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Tree crown segmentation in three dimensions using density 
models derived from airborne laser scanning
Johan Holmgren , Eva Lindberg , Kenneth Olofsson and Henrik J. Persson

Department Forest Resource Management, Swedish University of Agricultural Sciences, Umeå, Sweden

ABSTRACT
This article describes algorithms to extract tree crowns using two- 
dimensional (2D) and three-dimensional (3D) segmentation. As 
a first step, a 2D-search detected the tallest trees but was unable 
to detect trees located below other trees. However, a 3D-search for 
local maxima of model fits could be used in a second step to detect 
trees also in lower canopy layers. We compared tree detection 
results from ALS carried out at 1450 m above ground level (high 
altitude) and tree detection results from ALS carried out at 150 m 
above ground level (low altitude). For validation, we used manual 
measurements of trees in ten large field plots, each with an 80 m 
diameter, in a hemiboreal forest in Sweden (lat. 58°28' N, long. 13° 
38' E). In order to measure the effect of using algorithms with 
different computational costs, we validated the tree detection 
from the 2D segmentation step and compared the results with 
the 2D segmentation followed by 3D segmentation of the ALS 
point cloud. When applying 2D segmentation only, the algorithm 
detected 87% of the trees measured in the field using high-altitude 
ALS data; the detection rate increased to 91% using low-altitude 
ALS data. However, when applying 3D segmentation as well, the 
algorithm detected 92% of the trees measured in the field using 
high-altitude ALS data; the detection rate increased to 99% using 
low-altitude ALS data. For all combinations of algorithms and data 
resolutions, undetected trees accounted for, on average, 0–5% of 
the total stem volume in the field plots. The 3D tree crown seg-
mentation, which was using crown density models, made it possi-
ble to detect a large percentage of trees in multi-layered forests, 
compared with using only a 2D segmentation method.
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1. Introduction

Information about individual trees can now be derived using algorithms that delineate 
tree crowns in Airborne Laser Scanning (ALS) data (Hyyppä et al. 2008). Decision makers 
can use such tree maps to monitor forests for environmental and climate changes, and 
optimize the utilization of natural resources to achieve multiple goals such as the supply 
of bio-based products and biodiversity. Tree level information is the basis for a new type 
of forestry – precision forestry (Holopainen, Vastaranta and Hyyppä 2014).
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ALS data with low resolution are already available for large forested areas, and have been 
used for operational surveys, such as the recently implemented national forest mapping 
projects (Nilsson et al. 2017). On the other hand, ALS data with sufficient resolution to detect 
individual trees have not been feasible for the mapping of large forest areas in the past, 
because of a high cost per area unit for large areas, and due to high set-up costs for small areas. 
However, the potential to cover large areas has recently improved. Two main system cate-
gories can now provide ALS data with a resolution high enough to detect individual trees: (1) 
large-area survey ALS systems that provide high-resolution (>10 pulses m−2) data from high 
altitudes (Swatantran et al. 2016), and (2) short-range systems operated from helicopters or 
drones, providing ultra-high-resolution (>100 pulses m−2) for specific areas of interest and with 
a lower set-up cost (Kellner et al. 2019). All of these ALS systems enable efficient mapping of 
forests and produce large amounts of data. Therefore, algorithms for extraction of individual 
tree information should both be computationally efficient and be able to adapt to the different 
site conditions that may occur across large geographical areas.

Challenges in delineating individual tree crowns from ALS data relate to the physical 
principles of laser scanning. Laser systems emit laser pulses and digitize the amplitude of 
the returned signals at discrete time intervals. The system saves the waveform described 
by the amplitude data for the returned signal and/or local maxima of the returned signal 
(i.e. returned pulses). The system typically records single return pulses only if a solid 
surface is measured (such as flat ground without vegetation) but, when forested areas are 
being measured, more often multiple pulses are returned (Baltsavias 1999). Hence, ALS 
detects non-solid as well as solid surfaces in forests, making it difficult to distinguish trees 
using surface-model-based algorithms that detect tree crown boundaries.

A common approach used for many tree detection algorithms is first to create a digital 
surface model (DSM), which is a two-dimensional (2D) raster with height (i.e. distance to 
ground) assigned to raster cell values, then to estimate tree locations from local maxima within 
the DSM. The final step is to delineate tree crowns using a watershed segmentation (Lindberg 
and Holmgren 2017). This approach suffers from at least two major problems. The first 
problem is caused by the non-solid properties of tree crowns. Laser pulse returns are usually 
located somewhere inside tree crowns and not just at the top of the canopy, which is the 
assumption made when tree crown delineation algorithms find local maxima of a DSM. 
Therefore, researchers have developed algorithms that find the outermost parts of the canopy, 
for example, using active contours (Persson, Holmgren and Söderman 2002). However, smaller 
trees close to taller trees may be located below such a surface, and so detection of trees will 
depend on the parameter settings for the algorithm used to construct the surface. The second 
issue arising from using algorithms with a DSM is how to select the scale parameters, which 
usually includes one affecting the smoothing of the DSM. The tree detection results will 
depend on a combination of tree size, tree crown shape at a given place, and scale parameters. 
Some previous studies have addressed this scale problem by using multiscale approaches and 
variable window sizes determined from empirical relationships (Persson, Holmgren and 
Söderman 2002; Popescu, Wynne and Nelson 2002; Wolf and Heipke 2007; Bian et al. 2014; 
Falkowski et al. 2006).

The surface-based algorithms guarantee robustness and computational efficiency but, 
since the algorithms exclude sub-canopy data, they are only suitable for certain applications. 
However, the algorithms can often estimate forest volume and biomass with sufficient 
accuracy, since the tallest, dominant trees contribute the greatest to these variables. 
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However, mapping of the understory requires algorithms that utilize laser data in other ways. 
Methods for three-dimensional (3D) segmentation, hence trying to overcome the previously 
described challenges, still often use surface-based approaches as a first step and then use 
information from the first step when analyzing the whole point cloud (Kandare et al. 2016; Wu 
et al. 2013; Bucksch et al. 2013; Lu et al. 2014.). Some algorithms include k-means clustering 
(Morsdorf et al. 2003; Gupta, Weinacker and Koch 2010; Lindberg et al. 2014), stem detection 
(Mongus and Žalik 2015), and normalized cuts (Reitberger et al. 2009). There are also 
approaches that use region growing (Lee et al. 2010; Vaughn, Moskal and Turnblom 2012; 
Wang et al. 2016).

