¢.

(2) Second Variation of the Homogeneous Regularized Causal Action
For the derivation of the second variation §2%;, we proceed in the same way as above: Starting

from the same initial expression, suppressing arguments and taking second derivatives with
respect to 7 yields

(625L(Pg)) (6P, 67P°) =
Rilax,7(§079a¢)

1 d2 0 2 pe
= 5aq°2 dg” [ df2e dr 7Ly, ;(8)
R

52 0 7=0

1 b azcs acs dRe,,

=2 a0 [ aa dr 2 —T 4 (2T —

] e G [

R 52 0 max, T
d 2 denaXT
I EE) o
+d7' ((T b7 r=R&... dT

7=0

Spelling out the derivative in the last term and combining the resulting terms with the last
term in the first line yields

€
max,T

R
1 d%cs dcs  dRg oLs . (dR: 2
e — = d 0 dQ d 2 T ) 2 ,T max,T 2 1, T max,T
2/ ¢ / ¢ / " + < " Tar dr T or dr
R S2

0

L5, (R -)?
3 dr?

— €
T_Rmax,r
7=0

Note that in order to arrive at this result we have used that Lf  (§)|r=rz,, . depends on
the parameter 7 in two different ways: On the one hand, the parameter 7 represents the

change in the function Lj itself, which traces back to the replacement Pj — P2 and leads to

L dcs
the intrinsic change denoted by —== |T:0. On the other hand, however, also the argument

£ = (&0, R ax.r> 0, ) depends on 7 which leads to the appearance of partial derivatives of L5, .
with respect to the radial variable r. By evaluating the expression at 7 = 0 and using that
the regularized causal Lagrangian vanishes upon evaluation at r = RS, (£Y), the term in the
second line vanishes and we are left with

(6%2n(P5)) (0P, 6%P%) =

R§ 0 (€9) 9
—l/dgo/dg / dr 7’2d£i’T
2 ¢ dr? | __,
R S2 0
dcg _ dRe oL: _ (dRe 2
2 2 h,r max,T 2 h,7 max,T
+ ( " dr dr tr or dr e

—*'max,T

=0
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In contrast with the first variation calculated above, the deformation of the domain of integration
does give a contribution at second order. The deformation of the demarcation function compared
with Ry, is encoded in the derivatives of Ry, . with respect to 7. Due to the fact that the
demarcation function is defined in terms of the regularized causal Lagrangian, we can trade in
its derivatives for derivatives of the regularized causal Lagrangian. Considering the defining
conditions for the deformed and undeformed demarcation function

S

0=Ly(O)|,_pe ey and  O=Li (O] _p. (00

max max,T

and expanding their difference in a Taylor series in the parameter 7 up to first order yields

0= i;r(g)’T:]:{s (£9,0,¢) - Ls(g)‘r:Rs (£9)

= ﬁlsl,‘r (507 anax,T(go’ 0’ SD)’ 0’ SD) - EE (5) |7‘:anax(§0)
acs oL dR;, %,0,
_ l' h,7 (f) + h,7 (f) Inax,T(€ gp) + O(T2)
1 dr r=RE, ., - (€9,0,0) or r=R .y, - (€°,0,0) dr =0

Solving for the derivative of RS, -(€%,0,¢) with respect to 7 and inserting the result into the

intermediate expression for the second variation of the regularized causal action leads to

(254 (P)) (0P*, 0%P) =

| T e @) 2 dgg O] O\
2 / de / Ao / ar 20 _ [a Ze(g)( . ) ]
T - T _

R 52 0 =0 7=0 r=RE,, (60)
Expressing this result in terms of §£f = g ._o and 8Le = %‘ff; |T:0 and denoting the
second variation as §25¢ finally yields

Rpax (€9) 2
1 oL

58S =5 / ¢’ / S / dr 2r%6%L°(€) — <r2( ©) )

2 R 52 0 0 L5(8) r=R,., (£°)

In the same way as before, the variations 6 and §°C{ must be understood as functions of the
variations 6P and 6?P¢ as given in (3.26a) and (3.26b), respectively.

This concludes the proof. O

%The point of view that the (unregularized) kernel of the fermionic projector is regarded as a tempered
distribution was already mentioned in Footnote 19 on page 33. For a more in-depth discussion we refer to
Finster’s second book.[11, Lem. 1.2.8]
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Having derived an expression for the variation of the regularized causal action in terms of the
variation of the regularized causal Lagrangian, we now take this result as our starting point and
go one step further: By first decomposing the variations of the regularized kernel of the fermionic
projector into Fourier modes and subsequently expanding the latter into scalar and vector spherical
harmonics, we can derive multipole expansions

5SE = Z&S‘f [Al(l)] and 625° = Z 5357 [Az(l)a AI(Q)]
=0 =0

where the multipole moments 6S; and 6357 are functionals of the multipole moments Al(:ﬁ) (for
—1 < m <) of the first (n = 1) and second (n = 2) variations of the regularized kernel of
the fermionic projector in momentum space. The significance of these multipole expansions can
best be understood from a comparison with theoretical physics: In much the same way as the
details of the angular dependence of electromagnetic and gravitational potentials can be described
using spherical harmonics and reflect the shape of the underlying charge and mass distributions,
the multipole expansions of the variations of the regularized causal action provide information
regarding the question how deviations from a spherically-symmetrically regularized kernel of the
fermionic projector affect the regularized causal action. The goal of this chapter is to derive, in a
step-by-step approach, expressions for the multipole moments §Sf and §2Sf which will ultimately
turn out to be regularization-dependent integral operators with matrix-valued integral kernels.
These expressions as given in Theorem 4.3.1 will, in turn, serve as the starting point for further
investigations in Part ITI: Applications.
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4.1 Multipole Expansion of the Variations of P° and L°

In Subsection 4.1.1 we start by expanding the variation of the regularized kernel of the fermionic
projector in momentum space into a multipole series which requires not only ordinary scalar
spherical harmonics but also their vectorial counterparts. Subsequently, in Subsection 4.1.2 we
decompose the variation of the regularized causal Lagrangian into multipole moments of the
Fourier modes of the variation of the regularized kernel of the fermionic projector computed before.

4.1.1 Variation of the Regularized Kernel of the Fermionic Projector

In the following sections and chapters we always consider regularized kernels I/DE € D'(R*, L(C*, CY))
of the fermionic projector in momentum space which must be understood as the Fourier modes
of a regularized kernel of the fermionic projector as discussed in Section 3.2. The subscript 7
indicates that f’g is obtained from the minimizer f’% by “slightly” deforming the regularization
such that ISE does in general no longer minimize the regularized causal action.

DEFINITION 4.1.1 (PERTURBED REGULARIZED KERNEL OF THE FERMIONIC PROJECTOR)

In momentum space, the perturbed reqularized kernel of the fermionic projector takes the form

3
P(p) = > vE,(p)y' + 55 (p)idcs (4.1)
i=0

where 7, ..., ~% denote the Dirac gamma matrices and where the vector and scalar component

distributions are given in terms of the functions a,,b%,c, € D'(R* R) as follows
vE o (p) = ar ()80 (1) O(—1") (4.1a)
V2 a(p) == b3 (p)d(05 (p)) O(~p") (4.1b)
s2(p) = ¢ (p)8(05 () O(—1°) (4.1c)

Here the argument of the Dirac d-distributions is the deformed regularized mass shell given by

S

oi(p)=p° —pi(p)  with  o5(p) =p* — p5(p) (4.2)

where the functions s € C*°(R* R) are deformed versions of the regularized mass shell
ug € C°°(R*, R) which reduces to u3(p) = p? for vanishing regularization.®

“Note that the mass shell parameter will be denoted by u rather than m in order to avoid confusion with
the multipole parameter m.

Starting from this expression, one can now calc/tllate the variation of the regularized kernel of
the fermionic projector around the minimizer P§ which, according to the above ansatz, does
in principle yield two contributions: On the one hand, there are variations which are due to
changes in the coefficient functions ay, bf, co while, on the other hand, one also obtains variations
originating from a deformation of the mass shell u§ € C°°(R* R). In the most general case, of
course, both contributions have to be taken into account — for reasons of manageability, however,
we restrict our considerations as follows.

ASSUMPTION 4.1.2 (VARIATION OF P§ AND RANK CONDITION
0

In what follows, variations of the regularized kernel of the fermionic projector always mean
variations of the component functions ag, by, co € D’(R*, R) while variations of the regularized
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mass shell will be disregarded. Thus, the variation of the components of the regularized kernel
of the fermionic projector for n = 1,2 always take the form

505 (p) = 5a(p)s(o° (1) O(—p°) (4.3a)
5 (p) = —5b% (9)3(0% () (") (4.3b)
55 (p) = 6Ve(p)d(0* (1)) O(—1°) (4.3¢)

where 0 = 05(p) = p? — u5(p) denotes the undeformed regularized mass shell.

In addition to this, only deformations for which 135 still has rank two and projects onto the
subspace of negative-energy solutions of the Dirac equation are admissible.

Optimizing the Regularization

As already explained in Section 1.3, it is the causal action principle that introduces dynamics
within the theory of causal fermion systems. When applied to a concrete physical situation
where spacetime and its matter content is modelled through a regularized kernel of the fermionic
projector, the causal action principle is aimed at adjusting the regularization encoded in the
regularized kernel of the fermionic projector in such a way that the causal action is minimized. The
resulting regularization corresponds to an optimal microstructure of physical spacetime. In what
follows, we will replace a spherically-symmetrically regularized kernel of the fermionic projector
by an anisotropically regularized one and study the consequences on S¢.

Scalar and Vector Spherical Harmonics Expansion

In order to allow for a systematic analysis of the effect of anisotropic deformations of the
regularization on 8¢, we have to work out the dependence of the variations 6S° and §%5¢ on the
multipole moments of the momentum space variations 6P and §2P<. To this end, we not only
need the ordinary scalar spherical harmonics, but also their vectorial analogues.

DEFINITION 4.1.3 (VECTOR SPHERICAL HARMONICS)

For (I,m) € Ny x Z with —I < m <, the vector spherical harmonics Y}m, \I7lm, CEm 182 58
are the functions defined as[™

—

I

(0:) = Yim(8, ) := Yim (0, 0) 7 (4.4a)

(0.9) = Wi (0, 9) := || (grad Yim) (0, ) (4.4b)

(0,) = Bim (6, 0) := 7 x (grad Yim)(6, ) (4.4c)

where Y}, : S? — C are the ordinary (scalar) spherical harmonics which, in terms of the
associated Legendre polynomials P, : [—1,1] — R, are explicitly given by®
2l4+1) (I —m)! ;

Y, = (—1ymy [ T p imep 4.
(0,0) = Yin(6,9) = (1) \/ T t Pusleos(0))e (152)
with
w AP, 1 d
T Py (z) = (1 —2?)% Lx) and x+— Pz): (% — 1) (4.5b)

dzm T2l dat

?Note that there exist different conventions concerning the prefactors of the spherical harmonics. Here we
follow the convention used in standard textbooks on quantum mechanics such as the one by Messiah[7%: ea- (B. 93)]
We remark that this convention also coincides with the one used in the standard textbook on classical
electrodynamics by Jackson!76: ed- (3-53)] ' with the slight difference that in the latter the phase factor (—=1)™ is
absorbed in the definition of the associated Legendre polynomials.
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Making use of the ordinary spherical harmonics as well as their vectorial analogues, the vector
and scalar components of the variations of the regularized kernel of the fermionic projector as
given in Assumption 4.1.2 can be decomposed into multipole moments as follows

o) l

5(n)a(p) :Z Z 5(n)a'l ( 0 |p|) lm (463,)
=0 m=—1
oo l

6B (p) = D0 D7 [3el) (°, [F) Y + 8 (0 [0, + 8 (0 )@, (4.6b)
=0 m=-1
o l

§Me(p) =" 3" 8™ (8, [5]) Vi (4.6¢)

l

Il
=)

m=—1

where we have suppressed the arguments of the scalar and vector spherical harmonics. I For the
vector variation 6™ b we implicitly defined Y, := Ylm o, VT, = \I/lm o, Py, = <I>lm €, as
the scalar products of the vector spherical harmonics with the o™ Cartesian unit vector in R3.
For notational convenience we furthermore combine the multipole moments §™a,,, 5(")bl(71n’2’3)
and 6(Me¢y,, into five-component, complex-valued vectors.

DEFINITION 4.1.4 (VECTOR OF MULTIPOLE MOMENTS OF VARIATIONS)

For n € {1,2} and (I,m) € Ny x Z with —1 < m <[, the functions (A(™);,, € D'(R x R, C?),
referred to as the vectors of multipole moments at order n, are defined as

b (p°, |71) 6%arm (p°, P])
abin) (°, |57) 8%, (0", 7))
A 0 151) = | 8602 (°, |17]) (@.7a)  (AD)u (0%, 15]) = | 6202 (0%, |5]) | (4.7b)
o2 (°, |77) 820 (°. 7))
Seim (10, 7)) 5% (1°. |7))

4.1.2 Variation of the Regularized Causal Lagrangian

Having expanded the variation of the regularized kernel of the fermionic projector into a multipole
series, we next decompose the variation of the regularized causal Lagrangian from Lemma 3.4.2
into Fourier modes and subsequently express everything in terms of the multipole moments Al(71n)
and (A®);,,,. Before, however, we introduce some abbreviating notation and terminology for

frequently occurring expressions.

DEFINITION 4.1.5 (HADAMARD PRODUCT)

For any two matrices A, B € C™*™ their Hadamard product A ® B is defined as the entrywise

product
(A© B)ij = Aij Bij (4.8)

1We will employ this practice of simplification of notation whenever there is no risk of confusion. Furthermore,
we will abbreviate sums over multipole indices as Zz m without specifying (I, m) € No X Z where —l < m < L.
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DEFINITION 4.1.6 (MATRICES OF SPHERICAL HARMONICS)
The matrices of spherical harmonics are defined as
«— {e% (e (0% «
Tlm T dlag ()/lm, E Y’lmv 'f \Illma f lm>» lem) (493)
Yim Yirme Vi€ (Y5, v eh ] Yion Yirmr
Y, Yo i YW Vin®h Yi,
Tlmll/m/ = Ea “P?m Yirme 5(253 ‘IJO Yﬁm’ \IJD q’l/mr kI’n q’ﬁmr fa ‘I’Q Yirme (4.9b)
q)ﬁ” q:’levl’m (I)lmlpl’m’ (I)lmq>!’7n’ (I)?m
YimYirm: Y [V}, vl el ] Yim Yirm:
o [ o 0 0o ] o
0 |YSYi Yo Vi, Yooh.| [0
Tlm|l’m’ = 0 Ui Yim Vi Vi Vi ®h 0 (490)
0 (Dlmyl’m’ (D;:n\pil’m’ (I)?mq)ﬁm’ 0
o [ o 0 0o ] o
where £ is the a'" component of ¢ € R? with respect to the standard basis. Furthermore,
doubly occurring Greek indices are understood as triggering a summation from 1 to 3.

The apparent internal block matrix structure of these matrices of spherical harmonics will
become relevant later on, especially for the explicit computations in Appendix C. For the sake of
completeness, we therefore introduce the following terminology for the different blocks of the matrix.

TERMINOLOGY 4.1.7 (DOTTED, DOUBLE-DOTTED AND ASTERISKED TERMS)

For the different blocks of the matrices Ty, and Tlm”’m’ we introduce the following
terminology, which is chosen with mnemonic aspects® in mind:

= Dotted Terms

» Dotted-unprimed terms are those parts of the matrices which are proportional to
the (3 x 1) block matrix (Y;%,, o )T

lm’ lm
» Dotted-primed terms are those parts of the matrices which are proportional to the

(1 x 3) block matrix (Y}, ,, W), , &} )

» Double-dotted terms are those parts of the matrices which are proportional to the (3 x 3)
block matrix with entries Ymeﬁm’ where Yl(')m(') S {l/l(’)m(’) , (I)l(’) m® s \I/l(/)m(/)}

s Asterisked terms are those parts of the matrices which are proportional to the (3 x 3)
block matrix with entries Y7 Y, . where Yl<,)m(/> S {Yl<'Jm<'> , <I>l<,)m<,) , ‘Ifmm(/)}

%The underlying idea of this terminology i is the following: Dotted and double-dotted terms all originate from
scalar products of vector spherical harmonics Yl(’>m<’> with € The number of dots indicates the number of scalar

products involved, i. e. one scalar product in 5 Ylm (dotted-unprimed terms) and { Yl/m/ (dotted-primed
terms), but two scalar products in (& - ?lm)(é . ?l’m’)' In contrast, the asterisk indicates that vector spherical
harmonics Y, form scalar products with themselves.

Making use of these matrices of spherical harmonics, the variation of the regularized causal
Lagrangian can be expanded in a multipole series.
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LEMMA 4.1.8 (MULTIPOLE EXPANSION OF 6LF)

Let the spatial part of the vector component functions v¢, of the unperturbed regularized kernel
of the fermionic projector take the form

06 (§) = —€7v7(¢) (4.10)

with v¢ € D'(R*,C). Then the multipole expansion and Fourier decomposition of the first
variation dL£°(§) of the regularized causal Lagrangian as derived in Lemma 3.4.2 takes the form

—

57 ¢ ZR / f; L5 K5 (€. 5) MG (1) (4.11)

where the matrix-valued functions X5, for all (I,m) € Ny x Z with —I < m <[ are defined in
terms of a Hadamard product as

i (6,9) = [C5 © Ty ] Biee™ 7 (4.11a)

with the coefficient matriz C5. : R* — C°*® and the function E5 : R x Rf — C as given in
(4.13a) and (4.13b), respectively.

Proof. Decomposing the perturbations & (§) and ds°(€) into Fourier modes according to

4 _ . 4 g )
i (§) = / (;173)94 S0E(p)ePt (4.12a) &% (§) = / (;173)94 &= (p)e'Ps  (4.12b)
R4 RAL

and replacing all occurrences of g (€) and ds°(§) in (3.26a) by these expressions, we find

o d*p
g = 1
5[’ (5) (112) 6Re / (27T)4

R4

(19 (BF — Co0f) 003 () + (B + C°7) & ()

where we suppress the position space argument ¢ both in the functions B¢, C*¢ and in the
vector and scalar components v§, s°. Next, we insert the variations of the vector and scalar
component from (4.3) along with their multipole expansion as given in (4.6) and thus arrive at

oL (€ IGZRe /dp /

~ [<vas — 05 B (0. 1) ¥i + (B + €757 et (00, 1) Vi

3(p° +wp)O(=p")e* 5(p° —wp)O(—p")e
X
L1000 (0%, [P po——wg | [0p0 0= (0%, 7)o —se

— (BE — C7v2) (S0 (0", 151 Yi5, + &) (0, [P W, + dbi3) (0, ) ?m)}

where we have rewritten the composition of the §-distribution with the regularized mass shell
o¢ in terms of the zeroes p® = +wj, of o° (p°,|7]). Carrying out the p°-integral and expressing
the integrand in terms of the vector Ay, of multipole moments and the matrix of spherical
harmonics Ty, as introduced in (4.7) and (4.9a), respectively, we end up with

—

£ U7 d p —1 € g
LCEPI [ o s [ (€5 © Yo Biee ™€ A (—wguli) p (@13
R3
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where the coefficient matriz €5 : R* — C5*® and the function E5 : R x R} — C are defined
as

€5 (6) = diag( (B — C7vf) , (B — C*0%)ides , (B +C%s%))  (4.13a)

;040
o 16¢’¢
E5(¢°,1p)) =

_ - 4.13b
[Byoo= (00,157 (4.13b)

0—_ )¢
pr=—wy

respectively. Taken together, the expression in square brackets in (4.13) will be denoted by

i (6,0) = (C5 © Yypy) Esce™ 7 (4.14)

where we usually suppress all the arguments. As a consequence of the regularization of the
mass shell, the multipole moments A, acquire a dependence on the regularization through
w,. We define

(A (151) = (A (=, [51) (4.15)
for every n € N. This concludes the proof. O

In the same way as for the first variation of the regularized causal Lagrangian, we also expand the
second variation into a multipole series, where now the matrices Y.,y and Yy, 17, appear.

LEMMA 4.1.9 (MULTIPOLE EXPANSION OF §%L¢)

Let the spatial part of the vector component functions v, of the unperturbed regularized kernel
of the fermionic projector again take the form

06 (§) = —€7v7(§) (4.16)

with v¢ € D’(R*,C). Then the multipole expansion and Fourier decomposition of the second
variation 62£¢(€) of the regularized causal Lagrangian as derived in Lemma 3.4.2 takes the
form

€ “n d3ﬁ = > € -
L) £ Y Req [ 55 T Kin(€7) (A% (1)
Im R3

1 d’p d*q T

- AE D H ’ ’ D, q AEI ’ q

+ 2 ; Re / (27’()4 / (27{_)4 lm(|p|) jvljlnﬂl m (faPJI) 'm (|QD
1 m? R3 R3

LR L B IRPTICUN 5. 0)A(1q]) ¢ (4.17
+ 5 ; € (27’(’)4 (271')4 lm(|p|) lm\l’m/(€7paQ) l’(—m/)(|Q|) ( . )
! R3 R3

,m

NE

where the matrix-valued functions M?¢ Im|lm

F i for all (I,m),(I’,m') € Ng x Z with

—m") <10 <m0 are defined in terms of Hadamard products as

Ml€m|l/m/ (ga _: (T) = [va[ O] Tlm|l/7n’ + C’S’rlm\l/m’]E‘JS\/[eii(ﬁqu‘).§ (4173)
Nimjtrm (65, @) = [€5 © Yimpirm: — B Limjirgr ] Bxge P06 (4.17b)

with the coefficient matrices €5, €5, : R* — C®*® and the functions E5, B : R x (Rf)? — C
as given in (4.19a,i), (4.19b,i) and (4.19a,ii), (4.19b,ii), respectively.
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Proof. Decomposing the perturbations dv$(§) and ds°(§) into Fourier modes according to

sou(e) = [P S pye (1sa) 6™ (r,y) = [ -2 Fis(pyeiE (4.18b
Ui (5) - (27’()4 Ui (p)e ( . a) s (xa y) - (2’/T)4 $ (p)e ( . )
R4 R4

and replacing all occurrences in (3.26b) by these expressions, we find

) A 1. _ o . .
2pe (3:26b) 7, ETE £,.E & £TE € € € ip&
5L5 (€)' ="16Re /W [n](B v — C°0f) 6205 (p) + (BsF + C°s7) 0% (p)}ep
R4
1 dp d'q ij, Kkl e e 5 2 () A GoES e\
+§/(2W)4/(2W)4 [(77 n Uivk&fj(p)&’l (q) —n" C=ov; (p)&}j(Q)
: : + 0 ESE60S (p) st (q) + 1 uEsEds (p)ous (g)
+ (0)285% () (0))

+ (0™ (070 — 20507 ) 805 ()37 (0) + 1" B 605 ()5 a)

+ 105 (85 (p) 03 (q) + 2005 (p) &5 (q) )

(B OF )+ 2055 (0 0) + PR ) @)) [0

where we symmetrized the terms containing first-order variations of both the vector and scalar
component with regard to complex conjugations by exploiting the presence of the real part.

Making use of the fact that variations and complex conjugations commute, which in momentum
space amounts to

7 (p)e = 00 (p)e¢

the second variation of the regularized causal Lagrangian turns into the form

4 _ _— 4
5%CE(€) = 16Re / (;17:))4 [nij (B*vf — C’Evf)ézvj-(p) + (B"s® + Csss)ézss(p)} elPé
R4

1 d4p d4q .. -~ —~ .. —~ —~
- ij,.kl E11E §11E & _ W (E §p9E 5
t3 / Gn)i / o) [(n N vgvgvs (p)dvi (q) — 0™ C°6vg (p)ovs(q)

R4 R4 —~

+ 0 UESE60S (p) 35t (q) + 0 uEsEds (p)ous (g)
+ ()85 (p)3s* () ) 708
+ (09 (70 — 20707 ) 305 ()8 (0) + 0 B85 ()33 (a)
"I 5 (857 (p)0vs () + 2005 (p)s°(q) )
TS (S50 ) + 265 () 1)) + o7 P62 () ) )0
where we once more exploited the presence of the real part in order to switch complex
conjugations of the first term in the last line such that all variations which carry a complex-

conjugation depend on the variable q. In exactly the same way as we did in the proof of the
previous Lemma 4.1.8, we now decompose the momentum-space variations by combining (4.3)
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with the multipole expansions from (4.6). Along with the relation

5(n)( Z Z o) ( NG Y (045 ¢q)
I'=0m/=—1'
- Z Z 50 (@) (%, 1G 1) (= 1)™ Yir(—mr) (B, 04)
Omli
- Z (=17 6 (@ )y (@ 1T) | Yirme (0 04)
om/'==1l"
where we defined m/ := —m’ and subsequently replaced ' — m/' in the last equality, we obtain

a3 o il
5L (€) ZR / (zf; 115K (6,5) (A5 (1))

§ : e / 2 4 / 2 4 l’nL(‘l |) Im|l'!m (671[7 q) U'm (|q D
l ,m/ R R

P lsred [AE AT ne 5N (50 B ()
2 &~ emt ] ot SmAPU Rimjrm S Py )20 (—m) 14
o, R3 R3

Without explicitly spelling out the individual steps, we have carried out the integrals with respect
to p° and ¢° and exploited the properties of the d-distribution together with the assumption
that the implicit equation o= (p, |7’|) = 0 has two regularization-dependent solutions p° = Fws.

By analogy with Lemma 4.1.8, the functions My, , 1, Nj,, 1, for all (I, m), (I'm’) € No x Z
with —m") <10 < m® are given by
MG (65, @) = (€50 © Tirajim + C= Vi) Bpe PO E (4.19a)
Nimjtra (6 7.0) = (€% © Limjirm = B Vigajiry ) (=1) 7™ Efge 070 (4.19b)

where the matrices €5, €5 : R* — C5%®, referred to as coefficient matrices corresponding to
M? and N¢, respectively, take the form

@ -C TR %
C5(€) = | —v¥vflax1  vT0flaxz  —0% 13 (4.19a,i)
vg 8¢ —0% 5113 (v%)?
—|v§|* + B —(v§9° — 2v5v%) L1x3 v§s® + 20§57
S = | —(vFv§ — 20°0§)L3x1 (V50 — 20°0%) 1355 — (V% s€ 4 20°5%) L3y (4.19b,i)
V5% + 2055 —(v55% 4 2055°) 113 |ve ]2

and where the functions E5¢, E5 : R x (R{)? — C are given by

166i(P°+a°)€°
E5 (€% 17, 171) = _ (4.19a,i)
’8 0os(p0, |7]) Ha 0ot (q |q|)| -
qoz—wg
16ei(P°—a%)€°
EX (&, 171, 17]) = (4.19bii)
1000 (00, [71)|| 000 (4°, 1G]] | s0=-g,

——wE
I"="wg
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We remark that the asterisked terms 'i'lm“/m/ arise from those terms in §2£¢(€) in which
first-order variations of the regularized kernel of the fermionic projector are contracted with
each other. O

For the sake of completeness, we shall take the opportunity at this point to introduce, by analogy
with Mj, |l m and N? two more matrix-valued functions which will become relevant in the
following section.

Im|l'm’>

g g
DEFINITION 4.1.10 (MATRIX-VALUED FUNCTIONS Vimirm: AND Wzmu/mf)

wWe : R x (R3)? — C5*5 are defined as

The matrix-valued functions V¢ Tm|lm?

Im|l'm’>

v LK (65 9) 15 Ky (€,0)
lEm\l/m/(gvpv Q) = 5 L &LE(EI) (420&)
r=R5ax (€9)
Ki (€51 Ko o7
I3 — =\ (L1la) —m
lm\l/m’(gvpv q) =3 (420b)
2 0rL2(€) r—Re._ (%)

where RS, denotes the demarcation function as defined in Definition 2.3.8 and X7, (&,p) is
the matrix-valued function from (4.11a).

4.2 Multipole Expansion of 4S° and §%5¢

Building on the preliminary work from the previous section, we can now tackle the derivation of
the multipole expansion of the variations S and §%5¢. For this, we have to insert the multipole
expansions of 6£%(£) and 6%£%(€) as derived in Lemma 4.1.8 and Lemma 4.1.9 into the expressions
for 65 and 6%5° from Theorem 3.4.3. By interchanging the position space integral over the
region R° (coming from the causal action) with the momentum space integrals (coming from the
Fourier decomposition of §£%(¢) and 6% (€)) and recalling that the Fourier exponential factors
are included in the matrix-valued functions X, My 1005 N Vi irme Wi it will turn
out to be advantageous to introduce so-called mcomplete Fourier transforms.

DEFINITION 4.2.1 (INCOMPLETE FOURIER TRANSFORMS)

The incomplete Fourier transforms of the matrix-valued functions X3, , Mlm\l/m’ and N7,
as introduced in (4.11a), (4.17a) and (4.17b), respectively, are defined as

m|l'm’

FIXi)@) = [ a(en) / 4% 1255, (€. F) (4.212)
xE

I[Mlsm\l’m’](ﬁ’ ﬂ)} (@178) { lm\l'm’(§7 ﬂaqﬂ)}
= [ d(¢ dQe r 21b
{f[Nf Jw.of x/ «© / R ETAEY) -

where we have decomposed the domain of integration R as R® = X° x S2. Likewise, for the
functions Vi ..., and Wi, ., as introduced in (4.20a) and (4.20b), the incomplete Fourier
transforms are defined as

f[vlfmll,m/}(ﬁ,q*)} { Vi (6 M)}
= [ag® [ dQe R, (£° o
{f[W?mym/](piq*) B / éh/ ¢ Fnanl£2) Winim (&5 0) ||

R S2

(4.21c)

=R5,ax(€9)
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Let us remark that the terminology incomplete Fourier transforms reflects the fact that the radial
integrals do not extend to infinity as would be the case for ordinary Fourier transforms (in spherical
coordinates). This can ultimately be traced back to the fact that the homogeneous regularized
causal Lagrangian £{(¢) vanishes for £ € R* \ R°. Using these incomplete Fourier transforms, the
multipole expansions of the variations of the regularized causal action take the following form.

LEMMA 4.2.2 (MULTIPOLE EXPANSION OF 6S° AND §35¢)

The multipole moments in the expansions 6§° = ", 4S5, and 655° =3, ;1 . 0°SF

Im|l!m’>
expressed in terms of the incomplete Fourier transforms (4.21), are given by

£ dgﬁ £ — £ ond
55, = Re / o Lo FIK0)(9)A0(7) (4.220)
]R3

and

d3p 1 d3p d3q

2Qe _ € = 2\¢e =

o Slm\l’m’ =Re / (27T)4 O Omm: Lixs ]:[:Klm} (p)(A )lm('p |) + 5/ (27’1’)4 / (271_)4 X
R3 R3 R3

X A ()T [0 F MG ) 5. @) = (=)™ F Vi) (.0)

respectively.

Proof. We proceed in two steps and start with the derivation of the multipole expansion

of 485°.

(1) Multipole Expansion of 6S°

Inserting for §£°(¢) in (3.31a) the multipole expansion as given in (4.11) and interchanging
the momentum and position space integrals using Fubini’s theorem, we obtain

Ry 0y (€°)
68° = / dg° / Qe / dr r?6L5(€)
R S2 0
R (€9)
(411 dSﬁ 0 2, — 5 o
= ZRG (27‘[‘)4 d§ dr de Lyxsr :Khn(fap) lm(|p|)
l,m R3 R 0 S2

Combing the £%-integral and the radial integral and employing the definition of the incomplete
Fourier transform of the matrix-valued function X5, which was introduced in (4.21a), we find

d*p . .
5 = STRe [ o T PG ()5 1) (4.23)
l,m R3
which concludes the proof for the multipole expansion of dS¢.

(2) Multipole Expansion of §25°

For the derivation of the multipole expansion of §%5¢ the approach is basically the same as for
5S¢, though slightly more involved. Inserting for 5£%(&) and 6% (€) in (3.31b) the multipole
expansions as given in (4.11) and (4.17), respectively, we obtain
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R}, (€7)
5 2
5s° = / d¢? / S / dr 126%7(€) — = (2 o)
2\" B,L°(¢)
R 32 0 r=Rg .. (§%)
R, (€%)
d’p 0 2q0e 2
(ﬁ) ZRG (271_)4 d€ d’l’ dQ£ r :Klm(g )(A )lm(| |)
Lm R3 R 0 52
d3”

xr ( ?m(\ﬁI)TM?mwmI(fﬁff)A?m/(lq"D
o A (5D N (65 VB oy (1)

1 d3p d3q 0 2
‘4%!(2@411{[@ / “ /d ¢ |5z
% (L16 Ki (6 PV AT (151 L1 K (6 ) AT ()
L1 K6 )1 T 5 (€ 87, 1)

r=R5.. (€°)

For the term containing the inverse of the radial derivative of the regularized causal Lagrangian
we made use of the relation Re(x)? = 3 Re(z? + |z|?) which leads to the appearance of an
additional factor 3. By exploiting the fact that 11,5 X5, (&, 7)Am(|F]) is scalar-valued and
thus invariant under transposition, the integrands in the last two lines can be rewritten as

L1sesKG o (6 5) A5 (171 115K e (65, 7) A7 (17]) =
:(ﬂmx & F) AL (D) LK (65, 7) A5, (1)
(‘p|)T:K (f p) BBK?’m’(gai) l’m/(‘(ﬂ)

and
D Ts K (6 9) A (151 Lixs K5, (6, 0) A, (10]) =
Ut
=3 (110555, (6. 5) A5, (7)) " Lis K,y (6.0 A, (1)
= 3 1) i 65" 15 Ky €7 85 (71
where we defined m’ := —m’ and subsequently replaced m' — m’ in the last equality. Recalling

that X$ is a diagonal matrix (and thus invariant under transposition) and expressing the
Im g 1% P g
above combination of matrices Xj,, and X7, in terms of the matrices Vlsm‘ e and Wlsm‘ Ut

introduced in (4.20), we arrive at

(420) d3_’ £ — e N
68 = Z Re /(27:))4 /d(foﬂ")/dﬂf 01 S 7 115 sz(f,P)(A2)lm(|p|)
S2

R3 £
l/ nL’ X

1 [ & [ A 0 2(As (151YTNE 5 7
N Qlwlw/d@ ,mldgg ( lm<|p\>fv¥mwm,<f 7, q)fl&
o T B 5 o A5 (B Nt (6 5,0V AG (1)
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5[ o / / a’ / A% Riyon (€02 (A6 (7D Ve (€. 0) G (171

o o A5 (B )Wt (6 5.0V (D))

Inserting the deﬁnltlon of the incomplete Fourier transforms from Definition 4.2.1 and replacing

A5 by (— )m Al, (—mh) by exploiting the symmetry properties of the spherical harmonics
along with the fact that variations of the regularized kernel of the fermionic projector in
momentum space are real-valued, results in

121 dgﬁ 1 d3ﬁ d3q’
2Q¢e 42y 5 — 2\e —
5% = §mj Re /—(%)4 81 G Lixs F [K, | () (A )lm(lp\)+§/w/w

ll:'rﬁ R3 R3 R3
x [ ()T (1™ F NGy} 5,0 = ()™ F Vi (5. D)

+‘7:[N2€m|l’m’](ﬁ7q_’)_I[Wlsm|l’m’] (@i))Algl(_yyl/)(|j):|

By analogy with Lemma 4.1.9, the matrix-valued functions Vj (&P, q) and Wiitrm A&, D, q)
introduced in (4.20) can each be decomposed into a Hadamard product of coefficient matrices
5,5 : R* — C°*5 with the matrix Y,y from (4.20) as

vlsm\l’m’ (67177 5) = [e% © Tlm\l’m’] E%eii(ﬁ%(j){ (424&)
WlEm\l/m’ (6713; q) = [G%\? O] Tlm|l’m’] (71)7m' v 71( —a)€ (424b)

where the functions E5, and Ej,, are defined as

1 E5(€% P E5 (€% 1q1) :
ES(€%, 191, 1q]) := 5 == XS 4.24a.i
v Phlah =5 O Le(8) =R, (69) ( )
1 E5(£°, 1P]) E5 (€, 141)
E5, (€%, 171, |7]) == = == x> 4.24b.i
w1 1aD =5 OrLe(€) r=Rg,,.(£0) ( )
To arrive at the above Hadamard product form of the matrices Vlml 1y a0d mel > WE used

the fact that a matrix product (D, ® D,,)1,(D, ® D,) with diagonal (n x n)-matrices D,
corresponding to n-component vectors v can be rewritten as follows

[(Dy © Dy)1n(Dy © Dy)] w)(1n © 1,)(Dy © Dy)]
@Dw)zk(]l ® 1n)ki(Dz © Dy)ij

Dy)ii (D )ii6ik (Ln )kt (Ln )i (D) 5 (Dy ) 5615
Dy)ii(1n)ij (Da) 5 (Dw)ii(1n )i (Dy) jj
Dv)zz(skl( )kl(glj( ) Dw)
(Do)ik(Ln)rt(Da)ij] [(Duw)ir (1
(D 1, D ) (DwlnDy)],;

( n)rs(ssj(Dy)jj
)r (Dy)Sj}

1%
n

=[(D
=(D
=
=(
= (
[
=

Applying this result to the matrices defined in (4.20) by identifying the diagonal matrices as
D,,D; = Cx, Dy = Yim, Dy = Yy, we are let to defining

(4.24a,ii)
(4.24b ii)

£ .__ (OE
v = CiclsCicl, Ry (€0)
154 P 15
w = CalsCicl _p )

which, together with the relation Yy, rp = Yim 15T 7/, concludes the proof. O
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Having reached this point, we shall pause for a moment to place what has been achieved so far in
the larger context and to explain the next steps: As mentioned at the beginning of this chapter
as well as in the paragraph on the optimization of the regularization, the multipole expansions
of 658¢ and 62S¢ provide information on how anisotropic deformations of the regularization affect
the regularized causal action. In order to make this information accessible and to investigate
whether there are, for example, deformations that leave the regularized causal action invariant,
the remaining part of this chapter is concerned with simplifying the expressions for 6S¢ and §35°
obtained in the previous Lemma 4.2.2 by first performing the angular integrals in position space in
Subsection 4.2.1, before we also compute the momentum space angular integrals in Subsection 4.2.2
which ultimately results in Theorem 4.3.1.

Procedural Note Due to the fact that the following computations are lengthy and unwieldy, but
nevertheless important, we have outsourced them, graded according to their rank of importance as
lemmas, propositions and auxiliary calculations, to Appendix C and just kept the most important
steps and results as lemmas in the main body. As a consequence of this approach, the proofs of
these lemmas are rather short and text-intensive by only stating the main idea and referring to
(combinations of) propositions for the full calculations including all details.

4.2.1 Performing the Position Space Angular Integration

We start the simplification procedure by carrying out the position space angular integrals contained
in the incomplete Fourier transforms as given in (4.21a), (4.21b) and (4.21c). Due to the fact that
the regularization of the unperturbed kernel of the fermionic projector is assumed to be spherically
symmetric, the only dependence of the integrands of the incomplete Fourier transforms on the
position space angular variables enters via the Fourier exponentials contained in the functions E.
As a consequence, the coefficient matrices €5 whose entries are combinations of the components of
the regularized kernel of the fermionic projector, do not play a role in the computation of these
integrals. Before we start with the explicit calculations, we introduce the following definition.

DEFINITION 4.2.3 (GENERALIZED SPHERICAL BESSEL FUNCTIONS)

For any n € Z the functions jg,,, which will be referred to as generalized spherical Bessel
functions, are defined as

Jon () == (4.26)

where jo(x) = sinc(z) denotes the first spherical Bessel function.

In order to evaluate the position space angular integrals in the incomplete Fourier transforms, we
make use of the following proposition.

PROPOSITION 4.2.4 (POSITION SPACE ANGULAR INTEGRATION OF Y, Yimjirmss Lim|im’)

Let h,k € C1(R},R). Then, when integrated on both sides against h(|p|) and h(|p|)k(|q|)
over R? and R? x R3, respectively, the following equalities hold

/ dQ Tyne PEL Y, D) Goa(|P]r) (4.27a)
52
m™jo (|7 + q|r) for f+q

5
/ AQe Yppjprme  PEDC Y Vi x (4.27D)
& i (0o (Ip—qlr)  for f—q

n odd
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* . = 5 ﬁl(”)]O (|ﬁ+ (T|7’) for ﬁ+ q‘
/ A Ty e PEDEL Y, Vi x 300 T (4210
S2 né:dld n(n)]O,n(|p —q |’I“) for p—q

where €D and m™, 0™ w4 for n € {~1,1,3,5} denote the matrix-valued differential
operators with respect to r which are explicitly given in Definition C.4.2.

Proof. As the proof of these relations is rather lengthy, we only sketch the basic idea using the
example of (4.27b) and refer to Appendix Sections C.2 to C.4 for the full calculations including
all details.

Multiplying the left-hand side of (4.27b) with h(|p|)k(|7|), integrating over R3 x R? and
inserting the definition of the matrix Y,y from (4.9b) yields

Vi Y Pl

Y.
[ s [ @ [ao ||
R3 R3 52 i

YinYim

Yim Y

G (A YimYirm:

To evaluate the expression, we make use of the block matrix structure introduced in
Terminology 4.1.7 and compute the integrals for the dotted, double-dotted and asterisked
terms separately which is done in Appendix Section C.2, Appendix Section C.3 and Appendix
Section C.4, respectively. The result for the matrix Y;,, follows from Corollary C.2.2 to
Lemma C.2.1.

Having decomposed the matrices in this way, the central idea underlying all calculations is to
convert derivatives in momentum space (which enter through the vector spherical harmonics)
into derivatives with respect to the position space variable r. We achieve this by first rewriting
scalar products of 5 with vector spherical harmonics as gradients of the exponential factor with
respect to the momentum space variables. Subsequently, the position space angular integrals
can be easily carried out using Proposition C.1.1 which leads to the appearance of generalized
spherical Bessel functions. Afterwards, the momentum space gradients contained in the vector
spherical harmonics are converted into position space derivatives with respect to the radial
variable r by repeated integration by parts. Finally, the derivatives acting on the generalized
spherical Bessel functions are combined into matrix-valued differential operators m(™), n(") and
m(™ 2" (see Definition C.4.2). O

This proposition now allows to express the incomplete Fourier transforms from Definition 4.2.1 as
a product of scalar spherical harmonics and regularization-dependent, matrix-valued functions
which exclusively depend on the momentum space variables ||, |7] as well as on ki := |p'+¢].

LEMMA 4.2.5 (POSITION SPACE ANGULAR INTEGRATION IN (4.21))

By carrying out the position space angular integrals using Proposition 4.2.4, the incomplete
Fourier transforms as introduced in Definition 4.2.1 evaluate to

Fl%:,] () = / A(E°,7) 12Yim x E5 (€5 © €D o 1 (I7]r) (4.29)
xs

F[Mfm|l’m’](ﬁi)} 5
= d(€°, 1) Y Yy
{f[Niml/m,Mm 2 / (651 1 XimYiem

n=-—1
n odd X

{ E5c (€5 @ m™ + C=m™) 5o, (kyr)
X

) ) (4.29b)
(=)™ E5 (€5, © n(™ — Bea™) 5o (k1) }
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FViprms ) (B 7) } 5 /
I G d€0 anax(fo)2ylmyl’m/x
{‘F[Wlsmﬂ’m’]( ’q) Z

n=1

n odd R

{ E5 (€5 0 m™) o (kir) }
X

, ‘ (4.29¢)
(1) E5,(C5p @ n™) g (k_7)

T=R5,.. (€°)

where C% denote the coefficient matrices (see (4.13a), (4.19a,i), (4.19b,i), (4.24a,ii), (4.24b,ii)),
E% the corresponding functions containing the exponential factor as well as the regularization
of the mass shell (see (4.13b), (4.19a,ii), (4.19b,ii), (4.24a,i), (4.24b,i)) and m(™ n() @),
1(") stand for the matrix-valued differential operators as introduced in Definition C.4.2.

Proof. The assumption of spherical symmetry for the regularization of the unperturbed kernel
of the fermionic projector implies that within the matrix-valued functions X7, , Mfm‘l,
:Nlem\l/m” Vlam\l/m”

E3) as well as the matrices of spherical harmonics Yy, and Yy, depend on position
space angular variables. As a consequence of this, the position space angular integrals in
Definition 4.2.1 can be carried out using Proposition 4.2.4 while the coefficient matrices €5 as
well as the functions B¢ and C° remain unchanged. O

m’?
mel e 0Ny the Fourier exponentials (which are contained in the functions

4.2.2 Performing the Momentum Space Angular Integrations

Having completed the computation of the position space angular integrals contained in the
incomplete Fourier transforms in the previous subsection, we have already come one big step
closer to our goal, namely to simplify the expressions for the multipole moments of JS¢ and §35¢
in Lemma 4.2.2.

In order to represent the multipole moments (4.22a) and (4.22b) as integral operators in momentum
space acting on functions in D’(R{, R), however, the remaining momentum space angular integrals
have to be carried out. By analogy with the previous subsection, we start by introducing so-called
angular-integrated incomplete Fourier transforms.

DEFINITION 4.2.6 (ANGULAR-INTEGRATED INCOMPLETE FOURIER TRANSFORMS)

By slight abuse of notation®, we define angular-integrated incomplete Fourier transforms as

FIKi ] (5) £ [ 0, F[5,)7) (4.300)
82
{7[Mfm|z/m/](|lj|a|¢z)} ‘:‘i"‘/de/qu {‘F[Mfmll’m’](z_j? :)} (4:300)
‘F[N;:m\l’m/](‘p|v|Q|) 52 &2 ‘F[N;:m‘l/m/] (p7Q)
f[V?m|zfmf](|ﬁ,|67|)} {]:[’Vlaml/m’](_:(j)}
= [ dQ, [ dQ, o 4.30c
{‘F[Wlemﬂ’m’](lﬁ"'(j) 5[ l ]:[ lam|l’m’]( 7q) ( )

%In order to avoid the appearance of another subscript or superscript, we denote the incomplete Fourier
transforms and their angular-integrated counterparts by the same symbol F[( e )fmll,m,] and distinguish both

only through their arguments (p, ¢) and (|p], |7]), respectively.

To compute these angular-integrated incomplete Fourier transforms, we recall that the incomplete
Fourier transforms from Lemma 4.2.5 depend on the momentum space angular variables (6, ¢,)
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and (0, ¢,) through the (scalar) spherical harmonics Y}, (6,, ¢p) and Yy, (64, ¢,) and via the
arguments ki := |+ | of the generalized spherical Bessel functions jo ,(k+7). Therefore, the
task in this subsection actually boils down to evaluate double integrals of the form

/ 40, / A9 Yim (B, 00)Yime (09, 04)jon (15 71r) (4.31)
S2 S2

for arbitrary n € Z and (I,m), (I',m’) € Ng x Z with —1() <m) <10,

4.2.2.1 The Integral Operators T

In order to compute these double integrals in a systematic way, we first introduce the following
integral operators.

