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Abstract

Marine Icing is the process of ice accumulation on ships and other offshore structures in cold

regions that can create serious working conditions besides the adverse effects to the offshore oper-

ations efficiency. Monitoring of icing conditions together with a number of de-icing strategies is

therefore important in decreasing the safety hazards and increase the working effectiveness. Detec-

tion of the ice accretion rate on the offshore structures is a challenge due to the harsh environment

and the multiphase property of the ice.

This thesis is focused on developing a low cost array sensor for the ice accretion detection ap-

plicable to the harsh marine environments. We utilized a stray-capacitance technique that encodes a

layered multiphase icing accretion uniquely. Capacitive sensors are popular in diverse industrial set-

tings due to their relative simplicity, robustness and low cost. The sensor transducers are compatible

with the printed circuit board technology which made this research time effective.

The thesis is based on three distinct publications, two journal papers (IEEE, MDPI) and one

peer-reviewed conference paper (IEEE), each in a separate chapter. All publications include a the-

oretical background, simulations, and experimental validation. The underlying novel approach that

is more or less shared in all applications is the use of linearly independent sensor array for unique

multiphase ice detection. The first two papers utilize a different inter-electrode spacing array but a

different signal conditioning algorithm. The third paper then uses an array of constant spacing but

different dielectric layer height.

As stated above, the main objective of this work is to measure the multiphase icing accretion

which consists of water above ice, the real situation which has not been addressed to date. A

number of different techniques have been developed over the last two decades mainly as a response

to the rapidly expanding offshore oil&gas in northern regions, offshore wind power generation, or

shipping across or fishing in arctic waters. This thesis outlines three methods that can be directly
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applied to these industries.
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Introduction and Overview
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1.1 Introduction

Marine icing is a natural and complex phenomena due to its non-homogenous composition. Marine

icing is also an unwanted phenomena because it poses a severe safety hazard for which many polar

expeditions of the past either failed or had to retreat to warmer latitudes. However, due to natural

resources depletion and the fierce global competition, many projects in the harsh Arctic region are

currently being operated or developed as a result. Marine icing is one of the main problems the

offshore industry faces in these cold climate regions.

Our task is to provide an accurate icing monitoring tool that will inform the operators about the

accretion rate and to enable them to make an informed decision about the icing management. In this

chapter, we first describe the effects of marine icing and then review all existing methods known to

us that have been developed or some of them commercialized for the ice detection. Many of these

sensors were developed for the terestrial markets and were never tested in the marine conditions,

others were designed for the marine icing applicatons but without consideration for the multiphase

composition. While onshore shown some success in ice accumulation detection. This is the gap we

try to close by proposing our unique sensor array system.

1.2 Marine Icing

Marine icing is created in low air temperatures when water spray brakes off from ocean waves or

upon impact with offshore structures such as ship bows, oil & gas platforms or wind power tow-

ers. Figure 1.1 shows the marine icing process [5]. The marine ice accretion is created when the

airborne supercooled water spray droplets pound on mostly steel structures and freeze there before

the droplets have time to run off from the stucture. This happens under particular environmen-
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tal conditions that involve low temperature (ambient & structure), water salinity, water flux, water

droplet size, relative humidity, wind speed and wind direction [1], [2]. There are two methods used

to measure marine icing: the direct method and the indirect method. Monitoring marine icing in

the indirect manner is complex as it relies on measurements of atmospheric conditions and weather

pattern historical data. Such systems are used for example in icing forecasting for electric power

distribution or wind power generation [3], [4].

Figure 1.1: Marine Icing Process [5]

Marine Icing differs from the other icing types like the Atmospheric Icing or precipitation Ic-

ing. Atmospheric ice also called as clouding ice occurs when atmospheric moisture results in ice

or snow crystals being accumulated on a supercooled surface such as power distrubution cables,

communication towers or air plane wings. Figure 1.2 shows such conditions.

Precipitation icing is on the other hand created by a saturated freezing drizzle or freezing rain

being accummulated on a supercooled structure [6]. This happens when freezing rain or wet snow

3



Figure 1.2: Examples of Icing conditions

falls on a surface with a temperature below 0 C [3].

Marine icing process is similar to the Precipitation icing in the sense that it creates a layered me-

dia with the liquid phase on top, but differs in water salinity levels naturally. It has been a surprising

discovery that many monitoring systems on the market today do not consider the two layer composi-

tion at all. The majority of the products we reviewed consider a homogenous single-phase ice layer.

Only the resonance or weight based systems can measure the total accretion height but there is no

data to further refine the information on how much ice and how much water there is. Our proposed

system aims at providing this information about the ice and the water layer simultaneously.

1.3 Common principles in Ice detection

The measurement of marine icing is necessary for offshore operations, since ice can create unsafe

conditions for the service personnel. Vessels operating in the Arctic waters during winter are likely

to experience the marine icing on exposed areas such as decks, stairs, handrails or parts of the

hull. Apart from posing a danger to those on board, marine icing can seriously affect the vessel’s

manoeuvrability and speed. Ice loads are one of the most influential factors in ship dynamics and

maneuvering ability because the center of gravity is moved up. Some smaller transport vessels can
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even overturn due to ice load that is unevenly distributed around the vessel.

Marine icing can also represent a serious challenge to offshore wind farms, not just in terms of

a decreased performance by alternation of the airfoil parameters. The more severe challenges relate

to the dynamic rotor unbalance which often results in very costly repairs or replacement. [3].

A number of R&D or commercial concepts is listed below. We analyze them in terms of their

abilities to detect the multiphase phenomena present in Marine or Precipitation icing conditions.

1.3.1 Ultrasonic Method

This sensor considers transmitter and receiver [7]. A transmitter is a source of an ultrasonic wave

generator and receiver that detects changes in the resonant frequency and through time intervals can

detect ice thickness in one place. The water phase adversely affects the measurement as the acoustic

impedance between ice and air differs significantly when the water layer is present.

1.3.2 Infrared Beam

The main idea in this method relies on measuring the reflection of an infrared beam from the ice

surface [8]. This method is not designed to consider the presence of the water layer on the ice

surface as well.

1.3.3 Strain / Stress Principles

This type of ice measurements is based on measuring the weight of a sample structure using a load

cell [9]. This method can potentially perform well in an offshore application however the dynamic

nature of a floating platform would advesely affect the measurement. In addition, we can only know

the cummulative effect of ice and water, not each separately.
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1.3.4 Capacitance Method

Electrical capacitance and ice accretion are in a proportional relationship because the ice dielectric

properties are significantly different from the air dielectric properties [10], [11]. We adopted this

principle but unlike the cited methods, we created a linearly independent array to encode the ice

dielectric and the water dielectric separately in a unique way that can be decoded unambiguously.

1.4 Survey of Commercial Products

1.4.1 Labkotec LID-3300IP Ice Detector

The theory of operation the Labkotec LID-3300IP ice sensor is based on ultrasonic vibrations of

a wire wrapped around a flat oval aluminum surface as depicted in Figure 1.3. As the ice forms

on the wire, the amplitude of the wire’s ultrasonic vibrations is reduced [7]. The critical level of

icing is detected when the amplitude of the ultrasound signal falls below a pre set threshold. After

this phase a reconditioning phase starts in which the ice is thawed by the heating applied. When

the signal hits a stop limit, and the heating reaches a predetermined temperature, the heating is

then shut off. The user can set the cut off temperature, ice warning amplitude, and heating power.

The sensor’s detector detects ice most effectively when the wind direction is perpendicular to the

sensor’s surface. No testing in marine icing conditions were reported to this day.

1.4.2 Combitech Ice Monitor

The Combitech’s ice monitor sensor was developed for monitoring the icing conditions on power

lines [9]. It is one of the most common icing sensor systems on the market since it simply measures

the mass of ice that has formed on a surface by the force of gravity. The sensor has a very low

power consumption and is designed as a freely rotating steel cylinder pivoting on a rod mounted on

load cells as shown in Figure 1.4. This system cannot be used in the marine environment due to the
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Figure 1.3: Labkotec LID-3300IP Ice Detector

dynamic forces present on a floating platform and the omnidirectional nature of the water droplets

flow.

Figure 1.4: Combitech Ice Monitor
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1.4.3 HoloOptics T40 Series

Figure 1.5 shows the HoloOptics T40 series ice detector built from four curved arms. The arms

carry infrared transmitters, receivers and a heating system inside the ice probe detector. The ice

thickness is measured by the amount of light that reflects back to the probe. The ice absorbs some

of the infrared light that is reflected by a reflector [8]. The ice accumulates gradually on the surface

of the probe, and the reflected infrared signal will decrease until it reaches the ice thickness set point.

This system is designed to monitor a single phase ice accretion and therefore the water ’glaze’ layer

present in marine icing would negatively impact the accuracy of the IR based system.

Figure 1.5: HoloOptics T40-series icing rate sensors

1.4.4 The Ice Meister

The Ice Meister sensor is designed to detect ice in aviation and in a wide variety of industrial

applications as shown in Figure 1.6. The sensor monitors the optical properties of ice that comes into

contact with the probe’s acrylic surfaces [12]. The output signal obtained by the sensor indicates the

existence of the ice and that is about it. The system is therefore similar to a dew point temperature
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measurement where only the presence of the other phase is monitored, not its properties like the

accretion rate.

Figure 1.6: The Ice Meister

1.4.5 The EAG 200

The EAG 200 icing sensor shown in Figure 1.7 is used to detect ice loads by measuring the weight

of the ice accretion on a PVC pole. The diameter of the PVC pole is 32 mm, and the length is from

0.5 m to 1 m. The EAG 200 employs an electromechanical scale operating in the range from 0 to

10kg with an accuracy up to ± 50 g [3]. Due to the structural vibrations and intense wind gusts on a

marine platform this sensor cannot be used.
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Figure 1.7: The EAG 200
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1.4.6 The Goodrich ice detector

In the aviation industry, the Goodrich ice detector sensor type 0871LH1 is commonly used. Figure

1.8 shows the detector. The sensor detects icing accumulation on probes by measuring the frequency

changes as the mass of ice on the surface increases over time [13]. When the probe’s resonance

frequency approaches or exceeds the preset level, the deicing mode is triggered for a specified

period of time to melt the icing on the probes. One of the sensor’s drawbacks is that it can’t tell the

difference between ice and water. The Goodrich ice detector can only reliably measure very thin

ice, according to tests carried out by the company.

Figure 1.8: The Goodrich ice detector

1.4.7 Ice detection method using cylindrical probes

Kwadwo [14] used two aluminum cylinders to make a capacitive sensor probe and conducted several

experiments. The presence of ice disrupts the fringing electric field between two electrically charged

cylindrical probes, raising the probe mutual capacitance and reducing the resistance. The super

cooled water droplets are travelling toward the probes that are positioned vertically to electric field
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lines as seen in Figure 1.9. The ice accretion on the probes is then determined by the capacitance

measurement as well as the resistance measurement. The resistance is largely correlated with the

conductivity of the water phase. In marine environments the water salinity makes this phase many

times more conductive than the athmospheric water precipitation making this system unsuitable for

such applications.

Figure 1.9: Ice detection method using cylindrical probes
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1.5 Commercial Systems Summary & Motivation & Problem State-

ment

An effective icing accretion monitoring system is needed to manage and reduce potential icing

hazards. The above presented commercial systems are all specified for use in terestrial applications

(athmospheric/precipitation icing) or in avionics. In the ideal scenario, we would source each such

system and subject it to the marine conditions offshore. This research work did not have such

capacity and mandate. The goal was, based on the theoretical and already reported shortcomings of

the current systems, to propose a simple system that operates under the two-phase icing conditions,

ice and water. We have developed three methods presented in this thesis. Each method was subjected

to in-lab validation with promissing results.

The underlying principle of all three methods is based on fringing field capacitive sensor array.

Capacitive sensors are found in many applications in almost all industrial fields. Some are modu-

lated by dimensional changes of the electrodes or the gap between them, some utilize a change in

electric permittivity of the dielectric layer between or above the electrodes.