In this article, we describe two segmentation algorithms (2D and 3D segmentation), both 
using templates (i.e. model of the tree crown density) derived from empirical data. The 2D 
segmentation algorithm creates a model fit surface rather than a traditional surface model of 
the canopy. The templates are based on the discrete probability density function of laser 
returns from different locations in tree crowns (i.e. density models). The 2D segmentation 
algorithm is a refinement of an earlier algorithm (Holmgren and Lindberg 2019) which, in turn, 
was an improvement of an algorithm based on solid geometric tree crown templates 
(Holmgren and Lindberg 2013). Our work described in this article further improves this 2D 
algorithm through another function to derive the model fit surface, repeated use of watershed 
segmentation. The new 3D segmentation algorithm uses the output from the 2D segmenta-
tion, and further separates trees located below other trees. The 3D segmentation algorithm 
uses clustering of 3D points based on model fit strings derived using tree crown templates (i.e. 
density models). For both algorithms, instead of attempting to overcome the problem of noise 
caused by laser returns inside tree crowns, we included these laser returns as part of a density 
model of the tree crowns. To address the challenge of finding optimal scale parameters, we 
used templates derived from crown density models trained with empirical data. We validated 
the algorithms using high-altitude ALS data to understand the feasibility of applying the 
algorithms to large-area mapping. We also validated the algorithms using ultra-high- 
resolution data from low-altitude ALS to understand whether it was data resolution or the 
algorithms themselves that limited the obtained tree detection accuracy. The objectives were: 
(1) to validate algorithms based on crown density models, (2) to compare 2D and 3D 
segmentation, and (3) to compare tree detection using ALS data from low and high altitudes.

2. Material

2.1. Study area

The segmentation method was validated using manually measured tree positions in ten 
circular field plots, each with 80 m diameter, located at the test site at Remningstorp (lat. 58° 
28' N, long. 13°38' E) in southern Sweden. The test site mainly contains managed hemiboreal 
forest dominated by Norway spruce (Picea abies) and Scots pine (Pinus sylvestris), but also 
includes deciduous trees, mostly Birch (Betula sp.) and Oak (Quercus robur).
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2.2. Airborne laser scanning

To obtain data that were suitable for large-area mapping, the airborne laser scanner (ALS) 
system Leica Terrain Mapper was operated between 1422 m and 1450 m above ground level, 
at a flight speed of 278 km h−1. The test site was laser scanned in October 2019. The field of 
view was 30 degrees with an elliptical scan pattern. The elliptical scan pattern, combined with 
sidewise overlap between flight strips, resulted in laser measurements of trees from up to four 
directions. The pulse repetition frequency was 1600 kHz. The scanner frequency was 150 Hz. 
The laser footprint was .35 m. The nominal density of last or single returns as derived from the 
mission plan was approximately 22 points m−2. The observed ALS density was, on average, 69 
returns m−2 in the field plots used for validation, including buffer zones.

To obtain high-resolution data to study the limitations of the algorithms, the airborne 
laser scanner system Riegl MLS-Q680i was operated from a helicopter at a flight altitude of 
150 m above ground level. The field plots used in this study were laser scanned in 
December 2018. Each field plot was covered with multiple flyovers from different direc-
tions to obtain high-resolution ALS data. The laser scanner was mounted with the scanner 
level approximately 15 degrees to the forward direction which, in combination with 
multiple flyovers of the field plots, resulted in multiple views of tree crowns from the 
side. The observed ALS density was, on average, 2511 returns m−2 in the field plots used 
for validation, including buffer zones.

For both datasets, the laser returns were classified as ground and non-ground returns using 
the software TerraScan from Terrasolid. We replaced the original z values of the laser returns 
with height above the ground (z) using the same software. We used the height-normalized ALS 
data (x, y, z) as input to the tree crown segmentation algorithms.

2.3. Field data

A manual field inventory of ten 80 m diameter field plots was carried out in May 2019. As 
instructed, the stem diameters (DBH) of all trees with ≥4 cm stem diameter at 1.3 m above 
ground level were measured in two directions using a calliper. The eight of the sample trees 
was measured with a hypsometer. In each plot, 16 subplots were systematically distributed to 
facilitate measurement of tree positions. Tree positions were measured in the subplots using 
ultrasonic trilateration (POSTEX, Haglöf Sweden AB) with a maximum working range of 
approximately 15 m from the subplot center. The POSTEX equipment was integrated with 
a digital calliper with tree positions measured relative to the subplot center. Approximate 
positions of each subplot center were measured using a Global Navigation Satellite System 
(GNSS) and were used as starting positions for a co-registration algorithm. The field plot co- 
registration carried out in this study used a previously developed algorithm (Olofsson, 
Lindberg and Holmgren 2008). The technique is based on synthetic tree position images 
where the coordinates determine the position within the image and the size variable, for 
instance the stem diameter, determines the amplitude of a Gaussian function. The field plot 
image can be rotated a few degrees between each correlation run, to compensate for possible 
compass errors. The position with the highest normalized correlation coefficient was consid-
ered a possible position of the field plot within the coordinate system of the forest area. Tree 
coordinates of the subplots can be transformed to global coordinates using the described co- 
registration algorithm, even when the accuracy of the subplot center position measurement is 
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poor. Thus, tree coordinates from all subplots could be merged to a large circular field plot of 
80 m diameter. The tree coordinates of the large field plot were then matched a second time 
with the tree map from ALS data to improve the transformation to global coordinates further. 
The heights (H) of field-measured trees (except sample trees) were estimated using regression 
functions as described in Persson and Fransson (2017). For the estimations, separate functions 
were used for different tree classes (Scots pine, Norway spruce, and deciduous trees) using 
DBH as the explanatory variable for all tree classes, and also using plot-level basal area for Scots 
pine and Norway spruce. The parameters of the functions were estimated using a large 
database consisting of sample trees from several field inventories at the test site. The stem 
volumes of field-measured trees were derived using volume functions for southern Sweden 
(Brandel 1990), with H and DBH as input variables. A summary of the field inventory data for the 
plots used for validation is presented in Table 1.