DEFINITION 4.2.7 (INTEGRAL OPERATOR)

Let 5 € R? and r,|¢| € RY be fixed parameters. Then, for any n € Z, the integral operators
T : L?(S?,C) — L?(S?,C) are defined as

T ()] (5) 2 / 49 o (7% 4Ir) (@) (4.32)
5'2

where the integral kernel is given by the generalized spherical Bessel functions introduced in
Definition 4.2.3 and p':= p/|p| denotes the unit vector in the direction of p.

To benefit from this definition, we study the properties of this integral operator by first proving
its spherical symmetry and then calculating its eigenvalues.

LEMMA 4.2.8 (SPHERICAL SYMMETRY OF THE INTEGRAL OPERATOR T.F)

For any n € Z, the operators T.F as introduced in Definition 4.2.7 commute with unitary
representations Ug : L?(S?,C) — L?(S?,C) of R € SO(3) which act on ¢ € L?(S?,C) as

A

G(p) = [Ur()] (D) = $(R™D) (4.33)

where ]3’ := p/|P| again denotes the unit vector in the direction of p.

Proof. Let n € Z be an arbitrary integer. To show that TF commutes with the unitary
representation Ug for arbitrary rotations R € SO(3), we act with the combined operator UpTF
on 1 € L?(S?,C) and use the action of Ug as well as the definition of the integral operator
which yields

[(URTE) ()] (0) = [Ur(TED)|(9) & (TEY)(R™'p) & / dQy jon(IR™5 — |r)v(q)
S2

Rewriting ¢ = R™'(R7), defining the rotated integration variable ¢, := R§ and taking into
account that rotations do not alter the length of vectors, we find

= / A, jon (IR (- G PR G = / 42, o (= @ Ir)e(R3)
S2 S2
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where for the last equality we exploited the fact that the domain of integration as well as the
length of vectors are both invariant under rotations. Rewriting ¢(R~1q,) = (Ug)(g.) and
making use of the definition of the integral operator, we finally end up with

e / dQq, Jon (15— @ I1)(Ur¥)(G:) € [T*(Ur$)] () = [(TFUR) ()] (0)
52

This calculation demonstrates that for arbitrary, but fixed parameters p € R?, r,|¢| € R{ and
for arbitrary n € Z, ¢ € L?(S?,C) the following relation holds

[(URT*)()] () = [(T*UR)()](7) & [T5Ur] =0 (4.34)
which means that for any n € Z the integral operators T : L2(S2,C) — L?(S?,C) commute
with unitary representations of R € SO(3) and are therefore spherically symmetric. O

The spherical symmetry of the integral operators introduced in Definition 4.2.7 greatly simplifies
the computation of the eigenvalues.

LEMMA 4.2.9 (EIGENFUNCTIONS AND EIGENVALUES OF THE INTEGRAL OPERATORS T.F)

For any n € 7Z, the eigenfunctions of the integral operators T+ as defined in Definition 4.2.7 are
spherical harmonics Yj,,. For fixed [, the eigenvalue ¢ (I,m) corresponding to the eigenfunction
Y}, is independent of m.

Proof. Let n € Z be arbitrary but fixed. According to Lemma 4.2.8, the integral operators
T ni as introduced in Definition 4.2.7 commute with unitary representations Uy for arbitrary
rotations R € SO(3). Due to the fact that the angular momentum operator is the generator of
rotations R € SO(3), also the integral operators 7. commute with the angular momentum
operator

Vnez: [Tf,i} =0

This, in turn, implies via the theorem on eigenfunctions of commuting operators that 7. and
L have the same set of eigenfunctions, namely the spherical harmonics Yy, .

Having said this, it remains to determine the eigenvalues ¢ of the operators T'F and to figure
out their dependence on [ and m. Supposing that the eigenvalues depend both on [ and m?,
we obtain by acting with TF on Y,

V(l,m) € Ng x Z with — 1 <m <1: t(1,m)Yin(p) = TFYim (D) (4.35)
By exploiting the commutator relation [T5,Ur] = 0, the operator T on the right-hand side
can be rewritten as follows
VneZ: TE=idTE=Ug'UrTE =Ug'TEUR (4.36)
which turns the above equation into
tE (1, m)Yin (§) = Ug ' TEURYim (§) = Ug ' TEYim (R7'D) (4.37)

At this point, we choose the so far unspecified rotation R € SO(3) such that R~1p coincides
with the z-axis. As a consequence of this choice we can make use of a special property of
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A
o~

spherical harmonics: Evaluating Y}, (p) on the z-axis (i. e. for 6, = 0), all spherical harmonics
except for those with m = 0 vanish identically. We thus find

te(l,m)Yi (1) = Ug ' TEYim(R7'P) = U ' TEYi0(0,¢,) = Ug't5(1,0)Yi0(0,¢0,)  (4.38)

Reexpressing Yi0(0, ¢,) by URYlm(ﬁ ) finally results in
V(l,m) € Ng x Z with —1<m <1: t=(1,m)Yum () =t(,0)Yim(p) (4.39)

which demonstrates that for fixed [ the eigenvalues are independent of m. This concludes the
proof. [

®As the integral operators Tni according to Definition 4.2.7 also carry a (not explicitly indicated) dependence
on the parameters r, |p|, |7] € Rg, the eigenvalues may also depend on those parameters. For the sake of clarity,
however, we suppress this dependence at this point.

This lemma together with the definition of the integral operators T+ allows to compute the double
integrals in (4.31) as follows.

PROPOSITION 4.2.10 (EVALUATION OF MOMENTUM SPACE ANGULAR INTEGRALS)

The momentum space angular integrals appearing in the angular-integrated incomplete Fourier
transforms evaluate to

. - 5!05m0 —
S[ A YOy op)ina (71r) = PO [710)  (4400)

[ %% [0 Yinp00)Yiems 600020 (P TIr) = 01151, 7 x
s s X (=)™ 6 by (4.40D)

where tX (I, 7, |p],|7]) denote the eigenvalues of the integral operators introduced in Defini-
tion 4.2.7.

Proof. For the angular-integrated incomplete Fourier transform of F [J{lam] (p') we have to
evaluate only one momentum space angular integral. Carrying out this integral by using the
orthogonality properties of the spherical harmonics yields

/ A9y Vi (0, 0p) o1 (1]r) =
52

100
= Tt (07, 171,0) (4.41)

Vi (51r) [ 49 Y0y i) Voo(0. 0,) = 200

SQ
Note that for the second equality we used the fact that the generalized spherical Bessel function

jo1(IF|r) is related to the eigenvalues t via 4mjo 1 (|F|r) = ti (0,7, |7, 0) which can be derived
in anticipation of Lemma 4.2.13.

For all other angular-integrated incomplete Fourier transforms there are two momentum space
angular integrals. Expressing them in terms of the integral operators 77 and making use of
Lemma 4.2.9 yields

[ 4% [ %% Yin Oy 00) Yo Gusipinn (7 1) =
S2 S2
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= [ A, Vi Oy 0 T Vi (0, 2)

S2
= t’er:(l/’ 01, 11) /de Yim (Op, ©p)Yrm (Op, 1)
S2
=t 1B 7D (= 1)™ 1 Oy (4.42)

where in the last step we again exploited the orthogonality relations for spherical harmonics. [

Before we proceed, we recall that the matrix-valued differential operators m(™, n(™ and m(™ a(?)
act on the generalized spherical Bessel functions jo ,(k+7). Combining this fact with the result
from Proposition 4.2.10 suggests to introduce the following matrix-valued functions.

DEFINITION 4.2.11 (MULTIPOLE MATRICES)

For [,I' € Ny, the matrix-valued functions £y : (RS‘)2 — R®*5 and mll,,mll,,aﬁtll/,&”, :
RI)3 — R5%5, referred to as multipole matrices, are defined as
0

Rolr, |B]) = €V (r, [p)t5 (0,7, |5],0) (4.43a)
5
() . ™) (n L .
My (r, 151, 171) ==Y wm @V 5] 176 W 5] 17) (4.43b)
modd
(=) I > (n e L
Mo (r, |7, 1q1) == D> 0@ r 5] gDty (O, |51, 171) (4.43c)
edd

where ¢ and m(™, n(") as well as their asterisked counterparts denote the matrix-valued
derivative operators with respect to r as defined in Definition C.4.2.

These matrix-valued functions, in turn, allow to express the angular integrated incomplete Fourier
transforms introduced in Definition 4.2.6 as follows.

LEMMA 4.2.12 (ANGULAR-INTEGRATED INCOMPLETE FOURIER TRANSFORMS)

The non-vanishing angular-integrated incomplete Fourier transforms evaluate to

2E6
FIKia] (7 = [ d€,r) 22 (€5 @ 50) (4.442)
Xe vir
F MGy (5], 17 —1)"mr2E5 (G5, © My + COM
{ [ Imi( )MJ |_')}—/d(§0,r) (=n)~™r M( M u *ll) (4.44D)
F NI (81D S B (€5 © My — BT
{I[V§ml<m>](|ﬁ|,|ff|)}:/d€0 { (1)~ "r2E5 (€5 © My) H (4.44¢)
FWiuem) (51120 [/ B (€ © M) J,_pe, (0

where €S denote the coefficient matrices (see (4.13a), (4.19a,i), (4.19b,i), (4.24a,ii), (4.24b,ii)),
E% the corresponding functions containing the exponential factor as well as the regularization
of the mass shell (see (4.13b), (4.19a,ii), (4.19b,ii), (4.24a,i), (4.24b,i)) and Ko, Dy, Ny as
well as their asterisked counterparts are the multipole matrices from Definition 4.2.11.
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Proof. To arrive at the claimed expressions, we insert the incomplete Fourier transforms from
Lemma 4.2.5 into Definition 4.2.6 and subsequently carry out the angular integrals using the
results from Proposition 4.2.10. Note that as a consequence of the orthogonality relations of
the spherical harmonics, only those angular-integrated incomplete Fourier transforms with
Il = 1" and m = —m’ are non-vanishing. Finally, by expressing everything in terms of the
multipole matrices we end up with the claimed expressions. This concludes the proof. O

We emphasize that these angular-integrated incomplete Fourier transforms contain the full infor-
mation about the chosen regularization of the unperturbed, spherically-symmetrically regularized
kernel of the fermionic projector (via the functions RS . and E% as well as the coefficient matrices

C:) and additionally provide information about the weight of the contribution depending on the
multipole order I.

4.2.2.2 Closed-Form Expression for the Eigenvalues of T,

In Lemma 4.2.9 we have shown that the eigenvalues ¢ of the integral operators 7= depend on
the multipole order [, but not on the parameter m. In order to quantify this dependence on [ as
well as the dependence on the other variables r, |p/| and |7/, it remains to work out an explicit

expression for the eigenvalues contained in the multipole matrices 9%, 9%; and 931”, ‘ft”.

LEMMA 4.2.13 (COMPUTATION OF THE EIGENVALUES OF THE INTEGRAL OPERATORS T.F)

The eigenvalues (1,7, |7, |7]) of the integral operators T'F as introduced in Definition 4.2.7
are given by

s = (=EEE) S () (3540 5 (5 (7

k=0 =0 j=0

7 ; +
y -1 -1 J 271']7172(”],)(7"0, ) wi5)
(Iz1£1g)?) \(pl=+1q1)? rrgn—2(i+])

are those introduced in Definition D.1.1 and the parameters p, o

e
Pllq| and o= /[FE+ 7] (4.45a)

P= 1=, =2
PP+ 1717
At multipole orders [ = 0 and [ = 1 the eigenvalues reduce to

where the functions Ifli? (i+7)

are defined as

1o 2w

t;Lt (O’ T, |p |7 |q |) = WI:;‘: (T0'7 P) (446&)
o 2 1

tn (1,15, 19]) = :F(m)” ’ [Iff(m, p) — IF ,(ro,p) (4.46D)

Proof. In order to compute the eigenvalues t(I,r,|p],|7]), we make use of Lemma 4.2.9
according to which the eigenvalues are independent of m for fixed . Thus, without loss of
generality, we can choose to act with T on Yjo(6,, pp) = Yio(p) which yields

te (|51, 13 Yo (0) = TEYio(p) (4.47)
Acting on this equation with Ug for an arbitrary rotation R € SO(3), exploiting the spherical
symmetry (which, according to Lemma 4.2.8, allows to replace UrT¥ by T:FUg) on the
right-hand side and dividing by UrYjo(p) results in

ty (L |7, 17) =

)

URYlo(l%
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By choosing the rotation R € SO(3) such that the vector R~ coincides with the z-axis in the
new, rotated coordinate system (we take the viewpoint of a passive transformation), we obtain

TEYp(Rp) v 1
Yio(R-1p) Yip(R=1p)

(L, |5, 11) = / A0 jon(RF%7IrYio(@)  (4.49)

S2

To proceed, we need the explicit form of Ylo(q:' ) which according to Definition 4.1.3 is given by

aam 2041 1 d{2? - 1)
Yio(q) = 47 20l dat

Carrying out the I-fold derivative by factorizing (22 — 1)! = (z — 1)!(z + 1)! and using the
general Leibniz rule turns the expression into

Vo) = 25 57 30 (o) ey (€ostOa) — 1) eos(B) + 1)1
k=0

Furthermore, as a consequence of the specific choice of the rotation R € SO(3) such that R=1p
coincides with the z-axis, we have

x=cos(0q)

[R5+ 41 = |R7'91? +|q1° £ 2|R7'PlIq] cos(8g) = 171> + |g1* £ 2|11 cos(6y)

where we used the fact that rotations do not change lengths of vectors. Inserting the expression
for Y30(¢) into the formula for (1,7, ||, |¢]) and replacing all occurrences of cos(f,) according
to the above relation in terms of [R5+ 7]? leads to

2041 !

T 1 l (11?2 . _
=0, |, 7]) = —— ()/dQ Jon([R71F £ 7]r) %

R-15+ 12 — 1512 — |72 k R-15+ 12 — 1712 — |72 =k
><<jE| P qlﬁ Jpl 7| _1> <i| P qlﬁ Jpl 7| +1)
29117 2/p1|q]

201+1

= 1 11 l 2
— il _ — dQ j,n(|R*1ﬁi§|r)x
Ylo(Rlﬁ)<4|p|Q|) ZK;@)]S/ 0

k=0

1 = = _ = k 1 = = = - -k
x (£|RT'pEqP F (P £17)?) (£ [R5+ 7P ¥ (5] F 171)?)

Rewriting the two factors in the second line each using the binomial theorem gives

. Y(R+p) (4|;f|1q*|)l§ [(DTW D7 F )™
k =k , _ i _ j
2 <k) 2 (l jk> ((w illcf)2> <(|ﬁ| :F1|q-°|>2> :

. 15 = 1 = N i+7
< [ 49 onlR 5 a) (R 5+ )
SE

Taking into account that according to our choice of the rotation the factor Yio(R~! ﬁ' ) evaluates

to Yio(R™'p) = Yio(0,¢) = (/2L and that in the remaining integral |R~'5 % ¢/ can be

replaced by |72 + |7|% £ 2|7]|q| cos(8,), we find the following expression for the eigenvalues
1% Yy |P q Dllq q)» g exp g

— - 11 2 — - 2k
L Pl ¥ 7))? l 1P| + 7]
til,?’}p,q :<:F(| S = T X
(L, 71, 171) TR CIRGE

k=0
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* ; <k) (l j k) ((Iﬁl ill(f)2>i<(|ﬁ| ;m)z)jx

7 7=0

' T sin (r/IPP F17F = 25Tl cos@,)
X —n/dcos(ﬁq)/dgo

a = = — n—2(i+j)
2 0 VPP +1q1? £ 2[p11q] cos(6,)

By carrying out the azimuthal integral and defining parameters

-
PITL ana o= P 1TP

PR+

the remaining integral can be expressed in terms of the functions IF introduced in Defini-
tion D.1.1 where we identify @ = ro such that we finally end up with

. - 1 2,15 N1 I—k
- (7] F 17)* ' I\ (151 £ 4] k I~k
tf(l,r,|p|,|q)(:F_H Z T —— Z . . X
Alpllal /) = L\k plFlal) o \i) =\
-1 g -1 iorl= .. . \(ro,p)
><< —— 2) ( —— 2) 2 (4.50)
(171 £ 141) (71 =F1q1) rrgn=2(i+i)
This concludes the proof. O

This lemma now allows us to evaluate the multipole matrices introduced in Definition 4.2.11. The

resulting explicit expressions for £y, MMy, Ny and their asterisked counterparts 93111, 9*1” at the
two lowest multipole orders [ = 0 and [ = 1 can be found in Appendix E.

4.3 Summary: Integral Operators for S; and 6357

Having derived a closed-form expression for the eigenvalues, we can evaluate the angular-integrated
incomplete Fourier transforms for arbitrary (I, m) € Ng x Z with —I < m < [. Putting together all
the above results, the multipole expansions of 6S¢ and §%5¢ from Lemma 4.2.2 can be expressed
in terms of integral operators with matrix-valued integral kernels.

THEOREM 4.3.1 (MULTIPOLE EXPANSION OF 6S° AND §35°)

Let 65° and §%S¢ be the variations of the regularized causal action as derived in Theorem 3.4.3.
The non-vanishing multipole moments in the multipole expansions

are given by h h
3SE = Re <<115X1, R60A00>> (4.51a)
6%F = Re [d0 - { L1, Rip(A%)o0 ) + ;mzl:l (Bims S5 im ) (4.51b)

where (A(™),;,,, € D'(R}, C®) denotes the vector of multipole moments of the variations of the
regularized kernel of the fermionic projector and where (-,-) : C*(RF,C%) x C= (R, C%) — C
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is the sesquilinear form given by

oo g B
() Uhia) = [ w N AU (4.52)
0 k=1

Furthermore, the multiplication operator R§, : C>®(Rg,C%) — C®(RJ,C%) as well as the
integral operators S5 : C®(R{,C?) — C>®(R{,C?) for (I,m) € Ny x Z with — < m <,
which are defined in terms of the angular-integrated incomplete Fourier transforms, read

(RGoAum ) (1) == F [K50] (15 A ([P1]) (4.53a)

(Sin i) (7) = [ S [ F I o TR 7D - F W5, 5T 121
0

+ (_1)_m}-[Mfm|l(_m)] (‘lﬂv |CT|)
— (1) F Vs J 71 12D | At (11) (4.53b)

oo

Proof. In order to arrive at the claimed expressions, we basically have to combine all the
results from the previous sections in the right way. To describe this procedure in some detail,
though without being too repetitive, we sketch the main steps using the example of one of the
terms in the sesquilinear contribution to the second variation.®

(1) Starting Point: Multipole Moment §35¢ from Lemma 4.2.2

Im|l'm’
We start from the expressions for the multipole moments of 6S° and §%5¢ as given in (4.22a)
and (4.22b). The latter, with respect to its structure, has the following schematic form

d3p linear contribution 1 d3p d3q
2ce (220) - _
O S = Re / (2r)? ( in (A%);, (7)) )+2/ <2w>4/ 2mt

R3 R3 R3

/ further terms in the —
e (1=N\T |(_1\m e - z =
S [ A [0 R (AN | o
Here the dependence on the scalar and vector spherical harmonics is encoded in the incomplete

Fourier transforms which, again illustrated by the example of F [Mlsml l,m,}, are given by

‘F[Mlemﬂ’m/} (ﬁa (j) = /d(fovr)/dﬂf 7”2 (egﬂ © Tlm\l’m/ + C’ETl’rnll’m/)I-EJE\/[eii(ﬁ#qa).‘S
xXe S2

(2) Simplification, Part 1: Position Space Angular Integration
To distill the effective dependence of §3S¢ , on the multipole order [, we first eliminate the

Im|l'm

position space angular variables by carrying out the corresponding integrals using Lemma 4.2.5

as described in Subsection 4.2.1. This, again focusing only on the term F [Mlgm‘ l,m,], results in

5
F MG e | (3 0) =D / d(€%,7) 1Yy Yirm B (G5 @ m™ + O™ jo 1 (kyr)

n=—1
n odd X€

The matrices Yy, 17y, and Yzm\ 1m Of spherical harmonics have turned into a product of scalar
spherical harmonics Y;,, Yy and a sum of matrix-valued differential operators m( and m(™)

acting on the generalized spherical Bessel functions jg ,, (k+ (7, ¢)r), while the coefficient matrix
G5, remains unchanged.?
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(3) Simplification, Part 2: Momentum Space Angular Integration
Next one can eliminate the momentum space angular variables by using the central result from
Subsection 4.2.2, namely Lemma 4.2.12. The angular-integrated incomplete Fourier transforms
.F[Mfm”,m,] (I71, |4]) are non-vanishing only for (I',m’) = (I, —m) and read

FIMi—my) (171 17D) = / A(€0,r) (—1) "2 B (€5 © My + CoMy))
xa

€

In this way, the multipole moments 5281m‘l/m, reduce to

525¢ = Re /d\ﬁ| I7)? (linear contribution) l/d\zﬂ Ip|? / d|7]|7]?
Im|l(—m) / (27)4 in (AQ)lEm(W) 2 / (2m)4 (2m)*
R R

A (1)

further terms in the
sesquilinear contrib.

% A5 ()T [(—nmf[ﬂvtimm (71,17 + (

(4) Definition of Sesquilinear Form and Integral Operators

Having arrived at this point it remains to rewrite the above expression by introducing the
sesquilinear form (4.52) along with operators R§,, S5, : C>°(R{,C°) — C®(RJ,C%) as in
(4.53). Finally, by pulling the sum over m inside, we end up with the claimed expressions for
the multipole moments.

This concludes the proof. O

“Note that for all other terms in the sesquilinear contribution to the second variation the procedure is exactly
the same; for the linear contribution and the whole first variation (which, after replacing A2 by A is the same
as the linear contribution to the second variation) a simplified version of the procedure applies.

bFor the linear term and the first variation, the dependence on the angular variables (0p, ¢p) only enters
through the spherical harmonics Y., (0p, ¢p) which, in the next step, makes the angular momentum integration
in momentum space rather easy.
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In this chapter we take the multipole expansions of the variations of the regularized causal action
as derived in Theorem 4.3.1 for a certain class or regularized kernels of the fermionic projector as
our starting point and apply it to concrete problems where a specific regularization is given.

In Section 5.1 we start by customizing the expressions for the non-vanishing multipole moments S
and 0°S; as given in (4.51a) and (4.51b), respectively, to the case where the regularization of the
kernel of the fermionic projector is given by an anisotropic version of the ordinary ie-regularization.
By deriving explicit expressions for the variation of the regularized kernel of the fermionic projector
corresponding to Lorentz boosts, we show in Section 5.2 that the expressions for 6S¢ and §35¢
as derived in Theorem 5.1.4 vanish and thus demonstrate that the ie-regularized causal action is
invariant under Lorentz boosts.

Afterwards, again building on the result from Theorem 5.1.4, we come back to general anisotropi-
cally deformed ie-regularized kernels of the fermionic projector and study how variations of the
regularized causal action can be balanced by so-called compensations. Finally, in Subsection 5.3.2
we derive an expression for the variation of the local particle density of the ie-regularized Dirac sea
configuration and show that it is vanishing at first order, but non-vanishing at second order even for
Lorentz boosts. This fact, in combination with the results from Theorem 5.2.5 and Theorem 6.3.3
motivates a novel mechanism of baryogenesis within the framework of causal fermion systems.!””]
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5.1 Anisotropic Perturbations of ic-Regularized ps

The underlying assumption of the whole chapter is that the so-far unspecified regularization of the
perturbed regularized kernel of the fermionic projector from Definition 4.1.1 will be a deformed
version of the ie-regularization widely and almost exclusively used in the literature. While we have
not imposed many restrictions on the choice of the regularized kernel of the fermionic projector
except for its vector-scalar structure, we now make the following assumptions.

ASSUMPTION 5.1.1 (ANISOTROPIC PERTURBATION OF ie-REGULARIZATION)

Throughout this chapter, we consider perturbed regularized kernels of the fermionic projector
having vector-scalar structure as in (4.1) with the vector and scalar components in momentum
space given by

V21 (p) = pid(o(p) O(—p)e? /@) (5.1a)
SE(p) = (o (p)) O(—p°)e - (®) (5.1b)

The real-valued function f, is assumed to be an L2-function with respect to its spatial arguments
and to have a perturbation expansion in the parameter 7 which is given by

Fo0) = 1 3 T 00, 1) i (B 2) (5.1c)
n=1 :

where we have decomposed the functions f(™)(p) into a multipole series. Note that we have
replaced the deformed regularized mass shell o< from (4.2) by its unperturbed, unregularized
counterpart o(p) := o) (p) = p? — u?.* For vanishing perturbation (7 = 0), the regularization

goes over to the ordinary ie-regularization.®

@As a consequence of the replacement 0% (p) — p2 — u?, also the regularization-dependence of the vectors
(A<”))lsm of multipole moments of variations of the regularized kernel of the fermionic projector disappears.

bA review of the ie-regularized kernel of the fermionic projector along with an explicit computation of its
vector and scalar components can be found in Subsection 2.3.2.

This perturbed regularized kernel of the fermionic projector describes an ie-regularization for
which the regularization length () does not only depend on p° (as would be the case for the
ordinary ie-regularization), but which depends on the position on the mass shell. Thus, the decay
behavior of P¢ as modelled by the exponential factor has the same overall tendency, namely a
stronger decay for higher frequencies, but with varying behaviour in different spatial directions.

5.1.1 Variation of P¢ for Anisotropic ic-Regularization

Having specified the regularization, we can now tackle the question how deformations of the
regularized kernel of the fermionic projector around the spherically-symmetric configuration

translate into variations of the regularized causal action at different multipole orders. To answer
(n)

lm

this question, we start by deriving the multipole moments A, ’ of the regularized kernel of the

fermionic projector in momentum space.

LEMMA 5.1.2 (MULTIPOLE EXPANSION OF VARIATIONS OF P FROM ASSUMPTION 5.1.1)

The multipole moments of the variation of the regularized kernel of the fermionic projector as
given in Assumption 5.1.1 read

= = 0 N T
A (0%, [7]) = () Fir) 00, 7)) (80 5] 0 0 p) (5.2a)
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()0 171) = 3 [ 00 15D + (0?7560 D] (6 151 0 0 )" (5.20)

where the functions fl(;l’l) for (I,m) € Ng x Z with —I < m < are given in terms of Wigner’s
3j-symbols by

204+1)(2l +1)(2l2+ 1
IO = 3 3 A, 68 7510, 07 1)y 2O F DL L),

47
« (—1)™ l1 ly l i Iy 1 (5.2b.1)
mi Mo m 0 0 O o

Proof. By expanding the anisotropically ie-regularized kernel of the fermionic projector with
respect to the perturbation parameter 7, we obtain

l1,m1 l2,m2

P=(p) = Pi(p) + 76P% (p) + 7°6°P*(p) + O (") (5.3)
where the first-order variation is given by

1d

P(p) = T [(povo — F + pides ) e ) (% — /f)@(—po)]

=0
—Z 090 — 57 + pides)ep” £0) (0, [51) Yime™ 6(p* — 1) O(—p°)

= z ep” 150 (0%, [P ) Yim P () (5.4)
lm

while the second-order variation reads

1 d?

§%P(p) = N I3 [(povo — 7+ pides ) e P (% — u2)9(—p°)}

7=0
0.0 i 3
Py’ — Py + pides

- SRR Lit? - u2)0(-1)x

X[Z (00, 0O B i, + O(7) )o@

l1,mq

1 — 2 —
30 D @ (A OO D Yismy + 7 h i, 7 B Yim, + O(r%)) %

l1,m1 l2,m2

5
x (0 0 A7) Yoy + 7120, (0, ) Vi, + O() ) ')

7=0
Ep
= Z |:fl1m1 |)}/l1m1
l1,my
1 - 1 — =
S @)D, @ 1D (o °,|pm1mm2m2}1>s<p> (55)
la,ma

In order to obtain an expression which is proportional to only one spherical harmonic, we make
use of the following identity for the product of two spherical harmonics[”®: P- 146],a

14 20)(1+20)(1+ 21
%m(awmzmz(g,@:\/( Bl s D+2)

ll l2 l ll l2 l
X;”:(il) <m1 ma —m> <0 0 0>Ylm(9’¢) (5.6)
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where the admissible values for [, m are determined by the selection rules of Wigner’s 3j-symbols
which read

—llgmlgll, —lgmgl, m:—(m1 +m2), |ll—l2|§l§ll+lg (57)

By defining

1,1) |, 1 1 o (L4 20) (1 + 20)(1 + 20)
b OB = D DT Fi, 0 B i, (0 wW - x
l1,mq l2,m2
1 lo l i Iy 1
x (=1)™ (5.8)
mi Mmoo —m 0 0 O
the second variation thus takes the form

() = 5 3 [ 2 0015 + A5 0 ) Yin 6y, 2P 0) (59)

l,m

Decomposing (5.4) and (5.9) into vector spherical harmonics in the same way as in the paragraph
following Definition 4.1.3, we immediately recognize that due to the choice viyi(p) X p; in

(5.1a), terms proportional to ‘f/lm and (I;lm are absent. As a consequence we end up with

- - 0 - T
Apn (p°,|7]) = (Epo)fl(,,lf(p07|pl)eap (° 1710 0 p) (5.10a)
ST ep® . T
()i (0, 1) = 5 [(0") 2 0%, 1) + (05060 191) " (0 11 0 0 )" (5.10)
which concludes the proof. O

“We remark that the convention for the spherical harmonics as used by Brink and Satchler[7®: P- 145] g
compatible with Definition 4.1.3.

5.1.2 Variation of §° for Anisotropic ie-Regularization

Having derived the five-component vector of multipole moments of variations of an anisotropically
ie-regularized kernel of the fermionic projector, we can now customize the expression for the
multipole moments of the variation of the regularized causal action as derived in Theorem 4.3.1
to this special setting. Before, however, we exploit the fact that the multipole moments Ay,
and (A?%);,, in (5.2a) and (5.2b) are all proportional to the same vector by introducing so-
called condensed incomplete Fourier transforms which turn the matrix-valued incomplete Fourier
transforms into scalar-valued functions.

DEFINITION 5.1.3 (CONDENSED INCOMPLETE FOURIER TRANSFORMS)

For (e) € {M#,N¢, V=, W=} the condensed incomplete Fourier transforms {F[(e Jimirm ]} are
defined as

{FI )} = 0° 15100 1) F( i) (@ 710 0 )" (5.17)

where M®,N¢, V¢, We are the incomplete Fourier transforms defined in Definition 4.2.1.
Analogously, we define for the incomplete Fourier transform X7,

[FIKia]} = 1 P[] 00 191 0 0 )" (5.12)
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Using this definition and the explicit form of the multipole moments A, and (A2);,, from
Lemma 5.1.2 it is now possible, starting from Theorem 4.3.1, to derive expressions for the
multipole moments of the variation of the regularized causal action in which the occurring integral
operators no longer have matrix-valued, but only scalar-valued integral kernels.

THEOREM 5.1.4 (VARIATION OF THE REGULARIZED CAUSAL ACTION FOR LEMMA 5.1.2)

The variation of the regularized causal action corresponding to an anisotropically ie-regularized
kernel of the fermionic projector as given in Assumption 5.1.1 takes the form

o
957 = Re /d'{;’;’” QoI 1) 7 (171) (5.130)

=2

,Z / iy / d'(‘;Lr')‘ﬁ' D@51, DS (aD | (a3b)

where the scalar-valued integral kernels are given by

Q5(Ip]) = —ewpe=r {F[x50] (5] | (5.13a.1)

ewpQ5 (7)) (2)*

) o(lp — 17]) + Ezwpwqe—s(wp-&-wq) %

Vir [P
({7l 110 )+ {7 D] 151 12D

=~ {F Vion) (71 121D} = {F Wi (17, |@>}) (5.13b,)

Qim (71,171 = -

Proof. In order to derive the claimed expressions for the variation of the regularized causal
action, we basically have to insert (5.2a) and (5.2b) into (4.51a) and (4.51b), respectively, and
make use of Definition 5.1.3.

(1) Multipole Moments of 4S¢

According to Theorem 4.3.1, the only non-vanishing multipole moment of 4S¢ is the one for
I = 0. Inserting (5.2a) into (4.51a) thus yields

_<<15X1,R30A00>>]

e | [ AIB] 5P < i O e
e | [T (o] (9D} (- ) 150 (= )=

e dlp| |p]? q oz
~R 0/() Q515N SSL (= wys 51)

5S¢ “'Re

where we used the relation éé) = féé) and where the scalar-valued integral kernel Qf

is defined as
Q311 = —ewpe==r { F[%50] (5] |
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with {F[X§,]} denoting the condensed incomplete Fourier transform of F[X§,] as given in

(4.44a). To simplify notation, we replace fl(:rll (—wp, |P]) by f, (")(|p|) from now on whenever
there is no risk of confusion.

(2) Multipole Moments of §%5°¢

For the second variation the procedure is basically the same, though slightly more involved due
to the fact that there are two terms in (4.51b): On the one hand there is the term depending
linearly on the second variation A? while on the other hand there is the sesquilinear term
which involves the first variation A twice.

(a) Linear Term (only present for [ = 0)

We start by considering the former contribution, namely the one which involves the second-order
variation of the regularized kernel of the fermionic projector. Inserting (5.2b) into the first
term in (4.51b) yields

<<15x17R50(A2>00>>1

| TR US| R T .
= Re O/w{f[xoo]<|p|>}2[(swp)féo><|p>+(ewp) 5D [e

SE (151b)

lin

Recalling the definition of the functions fl(;’l) from (5.2b,i), choosing [ = m = 0 and employing
the simplified notation where fl(:L)(—wp, |P']) is abbreviated by fz(rz)ﬂﬁ ), we find

(i o l l
P02 S S 10, (DA, 7y Bt DR 1),

l1,mq la,mo
Iy I 0 L I 0
X
mi1 Mo 0 0 0 0

Z Z fllml _" 12m2(| |)\/(2ll+li7(7212+1)x

l1,m1 l2,m2

(_1)11 my (_1)11
(i) (Jem oo
\/7 Z —mlfllml(‘ |)fll( ml)(|_")

l1,my

\ﬁ SR (F DAY (151

l1,mq

Here we used the relation fl(,z)(|(j°|) = (- )mfl( m)(\(ﬂ) for the coefficient functions in the
multipole expansion of a real-valued function in the last step. For the second equality we
evaluated Wigner’s 3j-symbols using formulas provided by Brink and Satchler!™ P 138]  In
this way we find that §%S5 actually contains functions f%) of arbitrary high multipole orders

[ € Ny and takes the form

65 = 0% [ 155 S| + Z 075,11 1] (5.14)
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where the terms at lowest (I = 0) and higher (I > 1) multipole orders are given by

(2n)d 2
+1§) ) - 222D éé)(lﬁl)ﬂ
[ oo

: iy, Q&) =
55, 1 [1] = Re > / ELEE 100 (- =D ) 5 )

Lo

[ oo
- dpllp* [ Q5P .
525nn[§§)7 éé)}:Re / 7117 ( o (IP1) ) (15))

respectively. We remark that the tildes are added in order to clarify that, although the linear
term is present only for [ = 0, we nevertheless obtain higher-order multipole contributions

which are “hidden” inside féé’l)

(b) Sesquilinear Term

In contrast with the linear term, the sesquilinear term is not only present at multipole order
I = 0, but for arbitrary I € Ny. Proceeding in exactly the same way as before by inserting
(5.2a) into the second term in (4.51b) we thus obtain

L5 ()

. 1 [ dp] |p|2/d|q||q|2 St i cy
5 YR 2/ 5 g = e e N 1) (1)
0

6851, = Re

sql,l —

F MG a1 101 = (1 {F Vi) (51, 1) }
+{f[meu<_m>] (517D} = {F W) (112D}
To simplify this expression we recall that according to Lemma 4.2.12 we have

FMGi—my) = (=)™ F [Moyi0] FNi—my] = F[Niojo]
FVipiemy) = D™ F Vi) FWini—my] = F[Wiojo]

Using the relation fz(:L)(W )= (-1)™ l((n) (|4]) once more allows to combine terms such that

we arrive at

dpllpl® [ digllq” I
S
0

m=—1

< fin (17) ({ (Moo (71 171) } + { F [Niao] (17,1
—{FVionol 171,121 } — { F Wi 151, |@|)})fl%><|a>
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(3) Conclusion
Adding up the linear and sesquilinear contributions of the second variation of the regularized
causal action, we arrive at the following expression

. [ dF|171? Qs(lF )
525 — Re / | H | O(I |) ég)“ D

(27T) 2
+3 ;mZ /d'p"p‘ /d'é'ﬂ')q' (71507, ) D (7D

where for all (I,m) € Ny x Z with —l < m <[ the scalar-valued integral kernels Q;, . (|7, |7])
are given by

e, Q517D (2m)* |

+ 52wpwqe_e(wp+wQ) ({]:[Mlaow] (171, WD} + {-7:[ 10\10] (91, g |)}
~ {F Wil (7110} - {FWiow (5110} )
This concludes the proof. O

Starting from this expression, we demonstrate in the next section the invariance of the regularized
causal action under Lorentz boosts of the velocity vector of the ie-regularization. Afterwards
we study so-called compensations, which counterbalance initial perturbations and thus leave the
regularized causal action unchanged. Also for the next chapter, in which we study the invertibility
of the second variation of the regularized causal action, Theorem 5.1.4 will be the starting point.

5.2 Invariance of §° under Lorentz Boosts

In this section, we study the effect of Lorentz boosts on the regularized causal action with ie-
regularization and demonstrate, by using the above Theorem 5.1.4, that it is invariant.

5.2.1 Derivation of the Variation of P¢ for Lorentz Boosts

To prove invariance of the ie-regularized causal action under Lorentz boosts of the velocity vector
of the regularization, we first derive the multipole expansion of the corresponding variation of
the regularized kernel of the fermionic projector and subsequently show that the variation of the
regularized causal action as derived in Theorem 5.1.4 vanishes for these variations.

LEMMA 5.2.1 (MULTIPOLE EXPANSION OF THE VARIATION OF P¢ FOR LORENTZ BOOSTS)

Let f’%(p) be an unperturbed regularized kernel of the fermionic projector as given in
Assumption 5.1.1 (for 7 = 0) with the vector and scalar components taking the form

v5(p) = p°(c(p)) O(—p°)e" (5.16a)
e (p) = —p*6(0(p)) O(—p”)e " (5.16b)
*(p) = ué(a(p))O(—p°)e™" (5.16¢)

where u = (1,0,0,0) denotes the four-velocity of the regularization. Under a Lorentz boost of
this four-velocity in direction 77, the non-vanishing multipole moments of the first and second
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variation of f’z(p) are given by

P’ ,
' for m=20
N - (0] 47T |p‘ n
Aim(°,[P]) = elple™ 4/ 5 | 0 s (5.17a)
0 $L\/§ for m = %1
1
P
2
A2, [5]) = V7 [en + 222 | 0 5.17b
3
0
i
0
|1;7| \/5[3(713)2 —1] form=0
. T 212 D
(Ao (P°, [7]) = \/ %52|p|2e PP o] x +2(n! £in?)n® for m = +1 (5.17¢c)
0
L (nt £in?)? for m = £2
Proof. Acting with a Lorentz boost in direction 7 € R® which is explicitly given by
u® cosh(¢) — sinh(¢)ii - @
wr Belu) = (ﬁ — (it~ @)ii + [cosh(¢)(7 - &) — sinh(C)u®] i (5.18)

on the velocity vector of the regularized kernel of the fermionic projector as given in
Assumption 5.1.1 and expanding the result with respect to the boost parameter ¢, we obtain

PZ(p) = P5(p) + COP=(p) + (262P=(p) + O(C?) (5.19)
where the variations at first and second order are given by
De 1d = : 5 u
P(p) = T3¢ [(povo — Py + pidea)e Bl )5(0(p))®(—p0)} ‘
1d¢ o
— [(povo — Py + uid@x) (5p0 sinh(¢) + ep'- ﬁcosh(C))espB<(“)6(U(p))@(—p0)} ‘
¢=0
= (p°4° = P17 + pides)e(5 - 70)e™ 5 (p)) O(—p°)
— (5 7P (p) (5.20)
and
2P 1 d? 0.0 == : epBe(u) 0
3°P<(p) = 772[(29 V0 = pF + pidea)e PP §(a(p)) O (—p )]
21d¢ =0
1 — = . - = £ u
=3 [(povo —-py+ /lld(c4) (6p0 cosh(¢) +ep' nsmh(())e PBc( )5(0(]3))@(—])0)
+ (po’yo —py+ uidc4) (5p0 sinh(¢) +¢ep'- ﬁcosh(())2eap3<(“)5(a(p))G(fpo)} '
¢=0
1 o~
= 5(sp0 +e%(p- 1)) P=(p) (5.21)

respectively. In order to find the multipole expansions of oP< (p) and 5213\5(]9), we have to
expand the scalar product p’- 77 in spherical harmonics. To this end, we make use of the relation

B 7i = n' 5] sin(8,) cos(p,) + n?|p] sin(6,) sin(p,) + 1[5 cos(6,)
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as well as

sin(6),) {COS(S%)} 2m { —Y11(0p, 0p) + Yi(=1)(0p, 0p) }
P sin(pp) 3 1(Y11(9p790p) + Yl(fl)(epa‘%’p))

cos(bp) =

c.o"';

Y10 (9;;, SOp)

for spherical harmonics at multipole order [ = 1 and
cos? (¢pp) 4 \F [2
.92 p ™ s
sin“ (6 = Yoo — /=Yoo | £/ —= (Y- Yo
sin®(6,,) {sinz(@p) < 00 5 20) 15( 22 + Yo( 2))

Sin2(9p) sin(¢pp) cos(ipp) = —i

“[3

v
3
cos(pp) 2 —Yo1 4+ Yo
sin(f),) cos(0,) § Pl = \/l ) 2y
sin(ipp) 15 (i(Ya1 + Ya(-))
for spherical harmonics at multipole order [ = 2.

(1) Spherical Harmonic Expansion of (Yf’;(p)

For the first-order variation we obtain by using the above relations and sorting terms according
to the different spherical harmonics

—~ 2 . 2 47 L
oP<(p) = (nl\/ ?( - Y+ Yy + 1712\/ ?(Yn +Yin) + 713\/ 3Y10)5|p|P5(p)

47 n! —in? n! 4+ in? —
=\/=—| - ———Yn+——Yi_ +n3Yyo elp|Pe
3 ( NG 11 /2 1(—1) 10) l7'[Pe(p)

Inserting the vector-scalar form of the unperturbed regularized kernel of the fermionic projector,
we obtain for the multipole moments Ay, (p°, |p|) at first order in perturbation theory

P
D 3 f =0
e D] n3 for m
Av (0, 15]) = elple™ [~ 5|0 s (5.22)
0 :Fi\/5 for m = £1
1

while all other multipole moments for [ # 1 vanish identically at first order.®

(2) Spherical Harmonic Expansion of 62f/’;(p)

For the variation at second order in perturbation theory, things are slightly more complicated
due to the presence of the term (77 )?. Expanding the product - ii in the same way as before,
taking the square and making use of linear combinations of spherical harmonics at [ = 2 as
derived above, we obtain

(- 7)2 = 1512 ](n)? 5in%(8,) cos?(,) + (n?)? sin?(8,) sin?(2,) + (n*)? cos (6,
+ 2n'n?sin?(0,) cos(p,) sin(p,) + 2n'n? cos(8,) sin(6),) cos(w,)
+ 2n%n? cos(6),) sin(6,) sin(yp,)

— 5P [(n 2 [ (oo - \/EYQQ SE. Vo)
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VAT 1 2T
+ (n ) { 3 (YOO 5Y20> - 175(}/22 + }/2(—2))}
VA 4 .27
+ (n*)? Yoo + 1/ =Yoo | | +2n'n?| —iy/ = (Yoo — Yo(_2))
3 ) 15
13| 27 2 3| |27
+2n'n 175(7}/21 +Y2(_1)) + 2n“n°|i E(YQ1+Y2(—1))
Sorting terms and making use of the fact that 7 is an unit vector, it remains
/i \[ [
Y, Y:
00 + 15120
. 2m i 2m
+ (0! —in®)* [ 5 Yor + (0! +1n%)% | =Yoo
1.9y 3 |27 1, .o2y,3 |27
—2(n" —in’)n 1—5Y21 +2(n" 4+ in)n 1—55/2(,1)

We thus end up with the following two non-vanishing multipole moments at second order in
perturbation theory for Lorentz boosts

=P

(5.23)

pO
2 0 0, 1 20 0 71
(@00, 17 = V[ + 321 | 0
0
I
P° 2 312
7] \E[S(n )2—1] form=0
. s . 0
(A%)om (P, [P]) = | 557 P17e™ 8 X F2n! Fin2)nd  for m = +1
U (n* £in?)? for m = £2
This concludes the proof. O
%Note that due to our choice of the regularized kernel of the fermionic projector where vE g (p) x p%, only the

radial spherical harmonics Yim appear while the tangential components proportional to U1,,, and $1,,, vanish
identically. This is exactly the same as already explained in Lemma 5.1.2.

In order to apply Theorem 5.1.4 to this result, it remains to determine the corresponding functions
fl(;;) to establish the connection with Lemma 5.1.2.

COROLLARY 5.2.2 (FUNCTIONS fz(é? FOR LORENTZ BOOSTS)

In order to reproduce Lorentz boosts of the four-velocity in direction 7 € R? as derived in
Lemma 5.2.1, the functions fl( in Lemma 5.1.2 have to be chosen as

n® form=0

(2)

. 4dr |p .
W0, 1)) = o/ 2x P and S0 I5) = Vir (5.24)

1im .
3 0 n'Fin? _
p :|:L\/5 for m = £1

while all other functions fl(:l) vanish identically.
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Proof. To determine the functions fl(n? for Lorentz boosts, we proceed order by order in the
perturbation index n and consider the different multipole orders [ as substeps.

(1) Perturbation Order n =1
As there exists no term at multipole order | = 0 in (5.17), we can immediately conclude that
féé) vanishes identically. At multipole order [ = 1 we find by comparison of (5.17a) with (5.2a)
that the functions fl(,lyz(|ﬁ|) in Lemma 5.1.2 have to be chosen as

3 _
ir @ n® form=20

i (0, 151) =
3 p :|:"1\/%”2 for m = £1

1im

(5.25)

in order to reproduce Lorentz boosts. For higher multipole orders [ > 2 we can conclude that
. (1) o .
all functions f;,’ must vanish identically.

(2) Perturbation Order n =2

As a consequence of the appearance of the functions fl;;l) in (5.2b), the considerations at
second order in perturbation theory are slightly more involved.