Our problem is complicated by the presence of two dielectric materials above the electrodes, the

ice phase and the water phase. We approched this problem by applying an array of capacitive sensing

elements each of varying parameters to modulate the correlation with the multiphase dielectric

uniquely. Only then it is possible to discriminate between the individual phases.
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1.6 Thesis Organization

Chapter 1 presents the background information, the literature survey and the problem state-

ment.

Chapter 2 covers the fundamental physics of capacitive sensors with fringing field dielectrics

in particular.

Chapter 3 is paper published in IEEE Sensors Journal ( Volume: 19, Issue: 23, Dec.1, 1 2019),

DOI: 10.1109/JSEN.2019.2935616

Chapter 4 is paper published in 2019 IEEE 10th Annual Information Technology, Electronics

and Mobile Communication Conference (IEMCON), DOI: 10.1109/IEMCON.2019.8936232

Chapter 5 is paper published in MDPI Sensors — An Open Access Journal from MDPI Sen-

sors, 17 January 2021, Communication Article, Remote Sensing, Sensors 2021, 21(2), 612;

https://doi.org/10.3390/s21020612

Chapter 6 summarizes the research contribution and speculates about the direction of the

future work.

Appendices include the datasheets for the key electronic components and the local conference

paper (IEEE NECEC 2019).
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Chapter 2

Capacitive Sensors
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2.1 Introduction

Capacitive sensors are used in many industrial applications, such as proximity sensors in plants to

detect specific products. They have been developed to replace manual or mechanical monitoring

systems in various applications. The capacitive sensing method can be used for sensing water, ice,

moisture, or speed and acceleration. Capacitive sensors can also detect chemical gas composition

and send alerts in the presence of dangerous gases (e.g. carbon monoxide sensors). In the field of

ice monitoring and detection a number of commercial systems have been developed on the basis of

capacitive sensors as listed in the previous chapter. In summary, capacitive sensors

1. are easy to assemble and modify, and typically less costly,

2. do not include any mechanical parts that rotate, vibrate or move which minimize the perfor-

mance or even damage the system after some wear and tear,

3. typically use very low power electronics in its overall design,

4. are robust even in harsh environments and require minimal maintenance or recalibration,

5. work well in low or high temperatures as long as the thermal compensation is well addressed,

6. are easy to install and deploy in the field like on offshore vessels and rigs.

There are some shortcomings of capacitive sensors which are listed below.

1. The capacitive sensors are sensitive to alterations in environmental conditions for instance

humidity, temperature, etc.

2. The output impedance relies on the frequency.

3. The capacitance measurement might get changed by dust matter.
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The capacitive sensors have two electrodes, the exciting electrode and the sensing electrode

with a dielectric in between them or above them as is the case in this study. The following section

discusses the capacitance modulation and measurement and illustrates the fundamental physics and

concepts behind dielectrics and the capacitance.

2.2 Dielectrics Materials and Capacitance

Capacitors are electrical passive components that can hold electric charges, which results in a poten-

tial difference between the positive and negative electrodes that make up a capacitor. The most basic

capacitor is made up of two non-contact parallel electrodes of known metal materials separated by

an insulator, the dielectric media like air, oil, gas, etc. Capacitors are available on the market in a

wide range of dimensions and formats, depending on voltage rating and the application for which

they are made; however, the basic internal configuration remains the same. The basic structure of a

capacitor sensor is shown in Figure 2.1, which consists of two conductors holding equal but oppo-

site charges, and the electric field interaction often begins on the positive electrode and ends on the

negative electrode [14].

The charge state and the uncharged state are the two states of a capacitor. The charge on both of

the conductors is zero in the uncharged state, which means that no electrons pass from the positive

electrode to the negative electrode in this state. When a direct current is applied across the capacitive

electrodes, a charging process occurs. During the charging process, a charge (Q) is transferred from

one conductor to the other, with the charged conductor becoming positive (+Q) and the uncharged

conductor becoming negative (-Q).
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Figure 2.1: Electric Charges

The potential difference is generated between the electrodes during this process; the positively

charged electrode is called the ”higher potential” while the negatively charged electrode is called

the ”lower potential”. The insulating layer’s resistance controls the DC current flowing through the

capacitor; the charge exchange process produces a voltage across the electrodes in the form of an

electrical charge, which the capacitor “stores” [15].

When a steady DC current is present, the capacitive electrodes keep charging until the capacitor

arrives at its steady state status, during which time the charge increases as the voltage rise.

2.3 Electrostatic Field Intensity

The type of dielectric materials in between the electrodes affects the electric field; the electric field

effect is always related to the capacitance of a capacitor sensor. The surfaces generate an electric

field when a voltage is applied to one of the sensing electrodes. These electric field lines determine

the capacitance between a pair of conductors in a rather complicated way. The electric field should
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be enclosed in the space between the sensing electrodes and the target substance in the ideal sit-

uation. The dielectric is presumed to be a vacuum in the case of an ideal capacitor, allowing the

materials to be detected based on their dielectric characteristics as they split the electric field lines.

Figure 2.2 depicts a simple two parallel electrode capacitor with a gap having area A and dis-

tance D. The capacitance value can be calculated by assuming that one electrode has a charge +Q

and the other electrode has a charge –Q, and that all field lines produced at the positively charged

electrode end at the negatively charged electrode [16]. The following equation describes the rela-

tionship between the electric field lines and the area density:

E =
σ

ε ∗ ε0
(2.1)

The area A and the charge Q are both associated by charge density.

σ =
Q
A

(2.2)

Figure 2.2: Parallel capacitor
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In the case of a uniform electric field, the orientation of the electric field approximates that of

electrodes with large dimensions compared to their disconnection [16].

The voltage difference VAB between the two electrodes is frequently described in terms of work

done on a single charge moving from the positive electrode to the negative electrode. The work

done on this charge is :

VAB =
F ∗D

Q
= E ∗D (2.3)

The capacitance is a term for measuring the capacity to store charge and is denoted by C. It is

defined as the ratio of the amount charge stored to the charge-produced potential difference between

the two electrodes.

C =
Q

VAB
(2.4)

An ideal storage capacitor has a high work done per charge and a large capacitance; thus, ca-

pacitance can be expressed as follows using equations (2.3) and (2.4) :

C =
Q

E ∗D
(2.5)

(2.1) in (2.5) gives the following formula for capacitance.

C =
Q∗ ε ∗ ε0

σ ∗D
=

Q∗A∗ ε ∗ ε0

Q∗D
=

A∗ ε ∗ ε0

D
(2.6)

Furthermore, an increment in capacitance causes an increase in charge contained in the capac-

itor, which results in an increment in the potential difference between the electrodes, as shown by

the equation above. According to equation (2.5), it will result in an increment in the electric field.
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This thesis is primarily focussed on the correlation of different dielectric materials with the

capacitance. K is known as the dielectric constant.

E(Dielectric) =
E0

K
(2.7)

V(Dielectric) =
V0

K
(2.8)

The potential difference across free space is larger than the potential difference across a real

dielectric, as shown in equation (2.3)

C =
Q

VAB
= K ∗ Q

VAB
= K ∗C0 (2.9)

2.4 Summary

The capacitance increases with dielectric of higher permeability at the same size and spatial distribu-

tion. Here we consider a single dielectric material. Our sensing method hinges on these principles.

However, the model is more complex as two dielectric materials are present in varying composition

and spatial distribution. How can we effectively decode this multidimensional situation? Well, the

answer is provided in the following three chapters. We employ an array of capacitive sensors that

vary in some parameters. Chapter 3 and 4 are utilizing varying gap array whereas Chapter 5 is based

on a sensor array of constant gap spacing but varying insulation layer on top of the electrodes. This

way we decople individual effects of each phase making the multi phase sensing problem feasible.
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3.1 Abstract

This paper describes the development of an array of coplanar capacitive sensors applied to marine

icing. Current atmospheric icing monitoring systems consider single phase conditions in their op-

eration. Marine icing conditions present a unique environment where the liquid water phase effects

cannot be neglected and require a novel approach. We have conducted an initial proof of concept

and propose a new icing monitoring system which can distinguish between the individual phases.

A numerical model confirmed our initial hypothesis of the system’s ability to discriminate the mul-

tiphase domains based on the array of geometrically dissimilar capacitive sensors. In addition, we

also developed a novel experimental technique based on a comparative study under constant condi-

tions to eliminate the need for an independent ice accretion monitoring system normally required in

sensor development. The new approach promises a better characteristic in marine icing monitoring

systems or in similar applications where multiphase dielectric is present.

Index Terms — Capacitive sensors, multiphase dielectric material, coplanar electrodes, finite

element analysis, capacitance-to frequency conversion, linearly independent characteristics, least

squares equations, offshore industry, wind power generation, marine icing.

3.2 Introduction

New methodology for monitoring marine icing phenomena in arctic offshore environments is being

proposed. Marine icing is created by a combination of low air temperatures and water spray and can

severely affect ships or offshore platforms [3]. Offshore wind farms can face a reduced efficiency

due to the ice accretion. For example, the icing can lead to the rotor imbalance which can lead to the

system being permanently damaged [4]. The ice layer in marine icing is formed when super-cooled

water spray droplets freeze on parts of the structure before the water runoff time elapses [1, 2]. A

number of laboratory derived methods to monitor the icing has been proposed recently such as the
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systems based on image processing in visible or IR light in [20–23]. These are complex systems and

require an unobstructed view, artificial ambient lighting, possibly camera vibration damping besides

other requirements which makes their deployment in the harsh marine environment challenging and

maintenance costly.

Sensors of low cost characteristic, robust performance and low maintenance are preferred by

the industry. The need for expert installation or field re-calibration is additional factor considered in

this research. Deployment on a curved rotor blade requires a low weight characteristic and ability

of being integrated on a curved surface. Battery operation in wirelessly connected systems require

low power characteristics. We have considered a number of existing techniques with these require-

ments in mind and developed a new method along a proof-of-concept prototype for experimental

validation. A range of ideas was adopted in our development at an individual sensor level before

we combined an array of dissimilar geometry capacitive sensors to decode two layers of ice and

water uniquely. We developed a novel data analysis based on least squares equations to generate a

formula of signal-to-measurand mapping. A comparative study without the need for an expensive

experimental setup with an independent ice monitoring system proved the new concept’s feasibility.

This presented research work outlines the first step in our icing sensor development and provides a

level of confidence needed for the further study.

The next Section 3.3 outlines the background information in the field of icing sensing in general

and capacitance, followed by Section 3.4 which describes a theoretical approach to pre-validate the

new concept. Section 3.5 explains the hardware setup to conduct the experimental work with results

in 3.6. Conclusions are drawn in Section 3.7
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3.3 Previous Work

A large proportion of the current literature on icing sensing systems considers atmospheric icing

phenomena on land that also causes severe operational and safety hazards to personnel or equip-

ment like power distribution systems, wind power generation systems, cable cars, transportation or

communication towers. A comprehensive survey of current commercial systems is presented in [4].

A research team from Graz Technical University [24] describes their latest work on using a

capacitive array applied to atmospheric icing on high voltage power lines. The objectives are some-

what similar, however the sensor array composition and the signal processing methods are different.

Their method is using a larger size array with a constant spacing and constant spatial distribution

which enables a computer tomography type analysis to assess irregularities in ice accretion across

the sensed area. Our system considers a relatively small size array to monitor a localized area. Sim-

ilarly to our work, Graz team considered the two phase phenomena, ice and water. What makes

our independent research largely different is the location of the water domains. We focus more on

the surface water layer above the ice while the referenced work considers water domains trapped

in the ice layer once the ice starts forming. The lack of common experimental data (marine vs

atmospheric) makes it difficult to compare both methods.