3. Methods

The segmentation algorithms used tree crown templates, each consisting of a 2D density 
raster with cells representing density of the 3D space in washer-shaped slices (‘washers’) 
extracted from tree crowns. For the density raster, one dimension is relative distance from 
ground and the other dimension is relative distance from tree centre. The relative distance was 
calculated by dividing distance by tree height (i.e. raster cell value of a canopy height model). 
The segmentation algorithms derived templates in a training phase, using ALS data inside 
manually delineated tree crown polygons. For the prediction phase, the templates were fitted 
to ALS data at raster cell locations within the laser-scanned area. A model fit (MF) surface was 
created by deriving a model coefficient with values between zero and one, with a value of one 
for a perfect fit. The MF surface was then used for 2D segmentation, followed by a 3D 
segmentation using MF strings. In the following subsections, we describe the entire segmen-
tation procedure in detail. Overviews of the algorithms are shown in Figure 1 and Table 2.

3.1. Tree crown template

3.1.1. Tree crown density model
A tree crown template is a density model (i.e. a raster describing tree crown density) based on 
ALS data from the vegetation (i.e. ALS returns above a height threshold). The template can be 
created using ALS data in manually delineated tree crown polygons. In the training phase, the 

Table 1. Summary of the field data used for validation.

Plot
Stem density  
(numberha−1)

DBH 
Average 

(mm)

DBH 
Min 

(mm)

DBH 
Max 

(mm)

Proportion 
Pine 
(%)

Proportion 
Spruce 

(%)

Proportion  
Deciduous 

(%)

1 613 297 49 469 0 97 3
2 420 258 50 397 2 84 14
3 643 298 47 514 0 93 7
4 462 258 86 405 0 97 3
5 348 287 175 435 14 86 0
6 523 282 43 498 52 48 0
7 643 172 42 465 31 62 7
8 485 281 55 421 0 82 18
9 352 314 42 507 84 3 14
10 436 301 72 509 0 94 6
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model centre (xc, yc) was defined as the mean value of x and y coordinates of all laser returns 
above a height threshold within the manually delineated tree crown polygon. The model 
includes a tree height (hmax) which, for the training phase, was set as the maximum height of 
laser returns located within the manually delineated tree crown. From the model centre, laser 
returns were selected within a search radius and each laser return was projected onto a height- 
radius plane to create a tree crown density raster (Figure 2). The raster cell values were derived 
using accumulated values of projected laser returns. This was carried out as follows: for each 
laser return above a height threshold, the distance r to the tree crown centre was calculated 
using Equation 1. This distance and the height of the laser return were used to calculate 
a relative radial distance rp to the tree centre (Equation 2) and relative height hp (Equation 3) by 
dividing with the maximum height above the ground (hmax). The raster indices were calculated 
by dividing the radial distance with the raster cell size m (set to .01, proportion of hmax), where 
index i represents the radius dimension (Equation 4) and index j represents the height 

Figure 1. Overview of the segmentation algorithms using templates (i.e. tree crown density models).
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dimension (Equation 5) of the 2D crown density raster. For a density raster that represented the 
model for a specific tree class, the value a divided by the volume that the raster cell 
represented (Equation 6) was accumulated; this was repeated for all laser returns within the 
washer (k = 1 . . . n). In this work, the value a was set to one, but could also be an attributed 
value of a laser return describing crown density, such as amplitude of the returned laser signal. 
The Δri is the horizontal width of the washer and Δhj is the vertical width of the washer.

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x � xcð Þ
2
þ y � ycð Þ

2
q

(1) 

rp ¼ r=hmax (2) 

Figure 2. The templates created in the training phase using low-altitude ALS data.
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hp ¼ h=hmax (3) 

i ¼ rp=m (4) 

j ¼ hp=m (5) 

dij ¼
Xn

k¼1

a=ðr2
i π � ðri � ΔriÞ

2πÞΔhj (6) 

3.1.2. Create tree crown templates with empirical data
The laser scanning data used for training were selected by manual delineation of individual 
tree crowns. In this work, we used three different tree classes: Scots pine, Norway spruce, and 
deciduous trees. We used visualizations of high-resolution ALS data to delineate polygons, 
which were used to extract ALS data for individual tree crowns. The laser data within the tree 
crowns from a tree class were then scaled, combined into one, and projected onto the height- 
radius plane, as given by the crown density model (Equations 1–6). For the training phase, hmax 

was the maximum height above the ground (z) of all laser returns in the tree crown polygon 
given by the manual delineation. The use of the projection to the height-radius plane means 
that the matching procedure assumes rotational symmetry around the tree center. These 
crown density models are more robust compared to algorithms based only on canopy height 
surface models, since laser returns within a tree crown no longer appear as noise, but 
contribute to the density model (Figure 2). We solved the scale selection problem by using 
a density model trained with empirical data, and templates scaled with tree height (hmax). For 
this experiment, we used 20 Scots pine trees, 24 Norway spruce trees, and 10 deciduous trees. 
The tree crowns used for training were arbitrarily selected from within the 10 field plots. The 
extent of the crowns was manually delineated using a DSM derived from the low-altitude laser 
scanning data and using information about tree classes from the field inventory for tree 
species annotation. The delineation of tree crowns was used for extraction of laser data from 
both flight altitudes to produce sensor-specific training data for the templates.

3.2. Tree crown 2D segmentation

The automatic delineation of individual tree crowns to create 2D crown segments requires 
several steps, which involve using a crown density model for delineation of individual trees: (1) 
Generate a Canopy Height Model (CHM), (2) create a model fit surface using the best model fit 
at each raster cell from any of the tested tree crown templates, with height (hmax) from the 
CHM as scaling factor, (3) apply a watershed segmentation to the model fit surface generated 
in step 2, (4) repeat step 2 including only ALS data from the crown segment resulting from the 
previous segmentation, and (5) repeat step 3 based on the surface obtained in step 4. In the 
following five subsections, we describe each of these steps in detail.