(a) Multipole Order | =0

While there was no term for [ = 0 at first perturbation order, for n = 2 we now have a term
at multipole order [ = 0. Comparing (5.17b) with (5.2b) order-by-order in ¢ leads to the
requirements

féé)(po’ Ipl) 1 é(lfl)(poa 1P 1+ V7 (1P] ?
== —_— .2
B T— NZs and s =35 {0 (5.26)

where, according to the definition of féé’l) in (5.2b,i), the latter requirement must be understood
merely as a consistency condition. Explicitly, we have

1,1 . 1 1 L (@RI +1)(20 + 1)
00 W0 IB) E YT D S, 00 B f, (0 °,|p|>¢ L

l1,mq l2,m2
l la 0 li1 15 0
X
my Mo 0 0 0 0

Taking into account that the functions flm vanish identically except for [ = 1, the expression
reduces to

1
_ S 0D 6 I ot o LY
. flml(p7|p|)f17rm(p’|p|) 47r<m1 my 0 0 00

miy,ma2=—

Evaluating the remaining Wigner 35 symbols where the first one vanishes except for m; = —mao,
we finally arrive atl[”® p- 138]

A0, 7 2 W('p') o (5.27)

3 \p°
which, since 77 is a unit vector, proves that the claimed condition is satisfied.

(b) Multipole Order | =1
At multipole order [ = 1 there is no term, i. e. fl(fr)b =0 for m € {0,+1}.
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(c) Multipole Order | =2

By analogy with the above considerations, we find two conditions at multipole order [ = 2,

namely
, \/2{3(713)2 - 1} form=0

(1,1), 0o -
! m (@010 + [ (1P
@, F) =0 and =2 (2 7D 1 30 <p0|) F2(n' Fin®)n®  for m = +1

(nt Fin?)? for m = £2

where the latter one is again a consistency condition. Taking into account that at perturbation
order n = 1 the only non-vanishing functions are those with [ = 1, the condition collapses to

(1,1) i m 45 2 1 1 2 (1) . .
XSy ( )(0 . 0) T 0" ) 1100, 0, 5

mi,ma=—1 mq mo —m

where the second Wigner 35 symbol evaluates to % Taking into account that the condition

for the first Wigner 35 symbol to be non-vanishing is given by mi + mg —m = 0, we find for
m € {0,+1,+£2}
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which concludes the proof that the conditions at multipole order [ = 2 are satisfied.
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(d) Multipole Order | > 3
At multipole order [ > 3 there are no terms, i. e. fl('ri) =0 for all [ > 3.
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(3) Conclusion
To summarize, we find that Lorentz boosts as derived in Lemma 5.2.1 can be reproduced from
(5.2) by choosing the functions fl(;i) as

n3 form=20

1 - 4 [p] 2 -
TN =55 and  fo (0", |p]) = Vi
p :F% for m = £1
while all other functions vanish identically.
This concludes the proof. O

5.2.2 Variation of the Regularized Causal Action for Lorentz Boosts

After the preparatory calculations in the previous section, we now combine the results from
Corollary 5.2.2 and Theorem 5.1.4 to evaluate the variation of the regularized causal action for
Lorentz boosts of the four-velocity of the regularization.

LEMMA 5.2.3 (VARIATION OF THE REGULARIZED CAUSAL ACTION FOR LORENTZ BOOSTS)

The variation of the regularized causal action as given in Theorem 5.1.4 evaluates for Lorentz
boosts of the four-velocity of the regularization to

58° =0 (5.282)

5255 — Re /d‘ﬁl (ﬁ@g(|ﬁ|)+/d|q—»| 2m |p||Q|Q10(|p|a|Q)> (5.28b)

3 WpWq
0 0

Proof. In order to evaluate the expression for the variation of the regularized causal action as
derived in Theorem 5.1.4, we consider the contributions at first and second perturbation order
separately.

(1) Evaluation of 45¢ for Lorentz Boosts
According to (5.13a), the first variation of the regularized causal action only depends on the

function féé) which vanishes identically in the case of Lorentz boosts. We thus immediately
conclude that the first variation of the regularized causal action vanishes

i ()] o
which means that Lorentz boosts are candidates for stationary points of S¢.
(2) Evaluation of §35¢ for Lorentz Boosts

Evaluating (5.13b) for Lorentz boosts by inserting (5.24) and taking into account that the
scalar-valued integral kernels Q7,, from (5.13b,i) satisfy the relation QF (£1) = Q5o, we find

s (A, (12" =
(5.13b) Ood_' 7|2 s(|p —
' Re / 7117 (Qogpb 5 (17 1)
0

(2n)?
1 o0
1 dlg]|q]? L (el (o ~
+5 30 [T 0a0@z. 05, 14 A7)
m:710 ﬂ—)
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d|p|[p 1ooqq2 c a1
= Re / it (f@o 5/ L S Q5(71.la1)x
0 0
q1], 32
wpwq [( >+

= R /d|p|p|2 (HM |)+/d|q||q|2 2r |7171Q50 <|ﬁ|,|a>>
0

@1

(2m)* @emt 3 WpWq
where in the last step we used that 77 has unit length. This concludes the proof. O

According to this lemma, Lorentz boosts are candidates for stationary points of the regularized
causal action. To show that Lorentz boosts actually leave S¢ invariant (at least up to second
order in perturbation theory), it remains to show that the second variation of the regularized
causal action as computed in (5.28b) vanishes. To this end, we need the following lemma.

LEMMA 5.2.4 (CONDITION ON DERIVATIVES OF THE REGULARIZED CAUSAL LAGRANGIAN)

The ie-regularized causal Lagrangian as given in (2.42) satisfies the condition

rt 4 e/ e 2
0= [aen) [ﬂ?ﬁ%fﬂg%@cﬁ(@] ~fae l?)m]
R

Xe

(5.29)

r=R;,.. (€%

where D denotes the differential operator with respect to ¢° and r given by D = Ogo + §6T..

Proof. In order to prove the claimed relation, we will repeatedly make use of the following two
equivalent ways to express the integral over the region X°¢

oo —Tain(r) 00
A’ r) f(&%r) = [ dr ¢ + e’ | f(&°r) (5.30a)
/ ! [
Ry 0y (€°)

/ A€, r) f / de? / dr F(¢0,1) (5.30D)
L

which we refer to as the T5; -

respectively. Here the function T, :

()_{ 0 for0<r<R:, (0
(Rpyax) " (r)  for 7> R,,.(0)

representation and the R, -representation of the bulk integral,
Ry — R{ is defined as

€
Tmm

(5.31)

(1) Evaluation of the Bulk Term
We start by considering the first term in the expression, referred to as the bulk term. Splitting
up the outer differential operator D leads to

Jaen

xXe

9E

7’4 ( 0 + €OT>DEE(§) + £(JT2D£5(€)]

_ 0 T4 a £ O,r3 a 5 0,2 5
—/d(f ,7) [3850DE (f)‘i‘TajDﬁ (§) + & r"DLE(8)
:x:s
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Making use of the T&,; -representation from (5.30a) to integrate by parts with respect to £° in
the first term we arrive at

s T () s
= 0/ dr 7:: ) 4 de® aaDgf +T€ /( r>d£0 88125 + 3C/ d(eo,r) ;[3[)55(5)}
- O/ dr ﬁ([mf(g)}_f“m + [pee(¢)] :()) + DC/ d(e, ) ;[“Dﬁf(f)]

where we have combined the second and third term into a partial derivative with respect to r
along the way. The integrand of the first term can be simplified by observing that derivatives
of £(&) both with respect to £ and r vanish in the limit €9 — +o00. This can be easily seen
from an asymptotic expansion of derivatives of the modified Bessel functions of the second
kind contained in (2.42).1°7 8:451/6] Thus, it remains

/ o Sloee] 7o+ o SIS oo

In this expression the second integral can also be simplified: Making use of the R .-
representation of the bulk integral from (5.30b) and taking into account that DL(&) yields a
finite value for 7 = 0 such that r3£%(¢) vanishes in the limit » — 0, we end up with

470 09
Jaen [g (6 + S r ) e+ r2DL%)

Xe
o T T (1) 0,3
/ dr f[Dce(g)] + / de° F D[F(g)]
4 3 7T§1in(7‘) 2 3 r= anax(ﬁ)

for the bulk term.

(2) Evaluation of the Boundary Term
Having simplified the bulk term, we now turn to the boundary term of the original expression.
Combining the factor (8,«55(5))71 with one of the factors DL?(€) yields

ae® [ S mf))ﬂ
R/ 3 L (f) r=Rg,.. (£°)

M1 (0L | 0L e
- [ [3&5&(&)( e (5)]

R r=Rg,,,(£°)
(0 L5(8) EO
o d 0 7"( (3 )DEE
/ ls o )PP
R r=Rg, ., (£°)

To proceed, we exploit the fact that the regularized causal Lagrangian by definition vanishes

at the boundary r = R, (€°). By differentiating this relation with respect to £ we obtain
OLE(E) 9L (§) AR5 ax (€°)
0 (EE 5 . ) — + max
dgo ( )|r RE, ., (£9) &0 =R (£) or =R (£0) dEO

Solving for the derivative of £5(£) with respect to £ and inserting the result into the previous
expression results in

- [ [Sazgoee)]

R T r:anax (60)
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- / de® [( T3 dR%?;(fo) + 503r3)D£5(£)]

R

TZRIEHaX (60)

for the boundary term.

(3) Combining Bulk and Boundary Terms
Adding up the bulk and boundary contributions and cancelling terms we arrive at

/d(ﬁo,r) |:T34D2£8(€)_’_£0T2D£6(£):| _/dgo {iar;&(@ (Dﬁa(f))z]

. J =Ry (£°)

= 7dr ?[Dﬁf(f)]m’(r)r) + / de° dR“&Z’B(go) { Dﬁs(ﬁ)}

~Tiin r=Rg,,.(£0)

0 R max

To demonstrate that this expression vanishes, we split the domain of integration in the second
term into regions where £° < 0 and £° > 0, respectively. As a consequence of this splitting,

we can express £0 as £¥ = —T¢, (R max(fo)) and €Y = T, (R:,..(€9)), respectively, and thus
obtain

o0 o0 c 0

=~ [ar Tne (T .0) + fae el [ D (135,017

;3 dg PG (€9)

7 4 e 4

+ / dr DL (— TS (r / a0 Womax(&) )[TDLZE( Toin(r), )}
;3 d¢ 3 P g (€9)

Splitting the integrals in the first and third term and changing variables in the second and
fourth term gives

R4 (0) o fax (T)
..:_< /dr—i— / dr) DKE(TIflln() )+lim / du EDE‘E(T8 (u )u)

T—00 min
0 Rel(0) Ry (0)
Re. (0) oo 0 (0)
d ar | (1 li du “pre(—1e
w o fas [oar) T (- i) ¢ i [ du D (- T (0.0)
0 Rel.(0) Rty (—7)

Recalling that the function R% .. satisfies lim,_,oo RS .. (£7) = 00, we realize that the second
and third term in the first line both describe the integral over the same set €5 = {(¢°,r) |&° >
0,7 = R, (€°)}, namely the upper regularized light-cone, and thus add up to zero. Likewise,
the two terms in the second line cancel as they both describe the integral over the same set
€ ={(%r) €Y <0,r = R:,,.(€°)} being the lower regularized light-cone. We thus end up
with

4 4 1
Xe R max
Rfax (0) Riax(0) 4
- [ L DL (T(r).1) + [ ar pes (= T 00.7) (5.32)
0 0

But since T, (r) vanishes for 0 <r < R% . (0) according to (5.31), both terms add up to zero
such that the whole expression vanishes.

This concludes the proof. O
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This lemma is the crucial ingredient in proving that the second variation of the regularized causal
action vanishes for Lorentz boosts of the velocity vector of the regularization. The missing link
which establishes the connection between Lemma 5.2.3 and Lemma 5.2.4 is to show that the
second variation as derived in (5.28b) is the same as the left-hand side in (5.29). Since this is a
rather technical task, we have deferred this to Appendix F and here in particular Lemma F.2.2.
Combining these results, we can now formulate the following theorem.

THEOREM 5.2.5 (INVARIANCE OF S° UNDER LORENTZ BOOSTS)

The ie-regularized causal action S¢ is invariant under Lorentz boosts of the velocity vector of
the regularization.

Proof. In Lemma 5.2.3 we have shown that Lorentz boosts are at least stationary points of the
ie-regularized causal action as 6S° vanishes, while the expression for %5 reads

J ; prq
Making use of Lemma F.2.2; this expression evaluates to
. 4 Dce oo
5%5° L ox / d(€°,r) (€r2DLe(€) + =D () / aeo D) ) =0
e 3 % 3 0L |iory,, ()

which, according to Lemma 5.2.4, vanishes identically. Thus, Lorentz boosts of the velocity
vector of the regularization are not only stationary points of the ie-regularized causal action,
but they leave the causal action invariant. O

Having studied special variations of the regularized kernel of the fermionic projector corresponding
to Lorentz boosts of the velocity vector of the regularization, we now come back to the more
general variations from Lemma 5.1.2 and examine how the regularized causal action reacts on
initial perturbations via the causal action principle.

5.3 Perturbations and Compensations

The starting point of our considerations is a spherically-symmetrically ie-regularized kernel of the
fermionic projector f’%, which is assumed to be a minimizer of the regularized causal action. This
regularized kernel of the fermionic projector corresponds to a regularized Dirac sea configuration in
Minkowski spacetime equipped with a certain spherically-symmetric microstructure. Now, if this
spherically-symmetric situation is destroyed by some slight deformation of the microstructure, also
the regularized kernel of the fermionic projector changes. For reasons of manageability we assume
that the deformation only affects the exponential factor 1Pl in the sense that it is replaced by an
anisotropic equivalent as defined in Assumption 5.1.1. The resulting anisotropically ie-regularized
kernel of the fermionic projector P/’E is no longer a minimizer of the regularized causal action.
According to the causal action principle, this non-optimal configuration causes a dynamics aimed
at restoring a potentially new configuration which again extremizes the regularized causal action.
In what follows, we give a simple model where an initial perturbation of the spherically symmetric
ie-regularization is counterbalanced by so-called compensations.
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5.3.1 Derivation of Compensations

On a technical level, we model the situation described above as follows: We assume that the
anisotropically ie-regularized kernel of the fermionic projector in momentum space takes the for

P2 (p) = (p + pidea)3(p? — p2)O(—pP)e? = @) (5.33a)

where, according to Assumption 5.1.1, w,(p) is given by

@r(p) = 1+ 3 > @ (0%, |5])Yim (0, 95) (5.33)

n=1Ilm

For vanishing perturbation, namely in the limit 7 — 0, the perturbed regularized kernel of the
fermionic projector P/’E(p) reduces to 15%(}7) = 152(;0) Due to the fact that f’\i(p) does in general no
longer extremalize the regularized causal action, the causal action principle tries to resolve this
dissatisfying situation by further modifying the anisotropic ie-regularization through a so-called
compensation. Once again, we assume for better manageability that the resulting regularized
kernel of the fermionic projector still has the structure as given in Assumption 5.1.1.

LEMMA 5.3.1 (STATIONARITY CONDITION FOR THE COMPENSATION)

Let I/DE(p) be the compensated regularized kernel of the fermionic projector given by
PE(p) = (p + pides)3(p? — p2)O(—pP)e’ [=r @)1 () (5.34)

where
=1+ Z Z 2%, [51)Yim (6, 0) (5.34a)
represents the anisotropic ie-regularization induced by the initial perturbation, while

rir(p Z Z“(") AP D)Yim (0p, 01) (5.34D)
n=1 !

stands for the compensation. Then 15§(p) is a stationary point of the regularized causal action,
if the multipole moments of the perturbation and the compensation satisfy the following
condition

Y(l,m) € Ng x Z with —1 <m < IVf) e C=(R{,C):

e | % / dlp||p| / d'é[j)i' Ao () Q5 (171,12, (1)

L _Re Z/d|p|\p| /d|(q27r|;14| D 51Q5 (5], 17D 7D (1)) (5.35)

Proof. To prove the claimed relations, we recall that the first variation of the regularized causal
action has two dependences: On the one hand it is a functional of P< while on the other hand
it also depends on the first variation 6P¢ around P<. Therefore, the condition for P to be a
stationary point of the regularized causal action reads

VoPey € D'(RL,L(CHLCY): 0= (536 [I/)\D [5137%%] (5.36)
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Based on this condition, we can now derive a relation between the initial perturbation and the

resulting compensation: Choosing P< as the regularized kernel of the fermionic projector given
by
P (p) = (p + pides)8(p? — p2)O(—p)e?’ (Frtr) (5.37)

where w, and k. correspond to the initial perturbation and the resulting compensation,
respectively, the condition for the compensated regularized kernel of the fermionic projector
P< to be a stationary point of the regularized causal action reads

VoPay € D'(R*, L(CH, CY): 0= <55€ [PATD [P
Expanding this condition into a Taylor series up to second order in the parameter 7 yields®
L (535 [ﬁaD [(ﬁ%st} + T<6 < [PED {Jﬁgert + ﬁomp,@st] +O(r?)

Since 1/3% is assumed to be a stationary point of the regularized causal action, the first term
vanishes such that only the sesquilinear term remains. If we furthermore exploit sesquilinearity
(see (4.53)), we arrive at the condition

(47524 ] ) [P 2] £ (552 73] ) [95e 0] (5.38)

To arrive at the claimed expression, we now make use of the explicit expression for the
sesquilinear term in the second variation of the regularized causal action as given in (5.13b).
Denoting the multipole moments corresponding to the test variation by flm, we find the
following condition which relates the multipole moments Ii ) and w“)

Y(l,m) € Ng x Z with —1<m <IVf) e C®R{,C):
d|P||p|2/d|Q||Q|2 M < e a0 D
Z/ Gy in (P)QE (P, 1) 7L 1)

2 2
=Re / S / N =0PDQE L AN (639)

This concludes the proof. O

%Note that the second variation of the regularized causal action contains two terms, namely the term which
depends linearly on the second variation of the regularized kernel of the fermionic projector and the sesquilinear
term where the first variation of the regularized kernel of the fermionic projector enters twice. Due to the fact
that in the present case the argument of the first variation is fixed already, we only obtain the sesquilinear term.

5.3.2 Variation of the Local Particle Density

To conclude this chapter, we finally want to analyze whether deformations of the regularization have
an effect on the local particle density and, if so, quantify its strength. As explained in Chapter 2,
the regularized kernel of the fermionic projector represents a certain Dirac sea configuration which,
in Minkowski spacetime, is the entirety of negative-frequency solutions of the Dirac equation. As
already mentioned in Footnote 9 on page 22, to every solution v of the Dirac equation one can
associate the so-called Dirac current which is a four-vector field defined as

(%) = <=, (5.40)

with 7* denoting the k" Dirac matrix. The zeroth component j°(x) of this Dirac current can be
interpreted as the probability density of the fermionic particle corresponding to the Dirac solution
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1 to be at the spacetime point x € . If one now considers not only one solution of the Dirac
equation, but the entirety of all negative-frequency solutions described by the (regularized) kernel
of the fermionic projector, the probability density generalizes to the concept of the local particle
density.?

DEFINITION 5.3.2 (LOCAL PARTICLE DENSITY)

For a given homogeneous regularized kernel of the fermionic projector, the local particle
density f is defined asl® P- 68l

fi=Tr <w0P5(0)> =T / (2;1; ~OPE(p) (5.41)

R4

Starting from this definition, we can now study the effect of Lorentz boosts of the velocity of the
regularization on the local particle density.

LEMMA 5.3.3 (VARIATION OF THE LOCAL PARTICLE DENSITY FOR LORENTZ BOOSTS)

Let 6P¢ (p) and 621/32(])) be the first and second order variations of the ie-regularized kernel of the
fermionic projector corresponding to Lorentz boosts as given in (5.20) and (5.21), respectively.
Then the corresponding variation of the local particle density is given by
3f=0 (5.42a)
2
(2m)?

where K,, denote the modified Bessel functions of the second kind. The second variation has a
leading-order behaviour which is given by

e 2 (14 342

5 = - [“2 (38alen) + araen) + 20 5 + M)Kl(au)] (5.421)

€

Proof. As the local particle density depends linearly on the regularized kernel of the
fermionic projector, the corresponding variations at first and second order are clearly given by

4 _ 4 —
5f = Tr / (%4 NOPE(p) | (5.44a) 8 =Tr / (;17:; A062P5(p) | (5.44b)
R4 R4

By inserting the explicit expression for 5pe (p) from (5.20) we find at first order

4 P 4 0
i = [ @i T (0P ) = ae [ S B @ inaR - e ) (5.45)
R4 R4

where we for the second equality we have used the trace identities Tr(v¥y!) = 4n* and
Tr(7*) = 0. To evaluate the remaining integral, we choose the coordinate system in momentum
space without loss of generality such that the z-axis coincides with 7. In this way the scalar

1For more details, we refer to the discussion of this topic by Finster.[11; Sec. 1.2.1],[6, Sec. 1.2]

2Loosely speaking, one basically has to integrate j°(0) over all momenta and all negative frequencies. For a
detailed discussion, we refer to Finster’s first book.[6: Sec. 2.6]
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product p'- 7i reduces to |p||7i| cos(f,) which in turn vanishes upon integration. Thus, the local
particle density does not change at first order.

For the second-order calculation we proceed in the same way: By inserting for 621/32(17) the
result obtained in (5.21) and using the trace identities for the Dirac matrices we obtain

4 0
Ff =2 [ 5B (1 e 102) 50 = 1)) (5.46)
R4

Choosing the coordinate system in the same way as before, carrying out the p’-integral as well
as the p,-integral and making use of the fact that i is a unit vector results in

0o 1
dp|lp[? 5 —ew
82 = 27T5/|(2|7T|)4/dc0s(9p) (wp+6|p|2cosz(9p))e ewp
0 -1

d|ﬁ| |ﬁ‘2 2 =2 —Ew
27'('5/(271_)4 2wp+§5\p| e P
0

The remaining integrals can be evaluated using the table of integrals by Gradshteyn and
Ryzhik[>7 3-461(1 2)] guch that we finally end up with

9, Ame |0 [(2p ,Lﬁ e (1242 E
of = oni| oo\ 2 Ky(ep) + —Kolep) | + 5 —5~ Kalep) + —5 Kilen)
2

(5.47)

3p° 6u 3 4y
= LK LK 2P K LK
(%)3[ —Kolep) + 3 Kuilep) + 2p° Kiep) + —— Ka(ep)

Expanding this result around ¢ = 0 yields the leading-order behaviour which is given by

2
0 = —# <i§ - 32% + O(s)> (5.48)

This concludes the proof. O

This lemma demonstrates that Lorentz boosts, although they leave the regularized causal action
invariant, nevertheless have an effect on the local particle density of the regularized Dirac sea
configuration. More precisely, for non-vanishing mass p > 0 and regularization length € > 0 the
local particle density (of the Dirac sea) decreases at leading order in the regularization length ¢.3

3This fact, together with some other considerations, forms the starting point for the development of a novel
mechanism to explain baryogenesis within the framework of the theory of causal fermion systems.["”]
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In this last chapter we focus on the zeroth-order multipole moment of the second variation of the
regularized causal action and outline a procedure which allows to construct the inverse of the
integral operator S§, from (4.53b) under certain simplifying assumptions.

To better understand the necessity for simplifying assumptions, we briefly recall the achievements
from the previous chapters: In Chapter 3 we have derived an expression for §%5¢ (see (3.31b) in
Theorem 3.4.3) which depends on the so-called demarcation function R% .. In the homogeneous
setting, this function describes the regularization-dependent boundary between spacelike-separated
and timelike-separated difference vectors. Through the incomplete Fourier transforms, this
demarcation function ultimately enters the integral operators Sj,, which describe the multipole
moments of the sesquilinear contribution to §%5¢. Although we were able to simplify the expression
for the multipole moments 628fm|l,m, by carrying out both the position space angular integrals
and the momentum space angular integrals, one problem remained: Due to the fact that the
demarcation function RZ ,  is implicitly defined through the condition (2.45), the ¢%-integral and

the r-integral appearing in the integral kernels of Sj,, cannot be evaluated, which, in turn, makes
it impossible to invert the integral operators Sj,, in full generality.

Nevertheless, to make at least a qualitative assessment regarding the invertibility, we consider the
zeroth-order multipole moment of §25¢ and simplify the above-described setting by specifying the
function R .. and taking into account only the most singular contributions of the incomplete
Fourier transforms on the lightcone. In this way we are be able to construct a second-order differen-

tial operator, serving as the inverse of S5, and to determine its scaling in the regularization length e.

111
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6.1 Computation of the Integral Operator S,

As mentioned in the above paragraph, the answer to the question whether it is possible to determine
the inverses of the integral operators Sj,,, ultimately depends on the ability to carry out the position
space integrals contained in the incomplete Fourier transforms as introduced in Definition 4.2.1.
As this proves difficult in full generality, we simplify the setting by using the following observation:
The integrands of the incomplete Fourier transforms JF|[( - )§m|l(7m)]7 namely the corresponding
coefficient matrices CF,, diverge on the lightcone for vanishing regularization while they decay
polynomially away from the lightcone both for [£°] — oo and 7 — co. As a consequence of this fact,
those regions within R® which are closest to the lightcone, account for the dominant contribution
to the incomplete Fourier transforms. Thus, by determining the leading-order singularity of the
coefficient matrices on the lightcone and by making a reasonable ansatz for the function Ry, ., we
are in the position to determine at least the leading-order contribution to the integral operators Sj, ,.

6.1.1 Lightcone Expansion of the Coefficient Matrices

We start by determining the most singular contributions to the coefficient matrices on the lightcone
using the lightcone expansion as introduced by Finster['» Pef- 2211 * Ag we are primarily concerned
with a qualitative assessment and since the most singular terms are the same for all four incomplete
Fourier transforms appearing in the expression for S§, in (4.53b), we consider, without loss of
generality, only the incomplete Fourier transform F [Ngomo]'

DEFINITION 6.1.1 (LIGHTCONE EXPANSION OF DISTRIBUTIONS)

A distribution A(x,y) on 4 x J is said to be of order O((y — x)??) for p € Z, if the product
(y — x)7? A(x,y) is a locally integrable function. An expansion of the form

oo

Alxy) =Y AWl(x,y) with geZ (6.1a)

Jj=g

is called lightcone expansion if the terms All(x,y) are distributions of order O((y — x)%/) and
if A is approximated by the partial sums in the sense that for all p > ¢ the distribution

Ax,y) — XP:AU] (x,y) (6.1b)

is of order O((y — x)?P*2).

Based on this definition, we can now determine the leading-order term of the (regularized) lightcone
expansion of the coefficient matrix C5; as given in (4.19b,i). To keep the presentation as clear as
possible, we have deferred the detailed computations to Appendix A such that the (regularized)
lightcone expansion of the coefficient matrix €5, follows as a corollary from Lemma A.4.1 and the
following Lemma 6.1.2.

LEMMA 6.1.2 (CLOSE-TO-LIGHTCONE/AWAY-FROM-ORIGIN EXPANSION OF (2%)72")

In the region which is close to the lightcone (i. e. for Mc}% < 1) and simultaneously away
from the origin (i. e. for £ < 1), the following expansion holds

(E;l)% = (\g;z;n <£O|T_ T) T ) [EEO_EOT) + 0(1)} ; + 0<i>21
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where EEJF denotes the dimensionless variable EEJF

replaced by u) and e is the sign function.

= p1y/—(£%)? as defined in (2.36) (with m

Proof. Inserting the definition of =5 from (2.36), factorizing and subsequently expanding in a
Taylor series in £ yields

- () (5)

To proceed, we consider the upper lightcone (€% > 0) and the lower lightcone (£° < 0) separately.

1 1 € e\ 2
1_(:Fin)<£°+7“+f"r>r+o<r> ]

r

0 0
Rewriting the whole expression in terms of ST—_T and 5%, respectively, and expanding around
Zero gives

(= (57_)-71 [1 + (:Fin)< - é + 0(1)); + 0(5)2} for €05 0
- (pry (—1)"(50%)771[1 - (:Fin)( — ﬁ + 0(1))5 + 0(5)2} for €0 < 0

Combining both results, we end up with
(D" (=" LR L o(2)
.= 1 -+ 0(1)| -+ 0| -
N2\ i) | Jery +OW| T +OL;
Denoting equality up to higher-order terms in both £ and W# by the symbol = we thus find

1L o (=" (|£°|T)"(1)” (1€ =m)"

B r et

(B2 (Vepr)?

In case there is an additional factor £° present in the numerator, the leading-order contribution

reads
€ o (“1)e(€) (€] — )
(Eit)?n (2‘u2)n Tnfl

where we have used the expansion
0
o . 1+57 foré®>0
=r.>—=rx
r —1+ 50% for €9 <0

This concludes the proof. O

Combining this expansion with the result from Lemma A.4.1 we arrive at the following close-to-
the-lightcone/away-from-the-origin expansion of the coefficient matrix 6&.1

COROLLARY 6.1.3 (CTL/AFO EXPANSION OF THE COEFFICIENT MATRIX C%/)

Let C5; be the coefficient matrix as given in (4.19b,i) and customized to the ie-regularization

which corresponds to the incomplete Fourier transform F [ngml l(fm)]. The leading-order term

1As an abbreviation for the lengthy term “close-to-the-lightcone/away-from-the-origin expansion” we will from
now on use the shortcut CTL/AFO expansion.
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in the CTL/AFO expansion of the matrix is given by

-r e(ﬁo)llx:& 0
€(6)Tzx1  —7lsxz  Ozxa (6.2)
0 O1x3 0

e L (="

NT@ns T 48

Proof. To arrive at the claimed expression, we first have to customize the vector and scalar
components vg, v$, s° of the regularized kernel of the fermionic projector to the case of the
ie-regularization which, by comparing the general vector-scalar structure in (3.9) with the
one for the ie-regularized kernel of the fermionic projector in (2.37), amounts to the following

replacements

viy) = (62)ig2 () = (62)ig-(E2)  and  s°(v,y) = AZ(E) = h(ED) (6.3)

Together with the abbreviating notation introduced in Appendix Section A.3 and the definition
of the function B from (3.15), the coefficient matrix C5; becomes

—r2|g|? + |h|? —((€9)° = 2(&))[glPLixs  (£5)°gh +2(£°) gh
SE ] (€)° = 2(69)9)|glP 15 ~[gPLss —(gh+29h) 15,1 (6.4)
(&2)°gh +2(¢5)°gh —(gh+2gh) 113 ISIlE

Next, by using the leading-order contributions of the component functions j+ and h as derived
in (A.20) in Lemma A.4.1, we obtain

r? _(69)°—2(82)°

. £\0 2(5 )0
T T ik 5 (Er - &)
4p® 1 (€9)°-2(65)° i )
— _ o) 26y _ 1 _ i 12
GN - (27'(')6 ‘56‘4 ESE T3x1 Eed T3x3 2#((53)2 (Ei)z)ﬂ?,xl (65)
i (€2)° | 2(¢9)° i 1 2 lg°1?
w( G Er) (et ) =

where we kept the leading-order contributions in each entry. Making use of the expansion in
Lemma 6.1.2 we finally arrive at

- r & : i 0
1 (€ =n)? (1£%1=r) qeoi=m Lixa  ipr - e(€0)
o — . o '
o= (2m)° 4r? %13“ *%ths —iplaxy (6.6)
—ipr - €(£7) T 1

As can be seen from this expression, the leading-order contribution of the matrix as a whole is
given by the matrix where all entries except for those in the upper left (4 x 4)-block matrix
are zero.

This concludes the proof. O

6.1.2 Weak Evaluation of the Coefficient Matrix on the Lightcone

Having determined the leading-order contribution of the coefficient matrix €5 in the CTL/AFO
expansion, the next step consists in modelling the behaviour of the resulting incomplete Fourier
transform F [lenb\l(—nL)] near the lightcone. To this end we make use of the so-called weak
evaluation on the lightcone which is an integral part of the formalism of the continuum limit as
introduced by Finster.[% €™ 4 In an nutshell, this formalism arises from the necessity to analyze
the regularization-dependence of the Euler-Lagrange equations in order to establish the connection
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with contemporary physics.? For our purposes, however, we do not need the full machinery of the
formalism of the continuum limit, except for the weak evaluation on the lightcone which allows to
quantify the singular behaviour of regularized expressions in the limit € — 0. Technically, the weak
evaluation on the lightcone is implemented by integrating the respective regularization-dependent
expression (which in the limit € — 0 diverges on the lightcone) against a smooth test function with
respect to &9 for fixed r. Applying this concept in a slightly modified form to the leading-order
term in the CTL/AFO expansion of (E5.)*" as derived in Lemma 6.1.2 leads to the following result.

LEMMA 6.1.4 (WEAK EVALUATION OF (2%)?" ON THE LIGHTCONE)

Let the regularization be chosen such that the demarcation function Ry,.x as introduced in
Definition 2.3.8 takes the form

R, (€ =¢"—ce?  with ¢>0,de€(0,1) (6.7)

away from the origin.” Then, weakly evaluating the functions (|€°] —7)~"r=™ and €(£°)(|¢°] —
r)"™r~™ on the lightcone amounts to simultaneously replacing

/d(ﬁoﬂ”) — /déO 7dr (6.8a)
R 0

Xe

W{ 1 }H(ced)lné(ﬁ)e(fo)’”l{ 1 } (6.8b)

and

N U0 ) A A T

where € denotes the sign function.

Proof. According to the preceding paragraph, the weak evaluation on the lightcone aims at
analyzing the singular behavior of a regularization-dependent expression on the lightcone by
determining its scaling in the regularization length €. In our case, where we are interested in
evaluating incomplete Fourier transforms, namely integrals of the form

(|€O‘ T) " 1 } —iwg?
d O, r) ——— kr)e £ 6.9

the setting is slightly different: Unlike usual, here the regularization is encoded in the domain
of integration instead of the integrand. Nevertheless, the basic idea remains the same: In order
to determine the scaling in e, we fix r > ¢ and integrate in £%-direction. For n > 2 we obtain

in this way
(€1=n" f 1
(€% r) m{ } =
Joen T e
0o ) —Tmin () 1 0o 1
_ pR— _1\n 0 0 r) " 0 0 —_ )
_/d — | =D / dé” (&7 +r) {6(60)}+ / d¢” (&7 —r) {e(éo)}

—o0 Tnin (T)

0
7w]«w"'l[@”””H}mwﬁw@“ﬂﬂ“r
0 rm —1 -n+1 oo -n+1 Toin ()

2For the development of a deeper understanding of the formalism of the continuum limit we warmly recommend
the insightful, but rarely mentioned discussions by Finster[6: Sec. 3.6], [6, Sec. 4.1, 4.2] ' 3]ong with the computations
in [6, Sec. 4.3 - 4.5]. In order to get a first, rough overview, however, we refer to the explanations given in [11,
Sec. 2.4.1] and [11, Sec. 2.4.4] together with the introductory paragraph of [11, Sec. 2.4].
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o L[ w (= Toin () 7)™ (Tn(r) =) ™"
_o/drrm<{—1}(_1) —n+1 - E——

o L1 ) =
rm -1 n—1

0

where we used that the boundary terms for £ — 4oo vanish identically. Choosing the
regularization such that the function RS, (£°) is given by RS, (€°) = € — ce? away from the

max
lightcone which translates into Tinin () = r + c? for r > RS, (0), we obtain®

max

o ) (€= f L) ety 1 [
faern ] f = [

Xe

Thus, away from the origin but on the lightcone, the expressions (|£°|—7)~"7~™ and €(£°)(|€°|—
r)~"r~™ can be modelled by simultaneously replacing

/d(go,r) — R/dgoo/dr

Xe

(€= [ 1] (e a@)ee)m 1
rm e(€°) n=1 (&)™ e

This concludes the proof. O

and

®Note that the parameter ¢ must have length dimension dim(c) = 1 — d in order to ensure that Rf ,, has
length dimension dim(R%,,,) = 1.

max
bNote that in the lower case the expression vanishes due to the fact that the contributions for €9 > 0 and

&9 < 0 are non-vanishing but cancel each other.

6.1.3 Computing the Weakly Evaluated Incomplete Fourier Transforms

So far we have worked out the lightcone expansion of the coefficient matrix C%; and demonstrated
how its leading-order singularity on the lightcone can be modelled. With these results at hand we
are now able to compute the simplified position space integrals in Lemma 4.2.12 which leads us to
a manageable expression for the incomplete Fourier transform F [N(E)omo]'

PROPOSITION 6.1.5 (COMPUTATION OF WEAKLY EVALUATED FOURIER INTEGRALS)

For any m € N the integral functions I%l‘m :R? — R defined as

o0

2 0\ym—1 . 1
o (w k)= [ de® [ ar Wf(kr)e—lwf°{ } (6.11a)

0

where the arrows refer to the upper and lower case, respectively, evaluate to Fourier cosine
f(kr)

rm

transforms and Fourier sine transforms of the function

I, (w.k) = ]-'COS(f ilfnr)>(w> and 1, (w.k) = _ifsm(f ilfnr)>(w> (6.11b)
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Proof. To prove the claimed relations, we start by rewriting the Dirac delta distribution using
the rule for composition with another function and thus obtain

k) = / e’ / S I sy s - >}e<f°>m—1{€(§o)}

Carrying out the ¢°-integral in the two different cases results in

00 1 emiw(=m) o—iwr
ot f Ot
2r —(—1)m—1(9 T)m T+ im T

0
_ 7dr f(]fnr) y cos(wr) for 1
4 r —isin(wr) for |

This result demonstrates that the integral functions I{“m can be interpreted as the Fourier

cosine transform (for 1) and the Fourier sine transform (for |) of the function f(kr)r~™ with
respect to the variable w

I{|m<w,k>—fcos(fiir>)<w> and Ifmw,k)——ifsm<f§’j}f)><w> (6.12)

This concludes the proof. O

According to Lemma 4.2.12; the position space integrals also involve the multipole matrices 9,
Ny, as well as their asterisked counterparts 9%;; and 91; which all carry an r-dependence through
sines and cosines (see Appendix E.1). This means that the integral functions I{“m have to be

evaluated for f € {cos,sin} and, in the case relevant for us, for m € {2, 3,4}.

LEMMA 6.1.6 (EVALUATION OF INTEGRAL FUNCTIONS I{“m FOR f € {cos,sin})

For f € {cos,sin} and m € {2,3,4} the integral functions I{lm as introduced in Proposition 6.1.5
evaluate to

2 o w— k| +|w+k —|w[ for [w| > ||
— i3 (w, k) = | | 5 | | = (6.13a)
" “Jk] for (K] > [u
2 ooy B2 R R Ll (w? 4 3k2)  for |w| > |K| (6.15b)
i 12 (302 + k2)  for |w] < |k '
2 |lw — k|(w— k) — |w + k|(w + k) e(=k)lw|[k| for w| > [kl
¢|3( k) = 1 =3 D21 k) for w] < JK] (6.13c)
5 <
while for I f |m W€ analogously obtain
_ _ €(w) 2
2ty < MO R ) RO ool
4 ie(w)|wl[k]  for |w| < |k|
. Jo— K~ k| [iel-w)ellkl for ] > [k
¢|2( k) :ll | 5 | | =9 (6.13e)
ie(—w)e(k)|w| for |w| < |k
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Proof. To prove the claimed relations, we first of all remark that Fourier sine and cosine
transforms as defined in (6.11b) are related via

—il3 |m(k,w) = I (w, k)

which directly implies that (6.13d) can be obtained from (6.13c) by interchanging arguments.
In addition to this, we furthermore have the relations

OLG i . k) L™ | (w, k)

N m+1 sin N m+1 cos
| ok \m(w? k) and ‘T = T\Hm(wa k)
as well as
O, 41 (w, k) OI3 41 (W )

=1}, (w, k) and = I3, (w, k)

Ow Ow
which allows to obtain both (6.13a) and (6.13e) from (6.13c) (or, equivalently, from (6.13d)).
Finally, by the same reasoning, we observe that (6.13¢c) (and, likewise, (6.13d)) can be computed
from (6.13b) which is sufficient to produce all claimed expressions via the above relations.
Evaluating I/ (w, k) for f € {cos,sin} by using the commands FourierCosTransform and

Hm
FourierSinTransform implemented in Mathematica 12 gives the result.®

For the sake of completeness we remark that the integral functions IT.¢|m(°J’k) must be
understood in the distributional sense. The necessity for a distributional treatment can already
be recognized by trying to compute I%fisQ (w, k) naively

<% (w, k) = /dr cos(wr cos(kr) /dr cos[(w — k)r] + cos|(w + k)r]
h 2r2
0 0
T 2 [k,
=T+
Z—/dr sin [ 5 r]rzsm /drf
0

where we exploited the double-angle formula cos(z) = 1 — 2sin?(z/2) in the last step. Making
use of the identity [;* dz sin?(ax)/2? = Za which holds for a > b7 3821901 " we obtain

-kl 4wtk 2 1

0

which differs from the desired, finite result by an infinite constant. As one could have already
anticipated form the very definition of I;flsz (w, k), this divergence traces back to the sharp
singularity of the integrand at r» = 0. The correct way to avoid the appearance of this constant
in the first place is to regularize I%OISQ (w, k) using Hadamard’s method of dropping divergent

terms and keeping only the finite parts.[79 Book IIT, Ch. 2], O

“Note that the commands FourierSinTransform and FourierCosTransform include an additional factor
(2/m)'/* compared with our definition. Explicitly, the command FourierCosTransform and I{‘m(w, k) are
related via

Nm(w k) = (2/m)'/* FourierCosTransform [f(kr)/rm,r, w] (6.14)

and similarly for the Fourier sine transform.
bFor a systematic and detailed treatment of Hadamard’s finite part and its relation to the Cauchy principal
value, we refer to the book by Kanwal.[80> Sec- 4.2] Note that similar integrals, namely I H1(4;.) k), le(w, k)

and derivatives thereof, have already been computed by Finster(81], though with another method where the
integral functions in Proposition 6.1.5 are treated differently compared with our approach.

With these results at hand, we are now ready to compute the angular-integrated incomplete
Fourier transform F [Ngomo] (I7],14'|) under the simplifying assumptions discussed above.
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LEMMA 6.1.7 (INCOMPLETE FOURIER TRANSFORM FOR WEAKLY EVALUATED INTEGRAND)

The incomplete Fourier transform F [Ngomo] (IP],1¢]) from (4.44b) with its integrand replaced
by the weakly evaluated, leading-order contribution on the lightcone is given by

fmin{ﬁ,l%‘} min{O,%w”;r}q}
7

_1/3 ()
B (2m)% wpwy

) 712 2 02 3
min {0 %wrwy} _1‘“‘“{"‘” i } x (6.15)

RG] 3 71q]

F[Noaioo) (1], 141)

O3x2 ‘ 03x3

where we have d € (0, 1) as introduced in Lemma 6.1.4,

Proof. In order to derive the claimed expression, we start by recalling the explicit form of the
angular-integrated incomplete Fourier transform F [N, o] (|71, [7]) which according to (4.44b)
is given by

]:[Ngoloo](\ﬂa |qq|)(g“'/d(foa7”) 7"2E35w( N © Moo —Bs‘ﬁoo)
Xe

To compute the integral, we now make use of the groundwork carried out in the previous
sections: First, we take into account only the leading-order term of C5; in the lightcone
expansion as derived in Corollary 6.1.3. Concerning the prefactor B of the asterisked term
we remark that it is of next-to-leading-order compared with €5, and thus irrelevant for our
considerations. Next, by inserting the definition of E; from (4.19b,ii) along with the explicit
form of My as given in (E.2a) and the leading-order contribution of €5, from (6.2) we find

amy 1 2 (€% =) iy —wp)e®
FNSoro0] (51 1712 /d 0 opmewa)€
[ 00|00] (|p |7 Iq )(m,,, (2,“_)4 wpwq|ﬁ||(f|x (f 77") r3 €
=
, i) . ie(€”)
ie(€) 17\%“\ O2xs 5 7 ie(€) 1+‘T*‘m-2 O2xa 78 7
X ST e Cos [(|p| +1q |)T] + | T A COS [(|p| —q |)7"]
0352 ‘03><3 0352 ‘ 0353
0 —ire(€) 0 —ire(¢°) o
o e g | J sin (151 + 1)) + | e i | ™ ] sin [(171 — 1)
O3x2 ‘03><3 O3x2 ‘O:SXS

Having arrived at this point, the next step is to weakly evaluate the integrand on the lightcone
as explained in Lemma 6.1.4. Subsequently, by evaluating the resulting integrals using
Proposition 6.1.5 and Lemma 6.1.6, we obtain

o k) — 1995 (o =il (R - T no)

ele /= (= 2/3  (ce)™? | MR TEES) A VOTSRYOTS))
f[Noo|oo](|p|v|Q|) = 2 el _ )
(27’(’) WpWqg |p | |q | [k (1575 k) =I5 (k) iy (573 e = I3 (k) ) = (E553 (o b IS (0.k) )
(B k)~ I wko)] ety (i k)~ I k) 4y (58 (ks )+ I (k)

where we suppressed the zero rows and columns and defined w := w, —wy and k. := |p/| £ |7].

It remains to further simplify the matrix entries by evaluating the expression in the two cases
|P| > |7| and |p| < |¢], each for |p|,|7] = 0. To this end we first note that the functions

f=(|P]) == wpx|P] = /IP|? + p?2 £|pP| both start from f4(0) = g > 0 and are strictly increasing
(for fy) and strictly decreasing (for f_) on Rj. As a consequence, both the relations

wp — [P < wg + ¢ and wg — 7] < wp + [P (6.16)
hold for all ||, || > 0 which can be cast into the form |w| < |k4|. Similarly, we find

wp — [P Swg —|q| for[p]l = || and  w,—|q| <w, —[p| for[p| <lqg|  (6.17)
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which is equivalent to |w| < |k_|. Taken together, we have |w| < |ki| which means that in
the expressions for IT.ilm as derived in Lemma 6.1.6 only the lower cases are relevant for the
evaluation of the above matrix. By considering, for example, the upper right entry of the
matrix, we find

‘i[@*( 5 (w0, ) = I8 (@, ko)) + (T35 (w, k) + f’5<w7’€—>>} =

_ —iz |:i€(w>|w|k5+| - ié(w)‘WHk!' + (ie(—w)e(k+)|w| —|—ie(—w)e(k‘)|w|)}

2 7|
r (k] = Ik |
= —w|——=— — (e(ky) +e(k_
oo B — et et
. |ﬁ|+\(ﬂ‘—q§‘|ﬁ|—|ff|) _ (1 + 1) for ‘ﬁl > |q—»| 7]
=—-w e = 7 min {w_,, O} (6.18)
\p\+|Q||*§(|\Q\*\P|) _ (1 + (71)) for ‘ﬁ| < |(T| |q‘

Evaluating all other entries in the same way, we finally end up with

i 11 |7] wp—wq
e e i 1/3 (ce)3 min { gy, gy} min {0, 7 e }
]:[NOO'OO] (17, 121) = (2m)% wpwq ; |7] wq—wp 1 min { \lﬁqlf ' ‘\?IQ}
min {0, 7 72— 5 g
which concludes the proof. O

6.2 Construction of the Inverse Operator for S,

Having found an explicit expression for the angular-integrated incomplete Fourier transform
F [Ngo\oo] (I7],1¢]) without remaining position space integrals present, we are now in the position
to construct the inverse operator of the term in the integral operator S§, corresponding to
F[Ngf)lfoo] (I71,1¢])- To this end, we recall that according to Theorem 4.3.1 the sesquilinear term

in the I*® multipole moment of the second variation of the regularized causal action reads

DI IE I

m=—

5%8% . =Re

sql,l

where the integral operators S = for (I,m) € Ny x Z with —I < m <[ are given by

lm

o0

=1 172
i) 1512 [ ST (G, o O 170) — F 950 05111
" (U FNG o OB T = (—1) " F W T 12D A ()

Due to the fact that, as already mentioned at the beginning of Subsection 6.1.1, the principal
procedure is the same for all four terms in Sj,,, we again restrict attention to the contribution
coming from the incomplete Fourier transform }'[Ngoloo} (171, 1¢1), or rather f[N(E)blroo] (171,141)-
Accordingly, the object of investigation in this section is

3{ B[S 200}

As the entries of the matrix-valued integral kernel F [Ngbllcoo]ﬂﬁ [, 1¢]) vanish except for the upper

left (2 x 2)-block matrix according to Lemma 6.1.7, we will suppress zero rows and columns in
what follows and only consider two-component functions Agg € C= (R, C?).