On the commercial side, Combitech IceMonitor [9] measures the ice mass on a rotating rod by

a load cell. One of the best systems on the market for terestrial applications there is a need for

keeping the rotating parts such as bearings free of ice in case of severe conditions. The system

provides accuracy of ±50g and is not used for measuring light icing events. The system requires

a stationary installation which could challenge a potential use in marine/offshore applications due

to the dynamic forces, vibration, wind gusts or dynamic water splashes. Long term stability issues

have been addressed in [4].
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The Goodrich 0871LH1 ice detectors [13] use an axially vibrating probe to detect the presence

of icing conditions. In an icing environment, ice collects on the sensing probe, causing the resonance

frequency of the sensing probe (∼ 40 kHz) to decrease. The ice load depends linearly on the induced

frequency shift. When the ice accretion increases beyond a predefined threshold, the probe is de-

iced until the frequency rises back to the normal conditions. Goodrich ice detector is designed for

thin ice layer applications like avionics and to the date no reports of detecting the ice under the

water phase presence has been released.

HoloOptics T42 [8] employs IR signal passed through the medium between the emitter and the

detector. In heavy intensity rain or dew the probe may saturate, resulting in a false indication. The

manufacturer recommends using an external rain detector together with the sensor to eliminate the

sources of false indications. No testing in marine icing conditions was conducted with the T42.

The Ice Meister Model 9734-SYSTEM industrial ice detector [12] monitors the optical charac-

teristics of the substance which is in contact with the optical surfaces of the probe. The parameters

measured are opacity and optical refraction. This sensor has no specified accuracy, and is not in-

tended to be used as an analog measuring instrument of any kind. It only recognizes whether air,

water or ice is present. This concept is somewhat similar to chilled mirror dew point sensor which

often employs the optical reflectivity.

IDS-20 system [25] measures the complex impedance of the icing medium using capacitive

plates hermetically sealed. The sensor can distinguish between water and ice as the above sensor,

however not in a combined multiphase state.

Zhi et al. [10] conducted recently an experimental research using capacitive sensors to measure

ice growth in real time. The developed system has also been patented [26] but the authors con-

clude the water layer formation has to be prevented in order to maintain the accuracy. Ezeoru [11]

conducted a similar research using the same capacitive technique with interdigitated comb-style
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electrodes. Both works experienced the transformation from liquid state to solid state which has

been reflected in a ramp capacitance profile in time. However, no one has tried to quantify the

transitional multiphase period.

3.3.1 Capacitive Sensing

Capacitive sensors are widely used in many industrial and scientific applications due to their sim-

plicity, low cost, high reliability, long term stability and simple signal conditioning [16]. In our

application, the sensor features a low profile design that can be attached to flat or curved surfaces.

In addition, a simple de-icing mechanism can be conveniently integrated on the same substrate like

in a car windshield defogging system. The capacitive probe is usually lightweight, making the

sensor suitable for placement on dynamic systems or moving parts.

A capacitor in a charged state creates an electric field that is modulated by the presence of a

dielectric material in its proximity. In many applications, the electric field is distributed across the

measured dielectric material while being confined between two sensing plates of a regular shape.

Most frequently, the field equipotential lines are parallel or concentric with the electrodes in which

case an analytical modeling in a curvilinear coordinate system can be very accurate.

Our method exploits the concept of fringing fields set by a coplanar pair of electrodes. Planar

capacitors can take many different shapes and forms like interdigitated (comb fingers), rectangular

or circular spirals etc. [11], Go [26], Arshak [27] used the interdigitated electrodes while Gong

[28] and [29] used spiral electrodes. Whichever form the planar capacitor takes, the common key

parameter is the dimension of the gap along the interfacial line between the two electrodes. As long

as the covered sensing area is the same, all geometries are equivalent and it is only the matter of a

personal choice.
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Capacitive sensors are however prone to undesired effects of parasitic and offset capacitances as

well as the dielectric loss in the form of a conductance. Our capacitive array is spin coated to form

an insulation layer to significantly suppress the effect of the conductance and a simple capacitance

to frequency conversion is being employed. However, more advanced and very accurate conversion

methods have been recently developed like the research of Malik et al. [30] where the maximum

error due to parasitic capacitance is found to be within ±0.05%.

Our method also operates on a differential principle in which four capacitances are compared

by an algorithm. This concept can be viewed as a multidimensional Wheatstone bridge. In general

the comparative or differential methods are very effective to deal with the offset and parasitic capac-

itance as long as they drift consistently, in most cases due to temperature effects. A brief analysis

of the drift effects is presented in the Results section.

The work of Alex Risos [31–34] on interdigitated capacitive sensors employs the differential

principle in which the reference sensor is thermally coupled with the transformer oil sensing probe.

He also uses a four wire bridge measurement technique which significantly suppresses the effect of

lead wire impedance. Risos et al also points out another potential issue surrounding the capacitive

sensors which is a noise source by charged particles in the dielectric medium being analyzed. To

eliminate the effect of such charges and the parasitic capacitance, he introduced a liquid permeable

Faraday cage above the sensor plain plus inserted a tiny deflector electrode between the sensing

electrodes. The deflective electrode is held at the GND potential but is not connected to GND. Un-

fortunately we cannot use this method as any cage in front of the sensor would be subject to the icing

phenomena. Heating the Faraday cage would not be effective either as the thermodynamic balance

would be negatively affected. In our research however, we do not anticipate any charged particles

in the dielectric medium since each conductive droplet arriving at the sensor plain originates from

the ocean wave breaking off the ship bow which are in fact the GND reference. To our knowledge

there is also no mechanism of acquiring a charge during the flight through moist atmosphere above
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the ocean. In terms of the deflector electrode, we may introduce this technique in the future work.

Currently our sensor array is using a variation in the gap between the electrodes which prohibits the

deflector electrode use without a modified approach.

Figure 3.1 shows experimental data acquired by Ezeoru [11] at a rate of 16 samples per second,

or ∼ 1000 samples per 1 minute. The graph describes ice forming in three transitional steps (water

to ice), tap water on top and sea water below. Each step starts by wetting the sensor plane and

waiting for the water to turn into ice at a constant −20◦C. One can observe that the sea water of

3.5% salinity (by mass) takes much longer to turn into ice. The ice accretion was determined by

weight measurement.
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Figure 3.1: Experiment for Sensor Calibration, Ezeoru 2016 [11]
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From [11] we extracted four pairs of data as indicated by arrows in Figure 3.1 in order to derive

the calibration characteristics for low ice accretion levels shown in Figure 3.2.

 0

 0.5

 1

 1.5

 2

 2.5

 22  24  26  28  30  32  34  36  38

Ic
e 

A
cc

re
ti

on
 [

m
m

]

Capacitance [pF]

Tap Water

 0

 0.5

 1

 1.5

 2

 2.5

 22  24  26  28  30  32  34  36  38

Ic
e 

A
cc

re
ti

on
 [

m
m

]

Capacitance [pF]

Sea Water

Figure 3.2: Ice Accretion vs Capacitance

30



The capacitance data were first normalized according to (3.1) and then utilized in least squares

fitting of a quadratic characteristic (3.2) as depicted in Figure 3.2. The fitting was derived with the

final sum of squares of residuals of 0.00869474 as compared to 0.146793 in a liner characteristic fit

(tap water case).

Applying the single phase icing sensor characteristic to the original two-phase conditions during

the transients we generated Figure3.3. The grey segments are subject to errors of the order of

magnitude which limits the sensor’s application in two-phase marine icing conditions.
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Figure 3.3: Faulty Measurement Results under Two-Phase Conditions
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Applying this technique to marine icing would require a human operator to extract the bottom

envelope of the measurement data and disregard the multiphase transients that provide faulty ice

accretion reading. This is feasible in a lab derived data however real marine icing conditions make

this human intervention task difficult as there may never be a period of single phase icing for a

period of time when the sensor is constantly exposed to icy waters. Also applying a low pass filter

with a low corner frequency would smooth the transients at the cost of raising the bias making

the data unreliable again. Therefore, unless single phase conditions can be guaranteed, we need to

consider the effects of both water and ice together.

Ĉ =

(
C−C̄

C̄

)
(3.1)

h = k1Ĉ+ k2Ĉ2 (3.2)

h [mm] ice accretion

Ĉ [1] normalized capacitance

C [pF] measured capacitance

C̄ [pF] nominal capacitance

k1,k2 [mm] constant coefficients

3.4 FEM Simulation

The marine icing phenomena as described above consists of both the solid phase (ice) and the

liquid phase (water) with a different proportion at different times. Except [24], all known methods

32



assume only the ice phase which makes it inaccurate if the water phase is present as there is a large

discrepancy in the dielectric constant between the ice and water (∼ 20×).

We adopted a concept of modulating the sensor’s depth of penetration by changing the air gap

between two spiral electrodes, [29, 35]. Two different electrode separation sensors uniquely modu-

late the electric field above the XY plane of each sensor. The resulting capacitances must therefore

be linearly independent of each other making it possible to discriminate between the two phases.

In order to verify the above statement, we first conducted a finite element simulation using two

concentric electrode probes of 1mm and 2mm electrode separation in a similar way as described

in [29, 35]. The problem was modeled in Maxwell software developed by Ansys using axisym-

metrical coordinates in RZ plane. Table 3.1 lists all domains in the model and their corresponding

parameters.

Table 3.1: ANSYS Maxwell Model Parameters

tag object material εr sources matrix

A background air 1.0006

B balloon voltage

C object2 water-fresh 81

D object1 ice 4.2

E electrode-gnd copper 0V GND

F electrode-sig copper 1V Signal

G dielectric epoxy-Kevlar-xy 3.6

H PCB-backing epoxy-Kevlar-xy 3.6
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The capacitance is calculated from the total field energy W across the modeling domain using

3.3 where V represents the applied voltage, conveniently set to 1V for easier result validation.

C =
2W
V 2 (3.3)

The field for the sensor geometry having 2mm electrode separation and r = 9mm & R = 15mm

is depicted in Figure 3.4. The second geometry has 1mm separation and r = 10mm & R = 15mm.

When two characteristics are linearly independent, a common solution can be derived from their

intersection point.
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Figure 3.5 demonstrates this concept using contours of constant capacitance for the two sensor

geometries combined in one plane, 1mm sensor contours depicted by solid lines and 2mm sensor

contours by dashed lines. One particular solution is highlighted for 1mm gap sensor at 6.5pF capac-

itance and 2mm gap sensor at 5.0pF capacitance having a common intersection point at 0.75mm ice

layer and 0.35mm water layer above. The larger the angle of intersection between any two contours

the more robust solution is derived. This type of analysis was conducted by Ortiz [36].
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Figure 3.5: Contours of Constant Capacitance for Both Sensor Geometries

In summary, the FEM simulations have proven in theory that an array of coplanar sensors of

different electrode spacing characteristics can uniquely map the presence of the water phase and use

this information in deriving the ice accretion level with more accuracy and confidence.
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3.5 Experimental Setup

Chen and Bowler [29, 35] used a simple PCB layout software approximating the spiral electrodes

by arc segments of varying radii creating a small discontinuity whenever two 180◦ arc segments of

different radii are connected. Our array of capacitive probes was manufactured on a printed circuit

board (PCB) with the spiral electrodes modeled by OpenSCAD software as true Archimedes spirals

ensuring a constant spacing between each electrode pair.

The PCB was spin coated with a thin layer of dielectric lacquer to eliminate the effect of con-

ductivity between the individual electrodes. A similar process is widely used in many commercial

systems such as tactile/touch sensor from Texas Instruments [37].

Each probe is conditioned by a capacitance-to-frequency converter which utilizes FET Hartley

oscillator (Figure 3.6). The air-core coil is provided with a center tap and was made using a basket

weave technique to suppress a parasitic capacitance and a magnetic coupling via the proximity

effect. We have subjected each channel to two extreme conditions, one with air dielectric and the

other with 5 mm of tap water layer to assess the oscillations are sustained between the two limits.

In order to interface the oscillator to a PC data acquisition card, the harmonic signal of 13 to

16 MHz generated by each oscillator was first converted to a square wave signal by utilizing a fast

comparator MAX 912 and then divided by 8 using a 74LS163 counter to meet the data acquisition

card’s input frequency range (Advantech PCI-1780 8-ch Counter/Timer Card).

The LC filters are required to prevent any coupling among the oscillators through the common

power supply. The array of six oscillators is enclosed in a Faraday cage enclosure each made of

mild steel sheet and grounded. This arrangement shields any undesired EM interference between

oscillators. The harmonic signal was converted to TTL signal using dual, high-speed comparators

with differential input and consequently six TTL counters were used as 8x frequency dividers.