3.2.1. Canopy height model
The tree crown 2D segmentation algorithm can use tree heights from any CHM for scaling the 
templates. However, the CHM should describe the uppermost part of the canopy, excluding 
low height values or missing data within a tree crown, which otherwise could result in 
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commission errors. To obtain a suitable CHM with .25 m raster cell size we used morphological 
filtering to first define crown area and then interpolate crown heights only for raster cells 
located within areas covered by tree crowns. We describe the process in this subsection. 
A crown area raster that defined areas covered by the tree crowns was first created using 
a height threshold (2 m above ground level). The value of a raster cell was set to one if there 
was at least one laser return above the height threshold within the raster cell, otherwise zero. 
Morphological closing was then carried out using a 3 × 3 structuring element. The closing 
operation involves using dilation followed by erosion. The crown area raster created from the 
morphological filtering was then used as a mask to construct the canopy height model. A first 
version of the CHM was created by setting the raster cell values to the maximum height (i.e. 
distance above the ground) of all laser returns above a height threshold (2 m above ground 
level) within the raster cell, and to zero if there were no laser returns above the height 
threshold within the raster cell. The CHM was updated for raster cells with value zero if the 
crown area raster was equal to one. The new value was calculated by interpolation of values 
within the smallest window needed to cover at least one raster cell of the first version of the 
CHM with a value greater than zero.

3.2.2. Model fit surface
We first created a raster that covered the laser-scanned area with a raster cell size of .25 m and 
set all raster cell values to zero. A model centre was located with its origin at each raster cell 
centre. The height at the centre of the tree crown model (hmax) was set to the raster cell value of 
the CHM at the corresponding raster cell. All templates derived in the training phase, one for 
each tree class, were tested at this location. A measure of model fit, Bhattacharyya coefficient 
(B), previously also used for segmentation (Ning et al. 2010), was derived for each combination 
of raster cell location and tree class, using Equation 7, where p(xij) is the relative frequency of 
laser returns within a raster cell of the crown density raster derived for a tree class in the 
training phase (Equations 1–6), q(yij) is the relative frequency of laser returns within a raster cell 
of the local crown density raster derived in the prediction phase (Equations 1–6 applied to data 
only from the area surrounding the tree centre at the current raster cell location), M is the 
height (number of rows) and N is the width (number of columns) of the crown density raster. 
Relative frequency for the models in the training phase and the local model in the prediction 
phase were derived for each tree class using Equations 8 and 9, respectively, where Sp is the 
sum of raster cell values in the training phase raster and Sq is the sum of raster cell values in the 
prediction phase raster. In Equations 8 and 10, xij is the sum of laser returns in raster cell with 
index i and j of the crown density raster from the training phase (aggregated from all trees in 
a specific class used for training) using Equation 6. In Equations 9 and 11, yij is the number of 
laser returns in the raster cell with index i and j of the crown density raster from the prediction 
phase using Equation 6. Thus, B is a measure of model fit with values between zero and one. 
For the extreme case where the two distributions completely mismatch, B is zero, and for the 
extreme case where the two distributions completely overlap, B is one.

B ¼
XM

i¼1

XN

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p xij
� �

q yij
� �q

(7) 

p xij
� �
¼ xij=Sp (8) 
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q yij
� �
¼ yij=Sq (9) 

Sp ¼
XM

i¼1

XN

j¼1

xij (10) 

Sq ¼
XM

i¼1

XN

j¼1

yij (11) 

The raster cell value of the MF surface was set to the maximum B value from 
tests with all models for tree crown classes from the training phase. In this study, 
three classes were used, namely Scots Pine, Norway spruce, and deciduous trees. 
The MF surface was smoothed with a 3 × 3 raster Gaussian filter that was applied 
recursively three times, in order to avoid local variation caused by noise.

3.2.3. Initial watershed segmentation
A watershed segmentation algorithm was applied to the smoothed MF surface. 
First, a seed was placed in each raster cell and used as the starting point. Second, 
a path was derived from each seed to a local maximum. To find this path, the 
following rule was applied: from one raster cell, move to a neighbouring raster cell 
in the direction with the steepest slope (eight possible directions), and repeat until 
a local maximum is reached. All raster cells with seeds that resulted in a path that 
ended at the same local maximum defined a segment.

3.2.4. Constrained model fit surface
A new MF surface was derived, a Constrained Model Fit (CMF) surface, using the 
same method as for the first step but with one difference: the local model was 
derived only from laser returns within the same segment (i.e. from the initial 
segmentation) as the location of the model tree center (xc, yc). The CMF surface 
was then smoothed with a 3 × 3 raster Gaussian filter that was applied recursively 
three times, in order to avoid local variation caused by noise.

3.2.5. Second watershed segmentation
This step involved a second watershed segmentation based on the CMF surface 
rather than the MF surface. In this step, the algorithm merged segments as not all 
raster cells were assigned a high B value when only laser data within the segment 
obtained from the first segmentation were included.

3.3. Tree crown 3D segmentation

The 2D segmentation using 2D model fit surfaces will not detect trees located 
below other trees. Therefore, we also developed a 3D segmentation algorithm in 
order to separate the 3D laser returns further into separate tree crowns starting 
with 3D points in the segment obtained from the 2D surface algorithm. We used 
the mean shift algorithm for searching 3D cluster centre locations and based our 
search for cluster centres on the same models of tree crown density as was used 
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for the 2D segmentation. The generic idea of the mean shift algorithm is as 
follows, using a simple example with 2D point data. At the location of each 2D 
point (x, y), mean values of x and y coordinates are derived using neighbouring 2D 
points within a specific radius from the current location, giving a new location. For 
the new location, new mean values of x and y coordinates are derived using 2D 
points within a radius from this updated location. The procedure is repeated until 
there is only a small change of locations between subsequent iterations (or until 
a maximum pre-set number of iterations is reached). In addition, one can use 
a kernel, for example, a Gaussian function, to calculate weighted mean values, 
instead of only using mean values within a radius. The mean shift procedure is 
applied to all the 2D points and the points in the original dataset with updated 
mean values that arrive to similar locations define a cluster.