R R i1l v N
where 853 Aan(171) = [ SELT-FNG 17117 A7)
0

6% =Re

sql,0
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6.2.1 Construction of Green’s Operators for Entries of F [Nﬁ;}‘go]

To begin with, we first construct differential operators which invert the diagonal entries of the
matrix-valued integral kernel F [NSE)I\COO} (I7'],1¢]) in the sense of Green’s operators.

LEMMA 6.2.1 (GREEN’S OPERATORS FOR DIAGONAL ENTRIES OF F[Nﬁgl‘ﬁo](|ﬁ|, I7]))

The non-vanishing diagonal entries

K1 (7], 1)) == min{f,ﬂ} and  Ka(|f),|d]) = min{wf,mf} (6.192)
71" 1q] 71" gl
of the matrix }—[Ngblroo] (I71,1¢]) as given in (6.15) are Green’s functions of the differential
operators
d 2 d 1/ d 2
A = _|ﬁ‘2 (_, —+ _,) T and B = —= ( — _,> (619b)
dg|  [p1/ dip| 3\alp*  1P1?
respectively.

Proof. In order to construct inverse operators for the non-vanishing diagonal entries of
F [N(E)bl‘coo] (I71,1¢]), we construct differential operators which have K; and K5 as their Green’s
functions.

(1) Constructing the Green’s Operator for K;
From the form of K; we can immediately conclude that we need at least a second-order
differential operator A (with respect to |p]) in order to achieve that AK; vanishes for |p/| > |{].
Using the ansatz

> a(p]) d | ao(lP])
d|p|” Wl dpl 1P

A = ax(|p])
and demanding that the condition
o oy !

AK1(Ipl,1q]) =0

holds for |p'| # |{|, we obtain the following restrictions on the choice of the coefficient functions
ag, a1, ae by considering the regions |p'| < || and |p/| > || separately

0. ag for [p'| < |7
200 — a1 +ag  for [p] > |]]

Setting g = 0 and choosing a; = 2a, we arrive at the intermediate result

A= asllph (557 + 200 )

dp|* 1] dlp]

In order to fix the so far undetermined function «sy, we integrate the defining condition
AK1(|p],17]) = 0(|p| — |¢|) over R§ and thus obtain

o0
d2 2 d |
a7 a2<|ﬁ|>< ; qq)mm, ) L1
! dipl>  p1dlp]

Integrating the first term by parts and exploiting that d;; K identically vanishes in the region
|P| < |7] results in
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/dI*I 0K ( Ipql ql)(_ daz(lpl) n 2az£|pl)> 4 lim (_ az&z;l)) 1y
olp]| d|p]| 7| |7 |—o0 7|

17

By comparing the length dimensions on both sides of the equation we can immediately conclude
that as has to satisfy the condition dim(ag) = 2. This observation directly leads to the choice
as(|p]) = —|p|* which not only makes the integrand vanish but also ensures that the boundary
term converges to one. We conclude that the differential operator

_|]7|2(d2 + Qd)
dp)*  1p1dlp]

AKL(Ipl:191) = o(P] = 1q1) (6.20)

and is thus the sought-after Green’s operator for Kj.

satisfies the condition

(2) Constructing the Green’s Operator for K»

In order to find a differential operator B which has K5 as Green’s function, we proceed in
precisely the same way as above and again start from an ansatz for a second-order differential
operator with respect to |p'|. By considering the regions |7| < |¢| and |p| > || separately, we
obtain the following conditions

| 2082+ B1) + Bo for [P < [q]
202 = B1+ B for [p| > [q]
which implies 51 = 0 by taking the difference of the two conditions. Choosing By = —25; we
find &2
2
B =527 (152~ )
dpl? I

In order to decide on how to choose the yet undetermined function fs, we integrate the
condition BK»(|7], |7]) = 6(|p| — |7]) over R{ and thus obtain

[ ) (2 - )t i -
Pl PP =3 = =22 J420P149]) =
dig|>  1p]?

0

Integration by parts in the first term turns the condition into the form

[ gt (- SUPDORMPLITD 200D g, 151 g1 ) + [ i) 22T ™ 2y

d|p | P ol 0

In contrast with the previous case, the partial derivative 05 K> does not vanish for [p’| < |¢].
Splitting the integral into the regions |p| < |¢| and |p/| > || and inserting the respective
expressions for the partial derivative 0z K2 leads to

/ o 1738207
a / ( |>—|pd|ﬁ|) Lim 17165 (171) | +

7 ( 262(p|)+1dﬁz(ﬁ|)>_ m 20D |1y

PP P dipl
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From dimensional considerations we conclude that the function S has to satisfy the condition
dim(f2) = 0. By choosing S2(|p|) = ¢ € R and computing all integrals it remains

o0
!

2 . . c !
_,~c|q|+|q2~[_,2] =1
|7 7] 17|

which implies ¢ = —%. As a consequence, the differential operator B has to be chosen as

1 d? 2
32—3(42 —~2>
d|p]| |

in order for the Green’s functions condition
BE>(|p], 1) = o(|p'| — |71) (6.21)

to be satisfied. This concludes the proof. O

6.2.2 Differential Operator Representation of 05

Having constructed the Green’s operators for the non-vanishing diagonal entries of the matrix
F [Né’ollcoo] we can now, in a second step, make use of these results by expressing the contribution

3
sql,0

differential operator with matrix potential.

to the multipole moment 6% in (4.53b) corresponding to FNS o) in terms of a second-order

00]0

LEMMA 6.2.2 (DIFFERENTIAL OPERATOR REPRESENTATION OF 6% al0)

The contribution to the multipole moment §2S§ of the second variation of the regularized causal
action corresponding to FINS¢ | can be expressed as

00]00
dy—3 T alal 1712
see  _ (cg?) }/dlpllp\ . .
B0 =g Re |5 [ Tgas (SOPDHARD)), (6:222)

where the differential operator H and the two-component function f € C*(R{,C?) are given
by

10 0 -3\ 1 1 (1 =1\ [IPlfo
H= (0 0) (—Ags) + ( L ) i and f= 7 <1 ) ) <ﬁ|f1> (6.22b)

respectively.

Proof. According to the discussion at the beginning of Section 6.2, the contribution to the
multipole moment §%S§ relevant for us is given by

! 1 o ccton aan — [ AT Cnete 100 A (1
5520 = Be | - (B0, 534 Aoo>>] with S5 an(17) = [ ST F NG (17117 a7
0

where the integral kernel reads

—min {2, %} min{O,%%}
min { 77 117}

171171

i (ng)fii

(27?)3 WpWg min {0, 17| wqpr}

F[Nooioo) (171, 17]) =

=

_1
3
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To keep the discussion as simple as possible, we slightly simplify the discussion by only
considering the massless case p = 0 where w, = +/|p'|? + 2 reduces to |F|. This allows us
to express the off-diagonal entries of the matrix in terms of the functions K; and K5 from
Lemma 6.2.1 as

. |ﬁ| - §| (6.192) 1 1 |§2 — — — — K2(|ﬁ|’|(7)
mm{o, =~ G ) = €Ul 19 K. (Ip), 1) — 2Pl 1aD)

717 i P71
: ICTI—IﬁI}U.m..J (1 1 |ﬁ'|2> IR _oon o Ke(P1d1)
ming 0, = —=5— = —| = — === | = =0 — gD K:(IP],17]) — — ==
{ P g1 1Pllg] 1q] P17

and thus, in turn, makes it possible to cast the above integral kernel into the following
symmetrized form

F[Nooiol (5], 141)

v 1/3 (cad)_?’( —K1(1p1,17)) ;(Kluﬁ,q*)“;ﬁ;”))
_ - 3 — — N N 5 4.' — g ~, -
p=o - (2m) 1B1IGL -4 (K051 1a1) - ) i

Based on this form of the integral kernel we can now rewrite §% <ql.0 Dy using the Green’s
operators A, B derived in Lemma 6.2.1 in the following way: First, by exploiting that A and B

are invertible operators, the functions Agy € C* (R, C?) can be expressed as

Afo(17]) )

6.23
3151BI51£.(5) (6.23)

Aoo(lP]) = <

where fo, fi € C*(R{,C) can be chosen arbitrarily. The appearance of additional factors |p|
in the second component accounts for the fact that the length dimensions of K; and K> (and
thus also the length dimensions of the differential operators A and B) differ by two.® In this
way, we obtain

oo

s2ge (=)0 o 1/dlﬁ\ Pl [ dldlla]
sal0 ™ 943 2/ (2n) (2m)4
0 0

><<< Afo(17]) ) —Ky -1(x1 - #) < Afo(I]) >>
WBIAAIED) \-4 (K- ) - h 3I71BI71/:(171)

Cc2

Q-

where the prefactor W has already been compensated by (part of) the integration measures.
Now, by exploiting the fact that according to Lemma 6.2.1 the functions K; and Ks are
Green’s functions of the differential operators A and B, respectively, they are inverses of the
integral operators Ty, Ty : O (R, C) — C°(R{, C) defined as

(AP = /d\é’l Ki(Ipl 17D f(q1)
0

for i = 1,2. The Green’s operator A (with respect to |p], as indicated by the subscript), for
example, then satisfies

A (T (D] = /dlffl A|ﬁ|K1(|ﬁ|,Iil)f(Iq”I)g]/dlé'l o(Ip1 = lghs(ql) = f(p1)
0 0

and likewise for the Green’s operator B. Using this, the above expression reduces to

oo

525 (ceh)? Re | L / dlp| |7? <(f<,<\m>> ( A %(s\mB\meA)) (fo(\ﬁ\)>>
sab0 ™ 943 20 (2m)8 A(p)) T \~3BIPIBIF| - 34) 3|5 [B|p| AN ) [
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where we have already carried out the integral with respect to |¢|. As can be verified by a
quick computation, the differential operators A and B are related via 3|p'|B|p’| = A + 2. Using
this relation, we find that the integrand of the second variation of the regularized causal action
now takes the form of a matrix-valued differential operator with matrix potential given by

oo
dy—3 1 [ d7]17? 5 -1 1 0 -1 5
5285(110 _ (ce )3 Re 7/ i |ps| f0(|li|) ’ Ad fo(\ZiD
’ 24m 2 ) (2m) ay -1 -1 =2} \AUPT)/] [ca
In order to turn this expression into the form as given in the statement, we perform a change
of basis such that the first matrix becomes diagonal®, rescale the functions fo, f1 as |7|f; — fi

and use that the differential operator A can be expressed in terms of the radial part of the
Laplacian in R? as A = —|p|?Ags. In this way we finally end up with

) P |1 [l

) (est) s
2473 2 (2m)8
0

(s o), | = - re | 5]

2
0 §q1,0 =
where the differential operator H and the two-component function f € C°(R{, C2) are given

by
10 0 -\ 1 1 (1 =1\ [1P]fo
H= —Aps ) d -
<0 0) (TBre) + (—; 1 ) B a =5 <1 1 ) <;ﬁ|f1>

respectively.

This concludes the proof. O

%Recall that A and B are both second-order differential operators with the difference that A includes an
additional factor |'|? compared with B.

bThe eigenvalues are A1 = —2 and Ao = 0 with the corresponding normalized eigenvectors being v; =
%(1, —1)T and vg = %(1, 1)T, respectively

6.3 Invertibility of the Multipole Moment 4S5,

In this final section we now put together all previous results and demonstrate that the contribution

5% sql,0 to the multipole moment 6355 is invertible. Due to the fact that the structure of the
other incomplete Fourier transforms is not fundamentally different from F [Ngglcoo], the approach

presented in this chapter can be transferred to also evaluate these other contributions. Although
explicit calculations become increasingly lengthy, the procedure can in principle also be applied to
higher-order multipole moments.

LEMMA 6.3.1 (ESTIMATE FOR THE MATRIX POTENTIAL)

For any u = (u,uz) € C? and for ¢ > ’1%5 the following inequality holds

() )z o

where ||ul|? = |u1]? + |ual?.
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Proof. To prove the claimed inequality, we start by computing the scalar product

“ 0 _1/2 U1 2 J—
()L ) ), mowie

and subsequently demand that the inequality
lus|? — Re (ulzTg) > —c||ul]? & luz|® — Re (uuTg) + cfjul* >0

holds for some ¢ > 0. Making use of the standard inequality Re(z122) < |21||22| which holds
for arbitrary complex numbers z1, zo € C, we find the following estimate

uz]* = Re (u1) + cllull* > clur[* + (1 + ¢)|ua]? — |uy[[uz|

1
= C<|U1|2 — 2. 2Cu1|u2|) + (1 +C)‘UQ‘2

‘UQ‘ 2 2 1
= - — =+ |u l1+c— —
C(|u1| 2¢c | 2| ¢ 4dc

where the first term, being the square of real numbers, is clearly non-negative. In order to
ensure that also the second term is non-negative, the parameter ¢ > 0 has to satisfy the
condition

o> V2 (6.25)

If this is condition is satisfied, the inequality
|us|? = Re (u1z) + cllul® > cur [ + (1 + ¢)|ua|? — [u1[Juz] > 0 (6.26)
holds and thus concludes the proof. O

In addition to this estimate which allows to handle the matrix potential term in (6.22), we need a
second inequality for the term containing the differential operator.

LEMMA 6.3.2 (INEQUALITY FOR THE SCALAR HAMILTONIAN)

For any compactly supported, complex-valued function ¢ € C§°(R? \ {0}, C) which vanishes in
a neighbourhood of 0 € R? the following inequality holds!5% ©h- 14]

/d3:E' {gradw(f)y /d?’* @I (6.27)

R3 R3

Proof. To prove the claimed relation, we follow the proof by John Baez[®* ©» 14 and start
from the relation

grad (r1/21/1) = 5/2 w + '/ grad ¥

where r := |Z|. Solving for the second term on the right-hand side and taking the square of
the absolute value results in the following inequality for the gradient

grad(r'/?1) i |?
|gradwf* = |50 — o

- |grad(r1/2w)|2 B Re (f grad(r'/2)ip ) |1/’|2
- r /2 47‘2
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| (2 198

> _
- ik or 4r2

which holds for any r > 0. Rewriting the first term as

1 Re(a(rl/Zw)¢>_ L (W éw

1/
r°/2 or o\ i 1/J +ry

oY\ 1 arjyP)
or ) 2r2  Or

and inserting the whole expression into the left-hand side of the claimed relation yields

1/
/d3 ’gradw /d3-* 31/2 Re (a(%rw)w) _|_/d3—» (@ 2)|

R3 R3

5, 1 O(r|vP) - [p@)?
—/d‘jx 22 9r /dd C4r2

R3 R3

Note that it is this point where we have to assume that the function 1 vanishes in a
neighbourhood of 0 € R? in order to be able to use the above inequality. Taking into
account that in spherical coordinates the integration measure in the first integral yields a factor
r2, we actually have a boundary term with respect to the radial integral

[l e

As we only consider compactly supported functions, this boundary term vanishes not only at
r = 0 but also for r — oo such that we end up with the claimed relation

/d3 |grad¢ /dg_’ W} (6.28)

which concludes the proof. O

Armed with the estimates from Lemma 6.3.1 and Lemma 6.3.2 we can now prove that the
contribution §%S¢ <ql,0 to the second variation of the regularized causal action is invertible.

THEOREM 6.3.3 (INVERTIBILITY OF THE MULTIPOLE MOMENT § SSq1 0)

The differential operator H from Lemma 6.2.2 which is given by

g (0 (—Ags) 0 (6.29)
= —Ags) + =3 .
00/ 0T\ 1) IR

Ve CE @0, (15 BAED) > 0 (6:30)

As a consequence, the contribution 5285(1170 to the second variation of the regularized causal
action as given in Lemma 6.2.2 is invertible on C§°(R™ \ {0}, C?).

satisfies the relation

Proof. In order to prove the claimed inequality for the operator H, we start by inserting
the definition of H along with the radial part of the Laplacian which is given by Ags =
|ﬁ|_23‘m (|ﬁ‘28|5|) we find®

(ramn.mran) =
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o0

= [SEEE (romh ).,
0
I P I N W A (| W A AW (/)
- / G <f('p'>’ <o 0) i Gl >+<_; 1> WDCQ
B A I A R A D AW A A R
: / o) <f(|p|),l (0 0) oo (P20 )+<é 1>f<p|>]>cz

Integrating by parts in the first term and spelling out the scalar products in the resulting terms

yields
Faaee (1o /e (O 3\ 200N\ [1#Rr0s) 3FGD ]
‘O/ 2r)’ (’ o] (o <_; 1> HiE >C> l Gr ol ]

As a consequence of the fact that the functions f are both compactly supported and vanish in
a neighbourhood of the origin in R3, the boundary term vanishes identically. Making use of
the inequalities from Lemma 6.3.1 and Lemma 6.3.2 for the first and second term, respectively,
we end up with

(raeD.1rap)) = 7 dip 1 <|f<|ﬁ|>|2 143 |f(|ﬁ)|2>

(27m)* Alp? 2 72

0
_3-2V3 [ di] |,
=2 0/( 7D > 0

2m)4

This concludes the proof that the differential operator H is positive and thus invertible. As the
contribution §%SZ,, , to the second variation of the regularized causal action is proportional
to (f(I7']), Hf(|F])) according to Lemma 6.2.2, we can conclude that §35%, , is invertible on

Cs°(RT\ {0}, C?). O

2Note that the sesquilinear form as given in (4.52) is actually defined on functions taking values in C®. Due
to our simplifications (see Lemma 6.1.7), however, it is sufficient to consider functions taking values in C2.
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In this appendix we derive various formulas for derivatives of the ie-regularized causal Lagrangian

as introduced in (2.42).

A.1 Frequently Used Integral Transforms

We start by introducing basic Fourier sine and cosine integral transforms which are required to

evaluate the ie-regularized kernel of the fermionic projector.

LEMMA A.1.1 (FOURIER SINE AND COSINE TRANSFORMS)

Let « > 0, Re(8) > 0 and Re(y) > 0. Then, according to Erdélyi and Bateman, the
Fourier sine transform of the functions ze#V***+7* and (22 + 42)~"?ze~#V**+7* are given

by[SIB, p. 75, equs. (35), (36)]

r K. 2+ 2
/dx xsin(azx)e 5\/mza5»y?M

a? + (32

0
/dx J:bln(ax) _ﬁ\/m:(yylﬁ(v a? + 3?)
0

131

(A.1a)

(A.1b)
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while the Fourier cosine transform of the functions e #V®**+7* and (22 4 42)~2e AV >+

evaluate t0[83, p- 16/17, eqns. (26), (27)]

yi _ 212 K (’Y a? + 52)
d PVt — gy IV T T A2
0/ x cos(ax)e By e (A.2a)
T cos(ax) _g foagz
O/dx \/ﬁe B + = KO ("Y 042 =+ /82) (A2b)

where Ky, K1, Ko are referred to as the modified Bessel functions of the second kind.

Proof. See Tables of Integral Transforms, Vol. I by Erdélyi and Bateman.!5’] O

A.2 Components of P° with ic-Regularization

In Lemma 2.3.3 we have derived the explicit expressions for the vector and scalar components ¢¢ ,
he of the ie-regularized kernel of the fermionic projector. In preparation for Appendix Section A.3
where certain combinations of derivatives of the ie-regularized causal Lagrangian are calculated,
we derive the derivatives of the components and re-express them in terms of the components of
themselves. Before, however, we introduce the following definition.

DEFINITION A.2.1 (COMPONENTS OF P° WITH ie-REGULARIZATION)

The vector and scalar components of the ie-regularized kernel of the fermionic projector (and
its adjoint) are given in (2.37a), (2.37b) in terms of modified Bessel functions of the second
kind, namely

i Ka(E) oy B K(E)
BO=Fig gy (A9) KO = G e (A.4)

For convenience, we reinterpret g% (¢), h%(€) as functions g, h: C — C of the complex variable

=€ .
= as

G+ (E%) = g=(¢) (A.5a) h(ES) = h() (A.5b)

LEMMA A.2.2 (DERIVATIVES OF THE COMPONENTS OF P° WITH ie-REGULARIZATION)

The first and second derivatives of the component functions g%, h% of the ie-regularized kernel
of the fermionic projector as introduced in Definition A.2.1 evaluate to

1 Lo~ N =e
0y = —=— (4§7¥ F 1uh) (A.6a) h = :1:17:F§I (A.6¢)
e
~/ ~ 1 ~ o
gl = —52% 4 g (A.6b) ' = i (gzp + :ig;) (A.6d)
=

where we suppress the arguments. Note that the length dimensions of these derivatives (with

respect to the dimensionless variable Z%.) are the same as those of g+ and h.
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Proof. In order to compute the derivatives of the component functions g+ and h, we use
the following derivativel®”> PP- 8:486/12] 4 recursion relationl®” 8486/17] for modified Bessel
functions

dK,(z y o
dz( ) _ —(KV1(2) + ZKV(Z)> (A.7a) Ka(z) = Ko(2) + 2% (A7h)
Expressing the results in terms of §+ and h we obtain
G oy 1 ( JH2ER) Kl(E;))
=5 2”) (53)3 (E5)?
(EE ):| |: 1 M4 Kl (EE ) (A3) 1 ~ L=
4 i )+ | Fi G & I N T oS
{ (=) @r)* 25 ]/ :;< s F i) (A8)
K (=8 Ko(=€
=y
( :F) .:$
° [, Ea(ES) =
a =y —e (A5n)
= : fol= m A.
E¥<(27T)3|: =3 + Ko ;)DMF p g+ (4.9)

Differentiating the above expressions once more and expressing the resulting expressions in
terms of g-., g+ and h we find for the second derivatives

d%+ 1 ( ~ 1 -
= =z (495 F inh) — = (495 F i)
dEs)’ EFPVTT B \UF
) g' 1 =€ gl
=5 - m(@%ﬁu[;i $§¢D =-5=F + 0= (A.10)
=¥ =F K =F
d%h 1 = i
A9 5 T S ~ —e ~/
=Fi-gr Fi—tg% = IF*(Q +E59 ) Al
d(z2)’ pIF T T T IR T S0 (A.11)
This concludes the proof. O

COROLLARY A.2.3 (DERIVATIVES OF FOURIER SINE AND FOURIER COSINE TRANSFORMS)

Setting a = r, 8 = (¢ £if°) and v = p in Lemma A.1.1, defining w(z) := \/x? + p? and
expressing everything in terms of the functions g+, h as introduced in Definition A.2.1, we find
the following relations

7 dx bln('f" ) (E:tlf Yo () ﬁh
2m)? w() ) 40 (35 24 (A12a)
, +ir <3ng + (pr) %)
i —(fE:F)OTQJF
/ d$)3 { } 5111(7’1‘) (e+i€%)w(z) o0 % W2 (s Fe (A.12b)
5 1e(€5) 7’[3E;+(EE)2< JF_E;)]

00 d . ~,
/ 33)3 x sin( rx)w(x)e_(silgo)“’(x) = Fir <§3F — 12 (€2)%( ;)Ogj) (A.12¢)
0
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o0 l h i 25
/ dz } COS(I®) _(ctie®yu(z) _ g (th " ng) (A.12d)

27'(')3 o~ i (NT) a _ & .
o {35+ 00ur)* 35 + 5 (2 - &)

(oo}

d .
[ o costre 400 = ()03 + (L5 ) (A12)
—=F
0

Proof. In order to derive the above relations, we set a = r, f = (¢ £i%) and v = p in
Lemma A.1.1 and thus find the following relation for k € Ny

o~ (CHE@) < d?)’“T Ky (p/r2 + (e £1i€0)2)
w(z) dr? r?2 + (e £1€9)?2

(oo}
/dz 2 sin(rz)

0

Expressing the right-hand side in terms of the dimensionless variable 25 = p11/—(§5)? which
can be rewritten as

(62) = (€ Fie)® —r? = —(#)X(E" Fie)? — 1% = — (1 + (c 2 ¢)?)

and using the definition of the functions g and h as given in (A.5a) and (A.5b), respectively,
we arrive at the central relation

o0

d (@)
/ a xsin(rx)ei ="h (A.13)
0

(2m)? w(z) p
Starting from this we can now derive all other relations. By taking the j-fold derivative with

respect to £ and the k-fold derivative with respect to 72 and adjusting coefficients accordingly,
we obtain

[ de 2k+1 j—1,—(e£it)w(x 2\’ o\
/(271_)3 22 sin(ra)w(z)? ~le (EFE)W(@) — :tla—go ~ 52 ;h
0

The corresponding expressions (again for k € Np) with sines replaced by cosines can be obtained
from the above result by adding one derivative with respect to r

[ da 2k+2 j—1,—(e£ie")w(z d cd Y d2\"r;
/ (271_)3 T COS(T’I’)M(I)J € ( Jw(z) = 5 + l@ — ﬁ ;h
0

Evaluating the expressions containing sines for j = 0,1,2 and k¥ = 0,1 and those containing
cosines for j = 0,1 and k& = 0 by using the results from Lemma A.2.2 along with the relations

023 _ 12(&3)° 023 _ p’r
0 = =
o€ = or =
yields the claimed expressions and thus concludes the proof. O

With these relations at hand, we can now derive formulas for combined derivatives of the ie-
regularized causal Lagrangian.
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A.3 Derivatives of L° with ie-Regularization

LEMMA A.3.1 (DERIVATIVES OF THE REGULARIZED CAUSAL LAGRANGIAN)

Let g, g and h, h be abbreviating notations defined as

Q
K<}

_(Z9) (A.14a) h:— h(2%) (A.14c)
E9) (A.14b) h = h(Z3) (A.144)

QI
N}
—~

+

and similarly for the derivatives. Then the first and second derivatives of the ie-regularized

causal Lagrangian as given in (2.42) with respect to the differential operator D := J¢o + %(‘%
can be expressed as

DEA(E) = 16(e1) Re 1 (B16g - €16 )%)

— 79((36@—069) +1M(Bah+csh))} (A.15a)

2 /
-7 (g" - E“‘L) (B7le"Pg - c=(¢7 %)

(4 Joerys - oy
2

g [— (165 P) 1l + 2(65)2(¢° Y219l — Bfwﬂ

L9 [iu<2|g2h|£5|2 +2g2R|€° 2 + 4]g[2h(¢2)? + (B + C%))
+2(2glPg(e2)? ~ 9 ) + (B'g - C%) — (Bg + csg)]
1 _
e [ —2(1g1*)* — iplg|? (39h - éh)
+,u2<g2}_12_g|2’h‘2+g(35§+059))ﬂ (A.15b)

where the functions B¢ and C¢ are those introduced in Definition 3.3.3.

Proof. In order to make the computation of DLf(£) and D?L¢(£) as simple and straightforward
as possible, we first derive the expression for the first derivative of the functions g+ and h

with respect to the differential operator D := Oz0 + $8, which yields

~ dg¢ P
Dg = 0= Y 0=¢ =
{ T} =< <ag°¢ L& 5 ”F> = FHep®q TF (A.16)
Dh =< roar Fu97

Using these expressions we can now compute the first and second derivatives of £%(&) with
respect to D.

(1) First Derivative of £°(¢) with respect to D := 0g0 + %&
Acting with the differential operator D on the expression for the ie-regularized causal Lagrangian
as given in (2.42) and using the above relations, we obtain

DL(E") = ~16*(Dr?)(|g|*)* — 64¢r?|g|* Re [gDyg]
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+8Re | (D(€2)?)*h? +2(67)?(Dg)h? +2(¢%)*g*h(Dh)|
+8Re [(DIE[2) g B[ + 21¢°* Re [g(Dg)] [hf? +21¢° 2|9l Re [A(DR)] |

Using the relations D[&°|* = 0, D(£5) = F2ie and Dr? = 2¢°, the expression reduces to

/
= =329 - 4l e eno 2|

— / —
+ 8Re |2icg®h? + 215#2(&)295—5# + 26,u(§ﬁ_)292hg}
T 8Re |26 Re [ieu il WF +2ep[€° 2 g Re [ghg]]

where switched complex conjugations of the last term in the second line. Sorting terms
according to their number of derivatives of g, we arrive at the following expression for DL (&)

= 16(=) Re {iui (= 422195 + €°*gIn + (¢7)%9h?)
- i(gQBQ +iplgl? ((63)%gh + €7 gh) — 21€§O(|g|2)2>:| (A.17)

Rewriting this result in terms of the functions B® and C¢ as introduced in Definition 3.3.3 we
finally end up with

[

DEA(E) = 16064 Re 12 (BI67g - €6 )%)

~ L((Bo19P — °0?) + g (B°h + 0%h) — gl (27lgf? + |h|2))}

t\H

~

= 16(ep) Re [iugs (BE|£5|2§ - 06(55)29)

- ig((BengEg) +iu(BEh+Cgh)>} (A.18)

where in the final step we dropped the last term in the second line which vanishes as a
consequence of the presence of the real part.

(2) Second Derivative of £5(&)

For the computation of the second derivative of £2(£) with respect to D we take the expression
for DLE() from (A.18) as our starting point. By acting with D on every term and using the

relations D|¢°* = 0 and D(£5)? = F2ie once more as well as DE5. = =ie 22 e obtain
=3

(E2)
+ind (DB g + B¢ g
— DC®(¢°)?g 4 2ieCg — 06<gi)2pg)

D?C5(€) = 16(ep) Re [— ep _“2 . (g” - _) (BEKEIQQ Ce(e2)? )

_ iDg((Bsg —Cg) +ip(Bh + C%))

- ig((DBfg + B*Dg — DC*g — C*Dy)

+ip(DB*h+ B*Dh + DCh + Cth))}
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By making use of the derivatives of j+ and h we find for DB and DC* the following relations
/
DB*® =2(ep) (|§5|2Re {iugi} + Re {gh})
€ i =2 : €\2~ gl -7
DC* = 2(ep) <M9 —ip(€d) Iz ~ 9h>

Inserting this into the above expression for D2L£¢(¢), simplifying the resulting expression and
sorting terms according to their number of derivatives gives

2 /
-y (g" - E""s) (B7l¢°I%g - C7(¢°)%)

2 (f’) () - o€

—

.. =16(cp)?*Re

/

9

€

2

=

2
[— (16 P) 1P + 2(65)2(¢° 219l - B%ﬂ

(1]

/
+Z [iu(2|gl2h|£f|2 + 25°hJ¢° 2 + 4lgPh(€)? + (B*h + C<h))
+2(2ga(€)? — %) + (B'g — C*g) — (Bg + cag)}
1 2\ 2 . 2 T _
T [ =2(Igl*)” — iulg] (3gh - gh)

+’u2(g2}}2_ |g\2|h’2 -s—g(BEg—i—CEg))H (A.19)

This concludes the proof. O

A.4 Light-Cone Expansions

LEMMA A.4.1 (LEADING-ORDER CONTRIBUTIONS OF THE COMPONENTS OF P*¢)

The leading-order singularities of g+(Z%) and E(E;) are given by

o c2ut 1 P75 1
J+(E5) = Fi — (A.20a) h(Z%) = — (A.20b)
o (2m)3 (E9)* (@2 (E5)?

respectively.

Proof. Making use of the power series expansion of the modified Bessel functions K, (z) for
n € Ny around z = 0 which is given byl?7> pp. 8.445, 8.446]

Ko(z) = ;(;) _mf W ( - f)k +(=1)"*'In (;)In(z)

k=0

1\ "Xk + D)+ o+ k+1) 2\
+(=1) 2<2) kZ:O K(n+ k) (2) (A.21a)

where the functions ¢ and I,, are defined in terms of the I'-function as
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I'(z) 2\'ss ()7
= d IL.(z)=| = —_—— A.21b
e =105 an () <2> ,;) KT(n+k+ 1) (A.21b)
As can be easily seen, the leading singularity of K,,(z) for n > 1 is given by
o 2n—1
Kn(z) = — (A.22)
z

Applying this result to the functions g+ (=% ) and E(Ei) as introduced in (A.5a) and (A.5b),
respectively, we thus find

e o 2wt 1 T S |
95 (25) = Fi¢ K and hzEs) 2 L (A.23)

O
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In this appendix we give the detailed calculations required in order to arrive at the expression
(3.22b) in Lemma 3.3.7 for the second variation of the eigenvalues of the regularized closed chain
which is, via the variation of the regularized causal Lagrangian as an intermediate step, one of the

central ingredients in the computation of the variation of the regularized causal action.

B.1 Trace Identities for Commutators of Dirac Matrices

We start by deriving trace identities for products of up to four commutators of Dirac matrices
which are needed to evaluate the second term in the general expression (3.23b) for the second

variation of the eigenvalues of the regularized closed chain.

B.1.1 Trace Identities involving two Dirac Matrices

PROPOSITION B.1.1 (TRACE IDENTITIES INVOLVING TO DIRAC MATRICES)

For two Dirac matrices we have the following two identities

Tr [y'y7] = 4" (B.1a) Tr [[v',+]] =0 (B.1b)

139
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Proof. To prove the first identity, we split the expression into two parts, exploit the cyclicity
of the trace and make use of {v*,77} = 2n"idca which thus results in

Tr [y''] =5 Tr [V ] +5 T[] = 5 T [{y' 27} = 07 Tr [ides ] = 4 (B.2)

For the second identity we make use of the relation [v*,+7/] = 2(y%4/ — n*idc) resulting from
iyl =3[y, + 2{v, 77} = L[v", 7] + n"idca. Along with the above result we find

Tr [[’yi,fyj” =2Tr [’yifyj — nijid@;] = 2{ Tr [’yi'yj] — 9 Tr [id@;}} & 2{477” — 417”} =0

This concludes the proof. O

B.1.2 Trace Identities involving four Dirac Matrices

In the case where there are four Dirac matrices, we have three trace identities corresponding to
the number of possible commutators.

PROPOSITION B.1.2 (TRACE IDENTITIES INVOLVING FOUR DIRAC MATRICES)

For four Dirac matrices we have the following three identities

Tr [y 779"y = (70" = nnlt - tp®) (B.3a)
Tr [v'97 [v*,4']] = 8( = n™ 0" + n'n’") (B.3b)
Tr [V, /717", 4] = 16( = 00" + nitni*) (B.3c)

Proof. To prove the first identity we make use of the relation ‘77 = 2n%idcs — 474* resulting

from {v%,77} = 2n¥idca. In this way we find
Tr [v'/ 7"+ = Tr [(207 — 477" )7*1]
=20 Tr [y*+'] = Tr [/ (20" — +*v)4']
= 27" Tr [y"'] — 2™ Tr [7'] + Tr [/ 7" (20" — 7'4")]
=207 Tr [y%4'] — 20 Tr [v/4'] + 20" Tr [479%] = Tr [v/4"91y']  (BA4)

By exploiting the cyclicity of the trace, the last term can be combined with the left-hand side
which thus, together with (B.1a), results in

T[4 7" ] = 0" T [y8] = Tr [379] 4 " Tr [779]
2‘4(7]1']‘771@1 _ ikt nilnjk) (B.5)

For the second identity we make use of the relation [y*,~!] = 2(7*4! — n¥lidc4) resulting from
Yyt = 31F, 41 + H{F, 41 = L[V, 41 + n*idca. Along with the above result we find

Tr [v'7' [y, 9] = 2T [v'2 (754" = n*)]
_ 2{ Tr [yindn*] — ol T [,yi,yj]}
(1)
& 2{4W— 't ) —W(l)}

=8(— ™t + ") (B.6)
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Finally, for the third identity we make repeated use of the relation [v,~/] = 2(y%47/ — n™idca)
resulting from 777 = 1[v%,47] + ${~+",77} = L[%,49] 4+ n¥idcs. Along with the results (B.1a)
and (B.5) we find

Tr [y, 710", 71 = 4T [(v'y7 = nides) (7" = n*ides)]
= 4{ T [y777*9"] = o T [357] = 0 T [4591] 4 7 T [ide ] }
oW V) @ (@)
L a4 ot ) — g g g

This concludes the proof. O

B.1.3 Trace Identities involving six Dirac Matrices

In the case where there are six Dirac matrices, the number of commutators no longer corresponds
to the number of possible trace identities: While for zero, one and three commutators we can
always arrange the commutators within the trace such that they appear at the last position, this
is not possible if there are to commutators: Either the commutators are adjacent to each other
(and thus can be commuted to the last position) or there is one Dirac matrix in between. All
other possible positions (i. e. two Dirac matrices in between the commutators) can be recovered
from those two standard cases by cyclic permutation and relabelling of the indices.

PROPOSITION B.1.3 (TRACE IDENTITIES INVOLVING SIX DIRAC MATRICES)

For six Dirac matrices we have the following four identities which are relevant for the evaluation
of the second term in (3.23b)

k l.m.n

Tr [y'97 9"y ] =
= 4{77” A L I L I R Ok K T T
+ 0t (™ = ) — gt (R — g )
+ 0" (Pt — ity 4 77’””?7“)} (B.7a)
Tr [v'9 [V, 2 Ty™, 2] =
= 16{77“( — " gty — (= 4 )
+ 0t (=P ) — g (R — i)
+ " (g — njln’“m)} (B.7b)
Tr [y /] ™M) =
= 16{77”( = nF " ) = (= )
+ 0t (= ) — (=
+ 0" (=t njmn“)} (B.7¢)
Tr [, 1% A ™) =
= 32{ —n'F (=t ) gt (= 7 )

i (njknln _ njlnkn) T (njknlm _ njlnkm)} (B.7d)
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Proof. To prove the first identity, we make repeated use of the relation 7*y7 = 2n7idcs — 777
resulting from {7%,77} = 2n¥idcs. In this way we find

Tr [y v*y ™y

= Tr [(2n"ides — 474V vy "]

k. l.m.n l.m.n

=27 Tr [y"y'y™ "] = Tr [ (20" ides — "'y "]
= 20" Tr [y*yy™ "] = 20" Tr [y y"] + Tr [/ 9" (2n"ides — 4"y y"]
= 20" Tr [y5 !53] = 20 Tr [y74!9™ "] + 20 T [/ "]
= Tr [y/7*9' (20" ™idcs —4™7")7"]
_ 2,]71_] Tr [,yk:,yl,ym,yn] _ 2nzk Tr ['YJ’YZ’YW’}’”} + 277il Tr [’YJ’Yk’Ym'Yn]
— 20" Tr [y7 7%~y ] + Tr [/ 4 4!y (20 ides — 7™y")]
— 20" Tr [y7 %49 ] + 20" Tr [477*4'9™] = Tr [v/ 4" 4™ y"']
By exploiting the cyclicity of the trace, the last term can be combined with the left-hand side
which thus, together with (B.3a), yields
Tr [viwjvk’ylvmvn] —
=17 Tr [y" 'y "] = 0™ T [y ™y ] o T [y ]
— "™ Tr [y %4y ] + 0™ Tr [y 7* ™)
@3 4,,72] (nklnmn o nkmnln + nknnlm) o 4nzk (n]lnmn o njm?,]ln + njnnlm)
+ 4T]Zl (n]knmn _ njmnkn + njnnkm) _ 4,r]zm (T]jk,r]ln _ njlnkn + njnnkl)
+ 4,r]zn (njknlm o njlnkm + T]jm’/]kl) (BS)
For the second identity we again make repeated use of the relation [*,~/] = 2(y*y/ — 77idc4)
resulting from 77 = 1[y*, 4] + 2{v%,47} = 3[v", 7] + n¥idcs. In this way we find
Tr [y 0¥ 4™ 2] =
= 4Tr [y'9/ (4%4' = n*ides) (79" — ™" ides )]
= 4{ T [yy99 51y ] = T [y ] o T [y T (] )
Ei:§:4{4nz] (nklnmn _ 7,]k:mnln + T]knnlm) _ 4,'71]6 (njlnmn _ njmnln + njn,r]lm)
+ 4nzl (n]knmn _ njmnkn + njnnk:m) _ 4,,71771 (njknln _ njlnk:n + njnnkl)
+ 47]”1 (njknlm _ ,,,]jlnkm + ,,,Ijmnkl) _ 4nmn (nijnkl _ niknjl + ,r]ilnjk)
. (1) . ) (), .
_ 4{47]” W_ nkmnln 4 nknnlm) _ 477116 W_ ngmnln + n]nnlm)
il ik (3) im, kn in, km im ik, in jil, kn in
+ Ayt (BT — ) — g (P — +M
_ _ _ _ (5) y 1 @ 6
™ (gt — gl gty gy (i ikt il
iy 6. 4. . (5)
— A (T Y g )
_ nim( jknln _ njlnkn) P (njknlm _ njlnkm)}

(4)

(6)
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For the third identity we once more make repeated use of the relation [y*,77] = 2(y*7? —n"idc4)
resulting from 77 = 1[y*, 4] + 2{v%,47} = 3[v", 7] + n¥idca. In this way we find
Tr [y v ] Y™ "] =
=ATr [y' (479" = *idea )y (77" = ™ "ide)|
_ 4{ Tr [VZ'YJ’Yk'Yl’YmVn} _ ,r]mn Tr ['Yl'YJ'Yk’Yl] _ njk Tr [71 l,ym,yn] + n]knmn Tr [,yz,yl]}
:::‘;4{4771] (nklnmn _ nkmnln + nknnlm) _ 4,'7ik (njlnmn _ njmnln + njnnlm)
+ 4771l (,r]jk,r]mn _ njmnkn + n]nnkm) _ 4,',]zm (njknln _ njl,r]kn + njnnkl)
+ 4771'” (njknlm _ njl,r]km + 77jmnkl) _ 4nmn (nijnkl _ niknjl + nilnjk)
_ 477jk (nilnmn _ nimnln + ninnlm) + 4njknmnnil}
. 1) ) . (2) )
_ 4{4771_7 W_ 77k'rnnln + nknnlm) _ 4,’71/6 W_ n]mnln + n]nnlm)
(4)
o 3) . . . . . .
+ 4771l Wf n]mnkn + njnnkm) . 4777,m (Mf 77jlnkn + n]nnkl)
) . (5) . . - N @ LG
+ 477277, (W_ njl,r,km + njmnkl) _ 477mn W_M+M
oo (6) . (4) 6) .
—4anW—W+W+W
—_ 16{7}”( o nk:mnln + nknnlm) o nzk( o njmnln + njnnlm) + nzl( o n]mnkn + n]nnkm)

_ nim( — gk 4 njnnkl) n nm( — pilpkm njmnkl)}

(6)

Finally, for the fourth identity we again make repeated use of the relation [y?,77] = 2(yiv/ —
n¥idca) resulting from 747 = L[, 73] + L{y%,47} = 1[7%,47] + n"idcs. In this way we find

Tr [V, 11", Y™, 47 =
=8Tr [(v'7? — n7ides)(v*7' = nidea) (Y™ — ™" ides )]
= 8{ Tr (Y'Y 9"y "] = 0™ Tr [v'47 %4 = 0™ ( Tr [Y'979™ "] = ™" Tr [y'+? ])
—n ( Tr [v*y' ™™ = ™" Tr [v*4'] = o T [y™y"] + n*'n™" Tr [idcs] ) }
= 8{4?7“ (M — pFmgln 4 gty — dn’® (gitymr — pimptt 4 gingtm)
+ At (P — R ) — A (7Rt — g 4 )
+ 4o (njk;nlm — b 4 njmnkl) — dyymn (nijnkl I nilnjk)
— M (4(77” 0" =g ™) — A )
_ i (4(nklnmn _gkmyin _w)]knnm) — dgrngFl gkl 4,’7klnmn>}
= 8{477” ("™ =™ 4 ™) — A (gl i ¢ ™)
+ 4n! W—(gzljmnk" + ") — g (gt — gtk 2 )
+ Ay (' — g 4 gy (it —(GW f;/lrff( (3))
= o (4t gy L gy
—n" (4(77’”77’”" — T I i —(Wi%ﬁnm"@))}

k
()
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— 8{ _ 477“6( _ njmnln + njnnlm) + 4771'1( _ njmnkn =+ njnnkm)
— 4y (njknln _ njlnkn) + 4pm (njknlm _ njlnkm)}

This concludes the proof. O

B.1.4 Trace Identities involving eight Dirac Matrices

In the case where there are eight Dirac matrices, there are again several possible combinations.