The signal processing part of the system was shrink wrapped to prevent any humidity entering
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Figure 3.6: Hartley Oscillator as Capacitance-to-Frequency Converter

the oscillators, comparators and frequency dividers and the capacitive array PCB was leveled in a

deep freezer at −20◦C using a custom built frame shown in Figure 3.7. A flat ribbon cable 1m long

interconnected the sensors with the PC and external power supply, and folded flat under the freezer’s

cover lid.

Our experiments assumed that all capacitive probes in the array face the same conditions, i.e. ice

layer and water layer of the same height. In case of a small size array this assumption is valid how-

ever a sufficient border area around the array should be provided to eliminate potential irregularities

due to leading edge or trailing edge boundary effects in certain wind conditions.

To assure a uniform icing buildup, we modified the experimental procedure from [11] and used

a paint roller instead of a spray bottle. Three runs were conducted to ensure the uniformity of the ice

accretion. The sensor system was tempered at −20◦C for two hours before starting the experiment.
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Figure 3.7: Sensor Leveling prior to the Experiment

3.6 Results

The experimental setup described above provided data in Figure 3.8. When the transient response

started to settle down, a new wetting cycle was initiated with a total of three cycles. The sharp

trough in data plot provides a time reference for each wetting phase which closely corresponds to

the work in [11] with a difference of inverted sign characteristics due to the fact that frequency is

being plotted instead of the capacitance; i.e the higher the capacitance, the lower the frequency.
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Figure 3.8: Back-Shifted Filter Signal Synchronized with the Process

39



In line with the above assumption of having all probes facing the same conditions at any time, we

introduce a second assumption about the conditions time profile. In this work the icing phenomena

is considered to follow a linear time profile for the sake of proof of concept. Other characteristics

such as a first-order dynamic response can be used, however, without an accurate real-time ice and

water level monitoring system in place, the uncertainty will remain. The objective of our work is

not the accuracy or quantitative indicators of ice accretion measurement. In this study, we only

assume that each wetting cycle creates a consistent layer of water film across the array. The ice

level accounts for 9% increase in the volume. Each consecutive cycle also gets shorter time to settle

attributed to the thermal inertia of the accumulated ice layer underneath.

In order to compare and align the data from four oscillators, each frequency was normalized

using nominal frequencies acquired when no ice nor water was present. Table 3.2 lists the four

nominal frequencies along the original frequency and normalized frequency for#100th sample. The

normalization process can be viewed as the sampled data being shifted up or down along the fre-

quency axis and then scaled, the operations that do not affect the linear independence of individual

characteristics.

gap width 0.5mm 1mm 2mm 3mm

f1 f2 f3 f4

Nominal 1.686 MHz 1.976 MHz 1.907 MHz 1.595 MHz

Measured 1.674 MHz 1.975 MHz 1.899 MHz 1.572 MHz

Normalized -0.006826 -0.0002940 -0.003981 -0.01406

Table 3.2: Nominal Frequencies & Normalization, sample # 100
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The frequency data were sampled at a rate of 2 samples per second using a DAQ card and the

noise was filtered off-line in Matlab using a Butterworth low pass filter with a medium delay of 40

samples. Due to the low sampling frequency we are not confident about the noise origin, however,

the lab environment had a large refrigeration equipment running in the vicinity of our setup which

suggest a potential 60Hz noise. The signals were also sampled sequentially making the analysis of

raw data more challenging, nevertheless, we do include the raw data analysis at the end.

The resulting filtered data sets were then backshifted by 40 samples to align with the original

raw data only for the demonstration purposes as illustrated in Figure3.8.

To verify the initial hypothesis that an array of planar probes of different spacing parameters

can uniquely determine the multiphase phenomena, we propose to use a linear combination of the

measured frequencies and their squares similar to the earlier quadratic fit depicted in Figure 3.1,

[11]. Equation (3.7) reviews this concept including the coefficients k1, . . . ,k8. One set of eight

coefficients is used for determining the ice level (k1i, . . . ,k8i.) and another set for the water level

k1w, . . . ,k8w.

The eight unknown coefficients in (3.7) can be determined from eight linearly independent

equations that correspond to different sample instances. The challenge is to find a set of eight

representative samples that will form the eight equations. We took a different approach by using all

available samples.

Instead of finding the vector of coefficients k from eight linearly independent equations Fk=h,

we searched for the vector k such that Fk is as close as possible to h, as measured by the square of

the Euclidean norm in (3.4).

||Fk−h||22 = (Fk−h)T (Fk−h) (3.4)

= kT FT Fk−2hT Fk+hT h
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Taking the gradient with respect to k we obtain (3.5).

∇k(kT FT Fk−2hT Fk+hT h) = (3.5)

∇kkT FT Fk−∇k2hT Fk+∇khT h =

2FT Fk−2FT h

Setting the gradient expression equal to zero and solving for k provides the normal equations in

(3.6).

k =
(
FT F

)−1
FT h (3.6)

This approach shares some similarities with Artificial Neural Network (ANN) training process,

where a training set of input data (frequencies) is presented to ANN along with the desired output

(ice layer height and water level height). The difference is that ANN training follows an iterative

process of training whereas Least Squares method is not. The solution convergence can be also an

issue in ANN’s.

We used Matlab to process the Least Squares computations according to (??) and once the

coefficients k were determined, a test run by evaluating (3.7) for all samples was performed ((j =

sample #). The resulting data for both water and ice phase are plotted in Figure 3.9.

h j =
4

∑
N=1

( f jN)k jN +
4

∑
N=1

( f jN)
2 k j(N+4) (3.7)

42



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

0 1 2 3 4 5 6

W
at

er
 L

ay
er

 [
pa

ra
m

et
ri

c]

Time [min]

detected water

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

0 1 2 3 4 5 6

Ic
e 

L
ay

er
 [

pa
ra

m
et

ri
c]

Time [min]

detected ice

Figure 3.9: Detected Ice & Water vs Predictions using Filtered Data

As a result, the ice accretion measurement in not significantly impacted by the water phase as

was the case of calibrating a sensor using the ice only data. Relatively small deviations are still

present in our results, however, these are mainly concentrated around the time when the water layer

is being applied to the sensor plane using a paint roller which does not exist in the real world.
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We also present a plot on the effects of drifts in offset & parasitic capacitance and dielectric

loss (Figure 3.10). The most common are drifts due to temperature changes or aging. We have

subjected the normalized frequency data to a constant offset of 1× 10−3, 2× 10−3 and 3× 10−3

which represents nearly half of the total frequency range in ‘1mm’ and ‘2mm’ sensors. Yet the

effect on the output is found insignificant in view of the other inaccuracies. A more detailed analysis

would be needed in the future research including both absolute and relative data drifts.
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The raw data analysis results are plotted in Figure 3.11 for completeness. The water and ice

detection is not as close to the predicted profiles obtained in the filtered data analysis showed,

however the approximate tendencies are clear without the order of magnitude errors we experienced

before.
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Figure 3.11: Detected Ice & Water vs Predictions using Raw Data
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This scope-limited study also revealed where we need to focus in the future development. As

the next step, this reaserch will incorporate a calibration system that will quantify the sensitivity

and robustness of our system. A more robust drift-free signal conversion techniques will also be

studied.

3.7 Conclusion

The presented work focused on development of a marine icing monitoring system under the real

conditions of multiphase phenomena as the current monitoring systems do not consider the unique

conditions. We have developed a novel method of utilizing an array of capacitive probes of differ-

ent aspect ratio and thus a different penetration depth to be a candidate for multiphase phenomena

sensing. FEM analysis was conducted to provide a theoretical proof of the novel approach. Then an

experimental setup was developed to validate the proposed approach. The objective of our experi-

ments was to prove the ability of our system to recognize the multiphase phenomena.

Instead of the traditional ‘quantitative calibration’ we selected a ‘qualitative calibration’ ap-

proach which only assumed three identical & uniform layers of water film applied to the sensor

plane at each wetting cycle. Least Squares equations were solved to find a correlation among the

array capacitances (measured as frequency) and the water & ice layer height represented paramet-

rically. The experimental results confirmed our predictions which gives our novel approach the

necessary backing to be developed further.
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4.1 Abstract

This work describes a capacitive sensor array for the measurement of marine ice accretion. Cur-

rently, all commercial icing detectors only track the ice phase disregarding the water phase. This

approach is acceptable in many applications, mostly in the atmospheric icing domain however in

the case of marine icing, the water phase creates a significant component of the measurement signal.

The water phase cannot be disregarded and requires a novel methodology that takes into account the

water-ice conditions simultaneously. A neural network approach is used to implement the signal-

to-measurand mapping. Compared to the previous least-squares based mapping, the neural network

method is more accurate and therefore becomes a preferred method of signal processing in capaci-

tive array based marine icing sensing.

Index Terms — Marine icing, Capacitive sensors, Coplanar PCB electrodes, Artificial Neural

Network (ANN), Capacitance-tofrequency conversion, Multiphase Dielectrics.

4.2 Introduction

Marine icing monitoring provides the ice accumulation data in on/off-shore applications. Heavy

icing conditions can cause severe operational challenges or can lead to severe safety hazards. Our

main motivation is to develop a monitoring system which protects workers on vessels or ships [40].

Marine icing forms on a surface when the supercooled water turns into ice before the runoff time

elapses. Chokmani [41], Zhi [42], and Ezeoru [11] developed a marine icing accretion monitoring

system based on single phase assumption. Similarly, Sommer Messtechnik [25] is based on ice

phase monitoring alone. Neumayer [43] and this work is focused on ice-water composition with a

difference in the arrangement of the capacitive sensors.

Coplanar capacitive sensors are surface electrode structures which can be easily manufactured

using a printed circuit board technology. Capacitive touch sensors replacing mechanical push but-
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tons commonly used these days often employ this technology. The capacitance can be detected by

numerous methods, however capacitance to time or frequency conversion gains wide popularity due

to its digital nature and simple interface. Time or frequency signals are also less prone to inter-

ference. Neumayer [43] utilizes a capacitive array of constant spacing characteristics and applies

Computer Tomography algorithm to detect the multiphase domains.

In our research, we utilize an array of capacitive elements of varying spacing dimension, the

inter-electrode gap. Each element features a different depth of ’penetration’ and in the combination,

the system provides linearly independent signals that can uniquely encode the ice accretion and

water layer depth.

4.3 Experimental Platform

Our previous work [44] describes the experimental platform in more detail. Figure 4.1 & Figure

4.2 show the capacitive elements of varying spacing (3.5 mm, 3 mm, 2.5 mm, 2 mm, 1 mm, and

0.5 mm). A thin layer of insulation was also deposited on top of the PCB to insulate the electrodes

from the external environment. This is a common practice in capacitance sensors to prevent the

conductance to influence the measurement unless it is the part of the measurement method.

Hartley oscillator is used to detect the capacitance of each element. A comparator MAX 912 is

used to convert the harmonic sine wave signals generated from the oscillator to square wave signals

and consequently a counter 74LS163 divides the frequency 8x.

Prior to the experiment, the PCB was leveled in a deep cooler at −20◦C. We used a paint roller

to deposit a water layer over the PCB. A wet roller was rolled over the sensor plane in three runs

separated by a few minutes each as shown in the data plot below. We assumed the entire PCB

surface experiencing the same conditions and that each wetting cycle deposited an equal layer of

water.
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Figure 4.1: Design of coplanar spiral electrodes of different air-gap spacing

Figure 4.2: Capacitive Sensor Array
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4.4 Signal Processing

Consistent water layers were created using a wet paint roller, and three wet cycles were applied

across the sensor array PCB surface. The measured frequencies are shown in Figure 4.3. The plotted

frequencies differed in a constant term as well as amplitude. Here the constant term corresponds to

the case when no ice nor water is present, the initial condition.