3.3.1. Model fit strings
In this work, we used the generic idea of the mean shift algorithm applied to cluster 3D points, 
and used tree crown density models (i.e. templates) as kernels. These were the same templates 
as were used for the 2D segmentation. Each crown density raster (i.e. template) was first 
smoothed with a Gaussian kernel to ensure stable results despite the use of small training 
datasets. The mean shift algorithm needs a symmetrical kernel in each dimension to avoid 
centroid locations, updated in each iteration, that depend on the shape of the kernel. However, 
our templates are symmetrical only in the 2D plane (i.e. radially symmetric). Therefore, in the 
first step, the centroid location was updated only in the 2D plane, however, still using 3D point 
data (Equations 12 and 13), where p(xij) was derived using Equation 8, Xt and Yt are original 
coordinates, and Xt +1 and Yt +1 are updated coordinates. The location of the center of gravity of 
the template was used as the kernel center for the mean shift algorithm and the template was 
scaled with the height. In addition, our crown density model was first smoothed with 
a Gaussian kernel. In this way, the current mean location was updated in the 2D plane until 
the change of the mean location (Equation 14) between subsequent iterations was below 
a threshold of .1 m or until the maximum number of iterations (set to 500) was reached. For 
each starting point, the mean shift procedure was repeated using each of the templates (i.e. 
tree class), resulting in one end point for each density model. At the end point, B was calculated 
(Equation 7) and the end point containing the maximum B, out of all the tested templates, was 
used together with the maximum B value, for further processing. The mean shift algorithm was 
applied in the 2D plane using all points in a 2D segment as starting points, each resulting in 
one end point, with a shift in the 2D plane but not in the vertical direction. Thus, the result of 
the mean shift in the 2D plane was a set of strings along tree center locations, which consisted 
of 3D coordinates (i.e. coordinates of end points) and B values, referred to as model fit (MF) 
strings (Figure 3(a)). We used the name MF strings because these can be sampled and 
represented as points at any distance from the ground.

Xtþ1 ¼
XM

i¼1

XN

j¼1

p xij
� �

Xt=
XM

i¼1

XN

j¼1

p xij
� �

(12) 

Ytþ1 ¼
XM

i¼1

XN

j¼1

p xij
� �

Yt=
XM

i¼1

XN

j¼1

p xij
� �

(13) 
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Dxy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xt � Xtþ1ð Þ
2
þ Yt � Ytþ1ð Þ

2
q

(14) 

3.3.2. Clustering of 3D points
Following a MF string from a treetop down toward the ground, the maximum 
B value is typically found at the centre of a tree crown. Thus, the next step is to 
follow the MF strings and find one or several local maxima of the B value (i.e. 
coefficient of model fit). For this final step, the mean shift algorithm was applied in 
the 3D space using a weighting function that consisted of a product of three 
terms: (1) Gaussian function of the vertical distance, (2) Gaussian function of the 
horizontal distance, and (3) the B value (Equation 15). Because of the vertical main 
direction of the MF strings, we used a high sigma value of the Gaussian function 
in the vertical direction and a low sigma value of the Gaussian function in the 
horizontal direction. The sigma values were set as proportions of the z value (i.e. 
distance to the ground) in order to use higher sigma values at the top of the 
canopy and lower sigma values close to the ground, using Equations 16 and 17, 

Figure 3. (a) Model fit (MF) strings with colors set by the model fit coefficient (B value) and gray points 
showing the original point cloud, (b) the original point cloud with colors set by the identification 
numbers of 3D segments. the original point cloud was selected using a polygon obtained from 2D 
segmentation using high-altitude ALS data.
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where br and bz were set to .05 and .2, respectively. The mean value of the 3D 
coordinates was updated using the centre locations in the strings (Xc, Yc, Zc) 
inserted into Equations 18–20, where G represents the Gaussian function, and 
U is the number of 3D points contained in a tree crown polygon according to 
the 2D segmentation. The mean location was updated in 3D space, following the 
strings, until the change of the mean location between subsequent iterations 
(Equation 21) was below a threshold of .1 m, or until a maximum number of 
iterations (set to 500) was reached. This resulted in a new set of end points 
along the string cluster centre locations. We clustered the new end points using 
a threshold for the 3D Euclidian distance (0.3 m). The original 3D coordinates of 
the laser returns associated with the same cluster using this Euclidian distance 
clustering were marked with the same cluster identification number (Figure 3(b)).

wi ¼ BxyzG x; y; σrð ÞG z; σzð Þ (15) 

σr ¼ brZc
t (16) 

σz ¼ bzZc
t (17) 

Xc
tþ1 ¼

XU

i¼1

wiXc
t =
XU

i¼1

wi (18) 

Yc
tþ1 ¼

XU

i¼1

wiYc
t =
XU

i¼1

wi (19) 

Zc
tþ1 ¼

XU

i¼1

wiZc
t =
XU

i¼1

wi (20) 

Dxyz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xc
t � Xc

tþ1

� �2
þ Yc

t � Yc
tþ1

� �2
þ Zc

t � Zc
tþ1

� �2
q

(21) 

3.4. Derive attributes for individual trees

The result from the final 2D segmentation was used to estimate tree crown 
properties. A centre position of a tree crown was estimated using the location of 
the maximum value of the CMF surface inside the segment. The tree height of 
a segment was estimated as the maximum laser height within the segment, except 
in cases where there was tree crown overlap from a neighbouring tree. A segment 
corresponding to a small tree next to a tall tree could include small areas of the 
neighbour tree, and therefore have incorrect laser heights near the edge of the 
tree crown segment. Therefore, the height of the estimated location of the tree 
crown centre (Hc) was compared with the maximum laser height (Hm) of the 
segment. If the difference between Hm and Hc was >10% of Hc, we used Hc else 
Hm was used for the tree height value. The position of a 3D tree crown cluster was 
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derived using the mean values of x and y coordinates of laser points within the 
cluster. The height of a 3D tree crown cluster was derived using the 90th percen-
tile of heights (z) for laser points within the cluster.