PROPOSITION B.1.4 (TRACE IDENTITIES INVOLVING EIGHT DIRAC MATRICES)

For eight Dirac matrices we have the following two identities which are relevant for the
evaluation of the second term in (3.23b)

Tr [y' 77y ™y Py ] =
=0 Tr [y ™y Py ] = ™ T [y Py ] 4 ™ T [y Ry My Py
=™ Tr [y7 Ry Py 1] 4 Tr [ My Py 1] = T [37 ]
+ 7' Tr [y 4"y ] (B.9a)
Tr [ Y1 A I ™ " P A1) =
_ 64{ _ ’I’}Zk{’l’}]l( _ ,r,mp,r]nq + nmqnnp) _ ,r]jm( _ ,qlp,qnq =+ nlqnnp)
+ 777”( o nlpnmq + nlqnmp) o njp (nlmnnq . nlnnmq)
4 ,r]jq (nlmnnp o nlnnmp)}
+ nil{njk( _ nmpnnq + nmqnnp) _ ,r]]m( _ nkpnnq + nkqnnp)
4 n]n( _ nkpnmq + nkqnmp) _ ,r]jp (nkmnnq _ nknnmq)
+ 77jq (nkmnnp _ nknnmp)}
o nzm{njk( o 77lp,)7nq + 77lq77np) o njl( . nkpnnq + 77kqnnp)
+ n]n( o nkpnlq + nkqnlp) o n]p( o nknnlq + nkqnln)
+ njq( o nknnlp + nkpnln)}
+ nlﬂ{njk‘( _ nlpnmq + nlqnmp) _ njl( _ nkpnmq + nkqnmp)
4 njm,( _ nkpnlq + nkqnlp) _ njp( _ 77km,nlq 4 nkqnlm)
+ an( _ nkmnlp + nkpnlm)}
o nzp{njk (nlmnnq o nlnnmq) . njl (nkmnnq . nknnmq)
+ n]m( o 77knnlq + nkqnln) o ngn( o nkmnlq + nkqnlm)
+ njq( _ nkmnln + nknnlm)}
+ niq{njk (nlmnnp _ nlnnmp) _ 77jl (nkmnnp _ nknnmp)
4 n]m( _ nknnlp + nkpnln) _ n]n( _ nkmnlp + nkpnlm)
+ njp( _ nkmnln + nknnlm) }} (B.9b)
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Proof. To prove the first identity, we make repeated use of the relation 7*y7 = 2n7idcs — 777
resulting from {y%,77} = 2n¥idcs. In this way we find

Tr [y v v ™y P 1] =
= Tr [(20" — vy yly ™y Py

l.m.n

= 2" Tr [y*4!9™ 7" Py1] = Tr [/ (20" — 79 )ty 4Py 1]
=20 Tr [Y"y'y™ 9" Py 7] = 20" Tr [/ 419" P77 + Tr [v/7* (20" — 49 )"y 1]
= 20" Tr [y*419™ 7" Py1] — 20" Tr [/ 44" Py1] + 20" Tr [y7 7 4™y vP4]
— Tr [77*4 (20" — 4™ )7 Py ]
= 20" Tr [y*4! ™" Py 1] = 20" Tr [/ 4!y ™" Py 1] + 20" Tr [y7 4 4™y 4P 4]

— 20" T [y79F gy P 9] + T [yl ™ (20" — 4"y )Py

= 20" Tr [y5 !9 yPy ] = 20 Tr [y 4 ™y Py 7] + 20 T [/ ™ P
k. 1. m k l.m. n

= 20" Tr [y "y Py ] 4 20 T [ oMy Py ] = T [y Iy (20 — Py )]

= 20" Tr [* '™ Py] = 20 Tr [y 4!y "y P 57] + 20 T [/ 4P 1]
— 2" Tr [y Py y Py 9] + 207" Tr [V v 4y ™ 4Pye] — 20 Tr [y7 7Pty ™y )

k l.m. n

+ Tr [V 7* 4ty P (20' — yiq7)]

= 20" Tr [yP4ly™ " yPyT] — 20" Tr [49 4 ™y 9Py 1] + 20 Tr [y 4Ry ™y P 4]
kE_l.m k. l.m._n

= 20" T [y 4Py ] 20 T [y Py ] = 20 T [37 9y

k l.m.n

+ 204 Tr [y7F 4y P ] — T [/ 51y Py

By exploiting the cyclicity of the trace, the last term can be combined with the left-hand side
which thus, together with (B.7a), yields

Tr [y v v ™y P =
=g T [y P ] =t T [y 79y Py ] g T [y Ry Py ]
— ™ Tr [y y* 4y P4] + 0™ Tr [y7 7P y™aPy?] — ™ Tr [y7yFqlymaymat]
+ " Tr [y79*y!™y P (B.10)

For the second identity we again make repeated use of the relation [*,77] = 2(y*y/ — nidc4)
resulting from 77 = 1[*, 4] + 1{v*,47} = 3[v", 7] + n¥idcs. In this way we find

Tr [v', 1" A ™ P 2] =
=16Tr [('Yi'?’j _ nij)(v’“wl _ nkl)(,ym,yn — ) (4P — npq)]
= 16T [(Y'7//7" " =097 = oy ) (3 Py — iy
— M yPyl £ nmnnpq)]
= 16{ Tr ['y A F Al ymA APy ] nP4 Tr [’7 ~ ’yk’yl’ym’y"]
— " Tr [y P 4+ P T [y
(T [y = T [ = o T [Py
+ ™ P T [y D

k l.m_ n

— nij(ﬂ [V ™y P y1] — P9 T [/ 4Py ™9™ — ™ Tr [y 9P44]
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+ 5P Tr [WW])

T (T [37 ] = T (37 ] =™ T [yP5] P T [ides] ) }
M
= 16{W— 7 Te [V 9y Py 4 T [y ™y ]
=" Tr [y Y Py 1] ™ T [y Py T] = P T [y 9y
0 Tr [y’ Vk’VleV"V ] = 0P T [y 7y
— " Tr [y P+ P T [y
" ( Tr [y' 979"y Py 7] = nP? Tr [y' 979" ] = 0™ Tr [y'979Py1]
+ P T [y D

(1)
k. l.m n]

— 1 (Tr [l APy T] = P Te [y ™y "] — ™ T [y Py 1]

+ P T [y ])
<2>
I (T [y = T [y - W T

16{ = 0" T [y7 'y Py ] ot T [y Py ] = T T [y Py
+ 0" Tr [y 'y P ] = Tr [ V’lemv”v ] + 7" Tr [v77*y ™y yP]
— P Tr [yl vkvlvmvn] — ™ Tr [V Ry Py ] — M T [y P ]
+ 0P T [y A A P T [y ] 4 e T [y Py
+ 0P T [V "] 4 0™ T [V P + M T [y P
— P Ty [y ] — P T (R — MRt Tr [7’”7”]}

f',%ﬁlb’{ — ' Tr [V 4 ™y Py + 0 Tr [y 7 TPy 1] — ™™ Tr [y vy P 1]
+ 0" Tr [f7 Ay P ] — g Tr [y A ™y ) 4 p T [y y Ry My P
— " T [y 'y’“vlvmv”] — ™" T [y Py 1] = T [y 7y P ]
4 4nmn77pq W_ niknjl 4 7’]il’l7jk) + 477kl,r]pq (nijnmn _ nzmnjn + nznnjm)
@)
+ 4,'7kl mn(M{_ nipnjq + niqnjp> + 4,'7ij77pq (nklnmn nkmnln + nknnlm)
3)

+ dn g W Pyt 4 nkap') 4 477” ; (77 P "" + nm“n””

)

= 16{ {4773[(17/77”' nm”n"" + ™) — dg (ﬂl/ﬁp/ nl’”n”q +n'in"P)
g (T g iy — 4y (g gy g glapery
+ 4’ (" — P T }
+ n”{4nj P (Pt a4 ™) — A (T — o R
b g (T oy gy _ gygie gy fnyma b
+ 4 (" — P 4 gt }
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(11)
. A (12
n“"{477j F (ﬂ’}ﬁ”{ — Py gl iy"P) — Ayt (BT n%”n”q + n*in™?)
(13)

+ dpn W P e — gy (gl n%n 14 4 pkayin)
+ 477qu n%n lp + nkpnln)}
. . (16 .
+ 772”{477”“ (2T 77%”77’”‘1 + i) — 477”(%"%7?‘{'— " ”nmq + nkan™?)
(18)
+ dap™ M — 0Pyt pFayP) — dgP (T g U '+ ntinm)
+ a4 (- U%WLlp4inkpnhn)}
_ nip{477j (nlmnnq _ nlnnmq _,'_M 4n]l( km nq _ nknnmq _’_W(?Q)
(2
+477]m (W n}cn lg +nkqnln) 4n]nW )km lq +nkqnlm)
+ 49 W_ n mnln + nlmnlm)}
) ) (27)
+ nlq{477jk( lm np nlnnmp +W 4,qjl( km np nknnmp _i_ﬂk/pnmﬂ’j
. ) (29
+ 4,,7jm (W_ n}cnnlp + nkpnln) o 477]71W n;cmnlp + nkpnlm)

(:
—|—4773P( kl n;cmnln + nknnlm)}
(31)

; ) ()
- n”q{4n”M T T
(11) (12) (13)

b e ) g (bt T

+4nm<w(w(%ﬁ}”)
i ooy M (2;)/7@” f;%f) .

(38)

) (14) (15)
_ nkl {477” (nmnnpq _mp T nmqnnp) 477”” W W W
(40). (19) (2 0) (25)

A (T T S P (T <5§>/"W (W .

+ 477”@/77“7" W‘FW

(34) (35)

+ 4™ ( ﬂ/ﬁﬂ' b + gy (g gy -

@6) (1)
+4nkl mn(_ ip G +Mv+4’l]w"7pqw
32 (38)
e /a/w/ )

— 64{ _ nik{njl( _ nmpnnq + nmqnnp) ’I’} nlp,r]nq + nlqnnp
" (=P ') — (nl’"n”q n'"n™)

(40)



148 B.2. Derivation of (3.22b) in Lemma 3.3.7

+ I (fmy? — nl”n"””)}
+n {nj M=y 4 g — ™ (= Py 4 )
" (=P ) — P ()
P (o — ) |
- nim{nj’“( — Py i) — It (= Py 4 gy
" (=P ') — P (=gt ')
(= " 4 ) |
+ nm{nj’“( — Py 4ty ™P) — It (= g Py 4 Ry
™ (=P ) — P (= )
(= e gty |
— P {nj Ftm = gty — ot (g — gy ™)
+ 7 (=t ) — (= gt 4 eyt
e e TS 77’“”77“”)}
+ ni"{nj Bt =gty ) — ot (g — pkrye)
+ 7" (=P Pyt — (= P Pyt

+ n]p( o nkmnln + nknnlm) }}

This concludes the proof. O

B.2 Derivation of (3.22b) in Lemma 3.3.7

Having derived all the trace identities for commutators of Dirac matrices which are necessary
to evaluate the second term in (3.23b), we are now ready to complete the proof of (3.22b) in
Lemma 3.3.7.

CONTINUATION OF LEMMA 3.3.7 (DERIVATION OF (3.22b))

The second variation of the eigenvalues of the regularized closed chain evaluates to

62}‘3:(9(7]/) =
= Re [2(77;'5%5) + 2576%5° + (61 60%) + 55655?]
1 — . __
+ —— Re |2B°(vid%f) — 20° (vi6%5) + 2(Bs® + C°5°)6%s°
e Re [2B°(10%) — 207 (u10%5) + 2 )

+2(s%(vL00]) + 5% (v20vf) ) 65
— (v2605) (VZ6VF) + (vL60F) (v2605) — O (Soldug) + B (0 5?72)}

1 —
T Doy Re [(CE)Q(vf&wi)2 — 2B°C° (vEdup) (vEdvg) — 2B°CF (vkdvf ) (v ovg)
+ (B)(vEdup) (vEdvy) + C°C= (vEdug)? + (B%)? (vEduf) (vE ouf)

— 20 (B7s® + C°s7) (vF g )6s° + 2C° (B s° + C=s7) (vEdvg ) 6s°
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+2B°(B5F + C°5°) (v} o05)0s° — 2B° (B5F + C°5%) (v ovg) 657
+C°(J(0°)*)? = ([v°1*)%) (05°)* + B (|(v)?)* — (Jv°[?)?) 85° SE} (B.11)

where B¢ and C¢ as well as the discriminant D¢ are the functions introduced in Definition 3.3.3.

Proof. Following the approach by Kato[7 €h- 2§ 2]

given by

, the second variation of the eigenvalues is

(B.12)

P () = 3 T | Py + o S I

)‘fl:(x>y) - )‘fp(xﬂ)
where the prefactor % accounts for the twofold degeneracy of the unperturbed eigenvalues

A% (x,y). Suppressing arguments and making use of (3.16) which allows to turn the difference
of the eigenvalues into A\ (x,y) — A% (x,y) = £2vD#, the above formula simplifies to

1 [ FoOATFIA°

To keep the calculations as clear and structured as possible, we first evaluate the term
containing §?4° (which parallels the discussion in Item 1 in the proof of Lemma 3.3.7) and
subsequently turn to the second term which involves dA° twice. To evaluate the latter term,
we subdivide the expressions in manageable parts which can be simplified using the results
from Proposition B.1.1 and B.1.4.

(1) Evaluation of the first term in (B.13) (= one occurrence of §%4°)
Tr [F56%4°] =
= Tr |(F% jides + FL 7' + FL ;17" 77]) (8%A5ides + 08%54" + 8245 [0*))]
= Fi (0%A; Tr [ides] + FE (6°A7, Tr [V, 7] + F ;6°A5, Tr ['4"]
+ F5 3y 0°AS T ([, 47]] + FE 3;0°A5, T [y 7], 2]
= AR 0PAT + A FE 0P + 16 (= 4 't FE 6%,
Inserting the components of F5 from (3.18) as well as of §%4° from (3.21) we find

.. Z 2Re (2(vi6%f) + 2556%° + (WL0vS) + 657857 )

(321)

Re(”Z 5°) =52 =52
) 9Re (556 vy + v50°s° + Juy ds®
2Rl )

i4i}/%( n 4 'tk - (6vkvl+v,§6 F + 0vgov)

= 2Re (2(vid%§) + 2550%° + (WL0UT) + 657057 )
+ -2 Re ()2 0i0%5) + 2507 + 5 (o) o5
VDs 277 52 22 e 52 s e\
+ s (vidW5) + (vF)7s°67s% + s%(vidvs)ds 5)
2 L Gis2 NN (is eN( I SE 2 e
+ 7 (— (R0 @) = () 0285) — (0° P 020%0)
+ 72 (v6%F) + (vz0vF) (v2dv5) + [v° [ (vl 52@7))

Collecting terms and forming real parts yields

. =2Re [2@5%5) + 2576%5° + (Bi00F) + 065
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Re [2((5%)2 — (5)%)(016%5) + 2(15°[2 + o) (026%5) + 2( B + C°5°) 6%

DE _— . . — PR
+2(s%(vidvy) + 57 (v2dv)) dsT — (vIdvf) (v2v5) + (vidvg )(vi&vf)}

Expressing everything in terms of B = [v¥]? + [s¥|? and C° = (vF)? — (5%)? finally results in

Tr [FE0°A%] =
=2Re [2 (Vi6%5) + 2550%5° + (ovlovT) + 0s° sf}
+ \/% Re [ZBE( 16%5) — 2C° (vL6%05) + 2(B°s® + C°5°)6°%s°

+2(s(vidv;) + 57 (viovf) ) 05% — (vidvs) (vlovF) + (vLvY) (;55037)} (B.14)

(2) Evaluation of the second term in (B.13) (= two occurrences of JA®)

In order to evaluate the second term in (B.13), we first simplify the expression structure-wise
by inserting the decompositions of the spectral projectors and the variation of the regularized
closed chain from Lemma 3.3.5 and Lemma 3.3.6. Only afterwards, in a second step, we insert
the explicit expressions for the components of the variation of the regularized closed chain.

(a) Inserting the Decomposition of F§
Inserting the decompositions of the spectral projector F§ as given in Lemma 3.3.5, the second
term in (B.13) becomes

Tr [ FS 6A° F2 6A° | =
vvvv
ij kKl mn pg

= Tr [(FE dides + FL 7' + FL 510", 7)) 0A% (P sides + F2 0™ + F5 [y, 7)) 04%)

= F§ JF5  Tr [0A°6A°] + FL F3,, Tr [6A°y™6A7]
+ F§ JF2 0 Tr [BA°[y™, ]0A7]

F,mn

+FL L FE T [Y0A%0A] + F5 F2, Tr [yi0AT™0A7]
+ F:t zFfE mn Tr [716146 h/m’ ’Yn]éAE]

+ FL P Tr [['yi, yj]5AE5AE] + Py s, Tr [[’yi, ’yj}éAsfym(SAE]
+ FL 5 FS o T [ 27104y, "0A7]
Ve, 5% + Vg s°

4/ D¢

Tr [545y™54%) F 2mYn Ty [5A% [y, 47]5A°]

l“*’l € €
= 1 Tr [o4%0A%] 5 o

V5 sE + U s° (V5% 4 05 s°) (V5,55 + V5, 5°)

Tr ['yiéAgéAE} — Tr [’yidAE'ym(SAE]

4V/De 4D=
(,USST—FES )/Umvi i SAE[AM AT €
- L Tr[ 0A® [y ,’y]&A]
vivs , vEvE (vS, € + UE, %) o

J J esAE] _ J i J E M SAE

i8rTr[[ 17]6A%6A°] L Tr [[7*,~7]6A% ™ 6A°]

VR gy Ay, 0]

16D¢ ’ ’
(055 + 55°) (5,5 + UEy5°)

1 ESAE TSANEAM SAE
:ZTr[SAéA]f Tr['ycSA’y 5A]

4D¢
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(vEs® 4 vEs®)vE,v8 i Aer M mlsAE V5 VSV, U i J1SAE[Am ] AE
_ o Tr [/ 0A%[y™, 7 "0A%] = —Es= T [ 7714 [y, 4047

(b) Inserting the Decomposition of 645

To further simplify this expression, we insert the decomposition of dA° as given in Lemma 3.3.6
which results in

1
=1 {5A§5A§ Trlidea] + 6AZ0A;, Tr (", 7] + A}, 0A; Tr ['ykvp]
+ OAR A Tr [ 4] + 645045, T [ A1)

(05 40787 (055" + 05s7)
4D
x {BAZBAS T [y/9™] + BAZ8AG, Tr [7'"™[y¥, 7] + SAZSAG Tr [1/79™ 7]

+ GAG0AS Tr [y [vF, 41 y™] + 645,845, Tr [v V", '™ [v", v4] }

EE 7€ GEYE e
_ (Ui s+ Vi s )Umvn X
4De

X{&ﬁ&§1¥hﬂﬁﬂvﬂvﬂ4%&ﬁdﬁikﬂfvﬁﬁﬁvﬂ]

VSUSUL UG [ P o o
~ epe AT T [, 1) + 64564, T [ 270, 7 T 7]

o+ ATOAL T [[7, 719 17, 7]+ BATOAS T [ 771, 4 1 2]
o+ 45045, Tr [y, 710, 1™ 70 2] }

1
-3 {5A§5A§ Trfides] + 2045642, Tr [[77, 7]
+ 6AG AL Tr [F 7] + 0A5,045, Tr [[v*,+'][v*, 7] }
_ (0F5° 4 0fs) (05" + 0557)
4Ds
X {6A§6A§ Tr [v'y™] + 20A56A;,, Tr (Y™ v, 4]

o+ BAROAL T [y'" ™9 7] + 045,045, Tr [ [y¥, ' 1y 2] |

EGE E €\ E 7€
o (Uis + vi S )Umvn
4De

{25142514%77““ Tr [Y™,7"]] + 845045, Tr [v' " [v™, "1V, 7]
+ 845045 Tr [ 1R, A1, ] |

% {642845 T [[of, 27 ) 7™ A7) + 204545, T [0, 47 )4, 7", 7]
+ 0ALSAL Tr [ Y/ IV ™ v 1]
+ A5, 045, Tr [+, /10" A 1™ "1 1P ) } (B.15)
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In order not to loose track, we split the expression and evaluate the four terms separately.
(i) First Term in (B.15)

0

(1) = i{éAgéAg Trfides] + 2645645, Tr [527]

o+ ASBAS Tr [47] +645,845, Tr [, ')lr7. 1] }

(B.1a) (B.3c)
= BAZSAS + SALOAIN™ + 40A5 6A5, (— 1Pt + nMin'P) (B.16a)

(ii) Second Term in (B.15)

(0F5° + ) (057 + 55°)

(2)=- 1D
X {5,4:5,4: Tr [yiy™] 42642845, Tr [y'y™ (77, 77]]
—— [ —
(B.1a) (B.3b)
+ GALOAS Tr [y'7*y™4P] +043,645, Tr [v' 7", 7' 1" [vP, 7] }
—_——
(B.3a) (B.7¢)
T ) T )
- 4D¢

0
. . _ () =D
x {45,4:5,4377"” + 16045645, (— 0Py =TT P + ASAGSAS (g™ P 4 iy
@ ®)

+ 16045045, ™" M - nil(—y’“’@m -@

+ 0" (=00t ntinP) — ni”M 3)

+ nzq( o nkm lp 7 pnlm):| }

1 _ _
— - - { AT P + 2 4 )
+ OA70A5 20085 + )T + 2T57) — ()25 + 2ot 25 P + (57)2(5) 2
4645045, [2(0E5F + 0Fs%) (—y P (I 0TS + 0/ (005 + oLs7)) »
~ 2(uL 4 L5%) (P OFE +E57) )
(PP 4 2P+ @)= 74 )] |
1 1> 1> g o€ g g e £
— e {2 + 2Pl + (TP
+ A5 0A5 20085 4 2T + 2Ts7) — (0925 + 2t P52 + (59)2(5) )]
+ 404,645, [2@5? + vF %) (0P5F + 0257l + 2(vlsF 4 vls®) (vTsE + vds®)nkP
— AT ) (o s
PP+ 2P+ @R = 074 )] |
(B.16b)
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(iii) Third Term in (B.15)

(055 + V)05,

(8)=- 4De
x { 20426450 T [l 7] + 645845, Tr [y'4* 1™, 177", 77]]
~ (B.Tb)
+ BALOA T [ 10" ] )
(B.7b)

EGE L mE o€ \)€ 7E
:_(vis + s )vmvnx
4Ds

()
: : (2) 3)
x {165Ai5A;q [nzk( — " PP ) — (= R T 4 T

6) .

) (4) (6) (7
b (g g o e ey
) (®) 9)
ey ]
()

. =) =)
+ 16647045 1" M — 1P (= g

_ =(3) =¢) o O O
P (=g = (g )
+ npn( ik _::(leﬂ}gmj }9)
1 . — — — . _ _
= —Ds{SéAiéA;q [(vfse + v§55)( — Pl + ugvé’) — (B‘EsE + C’ESE) ( — Pyl + nkqvé’)
+ (BT + C%s%) (= 0*Pod + " 1ok)
— (025 + Z5°) (0Fof — VFut) + (0F5F + o) (v — oFe?)]
(B.16¢)
(iv) Fourth Term in (B.15)

€0 En\E ME
v; Uj’UmUn

16De
x {6A:6A: Te [l 29l A"]] 42042645, T [ 4710 ™ 4" P2

(4) =

(B.3¢) (B.7d)
+ SAGSAS T [V, AV IV V™, 4P| +6A5,845, Tr [, Y11V, A ™ ™ 1P, 7] }
(B.7¢c) (B.9Db)

E01EnE ME
B v; Uj V5 Uny

16Ds=
X {165A§5A§( — Mg 4 nmnjm)

+ 645A:6A;q [ — n“”( _ njpn”q + njqnnp) + ,r]in( _ njpnmq + njqnmp)

_ nip (njmnnq _ 77jnnmq) + niq (njmnnp _ njnnmp)}
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+ 165142(514; [ _ nik (njmnnp _ njnnmp) + nim (njknnp _ njnnkp =+ njpnkn)
o nzn (njk:nmp . njmnk:p + njpnk:m) + 77ip( . n]mnkn + njnnkm):|
+ 160A7,045,, [ — 4™ (nﬂ( — P ™) — i (P gty
+ n]n( o nlpnmq + nlqnmp) _ njp (nlmnnq _ nlnnmq)
T njq (nlmnnp _ ,',]lnnmp))
+ 477il (njk:( o nmpnnq + nmqnnp) o njm( _ nkpnnq + nkqnnp)
+ njn( . nkrpnmq + nkqnmp) o njp (nkmnnq o nknnmq)
+ n]q (nkmnnp o nknnmp))
_ 4nzm ('f]jk( _ nlpnnq + nlqnnp) _ 'f]jl( _ ,r]kpnnq + ,r}kq,r]np)
+ n]n( _ nkpnlq + nkqnlp) _ njp( _ nknnlq + nkqnln)
+ njq( _ nknnlp 4 nkpnln)>
+ 477171 (njk:( _ nlpnmq + nlqnmp) o 77jl( o nkpnmq + nkqnmp)
+ ngm( . 77k:pnlq + nkqnlp) o njp( o nkmnlq + 77}’<:q77l1ﬂ)
+ n]q( o 77kﬂ%nlp + 77k:pnl’m))
_ 477117 (njk (nlmnnq _ nlnnmq) _ njl (nkmnnq _ nknnmq)
+ n]m( _ nknnlq + nkqnln) _ n]n( _ ,r}kmnlq + nkqnlm)
4 njq( _ nkm,r}ln + nknnlm))
+ 4,'7iq (n]k (nlmnnp _ nlnnmp) _ njl (nkmnnp _ nkn,’,}mp)
+ njm( _ nkmnlp + nkp,r]ln) o n]n( o nkmnlp + nkrpnlm)
4 njp( _ nkmnln + nknnlm))}
1

= 98{5/155/15( = () (@) + (v *)?)

+ 40A30A3, [ — (v%)?(— vPvd + vdol) + [o°|? (- vPyd +?§v§)

— o2 (Jof[*of — (5)202) + v (jo|F — (0%)%02) |

+ 845045 | — oF (v° 20 — (5)202) + (v°)? (vEOE — (%) + Bk
— [0 |2 (0F 2 — [0 [P0 4+ 0Bok) + o2 (= [of [2F + (0%)%h)]
o+ A5 0A5 | — 408 (VL — vl 4 020E) — o 2( = "ol + 9/ E)

4T (— 1702+ 1u2) — V(oL — 7o) + 2010 — o2

+ vl (VF (= o2oZ 4+ ofoB) — |of 2 = 07l + )
+ ()7 (= *Pod 4" 90?) —oF (vfud — vFol)
+ o (o807 — oFur) )
— (02 (VF (= 0ol 4 /) — oL (= ol + 02
+ ()2 (= 0P’ ot n'?) — of (= oFn't + L)
+ 2 (= Fy” 4 ) )
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+ 410" (0B (= 70 + o9u2) — 2T( = n0g + ' ?)
0 (= ) < (= ok )
+Z (= ok ) )
— 4oP (vig(vivig — ulv?) — o (vFoT — uFvg) + [0 2 (= vyt + nkaul)
= (T (=l ed) + (= ot o)
+ 4v"( (vlvf — ol Up) ol (vk@ _ ﬁvp) 2 ( - U nkpvz)
- (- b o) 4 (= ot ) )]

_ —;{mm( — ()2 (@) + (1o°)?)
&)

A (DT — (v)202) + (v°)? (20Fe — (*)217’@)

o ) )]

(5) (6)

@)
+ 0AGoAy, | — avk (40l (- VT + o 3TT) — 2R~ T +M
+ 2(v%)? M+ nlqvp )
=(2)

+4v (4vk(fqu+qu€ — 2|v°? p)v7:+gﬂ
+2(v%)*(— Pl +M)
— (o) (205 (= ol + /E) - 277@( — 7ol + M)
+ (175)2( — Py 4 7))
@ =06

+ 4v°| ( g/@ﬁ{JrM 2vl kvngg%S
+ 072 (— 0P+ nkqn”’)} }
1 _
— g { oAz (- @ + (0P2)
 BARIAS [ — 208 (207208 — ()%0) + (v9)? (20FE — (5)%07) + (1o 2)
+ 047,045, | = 4k (4oL (= vE0T + 2080F) — ApfP( = n'Pod + /eE)
+ 2(07)2( — 2Pyl + nlqvg))
+ 4ol (4vkqu5 4 (- nkPud 4 nF ) — 2(?)277’%;1)
— (o) (205 (= 0T 4 /) — 20 (= ol T
+ (U2 (— Pt 4 )
Ao ) (=00’ + n’“qnl”)} }

- —Dﬂ{aA:aA:( — (@) + (0 )?)
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+ 0AL 045 [ — 40 Pofol 4+ 2((vF) %0kl + (v9)*F?) + ((J0° ) - (UE)Q(F)Q)T]]W}
4 8(;)2(1116( lpUq lqvp) ( k lp lnkp>,ug>
+8(2|’UE|2 k_ 5)( lpv +77qu )
—8(2|’UE|2 I )( kpv _|_77qu )

V)%
+4(<|v€|> — PP~ 4] |
(B.16d)

+ GAG 043, [16(1;5@(@5?3 —oPu?) + (vFv! — uf?g)igvg)

Adding up all four contributions yields

Tr (F56A° F20A°) =

@) (1.1) (2.1) (3.1)
= {aazoaeet hiaag™™s doszng, T ol 4 ofont) |

1 12), _
- g {2 4 201t + )
2.2) — J— — J— .
+ BAFSATAONTE + Fs") (257 + %) — ((0°)2(5°)° + 200 PIs°P2 + (79)2(5°)2) '
(3.2) R I I
+ A A B0 4 0B 2 B4 2(0L T + 0T O 4 )
— 4(vFs® + vEs) (v85® + 025%)n'"
(0P + 2 IS+ G2 (ot + o)

! {S/M\Qéﬁﬁéé}“sa+1ﬂ“ss)( vpv +qu) (BeseJrCEsE)(f kpyd 4 kqﬁ)
Dg € € 3 e n e T 1) "Ve

+ (B + C°5%) (= 0o + 5 0f) — (0857 + 027 (vEod — vFo?)

(05 + 0857 (o4 - o) |

(1.3 _
- - {assaet 0@ + (o
2. _
+ 085548 o P + 2020 + (0F20RE) + ()2 = (0°)2(@)2) '
(33), S
—l—%él(vevé (vﬁ.’vg — vag) + (v?ve — vl vé)va?)
+2(v%)? ( E(n'Pv? — ' P + (i — o) )
+ 2(2|v5|2 ? o ,Us)2,U§)( lp,Uq 4 nlq,vp)
= 2(2)v" Pol — (v%)%0L) (= 0ol + 7 E)
(PP = @) (=t o) |
Sorting and combining terms results in

SO
o= 5A§5A§{f— 3= (V)57 + 2|7 + (v%)*(s7)%) = (v)* (%) + (|v°]*)?) }

cancels (1)
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®) 1 k== Tk —z D 2/77\2 2 2
+ 5A25A§{9W— o [2(% ST + 0Fs%) (VPSE + vBs%) — 2((05)2(55)2 + 2| 2|57

+ (09)2(s) )P — o Pl ol + 2( (%) kol + (v°)0keE)

+ (10717 = (%) (%)% + ((09)* (%) + 200 P[5 + (v9)%(5%)?)) 77’“”} }

cancels (2)

=7
3)
+ 40A},045, ( — nFPple 4T qnlp)
~ e 20085 U (25 0B+ 20l L)l + 0T )
— 4(vFs® 4 vE ) (0757 + vds )P

+ 4(1}51}?(1}51}3 — vPvd) + (vkol — vai)@v?)
+ 202 (0f (002 = 5 02) + (obn'” — oln7)ot )
+2(2f Pl — ()F) (0 +/07)
~ 2(a] Pl — (090 (- T + )
+ (V) = () (0%)% + ((v°)?(55) + 2[o" P[5 + (v¥)2(s%)?)) (= n*P'* + 77’“177[”)} }

cancels (3)

—7

(4.1)

8 —
— DEdAiéqu{(vfss +
(B + C%%) (= 0 Pol +0*0f) — (uF5° + ok

+ (0 + BT~ o) |
2 . — . — _ _
— gty { 57 U 0+ 50— (0 + 2Pl P+ ()

A ()R — o) + ((0F)7F k)}

k<p

3 o - -
— EdAiléA;q (vFs® + vFs®) ((vF'sF + vEs®)n' — (vsF + vds)n'P)
(0557 + L) = (U5 4 o)) (v + oZs°)

+ 2oL (o2 — But) + (0ol — o)t )

(k1)< (pq)
+ (V)2 (0F (nPod —0'10l) + (vEn' — vln*?)ul)
+ (0°Pof = (%)?0F) (' 70E — /7o)
= (*ee = (v)%05) (n" 02 — ')
AP () o Pt |

(k1)< (pq)

—~ %M@qu [2@5?6 + vFs®) (vEv? — vPod) — (BSs® + C%s%) (™10l — n**od)
+ (BTsF 4 C°5%) (nfa? — n’%g)} } (B.17)



158 B.2. Derivation of (3.22b) in Lemma 3.3.7

In order to break this expression down into terms containing v, s® as well as the variations dvf
and Js°, we rewrite the individual terms inside the curly brackets as real and imaginary parts.
To this end, we interchange pairs of indices (kl) <> (pq) in terms containing §A7,;0A5, as well
as indices k <> p in terms 0A70A5 and thus obtain

Tr (FiéAEFiéAE) =
2 _ _ _ _
= —®€6A25A;{4Re [vfss] Re [v?sf] — ((1}5)2(55)2 + 2|v‘€|2|s‘€|2 + (115)2(35)2)77"’”

+2Re [vf((ﬁ)%g - |v°"|2E)} }

- DgeéAiléA;q{él Re [0F5°] ( Re [vFs¥] 0" — Re [vZsF] nlp)
+4( Re [o5]0" — Re [v55] ") Re [0057] — 8Tm [vFol] Tm [020]

+ (09)*0F (nPo? — g'tP) + (vF)2 (vEn'P — vlnkP)ud
1>

+ (0" ol — (°)20F) (/T — 7o)
— (Pl = (o°) %) (0 — 7o)

+ |v5|2vf (nlqE _ nlp;g) _ |Ue|2 (anE _ Upkvé)vg}

_ 8

D 6A25A;q{ — 8iRe [vFs€] Im [vé’v?] + 2iIm [(3557 + C°5%) (nF P — nkpvg)} }

— — pe g { e [o557) Re o] — (PG + 207 2o+ (2067
+2Re {v;“((F)%g - |v€|21)§)}}
s 0AS,6A° L 4Re [vFsE Pge]pla 4gE] ptP
~ e 04,045, e[ves](Re[vgs}n — Re [vIsF]n )
(kD) (pq)
+ 4<Re [0Ls%]n™ — Re [vEsF] nlp) Re [v7s7] — 8Im [vaz] Im [v?@]
0k (18 = @) = (0|0 — (@)%
(1.1) (2.1)
+ (— (|v5|2vTc = vf)nlp + (|v5|2v7— o vé)nk”)vg
L - (1.2)
+ (|vE 2k — (v€)2v§)( ntav?  —pt vs)
:kl)H(PCIL 2.2)
(et - P |
——
(k) (pq)
- ;géAiéA;q{ — 8iRe [vF's€] Im [v‘fvig] + 2iIm [(3557+ Cs%) (™ P — n’“%g)} }
= —;géAiéA;{él Re [vF57] Re [0FsF] — ((v9)?(s%)2 + 2[v° [?[s°|? + (vF)%(s%))n*?

+2Re [vf((ﬁ)%g - m@)} }
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- %Mil(m;q {4Re [025] (Re [o5] 0" = Re [o!5%]
+4( Re [o5]0"" — Re [v55] ") Re [0457] — 8Tm [vFol] Tm [020]
o8 (10707 — (0%)20) ' — (0" o — (5%)02) ')
— 2Re [ (jo°[20F — (5%)208)n" o2 | + 2Re [ (ju |l — (%)L 7o |

# (0P = ) REITE — (oot - (02} P'eE

e [ols

- ZDSE(SAiéA;q{ — 8iRe [vFs¢] Im [vgvi,?] + 2iIm [(BE?—F C°s%) (™ P — nkpvg)} }
—9265A25A5{4Re [ 57| Re [vPs®] — (v5)2(5%)% + 2% J?[s°|* + (09)%(s5)?)nkP

+ 2Re [vf((ﬁ)%g — |U5|205)}}

- ;5514%514;(1{4(1{@ [Uf?] n' — Re [vé?&} nkq) Re [0?57]
— 4(Re [45]n'" = Re [015]1/" ) Re [v55°]
—8Im [USUZ} Im [v Tﬂ +2Re [vf(hﬂzg B (F)%g)nlq}

— 2Re [vf (|o°%0f — (v%)%0)"] —2Re [(|o°[20F — (o708 "ot

(kD) (pq) —
+2Re {(|v‘5|2vfS — (UE)QUé)nk”vg} }

= seéAiéA;q{ — SiRe [05] Tm [o£0] + 20T [(B°5 + C°5°) (02 — 570t | }
To proceed, we group terms according to the type of s in the second term which yields
Tr (F56A°F26A°) =
= 238514}?5/12{436 [0Fs¥] Re [0Fs%] — ((v)(5%)% + 2[v°[?[s7|* + () (s%)*)n*”
+2Rehﬂwa%5—Wﬂ%ﬁ]}
SEMZZ(M;(I{M‘? (4 Re [v¥5%] Re [0P57] + 2 Re [vf (|0 |oF — (F)Qvf)})
gk (4 Re [v/5%] Re [0?5%] + 2Re [vg(|v6|217g - (F)%g)})
— " (4Re [055] Re [of57] + 2 Re [ (ju|0F — (v)20F) ot )
+ 1 (4Re [0!5%] Re [0457] + 2Re | (jo°[*0L — (v%)20l ot ])

-t [o£77] i [27]}

;5‘425‘412@({ — 8iRe [vFsF] Im [v?@] +2ilm [(B‘EsiE + C°5%) (n*9? — nkpvg)} }
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Rewriting products of real parts by using the relation Re(z) Re(y) = 3 Re (z(y +9)) as well as
the definitions B® = [v¥]2 + |s%|? and C° = (vF)? — (5%)? turns the expression into the form

2 _ . _ _
= —%5A26A;{4 Re [vfsf] Re [v?ss] — ((’UE)Q(SE)Q + 2|v8|2|sa|2 + (v5)2(35)2)nk”
+2Re [vf((ﬁ)Zug - m‘@)} }
%68614215/1; { la (BE Re [U UE] Re [C’Evkvp]) — nkq (BE Re [vzvf] — Re [C’Evéng

—n'P (BE Re [vi“vﬂ —Re [Cava‘g]) kP (B‘S Re [va?] —Re [Cavivg])

(k1)< (pq) — 4Im [v vl] Im [ 573] }

- gaéAiéA;q{ — 8iRe [0Fs®] Im [vﬁ@] +2iIm [(BE?E + Cs%) (" 0P — nkpvg)} }

Pulling the components of the variation of the regularized closed chain inside the curly brackets,
we arrive at the following intermediate result

Tr (F5 6A° FZ0A°) =
= —5{ (845 Re [o}5°] )2 — 2Re [(v%)(5%)? + [v° s 2] (84504507 )
—_——
(1) 2) L
+ 2645045 Re [vf((ﬁ)%g - \vﬁ\%g)} }
®)
16 — —
- o {(6A515A qnlq) Re [BEvo? — Covko?] — (6A516qun )Re (Bl — C=vl?]
— —_—
(4) _ (5) 2
+ (5A}216A;an”) Re [B*vlvd — C'Evi.vg] - (5A Im [v vl] ) }
N——— _/_/

(6) (7)

- ;{ ~ 81 (045 Re [o457] ) (645, Tm [0207] )
- =(7)
+2iIm [(B5 + C°s%)ot] (345045,

®)
— 2iTm [(B5 + C°s° )] (5A;5A;an2’) } (B.18)
—_—
®)

(c) Insertion of explicit expressions for components of JA%

Having arrived at this point, we need to insert the explicit expressions for the components of
the first variation of the regularized closed chain as derived in Lemma 3.3.6.

(i) Evaluating the individual terms in (B.18)

By evaluating all the terms, we get summands which, irrespective of complex-conjugations,
take the form

(77’7 vy &)j) (n* vf&v]’?) (nij v§ 50?)555 0s%0s° (77’7 g 50]5) (B.19)

Due to the fact that we have to take the real part of Tr (FiéAEFiéAE) at the very end, terms
involving three or four complex-conjugations can be converted into terms which only carry one
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or no complex-conjugation, respectively. Making use of the relation Re(z) Re(y) = % Re(xy+zy)
yields

(1) = 045 Re [vs°]
2Re [s0vf, + 6505 ] Re [v2sF]

= Re |(57)2(uh0ug) + |0 %5767 + |2 (vF o) + (v%)%s%0s°

= Re [(?s)?(vg&u;) + |s7|2(vF0E) + (BT + 0658)556} (B.20a)
DA% 6AZ

"4 Re [s76v}, + 05°vF| Re [575&); + 6851175,]77]”’

2((Re [(5%0uf + 85°UF) (57605 + 05°5) + (570wf, + 6570 (5700 + &5=5) | ) '

~~
N

~—
I

2(Re [(5%)2(dkdug) + 5705° (uFouf) + 570" (vEOuf) + () (35°)?]
+ Re [|s°|2(d0F007) + 57057 (v 6u) + 5%05% (W OUT) + [v°|205° se])
= 2Re |(5%)2(Fdg) + |57 (67 + 25 (vF e )0s°
+ ((09)2(55%)% + |v°[265°05%) + 2?@5&;;)6?} (B.20b)

~—
w

N
I

0A},0A7 Re [vf((?)%é’ - \vE\QE)}

4Re [57dvf, + 5707 Re [5760; + 05705 Re [of ((09)202 — [v°[*0F)
]

2Re [s50v}, + 0s°vg | x .
X (Re [?vf((vff)z(v;g&v;) - |v5|2(1)7§50;)) + 6s€v§((F)2|v€ 24077 (v9)?)]

+Re [s70F (%) (VB 005) — [v° (2 v)) + 8s70F ((v°)? (%) ~ (Iv5|2)2)])

2Re [s50v}, + 0s°vg | x
X Re [vF (%)% (v2dvg) — [v°[*5=(0Fou5))
o+ O ((07)757 (0B85 — |0 P57 (02005) + (0°)? ()85 — (o°[?)%57)]

(1)
= Re [5%(vkao}) (o7 >s€<v%€>—|v626 )

+ 0s%|v°] W v¥|%sE

=(2) cancels (4)
0 (072 (v5) 25500 — o =) + (v 2 (0%)205° — ([0 ?)*657)]
+ Re [ (0007) (v)25(02005) — o #5712 0u53)
s (VE G0 ((v°)25% (0B — [o° 255 (u0u5) + (v°)2(0F) 20" — (|o°[2)205°)
_ (5)
65 (%) ((09) 25 (k) — Jo° 25
cancels (5)

6o ()2 — [o° PR (0285 + (1) 2(09)%05° — (Jo° ) 20s°) |
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B.2. Derivation of (3.22b) in Lemma 3.3.7

e N N e

Re |(0%)2(5%)2(v0u5)* — 210° [2(5%)* vk of) (B
()2 (57)2(0Bbog)? o+ 2((0°)2 (09257 — (|0 [2)25%) (v g o
2 (%) (09) = (10 2)?) (85°)2 + (0%)2]s° 2 (25 (v o)
— 0 2 2 (0B (vE6F) + (v°)%° 2 (0B (07

— [0 2] 2 (vE0ug) (VEGUR) + ((0%)(0%)%s° — (|v°|*)?s") (vlovp)s°

+ () (v9) 57 — ([v°[")*s%) (vPdug) 5= + ([v°|*(v°)* (v%)?

Re [(F)Q(?‘S)Z(v]”t?vs)2 — 2[v°[?(5%)° (vE dup) (v ;)
+ (05)2(5%)2 (vEdug)? + 2((v°)? (v%)5° — (|v°[*)%5%) (vkdv) 0s°

+ (092 ((0%)* (0%)7 = (Jv°[*)*) (05%) + (TE)2ISEI2W

=)

— I (5 (R 00F) + ()57 (LB A)

— (|0 [2)?) 855

1)

(2)

= [o°[?|s° | (v dup) (VR 6UF) + ((09)° (v°) 5% — (Jo° ) E) VL ST )O5®

(2T — (o)) (BT (v (o

Re | (0)2(57)2 (v2d5)? — 2|0 [2(5%)* (vF b)) (v

+ 2(0°)?[°* (v2ov) (vEuR) + (v°)% (57) (v dvy)?
—|U€|2|58|2((75U5)( k5vk)+( Lov; ) (vFou))
—|—2$75((115)2(vE 2)((7‘2f 2)0s° + ( k&ui)d?)

+ ((vE)Q(F)Q*(Ivglz)z)((ﬁf(t?sg) + [v°[*ds° 85)]

SAG 8AZ '

LR+ b7 [T + 05 '

1. S o —
1 [(vf)z&)z&)}f + (nlqvgévle)&viv; + (nlqvgdvf)vi&j; + (nlq@&)l&)vivﬂ

1. —_— —
2 [0 20u005 + (01697 (G055 + o) + (S0L60F o]

BAG, 045 "

[0 0f + i v ] (0505 + vj00g] ™

N N

[(0F 60} 7o + (b G0F Yo vf, + [v° [P60F 805 + (w/560F) v

BAG 0AS "™
[Gufef + R doF] (80507 + o5 oG]0’
[(r"F G v Jufvg + (vE U Juf 60 + (V2 00f ) og + (v°) 0] 0]

[(Bokoug)oFvg + (vEduR) (v 605 + ofvg) + (v°)?0vf 6vg]

(|v5‘2)3)586 55}

(B.20c)

(B.20d)

(B.20e)

(B.20f)
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(7) = 0AS, Im [vP]]

(32

N ]
= 4i [&Upvq + Updvq] [U?Ug - Uqu]

1 Ve D D ——= —_—
— 5 [(’UE)Q('U?&U;) — |’U6|2(’U§&U;) + (06)2(1}5(5@;) _ ‘Us‘Q(vEpdvf))]

5 Re [ ()2 (u2ivg) — |o° P (25)| (B.20g)

(8) = 5A25A;anq
= Re 5700} + 8s70f | [bvpvg + vjdug] 0™
17— — _ _
=3 [35&),‘? + 505 + dsuf + 5?1}2] [51);7)2 + v;&fﬂ nkq

L [(F(Baug) + 5° (OF0TF) + 6 ()? + " ?)

+ (5 (k00 + 57 (0P ouT) + 05° (vFovR) + 5;&@55@)@;} (B.20h)

(9) = GAGOAS n*P
'='Re [s20vg + 0570 | [dvS0g + v5 00| 0P

11— — — _ _ -
=3 [SE&UZ + s°ovg + dsuf + 53%2] [&v;vg + 11;(5115} nkp

1 e s L R—
=3 [(85(505502) + 5 (8uFuf) + 05 (vkduf) + 85% (vE duf) ) og
+ (SF(uFoog) + 57 (0F 60 + 85% o2 + ﬁ(ve)Q)@] (B.20i)

(ii) Putting together the results
Inserting the above results for the terms (1) — (9) into the intermediate result (B.18), we find

Tr (F5O0A°F20A°) =
B20) *ﬁ
~ 2Re [(1)2(5%)% + Ju* s 2] x
x 2Re [(?)?(&ug&u;) + |52 60k 60T + 257 (vF 6v ) 0s®
+ ((09)2(55%)% + |v°[265°05%) + 2?6(1;5&,@)55?]
+2( Re | (09)2(5%)2 (v2005)? — 20o° 2 (57) 2 vk ) (2ov;)
o+ 2(57)%s"[ (02605 (E00F) + (v (57)* (oF vy )?
— o s 2 (B85 (V3 0T + (v2605) (vE60F))
25 ((0)2(07)% = (|0°[2)2) ((0Foug )3 + (vEo)6)
(0@ — (0P (a2 + oo s ) |

w 2 {4(Re |52 (hoop) + |72 (o) + (B3 + C°%) o)

+
_|_

16 (17, . - B
_ 95{4 {(UE)Z&UE&J; + (vLovf) (v + vidus) + (61;@6@;)@;@;} Re [of (B — C*u?)]