Figure 4.3: Normalize Frequencies from Four Oscillators

While maintaining their linear independence, we normalized the acquired frequencies by the

constant (initial) term in order to present them in one graph for comparative reasons. Figure 4.3

includes data for four elements with a slightly differnt duration of each wetting cycle. The cycles

are getting shorter as thermal inertia of the built up ice is growing.
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The frequency data were sampled at a rate of two samples per second using a DAQ card and

Matlab was used to filter the noise off-line by Butterworth filter, Figure 4.4. Figure 4.5 shows the

filtered data shifted back by 40 samples to align the characteristics with each wetting cycle instead

of delaying the ice and water profiles by the filter’s delay.

Figure 4.4: Filter Data and Normalized Data for 0.5, 1.0, 2.0, and 3.0-mm Gap Sensors

Again we assume that each wetting cycle creates a uniform water film layer over the PCB.

Figure 4.6 illustrates this assumption in a time profile for water and ice accretion. The profiles are

piecewise linear and their amplitude is not a concern in this study. In order to also determine the

amplitudes, a more complex sensor calibration setup would be necessary where ice and water layer

has to be measured accurately.
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Figure 4.5: Removed Delay Shift from Filter Data

Figure 4.6: Main Idea for the Model of Ice and Water Experiment Data
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4.5 Neural Network Mapping

Our previous work confirmed that an array of coplanar sensors of various spacing parameters has

the ability to determine the ice phase and water phase individually. In this work we utilized an

artificial neural network (ANN) to map the frequencies input to the ice accretion and water layer

depth output. This is a novel method also used in other studies by McComber [45], Larouche et

al [46], and Ohta [47]. For example ANN was used to predict the icing condition based on the

temperature, wind speed, and precipitation rate. Gantasala [48] used two parameter frequencies and

wind speeds to determine ice mass through the ANN.

In this research, capacitive sensor frequencies were used as input and the water-ice profile as

output. Input-Output training data set was then created across 740 time samples. Figure 4.7 shows

the architecture of the used ANN model, which has four neurons in the input layer for the four

frequencies, twenty neurons in the hidden layer and two neurons in the output layer for ice and

water.

The ANN processes the input information in the following manner:

h1 = f 1∗Wi11 + f 2∗Wi21 + f 3∗Wi31

+ f 4∗Wi41 +Bi1

...

h20 = f 1∗Wi120 + f 2∗Wi220 + f 3∗Wi320

+ f 4∗Wi420 +Bi20

hn = f 1∗Wi1n + f 2∗Wi2n + f 3∗Wi3n+

f 4∗Wi4n +Bin

(4.1)
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Wi, Wo, Bi, and Bo represent input weights, output weights, input biases, and output biases

respectively.

The ANN output can be calculated by applying the output function from the net input and based

on h values from hidden layers.

OWater = (h1 ∗Wo11)+(h2 ∗Wo21)

+.....+(h20 ∗Wo201)+Bo1

(4.2)

OIce = (h1 ∗Wo12)+(h2 ∗Wo22)

+.....+(h20 ∗Wo202)+Bo2

(4.3)

Oj =
2

∑
j=1

20

∑
k=1

[[hk ∗Wok j]+Bo j] (4.4)
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Figure 4.7: Neural Network Prediction Model

Figures 4.8 & 4.9 show the results from the ANN signal processing. Comparing this result

to [44] repeated in Figure 4.10 without any detailed error analysis, one can observe the superiority

of ANN algorithm over the least squares method in [44]. The nonlinear nature of tangent sigmoid

neuron firing function in combination with the constant biases occurs to be a better fit to process the

signals from linearly independent frequency data. Therefore we propose to use ANN over the least

squares.
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Figure 4.8: Ice Layers Predicted by the ANN Model

Figure 4.9: Water Levels Predicted by the ANN Model
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Figure 4.10: Water and Ice Levels Predicted by Least-Squares method in [44]
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4.6 Conclusion

Our previous research revealed that an array of coplanar capacitive sensors on a PCB surface can

detect the ice accretion rate in presence of a significant water layer. This work followed up in the

research and proposed using an artificial neural network for signal processing instead of previously

used least-squares method. We adopted a three layer ANN to process frequencies from four sensors,

previously normalized and low pass filtered. As a result, the accuracy of ANN derived ice accretion

and water layer is superior to the least squares method. However more work is needed to validate

the method’s robustness under a presence of signal drifting or a low frequency noise.
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5.1 Abstract

In this paper, a novel approach is presented to the measurement of marine icing phenomena under

the presence of a two-phase condition. We have developed a sensor consisting of an electrostatic

array and a signal processing based on a decision tree method. A three-element electrostatic array

is employed to derive signals having linearly decoupled characteristics from which two key param-

eters, ice and water accretion layer dimension, can be determined for the purpose of environmental

monitoring. The quantified characteristics revealed a correlation with the ice layer thickness in spite

of the strong influence from the top water phase layer. The decision tree model established a rela-

tionship between the signal characteristics and the two accretion thickness parameters of water and

ice layer. Through experimental verification, it has been observed that our sensor array in combina-

tion with the decision tree model based signal processing provides a simple practical solution to the

challenging field of a two phase composition measurement such as in the marine icing considered

in this study

keyword—electrostatic sensor Array; decision Tree Method; marine Icing.

5.2 Introduction

Marine Icing is an adverse phenomena affecting offshore vessels and other structures like wind

farms [50] or oil and gas platforms [51]. Icing in general, including the atmospheric icing on

airplane wings or transmission lines, poses a great deal of difficulties to many operations and can

also be hazardous to personnel in the area especially the operators. The knowledge about the rate of

ice growth besides the total accumulation would enable managing these hazardous conditions. One

way to mitigate the challenging levels of icing is to heat trace the critical infrastructure or shutting

down the operations.
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Graz Technical University [24] applied a capacitive tomography to atmospheric icing on high

voltage power lines. Graz team considered the two phase phenomena, ice and water, however, due to

the focus on the atmospheric icing, the water phase was considered finely dispersed and embedded

in the ice phase. We focus on marine icing with a significant water layer on top of the ice.

Combitech IceMonitor [9] measures the ice mass on a rotating rod by a load cell. The system

requires a stationary installation which prevents this system being applied to ships and other marine

structures due to the dynamic forces, vibration, wind gusts or dynamic water splashes.

The Goodrich 0871LH1 ice detectors [13] use an axially vibrating probe to detect the presence

of light icing conditions. Goodrich ice detector is designed for thin ice layer applications like

avionics and to the date no reports of detecting the ice under the water phase presence has been

released.

HoloOptics T42 [8] employs IR signal passed through the medium and an external rain detector

to eliminate the sources of false indications by water phase. No testing in marine icing conditions

was conducted with the T42.

The Ice Meister Model 9734-SYSTEM industrial ice detector [12] monitors opacity and optical

refraction of the ice along the contact with the probe surface. It only recognizes whether air, water

or ice is present. This concept is somewhat similar to chilled mirror dew point sensor which often

employs the optical reflectivity.

IDS-20 system [25] measures the complex impedance of the icing medium using capacitive

plates hermetically sealed. The sensor can distinguish between water, however not in a combined

multiphase state.

Jeung Sang Go with Xiang Zhi [10] employed capacitive sensors to measure ice growth in

real time. The developed system has also been patented [26], however the authors conclude the

water layer formation has to be prevented in order to maintain the accuracy. Charles Ezeoru [11]
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conducted a similar research using the same capacitive technique with interdigitated comb-style

electrodes. Both approaches experienced the transformation from liquid state to solid state which

has been reflected in a ramp capacitance profile in time. Unfortunately, no one has tried to quantify

the transitional multiphase period.

We have developed a sensor array that allows a flexibility to be applied on curved surfaces such

as wind turbine wings. Our earlier work described in [52] utilized a planar array of electrostatic sen-

sors of different spacing that have been instrumented by a custom circuitry based on LC oscillator.

Here we report on using a constant-spacing electrostatic sensor array interfaced and conditioned by

a commercial four-channel capacitive pickup board by Texas Instruments.

Previously we processed the array signals by a multidimensional least squares method [52] and

in another approach by artificial neural networks [53]. In this work, we applied a machine learning

strategy centered around a decision tree method.

Machine learning algorithms are being used in many applications ranging from flood predic-

tion [54], solar radiation [55], to wind generator blade monitoring [56,57]. Machine learning based

on a decision tree method has been used in internet security systems [58] as well as in detecting

stability of a power system voltage [59] or in classification tasks [60, 61].

The ice can take different formations described in [62], however, the dielectric properties re-

main nearly constant which is being exploited in this research work. The problem of marine icing

detection is however complicated through the presence of a water phase on top of the ice layer since

water’s dielectric constant, the relative permittivity, is significantly larger than that of ice. The de-

cision tree method has been found to meet our needs in recognizing and classifying the multiphase

situations and provide a more accurate ice accretion measurement. This method translates the ac-

quired signal data to a regression and classification model to determine the thickness of both layers

of ice and water simultaneously.
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5.3 Methodology

Our research into sensing and detecting the marine icing as a two phase phenomena has been initially

founded on the principles of linearly decoupled array of electrostatic sensors of variable electrode

gap spacing. The experimental verification confirmed our hypothesis of dissimilar gap spacing

being capable to encode the stray electrostatic field above the sensor plane in a unique and linearly

independent way. This phenomena was utilized in discriminating each individual phase, ice and

water. Our team developed a multi-dimensional least-squares-method [52] to map the measured

data to the measurands. The least-squares method was later substituted by a more robust and more

accurate technique based on artificial neural networks method [53].

In this paper, we modified our earlier methods in four ways, (1) at the transducer array level

(constant gap spacing, variable insulator height), (2) at the signal pick up circuitry (commercial

4ch converter), (3) at the signal processing algorithm level (decision tree method) and (4) at the

spacial adaptation to curved surfaces (structural flexibility). Our earlier setup resulted in a large

variation of capacitance range which required a custom build circuitry for capacitance to frequency

conversion. In this work, we adapted an off-the-shelf signal detection board FDC2214EVM from

Texas Instruments [63] which features four independent channels simultaneously scanned and a

simple interfacing (Figure 5.1). FDC2214EVM module features 4-ch 28 bit capacitance-to-digital

signal converters (FDC). The manufacturer also provides a software enabling the data streaming into

a PC. In order to keep all array elements within a consistent accuracy range, we have built a new

three element array of uniform elements (uniform spacing) that was attached to a curved surface of

80 mm radius (Figure 5.2).
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Water and Ice Layers FDC2214EVM

Capacitive Sensors
 Array

Computer

Figure 5.1: Interfacing Curved Capacitive Sensors Array with Computer by using FDC2214EVM.

Figure 5.2: Spiral Capacitive Sensor Element.

In order to linearly decouple the measured capacitance across the array, we introduced three

different dielectric layer heights. The capacitance of two elements was analyzed by a finite element

method (FEM) using Ansys Maxwell software (Figure 5.3). The solid line characteristics represent

the capacitance for an element having 0.25 mm coating of PET, plotted as constant capacitance

contours across a range of ice and water accretion levels. The dotted line corresponds to 0.35 mm

65



dielectric coating layer. The graph demonstrates a linear independence in a similar way to the gap

variation analysis in [52] though not as profoundly. The FEM parameters are listed in Table 5.1.

Material εr

air 1.0006

water 81

ice 4.2

PET 3.6

Table 5.1: FEM Model Parameters
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Figure 5.3: Contours of Constant Capacitance for Sensor Geometries 0.25 mm and 0.35 mm.
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Any traditional insulation material that is not permeable to water will provide the function of

eliminating the conductance (real part) from the impedance measurement. PET sheets were readily

available to us and their dielectric constant is similar to the epoxy resin used in the past. The critical

part in obtaining the linearly independent characteristics across the array is in a different number of

stacked layers of PET sheets above each array element.

5.4 Experimental Validation

We have conducted a series of ice layer deposition experiments in a similar way described in [52]

using a water saturated roller. The system was placed in a deep freezer at −20 ◦C and was initially

tempered for 1 h. Then, over a period of two hours, we have periodically rolled a water layer onto

the sensor surface which is illustrated in Figure 5.4. Each peak corresponds to a new wetting cycle

during which the capacitance rises sharply. If we were to consider only the ice layer as a number

of previously developed sensors were based upon, the reported ice layer accretion would follow the

same sharp increase causing a large discrepancy from the real situation. A low pass filter could be

applied to remedy these time limited deviations however the water phase could also be present at all

times in situations of icy waters constantly battering the place of interest.