3.5. Validation

The algorithms (2D segmentation and 3D segmentation) were validated using ALS 
data from high and low altitudes. In order to increase computation speed, we 
reduced point density before the 3D clustering step when using the low-altitude 
ALS data. First, the original point cloud was reduced by using a grid with a voxel 
size of .1 m and replacing the points within a voxel with new data based on 
average values. Second, the point cloud used to define start points in the mean 
shift algorithm and create MF strings was further reduced using the same proce-
dure, but with a voxel size of .2 m. There was a small geometric mismatch 
between the two sets of ALS data (high and low altitude), which was reduced 
by matching the DSM from both sensors for each subarea (i.e. field plot) and 
finding the transformation with the highest correlation between DSM values.

We used automatic linking of field-measured and ALS datasets with an algorithm that 
minimizes the sum of link distances (Olofsson, Lindberg and Holmgren 2008). The 
proportion of detected trees was derived as the ratio of linked trees and the total number 
of manually measured trees in the plot. The proportion of basal area detected was 
calculated as the sum of basal area (cross-sectional area of the tree stem, 1.3 m above 
ground level) from linked trees divided by the sum of basal area from all manually 
measured trees in the plot. The estimated stem volume for each tree was used to derive 
the sum of stem volume of the detected trees in relation to the sum of stem volume of all 
the manually measured trees in the field plots.

The commission error was calculated as the proportion of ALS-measured trees 
that were not linked to a manually measured tree. The stem volumes of trees 
detected from the ALS data were summed to plot level and compared with the 
sum of stem volumes of all field measured trees on the plot. For the automatically 
linked trees detected from the ALS data by the 2D segmentation, the tree heights 
were compared with the field-measured sample tree heights (i.e. height from ALS 
minus height from field measurement). Standard deviations of the differences and 
mean of the differences were calculated. The tree heights derived from ALS data at 
different flight altitudes were compared using the same procedure.

4. Results

For visualization of the 2D segmentation, tree crown segments were overlaid on 
a DSM with 5 cm resolution and compared with the manually measured tree 
positions (Figure 4). The 2D segmentation mostly agreed with both DSM and 
manually measured trees. For visualization of the 3D clustering, laser returns 
clustered to tree crowns were represented as 3D points with different colors 
(Figure 5).
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The lowest proportions of detected trees were found for the small trees in field 
plots with a multi-layered canopy (Figures 6–9, Tables 3–6). When using only 2D 
segmentation, 87% of the trees were detected from high-altitude ALS data, and 
91% of the trees were detected from low-altitude ALS data (Table 7). However, 
when using 2D segmentation followed by 3D clustering, 92% of the trees were 
detected using high-altitude ALS data and 99% of the trees were detected using 
low-altitude ALS data (Table 7). Both flight altitude and choice of algorithm 
affected the omission error (Table 7). This was especially evident for trees in 
lower canopy layers (Figures 6–9, Tables 3–6).

The sum of stem volume from the detected trees was compared with the sum 
of stem volume from all trees within stem diameter intervals. The detected trees 
represented a high proportion of the stem volume of the field-measured trees 
(Tables 3–7, undefined Figures 10–13). In order to compare the results of the 
algorithms developed in this study with a standard tree detection algorithm, we 
also tested local maximum detection in a DSM with a cell size of .25 m, derived 
from both high and low altitude ALS data. We used Gaussian smoothing of the 
DSM and a 2 m search radius to reduce commission errors. The standard algorithm 
detected 81% of the trees using ALS data from the high altitude, and 82% of the 
trees using ALS data from the low altitude on average for the plots. The average 
commission error for the plots was 6% and 5% for high and low altitude ALS data, 
respectively.

Figure 4. DSM with 0.05 m resolution as the background image, and tree crown segments from the 2D 
segmentation algorithm using ALS data from low altitude (150 m above ground level) as the input. 
Field measured tree positions shown as yellow dots. the boundary of the field plot (80 m diameter) is 
shown with a green circle.
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When comparing DSM from the first (low altitude) and second scanning (high 
altitude) missions, we observed that several trees had been removed between the 
scanning events, especially in plot 2. This could be one reason for the lower 
detection rate in the high-altitude scanning, when compared with earlier field 
data. There were many commission errors in a few plots, especially plot number 
9. After comparing field data, DSM and segmentation, it was clear that many small 
trees were detected from the ALS data that were not measured during the field 
inventory. This was probably due to the limit of 4 cm DBH for manual field 
measurements of a tree while the lower threshold used by the algorithms was 2  
m height in the ALS data. The reported commission errors were reduced when we 
only included tall trees (>10 m ALS height) for the validation. Thresholds using 
different variables (stem diameter from field inventory and height from ALS) will 
increase the magnitude of reported commission errors compared to true commis-
sion errors. For tall trees (>10 m ALS height) and for the 2D segmentation, the 
commission error was between 5% and 17% using high-altitude ALS data (Table 3), 
and between 3% and 10% using low-altitude ALS data (Table 4). After comparing 
field data and DSM, it was clear that a few trees in each plot were missed during 
the manual field inventory. Trees excluded during the field inventory contribute to 
the total commission errors.

Tree height estimates from the two different ALS acquisitions were compared 
(Figure 14). In addition, tree height estimates from high-altitude ALS and low-altitude 
ALS data were compared with manual measurements (Figures 15 and 16). The standard 
deviation of differences between trees heights from ALS from two different altitudes was 
.73 m. The bias was .24 m, thus tree heights were, on average, estimated to be lower from 
the higher altitude data (Figure 14). The standard deviation of differences between ALS- 

Figure 5. Clustering of 3D point cloud produced from high-altitude ALS data (1450 m above ground level).
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measured heights from the higher altitude and field-measured tree heights was .86 m. 
The bias was −.07 m, thus tree heights were, on average, estimated to be lower from ALS 
data than from manual measurements (Figure 15). The standard deviation of differences 
between ALS-measured heights from the lower altitude and field-measured tree heights 
was .74 m. The bias was .13 m, thus tree heights were, on average, estimated to be higher 
from ALS data than from manual measurements (Figure 16).