1)

11— — N — o
—2. 1 [(Uﬁ&ui)@f&u; + (&)févi)va; + |UE|25UIE&J; + (vfévi)&}fv;] X

x Re [vP (stz — C*l)]
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5 | (@kaR)Tes + (okeo}) (0700 + o7vg) + (v°) 200700 | Re [v2 (B7ol — €0l

NH

replace (I, q) — (p, k) and combine with (1)
_ l TEN2 (P SHEY — [ E |2 (1P 5 \E 2
4(5; Re [(9)2 (o) — o 2(Few;) )
_ @86{ —8iRe [(?)Q(US&UZ) + |55|2(E&U@ + (3537+ 0585)555} %
x o Re @2 (u005) — o° P (Fa5)]
2i ep ep

+ 2iIm {(BEE + C‘Esa)vg] X
17, — — — _
X = [ (55 (vkdvg) + 5% (vEOU) + 65° (0F)% 4 855 |v°|*) v
(2)
+ (SF(QEGF) + 57 (S0FOUF) + 85° (F0U) + 657 (v 007)) v |
(3)

[\

—2ilm [(BE? + C’Esa)vg} X

replace ¢ — p

17, — — _
% 5| (5 (ko)) + 57 (B0 g + 0 (Fauf) + &= (vhavf)) g
replace ¢ — p and combine with (3)
+ POk + S A) + 6717+ 67(07)) 7 |

replace ¢ — p and combine with (2)

Combining terms yields

= 932{ (Re |G )2(vfﬁvi)+lsgl2@5v2)+(BE?+0556)556])2
—4Re [(v°)*(5%)% + [0°*|s° "]
< Re [0t 00F) + 2004 557) + 257 (0Fbuf)ds°
+ ((0%)2(85%)% + |v°[205°65%) + 2?&@5&;)@?}
+ 2Re [ (192 ()% (1005)? — 2o ()2 (k65 (P
2527 2 (02605 (E00) + (172 (57)2 (0TS
— [0 P[s°[* ((vP0u5) ( kévk + (026u5) (VE6UE) )

g

425 (0F2(0)° — (10" 2)2) (VB o° + (1))
+ (02 - <|v€| )< TR + 107656 |

16 " € 1 STE ) E 0 E
@a{ Re [( =) 2505605, + (vL6UE ) ( ;v;+v;&up)+(5vgavl)vkvp]x

x Re [vF (BSE — C=vP)]
— 5 [ o + (bR + o 2o + (o) x

2 2
x Re [v2 (B0l - C*ol)] + (Re [(0%)*(v2d5) — |o° [2(oZév;)] ) }
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_ SD8€{ — 4 Re [(575)2(1)551}2) + |5€|2(E&}Z) + (BEST+ CESE)(;SE:| %

X Re | (%) (v2d05) — [o° 22w
—2Im [(BasT + Cesg)vg’} X
X T [ (5%(F8UE) + 5° (0E0UF) + 057 (0%) + 650 2) o
+ (sT(0F6vg) + 5% (OvESUE) + 05 (vET) + E(uf&;g))vg”
Expanding products of two real or two imaginary parts by using the relations Re(z) Re(y) =

1 Re(zy + zy) and Im(z) Im(y) = —1 Re(z(y — §)), respectively, and collecting terms with the
curly brackets gives

@.1)
- ;{me[ 2t o () B

(3.1)
+ (BsF + C°s%) (57) vk )os
B (4.1) (5.1)
+ (5°)% (%) (R Qo oEouy) + |57 (5%)* (vE dup ot ovy)
o (6.1)
+ (Bs® 4 C=s7) (57) % (vlév)05°
(2.2) 7.1)

+|5°[7 (%) (vhdugytot ) + (\8€|2)27f§ k
+ (B + C°5°) \SE|W
o (5.2) (9.1)
+ |52 (s%)? (R dopHFovp) + (|s°[%)* (v dupytosey)
o (10.1)
( 558+063€) E|W 2) (8.2)
+ (B°sF + C°s° 3525/@%()' (BESE+CEE|S\W

(11.1) (6.2)

)
(B 5+ 0% 8)2 + (B 4 0 (" s
(12.1)
+ (B + C°5°)|s° =157 +(sta+0636)(3656 + Cs°) o657

—2Re [((UE)Q(?&)2 + (V)% (s%)7 + 2007?57

(1
(st + : —&—2?52
< (( M s XW (WESoI0s o
12. .
(% WﬂmﬁWig?g/{mﬁﬂ(
o (23)
+ 2 Re ()2 (+) 2 (a2 toZo;)

(7.2)
+ 20771 M 5

(4.2)

— o PlsP (/&uﬁM W
+25° ((0°)2(29)? W +W

(11.3)

+ RO - (PG I (0 —<|v6|2>2>6e%?ﬂ”‘3)

(8.3)
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(15) (5.4)

@E{zBEReU B ITR) + (o0 (ST P+ ()2 ()
Jere.szz}

<7 )
+C’E(v5 WHWU |2+M\v 32 )]
cancels (15) (7.4)

1 _ o _
— §BE (Re [(vFoug (vPévs)] + Re [(vEdvp)e® UE&J;)])

1 € k= 1422) £\2 E12( kS E z )
— 5 B (@A) ()2 + o P (E oty

(9-3)

- (14‘3 o
T (BESETTPY? + o P (o S )

(2.5)
( _ — R — (7.6)
+ 5 Re (092 2282 2o [2(07) (o B HTEauy) + (o722 (oo o
e (.7
()2 () (BT — 2o (77 b bt
4
+ (10" ) (b Ev;»}

o (4.7) (5-8)
T (o) () (BRENTETTE) — [o°2 ()2 (g ﬂ,@)
(2.7)
(215" P (EBgHerdie) — o7 2| 2ot
(5.9) (9.5)
- (0°)25° P (oEBHEaE) — o P]s° P (R ooy

(8.5)

o o (3.3) o —

+ (09)%(B°5F + C°s EW— \v5|2 (BT + C°5°) 65" (Bd0)
__003)

+ ()2 (B + C°s EM |v (B°5 + C<s E)W

(2.8) (4.8)

+ Re [(BE?—FCESE)?(W Nok, i)+ (BEsE + C%s%) s (vP s HuFous)
(3-4)

+ (B7s® + C°5°) (v7) (v2&s)ds™ + (Bssf+C'5 °) |U€|W
L L (7.8) L . L (5.10)
— (BFs® + CFs%) s (wkoof)? — (B®s° + CF5%) s° (vEuEHTFou; )

_ (8.6) _ _
— (B®s® + C757) (v7) 2 (1E&yo5° — (B°s° + C= %) |v° |2 (uE8eS)0sF

+ ((35374— CESE)(UE)2 - (BESE +§s7)|v8|2) X

(10.4)
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(14.5) __ (13.5)

7 7)
X (FE(ESTTT 5° SBOT) + (b 0Eyos=t (0o f}
Combining and cancelling terms finally yields
Tr (FiéAEFE 0A%) =
= — - Re [ (C%)*(vka))? - 2B°C* (vl o) (vF )

'DE
(1.1) - (1.5) (2.1) - (2.8)
— 20°(Bs% + C°s%) (v 60 0s° + (B%)? (vl v ) (v vy
(3.1) - (3.4) (4.1) - (4.8)
— 2BEC (vl duf) (vE0uF) — 2BF (BESF 4 C°s5%) (vE g ) 65°
(5.1) — (5.10) (6.1) — (6.7)
+ CC= (vkovg)? +2C° (B s° + C=s%) (v v ) 0s°
(7.1) - (7.8) (8.1) - (8.7)
+ (BF)?(vFovg) (vEoug) + 2B° (BT + C°5%) (vEoug) ds®
(9.1) = (9.5) (10.1) — (10.4)
+ O (J(09)%12 = ([0°]%)) (65%)% + B (|(v°)?]? = (Jv°[*)?) 6s°8°
(11.1) - (11.3) (12.1) - (12.3)
+ CEDE 80k 6u) — BED? (8067 ] } (B.21)

(13.1) - (13.5) (14.1) — (14.5)

(3) Conclusion

As the last step we insert the intermediate results (B.14) and (B.21) into (B.13) and thus find
for the second variation of the eigenvalues

2\ e fﬂll e 246 1 £ £ e €

(B.14) (B.21)

=Re [2@5%5) + 2555%° + (0vi60%) + bs° s]

+ L Re {235(@6%5) — 2C°(vL6%5) + 2(B%s® + C°5°)6°%s°

VD= B
+2( € (viovs) +87(vi§u8))()7 -

— (02005 (VE0V) + (02607 (vL0u5) — C=(8ulavf) + B (k ey |
Re [(CF)2(ukauf)? — 2B°C% (vl duf) (vF0uf) — 2B°CF (vEouf) (v 6vf)
+ (B9) (0F005) (VB60F) + CCF (vF0u)? + (B°)* (vEdof) (v o)
— 2C°(BFs¢ 4 C°s%) (vFovf)0s® + 2C° (B®s* + C=5°) (vkovf.)ds°
+ 2B (Bs° + Cs%) (vF6v5)0s° — 2B° (B + C°s7) (vE v )&%
(|02 = (0F[2)2) (85)2 + B (1(0%)212 = (Jo°[2)?) 57657

MRGORE

This concludes the proof. O
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In this appendix we have collected the details of all the auxiliary calculations necessary to arrive
at Lemma 4.2.5 (Position Space Angular Integration in (4.21)) in the main body in Subsection 4.2.1.

C.1 Conventions and Auxiliary Calculations

PROPOSITION C.1.1 (ANGULAR INTEGRATION OF EXPONENTIAL FACTOR)

For any p'€ R3 the integral of the exponential factor 7€ with respect to the angular variables
of ¢ evaluates to
/dQ£ e¥iﬁf: 47TSH1|(_|)]|)|T) ) 47Tj0,]_(|ﬁ|7") (Cl)
plr
S2

Proof. For the computation of the integral

/ng ejFiﬁ'{

S2
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we choose, without loss of generality, a Cartesian coordinate system such that its z-axis points
in the direction of p. As a consequence, the scalar product p'- £ can be expressed as

B &= [7]|€] cos(0e)

where ¢ denotes the angle between 5 and the z-axis. Splitting d€2¢ into azimuthal and polar

parts and defining 7 := |£], we obtain
1 2 1
‘/dQ5 e:Fiﬁ-E — /dCOS(@&)/d(pg e:Fi\ﬁ\Tcos(Og) iQW/dCOS(af) eq:i\mrcos(ﬂg)
52 -1 0 21

where in the last step we used the fact that the azimuthal integral can be carried out trivially
due to the absence of any dependences on ;. Computing the remaining integral, we finally
end up with

/ 40 € _ o [0 PN SR oy 51
¢ Filplr — Filp]r A1 !
SQ
which concludes the proof. O

In the rest of this appendix, the generalized spherical bessel functions will almost exclusively
appear with the argument |7+ ¢|r. For notational convenience we therefore introduce the function
ki : R x R® — R{ defined as k+(p,q) := |p £ ¢|. Whenever there is no risk of confusion, we
suppress the arguments of the function k4 such that, unless otherwise stated, any appearance of
k7 must be understood as |+ ¢|r.

CONVENTION C.1.2 (ARGUMENTS OF SPHERICAL HARMONICS)

For the sake of notational clarity, we suppress arguments of spherical harmonics whenever
there is no risk of confusion. We use the convention that scalar and vector spherical harmonics
with unprimed parameters [m come with arguments (6,, ¢,) while scalar and vector spherical
harmonics with primed parameters I'm’ always carry arguments (6, ¢q).

C.1.1 Basic Derivatives of jj, (ki)

In the proofs of Lemma C.2.1 and Lemma C.4.1, various derivatives of jo ,(k+r) enter the game.
In order to keep these proofs as compact as possible, we outsource the computation of derivatives
and collect them in the following proposition.

PRrOPOSITION C.1.3 (FIRST AND SECOND DERIVATIVES OF jo (k7))

The first derivatives of jo »(k+r), namely the gradients with respect to p, ¢ and the derivatives
with respect to |p], ||, are given by

grady jo,n (k+7) 1 [ rd
= 205+ q)r? 1—|—}'n kqr C.2a
{grad(;jo,n(kir) (P+q) 53, |Jon+2(ker) (C.2a)

ﬁ~gradﬁjo,n(k‘iT) rd +1 2 2 2{ r d
B 77‘7‘ " Fer) + ﬁ B q e+ :|.7 n kir
{(fgfadq*jo,n(kir) o.n(k+r) 1 (71" = 1q1%) 5 q |70 +2(k+r)

2dr
(C.2b)
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q - gradzjon(k+r) r d -1 r d
’ =4-—j + 512 — |712)r? |1+ =—|J
{ 5 q Jon(kxr) (71" = 1q1%)r { + QdT]Joerz(kiT)

P gradg jo,n(k+r) +1
(C.2¢)
TRl [ +1 rd
= ——jon(k 712 = |71 r? |1+ = — | Jonga(k
| ‘djodn‘((lk‘ir 2dr Jo, ( iT)+ 1 (|p| |q| )T + 2 dr Jo, ,+2( :l:r)

(C.2d)

The second-order derivatives, namely the divergence and curl of the gradients as well as the
mixed derivatives with respect to |p| and || read

divg grad; jo n(kxr) 3 d d

. q 12 ' = 4472 { + T} [1 + - r LO - (C.3a)
divy grad jo,n (k+7) 2dr 2dr
curly grad; jo n (k+7 .

q pJ0 (k+r) _q (C.3b)
curly gradg jo,n (k+7)
djon(ker) [rd]>. L rdl.
| ‘d| 5 |7 0d|(j’\ =3 Jom(kxr) — (191> + 171%)r? |1 + Sdr Jon2(kxr)

P = P22 ] [ G dnathen) (€30

Proof. To prove the above relations we will repeatedly make use of the identities

kL + 17 — g2 kL —1P* + 14

7-(pxq) = 5 (C.4a) 7-(F£q)=+ 5 (C.4b)
as well as
pEq g+ q
grady by = 2—1 (C.5a) grad kg = +2—1 (C.5b)
ko 1 F+

which immediately follow by straightforward computation and remembering that k4 = |p'+ ¢|.

(1) First Derivatives of jg ,(k+r)
Making use of these identities we find the following expressions for the gradients of jo , (ki7)
with respect to p'and ¢, respectively

. d]O n(kiT) wcm T dJO n(kir) ﬁ:l: @
dsjon(kar) = TOrVET) opg g, @ L Do) PE4
gradyJo, (ksr) dk, grady it ki dr ki
(4.26) — — d(r2j0,7l+2(kﬁ:’r)) — — 2 r d .
= (P q)r I =2t q)r [1 + er} Jonta(kxr) (C.6)
. d]O n(k:tr) (©30) r djO n(k:tr) ﬁ:l:(j
dejon(ber) = TOmEET) oo ky @ £ 1 DO TET)
gradg jo.n (k+r) dky %% ke dr ks
(4.26) — — d r2j n (kir) — d .
2 LG ( O’djf ) _ +£2(F £ §)r {1 + Qd]gomﬂ(ky) (C.7)

Due to the fact that gradients often occur in scalar products with p'and ¢, we also compute
these expressions. For the scalar products of gradg jo,» and gradg jo,, with the corresponding
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momentum vectors p and ¢ we find

| . @ o o rd].
P grad; jon(ker) = 2p- (P £ q)r? [1 + 2(21’l":| Jont2(kxr)

- . rd|.
= (k% + P> — |7I*)r? [1 + 2(17“} Jont2(k+r)

(4.26) r d —92. _ = T d .

= {1 + 2dr] (7" QJO,n(kiT)) +(Ip \2 —|q |2)7’2 [1 + 2(174} Jo,n+2(ki7’)
rd . . R rd].

= - —Jon(kzr) + (1P — |7]*)r? {1 + 2(11"] Jonra(ksr) (C.8)

— . (©) — — — T d .
q- gradgjon(ksr) = £2¢- (P £ q)r? {1 + 2(17“]]0’n'+2(kir)
= (8~ 1717 +121)72 |1+ 5| jonsalhar)
2dr |77

(4.26) r d J— . — e r d .
= [1 + 2dr] (r2jon(ker)) — (15 = 171*)r” [1 + QdT}Jo,nw(kiT)

rd . . . rd].
= iaj(m(kir) — (71 = 1q)*)r? {1 + 2dr] Jont2(k+r) (C.9)

For the mixed expressions we analogously find
. . [(ehs] - — — 2 r d .
7 grad; jon(ksr) =27 (£ ¢)r" |1+ Sar Jon2 (kL)

. N rd].
=+(ki — P +171*)r* {1 + er] Jont2(k+r)

- r d . - > rdf.

= 4y? [1 + er] (r%jon(ker)) F (17 = |7%)r? [1 + 2dr] Jon+2(ker)
rd ~ . rd|.

= £5 = don(ker) F (15 — 171°)r? {1 + 2dr}]0,n+2(kir) (C.10)

N . ©n N N s r d .
7 amadgion(er) 2 257 (5 D214 5 £ saliar)

- R rd|.
=+(ki+ 1P —|7)*)r? {1 + 2(17"] Jont2(k+r)

. r d o . . rd .
(429 :|:T2 |:1 + 2dr:| (T 2']07n(ki7’)) =+ (|P|2 - |q ‘2)7’2 |:1 + 2d7‘:| ]0,n+2(kir)

o rd. 19 2127 2 rd |,
=5 D naher) £ (5~ 79014 3o fiomsatier)  (C1)

Next, we turn to the computation of derivatives of jo ,(kir) with respect to |p/| and |§]|. For
this we need the relations
_ dky |ﬁ| d 12 —2 S| = 5 5
D 4=74{p +1q i2pq008<ie,e}
5| & || cos (<(€,, €, k2 + 1912 = |1@)?
7| + 1] cos (<(€p, €5)) _ k3 + P> — |q] (C12)

= |p] o T

L dky 7] d {_.2 Y iy = A n
o = TS + +2 cos (<(€), € ]
\qld‘q| 2y dl7] P1° +|q1* £ 217141 cos (<(€p. €;))
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By |71 £ 1P cos (2(ép.€5)) _ K — (1F* — 1g1”)

k‘i Qki

(C.13)
where we used 7 7 = |F||7] cos(<(,, €,)) with <((€},é,) denoting the angle between the unit
vectors €, and ¢ pointing in directions of p'and ¢, respectively. Using this we find

djon(ksr) _ djo, n(k:tr) dks o 1 djon(ker) K1 + [P = 1717

P g TR ST T
am T djO,n(k:I:T) r 2 12 d(TQjO,TH-?(kiT))
34 PTG
rd rd].
i her) 425 107 |14 54 fiomsathe) (©0)

|_.| djO,n(kir) _ djO,n(kir) | —a| dki ©1 L djO,n(kir) ki - (|ﬁ|2 - |§|2)

a7 dks Vg T ke ar 2y
= Cdjovn(ki” _ 7(| |2 _ |_,|2)d(7"2j07n+2(k:|:7"))
2 dr 2 p q dr
r d d|.
= parun(bsr) = 25F 107 |14 4 Linsatbsr)  (€15)

(2) Second Derivatives of jg ,(kir)

For the second derivatives of jo ,(k+r) there are various combinations possible. Taking the
gradients as our starting point, we can compute their divergence as well as their curl. For the
former we find

divg grad jo,n (k+r) =

L d].
= divg <2(p:|: q)r [1 + 2d} jo,n+2(k’i7‘)>

=0 [1 " ;dC”Jo nr2(ker) +2r° {1 - ;dd} +q) - gradgjon+2(ksr)

2 46y [1 + gdd ]Jo nia(kyr) £ dr? [1 + ;dd} {1 + ;i] (T‘2j07n+2(’fi7“))]

= 4602 {1 + ;;} Jomia(ker) £ 4r? {1 + ;dd} [;ﬁdd} Jont2(kxr)

A e

divy gradz jon(k+r) =

©n — d .
= divy (j: 2P+ q)r {1 + 2d]]0,n+2(ki7“)>

r d rd], ., )
= :|:6T2 |:1 + 2d/r:| jo7n+2(ki7‘) j: 27"2 |:1 + 2d'r':| (p :l: q) . gradﬁj07n+2(kir)
(o5 r d rd rd 5.
= :|:67’ |: 2d:| ]0 n+2(k:|:7’) + 47’ |:]. + 2d’l“:| 7”'2 |:1 + 2d’l“:| (7" 2jo’n+2(ki7‘))
= divg grad; jo,n (k+r) (C.17)

Repeating the procedure for the curl gives
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curlg grad; jon (k+7) = curly ( q)r {1 + Qd]jg nio(ker) )
T S o
= [ oY ] gradz jont2(ker)) x (F£q)
- r d d|. oo oL
e I e P e By
-0 (C.18)

(©1) — d -
curly gradg jon (k+7) = curly ( +2(p+q)r [1 + Qd} ]07n+2(ki7’))

r d 5+ )
= 4972 [14— 2dr] (grad =70 n+2(7‘€i7“)) P£q)
© 4o 2 rd L= 7
= 4or [1+2dTH2 {1+2d ]30n+4kir}piq +7q)
-0 (C.19)

Here we used the rules for the curl as well as the properties of the cross product. Finally, for
mixed derivatives with respect to || and |¢| we find

o djO,n(kiT) _

=<7 1d =
a7 dg
(C13) | — d T d . — T d .
=17 [2 D jolher) (5P~ 1g >[1+2dr}go,n+2<kir>1
e d |7 d . rd].
= 2(17“[ 2 dr JOn(kir)‘FT (171 = 17 )[1+2dr}j0’"+2(kir)]
27"210|2[ > dr }Jo n2(k+r)
rdl|[rd. N rd].
PP = 7)1+ G| |5 dmsatiar) + 252 = 1) |14 5 nsahar)|
r d . . . d|.
- [er] o) = (2 + 12072 [+ 52 L)
d 2
Lo s r .
—(pP =g |r? [1+ 2d7“H Jonta(ksr)
rdl?. s rd].
= l3ar Jon (k<) — (15> + 171*)r” 1+§d7 Jont2(ksr)
. . rd rd
P = P2 2 ] [ 5 domeatien) (©.20)
This concludes the proof. O

C.1.2 Auxiliary Calculations

In this subsection we collect auxiliary calculations which are needed in order to simplify intermediate
results appearing in Appendix Section C.2, Appendix Section C.3 and Appendix Section C.4. Being
straightforward though non-obvious calculations, they do not deserve the status of propositions
and thus come mainly without any further explanatory comments.
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C.1.2.1 Auxiliary Calculations for Dotted-Primed/Unprimed Terms

AUXILIARY CALCULATION C.1.4 ((C.36) IN LEMmMA C.2.1)

P grad; jo s(k+r)
qI1°9 - grad;jo,s(kr)

~dlq] [lg :
1 T d .
= :Fﬁ 1+ Sdr :| Jo,3(k+r)
(1P =141 o,  rd],
F 7 U R e Jo,5(ker)

(C.21)

Proof.
d ... e .
“dp| P17 @jo,s(ksr)] + P’ - grady jo,s(k<r) =

| —

(ki —pP - |CT|2)J'0,3(/€¢7”)

_od (1 . 212 Lo .
# 15l (502 — 15 — ) dnatkar) ) + 170 raddoaier)
(4.26) ]- . ﬁ 2 + (7 2 .
= F;5Joa(ker) £ %]0,3

1 d
- k i = I k
2;,«2 ( i?ﬂ) :F 27'2 |p|d|ﬁ| jO,l( :‘:T)

=12 =2
ple+1q1e,, d . 12 .
P +1al 5 inallker) + 177 madgina(ka)

+ |90 s3(kar) £
\p| Jo,3( j:T) D) d|

(C20) 1 . ﬁ2+ _02,
= Fogjoalker) £ %]073(1%7“)

272

1 /rd . . . rd|.
(3 ardoatier) + (7 = g2 1+ 52 dnahan))

(C.22)

22\ 2dr
5 ioather) & P (2o s + 57 — 19777 1+ 5 L athan)
£ 15§ 4 doaher) = (5 = 10702 |1+ 5 5 ina(har)|
— gz |1 G doa(har) £ (5 + 1)1+ 54 inalhar)
F Upl” —1al")” _2|(j|2)27’2 [1 + ;(ﬁa} Jo,5(kxr)

d .. .. 19 - .
~dq (1710 Tjo,s(kxr)] + |70 - gradg jo,s(ksr) =
(k2 — 171> = 171?) jo,3 (kxr)

H
N =

,od /1 . 219 - 2 .
155 (302~ T — 7P)ialhen)) + 1715 rad poa(her)

T 95>
|d\ql
P1* + gl .

(4.26) ]‘
1(ksr) £ fjo,a

1 d
CE kat) F — |7~ o (k
:!:2T2.70, ( i?") + 272 |q|d|(j’| ]0,1( :‘:T)

=12 =2
ple+\qle, ., d . 29— )
PG 2 9 ki) + 17125 grady jo.s (k)

+ |71 jo,3(ksr) + S
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P I7]? + |72

= :F2 2]0,1(/€ﬂ:7“) + jo,S(kiT)

o (5 ardobs) = (52 17252 14 2 Lioalher) )

Tz ga 0t
PP+ 14 (T’ d .

()

£ |q1jo0,3(ker) £

" " rd|.
T (G ardnather) = (52 = 10272 14 5 5 ina(har) )

o d . . rd
17| G qrinalbar) + (7 = P2 [1+ 55 ns(ban)
_ 1 d 12 (212 d
= Fors [L+ 5 (s & (52 1771+ 5 2L dna(har)
7|2 — rdl.
+ M’IQ [1 + 2d7”:| j0’5(k‘i7"> (023)

This concludes the proof. O

C.1.2.2 Auxiliary Calculations for Double-Dotted Terms

AUXILIARY CALCULATION C.1.5 ((C.44) N LEmMA C.3.1)

S - . r d 2_ . . r d
(7 rody) (7 gradg i sr) = |5 5| doarsr) = (52 + 1702 1+ 5 3 nather)

}jw(kir) (C.24)

Proof. To show the claimed relation we first insert (C.2b) for the gradient with respect to ¢ and
thus obtain

(7 grady) (- gradg ) jo,1 (kxr) =

€ (= 212 | 2(2),.2 rdl.
@ (p . gradﬁ) (2 o —jo1(kxr) — (19" — |€°)r {1 + 2drj|]073(k:|:7“)>
Carrying out the gradient with respect to p' results in

rd . d|.
§d7p grad 5 Jo, 1(kxr) —2|p |27“2 {1 + 2d} JO,S(kiT)

. . d
~ 7P~ 1P 1+ |7 eradgnatien

Using (C.2b) for a second time turns the expression into the form

(©2v) r d N N r d 71 d
S o R ] I | R PRI

} rd —Jo,3(k+r)

dr
—12 2 d —12
_2P|T{1+}303(ki7”) (171> = 71*)r H 5 qr

2d

+ (512~ 1a1?) [1 + 20{1] [ + de]” 5“““”)1
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By collecting terms we finally end up with

rdl]? r d
=T e — (1512 - 7122+ B k
5t doaeer) = Q5 #1252 14 5 5| na(ran
r d r d
2 2,4 2 1 o k
— (P = PPt 2 | |14 o msthar)
This concludes the proof. O

C.1.2.3 Auxiliary Calculations for Asterisked Terms

For the position space integration of asterisked terms, i. e. terms where two vector spherical
harmonics are contracted with each other!, calculations become rather lengthy. Especially in the
cases Uy (0, 0p) - Ui (0g, 0q) and By (0, ©p)- ®rrmy (04, 04) the necessity to evaluate complicated
derivatives arises in the course of the calculations.

AUXILIARY CALCULATION C.1.6 (INTEGRAND OF ?lm . \f/l/m/ IN (C.54) IN LEMMA C.4.1)

d 1,5 2. 12 )
a0 Dlalioa (k)] ~1a1%5 - gradg o (har) =

1 r d rd]|.
— o[+ o (hen) = <|p|2+|q| >[ + 3ot ioaen)
rd |,
& [ c) P R CE
Proof.
d o o L2 .
G [ Do (k)] = |5 gradgjo (ker) =
= (P q)jo(k£r) d|q| [(ﬁ'@)j{),1(kiT)] —|71*p - gradg jo,1 (k+r)
S22
—Upl”+1q1") .
=+ { ; 7 )]0,1(ki7”)
aod [ R (PP 1P 2 .
gl = T )| — 1975 erad g e
2 =2
() + .
= iﬁjo 1(ksr) F MJO,IU@:T)
Lod [ 1 PI*+ 1717 . P :
\ﬂm {27,230,11(7&7“) - %]0,1(1@:7“) —|q1*p - gradg jo1 (k+r)
1 P12 +141% . 1o d
=+—7j0_11(k _— k — ¢ ==Jo.—11(k
5,30, 11(kxr) F 5o, 1(kyer) £ T2\£I|dm Jo,—11(kxr)
2 P12 +1d1% . 2 ‘
F |q1"jo,1 (kxr) — B g |d| |]0,1(kir) —|q| p~gradq~3071(kir)
o 1 ) 2_|_ 2
= iﬁjo,q(kﬂ“) M 1(k+7)

1For the definition of asterisked terms, recall Terminology 4.1.7.
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Lo k) — (5P~ 7 [1 n ;dd],?o (ker)| 1310 (k)
P P12 o sher) = (7 = 100?14 2 doa(han)|
WP £ 5 dnatkar) & (517 - 7P |1+ ;dﬂjo,;s(km]
= grs [L 5 aChr) % Q5+ 1) 1+ 5 o )
+ wﬁ 1+ ;di]jo,g(kir) (C.26)
This concludes the proof. O

AUXILIARY CALCULATION C.1.7 (INTEGRAND OF Uy - Uy IN (C.56) IN LEMMA C.4.1)

d Lo d o o g d il .
a7 [ a7 [|p|(p'Q)JO,n(kir)” =P a7 [|Q|Q'gradﬁ]0,n(kir):|
RPN B I . 12| =12 1 .
- |q|2d|ﬁ| [p |p~gradqﬂjo7n(k‘ir)] + |p|2|q|2dlvﬁ grad; jo,n(k+r) =
1 rd1? 3r d r d
= — |1 5 3. j0,n— — (71 7)? 2 —— 1|1 5 1. n
{W[ #5ar] dnn-ather) = (52 127 |2+ | |14 547 o tean)
. . 2(|17|4+|67|4) (\ﬁ| + |7]?)? rd
+ 2 _ 2 2,’,2 1_,’_ — _’ 1_’_77 X
rd].
X |:1 4+ 2d7“:| j07n+2(k’i’/‘)
(77? + 1712 UP1* = 171*)? 4 rd
B re12 + 5 dr 14+ 1 ]O,n+4(k:tr) (C 27)
Proof.
d Lo d 9 s .
g 115157 16 @i es)] | = 152 g 17 o )]

Lo d
= laP? g5 1917 gy m(kzir)} + |21 divy grady o (ker) =

= (- Dion(ksr) + 17 75 [ m,n(kir)}

dlq]

[ Dines)] + 1015 171 g (5 (ks

"l d||

— |ﬁ|2(j'~gradﬁj0,n(kzir) |7|2 ‘q|d\ 7] [ - grad; jo n(k:tr):|
NE gradg jo,n(k+7) — |§\2|ﬁ|m {ﬁ' gfadqjo,n(kir)}

+ 7|7 divy gradg jo,n (k=r) (C.28)



C. Position Space Angular Integration 179

To proceed, we make use of (C.2b) in order to rewrite the scalar products of gradients with p’
and ¢, respectively. Furthermore, by expressing factors p'- ¢ in terms of ki using (C.4) and by
inserting (C.3a) for divjy gradz jo,n(k+r) we find

1. P12 +171% .
o= 4 |:2T2j07n_2(1€i7") f 7n(k T)

£ 715 rpinnather) - PTG )

71 rpdnn-atier) - PEET i)

£ 711 | prznaa(har) - T, )

#15§ qrnahar) = (5 =107 14 § i (har)|

# PWIgr |  ardonthar) = (512 =172 |1+ ;dd]m+ (k)|
#1712 § qr i) + (52— 7)1+ Qddy mealkar)

F W1 |5 o () + (51 = 1770 ;;]JOnH k)]

L2 3 rd r d
AP |5 5] [ S et

Next, we carry out derivatives with respect to |p’| and |¢| which results in

1 P12+ 1412
..:i{zﬂjo,nﬂki ) — f]On(k +7)

[ 1 djon—a(ker) . P> + 141 - djon(ksr)
+ | — || Hon2\Er) (kar) — '
(1 djon—a(ksr) L. P>+ 171 - djon(ksr)
+ | — _— n k — ’ -
_27"2 |p| d|ﬁ| |p| Jo, ( :tr) 2 |p| d|p|
1 Lod o _ o) - djon(ker)
+ | — |7 —— P |——jo.n_a(k — g2 g =i
_2T2Iq\dm Ipld‘ﬁ| Jon—2(kxr) = |PI71q] a7]

dp| 2

n(k
11 o)

¥ 17 ; dd o) = (52 =170 |1+ 5 1 o nsathar)]|

F |]7|2 2ar \ |dj0§|(kir) +2|q*r* [1 + 2;} Jont2(kxr)
(P - lgP)e? 1+ ot Hentther)]

#1012 § gbdnier) + (52 = 620714 3 27 Linmsatiar)]

#1715 4 91 S 2002 14 L ralhen)
7P = 72 |1+ G 17 Pt

3 d d
+ 49?7 *r 2[ +2d] [1+2d }Jonﬂ(k‘ﬂ“)
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Due to the structural similarity of the derivatives of jo,(kir) with respect to |F| and |7 (see
(C.2d)), it is advantageous to group terms such that there are sums and differences of derivatives
of jon(ksr) with respect to |7| and |g|. In this way, we find

1 ) I7 2+ q 2
| grzdon-ather) - 3P iy Gha
% |—»‘dj0,n—2_'(ki7”) +|ﬁ|dj0,n—a(kiT)
2 d|q]| d[p]
- 171 + |7 [| ﬁ|dj0,n(ki7’) n |ﬁ|dj0,n(k:t7'):|
2 aiq] dI7]
d d 17> + 7/? d
ora 1 o a(kar) @1 15 n (k)
T " T Pz
d | .
[up|2+wq|> i (her) = (712 = 172020 |14 2 Linnsatiear)]
~ dJjo, n(k:tr) 191 - 470 n(k:tT)
¢[+}[||| + 12 onber)
diq] a7
D i djonta(ker) 121 = Do,nr2(ker)
in—q2r2[+H T — e
(15 - 121) P71 e ) g e

TN rd r d
i4|p|2|q|27“2{ +2d] [1—!— 5 qr :|jo nt2(kir)

Now we make use of the explicit formulas (C.2d) and (C.3¢) which turn the expression into the
following form

1 2 4|72
—:l:|:2r2]0,n—2(k:tr) M ,n(kiT):|
L] d]. P1? + 117
iw{rdr}]&n—Q(kiT) f d Jon(kxr)

1 rdl]? 2 =2 )
27"2H2dr} Jon—a(kzr) — (1717 + |q1%)r [1+2d:|30,n(k:t'f')

. - r d d|.
-4mF—mW#P+2M]P+mipmﬁwyﬂ

P P T ] ) — G5+ 700 14 5 jonsathar)
(7P - ||F4P+;j}b+;j}m%4@m]
= (512 +107)5 () = (512 = 12020 |14 25 Linmsatiar)]
# |1 G| 077+ G g dnntieer) = (P = 72214 2 Lo (han)|
£ (7~ 720 |1+ 53] (7 - )G grdsatiar)
=251 = a1 1+ G o)

N =3

1 rd d
2.2 rd d.
+ 45| *r { + 5 dr ] [1+ dr}]o,nw(/&r)
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By sorting and grouping terms according to their indices we finally end up with

1 rdl]?, R R 3r d r d
—i{ [1+} Jon—2(ksr) — (|P2+|Q|2){ +4d} [1+ 5 dr ]JOn(ki?”)

2r2 2dr
21714 + 714 + (1712 + |32 d
1+ (17| |ng (qu2|2 17]*)? {HT] y
21912 — 19 1%) 2d

+ (1 = 1g1*)*r*

2dr
_ PP+l UpP -
2

rd].
[1 + } Jont2(k+r)

712)2 rd rd|.

O

This concludes the proof.

AUXILIARY CALCULATION C.1.8 (INTEGRAND OF <f>lm By IN (C.58) IN LEMMA C.4.1)

divy [(17]) grady (K1) (7 3o (her) ) | = 7 grady [1(7]) (7 gradg (k( )0 (k+r) )]

= W (IPDIPIE(7 o (k£r)

#ROPDRT) | |3+ o s + Q57 = P21+ 55

Combining the first and third term as well as the second and fourth one we find

= D (5 graa (015 s (k7)) = (@-5) (7 (1o (27))

) [aivs (K)o (ksr)+ (5 @) grady (k(11)io, (ker)) )

|
h(p
= - ((gradg (K)o, (k) + Feivy gradg (k(17]jo, (ker) )|

Simplifying term proportional to h'(|7]) and expanding the term proportional to h(|p]|) yields

n' (19 S - Lo
= "D [k(d1)doa ke grady 5 )
+ (|7 [divy (k(7)io1 (ker)7 ) + (gradﬁ(ﬁ- 7)) - grady (k7)o (kr))
+ (9’ ¢)divygrad; (k(1q1)Jo,

— ¢~ gradg (k(17])jo kﬂ“)) -
By using grad; (5" ¢) = ¢ and gradz(p"- ¢') = p'and cancelling terms, the expression reduces to

o = WFDIFIR(T) o (er) + B divy (G ]io 1 (b))

7 @)divy gradg (k(1d])jo. (k<r))]



182 C.2. Evaluation of Dotted Terms

Pulling k(]¢|) outside the second term, computing the divergence and using (C.2a), we finally end
up with

= W (FDIFIR(T o (ker) + RUFDE(T]) (3jo.n (ker) + 7 gradsjoa (k)
= (B IF k(T o. (kr)

+h(IPDE(91)

34 5 inahar) + <|ﬁ|2|@2>r2{1+;£]j0,3<kir>] (C31)

This concludes the proof. O

C.2 Evaluation of Dotted Terms

The computation of the position space angular integrals (4.27a) and (4.27b) in Proposition 4.2.4 (Po-
sition Space Angular Integration of Yy, Yy, Lim|irms) Tequires to evaluate the integrals

/dﬂé E ?lm(apa Spp)e_iﬁf where ?lm S {Y_?W“ \f]lm, (i))lm}
SQ
appearing in the entries of the integral of Y, as well as the integrals
/ng £ ?lm(ﬁp, gop)e_i(ﬁi’n'g and /ng £ ?l,m,(eq, wq)e_i(ﬁi‘j)'{
S2 S2

which correspond to the dotted-unprimed and dotted-primed terms of Yy, 1/, respectively. All
these integrals can be computed systematically using the following lemma.

LEMMA C.2.1 (ANGULAR INTEGRATION OF DOTTED TERMS)

For any functions h, k € C*(RJ,R) and for ?l(/)m(/) € {Y}(/)m(/) , 51</>m(/> , \Ijl(/)m<,)} the relation

€ Ym 0 , @ R
/d h(p) /d3cfk|q\ /dgf{q f (6. 2p) o iFED)E _
£ Yim (eq"Pq)

o n (ki)

.(n) .
ng jon(k-r)

5
—ari [ &% (7)) [ @7 kg Y (©32)
R3 R3 n=1 7 T"li({:l/)jo,n(k’_t,_T)

171 . (n) .
jom(kr)

ny

(n)

) '%L), % and ng,” with respect to r are entries of

Y’
operator-valued, dimensionless (3 x 1)—matrices wm) A wm
given by

holds, where the differential operators m

™) and 7™ which are explicitly

() rd
{ﬁu)} = [ +54] {er} (C.32a)
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(171* = 1g1*)r*

m(g) d r d
— | —o(1712 4 1712)72 rd rda
o (= | 208 a5 | ] (C.32b)
0
0
w® r d r d
— (5l — 14 1 o D1 TS 39
{ﬁ(s)} (52— lqPrt | 1] 2+ 5] 14 220 (C.320)
0
1
ni(l) _|_1 . rd
(7)1 [1+ 53] {er} (C.32d)
n
0
. (Ip1* = 1q1*)r*
N 212+ P21+ 54 | 1+ LS (C.320)
Z6 [ 41 priair 3dr 5q :
0
0
‘,(5)
m +1 r d r d
_ 712 — 17120204 | 1 rda ra '
{ﬁ,(g,)} {1}(Ip| 171%)"r {2+2dr][1+2dr} (C.32f)
0

Proof. We start by rewriting the scalar products 5-3?lm(9p, ¥p) and E-Yl/mr (04, ¢q) as gradients
of the exponential factor with respect to p'and ¢, respectively, and subsequently compute the
angular integral in position space using Proposition C.1.1. In this way, we obtain

g?m 0 y o o
[ nip [@q i [ ao. { Yonllp o) | ey _
R3 R3 S2 g : Yl/m’ (aq, Spq)

IR o 1Y 11 (6, 0p) - grad; o
= [@wnaa) [ @7 wa) [ oo { . 7 | e
RS RS g2 +iY 1 (0, 0q) - grad;

(©1) . - — = = lem(epaWP) . gradﬂ i
< asi [ @5 () [ o k<|q|>{ ) ? L joatkar)
R3 R3 Y1 (eqv @q) ' grad(j

Computing the gradients of jo1(k+r) with respect to p and ¢ using (C.2a) and (C.2a),
respectively, turns the expression into the form

(C20) . = N 5 5 ?lm (0 , P ) : (ﬁi J) r d A
.- 87r1/d3p h(lp\)/dgq k(|7]) { I T [1+2d}]073(kir) (C.33)
R3 R3 Y (0g,0q) - (0 £ Q) "

To proceed, we have to consider the three possible choices for va m( separately.

(1) Ylm = )/lm
In the first case, namely for the radial spherical harmonic Y;0),,00 = Yiom», we insert the

definitions Yj,, = %Ylm and Yy, & ‘qi:‘Ypm/ into (C.33), make use of the relations (C.4a),
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(C.4b) and thus obtain

€ Yim(0p, 0 o
/d h(|p) /dgik\q| /dag{ﬂ B m(6p: ) ei(PE) € _
gym(q,@q)

[T_Qjo,l(k:tr)
+(IpI* - |5\2)j0,3(ki7”)_

L R rd
= [ nal) [@g st 58
4 —Lm? |:T_2j0,1(ki’l“)

R3 3 7l
=(P1? = 141*)d0,3(kxr)

( , +(I71? = |g1*)r [1+2d7}]03(ki7”)}

= 4ri / &5 h(7)) / RO
RS R3 £ [g%jo,l(kfﬂ")

(5 = 17221+ § Lo (ker)|

:4m/d3p h(p)) / 23: Y (C.34)

R RS =y, m%n,)Jo,n(k#")
7] (n) .
s, o (k=)
Here ﬁlgL )» ﬁg ) and tiig;n,) i/,) are differential operators with respect to r, explicitly given by
- (1) . (3)
me M
v rd Y -2 12y 2 r d
=-— . = - 14— .
e 2 dr (C.352) @ (1" = 1g1%)r [ +3 dr] (C.35b)
Y v
(1) <(3)
m_" +1 T d m“/ _1 r d
% v P,

Here we have implicitly chosen the convention that operators m always act on jo ,(kyr) while
operators n act on jo,(k—7). Additionally, dotted-unprimed terms always come with Y},

while dotted-primed terms come with Y,/

(2) ?lm = \fllm

In the second case, namely for the first tangential vector spherical harmonic ?lmmm = \I_}l(,)m(,),
we again insert the definitions i |p'| grad;; Yim and Uy 2 |¢| gradz Yy ms into (C.33) and
make use of the fact that the parts p'- Ty, and q- T}/ vanish for reasons of orthogonality.
We are thus left with

g \I_}m y P ey
/dgﬁ h(\ﬁl)/d3cf k(hj\)/dgg {q o (O 20) o iFED)€ _
R3 R3 § Wi (0g, 0q)

+[p'| grad; Yim - ¢ rd
= 87r1/d3ﬁ h(|p|) d3_' { ? r? {1 + er]jo,s(kﬂzr)

2 7] grad; Yo -
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To get rid of the derivatives of spherical harmonics, we integrate by parts with respect to p

and ¢, respectively, which results in
£k(11) vy (15 1) 51 Yim o.s (k7))

~Yidivp (A1) o s (k=)7)

- = 8ir? [14— d(i”] /d3ﬁ d3q
B171) |diva (k(TDIG Yiem o s (kr)F)
~Yirmdivg(k(11) |13 ks7)P)

Making use of the divergence theorem to rewrite the first term in both cases, and carrying out
the derivative in the second term results in

+ [ & kgl i
7| —o0

[ &% 1), tim [KUTNIZI? [ a2 Y jos(ker) (7 0)]

R3 |q'|—o0 S2

+k(l7)Y7

[FUBDIFI? [ A9 Yimosesr) 7 )]

LUEDEY (5. ) jo g (k1)
+h(|p]) 717 grady jos (ker)|
) rd 3= 3
— 8rir 1—|—§d— d’p | d°q
- h(|]) Yo [W@ 7)jo.s(kr)
+1(171)1q15 - gradgjo,s (ur)]

Integrating the terms which contain derivatives of h(|p’|) and k(|¢|) with respect to |p/| and |7]
respectively, and taking into account that the boundary terms at |p'| = 0 and || = 0 vanish as

h,k € CL(R{,R), we find
+ [ 7 k(|g]) lim
R3 |7 |00

(RFDIFP [ A2 Yimjos(kar) 5+ )]
- = 8mir? [14— s
2ArL) gt (o)) Jim [k(GDIZI® [ a9 Y doa(ker) 5 0)]
R3 oo S2

o [E LRt (RGP [ A2 Yin (5 @)inalker)]
— 8ir? [1+} ®
20 L) J @ n(pD) Jim [kTDITE [ A Yo (- 3o (ker)]
R3 |q'|—o0 S2
Y [ — G (1517 s (kar)]
rd 35 . 35 . +|ﬁ| : gradﬁjo’g(kir)}
e e U S (R
R R Gl [* aigr TP @jos(ker)]
+|7|*p - grad; ]OB(kﬂ:T')}

Cancelling the first term against the second and making use of Auxiliary Calculation C.1.4 we

finally arrive at

Yoo m(an)jo n(l{+T)
H 5 ‘p‘ n(JL)]O n(k'_'r')
L@ 47ri/d3ﬁ h(7)) /d3* Dy (C.36)
R3 R3 n=1 Yoo mgﬁ)jo’n(k+r)
7T\ n) .
nq‘}/ jo,’ﬂ(kfr)
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where
') r d rd
T
S A N T C.37
A0 {20170“ +2dr] (C.37a)
T
- (3) 9
me
T 12 12\ 2 r d
=2 14+ —— .
{ﬁ@} 05 +1aP% 1+ 47 (©.370)
T
) rd rd
T 12 52y2 4
= - 24 —— |14+ =— C.37
e | (€370
T
(1)
mg L [rd d
\l}/
— o1+ = C.37d
{ﬁ@} —1}{2&“ +2dr} ( )
\1}/
2 (3) 2
m: -1 d
o/ 12 12\ 2 r
= 2 1+ —-—— C.37
{ﬁ@} {+1} 21"+ 12 [ +2dr] (C.37)
\1}/
2 (5)
me, +1 r d r d
T 12 1 2(2)2,4
= — 24 —— |14+ =— C.37f
e {_1}<|p et |24 o | [+ 5] (C.37)
\l}/
(3) ?lm = (ilm
In the third case, namely for the second tangential vector spherical harmonic Y000 = @m0,

we once more insert the definitions \f/lm = px grad; Y}, and \I_}l/m/ = ¢ x gradg Yy, into (C.33)

and make use of the fact that the parts p' Ty, and q- U1, vanish for orthogonality reasons.
We are thus left with

€ By (0, o
[ a5 uisD [ @z ria) [ ao { BinOrr0) | iy
R3 R3 S2 5 (I) m( qagpq)

L ) +(p x grady Yim) - ¢ dl.
= 8m/d3p h(lpl)/d3q k(lq { . {1 + Zd}JO,S(kiT)

s & 7 x gradg Yim:) - p

To get rid of the derivatives of spherical harmonics, we exploit the cyclicity of the triple product
and subsequently integrate by parts with respect to p'and ¢, respectively, which leaves us with

£1(171)[divs (B Yimdo.s (br)(T % 7))
~Yindivg (h(7])jos (ki) (@ % 7))]

@ # | ROED[aive (O Yimdos (ker) (5 x )
~Yirmedivg (k17 Doa(ker) (% 7))

Making use of the divergence theorem to rewrite the first term in both cases and carrying out
the derivative in the second term results in

] £ [T h(dl) tim [BUFDIFP [ A2 Yindos(ker)(@ = 7) 7]

R{d 7 h(pl) Jim[k(q] |q|2fdﬂ Yiwsjoa(ker) (5 @) - ]
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+Yim - [h/gl)ﬁ (@ x P)jo,3(ker)
+h(1B])o s (ksr)divy (7 % 7)
4 +h(F1)(@ % 7) - grads jo (k)]
— 8mir? [1 + zd} /d?’ﬁ/ d3q . (C.38)
CO wm,[’ffgﬁ“a (7 @)jo.a(ksr)
k(| ])jo 3 (ker)divg (7 x )

Hh(171) (7 % @) - gradgjo.s (kr)|

In this expression the boundary terms as well as the terms containing derivatives h’(|7]) an
k'(|q]) vanish by exploiting the cyclicity of the triple product and the properties of the cross
product. Recalling that according to (C.2a) and (C.2a) the gradients of jo 3(k+r) with respect
to p'and ¢ are both proportional to (& ¢), also these terms vanish by the same reasoning.
Finally, the terms containing divergences also vanish due to the relation divy (¢ x p) =
(curlzq) - p— ¢+ (curlyp) = 0 and analogously for the divergence with respect to ¢. Therefore,

the whole expression vanishes identically, which means that ﬁlg) = tifin) =m gf) (") =0 for
all n € Z.
This concludes the proof. O

From this result which allows to compute the integrals in (4.27b), we can obtain the integrals in
(4.27a) by means of the following corollary.