Figure 5.4 shows six transitional cycles where each cycle starts with a fresh water layer that

gradually solidifies into a new ice layer. Each cycle took approximately fifteen minutes to settle.

Our experimental approach is based on an assumption that each deposited layer is consistent with

all the other layers without the need for knowing its exact dimensions which constitutes a paramet-

ric approach.
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Figure 5.4: Experimental Data from Curved Capacitive Sensors Array.

5.5 Signal Processing

The Decision tree model is constructed from the main root branches consisting of the interior nodes

and the final nodes also called the decision nodes [64]. The tree represents a mapping character-

istic between the signal data and the target parameter, the ice accretion besides the water phase

information as a byproduct.

We have split the acquired signal data and the corresponding ice and water accretion estimate

into the training data set and the test data set. The training data is used to derive the decision tree

parameters during the training phase. Figure 5.5 shows both the training and the testing processes.

The training data set consists of 50% of data points from all the acquired data (odd rows in a column

vector). Once the relationship between input data and the measurand was established, the testing

phase has been conducted on the test data (even rows).
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Figure 5.5: The Decision Tree Processes.
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Figure 5.6 shows the ’pairplot’ data set illustrating the relationship and its weight between the

sensor data and the output classes. Our decision tree implementation is based on the Entropy rule

described in [65].
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Figure 5.6: Pairplot data set for curved capacitive sensors array.

In comparison to other models like the Gini rule, the entropy model performed better in our spe-

cific application. Both rules are characterized in Equation (5.1) with pi being the entropy measure.
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Gini = 1−
c

∑
i=1

(pi)
2

Entropy =
c

∑
i=1
− pilog2(pi) (5.1)

Figure 5.7 shows our assumption in the time profile of our anticipated data of ice accretion

(dotted line) and the water level height (solid line) [52]. At the end of each cycle, the water layer is

completely converted into the ice.
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Figure 5.7: Ice and Water accretion in time during the experiment.
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5.6 Results

We implemented a twelve level deep decision tree processes the measured data based on entropy

value where a low entropy value leads to the best leaf node in terms of purity. Applying the trained

decision tree model to the test data results in the ice accretion estimate depicted in Figure 5.8 and

the water layer estimate depicted in Figure 5.9. Both profiles show a significant improvement over

the earlier results reported in [52] and a corresponding results to the ANN approach in terms of the

ice accretion [53].
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Figure 5.8: The ice accretion estimate in comparison to the assumed data characteristic.
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Figure 5.9: The water layer estimate in comparison to the assumed data characteristic.

The Precision, Recall, F-Measure and Accuracy are commonly used for evaluating classification

methods in Machine learning [66]. Precision is the ratio between the correct positive predicted

classes for a layer and the total number that includes the correct and incorrect positive classes

predicted for the same layer. Recall is the ratio between the correct positive predicted classes for

a layer and the total number of the correct and incorrect negative classes predicted for the same

layer. F-Measure makes a harmonic relation between Precision and Recall. These parameters were

calculated as follows:

Precision =
T P

T P+FP

Recall =
T P

T P+FN

F-Measure =
2×Precision×Recall

Precision+Recall

(5.2)
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True Positive (TP) is a classification method outcome where the decision tree method generates

a correct positive class layer. Likewise, True Negative (TN) is a classification method outcome

where the decision tree method generates a correct negative class layer. False Positive(FP) and

False Negative (FP) are a classification method outcome where the decision tree method generates

incorrect positive and negative class, respectively.

The Confusion-matrix yields the most ideal suite of metrics for evaluating the performance of

a classification algorithm. Gupta [67] provides a detailed description on the confusion matrix as

a measure of determining the accuracy of the decision tree classification model. The confusion

matrix for ice and water classifier is a 6x6 matrix illustrated in Figure 5.10 with the elements along

the diagonal representing ’True Predicted’ data. The overall accuracy for the prediction model of

Ice and Water Classifier recorded accuracy of 92.8%.

The conventional method of using the least squares method to our experimental data as reported

in [52] is presented in Figures 5.11 and 5.12. Comparing these results with the decision tree results

clearly indicate the level of improvement by using the new signal processing method. A comparison

with the ANN method applied to the same data(Figures 5.13 and 5.14) reveals a similar error

characteristic in the ice accretion. The comparison analysis is quantitatively summarized by a root

mean squares error analysis presented in Table 5.2. Both the decision tree and the ANN methods are

equivalent in terms of the ice accretion measurement estimation, however, the current tree approach

offers more lightweight implementation suitable for a microcontroller based system.
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Method Medium Root Mean Square Error Mean Absolute Error

Decision Tree water 0.0231 0.0082

ice 0.0291 0.01704

Least Squares [52] water 0.0453 0.0336

ice 0.0556 0.0424

Neural Network [53] water 0.0144 0.0072

ice 0.0214 0.01702

Table 5.2: Error Analysis
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Figure 5.10: Confusion Matrix for Decision Tree Ice Classifier.
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Figure 5.11: Detected Ice vs. Predictions using Least Squares.
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Figure 5.12: Detected Water vs. Predictions using Least Squares.

76



0 200 400 600 800 1000 1200

Samples

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
h

ic
k

n
e
ss

  
[p

a
r
a

m
e
tr

ic
]

Predicted Data

Actual Data

Figure 5.13: Detected Ice vs. Predictions using Neural Network.
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Figure 5.14: Detected Water vs. Predictions using Neural Network.
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5.7 Conclusions

A novel sensor array has been developed to measure the marine icing accretion and to allow flex-

ibility in deployment over curved surfaces. A new signal processing method based on a decision

tree method has been applied to the array data. A theoretical analysis confirmed linearly decoupled

signal characteristics that are critical in discriminating the water phase influence on the ice accretion

measurement. An experimental analysis validated the high relevance of employing the decision tree

method for signal processing. The ice accretion estimate obtained through the decision tree method

demonstrates a significant improvement over the conventional least square method and a similar

characteristic with the Neural Network method, however of a lesser computational overhead and a

smaller footprint. Our three element capacitive array is easy to fabricate with off-the-shelf compo-

nents and the 4 ch 28 bit signal processing interface circuit from TI is also aligned with a very low

cost characteristics. The nature of our non-contact based design without any moving parts and the

low cost characteristics promises a robust solution towards the marine icing measurement under the

harsh environmental conditions.
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Chapter 6

Conclusion and Future Work
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6.1 Introduction

Accumulation of ice is a major problem for structures that operate in the arctic marine environment.

It is important to know the rate of accumulation, or ice accretion, in the real time. This thesis

proposed three variants of a low cost sensor that can detect the ice accretion with accuracy exceeding

the previously proposed methods and in many cases also the commercially produced systems.

We have subjected our sensor systems to experimental evaluation at MUN Thermo-Fluid Lab-

oratory. Two physical variants of capacitive sensor array have been built, tested and the data have

been processed using three different signal processing algorithms. We first studied the array of

variable gap sensors and used a multidimensional least-squares method (LSQ, Chapter 3) and then

Artificial Neural Network method (ANN, Chapter 4) for the data processing. Later, we studied a

new design of uniform gap array with variable surface insulation layer thickness (the bottom dielec-

tric layer) using a decision tree algorithm.

The capacitive sensor array geometries have been first simulated and then manufactured using

the common low-cost PCB technology. We used Ansys Maxwell finite elements method to simulate

two-phase icing phenomena prior to the experimental verification. In Chapter 3 and 4, we also

constructed our own design of capacitance to frequency converter for data acquisition based on

analog oscillator array. Chapter 5 described a data acquisition method using a commercial system

from Texas Instruments.

All three methods (Chapters 3-5) outperformed the existing systems due to the fact that the

top water phase was accounted for in our approach. No comparative experimental study has been

conducted though. The performance of our system has been compared to the performance of other

systems based on the literature survey. Yet the absence of regard for the water phase layer and/or

the marine icing specifics makes us believe that our proposed systems will provide the safety critical

information about the icing accretion in the real time reliably and with a sufficient accuracy.
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6.2 Contributions

Sensor systems for detection of ice accretion on marine structures have been designed, fabricated

and tested. All our designs feature a planar spiral geometry that has been analyzed by the Elec-

trostatics module in ANSYS Maxwell. The proposed sensors can detect both the thickness of ice

layer and the thickness of water layer on marine structures simultaneously. When the marine icing

is concerned, this is a new approach. The water layer information is not critical to collect data

about however the water layer significantly influences the ice accretion measurement. This can be

explained on the temperature compensation in other types of sensing methods in which case the

ambient temperature effects have to be accounted for to increase the accuracy of the main measure-

ment, not the temperature measurement.

Two journal papers (Chapter 3 and 5) and one full-paper peer-reviewed conference contribution

(Chapter 4) have been published. Both publishers IEEE and MDPI are placed on top of the impact-

factor scale.

The proposed methods do not just refer to the relatively narrow field of marine icing phenomena

but have a broader impact as well. Our studies also make contributions to the wider sensor science

and multiphase phenomena sensing in other industries like oil and gas, food or pharmaceutical. We

outline methods that researchers can follow and further advance to suit their own specific field of

multiphase or multivariable sensing.

The following are the itemized research contributions:

1. The study proposed experimentally verified methods for marine icing sensing.

2. The accuracy of marine icing sensing has been increased by accounting for the water phase.

3. FEM simulation was employed to pre-validate the initial hypothesis of multivariable sensing

using the contour crossing graphs that has not been reported before.
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4. In-house design of capacitance-to-frequency has been proposed, implemented and experimen-

tally evaluated. Each oscillator in the array is isolated in a Faraday cage (both electrostatic

and magnetic) and all oscillators track the same temperature. Since our method only evaluates

the differences, potential temperature drift does not effect the result accuracy.

5. A low-cost design has been considered to allow deployment on curved surfaces which has not

been reported before. This allows for use on curved blades of wind turbines for example.

6. Employing a multidimmensional Least Squares Method to the unique capacitive array data

(Chapter 3)

7. Examining the effect of capacitance drifting on the results accuracy (Chapter 3)

8. Improving the LSQ method by using Artificial Neural Networks (Chapter 4).

9. Designing a new capacitive array sensor to match a novel machine learning algorithm based

on the decision tree method. (Chapter 5)

10. All three methods proposed in this thesis are published in high-impact journals.

6.3 Future Work

The research discussed in this thesis is part of a large field of study in marine icing sensing and

multiphase sensing in general. This work provides a starting point for the use of the capacitive sens-

ing array in multivariable monitoring systems. This work further emphasizes the use of capacitive

sensing array as a cost-effective and more reliable alternative to the other ice sensing methods de-

signed primarily for terrestrial applications, homogeneous ice compositions and static deployment

on stationary (non moving) objects.
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One area I would like to see further development relates to the hardware of data acquisition

system. If there is an opportunity, I propose to borrow a concept used in metal detectors where only

the difference of two oscillators is detected. This would provide a higher quality signal data in my

opinion.

We also designed the system being potentially deployed on curved surfaces but never conducted

an extensive experimental work with such arrangement implemented. This is the area of primary

focus in the offshore wind power generation using wing turbines. The future work shall conduct a

series of experiments on different curvature surfaces.