Figure 6. Histograms showing tree detection results from 2D segmentation using high-altitude ALS 
data (white bars for all field trees and gray bars for field trees that were linked to trees detected in the 
ALS data).
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5. Discussion

We have developed new segmentation algorithms, which uses density models of 
tree crowns with empirical data as a reference. Axelsson (1999) highlighted the 
advantage of using original laser data in the filtering and modelling process. For 
the algorithms, we model tree crowns using original laser data. We search for tree 
locations and carry out delineation of trees with a watershed algorithm, where the 
input is a model fit surface instead of a canopy height surface model. We solve the 

Figure 7. Histograms showing tree detection results from 2D segmentation using low-altitude ALS 
data (white bars for all field trees and gray bars for field trees that were linked to tree detected in the 
ALS data).
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scale selection problem using a training phase, where we create crown density 
models for a set of tree classes. The simple models, with scaling using tree heights 
and an assumption of radial symmetry, reduce the amount of data needed for 
training and make the algorithm computationally efficient. The algorithm does not 
require site-specific parameter settings. Instead, the algorithm learns from laser 
data using manually delineated tree crown polygons (empirical data). These poly-
gons should be defined for tree crown classes, where trees of the same class have 
similar crown shape and structure. In this study, we only used three classes and 

Figure 8. Histograms showing 3D segmentation tree detection results using high-altitude ALS data 
(white bars for all field trees and gray bars for field trees that were linked to tree detected in the ALS 
data).
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a few trees within each tree class. Future work should find out how segmentation 
results depend on training data size and number of tree species.. More efficient 
procedures should be developed for selection of empirical data. In addition, future 
work should find out potential errors due to inclusion of data from low vegetation 
in the models.

The use of a model fit surface makes it difficult to detect trees located below 
other trees. Therefore, we used 3D clustering as an optional second step, which 
requires more computations. For the 3D clustering, we first use the mean shift 

Figure 9. Histograms showing 3D segmentation tree detection results using low-altitude ALS data 
(white bars for all field trees and gray bars for field trees that were linked to tree detected in the ALS 
data).
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algorithm in two dimensions, with density models of tree crowns as kernels, to 
find strings that define the centre locations of tree crowns, and derive model fit 
coefficients for each part of these strings. We then apply the mean shift algorithm 
in three dimensions to find local maxima of coefficients along the strings to define 
cluster centres. Although the sequential approach with 2D segmentation followed 
by 3D clustering was successful in earlier studies it will introduce problems. For 
example, the restriction of the 3D clustering to use only data from a 2D segment 
will yield incorrect clusters if the 2D segmentation has errors. In this study, the 3D 
clustering was strictly limited to a 2D segment, i.e. the 3D clustering was first 
performed with data from one 2D segment, and then using data from another 2D 
segment. Although the 3D clustering is able to detect several small trees located 

Figure 10. Stem volume for all trees and for detected trees using high-altitude 2D segmentation in 
stem diameter intervals on all field plots.

Figure 11. Stem volume for all trees and for detected trees using low-altitude 2D segmentation in 
stem diameter intervals on all field plots.
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Figure 12. Stem volume for all trees and for detected trees using high-altitude 3D segmentation in 
stem diameter intervals on all field plots.

Figure 13. Stem volume for all trees and for detected trees using low-altitude 3D segmentation in 
stem diameter intervals on all field plots.

Table 3. Results from tree detection using 2D segmentation and high-altitude ALS data: 
omission errors affect (in percentage) on the number of trees (Number), on the basal area 
(Basal area), and on the stem volume (Volume); commission error (in percentage) of all trees 
and of only tall trees (ALS tree height >10 m).

Omission error (%) Commission error (%)

Plot Number Basal area Volume All trees Tall trees

1 9 5 4 9 8
2 12 10 9 7 7
3 17 7 6 10 10
4 2 1 1 6 5
5 2 2 1 13 8
6 7 4 3 11 9
7 49 11 8 17 12
8 12 6 5 12 11
9 15 3 3 34 17
10 7 6 6 13 13
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Figure 14. Tree heights from high-altitude ALS data (1450 m above ground level) and tree heights 
from low-altitude ALS data (150 m above ground level) for automatically connected trees on 10 
sample plots (2200 linked trees), coefficient of determination (R2), standard deviation of differences 
(STD) and mean value of differences (Bias).

Table 4. Results from tree detection using 2D segmentation and low-altitude ALS data: 
omission errors affect (in percentage) on the number of trees (Number), on the basal area 
(Basal area), and on the stem volume (Volume); commission error (in percentage) of all trees 
and of only tall trees (ALS tree height >10 m).

Omission error (%) Commission error (%)

Plot Number Basal area Volume All trees Tall trees

1 4 1 1 5 4
2 4 3 3 4 3
3 14 5 4 6 6
4 3 2 2 7 4
5 2 2 2 11 3
6 5 3 3 7 5
7 38 8 5 15 3
8 9 4 3 5 4
9 10 2 1 46 7
10 5 6 5 10 10
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Figure 15. Tree heights from individual trees obtained from high-altitude ALS data (1450 m above 
ground level) and field-measured trees (214 linked trees), coefficient of determination (R2), standard 
deviation of differences (STD) and mean value of differences (Bias).

Table 5. Results from tree detection using 3D segmentation and high-altitude ALS data: 
omission errors affect (in percentage) on the number of trees (Number), on the basal area 
(Basal area), and on the stem volume (Volume); commission error (in percentage) of all trees 
and of only tall trees (ALS tree height >10 m).

Omission error (%) Commission error (%)

Plot Number Basal area Volume All trees Tall trees

1 7 3 3 17 7
2 11 10 9 21 8
3 15 5 4 23 10
4 3 2 2 15 6
5 1 1 1 35 8
6 5 4 4 26 10
7 24 4 3 41 17
8 10 6 6 28 11
9 3 1 1 69 23
10 5 5 4 31 14
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Figure 16. Tree heights for individual trees obtained from a helicopter at low altitude (150 m above 
ground level) and field-measured trees (221 linked trees), coefficient of determination (R2), standard 
deviation of differences (STD) and mean value of differences (Bias).

Table 6. Results from tree detection using 3D segmentation and low-altitude ALS data: 
omission errors affect (in percentage) on the number of trees (Number), on the basal area 
(Basal area), and on the stem volume (Volume); commission error (in percentage) of all trees 
and of only tall trees (ALS tree height >10 m).