COROLLARY C.2.2 (ANGULAR INTEGRATION OF SIMPLIFIED DOTTED-UNPRIMED TERMS)

For any h € C'(R{,R) and for vanishing ¢ the upper case in (C.32) reduces to

> O 5 £ . N N Ym 0 5
[ @505 [ a9 € i@y 007 = ami [ h<|p>l(|2;”””)f“> (71 (C.39)
R3

R3 52
where Eg) are entries of the operator-valued, dimensionless (3 x 1)-matrix {’(.1) given by
=L 0 o) (C.39a)
Proof. Taking the limit |¢'| — 0 in the expression Z 0™ jo . (k+r) we find for the first
component

5
lim Zm(;) o (kir) =

lg|—0 7~
r d
2dr

w T d . d. .
2 L doa(lr) 42 1+ 2 (i0a(510) = rdoa(5lr) = B (1) (€40

a1 + 5P 1+ 52 Lo alaln)
(r

For the second component we similarly obtain

5
lim Y@l o (k) =

7|—0
1710 ~—
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} jos(IF1r)

dr
clpiefos 2;] {1 + 32t ]iostisln
= [ 2 st -2 142 2] 0 2ioat5ie)
+ [2 + ;(fr} {1 + ;d(i} (r~*jo1(1P]r))
(i) k] -2 e sk - [ [ 3 ot
= [2[;5]2—ri—;iﬁiﬂjmﬂmr)zo (C.41)
which means that &) =0 Together with £ — 0 we therefore end up with
=L o 0 (C.42)
which concludes the proof. -

C.3 Evaluation of Double-Dotted Terms

The computation of the position space angular integral (4.27b) in Proposition 4.2.4 (Position
Space Angular Integration of Yy, Yim|imss Tim|irms) Tequires to evaluate integrals of the form

/dﬂg (5 ?zm(epwp))(g"?l'm/ (9q7Sﬂq))e_i(ﬁ@)'5 With Y00 € (Ym0 s Piormo» Wiormn }
5’2

which correspond to the double-dotted terms of Yy, 1. All these integrals can be computed
systematically using the following lemma.

LEMMA C.3.1 (ANGULAR INTEGRATION OF DOUBLE-DOTTED TERMS)

For any functions h, k € CY(RE,R) and for Y;0,,0 € {Yi0m0 > Brome s Vo mo } the relation

[ naan [ @7 wa) / 0% (6 Fon(6y, 00) (€ Fome (B 00))e~ FHTE =

R3 R3

5
‘ Ym 0 Y’m/ m*",jo n(kJrr)
= an [ n(p) [ oo wjg) T e o Gu eu) 57 8 75 (©.13)

J J 1P |71 w2 |85, don (k)

holds, where the sum runs only over odd indices and where mgz?, and ngz? are entries of

i

operator-valued, dimensionless (3 x 3)-matrices m(™) and #(™). The non-vanishing matrices are
explicitly given by
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@w®) +1 (1P +1q1%) ="+ 1)([p? —|g1?) © d
-2 12 2 r
o [ = U+ V5P -~ [P) 0 0) 214 54| (casm
i -1 0 0 0 "
i (®) +1) (L 00 rd rd
= p12 = 17122 |24+ = — | |14 =— 4
o g =100 0 o) o 5[5 .15

Proof. The guiding principle of this proof is to first rewrite factors of 5 as gradients of the
exponential factor with respect to p'and ¢, respectively, as we already did in Lemma C.2.1,
and subsequently to carry out the position space angular integral using Proposition C.1.1.
Afterwards, whenever necessary, we integrate by parts with respect to p’and ¢ in order to
achieve that spherical harmonics appear with an even number of gradients acting on them.

(1) ?lm =Y, and ?l’m’ € {ﬁ’m’a \Ijl’m’v él’m/}
We start by fixing ?lm as the radial vector spherical harmonic ?lm = 7m and systematically
consider all possible choices for Y.

(a) ?l/m/ = }_/'l/m/

In the first case we find

/dﬂg (5 ﬁm(Op, gap)) (5 Vi (6, Soq))eii(]lﬁtqﬂ)vE -
S2
= FAT (Y (0, ) - grady ) (Yirm: (04, 0) - grady ) o (ker)

Inserting the definition of ﬁm and observing that the gradient with respect to p does not act
on Vi (0, 0q) gives
i/lm Yl/m’
T 5
7l 14|
By inserting the result from Auxiliary Calculation C.1.5 for the two-fold gradient of jo 1 (ki7)
we find

—

=74 (p . gradﬁ) (tf grad(;)jo,1(ki7")

/ng (g ?lm(gp’ QPP)) (g ?l/m’(aq» ‘Pq))e_i(ﬁiq)'5 =
SZ
2 Iom/ 2 m. *,]OJL(]CJ,_’/‘)
- 4wﬁ4ﬁ4 <:>Y (C.44)
|p| |Q| 1 ﬁ??,jo,n(k_T)

(n)

o and mgg);, are differential operators with respect to r given by

. (1) 2
moo, -1

R - [r d} (C.44a)
i) +1) [2dr

where m
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(3)
mey +1 d
YY’ —2 =2
= 14+ -— .44b
o {_l}qp 14 g (C.410)
YY’
(5)
s, +1 rd rd
YY 2 2N\2, .4
= 24 —— |14+ =-— .44
o {_1}<|p P a1 g (C 440
YY’

(b) Vi = Wprps

In the second case, namely for ?l’m’ = \Ijl/m/, we find

/ &7 k(7)) / A% (€ Yim (Op, 0p)) (€ T (B, pg) ) e PEDE =

n 1) Ym - — — N .
47r|%| &7 K(71)I7|(grad; Yim - gradg) (5 grady ) o1 (k<7
where we interchanged the two factors (5 Yim (0, ¢p)) and (5 Ty (0, ©q)) before rewriting

the factors 5 as derivatives of the exponential. Next, in order to arrange that both gradients
with respect to ¢ act on the spherical harmonic Y}/,,,-, we integrate by parts with respect to ¢
and thus obtain

47T|lfn|1 |:ddi' (;5’ gradz jo,1 (k+7)k(|q])17| gradaYl,m/)
— - grad o (ksr)divg (k1) 7] graqu/m,)}

Rewriting the first term using the divergence theorem and computing the divergence in the
second term results in

Yim o . . o o
=t i KD [ a9 5 g (b7 wrodg Vi
1P| 71— A

+ 4wﬁ 47 - gract o, (k) [ (171)3 - racdy Vi + k(1) divg (17] aradg Yien) |
As a consequence of the fact that grad; Y, is tangential to 52, its scalar product with ¢

vanishes. Thus, the boundary term and the first term in the second line both disappear such
that we are left with

Yn -
= d4r |Z_,|L /d3 (1g)7- grad; jo,1 (k+r)divg (|q|grad Yirm)
Carrying out the divergence and using divg grad; Yim: = AgYim = —1'(I' +1) Iqil ", we arrive
at
Yim 30 1 1oy o , i
= i4ﬁﬁ d°q k(|7])p'- grad; jo,1 (k+7) |_,|q gradg Yoy — g1 (1" + 1) Yy

In this expression, the first term again vanishes for orthogonality reasons. Evaluating p-
gradz jo,1 (k+r) using (C.2b) we ultimately end up with

(n)
~=4w/d3*k(|~|)“7mﬂ g Jon (k)

i (C.45a)
T 1al 5= | 84 o (kr)

R3
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where the derivative operators are given by

(1)
myL -1 d
vl _ ra rd
S {H}l . 1)[2 dr] (C.45Db)
YW’
3)
myL -1 d
vo | _ I =2 =2 rd
W[ {H}l "+ 1)r=(1p1° — 141 )[H 2dr] (C.45c¢)

(C) ?l"m’ = él/m/

In the third case, namely for Y_"l/m/ = (fl/m/, we find

/d3(j k(Wl)/dQ& (g Y—lm(epﬂ‘zpp)) (g 5l’m’ (911790(1))6;1(1&6){ =
R3 52
““4Y“” 37 k(gD | (T d.Y; d.| (P grad)joq1(k
T | 4 (17| (7 x grad; Yim:) - gradg | (7 grady ) jo,1 (k+7)
R3
where we interchanged the two factors (E . Y}m(ﬁp, gap)) and (E . 5l/m/(€q, <pq)) before rewriting

the factors E as derivatives of the exponential. Next, in order to arrange that both gradients
with respect to ¢ act on the spherical harmonic Y;/,,,-, we integrate by parts with respect to ¢
and thus obtain

Y - — —
= Fdr—- l_,| d3g [dwq (p grady jo,1 (k+r)k (\q|)(q X graqul/m/))
— P’ gradjo,1 (kxr)divg (k(|(j'|) (7 % grad(le,m,))]

Rewriting the first term using the divergence theorem and computing the divergence in the
second term results in

Yim i B , o
- ¥4WW i [ (|q|)m/qup'gfadﬁﬂoxl(’fﬂ)k(\ql)q- (7 % gradlj}ﬁ/m,)}
2

K'(1q1)
]

Yim o (o
4 4 tm d3q p- grad; jo, 1(1%7")[ 7 (7% graqul,m/)

|q|
+ k(|q])divg (7 > grad(f}ﬁ,m,)}

By exploiting the cyclicity of the triple product ¢ - ((j’ x gradg Yl/m/) and the properties of the
cross product, both the boundary term as well as the first term in the second line disappear
such that we are left with

Yim o oo . . .
= i47r|lT| 4G k(|71)p - grady jo,1 (k+r)divg (7 x gradg Yim:) (C.46)

Using the relation divg (d’x graqul/mr) = (gradlel/mf) . (curlch') —q- (curlq graqulfm/)
together with the fact that both radial vectors and gradients have vanishing curl, it follows that
(n) - (n)

also the remaining term vanishes identically. We thus have mq &= nyq =0 for alln € Z.

(2) Ylm = \I’lm and Yl’m’ € {\Ill/ (Dl’m }

Having gone through all possible ch01ces for Yl/ for fixed ?lm = _}m, we now set Y"lm = \Em
and consider the two possibilities Yl/m/ \I/l/m/ and Y,y = Dy, one after the other. Due
to the fact that in both cases all involved spherical harmonics carry a derivative, we can no
longer suppress one of the momentum integrals.
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(@) Vi = By
Inserting the definitions of \I7lm and \I7ll,n/ yields

[ s [ @ k) / A% (€ Tu(Opr29)) (€ Frr (0, 0))e P =
R3 R3
= $47r/d3p (PP /d3q (| |)\q|(grad Y, - grad; )(grad Y - grad; )]0 1(kxr)
R3
Integrating by parts with respect to p'in order to make both gradients with respect to p’ act on
Yim yields

= ZF47r/d3 /d?’q_' (| [dlvp( (1717 grad; Yim (gradg Yim: ~gradq~)j0’1(/€ir)>

~ grady Yy - gradg o 1 (ker)divy (h(5)I7] gradﬁmm)}

Rewriting the first term using the divergence theorem and computing the divergence in the
second term turns the expression into the following form

= Far Jim l (I7 IpIQ/dQ /dSCT k(17717 - grad; Yim (gradg Yim, - gradg ) jo, 1(1&7“)]
R'S

o ppPl) o
7r/d3p /d?’q E(1q1)|q] grad; Yirm: - gradz o1 (k+7) ((“L)l)pgradﬁ}/lm

R3 R3
+ H(D I ldivy grads Vi

By the same reasoning employed earlier, namely due to the orthogonality of pand grad; Yim,
the boundary term as well as the first term in the second line vanish. Furthermore, by using

divy grad; Vi, = —I(l + 1) I;hlg we arrive at
" Yim "
-=i47fl(l+1)/d3p h(|71) |ﬁ| d°q k(17])|q| gradz Yirm - gradg jo. (kxr)
R3

It remains to make both remaining gradients with respect to ¢ act on Yj,,,,. To this end, we
again integrate by parts, but now with respect to ¢ and thus find

g vy (K717 gl Yoo ()

Yim
=i+ 1) [ @7 w2 7
R? . . — —
o (sr)divg (K(qDI7grad i )|

Rewriting the first term using the divergence theorem and carrying out the divergence in the
second term, we are obtain

Ipl g | =00

= ani(+) @5 R(F)TZ T [k<|cf|>|a|2 / dﬂqagrad(,%nujo,l(kir)}
R3 S2

} . k(ZDlal)’
ZF47rl(l—|—1)/d h(|p |) I_,| d3q ]0,1(kj:’f')|:( ( |CT)|| ) q - gradg Yirm
R3

k<|a|>|q*divq~grad§m,m,]
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Once more, the terms containing ¢+ grad; Y,/ vanish due to orthogonality. Using the relation

Y’i’rg’ we finally end up with

divggrad;Yim: = AgYig = —I'(I' + 1) :

|
. (1 .
Yo Yoo |50 (kyr)

~~:47r/d h(|7 |>/d3@ k() i 2
J B11a1 18, jor (k1)

R3
where the non-vanishing derivative operators are given by

(1)

Mo | {i} W+ DU +1) (C.47)

(1)
Wy, g

(b) Yy = By
Inserting the definitions of \I_}lm and 51/

/d h(lp]) /d3(j’k’ I7]) /ng f ‘I’lm(ep,QOp)) (f . (04, 04 ))eﬂFl(piq

_ZF47r/d h(|p |p|/d3q k(|77 ( grady Yo, - grad; )((qxgrad Yim:) - grad; )]0 1(kxr)

m yields

R3
Integrating by parts with respect to p'in order to make both gradients with respect to p'act on
Y yields
= :F47r/d3 /d3(j' k(|q]) [dwp( (17])[P'| grad; Ylm<(q x gradg Yl/m/) gradz )]0 1(/€ir)>

R3
— (7% grad; Yirm) - gradg jo.1 (k+r)divy ( (I7])|9] grad; Ylm)}

Rewriting the first term using the divergence theorem and computing the divergence in the

second term turns the expression into the following form

=¥ T [hum)w 7 K(7DII(7 - grady Vi) _
2 3
oo ((@x grady Yiom) - grady ) o1 (hr)

i47r/d3ﬁ /d3(j k(|71) (7 % gradg Yim:)-

oo (h(FDIF])
~grad¢jo,1<kir>[ L5 grady Yo+ () v s, Vi

Once more, due to the orthogonality of p'and grad; Y}, the boundary term as well as the first

W+ 1)%"5 the remaining part reads

term in the second line vanish. Using divy grad; Y, =
321 1= Yim 37 k(1aDN/(& '
= Fanl(l+1) | EPp h(p) =7 il J 4°q k(|q1) (7 x grad; Yirm) - gradg jo,1 (k+r)
R3
In order get rid of the gradient with respect to ¢ acting on the spherical harmonic Y}:,,,, we
first exploit the cyclicity of the triple product and subsequently integrate by parts with respect

to ¢. We find
Yim 3 . o
d°q |divg (Yl/ k(|7]) (gradg joi (k+r) X q))

- = FAxl(l + 1)/d3ﬁ h(Ip1) = |—»|
~Yiweivy (K(d)gradgios (k) 7))
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Rewriting the first term using the divergence theorem and carrying out the divergence in the
second term, we arrive at

IP] 17]—oc

Ym . Y’ ’
..::F47rl(l+1)/d3ﬁ R 2 1im { (17D1q |2/d9 Yom oo, (grad, Jm(kﬂ)xq)}
RS

(k(\qom)’

Yim . . -
! d37 Y {mq (gradqjo’l(k:ir) X q)

ﬁ:47rl(l+1)/ 5 h(|p |)|q|
R3

k(121 divy (srad o s (kar) x q-*)]

According to the properties of the triple product and the cross product, terms containing the
factor ¢ - (gradqjoyl(kir) X (j’) vanish such that only the last term remains

Yim
Pl

Yim

..::l:47rl(l+1)/d3ﬁ h(|p|) = [ a3q k(|q]) === 7] ‘| 7)?divg (gradgjo,1(k=xr) x q)

R3

To simplify this expression, we use (C.2a) and find

35 I
|*| 7 W71 7

..:;47r1(1+1)/d h(|]) T
R3
divg [+ 2 x @2 |1+ =L os(kar)
Vg pxq)r 2 dr Jo,3\R£T

Carrying out the divergence, we obtain

...:_gw2z(z+1)/d3* h(IP) =

R3

Yim . o Yo d
&7 k(g |q|2[ +}><
7y 7 24

x [dw(ﬁx Dioa(ker) + (7% 7) - gradgjo(ker)| (C.48)

The first term in this expression vanishes due to the relation divy(p' x ¢) = (curlgp) -
qg—p- (curlyq) - ¢ = 0 while the second term vanishes as a consequence of the fact that
grad; jon(k+r) o (p'+ ¢) together with the properties of the triple product. All in all the

whole expression vanishes which means that ﬁig%/ =0 and ﬁg%/ =0 for all n € Z.

(3) ?lm = q;lm and ?l’m/ = CI3l’m/

Finally, we fix ?lm = q;lm and consider the only remaining case Y_"l/m/ = 5l/m/. Inserting the
definitions, we obtain

/ &5 h(7)) / &7 k(7)) / 0% (& B0y, 20)) (E- B (0, i0)) e FEDE

R3 R3 S2

- :F47r/d h(p |)/d3(7 R(71) (7 x grad; Yin) - grady ) (7 x grady Yim) - gradg ) jo. (ker)
R3 R3

Integrating by parts with respect to p yields

= / oy / &7 k(|7)) [divﬁ (517 x grads Yim (7 gradg Vi) - gradg )jo (k) )

R3 R3
— (7% grad; Yy ) - gradg jo,1 (k+r)divy (h(|ﬁ|)ﬁx gradﬁYlm)]
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Rewriting the first term using the divergence theorem and computing the divergence in the
second term turns the expression into the following form

o= [huﬁnw [ a9, [ €q k(a7 (7 x eradsYi) x
2 3 .
5 . (CTX gradq'}/l/m’) : gradq‘)]O,l(kjir)]

tar [ @5 [ @ K7)(7% grady Vi) - gradgoa(ber)x

R3 R3 .
" [h (IfI)
7|

P+ (7% grad; Yim) + h(|p])divs (5 % gradﬁYlm)] (C.49)

Due to the cyclicity of the triple product and the properties of the cross product, terms

containing - (ﬁ X grad; Ylm) vanish. The remaining term also vanishes as can be seen by using

the relation divy (ﬁ x grad; Ylm) = (curlﬁﬁ ) -gradg Y, — p- curly grad; Vi, and recalling that

both the curl of a radial vector as well as the curl of a gradient vanish identically. We thus
= (n)

have ﬁif;%/ =0andiizz =0 forallneZ

Up to this point the we have only determined the entries of the operator-valued matrices (")
and (") lying on or above the diagonal. By simultaneously interchanging the functions h « k,
the variables p' <+ ¢ and the parameters (I, m) <> (I'm’) the expression

/ 47 h(|p]) / 437 k(|q]) / A% (€ Yim Oy, 00)) (€ Yirmi (0, 00))e " FEDE(C.50)
R3 R3 S2

remains unchanged except for an additional factor (+1) appearing in the exponential. However,
due to Proposition C.1.1 this factor disappears upon carrying out the position space angular
integral. As a consequence, the entries of the matrices (™) and (™ below the diagonal can
be found by interchanging 7 <+ ¢ and (I,m) <> (I'm') in the corresponding entries above the
diagonal.

This concludes the proof. O

C.4 Evaluation of Asterisked Terms

The computation of the position space angular integral (4.27¢c) in Proposition 4.2.4 (Position
Space Angular Integration of Yy, i Tim|irm’) Tequires to evaluate integrals of the form

/ng Y1 (0p, 5) * Yo (0g, 04)e 7 PEDE with Y000 € {Yi0m0, B0 s oo }
S2
which correspond to the matrix l*'lm| 1rme- All these integrals can be computed systematically using

the following lemma.

LEMMA C.4.1 (ANGULAR INTEGRATION OF ASTERISKED TERMS)

For any functions h, k € ct (Rar, R) and for ?l(’)m(’) € {}_}l(’) m? s 51(/)m(/) , \fll(’) m(/)} the relation

/dSﬁ h(Ip1) /dsi k(|(j'|)/dQ§ lem(epﬂpp) 'le’m’ (6, 9‘711)6_i(ﬁjui).5 =
R3 R3 S2
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5 (0 don(kir)
—ar [ @5 b)) [ &7 KD YinYiw 3§ TY (1)

R3 R3 :11:053 n?Y—;/jO n (k*,’n)

holds, where m%lz? and ﬁg}%/ are entries of operator-valued, dimensionless (3 x 3)-matrices

’

m( and 1™ respectively, which are explicitly given by

1 [1+54-]
x(—1) 2 dr
m = ik _ [1+zi] [1+£$]2 0 (C.51a)
ﬁ(il) _1 2|ﬁ|‘q‘°|r2 2 dr 2 dr
0 0 0
1 r
1 r 0
- I 3 + 5 ar]
W (VPP (S maliesd) o (C.51)
) +1]  1Plg]
0 0 0
3) 0 ! !
m L (1912 = 171%)? 5 2 2 rd
— Upl” —1a17)” (B4 +171H+(5 1+ 1%) rd rd
{a<3>} {—1} F |1 MR s ) o |15
0 0 0
(C.51c)

= (5) -1 19 12 (.22 1212 0 0 O

m —

= BT+ 1a)UP1” =1TF)" 0 (g ¢ g [2+TdH1+Td} (C.51d)
n®) +1 2pllq| 00 0 2dr 2dr

Proof. The guiding principle in this proof is similar to the one in Lemma C.2.1: First, we
carry out the position space angular integral using Proposition C.1.1 before we start to remove
all derivatives from the spherical harmonics via repeated integration by parts with respect to
P and ¢. As a consequence of this procedure, the derivatives reappear as h'(|p|) and k'(|7])
which in turn have to be removed via integrating by parts with respect to |p/| and |{].

We start by computing the position space angular integral. Due to the fact that only the
exponential factor carries a dependence on the variables (¢, p¢), the corresponding integration
can be carried out trivially such that we obtain

/ &5 h(7)) / &7 k(7)) / A% Vi (0, 03) - Y (B, oo FH0E =

R3 R3 52
= 47r/d3p h( Ipl)/dgff (T Y 1 (05, 20) - Yirans (04 00) o1 (k) (C.52)
R3

In what follows we systematically consider all possible combinations of scalar products of
Y., € {Ylm7 \Illm, <I>lm} and Yy, € {Yl/ \Illr <I>l/m }. The order of calculation is as follows:

(1) Yl'm - )/lm and Yl"rn’ S {Y’m’y ‘l’l”mh q_;l”m’}
(2) Ylrn = q_}lm and Yil’m’ € {\I_}l’mH (fl’m/}
(3) lem - qglm and Y_tl’?n’ - (f)l’fn’

At the end of the proof a symmetry argument will extend the validity of the following calculations
to the missing combinations.
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(1) Yy =Y, and Yy € {Y/m’a Wy, ‘I)l’m’}

We start by fixing ?lm as the radial vector spherical harmonic ?lm = )_)lm and systematically
consider all possible choices for Y/,

(a) Yl’m’ = le’m’

In the first case, namely for ?yw = ﬁfml, we do not need any momentum space integrals as
there are no derivatives of the spherical harmonics involved. Thus, inserting the definitions
of Yy, and Yy, into (C.52) and making use of the relation k2 = |F|2 + || + 27 - ¢, we
immediately obtain

= - . D q _imaE
/dQE Yim - }/l’m/]o,l(ki’/’) = }/lm)/l’m’we i(p£q)-€

52
k1P —lalP
= YimYim ( + H>J’0,1(k‘ir)
2[p|q|
L) Gon (k)
= lemyvl’m/ Z Yy (053)
n=-—1 ﬁ(jll .]O n(k_’]“)
n odd YY’'”™
where ﬁlgg);, and ﬁ%”%, are differential operators with respect to r given by
(1) . (1)
mo o) +1 m(ﬂ ). _ . .
Cob=1 tomrs  (Cssw) v | _ [0 1P+ P
aC ) 1] 2lpllq]r? (1) (= —_ (C.53b)
vy - 55, +1) 2plq]

(b) Y_Ll’rn’ - \fll’m

In the second case, namely ?l/m/ = \I_}l/m/, we have to perform one integration by parts with
respect to ¢ which implies that the p-integral can be suppressed. Inserting the definitions of
Yim and Wy, yields

/ d*7 k(|7)) / A% Vi, - Ty, e iPED)E

R3 S2
Y, i .
- / 87 k(7)1 (7 - grady Yim ) jo (ksr)
]RS

Integrating by parts with respect to ¢ yields

TZT a°g [divy (K(DIGYirm o (br)F) = Yimedivg (K021 1o (k)7 ) |

Rewriting the first term using the divergence theorem and converting the divergence in the
second term into a gradient by pulling p’ outside, we arrive at

_ Yim

GIRGEES

[WW [ 49, Yoo (har) m]
SQ

(k(17))Iq)’

Y R . oo .
: d*q Yirm {(P Q)Tjo,l(kir) +k(|7])|q1p"- gradz jo,1 (k<)

Ipl



198 C.4. Evaluation of Asterisked Terms

In order to get rid of the derivative of k(|¢|) in the second line, we have to integrate by parts
with respect to |§| which turns the expression into

Yim o . Lo
= i (K7W [ A9, Yo (bsr)5 )|
Pl la 2
Y i N2 I
im (K7D [ a9 Yo (7 D)o (har)
|p| |q'|—o0
S2
Ylm

I 1d 1,5 5. - .
&G k(7)) Yirm [r (- )|l (ker)| = 1715 gvadg oy (kr)

I*I 71 d|q]

In evaluating the |g|-integral at its boundaries we exploited the fact that the integrand vanishes
at the lower boundary |7| = 0 as k € C*(RJ,R). In the resulting expression, the first and second

term cancel each other while for the third term we find by using Auxiliary Calculation C.1.6

3 m(a Z ]0 n(k+T')

= / &G k(7 YimYemr > 27 (€54
i n=—1 n?\f,,]O n(k T)
where
- (-1)
g +1 1 r d
Yo
— N b T C.54
G {1} e+ v (C5%)
Yo
= (1)
i S W
¥ p q T
_ 2 - — C.54b
Al {+1} P1lq] 2dr (C510)
Yo
= (3)
Mo g L (7P - lgP?)? { d]
v p q 2 r
— -7 ]_ + —— C54C
a0 {—1} 71lq] 2dr (1)

(C) Yl'm’ = (I)l/m/
Just as above, in the third case, namely for Y;/,,,y = @y, we have to perform one integration

by parts with respect to ¢ which implies that again the p-integral can be suppressed. Inserting
the definitions of Y, and ®;,,  yields

/ 4°q k(|71) / AQe Vi - Bprpre 1 PEDE =

R3 52
_ Yim 37 k(15 (@ )
|p| &7 k(177 (7 * gradg Yirm: ) jou (k+r)
Yzm

|ﬂ| d3q k(|7 gradz Yirm: - (9% q)jo,1 (k£7)

where in the last step we exploited the cyclicity of the triple product. Integrating by parts

with respect to ¢ yields

Yim ol N o . . N
= [ @0q v (KITDG * @) Vidoa(ksr)) = Yomedivg (KI7D (7 Do (k)|
R3
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Rewriting the first term using the divergence theorem and computing the divergence in the
second term we are left with

Y, . oo } o o
_Ym [k<|q|>|q| [ 492 Yiewsis (hir) 7 0) -
7] 1100 ¢

 Yim
I*I

K'(lq1)
7]

7 (P x q)joa(ker) + k(|q])divg (P % §)jo,1 (kxr)

dS(jY'l’m’|:
L RZ)Ex D) -gradqjo,mr)} (C.55)

In this expression, all terms containing the factor (p'x ¢) - ¢ vanish as a consequence of the
properties of the triple product. Recalling that gradgjo1(k+7) o< (£ ), also the term
containing the gradient vanishes by the same reasoning. Finally, the divergence term also
vanishes due to the relation divg (p'x ) = (curlgp) - §+ 7 (curly¢) = 0 because §- (Fx §) =0
and ¢- (Fx ) =0.

This concludes the computation for Y_"lm = }_}lm and \?grm/ € {Y}:mr, \fll/m/, 5l/m/}. Oy

(2) lem = \fllm and le/m’ € {@l’m/ (fl’m }

Now we fix Ylm to be the first tangentml vector sphemcal harmonic Ylm = \I/lm and consider
the two possibilities Yl/ ;= \Ill/ + and Yl/ = <I>l/ + one after the other. Since in every of
the two cases both spherical harmonics carry a derivative, we can no longer suppress one of
the momentum integrals.

(a) ?l/m/ = \I_}l’m’
Inserting the definitions of \I_)lm and \I7l/m/ yields

/ &5 h(|7)) / &7 k(7)) / A B - By D€
R3
/d3p h(|p |p|/d3(j°k‘ (grad Yim - gradg Yo, )j(),l(kir)

Integrating by parts with respect to ¢ gives
= [ 1101 [ @ [aivg (RTDIa1Yi o (esr) 10 Vi
R3 R3
~ Yipeivg (KOTDI7lina(her) rods Vi, )|

Rewriting the first term using the divergence theorem and carrying out the divergence in the
second term results in

= / a'p A7) Jim {kuqﬁw / A Vi o1 (her)q- gradﬁnm}
S2

R3
I
k k
7] [ (Iql)lql} m]o&( +7)

+ k(|71)|q] gradgjo.1 (k+r)

2., o . d
= [ @5 1EDIF| [ Vi grad Vi [
RS

R3

To get rid of the derivative of k(|7]|), we integrate the respective term by parts with respect to
|7|. Taking into account that the boundary term at |¢| = 0 vanishes due to k € C* (R, R), we
obtain

= [ a0t [KIZ0P [ a2, Yoo (er)d- wrads i
R3 S2
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- / &% D7 i [KIGOWTE [ 49 Yiend - erads Yoo (bar)

S2

/d h(|p |p|/d|Q| k(| Iql/dQ Yim 'd| 7l |7|q - grad; Yzmjm(kir)]

/d h(|p |p|/d367k 7)) Yrm 17| grads Yip, - gradg jo,1 (kxr)
RS

where the first two terms add up to zero. Next, we have to eliminate the gradients of Y;,,,. To
this end we integrate by parts with respect to p and thus find

1 d

_ 3 35 NV, — St 3 DBV i -

J @ [ @ K@i a1 v (Yo ()

R3 R3 . — - . —
= Yincivy (DI (527 )|

= [ [ Yo 1 vy (Y g ()

R3 R3 . — - .

Viiv (W57 10 o (k)|

Repeating the above procedure, namely rewriting the first and third line using the divergence
theorem and computing the remaining divergences in the second and fourth line, results in

= Jin (1D [ a9 Vi [ 7 KDY lioa ()05
|00 A 2 | 7] di7|

1 d 1.2 SN o
- [ Vi / &5 K2 Vi o7 i 1410 gracdy (151 Pl ()|

R3

- lim [huﬁ)w [ @9 Yo [ € 2 Yoo 15 0 ()|
52 R3

|p'|—o0

4[5 Yiuy [ 7 K7 Yo 71divs (B(FDIF grad s (ki)
R3 R3

At this point we have to compute the gradient with respect to p and divergence with respect
to ¢ in the second and fourth term, respectively. We obtain

B} I h(IpDIBN)" . IR .

- grad; (h(lpl)lpljo,l(kir)) _ (RUPDIP1) 7] ) (7~ P)joa(ker) + h([P])|P]7 - grady o, (k+r)
(n(|7)7))’

divy (R IP| 8rad o (kar) ) = 2 grady o (har) + b IP|divp gradg o (k2r)

Inserting this yields

. R S 1 d .
= Jimn (1D [ a0 Vi [ 7 KDY lioa ()05
17|00 |71 dlg]
S2 R3
1
[ i [ 7 K o 1 (1D 0 s s
/ [ e i 77| 157 [OPDIF] @ P (s

+ FIFIR(F)IFI gradﬁjo,lwm]

- i [wDI5 [ a0, vi, / A K1) Vi 417 grak o (1)

|7'|—00
5'2
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ol I q] d IR .
[ 5 Yin [ €KDY DS (05D o (sr)
R3 R3

" |c7h<|ﬁ>|ﬁdivﬁgradqjo,1<kir>]

To cancel the boundary terms, we have to integrate by parts with respect to || in the second
and fifth line and thus obtain

= i (DI [ a8 Vi [ € K)o 1 [l (a5
g S2 R3
. SN = 1
- Jim_[n(iigr / A2, Vi [ € K0TDYir (0100 Pinathar)]|
|| —00 71 d[q]
R3
3= d 5.~
d|p| A Yin | &7 KT Yo " | 711 g7 [ P10 P (her)]
3= 3= 1017 Lod 1 opne .
~ [ & Yin qu(\qmm,m g7 [TIPDI5 gradz o ()|
e e q|dlq
= Jm [h<|ﬁ|>|ﬁ|2 [ 9% Y [ €7 (a0 Vi1 715 10l ()
b S2 R3 -
+ Jim [h<|ﬁ|>|ﬁ|2 [ 9% Yo [ 3 (a0 Yorn| 715 gracd o (k)
52 R3 )
- / dIf| Yim / AT k(71 R F) | 717 s )

/ &5 h(|F]) Yim / &7 £(71) Y |7117)divpgrady o, (kar)

Cancelling the boundary terms and combining the remaining terms we are left with

1
o= [ @5 )Y [ @ K7 Vi 155 191 i ()
R[ J Pl dlgl [ dlp] [ }
17 - . i
— == |17]q - grad; jo,1 (k+7) | — = Pl gradg jo,1 (ke
|q‘ ‘q|{| | pOl(i)} |p| |p|{| | 01(1)}

+ plld |diVﬁgr3d§jO,1(kiT)]

Making use of the result in Auxiliary Calculation C.1.7 we end up with

: 5 n*l(_,l (k/’+’l")
= [ @5 ) [ @7 Kah¥inYiew 30 400" (C.56)
E s 1ma (Mg on(kr)
where
= (=1)
m_‘_'/ +1 1 r d 2
A%
_ 14— — C.56
HCD {—1}2|ﬁ||q*|7“2{ * (€:560)
A
g | _ (1] 1P + iz gy drdlfy rd (C.56b)
Y G WY Gl rar ][ e |
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= (3) o o S o o o

i S R N CoN T CERT /SN S N R

s [T\o1f il 257 — |77 2 2
(C.56¢)

% (5)

i Y G N TS T A R

g p q p q r r

= — 24+ -— | |1+ -— C.56d
) {—i—l} 2077 rar) |t 2a (€564

(b) ?lm = \I_/' and ?l’m’ = 5l’m’

Inserting the definitions of \I_)lm and fi;pm/ yields

[ 5D [ @ K7 [ a0 T e P0E -
RC’) ]R?) 52

- / &5 h(7))17] / a7 k(1)) grad; Vi - (7 x grady Yo )jon (ksr)

/d3p h(7) |p|/d3q k(1) (grad; Yim x @) - grad, Yim o (kir)
R3

where we exploited the cyclicity of the triple product in the last equality. Integrating by parts
with respect to ¢ yields

= [ wDIal [ @ |aivg (KTDITIYrdos () grads Vi < 7)
R3 R3
~ Yiedivg (k(|§|)|§| Jon (kxr) grad; Vi, x q)]

Rewriting the first term using the divergence theorem and computing the divergence in the
second term using divg (grad; Yy, x ) = ¢ curlg grad; Vi, — grad; Vi, - curly @ = 0 results in

/d Rr(P)IP] 1|1£I>100|: (¢ |q‘2/dQ Y jo1 (ker)q - (grad Yim xq)}

/d%h \p|/dqy/ (grad; Yi, x ) - grady (6(7D|7jo1 (k7))
RS

By exploiting the cyclicity of the triple product once more and using § x ¢ = 0, the first term
vanishes identically. Carrying out the gradient with respect to ¢ in the second term turns the
expression into

—

d q .
435 h(|p d37 vy d Vi = k(@D L jo 1 (k
R[ \pl/ 7 Yo (grad;Yim x q) - [d|q|[(q|)|q|}|q|yo,1( +7)
+k(|d')|§|gradqjo,1(kir)]

Using the same reasoning as above, the term containing the derivative of k(|¢’|) vanishes. Using
the cyclicity of the triple product the remaining term can be rewritten as follows

/d3p h(|p]) \p|/d3(j’k’ INIGYrme grad; Yig, - (7% grad jo, 1(k+7))
R3

In order to get rid of the gradient of Y}, we integrate by parts with respect to p and thus find

_/d3]5‘ /dSJ k(DT Y [div,; (h(\ﬁ|)\ﬁ|Ylm((j’x gradq»jo,l(kir)n
3 3
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~Yincivy ((F)IF (7 gradgina (b27)))|

Rewriting the first term using the divergence theorem and carrying out the divergence in the sec-
ond term using divy (§'x gradqjo,l(kir)) = grad; jo,1(k+r) - curly ¢ — - curly grad; jo 1 (k+r) =
—q - (curly grad;jo,1(k+7)), the expression becomes

|P|—o0

= lim [h<|ﬁ|>|ﬁ|2 / a9, Vi, / &7 k<|q*|>|¢7m/m/(q'xgrad@jo,mkir))-ﬁ}
R3

S2

+ / &5 h(IF )| Yim / 87 K(F1)|F|Yirm - curly grady oy (ksr) (C.57)
R3 R3

Recalling form (C.2a) that gradg jo1(k+7)) o (5% ), the first term vanishes as a consequence
of the cyclicity of the triple product and the properties of the cross product. Due to the fact
that according to (C.3b) also the integrand of the second term vanishes, we find that the

whole expression vanishes. This means that we have ﬁlg%, =0= ﬁgg, for all n € Z.

This concludes the computation for Y’lm = \Em and ?l/m/ € {\f’l/m/, (f’l’m’}- Oz

(3) ?lm = (flm and ?l’m' = ‘f)l’m’

Finally, we fix Y’lm to be the second tangential vector spherical harmonic ?lm = <I_5[m and
consider the only remaining case Y/, = @y Just as before, again both momentum integrals
are needed. Inserting the definitions of ®;,, and ®;,,, yields

[ D [ @ K7D [ a0 B Bp00) - B (80 P41 =
R3 R3 S2

= /d3ﬁ h(|ﬁ|)/d3(f k(17]) (7 > grad; Yim) - (7% gradg Yim:)jo.1 (ker)
R3 R3

— [ @5 7)) [ @7 K7D |7 @) (srads Vi - grad Vi)
“ “ — (7 grady Yig) (7 grady Yie) | o, (ker)
where in the last equality we employed the identity (7 X ) - (U5 X Uy) = (V) - U3) (V2 - Us) —

(U - U3) (U1 - Us) to rewrite the scalar product of two cross products. Integrating by parts with
respect to ¢ yields

s / &’ h(|p]) / & [divg (K7 Yim (7 7) grady Yimjo, (k1))
R3 R3 _
~ Yiondivy ((71) (- @) grady Yimjo, (kr)
— divg k() Vi (7 rad; Yim) Foa (kr)
+ Yy divg (k(|67|)((7" gfadﬁﬁm)ﬁjm(kﬂ“))}

By applying the divergence theorem, the first and third term can be converted into surface
integrals, while the divergences with respect to ¢'in the second and fourth term can be rewritten
as gradients with respect to ¢. Rearranging terms gives

o= [ @) i (6D [ a9 Yoo ()
3

S2
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Lo - ] q
X [(p -q) grad; Yim — (q . gradﬁYlm)p} . |q_'|]

= [ 005D [ @ Yo grady Vi, grad (K7D G- Do (kar)

R3 R3

b [ 7D [ @7 Vi grady (7D gracds Yoo (b))
R3 R3
As can be easily seen in this form, the difference in the integrand of the first term vanishes
identically. In the last term, the gradient with respect to ¢ can be rewritten as follows

grad (k(71) (7 grady Yim)jo, (kar) ) =
= gradg (k(|q])jo,1 (k+7)) (7~ grad; Yim) + E(|q])jo,1 (k+7) grad; (7 grad; Yim)
— grady (k(I71)jo1 (k+r)) (- grady Yim) + k(@) o, (ki) grady Vi,
Upon scalar multiplication with p, the second term vanishes for orthogonality reasons due to

the fact that grad; Y}, is tangential to S? while 7' is radial. Inserting the remaining term, we
therefore end up with

== [ @5 D [ Vi grady Vi - grad (K715 Do (ber))
R3 R3

+/d3ﬁ h(\ﬁl)/d3d' Vi - gradg (k(171)jo,1 (k+7)) (7~ grad; Yim )
R3 R3
Integrating by parts for a second time, but now with respect to p, results in
e @ [ @ Vi [dwﬁ (1151 Yom grad; (K(I1) (7 7)o (k)|
R3 R3
~Yincivy (0171 grady (K17 o (627))

+ [ [ @ Vi [divz; [A(5)Yimd (7 grady (k(71)jos (k<)) )]
cr — Yimdivy [h(|5)) (5 rad; (k(|c7|>jo,1<kir)))ﬂ

By applying the divergence theorem for a second time and rewriting divergences as gradients
whenever possible, we arrive at

= g [P [ a9, Vi [ 050 Vi s, (W7D (5 ()|
S2 R3

|P| =00

+ [ 5 [ @7 Yo Yidivs (1(151) gy (7D Do ()
R3 R3

+ dim (10911 [ 49, Yio [ 00 Yoo @ ) (5 erad (607 s (527) )

lim
|| =00
52 R3
= [ % [ €7 Y Vind srady (W) (7 grady (57D (k1))
3 R3
By combining the first and third term and using grad; (p'- ¢) = p' we obtain

co=— lim [h(|ﬁ|)|ﬁ|3/de Ylm/d?’i wm/k(lq*l)jo,l(kir)]
SQ ]R(}

|P| =00
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77
g srady [0 (5 grady ()i 27 )|

Making use of the result from Auxiliary Calculation C.1.8 gives

L2 im PMﬁMﬁP/dQJ%Z/fJKwﬂﬂﬂhm@&ﬂ]

|P'| =00

R . 1 . " N
i [ @5 [ 7 Vi Yo i (0151 wrady (K1) 2o (2))]
R3 R3

S2 R3

+/¥Pﬂ/¢vkqﬂﬁ@aawhﬂﬁmth@im
/d h(|p)) /d3q‘qu|)Yszy 2

[F+mfkm@g><WP—*n 1+ G inatier)] (59

Integrating the term containing h’(|p]) by parts with respect to |p/| gives

= g [P [ a9, Vi [ €7 Ykt
S2 R3

& i (KPP [ a9 Yo [ 07 KOT)Yiro )]
2 R3

- [l [an, mm/ﬂ%wwm>wlmmn [0 )]
0 S2

+/&wmwn/&iumnmmm«
RB

R3

<|[3+5ar

d . . rdl.
Joi(kxr) + (1617 = 17 1%)r? |1+ 5= | jo,a (k)
2dr
Cancelling the boundary terms yields

(©20) — 1 d
/d h(|p1) /d?’kuCJI)Yszlw

[|ﬁ|3j0,1 (kﬂ“)} +

rd|. 212 -2y 9 rd |,
| s + 057 = P2 14 55 atiar)

Evaluating ﬁ [\ﬁ|3j071(ki7‘)] using (C.2d) gives

1 d 1.3,
[7]? dlp] LTl

) Lod o
= 3jo,1(k+r) + \P|WJ0,1(]€¢T)

ca . - d |,
= 3jo1(k+r) + §d Jon(ker) + (I7° = 171%)r [1 + 2d} Jont2(ker)
which exactly cancels the second line in the above equation and thus makes the whole
(n)

expression vanish. This means that tﬁq;(f), =0= ﬁg%, for all n € Z.

This concludes the computation for Y'lm = @m and Y_"l/m/ = 5l,m/. O3y
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Up to this point the we have only determined the entries of the operator-valued matrices m(™
and n(" lying on or above the diagonal. By simultaneously interchanging the functions h « k,
the variables p' <+ ¢ and the parameters (I, m) <> (I'm’) the expression

[ D [ @7 K7D [ a9 Vin(6yn0,) - YomOayip)e 0 ()
R3 R3 52
remains unchanged except for an additional factor (+1) appearing in the exponential. However,
due to Proposition C.1.1 this factor disappears upon carrying out the position space angular
integral. As a consequence, the entries of the matrices m(™ and n(™ below the diagonal can

be found by interchanging <+ ¢ and (I,m) <> (I'm') in the corresponding entries above the
diagonal.

This concludes the proof. O

Having computed all the relevant integrals, we finally combine the derivative operators as deduced
in Lemma C.2.1, Corollary C.2.2, Lemma C.3.1 and Lemma C.4.1, into (5 x 5)-matrices.