Our experimental validation conditions were simulated in the laboratory conditions. In order for

our methods to gain a broader acceptance and practical deployment, additional validation in the real

field conditions is needed. This is an expensive proposition but a necessary one to raise the TRL

(technical readiness level) to pre-commercial state.
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A.1 OpenScad Software Equations

model Spiral()

r=0.1555;

loops=3;

slope1 =1/603;

slope2 =1/603;

thickness1 =0.1;

thickness2 =0.1;

linear extrude(height=0.1)

polygon(points= concat([for(t = [90:360*loops]) [(r-thickness1+slope1*t)*sin(t) ,

(r-thickness1+slope1*t)*cose(t)]

([for(t = [360*loops:-1:90]) [(r+slope1*t)*sin(t),(r+slope1*t)*cose(t)] )

polygon(points= concat([for(t = [90:360*loops]) [(r-thickness2+slope2*t)*sin(t) ,

(r-thickness2+slope2*t)*cose(t)]

([for(t = [360*loops:-1:90]) [(r+slope2*t)*sin(t),(r+slope2*t)*cose(t)] )
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A.2 Circuit schematic diagram of the interfacing circuit
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A.3 The four-level decision tree classifier output
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Abstract—This work describes a capacitive sensor array for the
measurement of marine ice accretion. Currently, all commercial
icing detectors only track the ice phase disregarding the water
phase. This approach is acceptable in many applications, mostly
in the atmospheric icing domain however in the case of marine
icing, the water phase creates a significant component of the
measurement signal. The water phase cannot be disregarded and
requires a novel methodology that takes into account the water-
ice conditions simultaneously. A neural network approach is used
to implement the signal-to-measurand mapping. Compared to
the previous least-squares based mapping, the neural network
method is more accurate and therefore becomes a preferred
method of signal processing in capacitive array based marine
icing sensing.

Index Terms—Marine icing, Capacitive sensors, Coplanar PCB
electrodes, Artificial Neural Network (ANN), Capacitance-to-
frequency conversion, Multiphase Dielectrics

I. INTRODUCTION

Marine icing monitoring provides the ice accumulation data
in on/off-shore applications. Heavy icing conditions can cause
severe operational challenges or can lead to severe safety
hazards. Our main motivation is to develop a monitoring
system which protects workers on vessels or ships [1]. Marine
icing forms on a surface when the supercooled water turns
into ice before the runoff time elapses. Chokmani [2], Zhi [3],
and Ezeoru [4] developed a marine icing accretion monitoring
system based on single phase assumption. Similarly, Sommer
Messtechnik [5] is based on ice phase monitoring alone. Neu-
mayer [6] and this work is focused on ice-water composition
with a difference in the arrangement of the capacitive sensors.

Coplanar capacitive sensors are surface electrode structures
which can be easily manufactured using a printed circuit board
technology. Capacitive touch sensors replacing mechanical
push buttons commonly used these days often employ this
technology. The capacitance can be detected by numerous
methods, however capacitance to time or frequency conversion
gains wide popularity due to its digital nature and simple
interface. Time or frequency signals are also less prone to in-
terference. Neumayer [6] utilizes a capacitive array of constant
spacing characteristics and applies Computer Tomography
algorithm to detect the multiphase domains. In our research,

we utilize an array of capacitive elements of varying spacing
dimension, the inter-electrode gap. Each element features a
different depth of ’penetration’ and in the combination, the
system provides linearly independent signals that can uniquely
encode the ice accretion and water layer depth.

II. EXPERIMENTAL PLATFORM

Our previous work [11] describes the experimental platform
in more detail. Figure 1 & Figure 2 show the capacitive
elements of varying spacing (3.5 mm, 3 mm, 2.5 mm, 2
mm, 1 mm, and 0.5 mm). A thin layer of insulation was
also deposited on top of the PCB to insulate the electrodes
from the external environment. This is a common practice in
capacitance sensors to prevent the conductance to influence the
measurement unless it is the part of the measurement method.

Hartley oscillator is used to detect the capacitance of each
element. A comparator MAX 912 is used to convert the
harmonic sine wave signals generated from the oscillator to
square wave signals and consequently a counter 74LS163
divides the frequency 8x.

Prior to the experiment, the PCB was leveled in a deep
cooler at −20◦C. We used a paint roller to deposit a water
layer over the PCB. A wet roller was rolled over the sensor
plane in three runs separated by a few minutes each as shown
in the data plot below. We assumed the entire PCB surface
experiencing the same conditions and that each wetting cycle
deposited an equal layer of water.

III. SIGNAL PROCESSING

Consistent water layers were created using a wet paint roller,
and three wet cycles were applied across the sensor array PCB
surface. The measured frequencies are shown in Figure 3.
The plotted frequencies differed in a constant term as well
as amplitude. Here the constant term corresponds to the case
when no ice nor water is present, the initial condition.

While maintaining their linear independence, we normalized
the acquired frequencies by the constant (initial) term in order
to present them in one graph for comparative reasons. Figure 3
includes data for four elements with a slightly differnt duration



Fig. 1. Design of coplanar spiral electrodes of different air-gap spacing

Fig. 2. Capacitive Sensor Array

of each wetting cycle. The cycles are getting shorter as thermal
inertia of the built up ice is growing.

The frequency data were sampled at a rate of two samples
per second using a DAQ card and Matlab was used to filter
the noise off-line by Butterworth filter, Figure 4. Figure 5
shows the filtered data shifted back by 40 samples to align
the characteristics with each wetting cycle instead of delaying
the ice and water profiles by the filter’s delay.

Fig. 3. Normalize Frequencies from Four Oscillators

Again we assume that each wetting cycle creates a uniform
water film layer over the PCB. Figure 6 illustrates this assump-
tion in a time profile for water and ice accretion. The profiles

Fig. 4. Filter Data and Normalized Data for 0.5, 1.0, 2.0, and 3.0-mm Gap
Sensors

Fig. 5. Removed Delay Shift from Filter Data

are piecewise linear and their amplitude is not a concern in
this study. In order to also determine the amplitudes, a more
complex sensor calibration setup would be necessary where
ice a water layer has to be measured accurately.

Fig. 6. Main Idea for the Model of Ice and Water Experiment Data

IV. NEURAL NETWORK MAPPING

Our previous work confirmed that an array of coplanar
sensors of various spacing parameters has the ability to de-
termine the ice phase and water phase individually. In this
work we utilized an artificial neural network (ANN) to map
the frequencies input to the ice accretion and water layer depth



output. This is a novel method also used in other studies by
McComber [7], Larouche et al [8], and Ohta [9]. For example
ANN was used to predict the icing condition based on the
temperature, wind speed, and precipitation rate. Gantasala [10]
used two parameter frequencies and wind speeds to determine
ice mass through the ANN.

In this research, capacitive sensor frequencies were used as
input and the water-ice profile as output. Input-Output training
data set was then created across 740 time samples. Figure 7
shows the architecture of the used ANN model, which has
four neurons in the input layer for the four frequencies, twenty
neurons in the hidden layer and two neurons in the output layer
for ice and water.

The ANN processes the input information in the following
manner:

h1 = f1 ∗Wi11 + f2 ∗Wi21 + f3 ∗Wi31

+ f4 ∗Wi41 +Bi1
...

h20 = f1 ∗Wi120 + f2 ∗Wi220 + f3 ∗Wi320

+f4 ∗Wi420 +Bi20

hn = f1 ∗Wi1n + f2 ∗Wi2n + f3 ∗Wi3n+

f4 ∗Wi4n +Bin
(1)

Wi, Wo, Bi, and Bo represent input weights, output weights,
input biases, and output biases respectively.

Initially, we applied the ”Pure linear” activation function
(Eq.5). As can be seen in Figure 8, the resulting characteristics
for ice and water suffer from a large deviation from the
expected characteristics. To overcome this limitation, we
consequently tested two non-linear functions ”Log-sigmoid”
function (Eq.6) and the ”tangent sigmoid” function (Eq.7).
Figure 9 which corresponds to the ”Log-sigmoid” activation
function results in a nearly perfect match with the expected
characteristics. Figure 10 resulting from the ”tangent
sigmoid” activation function also closely represents the ideal
characteristics, however not as close as the Figure 9 case of
the ”Log-sigmoid” function.

OWater = (h1 ∗Wo11) + (h2 ∗Wo21)

+.....+ (h20 ∗Wo201) +Bo1
(2)

OIce = (h1 ∗Wo12) + (h2 ∗Wo22)

+.....+ (h20 ∗Wo202) +Bo2
(3)

Oj =

2∑

j=1

20∑

k=1

[[hk ∗Wokj ] +Boj ] (4)

Fig. 7. Neural Network Prediction Model

Fig. 8. Ice & Water layers Predicted by the ANN Model [Linear transfer
function]

Fig. 9. Ice & water Layers Predicted by the ANN Model [Log-sigmoid
transfer function]

Figures 9 & 10 show that the results from the ANN signal
processing. Comparing these result to [11] shown in in Figure
11 without any detailed error analysis, one can observe the
superiority of ANN algorithm over the least squares method
in [11]. The nonlinear nature of Log-sigmoid neuron firing
function in combination with the constant biases occurs to be
a better fit to process the signals from linearly independent
frequency data. Therefore we propose to use ANN over the
least squares.



Fig. 10. Ice & Water layers Predicted by the ANN Model [Hyperbolic tangent
sigmoid transfer function]
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Fig. 11. Water and Ice Levels Predicted by Least-Squares method in [11]

the activation functions expressed as following:

PureLin F(n) = n (5)

LogSig F(n) =
1

1 + exp(−n) (6)

TanSig F(n) =
2

1 + exp(−2n) − 1 (7)

V. CONCLUSION

Our previous research revealed that an array of coplanar
capacitive sensors on a PCB surface can detect the ice accre-
tion rate in presence of a significant water layer. This work
followed up in the research and proposed using an artificial
neural network for signal processing instead of previously
used least-squares method. We adopted a three layer ANN to
process frequencies from four sensors, previously normalized

and low pass filtered. As a result, the accuracy of ANN
derived ice accretion and water layer is superior to the least
squares method. However more work is needed to validate the
method’s robustness under a presence of signal drifting or a
low frequency noise.
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of ice mass accumulated on wind turbine blades using its natural
frequencies. Wind Engineering, 42(1), 66–84.

[11] A. Elzaidi, V. Masek and Y. Muzychka, ”Phase Discrimination in Marine
Icing Using a Coplanar Capacitive Array,” in IEEE Sensors Journal. doi:
10.1109/JSEN.2019.2935616



Appendix B

Appendix: B

99



FDC2114 / 
FDC2214

Channel 1 
Sensor

PCB 
Perforations

MSP430 Connector for 
custom sensor

Channel 0 
Sensor

Sensor 
Inductor

6 SNOU138A–June 2015–Revised October 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

FDC2114 and FDC2214 EVM User’s Guide

User's Guide
SNOU138A–June 2015–Revised October 2016

FDC2114 and FDC2214 EVM User’s Guide

1 Overview
The FDC2114/2214 EVM demonstrates the use of capacitive sensing technology to sense and measure
the presence or position of target objects. The EVM contains two example LC tank sensors that are
connected to the FDC2114/2214 input channels. The latter is controlled by an MSP430, which interfaces
to a host computer.

Figure 1. FDC2114/2214 Evaluation Module

The FDC2114/2214EVM includes two example PCB sensors. Each sensor consists of a single-layer
capacitor plate, a 33pF 1% COG/NP0 capacitor, and a 18μH connected in parallel to form an LC tank.

PCB perforations allow separation of the sensor coils or the microcontroller, so that custom sensors or a
different microcontroller can be connected.
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2 Sensing Solutions EVM GUI
The Sensing Solutions EVM GUI provides direct device register access, user-friendly configuration, and
data streaming.

2.1 System Requirements
The host machine is required for device configuration and data streaming. The following steps are
necessary to prepare the EVM for the GUI:
• The GUI and EVM driver must be installed on a host computer
• - The EVM must be connected to a full speed USB port (USB 1.0 or above)

The Sensing Solutions EVM GUI supports the following operating systems (both 32-bit and 64-bit):
• Windows XP
• Windows 7
• Windows 8 and 8.1
• Windows 10

2.2 Installation Instructions
The Sensing Solutions GUI and EVM driver installer is packaged in a zip file. Follow these steps to install
the software:
1. Download the software ZIP file from the EVM tool page
2. Extract the downloaded ZIP file
3. Run the included executable
4. If prompted by the User Account Control about making changes to the computer, click "Yes"

Figure 2. User Account Control Prompt
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3 FDC2114/2214 EVM Schematics and Layout

Figure 43. USB Connection and Power Circuit



www.ti.com FDC2114/2214 EVM Schematics and Layout

45SNOU138A–June 2015–Revised October 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

FDC2114 and FDC2214 EVM User’s Guide

Figure 44. FDC2114/2214
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Figure 45. MSP430 Connections
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Figure 46. Layout Top Layer – Signals and Components

Figure 47. Layout Mid-Layer 1 – Ground Plane
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General Description
The MAX913 single and MAX912 dual, high-speed,
low-power comparators have differential inputs and
complementary TTL outputs. Fast propagation delay
(10ns, typ), extremely low supply current, and a wide
common-mode input range that includes the negative
rail make the MAX912/MAX913 ideal for low-power,
high-speed, single +5V (or ±5V) applications such as
V/F converters or switching regulators.