Omission error (%) Commission error (%)

Plot Number Basal area Volume All trees Tall trees

1 1 0 0 61 5
2 0 0 0 67 3
3 1 1 0 66 7
4 1 1 1 62 4
5 1 0 0 67 3
6 0 0 0 73 6
7 1 0 0 81 25
8 1 1 0 72 6
9 0 0 0 92 45
10 0 0 0 77 14
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below a tall tree, problems will occur if several tall trees (i.e. several 2D segments) 
cover one small tree. It is possible to solve this problem using buffer zones of ALS 
data outside the currently processed 2D segment and only save 3D clusters with 
their centres located within the currently processed 2D segment. The results of the 
3D clustering was limited to modelling of tree crowns. One effect of this can be 
observed in Figure 3(b), where data from a tree stem belonging to a tall tree was 
included in the 3D cluster of a shorter tree below. This will result in an over-
estimated tree height for the shorter tree, which might be one reason for relatively 
high commission errors observed on two plots with a mixture of tall pine trees 
and short trees (Tables 5-6). It is possible to solve this problem by also detecting 
tree stems, and not only tree crowns.

Some trees were removed between the two ALS data acquisition missions, 
probably due to bark beetle infestation. The removals were clear when comparing 
the DSM from the two different ALS datasets. Thus, the true proportions of 
detected trees, using high-altitude ALS data, are higher than given by the com-
parison with field data. The field measurements used for validation were not 
completely correct. This was due to field crews sometimes making mistakes. For 
example, one field crew omitted some trees from the inventory. They painted the 
trees that had been measured in order to avoid this mistake. Despite painting the 
trees, some errors in the field measurements are visible when comparing field 
measurements to a DSM with 5 cm resolution, and therefore contribute to the 
commission error. Thus, true commission errors are lower compared to the values 
from the validation based on the field inventory.

We also experienced problems using different thresholds for the different data 
sources, that is, stem diameter (DBH) for the field inventory and height for the ALS 
data. One solution to the threshold problem was to use only tall trees for valida-
tion of commission errors. For tall trees, commission errors were smaller, and trees 
missed during the field inventory can explain some of the errors. However, the 
commission errors were larger for the high-altitude ALS data. One reason for larger 
commission errors using lower resolution ALS data could be lower quality of the 
canopy height model used to set the height of tree crown models. We used 
morphological filters to derive a canopy area raster, which we used to decide 
whether we should interpolate height values for data raster cells with no data 
values in the canopy height model (CHM). Problems with raster cell values in the 

Table 7. Mean values of plot results from tree detection using 2D segmentation and low-altitude ALS 
data: omission errors affect (in percentage) on the number of trees (number), on the basal area (basal 
area), and on the stem volume (volume); commission error (in percentage) of all trees and of only tall 
trees (ALS tree height >10 m).

Omission error (%) Commission error (%)

Dataset Algorithm Number Basal area Volume All trees Tall trees

High altitude 2D segmentation 13 6 5 13 10
Low altitude 2D segmentation 9 4 3 12 5
High altitude 3D segmentation 8 4 4 31 11
Low altitude 3D segmentation 1 0 0 72 12
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CHM deviating from the true canopy height could be one reason for larger 
commission errors when using ALS data with lower density, and it could therefore 
be possible to improve the results using enhanced interpolation.

We observed similar proportions of detected volume for the two ALS data resolutions. 
The detection rates in lower canopy layers were higher using high-resolution ALS data. In 
earlier studies, tree detection results have been similar, compared to results obtained in 
this study, for densities above 10 laser returns per square meter (Reitberger et al. 2009; 
Kaartinen et al. 2012; Yao et al. 2014; Kandare et al. 2016). We observed a high proportion 
of detected trees in this study, using low-altitude ALS data and 3D segmentation, 
compared to several earlier studies. However, the results are difficult to compare because 
of the use of different data for validation.

In this study, we compared tree height estimates from two altitudes. The 
standard deviation of the differences was .73 m. Morsdorf et al. (2008) observed 
a small difference in tree height estimates using ALS from flight altitudes of 500 m 
and 900 m above ground level. For comparison with manual measurements, the 
standard deviation was only slightly higher using ALS data from 900 m altitude, 
1.49 m, compared with 1.39 m for the 500 m altitude. In comparisons of several 
algorithms in Finland using ALS data from 600 m flight altitude and ALS data 
densities of 2, 4, and 8 points per m2, the root-mean-square errors of tree height 
estimations were usually between .5 m and 1.0 m (Kaartinen et al. 2012) which are 
similar to the results obtained in our study.

Very high-resolution ALS makes it possible to obtain laser returns from all 
treetops not obscured by other trees. There are errors caused by manual measure-
ments using a hypsometer for angle measurement and from problems in observing 
treetops from a location on the ground. Therefore, the reported errors from ALS- 
based estimates of tree height could depend much on the errors caused by the 
manual method used for validation. For example, tree heights from ALS from a low 
altitude were on average higher than from manual measurements, which could be 
a result of problems to observe all parts of the treetop from a viewpoint on the 
ground.

6. Conclusions

We observed higher tree detection rates using ALS data collected from low 
altitude (150 m above ground level) compared to high altitude (1450 m above 
ground level). The algorithm produced similar results using high-altitude ALS 
data compared to low-altitude ALS data for detection of trees that made up the 
majority of the total stem volume. Thus, the high-resolution ALS data from a low 
altitude was mostly useful for detection of small trees in lower vegetation layers. 
The second part of the algorithm included clustering of 3D point data, making it 
possible to detect trees located below other trees. However, this second part is 
more computationally expensive. High proportions of the stem volume were 
detected with only the first part of the algorithm, using watershed segmentation 
of a model fit surface. This is important information for large-area mapping of 
forest resources in terms of wood supply to forest industries. However, low- 
altitude ALS data can be used to produce high-resolution point clouds for detailed 
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mapping of specific areas and provide additional information about low vegeta-
tion; this information is useful for environmental monitoring of hot-spot areas or 
for planning forest operations. The use of 3D tree crown segmentation based on 
crown density models made it possible to detect a large percentage of trees in 
multi-layered forests.
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