DEFINITION C.4.2 (MATRIX-VALUED DERIVATIVE OPERATORS)

For n € {—1,1,3,5} the (5 x 5)-matrix-valued derivative operators m), m(™ and n(™ a("
are defined in terms of Hadamard products as

T
e w me) 0 Oixg O

m™ =drco [m™ w0 w0 | (C.60a)  m™ =41 | 05 @™ 05, | (C.60b)

A @™ o 0 Oixs 0
T
CIONETORR A 0 Oix3 O
n™ =drco | a™ w00 al) [ (C.60c) A =4r [ 0551 2™ 05,0 | (C.60d)
am T am) 0 Oix3 O

where the entries are the dimensionless, matrix-valued derivative operators from Lemma C.2.1,
Lemma C.3.1 and Lemma C.4.1, respectively. The circled entries (™) and (™) are given by

m =a =5,

Likewise, the matrix-valued derivative operator ¢(!) is defined as

1 0O1x3 O
E(l) =dmep ® | O3%1 Dé(n O3x1 (061)
0 O1x3 1

where D;u, denotes the (3 x 3)-matrix with the entries of €1) (see Corollary C.2.2) on its
diagonal. Finally, the matrices ¢ and c¢¢ are given by

1 Wlm 1 1 O1><3 0
c = ﬁ]l?)xl ‘ﬁh§|]13><3 ﬁ]li&xl and Cg = 03><1 ﬁﬂgxg O3><1 (062)
1 e lyxs 1 0 O1x3 1




Momentum Space Angular Integration:
Computation of Integrals I (a, p)
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In this appendix we derive closed-form expressions for the integrals I («, p) appearing in the
derivation of explicit formulas for the eigenvalues of the integral operators TF in Lemma 4.2.13.

Before we start, we briefly sketch our overall approach: To derive a closed-form expression for the
functions IF(«, p) for any n € Z, we start in Proposition D.1.3 by explicitly evaluating I;*(a, p)
in the cases n € {0,1,2,3}. Subsequently, in Proposition D.2.1 we derive recursion relations for
n > 4 (increasing power n in the denominator in (D.1)) and for n < 0 (decreasing power n in the
denominator in (D.1)) which allows to recursively determine I=(a, p) for any n € Z \ {0, 1,2, 3}.
Based on these relations, we afterwards derive closed-form expressions in the casesn > 4 and n <0
which ultimately results in a closed-form expression for the functions I;*(«, p) in Lemma D.2.3.

D.1 Basic Definitions and Preparatory Propositions

To begin with, we give the definition of the functions I;* and introduce auxiliary functions which
will frequently appear throughout the rest of this appendix.

DEFINITION D.1.1 (FuncTIONS IF(a, p))

For any n € Z the functions I;f : Rj x (—=1,1) — R are defined as

I*(a, p) = /dx Smﬁi W (D.1)

207
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DEFINITION D.1.2 (AUXILIARY COSINE AND SINE FUNCTIONS)

For any n € Z the auziliary cosine and sine functions c,, s, : R x (=1,1) — R are defined as

cos(ar/T+p)  cos(ay/T—p)

)= TR T s (D-22)
_sin(fay/T+p)  sin(ay/T—p)
Sn(aﬂ p) - (1 + p)n/2 (1 _ p)n/2 (DZb)

We now start with the actual derivations by first evaluating the functions I'F for n € {0,1,2, 3}.

PROPOSITION D.1.3 (EVALUATION OF THE FUNCTIONS I;F(«, p) FOR n € {0,1,2,3})

For n € {0,1,2,3} the functions I introduced in Definition D.1.1 evaluate to

_0—15&&,/7) + 80510347) for n = 0
9 —L(Z"p) forn =1
IE(a,p) = 2 (D3)
P | Si(ay/1+ p) — Si(ay/T = p) forn =2
a[Ci(a\/l + p) — Ci(ay/1 — p)} —s1(a,p) forn=3

where Ci and Si denote the usual cosine and sine integral functions while ¢, and s, are the
auxiliary cosine and sine functions introduced above in Definition D.1.2.

Proof. In order to prove the claimed relations, we distinguish between the rather straightforward
cases n = 0 and n = 2 on the one hand, and the slightly more involved cases n =1 and n = 3
on the other hand.

(1) Evaluation of I (a,p) for n =0 and n = 2

We start by considering the case n = 0 and afterwards compute I (o, p) for n = 2. Note
that we treat the expressions where sin(ay/1 £ z) in IF(a,p) is replaced by cos(ay/T £ z)
simultaneously.

(a) IF(a,p) for n =0
By substituting y = a+/1 £ px in the expression for Igﬂ (a, p) (and the analogous expression
with sine replaced by cosine) we obtain

1 . ay/1Ep .
/dx {sm(am)}_i212 / dyy{sm(y)}
; cos (/1 £ px) po cos(y)

- ay/1Fp
Integrating by parts leads to
ay/1+p
21 — cos(y)
po sin(y)
aVIFp

. {—MCos(a\ﬂ +p)+VIFpcos(ay1F p)}
VI £ psin(ay/T+p) = V15 psin(ayTF p)
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Evaluating the remaining integral results in

B {—Mcos@@) ¥ mcos<am>}
1+ psin(ay/1 % p) — /1 F psin(ay/1 F p)

Taking the overall prefactor (£1) into account, we recognize that both cases + lead to the
same result, namely

._Qll{sin(a 1+ p) — sin(a 1—p)}

Cpa? cos(ay/1 + p) — cos(ay/T —p)

{—Mcoswm) + VT = pcos(ay/T—p) H
VI+psin(ay/T+p) — VT = psin(ayT—p)

Making use of the functions c¢,, s,, introduced Definition D.1.2; the result can be displayed in
the following compact form

/1 Ny {sin<am>} 21 l {30<a,p>} u {—m(a,mH D)
Jo Neos(ayTEpm) [ pa® [ |eolep) s—1(a,p)
(b) I*(a,p) for n =2

For the expression I;E (a, p) and the analogous expression with sine replaced by cosine, the
computations are slightly different. Changing variables y = ay/1 £ px just as before, we obtain

for I3 (a, p)
/ld 1 sin (/1 £ px) :|:2 a/1 pd 1 [ sin(y)
x =42 -
L+ pz | cos(ay/TE pr) P Y Y | cos(y)

-1 a/1Fp

At this point, the computations for the upper and lower case are slightly different: In the
upper case we rewrite the integral as the difference of two integrals with domains [O, a@]
and [0, a\/m] while in the lower case, however, we rewrite the integral as the difference of
two integrals with domains [a/TF p, 00| and [a/T £ p,00]. In this way we obtain

“ flip sin(y) a\/flTp sin(y)
dy sin(y) dy sin(1
_ i2 0 Y 0 Y
p

® cos(y) ® cos(y)
[ dy o] gy e
aV1Fp av1Ep

Identifying the remaining integrals as the sine and cosine integral functions Si(z) =
Jy dy sin(y)/y and Ci(z) = — [ dy cos(y)/y, respectively, we finally end up with

—:|:2 Si(om/lzl:p) fSi(om/lin)
P Ci(om/lzlzp) —Ci(a«/lq:p)
Taking the prefactor (£1) into account, both cases + again lead to the same result which reads

/1dx 1 {Sin(am)} Q{Si(a 1—|—p)—Si(a 1—p)}
cos (ay/1 £ pz) P | Ci(ayT+p) — Ci(ayT—=p)

(D.5)
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(2) Evaluation of I*(a,p) for n =1 and n = 3

In order to derive the claimed expressions for I (a, p) in the cases n = 1 and n = 3, we make

use of the identity
n 2 1 d n
l+pr) 2 =+-——(1+pr) 2T D.6
(1 pm)t = o () (D.6)
which holds for n € Z \ {2}. Replacing the factor (1 + px)~% in the definition of I*(a, p) by
the above identity and integrating by parts yields

1

1
i TEpz) o, 2 1 . d -3
/dxwgf /dx sin (ay/TE pa) (1 4 pa) 4!
X
—1

VIEpz" p(2—n)

1
:ig# :F&/dx cos (a\/lipx)(lipx)*%l
1

p(2—n) 2
N 1
+ [sin (adl:l:px)(l:l:px)_%ﬂ] (D.7)
-1
Evaluating this expression for n = 1 and making use of the lower case in (D.4) yields
2 / !
If(a,p) 2 :I:; :F% /da: cos (an/1 %+ pz) + [sin (/1 £ pz)\/1 £ px}
-1
1
D.4) 2 P
s _,M (D.S)
p o«

Repeating the procedure for n = 3 and making use of the lower case in (D.5) gives

p 1+ pzx VIEpx
= 2alCilay/TT7) - CilayT=p)] - 2s1(ap) (D-9)

1 1
oy _ 2 o cos(ay/1 £ px sin (ay/1 £ px
Iy (a,p) = F= :F%/dx ( p)+{ ( )H
—1 —

This concludes the proof. O

D.2 Derivation of Recursion Relations

Having found explicit expressions for the functions If in the cases n € {0, 1, 2,3}, we now extend
these results to arbitrary n € Z by deriving recursion relations.

PROPOSITION D.2.1 (RECURSION RELATIONS FOR I (a, p))

For n € Z with n > 4 and n < 0, respectively, the functions I («, p) satisfy the following
recursion relations

Fa(@)IF (e, p) + gnla, p) forn >4
I(a,p) = (D.10)
k(@) I 5 (a, p) + ln(a,p)  forn <0

where the functions f,,, k, : R& — R (for n > 4) and g,,, 1, : R{ x (=1,1) — R are given by
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L a? - o) e _2[ acp3(a,p)  sp—2(a,p) .
he) =~y W alei= 2| O - 2RO Do
k(@) i= 7% and L (a, p) i= 7% [(” - 1L52n(aap) N cmc(ya,f))] (D.10D)

Proof. To prove the stated recursion relations, we consider the two cases separately.

(1) Derivation of a recursion relation for I*(a, p) with n > 4
In order to derive the claimed recursion relation for I¥(a, p) in the case n > 4, we will
repeatedly make use of the identity

1 d

%(2_71)@(1:&,0@7%+1 (D.11)

(1+pz) 2 ==+

n

which holds for n € Z \ {2}. Replacing the factor (1 & px)~% in the definition of I («, p) by
the above identity and integrating by parts yields

1 1
sin (« 1:|:px) o / d nq
= dz sin a 1j: T 1+pzx) 2t
/ wlj:px 2—n p )d ( )"
Z1 -1

p(2—mn)

g2 1 :F7/dx cos (a\/lﬁ:px)(lipx)*n;l
e

1 (D.12)

+ [sm (/1% pz)(1 £ px)f%H]

-1

Rewriting the second factor in the remaining integral using the identity (D.11) (with the
replacement n — n — 1 with thus holds for n € Z \ {3}) and integrating by parts for a second
time results in

1
L, 2001 o d n—1
L= A - d V1E 1+ Tzt
P e (3—n)/ z cos (a pm)d (1£px)” 2
21
1

+ [Sin (a/1£pz)(1£ pw)_%"’l}

-1

1
2 1 « po 1,1
= 4= — +— [ dz si 1+ 1+ *
S G- 2/xsm(a\/ px)(1+pz)~ "2 *2
21
1

+ [cos (o T ) (1 ) 5]

-1
1

+ {sin (a/1£pz)(1£ px)_%"’l}

-1

Simplifying this expression by multiplying out and taking into account that for the second and
third terms both cases 4 lead to the same result, we obtain for n € Z with n > 4 the following
recursion relation

+
I (e, p) = — - =3 =3

2L ,(0p) 2 a [cos<am>_cos<am>}
C-mB-n pC-nB-m| iy =
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2 1 sin (a/T+ p)  sin(ay/1 — p)
+ - 2 n—2 n—2
p2=n) JT+p 1
0’ 5(ap) 2 acesla,p) | 2sus(asp)

2-mB-n p2-m)B-n) p 2-n)

where for the last equality we again used the definitions of ¢, («a, p) and s, («, p) introduced in
Definition D.1.2. By defining the functions

a? 2[ acp_3(a,p) Sn—a2(a, p)
fola) = ———F—— and gn(a, p) == —[ : - : } (D.14)
e ple-nE-n -
the recursion relation for n > 4 takes the schematic form
Ly (a, p) = fa(a) Iy o(c, p) + gn(, p) (D.15)

(2) Derivation of a recursion relation for I (a, p) with n <0
To derive the recursion relation for n < 0, we need the identities

sin(ay/1 + px) = :F%ﬂi cos(ay/1 £ px) (D.16)

a dzx
21+£
cos(ay/1 + pz) = :I:;Tpm% sin(ay/1 £ px) (D.17)

Replacing the factor sin(a/T £ pz) in the definition of I:*(«, p) using the first of the above
identities and subsequently integrating by parts, we obtain for n <0

1 1

sin(ay/1 £ px) vy 21 / 1 d

dt ——F—=F—— [ dz ——————— —cos(ay/1 £ px
/ T oo (/1 %+ pz)
—1 1

1 1

we 21 1 cos(ay/T1 £ pz

= F—— ig(n -1) /da: ————7 cos(ay/1 & px) + [(nfl)}
« | 1+ pz V1ZEpx 1

Rewriting the second factor in the remaining integral using the second of the above identities

and integrating by parts for a second time leads to

1

(D7)

21
:Fff n n
pa | «a VIEpz" dzx VIEpz"!

1

-1

(n—l)/ldx 1 dsin(am)Jr[cos(a lipx)]
=

1
e :F2 1(n—1) :I:Bn/dx sin(a 1:ELJ;:§) N [sin(a\/l :I:fl)x)}
pa « 2 J, VIEpz 1+ pz

-1

. {cos(amq 1

VIEpz" !

-1

Simplifying this expression by multiplying out and taking into account that for the second and
third terms both cases & lead to the same result, we obtain for n < 0 the following recursion
relation

Ir%(aap) =

n(n—1) 2 (n—1) {Sin(a\/ﬁ) sinay/T— p)}

+
72‘[n+2(aap) - ; 2

a a VIFp" VI—=p"
21 {cos(a\/l +p)  cos(ay/T— p)]
pa 1+pn71 17pn71
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— 7”(” — 1) 12:4_2(04,,0) . g (’I'L — 1)Sn(a7p) . gcn—l(aap)

a? p a? p a

(D.18)

where for the last equality we once more employed the definitions of s, (a, p) and ¢, (a, p)
defined at the beginning. By Defining the functions

n(n —1) 2[(n—1)sn(a,p) n cn—1(a, p)

kn(a) = = and Ln(a, p) = > o2 o (D.19)
the recursion relation takes the schematic form
Note that for n = 0 this formula correctly reproduces
2 sola,p)  c—1(a, p)
+ _ 0 s P 1 s P
Iy (o, p) = T T @ T (D.21)
in accordance with (D.3) in Proposition D.1.3.
This concludes the proof. O

This proposition allows to recursively evaluate the functions I for arbitrary n € Z. In order to
arrive at an explicit formula for any n € Z, we make use of the above recursion relations to derive
a closed-form expression.

PROPOSITION D.2.2 (CLOSED-FORM EXPRESSIONS FOR IF FOrR n € Z )\ {0,1,2,3})

Let Fy, : Ri — Rand Gy, : Ry x (—1,1) — R be functions defined as

Frnp(a) = H fni2i(a) (D.22a)
;:jl i—1

Gnla, p) = Z < H fN+2(n_j)(Oé)>gN+2(n_i)(Oé, p) (D.22b)
i=0 ;=0

where f,, g, are the functions introduced in (D.10a). Then, provided that If (a, p) satisfies
the recursion relation

Iy (a, p) = fala) I3 5(e, p) + gnla, p) (D.22¢)
for n > 4, the following closed-form relation holds

F, n2(a)I5(a,p) + Gy nz(a,p) forn >4 A n even
IF(a,p) = o T (D.22d)

F37nT73(a)I§E(a,p) + GS’%(a,p) for n > 5 A n odd

Furthermore, let Ky, : Rar —Rand Ly, : RS‘ x (—1,1) — R be functions defined as

Knn(a) = H kn—2i(a) (D.23a)
=1
n—1 i—1
Lya(arp) = ( 11 kN_g(n_ﬁ(a)) U —snsy (0 p) (D.23b)
i=0 ;=0
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where k,,, l,, are the functions introduced in (D.10b). Then, provided that I (a, p) satisfies
the recursion relation

IE(0,p) 2 k(@) T (0 ) + (s p) (D.230)
for n < —1, the following closed-form relation holds
KO,_%(O()IOi(Oé, p)+Lo—n(a,p) n<—2Aneven

I¥(a,p) = (D.23d)
Kl,an(a)Ili(a,p) + LLlan(a,p) n < —1Anodd

Proof. We consider the two cases, namely the closed-form expression for n > 4 (increasing
power n in the denominator of the function IF) and n < 0 (decreasing power n in the
denominator of the function IF), separately.

(1) Closed-Form Expression for n >4
To prove the claimed relation, we demonstrate via a proof by induction on n that

I3 pon (0, p) = Fy (@) I3 (a, p) + Gy n(at, p) (D.24)
holds for all n > 1 where N € Ny is an arbitrary, but fixed natural number.

(a) Base Case n =1
In the initial case, namely for n = 1, the claimed relations reduces to

Iy o(@,p) = Fna(@) I3 (e, p) + Gra(a, p)

<m><HfN+21 > (o, p) +Z<Hf1v+21 (e >9N+2(1—i)(a,p)
=0

= fnia(a)Iy(a, p) + < 1:[ fN+2(1—j)(0l)>9N+2(04, p)
=0

= fnia(a)Iy (e, p) + gni2(a, p) (D.25)

which precisely is the given recursion relation (D.10) for n replaced by N + 2. As we assumed
N € Nj this demonstrates that the claimed relation holds for n = 1.

(b) Inductive Step ng — ng + 1

For the inductive step we again fixed N € Ny and assume that (D.24) holds for one particular
ng € N and demonstrate that it then also holds for ng + 1. We find

+
IN+2(no+1)(a’p) =

= fN+2(no+1)(Ol)fﬁﬂ(no“),g(av p) + GN+2(no+1) (v, p)

(D21)

= 20 +1)(@) [ Fong (@) 150, 0) + G (@, 9)| + gm0 (@)

u)zqu“!‘Q(nO"Fl) <HfN+21 > (a7p)

nol

+ fN+2(ne+1) (@) lz <HfN+2("0 (e )>gN+2(no—i)(a’p)

1=0 7=0

+ IN+2(no+1)
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Absorbing the factors fn i o(n,+1)(c) in the first and second term into the products and rewriting
the last term as gni2(no+1)(a, p) = Zi_:l—l I o N +2(n0 —(s—1)) ()N 12(no—1) (@, p) we find

= (if[: fN+2i(a)>Izj\Ef(Oé»P) + "il ( ﬁ fN+2(no—j)(0‘)>9N+2(no—i)(0"p)l

i=0 Nj=—1

-1 i
+ Z (H fN+2(n0(51))(a))9N+2(n0i)(047P)

i=—1 “s5=0

Performing an index shift in the product contained in the second term of the first line by
setting s = j + 1 we obtain

. (nf[: fN+2i(a)>IIj\E[(Oé,P) -

|

1=—1 s=

’no—l 7
Z < H IN42(no—(s—1)) (a))gN-‘rQ(no—i)(aa P)}
=0 s=0

%

FN+2(n0—(s—1)) (a)> IN+2(no—i) (@, p)
0

Combining the second term of the first line with the term in the second line and subsequently
performing another index shift by setting » = i + 1 we arrive at

no+1 no—1 [
= ( II fN+2i(Oé)>Iﬁ(a,P) + Y (HfN+2(no(51))(a)>gN+2(n0i)(a7p)
i=1

i=—1 “s=0

no+1 0 r—1
= ( H fN+2i(a)> Izj\?(a, p) + Z <H fN+2(n0—(s—1))(a)>gN+2(no—(7”—l))(avp)
i=1 r=0 s=0

no-+1 (no+1)—1 ,r—1
= ( H fN+2¢(a)>Izj\E/(Oé,P) + Z (HfN+2((no+1)—s)(a)>gN+2((n0+1)—7')(aap)
i=1 r=0 s=0

(D.22a)

= N g1 (@) I3 (0, p) + G g1 (s p) (D.26)

which demonstrates that indeed

IE oo (a,p) = Fya(a)IE(a, p) + Gy,ala, p) (D.27)

holds for all nn > 1.

(c) Conclusion

Now, the claimed closed-form expression for I,jf with even n > 4 and odd n > 5 follow from

the above result by replacing n — ”EN and setting N = 2 and N = 3, respectively.

(2) Closed-Form Expression for n > 1
To prove the claimed relation, we demonstrate via a proof by induction on n that

I]:::/—Qn(O‘?p) - KN,n(Oé)Iﬁ(Ot,p) +LN,n(a7p) (D28)
holds for all n > 1 where N € (—Ng) U {0, 1,2} is an arbitrary, but fixed integer.

(a) Base Case n =1
In the initial case, namely for n = 1, the claimed relations reduces to

I _y(a,p) = Kn1(a)I5(a, p) + L1 (a, p)
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= j)<HkN 2i( )Ii a, p +Z<Hk1\f 2(1—5) )lN 2(1-1) (@, p)
= kn—a() Iy (o, p) + ( 11 kN?(lj)(a)>lN—2(aa p)
j=0

= kn—a(a)Iy(a, p) +In—2(a, p) (D.29)

which precisely is the given recursion relation (D.10) for n replaced by N — 2. As we assumed
N € (—Np) U {0, 1,2} this demonstrates that the claimed relation holds for n = 1.

(b) Inductive Step ng — ng + 1
For the inductive step we again fixed N € (—=Ng) U {0,1,2} and assume that (D.28) holds for
one particular ng € N and demonstrate that it then also holds for ng + 1. We find

+
Iy 2(n0+1)( p) =

= kN—Z(no—H)(a)I]:\trfz(nmLUjLQ(aa p) + lN—2(ﬂo+1)(a7 p)

(D.28

= a0 41) (@) | P () T35 (0, 9) + G (00, 0)] + I (g 1) (1,0)

E%,k no+1) (HkN 21 ) ( p)

no 1
+ kN—2(ne+1) (@ [Z (HkN 2(no—j) (@ ))lN—2(no—i)(0‘7p) +IN—2(no+1)
=0 7=0

Absorbing the factors ky_g(n,+1)(@) in the first and second term into the products and
rewriting the last term as Iy _a(n,11)(c, p) = Sy I _okn —2(no—(s—1)) ()N —2(ng—i) (@, )

we find
no+1
= ( H k'N—Qi(Oé))I]:\E( Z ( H kN 2(no— j) )>ZN—2(no—i)(aap)]
i=1 =0 j=—1

i (H’fN 2(no—(s—1)) (@ )>ZN—2("0—1')(O‘7P)

i=—1

’ﬂo].

Performing an index shift in the product contained in the second term of the first line by

setting s = j + 1 we obtain
no— 1
Z (HkN 2(no—(s— 1))( ))lNZ(noz)(a?p)]

- (nﬁlmm)ﬁ( > (11
Z (HkN 2(no—(s—1)) (@ )>ZN2(noi)(a7p>

i=—1

Combining the second term of the first line with the term in the second line and subsequently
performing another index shift by setting r = i + 1 we arrive at

_ (iﬁlm_m))z @ noz:l(HkN S TR

i=—1

no+1 no —
= ( II kzvzi(a)>fﬁ(a7p) +y (H /fN—zmo—(s—l))(a))lN—2<no—<r—1>>(aaP)
i=1 s=0

r=0
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no+1 (no+1)—1 ,r—1
= ( H kN—Qi(a)>IJ%/‘(O‘7p) + Z (H sz((nOH)s)(a)>lN2((no+1)r)(Oé,P)
i=1

r=0 s=0
(D.23b)

= KN no1(@) (@, p) + L gt (@, p) (D.30)

which demonstrates that indeed

I on(a,p) = Kna(a) I (a, p) + Lya(a, p) (D.31)

holds for all nn > 1.

(c) Conclusion

Now, the claimed closed-form expression for I with odd n < —1 and even n < —2 follow

from the above result by replacing n — f";N and setting N = 1 and N = 0, respectively.

This concludes the proof. O

We can now put together all the results to arrive at the following lemma which provides a closed-
form expression for the functions I¥ for any n € Z.

LEMMA D.2.3 (CLOSED-FORM EXPRESSION FOR FUNCTIONS IF FOR n € Z)

For n € Z the functions IF : R x (—=1,1) — R introduced in Definition D.1.1 evaluate to

KO,_%(a)Ig[(a,p) + Lo,z (a, p) n < —2An even
K1,1—Tﬂ(a)ffc(aap)+L1,l—T"(OéaP) n<—1Anodd
2 s0(0p) _ 2 eoi(oup) for m— 0
p a2 p o«
_2co(a,p) forn=1
+ P

Ii(esp) =9 1. . (D.32)
2 [Sl(a\/l + p) — Si(ay/1 — p)} forn =2
%a[Cl(a 1T+ p) — Ci(ay/1 - p)} — 2s1(a,p) forn=3
F2’n;2 ()15 (a, p) + Gy n—2(a,p) for n > 4 An even
Fyns () IE (e, p) + Ga%(a, ) for n > 5 An odd

where the functions Fy ., GN n, KN .n, L are those introduced in (D.22a), (D.22b), (D.23a)
and (D.23b), respectively.

Proof. To arrive at the claimed expression, we combine the explicit expressions for ¥ where n €
{0,1,2,3} from Proposition D.1.3 with the closed-form expressions derived in Proposition D.2.2
which together cover all cases n € Z. O
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In this short appendix we give explicit expressions for the multipole matrices Kg, 2, Jy; and their
asterisked counterparts 951”, ‘fiu at the lowest multipole orders [ = 0 and [ = 1 which are obtained
by evaluating Definition 4.2.11 along with the explicit expression for the eigenvalues ¢ derived in
Lemma 4.2.13. For better readability and to reduce the size of the matrices, we have chosen a
block representation which ultimately traces back to Definition 4.1.6 and Terminology 4.1.7.

E.1 Multipole Matrices for [ = 0

E.1.1 Factorized Form of Trigonometric Functions

AUXILIARY CALCULATION E.1.1 (MULTIPOLE MATRICES FOR [ = 0 IN FACTORIZED FORM)

At multipole order | = 0 the multipole matrices introduced in Definition 4.2.11 read

0 O1x3 0 1 01x3 0
Ko B0 0 sin(|p|r)
— ) il X2 ) — ) I 1x2 ) El
1672 051 02x1 O2x2 O3t COS(|p |T) T 0 02x1 O2x2 051 |ﬁ|’l’ ( a)
0 013 0 0 01x3 1

219



220 E.1. Multipole Matrices for [ =0
0 013 0 1 —mr Oix2| 1
Moo o . - sl wim ove| | sin([P]r) sin(|q]|r)
1672 05t 0,y 0y | 207 cos(|p|r) cos(|g|r) + 021 | Ot 02| 02 |D'|r |q'|r
0 (U 0 1 g Oixa| 1
0 7 Oix2| O 0 013 0
04 Sin(|ﬁ|7‘) . Sl 0| & - sin(|q"’|r)
o g7 oo | B o)+ 70 Lol ST )
0 m Oixz| 0 0 01x3 0
0 013 0 1 o Oixe 1
moo . T One - - ~ w1 | ma Oixz | —pr Sin(lﬁ"T) sin(|(j'\r)
167-(-2 D31 (]IZXI| 022 031 COS(‘p|T> COS(|q‘T) + 02>:1 0]2><]l 02x2 02;1 |ﬁ"r’ |(j|’l“
0 01x3 0 1 #‘ 01x2 1
0 7 Oux2| 0 0 01x3 0
—mia Oix2 Sln(|ﬁ|’l") = | -Fm Owxe| & = Sln(l(f|7’)
A1 0w 0;><ql 022 O3 ‘]3’|’I“ COS(‘q|T)+ 02,><1 0;><1 0252 0;x1 COS(|p|r) |(T‘7‘ (E]-C)
0 ~m Oixz| © 0 O1x3 0
. 0 0143 0 0 013 0
oo [ o |eostin) cos(alr) [ ) |50l sin(laln)
1672 = | o ona ™ | gl Talr | o o™ | (T (2
0 01x3 0 0 O1x3 0
0 01x3 0 0 01x3 0
+ 051 W 01x2 - Sln£|ﬁ|7") COS(_!@‘“’) Ooxy m 01x2 - Cosqﬁh“) Sln_('|q_’|7‘) (Eld)
02x1 O2x2 (|p|T’)2 |q|7’ 021 02x2 |p|7" (|q|7")2
0 013 0 0 013 0
. 0 0143 0 0 013 0
Moo _ | |t e cos([plr) cos(lqlr) | | o 0| |sindlplr) sin(lq]r)
Tzl KT v U (S R
0 01x3 0 0 O1x3 0
0 01x3 0 0 O1x3 0
I I .. Sln£|p|72") COS(qlqlr) o [t 0]y COS(JPV) Smglqlg) (E.1e)
0251 O2x2 (|p ‘7”) |q |7" 021 022 |p|7" (|q |T)
0 O1x3 0 0 013 0

Proof. To arrive at the claimed expressions we insert the explicit form of the eigenvalues ¢ as
derived in Lemma 4.2.13 into Definition 4.2.11, evaluate at [ = 0 and factorize the trigonometric

functions.

O

E.1.2 Non-Factorized Form of Trigonometric Functions

The calculations in Subsection 6.1.3 simplify considerably if the matrices are given with trigono-
metric functions having arguments || £ |{].
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AUXILIARY CALCULATION E.1.2 (MULTIPOLE MATRIX 5y IN NON-FACTORIZED FORM)
At multipole order | = 0 the multipole matrix 9lpy in non-factorized form reads
-1 - Oy | —1 1 w Ouxa | 1
Noo B I R T e [(|ﬁ| + |§|)T} | egann g, | i [ COS [(W - |f7\)7"]
8772 021 0as1 Oax2 | Ooxc1 (|ﬁ|,r=)(|q’|7a) 0251 0251 0252 | O2x1 (‘ﬁ|7‘)(‘(f|7“)
1| o Ol 1 1 mo Ovel 1
0 —ir 01x2 0 0 —ir 0152 0
+ ir 7% 01y | ir sin [(Jﬁ| + |Cﬂ)r] + —ir W‘}% 0o | —ir S [(|ﬁ| 7JJ|)T] (E2a)
021 | O2x1 O2x2 | O2x1 (‘p|’r‘ (‘q |’I") O2x1| 02 O2x2 | O2x (|p ‘T)(|q‘ )
0 —ir 012 0 0 —ir 0142 0

Proof. To arrive at the claimed expressions we insert the explicit form of the eigenvalues tTiL as
derived in Lemma 4.2.13 into Definition 4.2.11, evaluate at [ = 0 and factorize the trigonometric

functions.

O

E.2 Multipole Matrices at Multipole Order [ = 1

For the evaluation of the second variation of the ie-regularized causal action for Lorentz boosts in
Appendix F it is most convenient to have the multipole matrices for [ = 1 with the trigonometric
functions in factorized form.

AUXILIARY CALCULATION E.2.1 (MULTIPOLE MATRICES FOR [ = 1 IN FACTORIZED FORM)

At multipole order [ = 1 the multipole matrices introduced in Definition 4.2.11 read

mll
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M1
472

0 O1x3 0
24 —24 0 — -
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Proof. To arrive at the claimed expressions we insert the explicit form of the eigenvalues ¢ as
derived in Lemma 4.2.13 into Definition 4.2.11, evaluate at [ = 0 and factorize the trigonometric

functions.

O
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In this appendix we evaluate the angular-integrated incomplete Fourier transforms which enter
the calculation of §2S¢ for Lorentz boosts.

F.1 Condensed Incomplete Fourier Transforms

In order to benefit from the compact notation provided by the Hadamard product, we start by
rewriting the incomplete Fourier transforms from Lemma 4.2.12 as traces of Hadamard products
involving the coefficient matrices and the multipole matrices.

ProprosITION F.1.1 (HADAMARD PRODUCT FORM OF LEMMA 4.2.12)

The non-vanishing condensed incomplete Fourier transforms as defined in Definition 5.1.3 can
be expressed in terms of Hadamard products as

/d r 9< X tr (€5 (20 © 7) (F.1a)

(—1)"r2 By tr [€5(2 © MF) + C°15(2 @ 9 ) |

{f[M?mu(—m)]} :/d(go,r)

(F.1b)
F|\Vs 1)mr2ES tr |C5(Z oM
{ [ Im|l(— /d§° { ( zz)} (F1c)
(F00h crulenzom] J|_

225
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where we suppressed the momentum arguments of the incomplete Fourier transforms. The
matrices Zg and Z appearing in the above expressions are defined as

—w(|p]) | —w(Ip]) O1x2 | —w(Fl) w(lp)w(lq]) | =IPlw(q]) O1x2 | —pw(|7))
. . 0. . e~ - 0. .
g = 7] 7] ix2 | 7] (F.2a) 2 = w(lp])lq] 1171 1x2 | Hdl (F.2b)
O2x1 | O2x1 O2x2| O2x1 02x1 0251 O2x2 | O2x1
I I 01x2 I — p(Ip1) Pl 01x2 I

Proof. To prove the statement, we make use of the following property of the Hadamard product:
Let A, B € C™™*™ and v,w € C™ be given matrices and vectors, respectively, and let D,,, D,,
denote the n x n diagonal matrices with entries given by

Dy)ii = 8;:0; and Dy)ij = di5w;
J J J J

By making use of the definition of the Hadamard product and the matrices D,,, D,,, an inner
product of the form o1 (A ® B)w can be rewritten as a trace in the following way

n

71 (A® B)w = Z (A® B)ijw; = Y Bidijw;(BY);i
=1 ij=1
= Z Z U0k Aribijw;(BT) i = Z (D%)inAri(Duw)ij (BT

i=1 Lj,k,i=1

—tr (DgADwBT>

In order to combine the matrices Dz and D,, into one object, we first exploit the cyclicity of
the trace and subsequently make use the relation

(DwBTDv)H = Z (Dw)ik(BT )kt (Dg)ij = Z w0k (B™) 161,05
U k=1 k=1

= w;(B")y7; = (w")i;(B)i; = ((wﬁT) © BT)

j
In this way, the initial inner product can be cast into the form

7N (A® B)w = tr [A(Z ® BT)] where 2 :=wv"

By identifying the matrices A, B and vectors v, w in the above relation as

0 0

p q
i [q
A=C5, B=My and v=| 0], w=|0

0 0
H H

the condensed incomplete Fourier transform of F [Mfml I(— m)] as given in (4.44b) takes the

form

{FIMG i) } /d )™ 2EM<tr esc(zomp)| +cour [15(1@9315,)D

where for the asterisked term we identified the matrix A as A = 15. For the condensed
incomplete Fourier transform of [N, Fli(— m)} F[mell(_m)] and I[Wlsm\l(—m)] we proceed in
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precisely the same way with the slight difference that the latter two do not involve asterisked
terms. In all four cases the matrix Z is given by

w(lpDw(q]) | =17lw(q]) Oixz | —pw(|q])
g = —w(pDI7] Pll7l Oix2 | puld]
021 021 022 | O2x1
— p(|7]) | 012 1

For the condensed incomplete Fourier transform of F [KSO] we have to identify the matrices A,
B and vectors v, w as

P
2
A=C5%, B=Sf and v=1541, w=| 0
0
1
and thus obtain
(P} = [ aehn T2 e ez o ) v3)
00] (= ) —F7=1r { x \~XK 0 } .
4
Xe i
where the matrix Zg is given by
—w(|p]) | —w(P]) O1x2 | —w(|p])
— — O —
e — 2 2 1x2 | [P (F.4)
O2x1 | O2x1  O2x2 | 021
J 0 O1x2 J
This concludes the proof. O

By using the Hadamard product form of the condensed incomplete Fourier transforms as derived
in this proposition, the integrals of the momentum-dependent parts appearing in (5.28b) can be
computed more conveniently.

F.2 Momentum Integration in §%5° for Lorentz Boosts

In order to demonstrate that the ie-regularized causal action is invariant under Lorentz boosts of
the velocity vector of the regularization, the corresponding second variation as derived in (5.28b)
has to vanish. For the sake of clarity and to streamline the proof of Lemma F.2.2, we outsourced
the lengthy computations to the following preparatory proposition.

ProPOSITION F.2.1 (MOMENTUM INTEGRALS FOR LORENTZ BOOSTS)

Let ES., E5, E5;, EY, E5y be the regularization-dependent functions introduced in (4.13b),
(4.19a,ii), (4.19b,ii), (4.24a,i), (4.24b,i), let Z, Zg be the matrices from (F.2a), (F.2b) and let
furthermore Ry, M11, N1, 93?11, ‘5*111 denote the first multipole matrices as explicitly given in
Auxiliary Calculation E.2.1. Then the following relations hold
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Proof. To prove the stated relations, we make use of the Hadamard product form of the
condensed incomplete Fourier transforms as given in Proposition F.1.1 and consider the
different terms separately.

(1) Expressions containing £

We start by evaluating the simplest expression, namely the one containing K. Inserting the
definition of the matrix Zg from (F.2b), the explicit form of the function E5. from (4.13b) as
well as the matrix Ky from (E.la), we obtain

J I
/(27r)3wpe » E5(Zx© Rg) =
—w(lpl) ‘ —w(lF) O1x2 ‘ —w(lpl)
T 512 —(e+ieMw
wosgr2 [ PP wpe low | W onel| il
2 (271’)3 2wy, 02x1 | O2x1  O2x2 | O2x1
" ‘ n 01x2 n
- i | : i sin(|p|r)
© |diag| 0,-=7,0,0,0 ) cos(|p|r) + diag( 1, ——=,0,0,1 | ———
i i Pl
Carrying out the Hadamard product yields
ood R .
= 19872 / Me—@mw [diag(o,i,O,QO) cos(|F|r)

0 sin(|p|r
+ diag( — wp, —1,0,0, u) w
plr
Having arrived at this point, the integral can be computed explicitly using the corresponding
relation from Corollary A.2.3. Simplifying the resulting expression by cancelling and combining
terms results in

o0
dlp|lp)*?  _
/ |(2|7r)3| wpe " e (Zoc © R9) =
i(g— (€€ &) 0 Oa| 0
19872 0 —i(€2)°(ur)* & O1xa 0
02x1 02x1 O2x2 | 0O2x1
0 0 012 | —p(€2)%

For the same integral with the factor w, replaced by two more powers of || in the integrand,
we analogously find the following similar, though slightly more complicated expression

o0

dlp| P12 L _
[ S e (e ) =
12 3 + 2 (o7 - £ )] 0 01x2 0
@) 1287T2 0 *{5(1”)2%* %(g” - %)} 01x2 0 (FG)
021 021 O2x2 0251
0 0 Ouxz | in(3g+ (ur)? L)

(2) Expressions containing 9t;; and 9113
Next, we consider terms which contain the multipole matrices 211 and 91;1, respectively.
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(a) Terms containing My,

Inserting the definition of the matrix Z from (F.2b) (with zero rows and columns suppressed),
the explicit form of the function E5; from (4.19a,ii) as well as the matrix 9%;; from (E.3a)
(again, with zero rows and columns suppressed), we obtain
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Carrying out the remaining Hadamard products and factoring out powers of r, we find
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Having arrived at this point, the integrals can by computed explicitly using the relations from

Corollary A.2.3. Simplifying the resulting expression by cancelling and combining terms and
restoring the zero rows and columns results in

TAPUAL o [ATTR o e [ES
[ SGomy e [ o e i o) =
0 0
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(a12) 2 1
Z64n?
orL5(8)

(b) Terms containing 91;;

i(62) r ()P 2

ir ‘(w‘)(t!l + (w‘)ﬁr%)
0251

12 (ur)2g?

For terms containing 91,1 we basically proceed in the same way as before, though with a slight
difference: As a consequence of different signs in the exponential factors contained in the
function E5; compared with Ef; as well as the different form of the matrix 91, itself, we will
end up with a different matrix in comparison to the previous result. Inserting the definition of
the matrix Z from (F.2b) (with zero rows and columns suppressed), the explicit form of the
function E¥; from (4.19b,ii) as well as the matrix 91;; from (E.3b) (again, with zero rows and
columns suppressed), we obtain
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Carrying out the remaining Hadamard products and factoring out powers of r, we find
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Having arrived at this point, the integrals can by computed explicitly using the relations from
Corollary A.2.3. Simplifying the resulting expression by cancelling and combining terms and
restoring zero rows and columns finally results in
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(3) Asterisked Terms
Having completed the calculation for terms without asterisks, we now turn to the computation
of terms carrying asterisks.

(a) Terms containing My
Inserting the definition of the matrix Z from (F.2b) (with zero rows and columns suppressed),

the explicit form of the function E5, from (4.19a,ii) as well as the matrix My from (E.3¢)
(again, with zero rows and columns suppressed), we obtain
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ET S ET S

X

(F.2b)

©0 :¢0 0 . s0
1 6 g 2/ d|p| |7]? |7le (& )wr /d\tﬂ |7)? |7]e~(=HiE)wa
= 7I
(2m)3 2w, (2m)3 2w,

cos(|p]r) cos(|q]r)

(Pl (Iq1r)?

+ diag (0,4[6 — 2((71)* + (171r)?) + (1r)(71)2),0,0,0)

W7D Il ) )
X ( izl 7wl )@ diag(0,24,0,0,0)

—p(|p]) | 0

sin(|p]r) sin(|q]r)

(21> (Iqlr)?
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pll]’
Carrying out the remaining Hadamard product and factoring out powers of r we find
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.:16772/ dp] e p/dm " x
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0
1
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Having arrived at this point, the integrals can by computed explicitly using the relations from
Corollary A.2.3. Simplifying the resulting expression by cancelling and combining terms and
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restoring zero rows and columns results in

oo oo

dlo =12 dla =12 "
/ |p‘|p| |ﬁ|efewp/ |Q||q| |q»|efewq E&(ZQW};) _
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(b) Terms containing Nip
Inserting the definition of the matrix Z from (F.2b) (with zero rows and columns suppressed),

the explicit form of the function ES; from (4.19b,ii) as well as the matrix My; from (E.3d)
(again, with zero rows and columns suppressed), we obtain
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Carrying out the remaining Hadamard product and factoring out powers of r we find
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Having arrived at this point, the integrals can by computed explicitly using the relations from
Corollary A.2.3. Simplifying the resulting expression by cancelling and combining terms and
restoring zero rows and columns results in
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This concludes the proof. O

Having completed these preparatory computations of the momentum integrals appearing in
Lemma 5.2.3, we can now further evaluate the expression for §%5¢ for Lorentz boosts as given in
(5.28Db).

LeMMA F.2.2 (MOMENTUM INTEGRATION IN LEMMA 5.2.3)

By performing the momentum integrals, the expression for the second variation of the ie-
regularized causal action for Lorentz boosts of the velocity vector of the regularization as
derived in (5.28b) evaluates to

1 e | [APLPP - digl17* 27 [Pll71Q5 (71, 17])
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Proof. In order to prove the claimed equality, we compute the momentum integrals by invoking
the results from Proposition F.2.1 and subsequently express the result in terms of combinations
of the derivatives DL () and D?L%(€) of the regularized causal Lagrangian as computed in
Appendix A.

(1) Evaluation of parts containing Q§

We start by evaluating those parts of the given expression which contain the function Qf.
These are the first term as well as the d-contribution implicitly contained in @3, in the second
term.” By inserting the definition of Q§ from (5.13a,i) we thus obtain

d-contr.
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Inserting the Hadamard product form of {F [X§,|(|7])} as given in (F.1la) we arrive at
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The momentum integrals appearing in this expression have already been evaluated in (F.5a)
and (F.5b), respectively. Inserting these results along with the explicit form of the coefficient
matrix G5 from (4.13a), computing the matrix product and finally taking the trace results in

.= —327Re eu/d ) &% 2[ 1M~a (Belfs| §—0(&2)” )
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2 2 /
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Comparing the integrand of the first term with the expression for DL£(&) as derived in (A.15a)
we find that the result can be expressed in terms of DL(§) such that we end up with the
following intermediate result
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[I

(2) Evaluation of parts containing Q5,

Having evaluated the parts which contain @QF, we now turn to the evaluation of the remaining
parts of @7y, namely the bulk and boundary contributions.

(a) Bulk Contribution

We start by evaluating the bulk parts of the initial expression, i. e. those parts of (), which
contains the incomplete Fourier transforms {f[Mfouo} (1], 1¢1)} and {F[N‘iollo] (I71,1¢1)}- By
inserting the definition of Q5, from (5.13b,i) (without the already treated d-contribution) we
thus have

bulk

) R 0o . 9 L
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Inserting the Hadamard product form of {F[MS, ] (|71, 14])} and {F[N5y,0) (|71, 141)} from
(F.1b) and commuting asterisked terms to the end, we arrive at
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The momentum integrals appearing in this expression have already been computed in (F.5¢) -
(F.5f). Inserting these results along with the explicit expressions for the coefficient matrices
C5¢ and C5; from (4.19a,i) and (4.19b,i), respectively, carrying out the matrix multiplication,
taking the trace and grouping terms according to their number and type of derivatives results in
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Comparing this expression with that of D2£¢(¢) from (A.15b), we recognize a high degree of

similarity though no equality. Expressing the above formula in terms of D2£¢(€) by adding
and subtracting terms in a suitable way, we end up with
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(b) Boundary Contribution

Having computed the bulk contribution we now turn to the evaluation of the boundary terms,
i. e. those parts of Qj, which contains the incomplete Fourier transforms {.F[V‘iolm] (71,171}

and {]—'[Wiolm] (I21,14])}. By inserting the definition of @5, from (5.13b,i) (without the already
treated d-contribution and the bulk contribution) we thus have

00 e 0o R R - . bndry
Re /dlpllpl /d|Q||Q| 2m |p|71Q% (171, 171)

(2m)4 (2m)* 3 Wpy

0
e [ | [ diq|lal®
= _Re | = TP —ewp QE1T9l —ew,

¢ 67r/ @2r3 ¢ / emE ¢

0

% ({F Vsl (71,171 } + {FWiopol (151,101 })

Inserting the Hadamard product form of {}-[Viouo] (1P, 14])} and {]-'[Wiollo] (21, 14])} from
(F.1c) we arrive at
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The momentum integrals appearing in this expression have already been computed in (F.5c)
and (F.5d). Inserting these results along with the explicit expressions for the coefficient matrices
G5, and G5, from (4.24a,ii) and (4.24b,ii), respectively, carrying out the matrix multiplication,
taking the trace and grouping terms according to their number and type of derivatives results
in
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where in the last equality we exploited the relation 2 Re(iz)? = Re(—2? + |z|?). Comparing
this expression with DL£?(&) from (A.15a) we find that the integrand is proportional to the
square of (DL?(£)) such that we end up with
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for the boundary term.
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(3) Conclusion
Adding up all the contributions computed above, we end up with
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This concludes the proof. O

“See the expression for QF  as given in (5.13b,i).
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