The MAX912/MAX913 outputs remain stable through
the linear region. This feature eliminates output instabili-
ty common to high-speed comparators when driven
with a slow-moving input signal.

The MAX912/MAX913 can be powered from a single
+5V supply or a ±5V split supply. The MAX913 is an
improved plug-in replacement for the LT1016. It pro-
vides significantly wider input voltage range and equiv-
alent speed at a fraction of the power. The MAX912
dual comparator has equal performance to the MAX913
and includes independent latch controls.

Applications
Zero-Crossing Detectors

Ethernet Line Receivers

Switching Regulators

High-Speed Sampling Circuits

High-Speed Triggers

Extended Range V/F Converters

Fast Pulse Width/Height Discriminators

Features
� Ultra Fast (10ns)

� Single +5V or Dual ±5V Supply Operation

� Input Range Extends Below Negative Supply

� Low Power: 6mA (+5V) Per Comparator

� No Minimum Input Signal Slew-Rate Requirement

� No Power-Supply Current Spiking

� Stable in the Linear Region

� Inputs Can Exceed Either Supply

� Low Offset Voltage: 0.8mV

� Now Available in a Small µMAX Package
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For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.

PART TEMP RANGE PIN-PACKAGE

MAX912CPE 0°C to +70°C 16 Plastic DIP

MAX912CSE 0°C to +70°C 16 Narrow SO

MAX912EPE -40°C to +85°C 16 Plastic DIP

MAX912ESE -40°C to +85°C 16 Narrow SO

MAX913CPA 0°C to +70°C 8 Plastic DIP

MAX913CSA 0°C to +70°C 8 SO

MAX913EPA -40°C to +85°C 8 Plastic DIP

MAX913ESA -40°C to +85°C 8 SO

MAX913EUA -40°C to +85°C 8 µMAX
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ABSOLUTE MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS
V+ = +5V, V- = -5V, VQ = 1.4V, VLE = 0V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.

Positive Supply Voltage .........................................................+7V
Negative Supply Voltage ........................................................-7V
V+ to V- ................................................................................+13V
Differential Input Voltage .....................................................+15V
Input Voltage (Referred to V-) ................................-0.3V to +14V
Latch Pin Voltage .............................................Equal to Supplies
Continuous Output Current...............................................±20mA
Continuous Power Dissipation (TA = +70°C)

8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) ...727mW

8-Pin SO (derate 5.88mW/°C above +70°C)................471mW
8-Pin µMAX (derate 4.5mW/°C above +70°C) .............362mW
16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)842mW
16-Pin Narrow SO (derate 8.70mW/°C above +70°C) .696mW

Operating Temperature Ranges:
MAX91_C_ _ ...........................................................0°C to +70°C
MAX91_E_ _.........................................................-40°C to +85°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS

TA = +25°C 0.1 2
Input Offset Voltage (Note 2) VOS RS ≤ 100Ω

TA = TMIN TO TMAX 3
mV

Offset Drift TCVOS 2 µV/°C

TA = +25°C 0.3 0.5
Input Offset Current (Note 2) IOS

TA = TMIN TO TMAX 1
µA

TA = +25°C 2 5
Input Bias Current IB

C, E temperature ranges 8
µA

C, E temperature ranges -5.2 +3.5
Input Voltage Range VCM

Single +5V C, E temperature ranges -0.2 +3.5
V

Common-Mode Rejection Ratio CMRR -5.0V ≤ VCM ≤ +3.5V 80 110 dB

Positive supply; 4.5V ≤ V+ ≤ 5.5V 60 85
Power-Supply Rejection Ratio PSRR

Negative supply; -2V ≥ V- ≥ -7V 80 100
dB

Small-Signal Voltage Gain AV 1V ≤ VQ ≤ 2V, TA = +25°C 1500 3500 V/V

IOUT = 1mA 2.7 3.4
VOH V+ ≥ 4.5V

IOUT = 10mA 2.4 3.0

ISINK = 4mA 0.3 0.5
Output Voltage

VOL
TA = +25°C, ISINK = 10mA 0.4

V

Positive Supply Current Per
Comparator (Note 3)

I+ C, E temperature ranges 6 10 mA

Negative Supply Current Per
Comparator (Note 3)

I- 1 2 mA

Latch-Pin High Input Voltage VIH 2.0 V

Latch-Pin Low Input Voltage VIL 0.8 V

Latch-Pin Current IIL VLE = 0V -1 -20 µA



5-278

FAST AND LS TTL DATA

BCD DECADE COUNTERS/
4-BIT BINARY COUNTERS

The LS160A/161A/162A/163A are high-speed 4-bit synchronous count-
ers. They are edge-triggered, synchronously presettable, and cascadable
MSI building blocks for counting, memory addressing, frequency division and
other applications. The LS160A and LS162A count modulo 10 (BCD). The
LS161A and LS163A count modulo 16 (binary.)

The LS160A and LS161A have an asynchronous Master Reset (Clear)
input that overrides, and is independent of, the clock and all other control
inputs. The LS162A and LS163A have a Synchronous Reset (Clear) input that
overrides all other control inputs, but is active only during the rising clock
edge.

BCD (Modulo 10) Binary (Modulo 16)

Asynchronous Reset LS160A LS161A

Synchronous Reset LS162A LS163A

• Synchronous Counting and Loading
• Two Count Enable Inputs for High Speed Synchronous Expansion
• Terminal Count Fully Decoded
• Edge-Triggered Operation
• Typical Count Rate of 35 MHz
• ESD > 3500 Volts

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:
The Flatpak version
has the same pinouts
(Connection Diagram) as
the Dual In-Line Package.
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*MR for LS160A and LS161A
*SR for LS162A and LS163A

PIN NAMES LOADING (Note a)

HIGH LOW

PE
P0–P3
CEP
CET
CP
MR
SR
Q0–Q3
TC

Parallel Enable (Active LOW) Input
Parallel Inputs
Count Enable Parallel Input
Count Enable Trickle Input
Clock (Active HIGH Going Edge) Input
Master Reset (Active LOW) Input
Synchronous Reset (Active LOW) Input
Parallel Outputs (Note b)
Terminal Count Output (Note b)

1.0 U.L.
0.5 U.L.
0.5 U.L.
1.0 U.L.
0.5 U.L.
0.5 U.L.
1.0 U.L.
10 U.L.
10 U.L.

0.5 U.L.
0.25 U.L.
0.25 U.L.
0.5 U.L.

0.25 U.L.
0.25 U.L.
0.5 U.L.

5 (2.5) U.L.
5 (2.5) U.L.

NOTES:
a) 1 TTL Unit Load (U.L.) = 40 µA HIGH/1.6 mA LOW.
b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74)

Temperature Ranges.

SN54/74LS160A
SN54/74LS161A
SN54/74LS162A
SN54/74LS163A

BCD DECADE COUNTERS/
4-BIT BINARY COUNTERS

LOW POWER SCHOTTKY

J SUFFIX
CERAMIC

CASE 620-09

N SUFFIX
PLASTIC

CASE 648-08

16
1

16

1

ORDERING INFORMATION

SN54LSXXXJ Ceramic
SN74LSXXXN Plastic
SN74LSXXXD SOIC

16
1

D SUFFIX
SOIC

CASE 751B-03

LOGIC SYMBOL
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*MR for LS160A and LS161A
*SR for LS162A and LS163A



*For the LS162A and
*LS163A only.

H = HIGH Voltage Level
L = LOW Voltage Level
X = Don’t Care

5-279

FAST AND LS TTL DATA

SN54/74LS160A • SN54/74LS161A
SN54/74LS162A • SN54/74LS163A

STATE DIAGRAM

LS160A •  LS162A LS161A •  LS163A
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NOTE:
The LS160A and LS162A can be preset to any state,
but will not count beyond 9. If preset to state 10, 11,
12, 13, 14, or 15, it will return to its normal sequence
within two clock pulses.

LOGIC EQUATIONS

Count Enable = CEP • CET • PE
TC for LS160A & LS162A = CET • Q0 • Q1 • Q2 • Q3
TC for LS161A & LS163A = CET • Q0 • Q1 • Q2 • Q3
Preset = PE • CP + (rising clock edge)
Reset = MR (LS160A & LS161A)
Reset = SR • CP + (rising clock edge)
Reset = (LS162A & LS163A)

FUNCTIONAL DESCRIPTION

The LS160A/161A/162A/163A are 4-bit synchronous
counters with a synchronous Parallel Enable (Load) feature.
The counters consist of four edge-triggered D flip-flops with
the appropriate data routing networks feeding the D inputs. All
changes of the Q outputs (except due to the asynchronous
Master Reset in the LS160A and LS161A) occur as a result of,
and synchronous with, the LOW to HIGH transition of the
Clock input (CP). As long as the set-up time requirements are
met, there are no special timing or activity constraints on any
of the mode control or data inputs.

Three control inputs — Parallel Enable (PE), Count Enable
Parallel (CEP) and Count Enable Trickle (CET) — select the
mode of operation as shown in the tables below. The Count
Mode is enabled when the CEP, CET, and PE inputs are HIGH.
When the PE is LOW, the counters will synchronously load the
data from the parallel inputs into the flip-flops on the LOW to
HIGH transition of the clock. Either the CEP or CET can be
used to inhibit the count sequence. With the PE held HIGH, a
LOW on either the CEP or CET inputs at least one set-up time
prior to the LOW to HIGH clock transition will cause the
existing output states to be retained. The AND feature of the
two Count Enable inputs (CET • CEP) allows synchronous
cascading without external gating and without delay accu-
mulation over any practical number of bits or digits.

The Terminal Count (TC) output is HIGH when the Count
Enable Trickle (CET) input is HIGH while the counter is in its
maximum count state (HLLH for the BCD counters, HHHH for

the Binary counters). Note that TC is fully decoded and will,
therefore, be HIGH only for one count state.

The LS160A and LS162A count modulo 10 following a
binary coded decimal (BCD) sequence. They generate a TC
output when the CET input is HIGH while the counter is in state
9 (HLLH). From this state they increment to state 0 (LLLL). If
loaded with a code in excess of 9 they return to their legitimate
sequence within two counts, as explained in the state
diagram. States 10 through 15 do  not  generate a TC output.

The LS161A and LS163A count modulo 16 following a
binary sequence. They generate a TC when the CET input is
HIGH while the counter is in state 15 (HHHH). From this state
they increment to state 0 (LLLL).

The Master Reset (MR) of the LS160A and LS161A is
asynchronous. When the MR is LOW, it overrides all other
input conditions and sets the outputs LOW. The MR pin should
never be left open. If not used, the MR pin should be tied
through a resistor to VCC, or to a gate output which is
permanently set to a HIGH logic level.

The active LOW Synchronous Reset (SR) input of the
LS162A and LS163A acts as an edge-triggered control input,
overriding CET, CEP and PE, and resetting the four counter
flip-flops on the LOW to HIGH transition of the clock. This
simplifies the design from race-free logic controlled reset
circuits, e.g., to reset the counter synchronously after
reaching a predetermined value.

MODE SELECT TABLE

*SR PE CET CEP Action on the Rising Clock Edge  (   )

L X X X RESET (Clear)
H L X X LOAD (Pn º  Qn)
H H H H COUNT (Increment)
H H L X NO CHANGE (Hold)
H H X L NO CHANGE (Hold)


